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SUMMARY

The in vivo functions of mechanistic target of rapa-
mycin complex 2 (mTORC2) and the signaling mech-
anisms that control brown adipose tissue (BAT) fuel
utilization and activity are not well understood.
Here, by conditionally deletingRictor in theMyf5 line-
age, we provide in vivo evidence that mTORC2 is
dispensable for skeletal muscle development and
regeneration but essential for BAT growth. Further-
more, deleting Rictor in Myf5 precursors shifts BAT
metabolism to a more oxidative and less lipogenic
state and protects mice from obesity and metabolic
disease at thermoneutrality. We additionally find
that Rictor is required for brown adipocyte differenti-
ation in vitro and that the mechanism specifically re-
quires AKT1 hydrophobic motif phosphorylation but
is independent of pan-AKT signaling and is rescued
with BMP7. Our findings provide insights into the
signaling circuitry that regulates brown adipocytes
and could have important implications for devel-
oping therapies aimed at increasing energy expendi-
ture as a means to combat human obesity.

INTRODUCTION

Adipose tissue is essential for many biological processes, and its

dysfunction, for example in obesity, is associated with a growing

spectrum of human diseases. Thus, understanding the develop-

mental and metabolic regulation of adipose tissue has broad

clinical implications. There are two main classifications of adi-

pose tissue: white adipose tissue (WAT) and brown adipose tis-

sue (BAT). WAT is the major energy storage site in the body and

has critical endocrine functions (Gesta et al., 2007), whereas BAT

dissipates energy as heat in a process called nonshivering ther-

mogenesis (Cannon and Nedergaard, 2004). BAT is particularly

important in small rodents and newborn humans to defend

against cold exposure, and its functional relevance in adult

humans was only recently appreciated (Harms and Seale,

2013; Nedergaard and Cannon, 2010; Tseng et al., 2010). Brown

adipocytes are thermogenic because they express uncoupling

protein 1 (UCP1), which embeds in the inner mitochondrial mem-

brane and produces heat by uncoupling oxidative metabolism

from ATP production. The energy expending properties of brown

adipocytes coupled with the observation that human BAT

amount inversely correlates with body fat mass is garnering

interest in developing strategies to increase brown adipocyte

number and/or activity to treat obesity (Harms and Seale,

2013; Nedergaard and Cannon, 2010; Tseng et al., 2010). How-

ever, themechanisms, and in particular the signaling circuitry, by

which BAT regulates its energy supply are poorly understood

(Townsend and Tseng, 2014). With the obesity pandemic seem-

ingly out of control, and with a desperate need for novel thera-

peutics, the importance of elucidating mechanisms controlling

adipocyte growth and function cannot be overstated.

Studying the in vivo mechanisms of adipose tissue growth has

been challenging because adipocyte origins are poorly under-

stood, and consequently few tools are available for genetically

targeting adipocyte precursors in vivo (e.g., by Cre-Lox). Lineage

tracing studies indicate early mesenchymal precursor cells ex-

pressing Myf5 give rise to myocytes, brown adipocytes, and a

subset of white adipocytes (Sanchez-Gurmaches and Guertin,

2014; Sanchez-Gurmaches et al., 2012; Seale et al., 2008), and

several recent studies have used the Myf5-Cre knockin allele

(Tallquist et al., 2000) to study BAT development (Harms et al.,

2014; Martinez-Lopez et al., 2013; Ohno et al., 2013; Sanchez-

Gurmaches et al., 2012; Schulz et al., 2013). Thus, the multifate

potential of Myf5 precursors provides an opportunity to use ge-

netics to distinguish between signaling mechanisms that are

required in vivo for the growth of myocytes versus adipocytes.

The mechanistic target of rapamycin (mTOR) kinase is a mas-

ter regulator of growth that functions in two distinct complexes
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called mTORC1 (defined by the Raptor subunit) and mTORC2

(defined by the Rictor subunit) (Laplante and Sabatini, 2012).

Although much is known about the inputs, outputs, and regula-

tory features of mTORC1, mTORC2 regulation and function re-

mainsmore enigmatic. The best-described biochemical function

of mTORC2 is to phosphorylate the hydrophobic motif (HM)

of AKT (S473 in AKT1) and the related SGK (S422 in SGK1) ki-

nases (Garcı́a-Martı́nez and Alessi, 2008; Sarbassov et al.,

2005). AKT has many effectors including GSK3b, FoxO1/3, and

mTORC1 (through TSC2 and PRAS40), and most models indi-

cate mTORC2 is an essential upstream regulator of pan-AKT

activity (Laplante and Sabatini, 2012). However, the extent to

which this is the case in vivo remains unclear because Rictor-

deficient mouse embryo fibroblasts, which lack mTORC2, have

seemingly normal GSK3b phosphorylation, mTORC1 activity,

and only partially decreased FoxO1/3 phosphorylation (Guertin

et al., 2006; Jacinto et al., 2006; Shiota et al., 2006).

Mice lacking Rictor die around embryonic day 10.5 (E10.5)

(Guertin et al., 2006; Jacinto et al., 2006; Shiota et al., 2006);

therefore, mTORC2 function in vivo is mostly being investigated

using floxed Rictor alleles. In adipose tissue, two studies using

aP2-cre to delete Rictor reported no effect on individual adipo-

cyte size or overall adipose tissue mass (Cybulski et al., 2009;

Kumar et al., 2010). One of the studies finds aP2-cre;Rictorfl/fl

mice eventually develop mild glucose intolerance and ectopic

lipid deposition, although a mechanism was not elucidated

(Kumar et al., 2010). Notably however, the utility of aP2-cre to

target adipocytes has recently been questioned (Lee et al.,

2013; Mullican et al., 2013; Wang et al., 2013); therefore, the

exact function of mTORC2 in adipose tissue remains unclear.

Deleting Rictor in skeletal muscle with Hsa-cre or Mck-cre also

has no effect on muscle fiber size or overall muscle mass and

only minor effects on insulin-mediated glucose metabolism

(Bentzinger et al., 2008; Kumar et al., 2008). These relatively

mild phenotypes are somewhat surprising considering the

importance of AKT signaling in metabolism; however, in both

cases (adipose tissue and muscle), the Cre drivers used target

mature cells, and thus the in vivo role of mTORC2 in adipose

tissue and muscle precursors is unknown.

Here, we take advantage of the fact that Myf5-Cre expresses

in precursors of muscle and brown adipocytes to investigate

the role of Rictor (i.e., mTORC2) and for comparison Raptor

(i.e., mTORC1) in muscle and BAT growth. We report that Raptor

is essential in the Myf5 lineage for myogenesis, establishing

BAT precursors, and viability. In contrast, Rictor is dispensable

for myogenesis and viability but essential for normal BAT growth.

Moreover, Rictor-deficient BAT is more metabolically active,

having elevated mitochondrial activity and decreased lipogen-

esis. Importantly, deleting Rictor in the Myf5 lineage also aug-

ments diet-induced thermogenesis, which protects mice from

an obesogenic diet at thermoneutrality. We additionally find

that Myf5-lineage white adipocytes require Rictor for normal

growth in vivo, suggesting a broader role for mTORC2 in adipose

tissue development. Finally, we show that Rictor is also required

in vitro for brown adipocyte differentiation, but not for pan-

AKT activity, and that this differentiation defect is rescued with

BMP7. Collectively, our results provide insight into the regulation

of brown adipocytes and implicate Rictor/mTORC2 as a critical

signaling node that balances oxidative and lipogenic metabolic

states.

RESULTS

Rictor Is Dispensable in the Myf5 Lineage during
Embryogenesis
We investigated the role of mTORC1 versus mTORC2 in vivo

in fat versus muscle development by generating Myf5-Cre;

Raptorfl/fl (RaptorMyf5cKO) and Myf5-Cre;Rictorfl/fl (RictorMyf5cKO)

conditional knockout (KO) mice. The RictorMyf5cKO mice are

born at the expected Mendelian ratio and show no obvious

motor or behavioral defects (data not shown). In contrast,

RaptorMyf5cKOmice die perinatally. E16.5RaptorMyf5cKO embryos

are smaller due to a muscle development defect that is not

apparent in control or RictorMyf5cKO embryos (Figures S1A–

S1D). Transverse sections through the head and neck of

RaptorMyf5cKO embryos reveal an underdeveloped tongue and

the absence of the masseter, sternohyoid, hyglossus, supraspi-

natus, prevertebral, and trapezius muscles, the later deficiency

resulting in hindneck body-wall fragility during specimen prepa-

ration (Figures S1A–S1D). Thus, Raptor is essential in the Myf5

lineage for viability and muscle development, whereas Rictor is

dispensable for both.

To confirm that Rictor is dispensable for myogenesis, we

purified satellite cells (which express Myf5) from RictorMyf5cKO

skeletal muscles, confirmed they are deleted for Rictor (Fig-

ure S1E), and show they differentiate ex vivo into myosin heavy

chain-positive multinucleate myofibers (Figures S1F and S1G).

Moreover, deleting Raptor in satellite cells in vivo with Pax7-

CreER blocks skeletal muscle repair, whereas deleting Rictor

by the same approach does not prevent muscle regeneration

following acute injury (Figures S1H and S1I). Thus, Rictor is

also dispensable for satellite cell differentiation ex vivo and for

adult myogenesis induced by injury.

WATs develop postpartum in mice, but early brown adipocyte

precursor cells (bAPCs) are detectable in E16.5 embryos by

hematoxylin and eosin (H&E) staining. Qualitatively similar pools

of cervical, interscapular, and subscapular bAPCs are detect-

able in control and RictorMyf5cKO E16.5 embryos (Figures S1A

and S1D). In contrast, interscapular and subscapular bAPCs

are absent in E16.5 RaptorMyf5cKO embryos (Figures S1A and

S1D). Notably, a diminished pool of cervical bAPCs is detectable

in the RaptorMyf5cKO embryos consistent with our lineage tracing

data showing that only about half of the cervical brown adipo-

cytes arise from Myf5-Cre-expressing precursors (Figure S1D)

(Sanchez-Gurmaches and Guertin, 2014). Thus, Raptor, but

not Rictor, is also essential in the Myf5 lineage for establishing

bAPCs during embryogenesis.

Brown and White Adipose Tissue Growth Requires
Rictor
AlthoughRictorMyf5cKOmice show no obvious embryonic pheno-

types, they tend to weigh less (not significantly) than controls at

postnatal day 1 (P1) (Figure S1J), which reaches significance

from 6 to 15 weeks of life (Figure 1A). Individual tissue analysis

indicates that the weight difference results from decreased adi-

pose tissue mass. For example, the interscapular BAT (iBAT) in

Cell Reports 8, 256–271, July 10, 2014 ª2014 The Authors 257



P1 RictorMyf5cKO neonates weighs about 30% less than normal

(Figure S1K), and during the first weeks of life, the mutant BAT

grows but to a much smaller size, resulting in mutant iBAT and

subscapular BAT (sBAT) depots at 6 weeks that weigh about

50% less than controls and are darker (Figure 1B). Adipocytes

in the retroperitoneal and anterior subcutaneous WAT depots

Figure 1. Postnatal Brown and White Adipose Tissue Growth Requires Rictor

(A) Growth curves (n = 13; bars represent mean ± SEM; t test; *p < 0.05, **p < 0.01, ***p < 0.001).

(B) BAT mass at 6 weeks (left) (n = 19–21; mean ± SEM; t test; ***p < 0.001) and representative image (right).

(C) Mass of WATs at 6 weeks (n = 14–16; mean ± SEM; t test; **p < 0.01, ***p < 0.001) (left) and representative image of control and mutant rWAT (6 weeks) (right).

(D) Lean tissue mass at 6 weeks (n = 15–19; mean ± SEM; t test; ***p < 0.001).

(E) Westerns of tissue lysates (6 weeks).

(F) Average tissue mass (mg) at 6 weeks and 6 months (n = 14–21 for 6 weeks; n = 7 for 6 months; mean ± SEM; t test; ***p < 0.001).

See also Figure S1.
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(rWAT and asWAT, respectively) are also derived largely

from Myf5-Cre-expressing precursors (Sanchez-Gurmaches

and Guertin, 2014; Sanchez-Gurmaches et al., 2012), and both

of these depots also decrease in mass by approximately 50%

in the RictorMyf5cKO mice (Figure 1C). In contrast, the posterior

subcutaneous and perigonadal WAT depots (psWAT and

pgWAT, respectively), which are composed of Myf5-negative

lineage adipocytes, do not differ in weight (Figure 1C). Skeletal

muscles (e.g., triceps, quadriceps, and gastrocnemius) and all

other lean tissues examined except the kidneys (which are

slightly larger) are of normal size in the KO (Figure 1D). Western

analysis for Rictor protein confirms Rictor deletion and reduced

AKT-S473 phosphorylation in iBAT and muscle and, to a lesser

extent, in rWAT and asWAT, but not in psWAT, pgWAT, or liver

(Figure 1E).

From 6 weeks to 6 months, the mutant iBAT and sBAT

show no additional growth increase, whereas asWAT and

rWAT grow to about half (asWAT) or one-third (rWAT) the size

of their anatomically matched control tissues (Figure 1F). In

contrast, RictorMyf5cKO psWAT, pgWAT, muscles, and liver

grow to their normal size in the same time frame (Figure 1F).

Thus, RictorMyf5cKO mice can grow small BAT tissues in the first

weeks of life; however, as RictorMyf5cKO mice age, the iBAT and

sBAT maintain their weight, whereas asWAT and rWAT grow

at a reduced rate. Collectively, these results indicate Rictor is

essential in the Myf5 lineage for adipose tissue growth, but not

for skeletal muscle growth.

Brown Adipocytes Lacking Rictor Are Smaller
To better define the BAT growth defect, we histologically exam-

ined iBAT in control and RictorMyf5cKO mice. At E18.5, there is no

qualitative difference between control and RictorMyf5cKO bAPCs

pools (Figure 2A). In P1 neonates, however, lipids begin accumu-

lating in control BAT, but not in theRictorMyf5cKOBAT (Figure 2A).

From P1 to 6 months, lipid droplets grow in size in control BAT

but remain small in the RictorMyf5cKO BAT (Figure 2A), resulting

in smaller cells measured by the increase in nuclei per mm2

(Figure S2A). Total genomic DNA content is also lower in the

RictorMyf5cKO BAT, indicating additional hypoplasia (Figure S2B).

In contrast, RictorMyf5cKO skeletal muscle fibers appear histolog-

ically identical to control fibers (Figure S2C).

Myf5-LineageWhite Adipocytes Lacking Rictor Are Also
Small and Multilocular
Compared tocontrols,manyadipocytes in theRictorMyf5cKO rWAT

and asWAT are also smaller and multilocular (Figure 2B), but

the pattern is heterogeneous in that several large unilocular white

adipocytes are also detectable. The psWAT and pgWAT adipo-

cytes appear unchanged in the KO (Figure S2C). The adipocyte

precursor pools in rWAT and asWAT are a mix of Myf5-Cre-

lineage-positive and negative precursors (Sanchez-Gurmaches

et al., 2012). Therefore, we reasoned that the size heterogeneity

in RictorMyf5cKO rWAT and asWAT could reflect a mosaic of

Myf5-lineage-negative (i.e., undeleted) andMyf5-lineage-positive

(i.e., Rictor KO) cells. To test this, we incorporated the

Rosa26-mTmG reporter (Muzumdar et al., 2007) into control and

RictorMyf5cKO mice to irreversibly label Cre-expressing cells

and their lineages with membrane-targeted enhanced GFP

(mGFP); all other (Creneg) cells and their descendants are labeled

with membrane-targeted tdTomato fluorescent protein (mTFP).

The result is unequivocal; only the small adipocytes are mGFP+

inRictorMyf5cKO rWAT and asWAT, whereas all the large unilocular

adipocytes are mTFP+ (Figure 2C). As expected, in both the con-

trol and RictorMyf5cKO mice, the iBAT adipocytes are mGFP+ and

the psWAT and pgWAT adipocytes are mTFP+ (Figure S2D). We

also detect a slight increase in UCP1 staining in the RictorMyf5cKO

adipocytes, suggesting the cellsmight havebrown-adipocyte-like

characteristics (Figure S2E) (not shown). These data confirm that

the heterogeneous small-cell phenotype results from cell-autono-

mous Rictor deletion in theMyf5-lineage white adipocytes.

Lipogenesis Is Decreased in Rictor-Deficient BAT
We hypothesized that the paucity of lipid and marked color

difference between control and RictorMyf5cKO BAT indicates

a shift from a lipogenic to oxidative state. To test this, we first

examined AKT signaling in BAT, which positively regulates lipo-

genesis. In vivo AKT-T308 phosphorylation is intact in both

fasted/refed and insulin-stimulated RictorMyf5cKO BAT despite

ablation of pAKT S473 and pAKT T450 (which is also mTORC2

dependent) (Figures 3A and S3A), consistent with the ability of

T-loop (T308) and hydrophobic motif (S473) phosphorylation to

be regulated independently (Pearce et al., 2010). Surprisingly,

phosphorylation of the AKT substrates FoxO1/3, GSK3b,

TSC2, PRAS40, and AS160 is normal in RictorMyf5cKO BAT (Fig-

ure 3A), indicating Rictor is not essential in BAT for pan-AKT

signaling. Rictor loss in BAT also does not affect phosphorylation

of the SGK substrate NDRG1 (Figure 3A), indicating mTORC2

is not essential for SGK signaling to NDRG1 in BAT or that a

compensatory pathway exists.

Next, we examined whether deleting Rictor in theMyf5 lineage

affects BAT differentiation markers. In P1 neonates, Prdm16,

C/ebpa, and C/ebpb expression do not differ between controls

and KOs, whereas Pparg and Ucp1 levels slightly decrease (Fig-

ure 3B), indicating a possible delay in BATmaturation in the KOs.

However, by 6 weeks, Pparg, Prdm16, and C/ebpa express

at control levels, whereas C/ebpb, Ucp1, and Dio2 express at

significantly higher-than-control levels (Figure 3B). The mature

adipocyte markers Cidea and aP2 are unchanged between con-

trol and KO both at P1 and 6 weeks (Figure 3B). Consistent

with the gene expression data, PPARg, UCP1, and insulin recep-

tor beta (IRb) proteins also express at near-control levels in

RictorMyf5cKO BAT (Figure 3A). Thus, terminal differentiation

per se (i.e., PPARg, UCP1, and IRb induction) occurs in vivo in

RictorMyf5cKO brown adipocytes.

Next, we examined lipogenesis genes. In P1 RictorMyf5cKO

BAT, acetyl-coA carboxylase (Acc), fatty acid synthase (Fasn),

and fatty acid elongase 6 (Elovl6) decrease expression by

40%, 40%, and 25%, respectively (Figure 3C). By 6 weeks,

expression of ATP citrate lyase (Acly) in addition to Acc, Fasn,

andElovl6 is reduced by 90%, 75%, 80%, and 40%, respectively

(Figure 3C), which we confirmed by western blot for ACLY and

ACC (Figure 3A). In addition, stearoyl-CoA desaturase (Scd1)

decreases expression by 45% in 6-week RictorMyf5cKO BAT (Fig-

ure 3C). The SREBP1c and ChREBP transcription factors regu-

late lipogenesis gene expression (Czech et al., 2013; Filhoulaud

et al., 2013). In both P1 and 6-weekRictorMyf5cKOBAT, themRNA
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expression of SREBP1c (Srebf1c), which is induced by insulin,

and ChREBP (a and b isoforms), which is induced by glucose,

is similar (Figure 3D). However, there is a marked decrease in

the amount nuclear SREBP1c (nSREBP1c), the transcriptionally

active SREBP1c cleavage product, in Rictor-deficient BAT (Fig-

ure 3A) consistent with the decrease in lipogenic gene expres-

sion. The levels of insig1, another nSREBP1c target gene and

negative regulator of SREBP1c processing, also decreases (Fig-

ure 3C). The mRNA expression of SREBP2 (which regulates

cholesterol biosynthesis) slightly decreases in RictorMyf5cKO

Figure 2. Brown and White Adipocytes Lacking Rictor Are Smaller and Multilocular

(A) H&E stains of interscapular BAT (6 weeks).

(B) H&E stains of retroperitoneal and anterior subcutaneous WAT.

(C) Representative images of mTFP- and mGFP-labeled adipocytes. Enlarged images indicated by white box.

See also Figure S2.
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BAT at 6 weeks, but the SREBP2 target genes HMG-CoA syn-

thase (Hmg-cs) and HMG-CoA reductase (Hmg-cr) express at

similar levels in control and KO BAT (Figure 3D), and nuclear

SREBP2 (nSREBP2) accumulates possibly to higher levels

in the KO BAT (Figure 3A). We find no difference in AMPK or

hormone-sensitive lipase phosphorylation between control and

RictorMyf5cKO BAT (Figures 3A and S3A). Together, these results

indicate that despite having seemingly normal AKT signaling, de

novo lipogenesis is reduced in RictorMyf5cKO BAT.

Mitochondrial Activity Is Elevated in Rictor-Deficient
BAT
To further examine the metabolic state of RictorMyf5cKO BAT, we

examined mitochondrial activity. In P1 neonate RictorMyf5cKO

BAT, Pgc1a expresses normally, whereas expression of mito-

chondrial transcription factor A (Tfam), which regulates mtDNA

replication, and carnitine palmitoyltransferase 1B (Cpt1b), which

encodes the rate-limiting enzyme in b-oxidation, slightly de-

creases (Figure 4A). In contrast, Pgc1a, Tfam, andCpt1b in addi-

tion to Ucp1 express at higher levels in the BAT of 6-week-old

RictorMyf5cKO mice (Figures 4A and 3B), suggesting BAT mito-

chondrial activity progressively increases or is maintained at a

higher level in RictorMyf5cKO mice as they age.

To explore this in more detail, we used quantitative RT-PCR

(qRT-PCR) arrays to broadly measure mitochondrial gene

expression in the 6-week-old BAT. Using arrays for functional

genes involved in mitochondrial molecular transport and biogen-

esis, we detect increases in several genes indicative of increased

mitochondrial activity (Figure 4B). Furthermore, the mitochon-

drial citrate and malate transporters Slc25a1 and Slc25a10

Figure 3. Rictor-Deficient Brown Adipocytes Have a Lipid Metabolism Defect

(A) Western blots total and phosphoproteins using 6-week iBAT lysates. Mice were fasted overnight and refed for 45 min prior to preparing lysates.

(B–D) qRT-PCR of the indicated genes in P1 (n = 6) and 6-week (n = 8) iBAT (mean ± SEM; t test; *p < 0.05, **p < 0.01)

See also Figure S3.
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respectively—both of which function in fatty acid biosynthesis,

the former also being an SREBP1c target gene (Infantino et al.,

2007; Mizuarai et al., 2005)—significantly decrease expression

in the mutant BAT. Using mitochondrial energy metabolism

gene arrays, we found 58 additional genes involved in respiration

(OXPHOS) are elevated in RictorMyf5cKO BAT (Figure S4A), sug-

gesting an increase in mitochondrial mass, which we confirmed

by Cox IV immunofluorescence (Figure 4C). Transmission elec-

tron microscopy (TEM) reveals individual mitochondria in the

mutant BAT are larger and have more disorganized cristae (Fig-

ure 4D). To directly confirm elevated mitochondrial activity, we

measured BAT oxygen consumption rate (OCR) in a Seahorse

Flux Analyzer and determined that basal and pyruvate-stimu-

lated OCRs are elevated by around 18% in RictorMyf5cKO BAT

(Figure 4E). We did not detect a significant increase in overall

oxygen consumption when RictorMyf5cKO mice were placed in

metabolic cages at 22�C, except when normalized for body

weight (Figure S4B). Notably, however, mice are under thermal

stress at this temperature, which can mask effects on BAT

activity (Feldmann et al., 2009).

Figure 4. Mitochondrial Activity Is Elevated in Rictor-Deficient BAT

(A) qRT-PCR of mitochondrial genes in P1 (n = 6) and 6-week iBAT (n = 8) (mean ± SEM; t test; *p < 0.05, **p < 0.01)

(B) Differentially expressed genes using mitochondrial qRT-PCR arrays (n = 4; t test; p < 0.05)

(C) Representative immunofluorescence images of Cox IV staining in 6-week iBAT (n = 3).

(D) Representative TEM images of 6-week iBAT (left) and mitochondria size (right) (n = 3; mean ± SEM; t test; ***p < 0.001)

(E) Oxygen consumption of iBAT using a Seahorse Flux Analyzer (12 weeks, n = 5; normalized to DNA content; mean ± SEM; t test; *p < 0.05)

(F) qRT-PCR of Ucp1 mRNA in iBAT with or without cold exposure (left) (n = 3 for 22�C; n = 4 for 4�C; mean ± SEM; two-way ANOVA; ***p < 0.001) and rectal

temperature in acute cold challenge (right) (n = 4; mean ± SEM; t test; no significant difference).

See also Figure S4.
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Interestingly, we also detect an approximate 2-fold increase

in basal glucose uptake in RictorMyf5cKO BAT measured by
18FDG positron emission tomography computed tomography

scanning (Figure S4C) and an increase in lipoprotein lipase

(Lpl) expression (Figure 3C), suggesting that RictorMyf5cKO BAT

may consume more nutrients than age-matched control

BAT. Small-metabolite profiling reveals that RictorMyf5cKO BAT

also has elevated levels of inosine monophosphate (IMP) (Fig-

ure S4D), a deamination product of AMP, the accumulation

of which suggests increased uncoupling (Balcke et al., 2011).

In an acute cold challenge, Rictor-deficient BAT also induces

Ucp1 expression significantly more than control BAT and the

mutants have no difficulty maintaining body temperature,

although body temperature regulation in an acute cold challenge

is largely a function of muscle (Figure 4F). Finally, we see no

compensatory ‘‘browning’’ in the psWAT as would be expected

if RictorMyf5cKO BAT were dysfunctional (Figures S2C and S2D)

(Schulz et al., 2013). These results are consistent with Rictor

loss in BAT shiftingmetabolism to amore oxidative and less lipo-

genic state.

Brown Preadipocytes Require Rictor to Differentiate
In Vitro
To examine if brown adipocyte differentiation also requires

Rictor in vitro, we generated brown adipocyte precursor cells

(bAPCs) harboring an inducible KO system (i.e., RictoriKO)

in which Rictor deletion is triggered by 4-hydroxytamoxifen

(4-OHT) (Figure S5A). Compared to isogenic controls, inducibly

deleting Rictor rapidly and robustly depletes Rictor protein and

AKT-S473 phosphorylation and, consistent with our in vivo

data, leaves AKT-T308 phosphorylation intact (Figure S5B).

Also consistent with the in vivo results, both basal and insulin-

stimulated phosphorylation of FoxO1/3, GSK3b, TSC2, and

PRAS40 are normal in RictoriKO bAPCs (Figure 5A). S6K1 phos-

phorylation is also unaffected (Figure 5A). Contrary to the in vivo

results, acute Rictor loss in vitro decreases NDRG1 phosphory-

lation (Figure 5A). This indicates Rictor is required in cultured

bAPCs for SGK activity to NDRG1, but not for pan-AKT or

mTORC1 activity.

To our surprise, RictoriKO bAPCs are completely incapable

of synthesizing lipid droplets when induced to differentiate (Fig-

ure 5B). This is surprising, because RictoriKO cells maintain

normal levels of pAKT-T308, pGSK3b-S9, and pS6K1-T389

(i.e., PDK1, AKT, and mTORC1 activity, respectively) throughout

the differentiation protocol (Figure 5C). The differentiation block

occurs early as RictoriKO bAPCs fail to induce C/ebpa, Pparg,

Prdm16, Pgc1a, Srebf1c, Ucp1, and Glut4 (Figures 5D and

S5C). The expression of C/ebpd and C/ebpb on the other hand

is induced normally and slightly higher (respectively) in the

RictoriKO bAPCs at differentiation day 6 (Figure 5D). Consistent

with the gene expression data, PPARg, IRb, UCP1, nSREBP1c,

ACC, and ACLY levels fail to increase during differentiation in

RictoriKO bAPCs (Figure 5E). Notably, 4-OHT or CreER activation

alone (i.e., in the absence of Rictor floxed alleles) has no effect

on differentiation (not shown). Moreover, bAPCs prepared from

P1 RictorMyf5cKO neonates also fail to differentiate, indicating

that the ex vivo differentiation block is not unique to using the

inducible KO system (Figure S5D). Importantly, expressing re-

combinant PPARg in RictoriKO bAPCs rescues IRb, UCP1, and

nSREBP1c expression (Figure 5F) and lipid droplet production

(Figure 5G), indicating Rictor promotes differentiation at least

in part by facilitating PPARg induction.

Insulin receptor substrate 1 (Irs1) and Irs3 KO bAPCs also fail

to induce PPARg ex vivo (Fasshauer et al., 2001). It was later

shown that Irs1/3 KO bAPCs are unable to differentiate because

they express high levels of Pref-1, Wnt10a, and Necdin, which

encode adipogenesis inhibitors (Tseng et al., 2005). In contrast,

Rictor-deficient bAPCs express normal levels of Pref-1,Wnt10a,

and Necdin in culture, and during differentiation, Necdin and

Pref-1 increase, but only late in the differentiation protocol

(Figure S5C). Thus, the mechanism by which deleting Rictor in-

hibits brown adipocyte differentiation differs from that of deleting

Irs1/3.

AKT1 Functions Downstream of Rictor in Brown
Adipocyte Differentiation
To further explore the mechanism by which Rictor regulates

differentiation, we next asked whether an AKT or SGK pathway

is required downstream of Rictor. To this end, we generated

RictoriKO bAPCs that express hemagglutinin (HA)-SGK1, HA-

AKT1, and HA-AKT2 or their phosphomimetic counterparts

HA-SGK-S422D, HA-AKT1-S473D, and HA-AKT2-S474D in

which a phosphomimetic residue was placed at the mTORC2

hydrophobic motif site, confirmed they were functional

(Figure S6A), and asked whether any of these constructs rescue

differentiation. Only HA-AKT1-S473D efficiently rescues lipid

biosynthesis (Figure 6A). HA-AKT1-S473D-expressing RictoriKO

bAPCs also induce PPARg and restore IRb, UCP1, nSREBP1c,

ACLY, and ACC expression (Figure 6B). Thus, Rictor pro-

motes differentiation as part of mTORC2 through an AKT

pathway.

Our rescue experiments point to AKT1 as the isoform

driving bAPC differentiation in vitro. Consistently, AKT1 is highly

expressed in undifferentiated precursors and decreases expres-

sion during differentiation, whereas AKT2 expression increases

during differentiation (Figure S6B). To further examine the role of

AKT1 andAKT2 in bAPCdifferentiation, we generated bAPC lines

that specifically lack either Akt1 or Akt2 and determined their

in vitro differentiation capacity. Consistent with AKT1, but not

AKT2, being required for differentiation, Akt1-deficient bAPCs

cannot efficiently synthesize lipid droplets (Figure 6C) or upregu-

late PPARg, IRb, or UCP1 when induced to differentiate (Fig-

ure 6D). In contrast, Akt2-deficient bAPCs induce PPARg, IRb,

and UCP1 normally (Figures 6C and 6D), indicating that AKT1 is

indeed the isoform required downstream of Rictor/mTORC2 for

brown adipocyte differentiation. Interestingly, we noticed in our

in vitro differentiationassays that although theAkt2-deficient cells

differentiate, they fail to induce nSREBP1c, that ACLY and ACC

express at low levels, and that lipid droplet content is reduced

(Figures 6C and 6D). This suggests that although AKT2 is not

essential for differentiation, it is important downstream of Rictor/

mTORC2 for lipid metabolism. Indeed, when we immunoprecipi-

tate AKT1 or AKT2 from undifferentiated bAPCs, most of the AKT

phosphorylation is on AKT1, while in vivo the bulk of AKT phos-

phorylation shifts to AKT2 (Figures S6C and S6D). Thus, although

the inability of RictoriKO bAPCs to differentiate in culture reflects
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an AKT1 deficiency, the in vivo metabolic phenotype appears to

reflect an AKT2 deficiency.

BMP7 Rescues Brown Adipocyte Differentiation in the
Absence of Rictor
In vitro RictoriKO bAPCs cannot differentiate (i.e., induce PPARg

and UCP1), but in vivo, PPARg and UCP1-positive Rictor-defi-

cient BAT develops. One possible explanation for this paradox

is that in vivo there are developmental signals present that are

missing from the artificial in vitro differentiation assay. The sig-

nals that drive brown adipocyte differentiation in vivo are poorly

understood. One proposed inducer of brown adipocyte differen-

tiation is the transforming growth factor-b superfamily member

BMP7 (Schulz and Tseng, 2013; Tseng et al., 2008). When given

to control or RictoriKO bAPCs, BMP7 does not induce AKT phos-

phorylation (Figure S6E). However, when supplemented into the

differentiation cocktail, BMP7 restores to RictoriKO bAPCs their

ability to synthesize lipid droplets (Figure 6E) and express

PPARg, IRb, UCP1, and to a lesser extent nSREBP1c, ACLY,

and ACC (Figure 6F). This is consistent with the in vitro differen-

tiation assay lacking signaling molecules present in vivo and

suggests BMP7 and mTORC2-AKT1 signaling converge during

brown adipocyte differentiation. A model depicting the role

mTORC2-AKT signaling in vitro in brown adipocyte differentia-

tion is shown in Figure 6G.

RictorMyf5cKO Mice Are Less Susceptible to Obesity and
Metabolic Disease at Thermoneutrality
The higher metabolic activity of Rictor-deficient BAT led us

to wonder whether RictorMyf5cKO mice are resistant to obesity.

Chronic consumption of a high-fat diet (HFD) triggers a phenom-

enon in mice called diet-induced thermogenesis, which requires

UCP1 and counteracts obesity (Cannon and Nedergaard, 2010;

Feldmann et al., 2009). Because BAT activity is masked by

chronic thermal stress at 22�C, we conducted the following

studies at thermoneutrality (30�C for mice), which exempts

mice from thermal stress (Feldmann et al., 2009). When eating

a normal chow diet, control and RictorMyf5cKO mice gain equal

weight (Figure 7A) and consume the same total energy (Fig-

ure 7B) over 12 weeks. In contrast, when eating an HFD, control

mice gain 14.67 ± 1.05 g whereas RictorMyf5cKO mice gain

10.57 ± 1.18 g (Figure 7A), despite both groups consuming the

same energy (Figure 7B). Thus, controls gain 64% more weight

when eating an HFD versus chow compared to RictorMyf5cKO

mice. This suggests RictorMyf5cKO mice living at thermoneutrality

and eating an HFD are less metabolically efficient than controls,

which is indeed the case (Figure 7C).

The resistance to weight gain in the HFD-fed RictorMyf5cKO

cohort is partly due to reduced growth of adipose tissue. For

example, the pgWAT gains significantly less mass in the HFD-

fed RictorMyf5cKO cohort than in HFD-fed controls (Figure 7D).

Liver and heart also grow larger in controls eating HFDcompared

to chow, whereas liver and heart grow to the same mass in the

RictorMyf5cKO cohorts regardless of diet (Figures 7D and S7A).

Diet has no effect on other lean tissues in either the controls or

RictorMyf5cKO cohorts (Figures 7D and S7A). That pgWAT grows

less in HFD-fed RictorMyf5cKO mice compared to HFD-fed

controls indicates systemic protection against obesity is occur-

ring because Myf5-Cre does not target pgWAT (Figures 1F and

S2C). The reduction in pgWAT mass is due in part to smaller

adipocyte size (Figure 7E); the livers of RictorMyf5cKO mice

also resist hepatic steatosis (Figure 7E), and the HFD-fed

RictorMyf5cKO mice perform better in a glucose tolerance test

(Figure S7B).

In chow-fed cohorts, histology reveals that control BAT

adopts a more ‘‘white adipocyte-like’’ appearance (Figure 7E).

In contrast, the BAT in chow-fed RictorMyf5cKO mice resists the

whitening effects of living at thermoneutrality and maintains a

more ‘‘brown-adipocyte-like’’ appearance (Figure 7E). The resis-

tance of RictorMyf5cKO BAT to whitening is reflected in the gene

expression signature; for example, when normalized to BAT

gene expression at 22�C, the shift to thermoneutrality decreases

the expression of BAT-selective genes (Prdm16, Sgk2, cideb,

and cyp2b10) and increases the expression of WAT-selective

genes (Dpt1, Retn, Trim14, and Nnmt) (Harms et al., 2014) to a

greater extent in control BAT than in RictorMyf5cKO BAT, which

maintains a more BAT-like identity (Figure S7C).

In HFD-fed cohorts, histology reveals a large number of

multilocular adipocytes in control BAT (Figure 7F) that are not

apparent in chow-fed controls (Figure 7E), suggesting diet-

induced thermogenesis. This is reflected in the gene expression

data as Prdm16 increases in control BAT in HFD-fed mice

compared to chow-fed mice (Figure 7G), whereas the WAT-

specific genes Retn, Trim14, and Nnmt decrease (Figure 7G).

Histology also reveals that RictorMyf5cKO BAT is even more

‘‘brown-like’’ in the HFD-fed cohort, exhibiting a uniform

abundance of small lipid droplets (Figure 7F) and a stronger

BAT gene signature (i.e., elevated Prdm16, Sgk2, Cideb, and

Cyp2b10 and decreased Dpt1, Retn, Trim14, and Nnmt) (Fig-

ure 7G). Consistently, BAT functional genes (Ucp1, Pgc1a,

Cpt1b, and Dio2) are induced to a greater extent in HFD-fed

RictorMyf5cKO mice (Figure 7H), which also maintain low Acly,

Acc, and Fasn expression (Figure S7D). Importantly, UCP1 pro-

tein levels are higher in the BAT of RictorMyf5cKO mice eating an

Figure 5. Rictor Is Required for Brown Adipocyte Differentiation In Vitro

(A) Western immunoblots using control and RictoriKO brown preadipocyte lysates. Cells were serum deprived 3 hr then stimulated with 0, 5, 25, 120, or 600 nM

insulin for 15 min prior to lysis.

(B) Oil red O staining after differentiation.

(C) Western immunoblots using lysates from the indicated days of differentiation.

(D) qRT-PCR for differentiation-related genes (n = 3; mean ± SEM; t test; *p < 0.05, ***p < 0.001).

(E) Same as (C).

(F) Western immunoblots of cell lysates collected at day 10 of differentiation. M, mock; V, empty vector; g2, recombinant PPARg2. The g1 and g2 isoforms are

indicated.

(G) Oil red O staining of cells in (F).

See also Figure S5.
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HFD (Figure 7I). Notably, after 20 weeks of eating an HFD, the

control BAT reverts to a more white-adipocyte-like histology;

however, BAT character is preserved in RictorMyf5cKO mice

(Figure S7E). Collectively, these results suggest that inhibiting

mTORC2 in BAT increases diet-induced thermogenesis and,

consequently, RictorMyf5cKO mice living without thermal stress

and consuming an obesogenic diet are less susceptible to

developing obesity and metabolic disease.

DISCUSSION

Transcriptional regulation of BAT development has been exten-

sively described (Kajimura et al., 2010), whereas less is known

about the signaling mechanisms that regulate BAT. The control

of brown fat fuel utilization is also incompletely understood

(Townsend and Tseng, 2014). Previous studies reported that

conditionally deleting Rictor in WAT and BAT or skeletal muscle

has no affect onWAT or BATmass or individual adipocyte or my-

ocyte size (Bentzinger et al., 2008; Cybulski et al., 2009; Kumar

et al., 2008, 2010). However, these studies used Cre drivers

that reportedly delete Rictor in mature cells, which led us to hy-

pothesize that Rictor/mTORC2 may be more important for

BAT/WAT and/or muscle development. By conditionally deleting

Rictor in Myf5 precursors, we discovered that Rictor is not

essential in vivo for muscle development or regeneration. In

contrast, Myf5-lineage brown and white adipocytes lacking

Rictor are reduced in size. Furthermore, Rictor-deficient BAT un-

dergoes a metabolic shift to a more oxidative and less lipogenic

metabolic despite having seemingly normal pan-AKT signaling.

Importantly, at thermoneutrality, this protects mice against an

obesogenic diet. These findings implicate Rictor/mTORC2 as

an essential signaling node in BAT that regulates the balance

between fatty acid oxidation and storage. These findings could

have important implications for understanding the signaling

mechanisms that regulate fuel usage and metabolic activity in

human BAT.

We also report that in vitro brown adipocyte differentiation

requires Rictor/mTORC2. Mechanistically, Rictor/mTORC2 pro-

motes Pparg induction through AKT1 independently of pan-

AKT signaling and mTORC1 activity. In vivo, however, brown

adipocytes differentiate in RictorMyf5cKO mice despite lacking

Rictor expression. We hypothesize that this paradox indicates

that the artificial in vitro culture conditions lack important signals

present in vivo that overcome this deficiency. Supporting this

notion, supplementing the differentiation assay with BMP7, a

proposed in vivo inducer of brown adipocyte differentiation and

thermogenesis (Schulz and Tseng, 2013; Tseng et al., 2008),

rescues differentiation in the absence of Rictor. Notably, we

do detect low pparg expression in RictorMyf5cKO P1 BAT, which

may reflect the role of Rictor/mTORC2 in early brown adipocyte

differentiation and explain the mutant BAT hypoplasia. Exactly

how Rictor/mTORC2 and BMP7 signaling might converge on

PPARg is not yet clear. We also show that during brown adipo-

cyte differentiation, the major AKT isoform switches from AKT1

to AKT2; thus, although Rictor/mTORC2 may regulate differenti-

ation through an AKT1 pathway that can be bypassed in vivo,

its role in BAT metabolism is likely mediated through an AKT2

pathway that cannot be compensated for. Consistent with this

idea, whole-body Akt2 KO mice among many other phenotypes

have smaller BATs (Cho et al., 2001; Garofalo et al., 2003).

Why does deleting Rictor in BAT cause a metabolic shift? One

possibility is that forkhead boxO (FOXO) transcription factors are

more active in Rictor-deficient brown adipocytes. FOXOs are

regulated by multiple signals and function as cellular homeosta-

sis regulators under stressful conditions (Eijkelenboom and Bur-

gering, 2013). FoxO1 and FoxO3 are AKT substrates that are

partially dephosphorylated in some Rictor-deficient cells (Guer-

tin et al., 2006, 2009; Hagiwara et al., 2012; Jacinto et al., 2006;

Yuan et al., 2012). When dephosphorylated, FoxO1/3 translo-

cate to the nucleus, where they affect metabolism, survival,

and cell-cycle genes and the activity of transcriptional regulators

(including PPARg and C/EBPa) (Eijkelenboom and Burgering,

2013). However, FoxO1/3 phosphorylation is not affected in Ric-

tor-deficient BAT; thus, if the metabolic shift is driven by FoxO1/

3, it may be through an alterative mechanism such as acetylation

(Banks et al., 2011; Masui et al., 2013). Another possibility is that

FoxC2 mediates the metabolic shift (Cederberg et al., 2001; Yao

et al., 2013); however, we do not observe any change in FoxC2

expression in Rictor-deficient preadipocytes (not shown), nor

dowe see effects on the FoxC2 targetsC/ebpb orWnt10b during

differentiation (Gerin et al., 2009). The shift could also be medi-

ated through unidentified AKT substrates that uniquely require

hydrophobic motif phosphorylation. This is an important ongoing

area of investigation.

Consistent with the Myf5 lineage giving rise to a subset of

white adipocytes, we also uncovered an essential role for Ric-

tor/mTORC2 in white adipocyte growth in vivo. This confirms

our previous discovery that some white adipocytes arise from

Myf5-Cre expressing precursors (Sanchez-Gurmaches and

Guertin, 2014; Sanchez-Gurmaches et al., 2012). However,

because in the RictorMyf5cKO mice the Rictor-deficient white

adipocytes are interspersed heterogeneously with nondeleted

adipocytes within the same depot, we could not perform the

appropriate whole-tissue biochemical studies using Rictor-

deficient WAT. We did, however, determine that RictoriKO white

adipocyte precursors purified from the stromal vascular fraction

of psWAT (which are notMyf5-lineage derived) are also defective

at differentiating in vitro (not shown), indicating Rictor also has a

Figure 6. Recombinant AKT1-S473D or BMP7 Supplementation Rescue Differentiation in the Absence of Rictor

(A) Oil red O staining of differentiated control (vehicle) and RictoriKO cells (4-OHT) cells stably expressing the indicated constructs.

(B) Western immunoblots corresponding to (A).

(C) Oil red O staining of differentiated Akt1 and Akt2 conditional knockout and control bAPCs.

(D) Western immunoblots corresponding to (C).

(E) Oil red O staining of differentiated control and RictoriKO cells in the presence or absence of BMP7 (3.2 nM added day 1 during differentiation).

(F) Western immunoblots of corresponding to (E).

(G) Model summarizing the role of mTORC2 in vitro in brown adipocyte differentiation.

See also Figure S6.
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cell-autonomous role in white adipocyte differentiation that is not

dependent upon being Myf5-lineage derived. To determine the

in vivo relevance of these findings, we will need to identify Cre

drivers that express uniformly and specifically in white adipocyte

precursors; however, the origins of adipocytes are just beginning

to be revealed, and appropriate tools are not yet available for this

line of investigation.

Is Rictor/mTORC2 a master regulator of lipid metabolism?

Recent studies of liver collectively report that deleting hepatic

Rictor results in a complex phenotype including increased

gluconeogenesis, decreased glycolysis, and impaired lipogen-

esis (Hagiwara et al., 2012; Lamming et al., 2012; Yuan et al.,

2012). Two studies find that hepatic Rictor loss also decreases

SREBP1c activity; however, one study suggests AKT2 medi-

ates this function (Hagiwara et al., 2012), whereas the other

proposes an AKT-independent pathway (Yuan et al., 2012).

These two studies are also inconsistent with respect to how

Rictor loss affects AKT signaling, and thus the role of hepatic

Rictor/mTORC2 is currently controversial. Nevertheless, the

glucose uptake and glycolysis defect is reportedly independent

of the lipogenesis defect, because restoring glucose flux in

Rictor-KO hepatocytes did not rescue lipogenesis (Hagiwara

et al., 2012). This study also reports that fatty acid oxidation

genes are elevated in Rictor-deficient hepatocytes (Hagiwara

et al., 2012). Thus, Rictor/mTORC2 may have a broad role in

establishing a prolipogenic metabolic state. Going forward, it

is important to determine if Rictor/mTORC2 regulates de

novo lipogenesis and b-oxidation by a common or coordinate

set of mechanisms or whether one metabolic deficiency is indi-

rectly driving the other. Notably, we detect a decrease in lipo-

genesis gene expression in P1 BAT lacking Rictor, but the in-

crease in fatty acid oxidation gene expression we first detect

in 6-week mutant BAT. Thus, mitochondrial activity may pro-

gressively increase in the Rictor-deficient BAT and be second-

ary to a lipogenesis defect. Regardless, our findings support

the idea that targeting lipogenesis and/or b-oxidation pathways

in adipocytes could be one approach to treating obesity and

diabetes.

One prediction is that increasing BAT energy expenditure

could have antiobesity therapeutic potential (Tseng et al.,

2010). To achieve this goal, a deeper understanding of how

BAT utilizes fuel is required (Townsend and Tseng, 2014). An

important finding in our study is that RictorMyf5cKO mice living

at thermoneutrality, when challenged with an obesogenic diet,

induce higher levels of UCP1 and are more resistant to devel-

oping obesity andmetabolic disease compared to HFD-fed con-

trols. This suggests that inhibiting mTORC2 in BAT augments

diet-induced thermogenesis (Cannon and Nedergaard, 2010;

Feldmann et al., 2009), although we cannot yet rule out that Ric-

tor loss in other Myf5-lineage tissues might also contribute to

this phenotype. It is currently being debated whether humans

have classic brown adipocytes or a potential third class of adipo-

cyte called a brite/beige adipocyte (Nedergaard and Cannon,

2013). Recent work indicates that in the neck, deep fat is similar

to rodent BAT and expresses high levels of UCP1, whereas more

superficial fat expresses lower UCP1 levels and has more brite/

beige characteristics (Cypess et al., 2013). Notably, humans

typically adjust temperature to be around thermoneutrality

(Cannon and Nedergaard, 2010), and the BAT of mice living at

thermoneutrality appears more ‘‘white-fat like,’’ or perhaps

more ‘‘brite/beige-fat’’ like (Figure 7). Thus, it seems likely that

humans possess classic brown fat and that studies of brown

fat in mice will provide important insights into human BAT regu-

lation. Continued elucidation of mTORC2 pathways in BAT bio-

energetics could therefore lead to novel antiobesity therapies

that target cellular energy expenditure.

EXPERIMENTAL PROCEDURES

Gene Expression

Total RNAwas isolated usingQiazol (Invitrogen) and anRNeasy kit (Invitrogen).

Equal amounts of RNA were retrotranscribed to cDNA using a high-capacity

cDNA reverse transcription kit (Applied Biosystems). Tbp expression was

used as a normalization gene. A different set of iBAT samples was used in

RT-PCR arrays (QIAGEN) according to the manufacturer’s instruction. See

also Supplemental Experimental Procedures.

In Vitro Differentiation

Primary brown adipocyte precursor (bAPC) cells were isolated from P1 neo-

nates and immortalized with pBabe-SV40 large T antigen. To induce Rictor

deletion, ubc-creERT2;Rictorfl/fl cells were treated on 3 consecutive days

with 1 mM 4-OHT. bAPCs were seeded at 4 3 104 cells/ml and allowed reach

confluence over 3 days in medium containing 20 nM insulin and 1 nM T3 (dif-

ferentiation medium). On day 4, cells were induced with 20 nM insulin, 1nM T3,

0.125 mM indomethacin, 2 mg/ml dexamethasone, and 0.5 mM 3-isobutyl-1-

methylxanthine. Two days later, the induction mediumwas replaced with fresh

Figure 7. RictorMyf5cKO Mice Exempt from Thermal Stress and Consuming a High-Fat Diet Are Resistant to Obesity and Metabolic Disease

(A) Weight gain of control and RictorMyf5cKOmice during 12-weeks of normal chow (chow) or high-fat diet (HFD) (n = 8 control and n = 12 for KO in chow; n = 10 for

both genotypes on an HFD; mean ± SEM; t test; *p < 0.05). Control mice initially weighed 21.63 ± 0.812 g in the chow group and 21.24 ± 0.621 in the HFD group.

The RictorMyf5cKO mice initially weighed 19.42 ± 0.305 g in the chow group and 19.32 ± 0.348 in the HFD group.

(B) Total energy intake (MJ) during the feeding regimen in (A). Control mice consumed 3.75 ± 0.56 g of chow and 2.81 ± 0.12 g of HFD; RictorMyf5cKO mice

consumed 3.85 ± 0.24 g of chow and 2.95 ± 0.35 g of HFD.

(C) Metabolic efficiency determined as the amount of body weight increase (g) per MJ food consumed (n = 8 control and n = 12 KO on chow; n = 10 for both

genotypes on HFD; mean ± SEM; two-way ANOVA; *p < 0.05, ***p < 0.001).

(D) Mass (mg) of the indicated tissues collected from control and KOmice after 12 weeks on chow or an HFD (n = 8 control and n = 12 KO on chow; n = 10 for both

genotypes on HFD; mean ± SEM; two-way ANOVA; *p < 0.05, ***p < 0.001).

(E and F) H&E staining of iBAT and pgWAT and oil red O staining of livers after 12 weeks of eating chow (E) or and HFD (F).

(G) qRT-PCR of the indicated brown andwhite fat genes in iBAT from chow- or HFD-mice (n = 8 control and n = 12 KO on chow; n = 10 for both genotypes on HFD;

mean ± SEM; two-way ANOVA; *p < 0.05, **p < 0.01, ***p < 0.001; # indicates significant difference over the control chow group).

(H) qRT-PCR of the indicated metabolic genes in iBAT from chow- or HFD-mice (n = 8 control and n = 12 KO in chow; n = 10 for both genotypes in HFD; mean ±

SEM; two-way ANOVA; *p < 0.05, **p < 0.01, ***p < 0.001; # indicates a significant difference over the control chow group).

(I) Western immunoblots of iBAT lysates.

See also Figure S7.
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differentiation medium and changed every 2 days until day 10. See also Sup-

plemental Experimental Procedures.

Metabolic Studies

For thermoneutrality studies, 6-week-old male mice were transferred to 30�C.
At 7 weeks of age, mice were fed chow (Prolab Isopro RMH3000, LabDiet) or a

high-fat diet (45% calories from fat; ResearchDiet # D12451). Body weight and

food intake were accessed weekly for 12 weeks. Glucose tolerance tests were

performed at the 11th week. Overnight fasted animals were subjected to GTT

by intraperitoneally injecting glucose at 2 g/kg of body weight, and blood

glucose levels were measured with a commercially available glucose

meter. A small group (n = 4) of mice were kept for 20 weeks on an HFD for

morphological studies. All animal experiments were approved by the Univer-

sity of Massachusetts Medical school animal care and use committee.

Statistics

Unless otherwise stated, the results are described as mean ± SEM. Two-way

ANOVA was performed where indicated. For most experiments, the Student’s

t test was used to determine statistical significance (*p < 0.05; **p < 0.01;

***p < 0.001).

See also Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2014.06.007.
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