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Id2 Complexes with the SNAG Domain of Snai1 Inhibiting Snai1-
Mediated Repression of Integrin �4

Cheng Chang, Xiaofang Yang, Bryan Pursell, Arthur M. Mercurio

University of Massachusetts Medical School, Worcester, Massachusetts, USA

The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the
EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as
�6�4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits �4 transcription by increasing re-
pressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized
in the nucleus in epithelial cells, but it does not repress �4. We resolved this paradox by discovering that Id2 complexes with the
SNAG domain of Snai1 on the �4 promoter and constrains the repressive function of Snai1. Disruption of the complex by de-
pleting Id2 resulted in Snai1-mediated �4 repression with a concomitant increase in H3K27Me3 modification on the �4 pro-
moter. These findings establish a novel function for Id2 in regulating Snai1 that has significant implications for the regulation of
epithelial gene expression.

The regulated expression of specific integrins is a fundamental
component of development, tissue homeostasis, and many

diseases (1). A prime example of this concept is the regulation of
epithelial integrins, which function primarily in the anchoring of
epithelial cells to laminins in the basement membrane (2). Devel-
opmental and pathological processes that necessitate epithelial
cell migration often involve disruption of the stable adhesive con-
tacts provided by integrins (3–5). The two major integrins that
anchor epithelial cells to basement membrane laminins are �3�1
and �6�4 (6–9), and stimuli that disrupt epithelial adhesion fre-
quently target the expression, localization, and cytoskeletal inter-
actions of �6�4 (3, 4, 10–12). The epithelial-mesenchymal tran-
sition (EMT) provides a useful model system for studying the
regulation of epithelial integrins. Although studies on the EMT
have focused largely on mechanisms that disrupt cell-cell adhe-
sions (13, 14), disruption of integrin-mediated anchoring to ma-
trix is an important component of the EMT, but the mechanisms
involved are poorly understood.

The EMT of normal mammary epithelial cells involves tran-
scriptional repression of the �4 integrin subunit (referred to as
�4), which results in loss of the �6�4 integrin (15). This repres-
sion is associated with a decrease in active histone modifications
(acetylation of histone H3 at K9 [H3K9Ac] and trimethylation of
histone H3 at K4 [H3K4Me3]) and an increase in repressive his-
tone modification (H3K27Me3) on the �4 promoter (15). Al-
though these previous observations provide a foundation for un-
derstanding how �4 is regulated during the EMT, little is known
about the mechanisms involved. For example, are specific tran-
scription factors involved in �4 repression, and, if so, what is their
relationship to epigenetic modifications? Our pursuit of this prob-
lem in the current study revealed a key role for the zinc finger
protein Snai1 in repressing �4. Interestingly, however, we ob-
served that Snai1 is expressed in the nucleus of mammary epithe-
lial cells, but it does not repress �4 transcription. This observation
is consistent with other reports of Snai1 expression in epithelial
cells (16–18). Aside from the possibility that Snai1 can be excluded
from the nucleus (19), it is not known why nuclear Snai1 does not
repress genes in epithelial cells. In an attempt to understand this
paradox, we discovered that Snai1 interacts with Id2, and we dem-

onstrate that Id2 constrains the repressive function of Snai1 by
binding to its SNAG domain, a key domain for recruiting core-
pressors, including H3K27 methyltransferase (20). Id2 is a helix-
loop-helix (HLH) protein family member that has been impli-
cated as an antagonist of the EMT (21, 22). Specifically, the EMT
in several epithelial models is associated with strong suppression
of Id2, and forced Id2 expression in mesenchymal cells is able to
partially rescue an epithelial phenotype (21). Given that Id2 can
also impede the ability of Snai1 to repress E-cadherin, these find-
ings provide insight into the regulation of epithelial genes, and
they identify a novel mechanism for how Id2 maintains epithelial
differentiation.

MATERIALS AND METHODS
Cell culture. NMuMG (normal murine mammary gland) cells were pur-
chased from ATCC and maintained in complete medium containing Dul-
becco’s modified Eagle’s medium (DMEM) (high glucose) with 10% fetal
bovine serum, 10 �g/ml insulin, 100 �g/ml streptomycin, and 100
units/ml penicillin at 37°C in an incubator supplied with 5% CO2. Trans-
forming growth factor � (TGF-�; Peprotech) was added directly into the
culture medium at a final concentration of 4 ng/ml for the time periods
indicated in the figure legends. For long-term (more than 2 days) treat-
ment with TGF-� (EMT), cells were passed into fresh complete medium
containing 4 ng/ml TGF-�. For the TGF-� withdrawal experiments, cells
that had undergone EMT in the presence of TGF-� were passed into fresh
complete medium without TGF-�. MCF7 cells were purchased from
ATCC and maintained in the DMEM (low glucose) containing 10% fetal
bovine serum, 100 �g/ml streptomycin, and 100 units/ml penicillin at
37°C in an incubator supplied with 5% CO2.
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Microarray analysis. A Qiagen RNeasy minikit was used to extract
total RNA from untreated epithelial NMuMG cells (EPTH), NMuMG
cells treated with TGF-� for 11 days (EMT), and NMuMG cells treated
with TGF-� for 11 days followed by TGF-� withdrawal for 13 days (mes-
enchymal-epithelial transition [MET]). For each sample, 500 ng of total
RNA with poly(A) RNA control stock was used to synthesize the biotin-
labeled antisense RNA (aRNA), following the protocol described in the
manual of the Affymetrix 3= IVT Express Kit (23). The aRNA was then
purified using aRNA-binding magnetic beads and fragmented to a size
range of 90 to 110 nucleotides (nt). The purified aRNA (15 �g) was used
to hybridize with the Mouse Genome 430 2.0 Array (Affymetrix). All
samples were run in duplicate. Analyses were performed using BRB-Ar-
rayTools developed by Richard Simon and the BRB-ArrayTools Develop-
ment Team (24). The raw array data were normalized using the robust
multiarray average (RMA) algorithm. The three sample groups described
above were subjected to class comparison, and genes that were differen-
tially expressed are summarized in the Venn diagram shown in Fig. S1A in
the supplemental material. Genes that exhibited less than a 2-fold change
or a P value of �0.001 were excluded from the data summary presented.

Biochemical techniques. For quantitative, real-time PCR (qPCR), to-
tal RNA was extracted using TRIzol reagent (Invitrogen), and cDNAs
were produced using Superscript II (Invitrogen) according to the manu-
facturer’s instructions. qPCR was performed using a SYBR green master
mix (Applied Biosystems). The qPCR primers used are provided in Table
S1 in the supplemental material. Two-tailed Student t tests were used for
statistical comparison. Immunoblotting was performed as described pre-
viously (25) using antibodies (Abs) for the following: �4 (505) (11), actin
(A20660; Sigma), E-cadherin (334000; Invitrogen), Id2 (C-20; Santa Cruz
Biotechnology), Id1 (C-20; Santa Cruz Biotechnology), Snai1 (L70G2;
Cell Signaling), Pol2 (8WG16; Covance), Flag (M2; Sigma), and hemag-
glutinin (HA) (clone 3F10; Roche). Densitometry of the immunoblots
was performed using Gel-pro Analyzer, version 4.0.

The nuclear fraction assay used is described in the Abcam protocol
database (http://www.abcam.com/index.html?pageconfig�resource&rid
�11408). Briefly, cells were extracted using buffer A (10 mM HEPES, 1.5
mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol [DTT], 0.05% NP-40, pH
7.9) and centrifuged at 800 � g at 4°C for 10 min. The supernatant from
this extract was saved as the cytoplasmic fraction. The remaining pellets
were Dounce homogenized, extracted using buffer B (5 mM HEPES, 1.5
mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 26% glycerol [vol/vol], pH 7.9)
containing 300 mM NaCl and centrifuged at 16,100 � g for 20 min at 4°C.
The supernatant from this extraction was saved as the nuclear fraction.

For the coimmunoprecipitation (co-IP) experiments, cell extracts
were prepared using NP-40 or Triton lysis buffer (Boston BioProduct)
containing protease inhibitor cocktail (Roche). Extracts were precleared
using a 50% protein G suspension (Biovision). For each IP, 200 to 500 �g
of total protein was incubated with 40 �l of anti-Flag (M2) bead slurry
(Sigma) at 4°C overnight in the appropriate lysis buffer. In some experi-
ments, total protein was incubated with 1 �g of antibody overnight at 4°C
first and then subjected to bead enrichment by 40 �l of 50% protein G
slurry (Biovision) for another 1 to 2 h at 4°C. Subsequently, beads were
washed with 1 ml of cold IP lysis buffer, and immunoprecipitated frac-
tions were extracted by boiling in 2� SDS loading buffer (Boston Bio-
products). Samples were then resolved by SDS-PAGE and immuno-
blotted. IP antibodies were Snai1 Ab1 (L70G2; Cell Signaling), Snai1 Ab2
(G-7; Santa Cruz Biotechnology), and HA (clone 3F10; Roche).

Constructs, transfections, and RNA interference. pCMX-based ex-
pression constructs including HA alone, HA-Snai1 (mouse), or Flag-Id2
(mouse) were inserted between the KpnI-BamHI sites of the pCMX vec-
tor. PT7CFE1-based expression constructs, PT7CFE1-Id2 and PT7CFE-
Id1 (mouse), were cloned between NdeI and NotI sites of the PT7CFE1-
CHis vector (Thermo Fisher Scientific). To construct the luciferase
reporter for the �4 promoter, promoter fragments from �1572 to �254
were amplified by PCR using a KOD high-fidelity DNA polymerase kit
(Novagen). Each fragment was gel purified by a Qiagen gel extraction kit,

digested with restriction enzymes (NEB), and inserted between the NheI
and HindIII sites into the pGL3-basic vector (Promega). All constructs
were confirmed by sequencing analysis (Genewiz).

Retrovirus-mediated expression in NMuMG cells was performed us-
ing the MSCV-IRES-GFP vector (where MSCV is murine stem cell virus,
IRES is internal ribosome entry site, and GFP is green fluorescent protein)
(plasmid 9044 [Addgene], also termed pMIG), and stable expression was
confirmed by assessing GFP-positive cells, which comprised 90 to 100% of
the cell population. The full-length Snai1 (mouse) open reading frame
(ORF) was PCR amplified from the total cDNA of NMuMG cells and
ligated into pMIG. To construct Snai1-	SNAG, the Snai1 (mouse) ORF
lacking the 4th to 60th nucleotides was generated by PCR and ligated into
pMIG. An HA tag was added on the 3= end of Snai1 or the Snai1-	SNAG
ORF to produce Snai1-HA or Snai1-	SNAG-HA. All cDNAs were in-
serted between XhoI and NotI sites of pMIG.

To construct glutathione S-transferase (GST)–SNAG and GST-Snai1,
the SNAG domain (nt 1 to 60 of Mus Snai1) or the full-length Snai1
(mouse) ORF was cloned into the EcoRI site of the PGEX4T-1 vector (GE
Healthcare). For GST-Id2, the full-length Id2 ORF was PCR amplified and
then cloned into the pGEX-4T-1 vector with BamHI/SalI restriction sites.
All constructs were confirmed by sequencing analysis (Genewiz).

The inducible system using an estrogen receptor (ER) fusion protein
has been described previously (26–28). The retroviral Snai1-ER expres-
sion construct, PWZL-Snai1-ER (referred to as Snail-ER), was provided
by Karl Simin (University of Massachusetts Medical School). The con-
struction of the vector is described elsewhere (29). NMuMG cells infected
by Snai1-ER virus were selected by blasticidin (6 �g/ml) for 7 days. All of
the blasticidin-resistant NMuMG cells with Snai1-ER stable integration
were then treated with medium containing 250 nM 4-hydroxytamoxifen
(4-OHT) for Snai1 activation or an equal volume of ethanol (the solvent
of 4-OHT) as a control for 7 days prior to protein analysis.

The constructs expressing the short hairpin RNA (shRNA) targeting
Snai1 (shSnai1) were generated using Psuperior-Neo retroviral vector
(Oligoengine). The shRNA targeting sequences are GGGAGAAAGATGT
TTACAT (shSnai1-2) and CACCTTCTTTGAGGTACAA (shSnai1-3).
Stable expression of these shRNAs in the NMuMG cells was obtained by
G418 (1 mg/ml) selection for 7 days after retroviral infection, using shGFP
as a nontargeting control. The mouse and human shId2 expression con-
structs used in this study were purchased from Open Biosystems, and the
reference numbers are as follows: mouse shId2-1, TRCN0000054390, and
shId-2, TRCN0000054391; human shId2-1, TRCN0000021064, and
shId2-2, TRCN0000021065. Stable expression of these pLKO-based vec-
tors in NMuMG cells was obtained by puromycin (2 �g/ml) selection for
5 to 6 days, using shGFP as a nontargeting control.

ChIP. Chromatin immunoprecipitation (ChIP) assays were per-
formed using a ChIP-it Express Kit (catalog number 53008; Active Motif)
with minor modifications according to Tian et al. (30). Cells were first
cross-linked with 2 mM disuccinimidyl glutarate (catalog number c1104;
Proteochem) for 45 min at room temperature (RT) and then washed and
subjected to cross-linking by 1% formaldehyde (Sigma) for 15 min at RT.
The reaction was quenched using 125 mM glycine for 5 min. Subse-
quently, the cells were washed with phosphate-buffered saline (PBS),
scraped from the plate, and lysed in 1 ml of lysis buffer [5 mM piperazine-
N,N=-bis(2-ethanesulfonic acid) (PIPES; pH 8.0), 85 mM KCl, 0.5% NP-
40, and protease inhibitor]. Nuclear pellets were lysed again with nuclear
fraction buffer (50 mM Tris-HCl, 10 mM EDTA, 1% SDS, pH 8.0, and
protease inhibitor) and resuspended in 400 �l of ChIP buffer (150 mM
NaCl, 50 mM Tris-HCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate, 0.1% SDS with protease inhibitor). Chromatin was then
subjected to sonication using a Sonicator 3000 (Misonix, Inc.) for four
cycles of 20-s (power setting, 2.0) bursts to generate chromatin fragments
that ranged from 200 to 700 bp. The sonicated chromatin samples were
then used in the ChIP assay according to the protocol of the kit. Each ChIP
sample contained chromatin from 1 � 106 to 2 � 106 cells and 2 �g of Ab.
For ChIP, antibodies for the following were used: H3K27Me3 (07-449;
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Millipore), H3K4Me3 (05-1339; Millipore), H3K9Me3 (07-442; Milli-
pore), and H3 (2650; Cell signaling). Snai1 ChIP-grade Ab was a kind gift
of A. de Herreros (31); Id2 (clone C-20; Santa Cruz Biotechnology) or
isogenic IgG was used. ChIP incubation was performed overnight (15 h to
16.5 h) at 4°C. The immunoprecipitated DNA was then subjected to real-
time PCR analysis using ChIP primers targeting different regions of the �4
promoter. Primer sets for ChIP PCR on the �4 promoter are provided in
Table S1 in the supplemental material. Two-tailed Student t tests were
used for statistical comparison.

Immunofluorescence microscopy. Immunofluorescence micros-
copy was performed as described previously (10) using Snai1 Ab (1:50
dilution) (L70G2; Cell Signaling) and Id2 Ab (1:200 dilution) (C-20;
Santa Cruz Biotechnology), anti-mouse tetramethyl rhodamine isocya-
nate (TRITC) secondary Ab (1:250 dilution) (15-025-150; Jackson Im-
munoResearch) and anti-rabbit fluorescein isothiocyanate (FITC)-sec-
ondary Ab (1:250 dilution) (711-096-152; Jackson ImmunoResearch).
The microscope was made by Zeiss (model LSM-700), and the pictures
were taken using the camera of an Axio Imager Z2 at room temperature

(23°C). A 40� oil immersion objective with a numerical aperture of 1.30
was used. The pictures were analyzed and exported using ZEN 2011 and
processed using Adobe Photoshop.

Luciferase reporter assays. NMuMG cells were grown in 24-well
plates and transiently transfected with 0.5 �g of each reporter construct
and 0.1 �g of Renilla luciferase using 2 �l of Lipofectamine 2000 in 100 �l
of Opti-MEM mix for each well. Luciferase assays were performed using a
Dual-Luciferase reporter assay System (Promega). All experiments were
performed in triplicate. Promoter activity was reported as the average of
the ratio of firefly luciferase to Renilla luciferase. Two-tailed Student t tests
were used for statistical comparison.

GST pulldown experiments. The methods for GST purification and
the GST pulldown assay have been described elsewhere (32). Briefly, GST
constructs were expressed in Escherichia coli strains JM109 or BL21(DE3)
with isopropyl-�-D-thiogalactopyranoside (IPTG; 100 �M) stimulation
for 3 h at 37°C. Cells were then lysed, and the GST fusion proteins were
purified using glutathione-Sepharose 4B (Bioworld). The molecular mass
of the purified GST fusion protein was confirmed by SDS-PAGE. In vitro
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translation of Id1, Id2, and Snai1 was performed using a 1-Step Human In
Vitro protein expression kit (ThermoFisher Scientific). The translated ly-
sates were then precleared using 5 �l of a 50% suspension of GST beads
prior to GST pulldown. Equal amounts of the GST fusion protein bead
suspension were mixed with the in vitro translated lysates in the lysis
buffer (20 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5%
NP-40, and protease inhibitor) with a total volume of 500 �l. After 2 h of

incubation at 4°C, the beads were washed four times with 1 ml of cold lysis
buffer. Samples were resolved by SDS-PAGE and subjected to radioautog-
raphy or immunoblotting. In vitro translated lysates (10 to 12%) were
used as input.

Microarray data accession number. The microarray data have been
deposited in the Gene Expression Omnibus (GEO) database under acces-
sion number GSE48204.
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RESULTS AND DISCUSSION
Snai1 represses integrin �4 transcription. The normal murine
mammary gland cell line (NMuMG) undergoes a bona fide EMT
in response to TGF-�, and subsequent TGF-� withdrawal results
in a mesenchymal-epithelial transition (MET) (15, 33). To screen
for potential factors that could repress �4 transcription, we com-
pared the gene expression profiles of epithelial NMuMG cells
(EPTH), TGF-�-treated NMuMG cells (EMT), and TGF-� treat-
ed/TGF-� withdrawn NMuMG cells (MET) (see Fig. S1A in the
supplemental material). Among the potential EMT-promoting
transcription factors, only Snai1 exhibited significant induction
during EMT and reduction during MET (GEO accession number
GSE48204).

Given that Snai1 can repress several epithelial genes includ-
ing E-cadherin (18, 34–37), we assessed whether it could re-
press �4. For this purpose, we used an inducible system in

which a human Snai1 cDNA was fused with an estrogen recep-
tor (ER) construct (29). This Snai1-ER construct was stably
expressed in NMuMG cells, enabling Snai1 function to be ac-
tivated in the presence of 4-hydroxytamoxifen (4-OHT). Acti-
vation of Snai1 activity repressed �4 protein and mRNA ex-
pression significantly (Fig. 1A and B). Note that 4-OHT itself
had minimal effect on �4 expression and transcription in con-
trol cells. Expression of a mouse Snai1 cDNA in NMuMG cells
also repressed �4 expression and transcription (Fig. 1C, D, and
E). Snai1 also repressed E-cadherin expression (Fig. 1C), con-
sistent with previous data (35, 36). Conversely, we diminished
Snai1 expression using two independent shRNAs (Fig. 1F) and
observed a rescue of �4 protein (Fig. 1G) and mRNA expres-
sion (Fig. 1H) in TGF-�-treated cells. Taken together, these
data indicate that Snai1 represses �4 and is responsible for the
loss of �4 during TGF-�-induced EMT.
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Snai1 induces the repressive histone mark H3K27Me3 on �4
promoter. Snai1 is known to modify the histone marks on the
promoter of its target genes, including demethylation of H3K4
(38) and deacetylation of H3/H4 (39), as well as methylation of
H3K27 (20), H3K9 (40, 41), and H4R3 (42). We chose to focus on
the Polycomb complex-associated repressive mark, H3K27Me3,
as a proof of principle for the function of Snai1 because our earlier
study established that the increase of this mark is concomitant
with the repression of �4 (15). Indeed, ectopic expression of Snai1
significantly increased the H3K27Me3 histone modification but
not H3K9Me3 (see Fig. S1B in the supplemental material) on the
�4 promoter, as evidenced by chromatin immunoprecipitation
(ChIP) (Fig. 2A, left). This approach also demonstrated that Snai1
binds specifically to an E box that is located shortly after the tran-
scription start site of the �4 promoter, designated E5 (Fig. 2A,
right, and E, bottom for a schematic of the �4 promoter). Note
that E5 is the only E box in the �4 promoter that is conserved
across species (see Fig. S1C).

Snai1 is not functional in epithelial NMuMG cells. We de-
tected Snai1 expression in epithelial NMuMG cells (Fig. 2B) and
found that it is localized in the nucleus (Fig. 2C and D). This
observation prompted us to use ChIP to assess the binding pattern
of endogenous Snai1 on the �4 promoter in epithelial cells and
compare it to EMT cells. Snai1 binds to the E5 in both epithelial
and EMT cells (Fig. 2E). However, it does not repress �4 in epi-
thelial NMuMG cells (Fig. 2B). Based on this observation, we
speculated that an adaptor protein impedes the repressive func-
tion of Snai1 on E5. Id2 captured our attention for several reasons.
Our microarray analysis (accession number GSE48204) revealed

that it is the most repressed gene during the EMT. Moreover, Id2
localized in both the nucleus and cytoplasm of epithelial cells (Fig.
2C), and its expression is depleted during the EMT (Fig. 2F and
G). Id1 expression is also diminished during the EMT (Fig. 2G),
but it has been reported to facilitate the EMT (43, 44). Interest-
ingly, Id3 expression increases during the EMT (Fig. 2G).

Id2 and Snai1 form a complex. Although Id2 can interact with
retinoblastoma protein (Rb) and basic HLH (bHLH) proteins
(45–47), there is no evidence that it can complex with zinc finger
proteins. To test the possibility that Snai1 partners with Id2, we
performed coimmunoprecipitation assays and found that Id2 co-
immunopurifies with Snai1 in vitro (Fig. 3A) and in vivo (Fig. 3B).
Moreover, GST pulldown assays using Id2 as bait confirmed that
this interaction is direct (Fig. 3C). These biochemical interactions
were substantiated by the observation that Id2 and Snai1 colocal-
ize in a punctate structure within the nuclei of epithelial NMuMG
cells (Fig. 3D). Furthermore, ChIP experiments revealed that Id2
binds to the same locus (E5) of the �4 promoter as Snai1 does, and
the binding is lost during the EMT (Fig. 3E). Importantly, knock-
down of Snai1 diminished this specific enrichment of Id2 on the
�4 promoter (Fig. 3F and G). Given that Id2 cannot bind DNA
directly (45), these results indicate that an Snai1-Id2 complex
binds to the �4 promoter in epithelial NMuMG cells.

Loss of Id2 diminishes �4 and E-cadherin expression. The
finding that Id2 complexes with Snai1 in epithelial cells and that
Snai1 does not repress �4 expression in these cells suggested that
Id2 compromises the repressive function of Snai1. To disrupt this
complex, we depleted Id2 by two independent shRNAs in epithe-
lial cells and assessed �4 expression. Silencing Id2 resulted in de-
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creased �4 mRNA and protein expression compared to levels in
control cells (Fig. 4A and B). Importantly, knockdown of Snai1 in
the Id2-silenced cells completely rescued the expression of �4
mRNA and protein, indicating that the repression of �4 that oc-
curs in response to Id2 loss is Snai1 dependent (Fig. 4C and D).
Similar results were obtained for E-cadherin, an established target
of Snai1 (Fig. 4A, C, and D). Taken together, these data reveal that
Id2 restrains Snai1 from its ability to repress epithelial genes.

Id2 masks the SNAG domain of Snai1 and prevents the
H3K27Me3 repressive mark. The SNAG domain is crucial for the

repressive function of Snai1 because it mediates the interaction of
Snai1 with many corepressors (20, 38, 39, 41). This finding is
consistent with our data that deletion of this domain abrogated
the ability of Snai1 to repress �4 expression (Fig. 5A). Moreover, a
	SNAG mutant of Snai1 functions as a dominant negative mutant
that rescues �4 expression in NMuMG cells engineered to express
Snai1 (Fig. 5B). Given the importance of this domain and our
observation that Id2 inhibits the function of Snai1 via a complex
formation, the possibility emerged that the Id2-Snai1 interaction
is mediated through the SNAG domain of Snai1. Indeed, HA-
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Snai1 coimmunopurified with Id2, but the HA-	SNAG mutant
failed to do so (Fig. 5C), demonstrating that SNAG is essential for
the Id2-Snai1 interaction. Moreover, we confirmed that the
SNAG domain itself is sufficient to bind Id2 directly using a GST-
pulldown approach, in which the GST-SNAG domain fusion pro-
tein was used as bait for Id2 (Fig. 5D). Considering that Id1 is also
repressed by the EMT (Fig. 2G), we also examined the potential
interaction between Id1 and Snai1 in the same setting. Although
Id1 and Snai1 can interact, the interaction is 4- to 6-fold weaker
than the interaction between Id2 and Snai1 (Fig. 5C and D). This
finding indicates that that Id2 is a dominant interacting partner of
Snai1 when both Id1 and Id2 are expressed.

Our data indicate that Id2 can mask the SNAG domain, which
should result in the failure of Snai1 to establish H3K27Me3. In-
deed, knockdown of Id2 in epithelial NMuMG cells caused a sig-
nificant elevation of this repressive histone mark (Fig. 5E). We
also assessed whether Id2-Snai1-mediated regulation of �4 occurs
in other epithelial cells. Specifically, MCF7 cells are well-differen-
tiated carcinoma cells that express �4, Id2, and Snai1 (Fig. 5F and
G). Importantly, endogenous Snai1 is localized in the nucleus of
these cells (Fig. 5F), and knockdown of Id2 caused a reduction of
�4 expression (Fig. 5G).

A major conclusion of our study is that Snai1 can be expressed
in the nucleus of epithelial cells and bind to specific promoters,
but its ability to repress transcription is restrained by its associa-
tion with Id2 (Fig. 6). More specifically, we demonstrate that the
repressive function of Snai1 is compromised by the interaction of
its SNAG domain with Id2. To our knowledge, this is the first
identification of a functional antagonist that binds the SNAG do-
main of Snai1 in the epithelial cells. In previous studies, the SNAG
domain was shown to be essential for recruiting several coopera-
tive cofactors that are necessary for removing active histone marks
and adding repressive ones, including Suz12 (20), Suv39H1 (41),
LSD1 (38), HDAC1/2 (39), and Ezh2 (48). Based on our observa-
tion that the repressive mark H3K27Me3, but not H3K9Me3, is
elevated in response to Id2 loss, it is possible that the corepressor
responsible for H3K27Me3, Ezh2, is unable to bind Snai1 in the
presence of Id2. We pursued this possibility experimentally, but
the data generated did not enable a definitive conclusion.

The ability of Id2 to complex with the zinc finger protein Snai1
provides a novel mechanism accounting for the role of Id2 in the

EMT. It is known that Id2 is repressed dramatically in epithelial
cells by TGF-� signaling and that forced expression of Id2 rescues
epithelial gene expression in TGF-�-treated cells (21). The ability
of Id2 to bind and sequester E2A, a basic helix-loop-helix protein,
from binding target genes including E-cadherin has been pro-
posed as a mechanism to account for these observations (22). Our
finding that Id2 complexes with Snai1 on the promoter of the
target gene and prevents Snai1 from recruiting transcriptional
corepressors provides a distinct mechanism for how Id2 contrib-
utes to epithelial differentiation. Collectively, the existing data
substantiate the potency of Snai1 in promoting a mesenchymal
transition and its need to be regulated. Our finding that Id1 can
also interact with Snai1 suggests that this interaction may involve
the HLH domain. Given that the interaction with Id2 is much
stronger than Id2, Id2-specific domains may also be involved in
Id2-Snai1 association.

The data reported here expand and complement other studies
on the repression of �4 and other epithelial genes. Snail has a
preeminent role in the repression of �4 (Fig. 1) and E-cadherin
(36), but several other factors contribute to this repression, in-
cluding Twist, Slug, and Zeb1 (13). For example, based on the
findings that Zeb1 represses �4 transcription (49) and that Snai1
induces Zeb1 expression (50), we infer that �4 transcriptional
repression involves a cascade of Snai1- and Zeb1-mediated events
and that Id2 functions upstream to prevent the initiation of this
cascade by complexing with the SNAG domain of Snai1. This
hypothesis is supported by the observation that Id2 overexpres-
sion in TGF-�-treated epithelial cells suppressed Zeb1 induction
(51). In a different direction, we reported that �4 repression dur-
ing the EMT is associated with promoter methylation (15), and it
is known that Snai1 can mediate DNA methylation (40). Although
these observations suggest that methylation of the �4 promoter
should increase in response to Id2 loss, we did not detect such an
increase (data not shown). Most likely, this observation indicates
that additional factors are required for de novo methylation, such
as DNMT3s (52).

The mechanistic relationship between Id2 and �4 is foreshad-
owed by other studies that support our central hypothesis. Of
note, the progenitor population of lung epithelial cells is enriched
in both Id2 and �4 expression (53, 54), suggesting that Id2 may
facilitate the purported role of �4 in the function of lung epithelial
stem cells (55). Our data may also have significant implications for
the regulation of �4 in cancer. For example, nuclear Id2 expres-
sion correlates significantly with a poor prognosis in non-small-
cell lung carcinoma (56), and �4 expression is also upregulated in
these carcinomas (57). Clearly, Id2-mediated regulation of �4 ex-
pression merits further investigation, especially in the context of
metastasis, which involves a reversion to an epithelial phenotype
and increased expression of �4 (58).
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