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Abstract 
 

Mycobacterium tuberculosis infection is one of the leading causes of mortality 

worldwide. One third of the population is estimated to be infected, however only 5-10% 

of those individuals can transmit the disease. While T cell immunity initially limits 

mycobacterium growth, it is unclear why T cell immunity fails to sterilize the infection 

and prevent subsequent recrudescence. One hypothesis is T cell exhaustion is mediating 

the failure of T cell immunity late during infection. Here we show the development of T 

cell exhaustion during chronic infection, and that the inhibitory receptor T cell-

immunoglobulin and mucin domain containing 3 (TIM3) mediates the development of T 

cell exhaustion. TIM3 accumulates on the surface of T cells throughout the course of 

infection and there is a subsequent decrease in effector cytokine production, such as IL-2, 

TNFα, and IFNγ. Furthermore, antibody blockade of TIM3 restores T cell function and 

improves bacterial control. Our results show that TIM3 is mediating T cell exhaustion 

during chronic TB infection and leading to suboptimal bacterial control. 
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Chapter 1: Introduction 
 

Tuberculosis infection 
 

Mycobacterium tuberculosis (Mtb) infection, clinically referred to as Tuberculosis (TB), 

is currently one of the leading causes of mortality globally[1]. Most individuals infected with 

Mtb contain the infection and present no clinical symptoms; this is termed latent TB[2]. 

However, the immune system of individuals with latent TB are unable to completely clear the 

bacterium and approximately 5-10% of latently infected people will go on to form active disease 

and transmit the bacterium[3, 4]. In addition, individuals in endemic countries have an increased 

risk of developing active disease following repeat exposures[5].  

Mtb transmission occurs when an individual breathes in aerosolized droplets containing 

the bacterium. These droplets are deposited in the lungs, where the bacteria infect primarily 

alveolar macrophages. Following the initial infection innate immune cells, such as neutrophils, 

are recruited to the site of infection[6-8]. The adaptive immune response is delayed with 

recruitment of T cells to the lung following priming in the lung draining lymph node[9, 10]. 

Once T cells are primed and recruited back to the lung, they not only secrete cytokines to 

activate macrophages, but also form the outer shell of granulomas to contain the infection [11, 

12]. With the help of T cells, macrophages in the granuloma induce bacterial killing through 

oxidative damage, induction of apoptosis, autophagy and efferocytosis[13-16]. Cytokines, such 

as Interferon gamma (IFNγ) produced by Th1 CD4+ and CD8+ T cells activate macrophages to 

clear mycobacteria, but this is still insufficient for sterilization.   
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T cells during TB 
 

T cells are critical immune cells in the response to Mycobacterium tuberculosis.  When 

mice are depleted of CD4+, CD8+, or both CD4+ and CD8+ T cells they are more susceptible to 

TB than mice that did not have T cells depleted[17]. Additional evidence from humans studies 

have also shown that CD4+ T cells are necessary for protective immunity to TB. HIV infection 

results in the depletion of CD4+ T cells in infected human patients[18, 19]. TB is one of the 

leading causes of mortality for individuals with HIV[1]. The depletion of CD4+ T cells following 

HIV infection and the increase in TB susceptibility in co-infected patients, further supports the 

importance of T cells in immunity to TB[20].  

The majority of the CD4+ T cell response during TB is of the T helper 1 (Th1) subtype, in 

which most of the CD4+ T cells are producing IFNγ[21-23]. Loss of IFNγ results in an increased 

susceptibility to TB infection[24, 25]. The transcription factor T-bet regulates the expression of 

IFNγ[26, 27]. Loss of T-bet during Mtb infection decreases IFNγ production and subsequently 

increases susceptibility to disease[28]. In addition to IFNγ, tumor necrosis factor alpha (TNFα) is 

required for optimal immunity against TB. Granuloma formation and containment of the bacteria 

is dependent on TNFα[29]. Furthermore, patients with latent TB that are given TNF inhibitory 

drugs for treatment of inflammatory diseases, such as crohn’s and rheumatoid arthritis, converted 

to active disease following treatment[30].  

Considering the importance of cytokines in modulating containment compared to the 

spread of the disease, the expression of effector cytokines needs to be carefully coordinated. T 

cells regulate cytokine expression through the expression of inhibitory receptors, such as PD1 

and TIM3. PD1 and TIM3 are cell surface receptors that following binding with their respective 



3 
 

 

ligands, transmit a negative signal within the T cell to down regulating cytokine production and 

inhibit proliferation[31].  

PD1 is one of the best characterized inhibitory receptor. It dampens the signals from the 

TCR by recruiting phosphatase SHP-2 to the activated PD1[32, 33]. This recruitment leads to the 

dephosphorylation of activation molecules downstream of TCR and CD28 signaling, such as Syk 

and phosphhatidylinosital-3-OH kinase. PD1 is a target for therapeutic intervention for late stage 

cancer with two monoclonal antibodies against PD1 gaining FDA approval. These antibodies 

block PD1 from binding to its ligands, PD-L1 or PD-L2, and stop the signaling downstream of 

PD1 therefore, preventing the loss of IFNγ, TNFα, and IL-2 production, and allowing for a 

continued effector immune response[34-36].  

In addition to PD1, another inhibitory receptor that regulates T cell function is TIM3. 

TIM3 was originally described as a marker to distinguish Th1 CD4+ T cells from other CD4+ 

helper subtypes[37]. TIM3 is not exclusively expressed on CD4+ T cells and other cell types 

such as CD8+ T cells, macrophages, dendritic cells, and NK cells upregulate TIM3[38-40]. TIM3 

inhibits T cell proliferation and causes apoptosis after binding to its ligands, Galectin-9 or 

CEACAM-1[37, 41, 42]. Furthermore, TIM3 is associated with a reduction in IFNγ, TNFα, and 

IL-2 production during chronic viral infection[43, 44]. As PD1 and TIM3 are both associated in 

the reduction and regulation of cytokine production, these two inhibitory receptors are 

considered mediators of T cell exhaustion[31].   

T cell exhaustion 
 

T cell exhaustion was first described during chronic viral infection and was characterized 

as CD8+ T cells that had a decrease in cytokine production, increase in inhibitory receptor 
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expression, and decrease in proliferation [45, 46]. An exhausted T cell develops during chronic 

infection where antigen is not completely cleared. In the mouse LCMV model of infection, mice 

that where infected with the Armstrong strain of LCMV (acute infection), developed functional 

CD8+ T cells producing IFNγ, TNFα, and IL-2. Whereas, mice infected with the Clone 13 strain 

of LCMV (chronic infection) had dysfunctional CD8+ T cells with reduced IFNγ, TNFα, and IL-

2 production[45]. IL-2 is one of the first cytokines lost and is associated with early stages of 

exhaustion, followed by TNFα during the intermediate stage, and finally at late stages a loss of 

IFNγ and cell death[47].  

T cell exhaustion was initially discovered and characterized for CD8+ T cells, and while 

CD4+ T cells also have an exhausted phenotype, there are some differences from CD8+ T cell 

exhaustion. Similar to that described for CD8+ T cells, CD4+ T cell exhaustion is characterized 

by an upregulation of inhibitory receptors and a decrease in the ability to produce the Th1 

cytokines IFNγ and TNFα[48, 49]. In addition to the lack of Th1 cytokine production, there is an 

increase in IL-21 production within CD4+ T cells during chronic viral infection[49-52]. There are 

also differences in inhibitory receptor expression on exhausted CD4+ and CD8+ T cells during 

chronic viral infection. Exhausted CD8+ T cells express more inhibitory receptors such as TIM3, 

2B4 and Lag3 during chronic viral infection. Whereas, CD4+ T cells express more CTLA-4. The 

inhibitory receptor PD1 is highly expressed on both CD4+ and CD8+ T cells during chronic 

infection[48, 49]. 

T cell Exhaustion, PD1 and TIM3 during TB 
 

The role of T cell exhaustion during TB infection has not been as well characterized as it 

has been for chronic viral infections or cancer. Work from Day et al, showed that human 

peripheral blood from patients with latent TB had increased in polyfuctional, IFNγ+TNFα+IL-2+, 
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CD4+ T cells than patients with active TB[53]. Following treatment with antibiotics, individuals 

with active TB had an increase in polyfunctional T cells in the peripheral blood. The authors 

concluded that an increase in antigen load during active TB decreased percentage of 

polyfunctional T cells.  Recent work from Moguche et al, demonstrates that high antigen load 

throughout the course of infection decreases T cell function and results in terminally 

differentiated T cells in the mouse model as well as humans[54]. The work by these two groups 

are the only studies examining T cell exhaustion during TB. Leaving many questions 

unanswered, such as what are drivers of T cell exhaustion during TB?  

During an Mtb infection, the exhaustion associated inhibitory receptor PD1 is necessary 

for providing protective immunity. PD1-/- mice are highly susceptible to Mtb infection, due to a 

hyper-inflammatory lung environment[55]. Regulation of IFNγ is dependent on PD1 

expression[56]. Therefore, PD1 maintains immune-homeostatic balance in preventing a hyper-

inflammatory response during infection[55, 56]. PD1 binding to its ligand PD-L1/PD-L2 can 

negatively influence dendritic cell activation[57]. PD-L1/PD-L2 signaling within dendritic cells 

reduces the expression of maturation markers and increases the expression of the inhibitory 

cytokine IL-10[58]. Although PD1 has an essential immunoregualtory role, the specific 

mechanisms that alter T cell function in the context of TB remain unclear.  

Unlike PD1, the T cell inhibitory receptor TIM3 has beneficial effects on macrophages 

during TB by regulating the proliferation of macrophages and dendritic cells[39]. During an in 

vitro Mtb infection, TIM3 activates infected macrophages to kill bacteria[59, 60]. Following 

binding of TIM3 to its ligand Galectin-9, which is expressed on the surface of macrophages, 

induces the expression of IL-1β within the macrophage and subsequently reduces bacterial 
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burden[59, 60]. While these studies indicate a positive role for TIM3 in activating macrophages, 

the effect of TIM3 signaling within T cells during the course of TB infection remains unclear. 

Summary 
 

T cell exhaustion drives failure of T cell immunity in chronic viral infection and cancer. 

Inhibitory receptors, such as PD1 and TIM3 mediate this exhausted phenotype during chronic 

infections. Immunity during TB is mediated by protective T cell responses. With 5-10% of 

individuals with latent TB reactivating to active pulmonary disease, we wanted to further 

understand the cause of this reactivation. We hypothesize that T cell exhaustion drives a failure 

in T cell immunity and that the inhibitory receptor TIM3 mediates this exhaustive phenotype. In 

this thesis, we show that the presence of TIM3 negatively affects the immune response and that 

blocking TIM3 reinvigorates T cells. Altogether, the work presented here will help in 

understanding the progression of disease that can pave the way for better vaccine and therapeutic 

development, as well as public health measures.    
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Chapter 2: TIM3 Mediates T cell exhaustion during Mycobacterium 
tuberculosis Infection 

 
Preface 
 

This chapter was adapted from the published manuscript: 

Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, Anderson AC, Kuchroo 
VK, and Behar SM. (2016) TIM3 Mediates T Cell Exhaustion during Mycobacterium 
tuberculosis Infection. PLoS Pathog 12(3): e1005490. http://doi:10.1371/journal.ppat.1005490 
 
 
 
 
The exact figures and the organization are different than the published manuscript. All 

experiments were designed and manuscript was prepared by MKJ, PJ and SMB. Below are 

authors contributions to all figures: 

Figure 2.1: MKJ generated and analyzed all data presented 

Figure 2.2: PJ generated and analyzed data presented in part A-B; MKJ generated and analyzed 

data presented in C-G 

Figure 2.3: PJ generated and analyzed all data presented; PJ, CZ, and AM analyzed data 

presented in parts A-B 

Figure 2.4: PJ generated and analyzed data presented in A-B; MKJ and PJ jointly generated and 

analyzed data presented in parts C-D; MKJ generated and analyzed data presented in part E 

Figure 2.5: MKJ generated and analyzed data presented in A-B; MKJ and PJ jointly generated 

and analyzed data in D-G 
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Introduction 
 

In countries with endemic tuberculosis there is an increased risk of developing clinically 

active disease following multiple exposures[5]. This chronic stimulation by antigen could reduce 

T cell immunity by inducing T cell exhaustion. T cell exhaustion was first described during 

chronic viral infection and is caused by constant antigen stimulation of T cells[46, 61].  T cell 

exhaustion is characterized by a step-wise progression of the loss of proliferation, cytokine 

production, and increase in inhibitory receptors. Cell surface hallmarks of an exhausted T cell 

include the expression of the inhibitory receptors PD1, TIM3, Lag3, and 2B4[31]. Antibody 

blockade of the inhibitory receptor TIM3 reverses the exhausted phenotype during chronic viral 

infection[40]. We hypothesize that T cell exhaustion is mediating the failure of T cell immunity 

during active TB disease. Here, we demonstrate in the mouse model of infection that T cells 

increase expression of PD1 and TIM3 throughout the course of infection and have decreased 

cytokine production. The inhibitory molecule TIM3 is helping to mediate this exhausted 

phenotype, as treatment of mice with anti-TIM3 reinvigorates T cells and reduces bacterial 

burden.  

Results 
 

Cytokine expression in CD4+ T cells is diminished following chronic Mtb infection 
 

One of the defining features of T cell exhaustion the decrease in cytokine production[31]. 

We were interested in understanding the changes in cytokine expression within the antigen 

specific and the broadly recruited T cells during the course of infection in the mouse model. To 

measure antigen specific responses, we looked at the response in CD4+ T cells that recognized 

the immunodominant Mtb antigen ESAT61-20[62, 63]. At different time points throughout disease 
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progression, cytokine production was measured after a short re-stimulation with the ESAT61-20 

peptide and the background from an unstimulated control was subtracted out. The cytokine 

production was then normalized to tetramer staining.  During infection, IL-2 production by 

ESAT6 specific CD4+ T cells was predominate at day 20, but by 4 and 17 weeks the amount of 

IL-2 was nearly undetectable. This loss in IL-2 production resulted in a reduction of triple 

producing (IL-2+IFNγ+TNFα+) cells. When measuring the broad response of T cells in the lungs 

following stimulation with anti-CD3/CD28, there was an overall reduction in IL-2 and TNFα 

throughout the course of infection.  Along with an overall decrease in TNFα production, there 

was a decrease in T cells capable of producing both IFNγ and TNFα; this is characteristic of T 

cell exhaustion. While there was an overall decrease in CD4+ T cells ability to produce IL-2 and 

TNFα, this was not due to a lack of CD4+ T cells specific to Mtb. The frequency of tetramer 

positive T cells to the Mtb antigen ESAT6 was unchanging from week 2, 4, and 17. This change 

in cytokine was only observed within the CD4+ T cell compartment and not within CD8+ T cells. 

One possible explanation for the difference in cytokine responses between CD4+ and CD8+ T 

cells is the timing of response during infection. From survival data, we know that CD4+ T cells 

are critical early during the response to TB while CD8+ T cells have an important role later 

during infection[17]. Therefore, a change in cytokine production amongst the CD8+ T cells may 

be observed at times later that 17 weeks post infection in the C57BL/6J mouse model. 
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T cells express multiple inhibitory receptors throughout the course of Mtb infection  
 

T cell exhaustion is not only mediated by a change in cytokine expression, but also an 

increase in inhibitory receptors[31]. To evaluate if the loss of T cell cytokine production is 

correlated with an increase in inhibitory receptors, we measured the expression of five inhibitory 

receptors, PD1, TIM3, Lag3, 2B4, CTLA-4, over the course of infection in C57BL/6J mice 

(Figure 2.2A). The receptors PD1, TIM3, and Lag3 were highly expressed on both CD4+ and 

CD8+ T cells, with the expression increasing late (44wpi) during infection. 2B4 and CTLA-4 

Fig 2.1. Cytokine expression in antigen-specific CD4+ T cells is diminished following chronic Mtb infection. 
(A) The fraction of ESAT-specific CD4+ T cells that make IL-2, IFNγ, and TNF on d19 (unfilled), w12 (striped), or 
w17 (filled) post infection. (B) The fraction of the number of cytokines being produced by ESAT6-specefic CD4+ T 
cells. (C) The fraction of CD4+ T cells producing IL-2, IFNγ, and TNF on d19 (unfilled), w12 (striped), or w17 
(filled) post infection. (D) The percentage of IFNγ-producing CD4+ and CD8+ T cells that also make TNF over the 
course of infection. (E) The fraction of ESAT6-specific CD4+ T cells and bacterial burden in the lungs as d19, w12, 
and w17 post infection. All data is representative of three independent experiments with at least five mice per time 
point. *p<0.05, **p<0.01, ***p<0.001, one-way anova compared. Bars represent mean ± SEM. The “background” 
cytokine production, defined as cytokine production that occurs in the absence of specific stimulation was subtracted 
for each sample before calculations or normalizations were performed. 
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were expressed by a small percentage of CD4+ T cells and even fewer CD8+ T cells expressed 

these two inhibitory receptors (Figure 2.2A).  

T cells in the late stages of exhaustion express multiple inhibitory receptors[31]. At 

points during infection more than 30% of CD4+ T cells expressed three or more inhibitory 

receptors and about 20% expressed five or more (Figure2.2B). In contrast, less than 10% of 

CD8+ T cells expressed three or more inhibitory receptors. Supporting the findings from 

Crawford et al, that inhibitory receptors are regulated differently in CD4+ and CD8+ T cells[49].  

Next, we wanted to focus on the two highly expressed receptors on both CD4+ and CD8+ 

T cells, PD1 and TIM3. We measured the expression levels of TIM3 and PD1 throughout the 

course of disease progression. In the first 12 week of infection, CD4+ T cells express high levels 

of PD1, whereas CD8+ T cells express high levels of TIM3 (Figure 2.2C, D). Both inhibitory 

receptors are upregulated following Mtb infection, as age matched uninfected mice did not have 

an increase in inhibitory receptor expression (Figure 2.2C, E).  

At 43 weeks post infection, there was a significant increase in the percentage of CD4+ 

and CD8+ T cells expressing TIM3 and PD1 within the lung parenchyma compared to the 

vasculature space (Figure 2.2F, G). This finding is consistent with the results from Sakai et al, 

that there is an enrichment of PD1+ CD4+ T cells in the lung parenchyma[64]. In addition to an 

increase in PD1 within the parenchymal space there is also an increase in TIM3 on both CD4+ 

and CD8+ T cells. TIM3 was mainly co-expressed with PD1 on CD4+ T cells within the 

parenchyma, whereas the CD8+ T cells had distinct populations of PD1 and TIM3 single 

expressing cells and PD1 and TIM3 co-expressing cells. Thus, our data indicates that both CD4+ 

and CD8+ T cells express multiple inhibitory receptors and have distinct populations of TIM3 

and PD1 expression.  
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Fig 2.2. T cells express multiple inhibitory receptors throughout course of Mtb infection. (A) Expression of 
inhibitory receptors (TIM3, PD1, Lag-3, 2B4, and CTLA-4) by CD4+ and CD8+ T cells at week 4, 8, 24, or 44 post-
Mtb infection. (B) Individual populations of CD4+ and CD8+ T cells grouped according to total number of inhibitory 
receptors expressed. Data was generated by boolean gating analysis of the simultaneous expression of multiple 
inhibitory receptors (TIM3, PD1, Lag-3, 2B4, CTLA-4 and CD160) on CD4+ and CD8+ T cells from lungs of Mtb 
infected mice at weeks 4, 8, 24 and 44 after infection. (C) Expression of PD1 and TIM3 on gated pulmonary CD4 and 
CD8 T cells in Mtb infected (12wpi) mice and age-matched uninfected mice. Representative FACS plots shown for 
one out of 5-6 mice per group (D) Frequency of CD4+ or CD8+ T cells that express TIM3 or PD1 at different time 
points after Mtb infection. (E) Frequency of CD4+ or CD8+ T cells that express TIM3, PD1, 2B4, or LAG-3 in 
uninfected mice (F) Left panel, representative FACS plots of CD4+ and CD8+ T cells at 43 wpi that stained for CD45 
antibody injected intravenously. Right panel, frequency of TIM3 and PD1 within CD45+ (intravascular) or CD45- 
(parenchymal) CD4+ and CD8+ T cells. (G) Frequency of CD4+ or CD8+ T cells that express TIM3 or PD1 in the 
parenchymal or intravascular space after Mtb infection.  Data is representative of 4 (A, B) or 3 (C-E, F, G) independent 
experiments, each involving 5-8 mice per time point and per group. *p<0.05, by one-way anova compared. Bars 
represent mean ± SEM. 



13 
 

 

Two distinct subsets of TIM3 expressing T cells exhibit divergent molecular signatures 
 

The decrease in cytokine expression and increase in inhibitory receptor expression of T 

cells in the parenchyma at post 40 weeks infection suggests that the T cells are exhausted. To 

determine if TIM3+PD1+ T cells were molecularly distinct from TIM3+PD1- or TIM3-PD1+ T 

cells, Pushpa Jayaraman, PhD, sorted four distinct populations (TIM3+PD1+, TIM3-PD1+, 

TIM3+PD1-, TIM3-PD1-) from the lungs of infected mice. The transcriptional profile of each 

population was analyzed by Nanostring without re-stimulation of the T cell populations[65, 66]. 

There was a distinct transcriptional profile for each population. TIM3+PD1+ CD4+ and CD8+ T 

cells had a more exhausted transcriptional profile, with increases in exhaustion related receptors 

Lag3, TIGIT, and CTLA-4, as well as the exhaustion associated transcription factor Blimp1 

(prdm1) (Figure 2.3A, B)[47, 48]. In contrast, TIM3+PD1- T cells expressed a molecular 

signature of effector T cell, within both CD4+ and CD8+ TIM3+PD1- T cells having increased 

transcripts of IFNγ and TNFα. The transcriptional data was confirmed at the protein level with 

increases in IFNγ and TNFα in TIM3+PD1- T cells following intracellular cytokine flow 

cytometry staining. Additionally, TIM3+PD1+ T cells had a decrease in IFNγ and TNFα 

expression, but had an increase in the inhibitory cytokine IL-10 (Figure 2.3C, D). Thus, 

transcriptional and protein levels of effector cytokines and additional inhibitory receptors (Figure 

2.3), strongly indicate that TIM3+PD1- T cells are functionally distinct from TIM3+PD1+ T 

cells, and that TIM3+PD1+ T cells are becoming exhausted during chronic Mtb infection.  
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Fig 2.3. Two distinct subsets of TIM3 expressing T cells exhibit divergent molecular signatures. (A) CD4+ and 
CD8+ T cell populations sorted based on their TIM3 and PD1 expression was subjected to nanostring code set and gene 
expression analyses. Heat map of differentially expressed genes by TIM3–PD1–, TIM3–PD1+, TIM3+PD1– and 
TIM3+PD1+ CD4+ or CD8+ populations are shown. Blue indicates low relative expression and red, high relative 
expression. #1 and #2 indicate data from two independent experiments. (B) Fold expression of genes were normalized 
with respect to highest value among the four TIM3/PD1-expressing populations. Value of 100 indicates preferential 
expression of a gene set to a particular TIM3/PD1 expressing population and allows assessing population-specific gene 
patterns. Data is representative of 2 independent experiments. (C) CD4+ or CD8+ T cells from the lungs of mice 45 
weeks after Mtb infection were stimulated with anti-CD3/CD28 mAbs in vitro and their expression of TIM3 and PD1, 
and production of IFNγ and TNF analyzed by flow cytometry. Representative gating showing the cytokine production 
by each of the TIM3/PD1-expressing T cell populations. (D) Frequency of TIM3/PD1-expressing CD4+ or CD8+ T 
cells that produce IFNγ+TNF+ or IL-10. Data in C and D is representative of 3 independent experiments with 5-8 mice 
per time point per experiment. Bars represent mean ± SEM. 
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TIM3 impairs clearance of Mtb 

  
To understand how TIM3 affects host resistance to TB, we compared TIM3-/- and wild 

type (WT) mice following low dose aerosol infection. We found that TIM3-/- mice were more 

resistant TB disease. At four weeks post infection, TIM3-/- mice had a lower bacterial burden in 

both the lung and the spleen than WT mice (Figure 2.4A). Additionally, WT mice succumbed to 

infection earlier than TIM3-/- mice with a median survival of 257 versus 307 days (Figure 2.4B).  

Blockade of inhibitory receptor signaling using monoclonal antibodies can restore T cell 

function, termed as reinvigoration [34, 40]. If TIM3 is mediating T cell exhaustion and that is 

impairing T cell mediated clearance of Mtb, we sought to determine if antibody blockade of 

TIM3 would improve bacterial clearance. Using the C57BL/6J mouse strain, we treated mice 

with anti-TIM3 antibody (clone 5D12) or an isotype control (mIgG1) starting at 12wpi. The 

treatment start time was determined following the kinetics of TIM3 expression, with 12 weeks 

correlating with an increase in TIM3 expression and decrease in cytokine production (Figures 

2.1, 2.2). Antibody was given every three days for two weeks after which the mice were 

sacrificed (Figure 2.4C). Following treatment mice that received anti-TIM3 had a significant 

decrease in bacterial burden compared to isotype control or no treatment (Figure 2.4D). 

TIM3 is not only expressed on T cells, but also on macrophages and dendritic cells. 

Blockade of TIM3 with the anti-TIM3 antibody (clone 5D12) can activate macrophages[37]. To 

confirm that the decrease in CFU from TIM3 antibody blockade was mediated by T cells and not  

through activation of macrophages, TCRα-/- mice were treated with anti-TIM3 every 3 days for 

2 weeks. Following treatment, there was no difference in bacterial burden between anti-TIM3 
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treated and isotype control mice. Thus, the reduction in bacterial burden following antibody 

treatment was mediated by T cells and not through the activation of macrophages.  

 

 

 

 

 

 

TIM3 Blockade improves T cell function and disease outcome in susceptible mouse strains  
 

C57BL/6J mice are relatively resistant to tuberculosis and can contain the infection for 

upwards of a year. Although we cannot currently access to what degree T cell exhaustion 

mediates the C57BL/6J mouse’s demise, we predict that the T cell exhaustion develops in part to 

chronic antigen stimulation. We hypothesize that T cell exhaustion develops earlier in 

susceptible mouse strain, such as the C3HeB/FeJ, in which these mice maintain a higher bacterial 

Fig 2.4. TIM3 impairs clearance of Mtb. (A) Bacterial load in the lungs and spleens of WT BALB/c and TIM3-/- 
mice at wk4 post-infection. (B) Percent survival in Mtb infected WT and TIM3-/- mice. (C) Therapeutic protocol for 
TIM3 blockade in C57BL/6J mice. Beginning at week 10 post-infection, chronically infected mice were treated every 
third day for two weeks with isotype-matched control antibody or anti-TIM3 mAb. (D) Bacterial load in the lungs of 
C57BL/6J mice treated with isotype-matched control antibody or anti-TIM3 mAb. (E) Bacterial load in the lungs of 
TCR-/- mice treated with murine IgG1 control antibody (mIgG1) or anti-TIM3 mAb. No Tx, No treatment. Data is 
representative of 5 (A), 1 (B), 2 (D), independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 for: 
(A) student’s t-test; (B) Log-rank (Mantel-Cox) test; (D) one-way Anova with Dunnett’s post-test. Bars represent mean 
± SEM. 
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burden and succumb to infection earlier compared to C57BL/6J[67-69]. There was an increase in 

TIM3 and PD1 expression on CD4+ and CD8+ T cells throughout the course of infection in the 

C3HeB/FeJ mice, with progressive increases from week 4 to week 12 (Figure 2.2A, B). 

Additionally, there was an increase in the percentage of TIM3+PD1+ CD8+ T cells and less 

TIM3+PD1- CD8+ T cells in the C3HeB/FeJ mice compared to C57BL/6J mice (Figure 2.2D, 

2.5B), which is consistent with the findings that chronically elevated antigen levels promote T 

cell exhaustion[53, 54, 70].  

We next determined if TIM3 blockade would alter host resistance in the susceptible 

C3HeB/FeJ mouse. Four weeks post infection, mice were treated with either anti-TIM3 (clone 

5D12) or an isotype control (mIgG1). The antibody was administered every three days for two 

weeks. Following antibody treatment the mice were sacrificed and T cell responses were 

measured (Figure 2.5C). Following antibody treatment, mice treated with the anti-TIM3 antibody 

had a significant increase in cytokine production in both the CD4+ and CD8+ T cell 

compartments following re-stimulation with either a MHC-Class I restricted (CFP1032-39) or 

MHC-Class II restricted (ESAT653-71) peptide epitopes, or anti-CD3/CD28. There was a TB 

specific increase (peptide stimulation) and overall global increase (anti-CD3/CD28 stimulation) 

in all three exhaustion associated cytokines, IL-2, TNF, and IFNγ, following treatment with anti-

TIM3 treatment(Figure 2.5G). The increase in cytokine production was also correlated with a 

significant reduction in bacterial burden in both the lung and spleen (Figure 2.5D, E, F). Overall, 

our results suggest that TIM3 is helping to mediate an exhausted phenotype, and by blocking 

TIM3 T cells are reinvigorated. Furthermore, our data shows that T cell exhaustion is mediating 

impairment of T cell immunity during Mtb infection, but also therapeutic targeting of inhibitory 

T cell signals can reverse exhaustion and improve bacterial control.  
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Fig 2.5. TIM3 blockade improves T cell function and disease outcome. (A) Representative contour plots for PD1 and TIM3 
expression on pulmonary CD4+ and CD8+ T cells in susceptible C3HeB/FeJ mice, 4 and 12 weeks after Mtb infection. (B) 
Frequency of CD4+ or CD8+ T cells that are positive or negative for TIM3 and PD1 expression at different times post Mtb 
infection is plotted. Each point represents the mean ± SEM of 5 mice per strain per time point, and is representative of 2-3 
independent experiments. (C) Protocol for TIM3 blockade in C3HeB/FeJ mice. (D) Data from a representative experiment 
shows the bacterial loads in lung and spleen. (E) Cumulative results from all blocking experiments performed in C3HeB/FeJ 
mice representing 26 mice/group from six independent experiments. Each point represents lung CFU from an individual mouse. 
p<0.0001 by unpaired t-test after log10 transformation. (F) The Δlog10 protection [control CFU – treatment CFU] from eight 
independent experiments. Black circles, C57BL/6 experiments; white circles, C3HeB/FeJ experiments. (G) Production of IFNγ, 
TNF and IL-2 by CD4+ and CD8+ T cells from the lungs of infected C3HeB/FeJ mice that had been treated as described above. 
T cells were stimulated in vitro with ESAT653-71 or CFP1032-39 peptides (recognized by CD4+ or CD8+ T cells, respectively) or 
anti-CD3/28 mAbs. Data is from 12-13 mice from three independent experiments tested by unpaired t-test: *, p<0.05; **, 
p<0.01; ***, p<0.001; ****, <0.0001. Bars represent median.  
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Discussion 
 

TIM3 is a key negative regulatory of T cell responses in chronic viral infections, cancer 

and autoimmune disease[40, 43, 71]. Here we show that TIM3 expression increase over the 

course of infection, and the increase in expression is also correlated with an increase in 

expression of the inhibitory receptor PD1. We did find that T cells co-expressing PD1 and TIM3 

were functionally distinct from T cells expressing only TIM3, with TIM3+PD1+ T cells having a 

more exhausted profile. Further supporting the evidence that increased inhibitory receptor 

expression on an individual T cell decreases function[31]. In addition to the increase in 

inhibitory receptors, there was an overall decrease in effector cytokine, IL-2, TNFα, and IFNγ, 

production which is associated with T cell exhaustion[34, 46, 70].  

The data presented here represents a correlation between a decrease in T cell function and 

an increase in bacterial burden. When addressing the overall question of why/how Mtb infection 

develops into disease, it is still unclear as to whether the T cell exhaustion is increasing bacterial 

burden or bacterial burden is causing T cell exhaustion. It could be that these two events are not 

mutually exclusive, as a larger bacterial burden can lead to an abundance of antigen that inhibits 

T cell function, and then once T cells lose function there is a further increase in bacterial burden. 

The C3Heb/FeJ mouse model is genetically more susceptible to disease compared to the 

C57BL/6J mouse[68, 69]. C3Heb/FeJ mice have a higher bacterial burden, almost one log, at the 

same time point compared to C57BL/6J mice[68].  In the C3Heb/FeJ mouse, it was observed that 

T cell exhaustion occurred earlier and that treatment of the mice with anti-TIM3 early during 

infection could reverse this exhausted phenotype. Further suggesting that the high bacterial 

burden and dysfunctional T cells are not mutually exclusive. The reinvigoration of T cells 

following antibody treatment strongly supports the finding that T cell exhaustion develops during 
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chronic Mtb infection. A further understanding of the mechanisms of T cell immunity failure can 

lead the way to the development of better therapeutics and preventive medicine for TB. 

Methods 
 

Ethics Statement. The animal studies were approved by the Institutional Animal Care and Use 

Committee at the University of Massachusetts Medical School (Animal Welfare Assurance no. 

A3306-01), using the recommendations from the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health and the Office of Laboratory Animal Welfare.  

 

Mice and Infections. Six- to eight-week old C57BL/6J, Balb/c, C3HeB/FeJ, or B6.129S2-

Tcratm1Mom/J were purchased from Jackson laboratories; TIM3-/- mice (originally from Millennium 

Pharmaceuticals), were bred locally. All in vivo infections were performed using virulent Mtb 

(Erdman strain) by the aerosol route with ~200 CFU by an aerosol-generation device (Glas-Col). 

At different times post infection, mice were euthanized by carbon dioxide inhalation and lungs and 

spleens were aseptically removed. Organs were individually homogenized in 0.9% NaCl/0.02% 

Tween 80 with MiniBead Beater 8 (Biospec Products) and viable bacteria were enumerated by 

plating 10-fold serial dilutions of organ homogenates onto Remel 7H10 Mtb plates (R01610; 

Fisher Scientific) or Middlebrook 7H11 Mtb plates (W40; Hardy Diagnostics). Colonies were 

counted after 21 d. 

 

In Vivo Blockade of the TIM3 pathway. All TIM3 blockade experiments were performed in 

chronically infected B6 (12 wks post-infection) and C3HeB/FeJ (4 wks post-infection), and TCRα-

/- (1 day post infection). For TIM3 blockade, 500 μg of anti-TIM3 mAb (5D12; prepared in house) 

or moues IgG1 isotype control were injected intraperitoneally on d0 of treatment and 100 μg every 
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3d for 2 wk. The ability of anti–TIM3 mAb to block the TIM3 pathway was previously 

demonstrated [71]. TIM3 blockade in TCR-/- mice were performed one day post infection with 

500 μg of anti-TIM3 mAb (5D12) or mouse IgG1 isotype control were injected intraperitoneally 

on d0 of treatment and 100 μg every 3d for 2 wk. Lung CFU from anti-Tim3 and isotype treated 

mice was measured 21 days post infection. 

 

MHC tetramers, Abs, and flow cytometry. Anti-CD3 (clone 145-2C11), anti-CD4 (GK1.5), 

anti-CD8 (53-6.7), anti-CD19 (6D5), anti-CD62L (MEL-14), anti-CD44 (IM7), anti-CD45RB 

(C63-16A), anti-CD127 (A7R34), anti-TIM3 (2C12), anti-TIM3 (5D12; V. Kuchroo), anti-PD1 

(29F.1A12), anti-Lag3 (C9B7W), anti-2B4 (M2B4CB6), anti-CD160 (7H1), anti-CTLA4 (UC10-

4B9), anti-IFNγ (XMG1.2), anti-TNF (MP6-XT22), anti-IL2 (JES6-5H4), anti-IL-10 (JES6-

16E3), anti-CD107a (1D4B), CD107b (M3/84), rat anti-mouse CD16/CD32 (Fc-Block) were 

purchased from biolegend. I-Ab ESAT-61–20, Kb TB10.3/44–11, and Kk CFP1032–39 MHC tetramers 

were produced by the National Institute of Allergy and Infectious Diseases Tetramer Core Facility 

(Emory University, Atlanta, GA). For staining with I-Ab ESAT-61–20 tetramer, cells were incubated 

with tetramer at 1:200 dilution in complete media containing 10% FCS for 1 h at 37°C prior to 

staining with surface Abs. Cells were stained with MHC class I tetramers at 4°C for 30 min. For 

intracellular staining of cytokines IFNγ, TNF, IL-2 or IL-10, lung mononuclear cells from infected 

mice were cultured in complete media at 37°C with or without 10 µM peptide (to interrogate 

antigen-specific T cell responses, see Table 1) or 1 µg/ml anti-CD3/CD28 mAbs (to interrogate 

polyclonal T cell responses). Peptides used in this study are listed in Table 1. After 1 h, 50 µl 

brefeldin A (25 µg/ml; Sigma-Aldrich) was added and cells were cultured for an additional 4 h. 

After activation, the cells were washed and stained for extracellular and intracellular markers 
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according to manufacturer’s instructions. Samples were acquired on an LSRII flow cytometer 

(Becton Dickinson, Franklin Lakes, NJ) or the MACSQuant Analyzer (Miltenyi Biotec, San 

Diego, CA) and analyzed with FlowJo software (Tree Star, Ashland, OR). 

 

Table 2.1. Mycobacterium tuberculosis peptide epitopes used to stimulate T cells ex vivo for 
Intracellular cytokine staining assays 
 

Mouse strain MHC restriction Epitope name Epitope sequence 

C57BL/6J 
Kb TB10.44-11 IMYNPAM 

I-Ab ESAT61-15 MTEQQWNFAGIEAAA 

C3HeB/FeJ 

Kk CFP1032-39 VESTAGSL 

MHC II ESAT653-71 
GVQQKWDATATELNNALQ

N 

 

 

Nanostring. To assess differences between specific populations, T cells were first purified from 

lungs of Mtb infected mice were MACS purified and stained for cell surface markers such as CD4, 

CD8, TIM3 or PD1 from different strains of mice: C57BL/6J or C3HeB/FeJ. Stained T cells were 

then sorted into distinct populations under BSL-3 conditions. RNA was isolated from sorted 

populations using Qiagen RNeasy kit according to manufacturer’s instructions. The T cell 

exhaustion signature was constructed based on Affymetrix microarray dataset from Db-restricted 

GP33-specific CD8+ T cells on day 6, day 8, day 15, and day 30 following acute (Armstrong) or 

chronic (clone 13) LCMV infection[72]. The Marker Selection module of GeneE was used to rank 

genes by their signal-to-noise ratio [73]. A cutoff of 2 fold change (either up or down regulated), 

as well as, FDR<0.2 was applied to filter significantly differential expressed genes. Exhaustion 
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signature was defined as a combined list of all the differential expressed genes (DE) between 

chronic and acute between each of the 4 time points. The number of DE genes for each time point 

is: day 6, 62 genes; day 8, 139 genes; day 15, 547 genes; day 30, 176 genes with a total of 879 

unique DE genes. From this list of 879 viral exhaustion signature, 29 genes were also included in 

the Nanostring set (Figure 2.3).  

 

Statistics. CFU data were log10 transformed before analysis. The Prism software program 

(GraphPad Software) was used to perform Student’s t tests and one-way ANOVA and Bonferroni’s 

multiple comparison post-test. A p-value of <0.05 was considered significant. The log-rank 

(Mantel-Cox) test was used for statistical analysis for survival experiments. 
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Chapter 3: Discussion 
 

Tuberculosis is one of the leading causes of mortality worldwide[1]. While many people 

who are infected can contain the infection, about 10% of those infected will go on to develop 

active disease[1]. One key question in preventing the disease is: why do some individuals 

progress on to active disease? One possible explanation for this failure in T cell immunity is the 

development of T cell exhaustion[70]. Here we show that TIM3 negatively impacts T cell 

immunity and mediates T cell exhaustion during TB infection.  

Expression of TIM3 has been associated with an increase in T cell exhaustion during 

chronic viral infections and cancer[40, 74, 75]. Our results confirm this finding and that TIM3 is 

leading to a failure in immunity during an Mtb infection. Interestingly, we observed distinct 

populations of CD4+ and CD8+ T cells that were either TIM3+PD1- or TIM3+PD1+. The 

varying expression of TIM3 and PD1 is observed in late stages of infection in the C57BL/6J 

mouse, and the kinetics of TIM3+PD1+ cell expression vary between CD4+ and CD8+ T cells. At 

12 weeks post infection both CD4+ and CD8+ T cells have similar percentages of  TIM3+PD1+ 

cells. By >40wpi there was a significant increase in TIM3+PD1+ CD8 T cells compared to 

12wpi whereas, the percentage in TIM3+PD1+ CD4+ T cells did not increase from 12 wpi. The 

variation in TIM3+PD1+ expression between CD4+ and CD8+ T cells can be due to the 

differences in the progression of CD4+ and CD8+ T cell exhaustion. In chronic LCMV models, 

exhausted CD8+ T cells expression more TIM3 than exhausted CD4+ T cells[49]. Which aligns 

with our findings in the TB model. Future work will evaluate the expression of TIM3 and PD1 

on TB specific cells following tetramer staining, as the expression TIM3+PD1+ may vary among 

the antigen specific T cells.    
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As we have shown, TIM3+PD1- T cells have a less exhausted and more activated T cell 

phenotype following RNA profiling by nanostring analysis, and at the protein level by 

intracellular cytokine flow cytometry staining (Figure 2.3). In cancer and chronic viral 

infections, like HCV, HBV, and HIV, TIM3+ cells also co-express PD1, and each of these 

populations have different functional outcomes[40, 43, 74, 76, 77]. In cancer models, 

TIM3+PD1- T cells maintain a proliferative capacity, whereas TIM3+PD1+ T cells lose 

proliferative function[78]. This is consistent with our results that during chronic Mtb infection, 

different expression of TIM3 and PD1 alters T cell immunity. Late stage T cell exhaustion is also 

characterized as T cells expressing multiple inhibitory receptors[31]. Our data supports the 

possibility that within the polyclonal T cell populations TIM3+PD1- T cells are in the early 

stages of exhaustion having not lost the ability to produce many effector cytokines, whereas 

TIM3+PD1+ T cells are at the late stages of exhaustion. Due to low cell numbers following 

sorting, we were unable to sort the four different TIM3 and PD1 expressing populations 

following tetramer staining for antigen specific T cells. Future work will evaluate the changes in 

functionality of different TIM3 and PD1 expressing TB-antigen specific CD4+ and CD8+ T cells 

using adoptive transfer models with TCR transgenic T cells. This will allow for the collection of 

enough cells to do nanostring analysis[54, 79-81].   

Our results from the genetic ablation of TIM3 contrast that of PD1 or PDL1. PD1-/- mice 

were highly susceptible to disease and most of the animals succumbed to infection because of an 

increased inflammatory response in the lung[55]. The over stimulatory effect is seen even 

following transfer of PD1-/- T cells into infected recipient mice[56]. Based on the different 

susceptibilities of PD1-/- vs. TIM3-/- to Mtb infection, it is clear that TIM3 and PD1 have 

distinct roles during infection, and PD1 has an important immunoregulatory role.  
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Blockade of inhibitory receptors with monoclonal antibodies have been shown to 

reinvigorate exhausted T cells. Here we show that treating both resistant (C57BL/6J) and 

susceptible (C3Heb/FeJ) mouse strains with α-TIM3 there is an overall increase in cytokine 

production and decrease in bacterial burden. It is unclear however if the antibodies are working 

directly on the effector T cells or on other cell types, such as antigen presenting cells or T 

regulatory cells (Tregs). It is known that α-TIM3 can activate macrophages and we evaluated the 

effect of α-TIM3 on antigen presenting cells ability to decrease bacterial burden by treating 

TCRα-/- mice with α-TIM3[71]. We observed no difference in bacterial burden, suggesting that 

α-TIM3 is impacting T cells ability to reduce bacterial burden (Figure 2.4E). Additionally, it is 

unclear whether or not α-TIM3 is effecting Tregs. In current clinical usage of antibodies against 

inhibitory receptors it is unclear of the effect the antibodies have on Tregs[82]. Further analysis 

of T regulatory cells, such as numbers and function, following α-TIM3 or isotype treatment is 

needed to fully understand the role Tregs have during the onset of T cell exhaustion.   

To further understand the role of TIM3 during chronic Mtb infection, we can evaluate the 

effect that TIM3’s binding partners have during infection. TIM3 has two binding partners, 

Galectin-9 and CEACAM-1[41, 42]. Both of these ligands have been reported to inhibit T cell 

function, but have separate binding locations on TIM3[41, 42, 83]. In our work presented here, 

we did not measure the amount Galectin-9 and CEACAM-1 throughout the course of infection. 

Previous work from our lab showed that in an in vitro model system, Galectin-9 present on 

infected macrophages can activate macrophages to induce IL-1β[59, 60]. The net effect on 

survival of TIM3-/- mice can be a combination of T cell exhaustion, but also a decrease in 

Galectin-9 expression. Future work will investigate the role of Galectin-9 and CEACAM-1 

during in vivo infections, using genetic knockout mice and T cell adoptive transfer models. 
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T cell exhaustion is driven by chronic antigen stimulation. We observed that inhibitory 

receptor expression was increased on T cells in the susceptible mouse strain, C3HeB/FeJ[67, 68]. 

This was correlated with an increased bacterial burden, suggesting that antigen load is driving 

the exhausted phenotype. Our results support recent findings by Moguche et al, that antigen load 

and expression drives T cell exhaustion. They found that T cells specific for the 

immunodominant antigen ESAT6 became exhausted, whereas T cells specific for Ag85B did not 

become exhausted[54]. ESAT6 is expressed by the bacteria continuously throughout the course 

infection, whereas Mtb down-regulates the expression of Ag85B within the first 3 weeks of 

infection, further supporting the role of antigen load during the onset of exhaustion[84-86]. 

Using a similar adoptive transfer of TCR transgenic T cell model system, future studies can 

evaluate the role of TIM3 on mediating T cell exhaustion on antigen specific cells and the role 

antigen stimulation has on TIM3 expression.  

Research on the impact of T cell exhaustion during infection has focused on chronic viral 

pathogens, which are characterized with high antigen loads and increased inhibitory receptors 

that negatively regulate T cell function. Unlike LCMV infection, in which acute or chronic 

infections can be established through viral strain, it is difficult to discern if T cell exhaustion is 

developing during TB. Here, we show that T cell exhaustion develops late during infection, with 

an increase in TIM3 and PD1 expressing cells, and particularly amongst CD4+ T cells having a 

progressive but reversible loss of cytokine production. Further understanding of the differences 

in TIM3 expressing cells, both those that co-express PD1 or do not express PD1, can lead to a 

deeper understanding of T cell exhaustion during TB. Continued research into the failure of 

immunity during TB will lead to improved vaccine and host directed therapy development, as 

well as overall public health measures.  
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