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Outline

= |ntroduction
= Validation of wearable sensors
= Testing of wearable consumer activity trackers

= Capability of sensor evaluation in Human Testing Center in
Center for Personalized Health Monitoring (CPHM)
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Human testing facilities in the Center for Personalized
= Research on wearable monitors to develop algorithms to translate
sensor signals into meaningful and biologically valid output for clinical

applications
* Establishing meaning to personal biomarkers of health

= To determine the functionality and wearability of sensors

= Evaluation to determine how human movement affects brain, muscle,
bone, tendons, ligaments and supporting structures and systems

= Translation: Evaluation of sensors for the commercial pipeline by
establishing accuracy, effectiveness and usability of sensors
e Usefulness of the ‘Quantified Self’
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Relationship between Actigraph counts and METS
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Activity counts and cutpoints
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Minutes of moderate to vigorous physical
activity: NHANES 2003-2004
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Traditional Data Processing of Accelerometer Data

Provide physiological meaning to accelerometer data

= Linear regression models
* Predict point estimate of energy expenditure
e Classify activity intensity

= Extensively used in the literature to characterize/quantify physical activity
behavior

= Numerous revised regression models
e Confusion in the literature

= Method fails to discriminate intensity levels properly
e Similar counts with different energy expenditure
e Walking uphill vs walking on level ground
e Different counts with same energy expenditure
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lllustration of a Fundamental Problem Using Average
Counts
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These three time series of simulated accelerometer data have the same total or mean counts per
minute. They would all be classified as “moderate” activity using typical data processing
methods, but they could represent activities with substantially different energy costs.
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How Can We Maximize the Information Collected?

= Use entire sequence and pattern of accelerometer signal
e Use features of signal
* Process with pattern recognition algorithms

= Continual ‘learning’ by example
 Powerful
* Flexible
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Advanced Data Processing: Machine Learning
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Estimated METs Using the ANN and Linear Regression Equations

Estimated METs
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We tested the method on
data from Crouter et al.
(2006).

48 subjects did a variety
of activities.

Indirect calorimetry used
to estimate average PAEE
for each person & activity.

Leave 1 out cross
validation:

method never fit and
evaluated on same subject’s
data.

Staudenmayer et al, JAP, 2009
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Artificial neural network trained to estimate METs and applied to
independent dataset

Predicted METs (naural nebwark trained on UMass data)
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Fig. 1. Measured metabolic equivalents
(METs) vs. METs predicted from neural net-
work (nnetMET). The nonetMET was devel-
oped on University of Massachusetts (UMass)
data set (n = 277) and applied to University of
Tennessee (n = 65) data set. The bias was 0.32
METs, and the root mean square error (RMSE)
was 1.90 METs.

Freedson et al, JAP, 2011
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Machine learning models to detect activity types developed and tested in lab and
free living settings in older adults
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Consumer wearable sensors to estimate activity and sleep

Vivofit

Withings Pulse
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Accuracy of the Fitbit in estimating energy
expenditure

Fitbit EE vs Indirect

Methods calorimetry
= N =20 college-age =
participants g
: B
= Performed treadmill _______,__-I
: : BN | [ L Ll L
walking and running and £ 40
o ege 2
other activities 0
= Compared ee from indirect e s rpr ez rrEiE PGS
] eir . g s 3 £ 43§ 5 8§ E 3% 0% 8§
calorimetry to fitbit R s5id i
estimate of ee ; ; £

Activity

Sasaki et al., JPAH, ahead of print, 2014




JMassAmbhe
Fitbit social media application
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Fitbit output wirelessly transmitted to smart phone or computer:
sleep and activity data
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How does this relate to the CPHM?

This work uses off the shelf
activity sensors

We have established ourselves
as leaders in the activity monitor
testing and algorithm
development space

Most of our previous work is in
lab settings

In CPHM we will have the capacity to:

Test many types of sensors built in
house collaborating with electrical
and computer engineering, polymer
science, computer science,
mathematics and statistics, other
disciplines

Work with industry (e.g. medical
device companies, activity monitor
companies)

Test in real world instrumented
home setting

Study clinical applications

e Use in interventions for self
monitoring

* Social media for motivation
and sustaining behavior change
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Human testing facilities in CPHM
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Human testing facilities in CPHM
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Human testing facilities in CPHM
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Normalized overlaid plot for a representative participant (10-year-old boy, weight = 76.5 kg,
height = 155 cm) obtained during first 600 min of the ~24-h stay in the whole-room indirect
calorimBeter.
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AHA Scientific Statement

Guide to the Assessment of Physical Activity:
Clinical and Research Applications
A Scientific Statement From the American Heart Association

Scott J. Strath, PhD, Chair; Leonard A. Kaminsky, PhD, Co-Chair;
Barbara E. Ainsworth, PhD, MPH, FAHA; Ulf Ekelund, PhD; Patty S. Freedson, PhD;
Rebecca A. Gary, RN, PhD; Caroline R. Richardson, MD; Derek T. Smith, PhD;
Ann M. Swartz, PhD; on behalf of the American Heart Association Physical
Activity Committee of the Council on Lifestyle and Cardiometabolic Health and Cardiovascular,
Exercise, Cardiac Rehabilitation and Prevention Committee of the Council on Clinical Cardiology, and
Council on Cardiovascular and Stroke Nursing

Circulation 128: 2259-2279, 2013



Decision matrix guide to selecting a physical activity measurement instrument
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