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COMMENTARY Open Access

Crosstalk between NDR kinase pathways
coordinates cell cycle dependent actin
rearrangements
Sneha Gupta and Dannel McCollum*

Abstract

Regulation of cytoskeletal remodeling is essential for cell cycle transitions. In fission yeast two NDR kinase signaling
cascades, MOR and SIN, regulate the actin cytoskeleton to promote polarized growth during interphase and
cytokinesis respectively. Our understanding of how these signaling pathways are coordinated to assist transition
between the two cell-cycle stages is limited. Here, we review work from our laboratory, which reveals that cross
talk between the SIN and MOR pathways is required for inhibition of interphase polarity programs during
cytokinesis. Given the conservation of NDR kinase signaling pathways, our results may define general mechanisms
by which these pathways are coordinated in higher organisms.

Keywords: SIN, MOR, polarity, cytokinesis, actin cytoskeleton

Introduction
Schizosaccharomyces pombe are rod-shaped cells that
grow by elongation at cell ends and divide by medial fis-
sion. These cells form an ideal system for the study of
biochemical signaling pathways that underlie cell polar-
ity and morphogenesis. The NDR kinase signaling cas-
cades that control various aspects of growth and
division in fission yeast are conserved in higher eukar-
yotes where they retain similar functions but have also
acquired new ones (Figure 1) [1,2].
The Morphogenesis Orb6 Network (MOR), one of the

two conserved NDR kinase pathways in fission yeast, is
active throughout interphase and controls cell morphol-
ogy and tip growth through accretion of actin to sites of
cell growth [3,4]. Actin is required at the cell tips for
formation of F-actin patch structures as well as actin
cables. While actin patches are well established as sites
of active cell growth, actin cables serve as tracks on
which a variety of cargo for cell growth and polarity are
delivered to the cell ends [5-7]. The MOR has been
implicated in F-actin patch assembly [8]. Moreover, it
also regulates localization of the F-actin cable

polymerization factor, For3 at the cell tips via spatial
control of the Cdc42 GTPase, a central regulator of cell
polarity [9]. The MOR signaling pathway includes Orb6
(an NDR kinase) [3]; its binding partner Mob2 [10] and
its upstream activator, Nak1 (a STE-20 like kinase)
[11,12]. Pmo25 has been identified as a binding partner
of Nak1 and is essential for the activities of both kinases
in the pathway [4]. Mor2, which is a homolog of the
Drosophila Furry protein, is thought to act as a scaffold
that promotes the activation of Orb6 by Nak1 [13].
Mutants in any of the MOR components fail to grow in
a polarized manner resulting in round morphology of
the cells.
The Septation Initiation Network (SIN) constitutes the

other NDR kinase pathway in fission yeast and is acti-
vated during late mitosis where it plays an essential role
in cytokinesis. The SIN signaling cascade is regulated by
an upstream GTPase, Spg1 that controls the protein
kinases Cdc7, Sid1 (a STE 20-like kinase) and Sid2 (an
NDR kinase) [14]. Most SIN components localize exclu-
sively to the spindle pole body [14]. An exception to
this is the Sid2 kinase, which, upon activation by Sid1,
translocates from the SPB to the medial ring where it
promotes assembly and constriction of the actomyosin
ring as well as formation of the division septum [15].
SIN mutants are unable to maintain a stable actomyosin
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ring and display cytokinetic failure resulting in long
multinucleate cells.
It is evident that performing the tasks of cell growth

and division requires significant restructuring of the
actin cytoskeleton. To promote polarized growth during
interphase, actin is confined to the cell ends where it is
required for cell wall deposition. As cells enter mitosis,
actin relocalizes to the cell middle to form the contrac-
tile ring that marks the site of septum formation [5].
Coordination of actin localization as cells transition
between interphase and mitosis is presumably important
to keep competing actin polarity programs from inter-
fering with each other. Recent work from our laboratory
reveals a previously unknown link between the two
NDR kinase signaling pathways in S. pombe (MOR and
SIN) that is critical for proper regulation of actin polar-
ity during cell cycle transitions [16].

Discussion
Activation of SIN during interphase disrupts MOR activity
and function
During interphase growth, SIN mediated septum for-
mation is inhibited by keeping the Spg1 GTPase in an

inactive GDP-bound state. A previous study showed
that constitutive SIN activation blocked cell elongation
and resulted in uncontrolled septation [17]. In order to
test the effect of SIN activity on polarized interphase
growth, the SIN was ectopically activated in an asyn-
chronous cells using a temperature-sensitive (ts)
mutant of Cdc16, a GAP for Spg1 [18]. To ensure that
ectopic septation was not responsible for the pre-
viously observed inhibition of cell elongation, the
cdc16-116 ts mutant was combined with either a
cdc15-140 (a PCH family protein) or a cdc3-124 (Profi-
lin) ts mutant, both of which disrupt actomyosin ring
and septum formation and therefore allow activation
of the SIN without causing formation of ectopic septa
[19,20]. Both genotypes resulted in cells that showed
an arrest in cell elongation coupled with an increase in
cell diameter. Actin distribution reflected this pheno-
type since the actin cytoskeleton was dispersed
throughout the cell instead of having a polarized con-
figuration [16]. MOR mutants show a similar actin dis-
tribution and block in cell elongation raising the
possibility that the SIN disrupts the interphase actin
cytoskeleton by inhibiting the MOR.
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Figure 1 Conservation of NDR kinase pathways across species. Members of the Ste-20 like kinase family (Sid1, Nak1, Hpo, Mst1/2, Mst3) and
the Nuclear Dbf2-related kinase family (Sid2, Orb6, Wts, Trc, Lats1/2, Ndr1/2) constitute the core of the NDR kinase signaling pathways in S.
pombe, D. melanogaster (Fly), and mammals. This figure illustrates the cellular functions performed by these pathways in their respective
organisms.
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In addition to a displaying a disorganized actin cytos-
keleton and an inhibition of cell elongation, MOR
mutants also arrest in G2 phase. This G2 arrest was
found to be dependent on Wee1 [13], a Cdc2 inhibitory
kinase that prevents G2/M progression. Interestingly,
ectopic activation of the SIN also resulted in a Wee1
mediated G2 arrest. While this block in mitotic progres-
sion is rescued by the wee1-50 mutation, these cells con-
tinue to exhibit both depolarized actin and a block in
cell elongation, similar to observations in double
mutants between the MOR and wee1-50 [13,16]. There-
fore, although both SIN and MOR inhibition block cell
elongation and nuclear division, the cell elongation
block is not an indirect consequence of the block in
nuclear division.
Our observations showed that ectopic activation of the

SIN mimics the absence of MOR activity. Moreover,
previous experiments monitoring the activity of the
MOR pathway kinase, Orb6 through the cell cycle
revealed that Orb6 activity is reduced during mitosis [4].
In order to test whether SIN inhibits MOR activity,
Orb6 kinase activity was measured in the presence or
absence of ectopic SIN activation. Cells with an acti-
vated SIN pathway had significantly decreased levels of
Orb6 activity [16]. Together, these results suggested that
the SIN prevents polarized interphase growth by redu-
cing the activity of the MOR pathway kinase, Orb6.

SIN prevents polarized growth through inhibition of Nak1
mediated Orb6 activation
To examine the mechanism of SIN mediated MOR inhi-
bition further, the effect of SIN signaling on the activity
of the Nak1 kinase, an upstream activator of Orb6, was
measured. It has been previously shown that Nak1 activ-
ity is unchanged throughout the cell cycle [11]. Consis-
tent with this result, we observed that Nak1 kinase
activity was not affected by the SIN [16]. Since Nak1 is
suggested to physically interact with and activate Orb6,
it was hypothesized that SIN might inhibit association
of Nak1 with Orb6. A fusion of the two protein kinases
was created to test this possibility. Interestingly, expres-
sion of the Nak1-Orb6 fusion in a SIN activated back-
ground was able to bypass SIN mediated inhibition of
actin polarization and cell elongation. In addition to
bypassing the inhibition of cell elongation, cells expres-
sing the Nak1-Orb6 fusion protein were also able to
partially override the block in nuclear division [16].
These results indicated that polarized cell growth as
well as nuclear division is prevented during cytokinesis,
at least in part, through SIN mediated inhibition of the
MOR pathway.
The Nak1-Orb6 fusion also provided an insight into

the function of the MOR pathway protein Mor2. As
observed in other organisms, Mor2 is required for Orb6

but not Nak1 kinase activity, supporting the notion that
it functions as a scaffold to promote Nak1 mediated
activation of Orb6 [4,21,22]. Consistent with this notion,
the Nak1-Orb6 fusion was also able to rescue a muta-
tion in Mor2 [16]. Although these studies showed that
the SIN inhibits the MOR by blocking activation of
Orb6 by Nak1, the exact molecular mechanisms
involved in this process remain to be uncovered.

Inhibition of the MOR pathway during cytokinesis is an
important SIN function
SIN activity is essential to promote assembly and main-
tenance of a stable actomyosin ring in the cell middle as
well as to prevent polarization of F-actin at the cell tips
[14,23]. Our observations suggest that the SIN inhibits
localization of actin to cell tips by directly inhibiting
MOR activity [16]. Since bypass of SIN inhibition of the
MOR restores actin localization to the tips, it seemed
plausible that inhibition of the MOR during cytokinesis
may be necessary to prevent competition for cytoskeletal
components such as actin that are shared by the two
pathways. If this were true, inability to execute this inhi-
bition would severely affect the process of cytokinesis.
Although expression of the Nak1-Orb6 fusion in wild-
type cells had only mild effects, these cells were sensitive
to treatment with low doses of the actin depolymerizing
drug, LatB which impairs cytokinesis. LatB treatment
causes a cell division delay in wild-type cells resulting in
an increase in the number of binucleate cells [24]. In
the presence of the fusion however, these cells failed
cytokinesis entirely resulting in accumulation of multi-
nucleate cells. In addition, expression of the Nak1-Orb6
fusion in a weakened SIN background resulted in a
lethal phenotype [16]. Together, these experiments
demonstrated that inhibition of MOR is essential for
cytokinesis when SIN signaling or the cytokinetic appa-
ratus is perturbed. The inability of the fusion to cause a
substantial effect in wild-type cells could indicate that
failure to inhibit the MOR makes cytokinesis less robust
and more sensitive to perturbation. Alternatively, the
Nak1-Orb6 fusion may only partially bypass SIN inhibi-
tion in wild-type cells suggesting that the inability of
SIN to inhibit MOR could have larger implications on
SIN function and its complete impact remains to be
tested.
To further understand the interplay between SIN and

MOR signaling, the effect of reducing MOR activity on
SIN function was tested. This analysis showed that redu-
cing MOR pathway activity partially rescued viability as
well as defects in actomyosin ring constriction and sep-
tum formation in SIN mutants. Furthermore, weak acti-
vation of the SIN was able to trigger ectopic cytokinesis
in MOR mutants but not wild-type cells [16]. Together,
these observations showed that a major function of the

Gupta and McCollum Cell Division 2011, 6:19
http://www.celldiv.com/content/6/1/19

Page 3 of 6



SIN is to inhibit the MOR. Also, the MOR did not
appear to antagonize the ability of the SIN to promote
cytokinesis by directly inhibiting the SIN since the
Nak1-Orb6 fusion did not impair SIN signaling [16].
Thus, SIN inhibition of MOR during cytokinesis is
important for performing downstream functions of SIN
but does not appear to be required for maintenance of
SIN activity.

Crosstalk observed between conserved NDR kinase
pathways in other eukaryotic systems
Our study in S. pombe confirms that opposing effects of
the SIN and MOR networks on regulation of cell growth
and division necessitates the presence of an antagonistic
interaction between the two pathways (Figure 2). From
work in other model systems it is now evident that
homologous NDR kinase pathways have contrasting
functions in various cellular processes. For instance,
recent observations in Drosophila melanogaster indicates
that the NDR kinases, Trc (Orb6 homolog) and Wts
(Sid2 homolog) have opposing roles in regulation of cell
shape and timing of hair morphogenesis in wing cells
[25]. Furthermore, various studies in mammalian sys-
tems have shown that their SIN and MOR counterparts,
namely, the MST1/2-LATS1/2 and MST3-NDR1/2 sig-
naling pathways have contradictory effects on cell prolif-
eration [1,26,27]. These observations suggest the
possibility that an antagonistic crosstalk similar to the
one observed in fission yeast may exist between homolo-
gous NDR kinase pathways in higher organisms.

Alternatively, there are several examples where the
two NDR pathways work in concert to promote com-
mon cellular functions. In the budding yeast S. cerevi-
siae, the MEN (Mitosis Exit Network) and RAM
(Regulation of Ace2p and morphogenesis) signaling net-
works correspond to the S. pombe pathways SIN and
MOR respectively [28,29]. It has been reported that
MEN and RAM function together to regulate the func-
tion of the Ace2 transcription factor in daughter cell
separation [30]. In Drosophila, the two NDR kinases Trc
and Wts share the same upstream regulator Hippo
(Hpo), which may help coordinate their roles in the
establishment and maintenance of dendritic tiling in
neuronal cells [31,32]. While the MST1/2-LATS1/2
pathway in mammals plays a role in tumor suppression
and growth inhibition, several recent reports now impli-
cate MST1/2 in the additional regulation of NDR1/2
kinases to control various cellular processes like centro-
some duplication, mitotic chromosome alignment, and
apoptotic signaling [33-35]. In contrast, Mst3 kinase
appears to be important for the growth promoting func-
tions of Ndr1/2 [36]. Therefore, in animal systems, the
regulation of NDR kinases functioning in separate path-
ways by a common upstream kinase of the STE20-like
kinase family appears to be a conserved characteristic
(Figure 1). Intriguingly, a similar regulation has been
proposed by a study in S. pombe, which indicates that
the SIN kinase Sid1 not only regulates cytokinesis
through activation of Sid2 but also functions in
enhancement of MOR activity during the subsequent
interphase [4] (Figure 2). It is possible that SIN imparts
both activating and inhibitory modifications on its MOR
targets. While the inhibitory regulation dominates dur-
ing mitosis, its removal in the subsequent interphase
could result in MOR activation. Taken together with
our findings, it reveals a dual role for the SIN in regula-
tion of the MOR pathway that enables it to modulate
MOR activity in accordance with the cell cycle stage
(Figure 2).

Conclusion
In fission yeast, NDR kinases constitute central effectors
of the MOR and SIN pathways. Our studies have uncov-
ered a mechanism by which these pathways communi-
cate in order to achieve sequential reorganization of the
actin cytoskeleton during the cell cycle. Both NDR sig-
naling pathways in S. pombe are conserved in higher
eukaryotes, where several studies have provided a flurry
of information emphasizing their biological relevance.
For instance, in drosophila and mammalian systems,
NDR kinase homologs Wts/Lat1/2 and Trc/NDR1/2 act
as tumor suppressors and proto-oncogenes in addition
to having conserved cell cycle functions in morphogen-
esis and mitotic exit. Their regulation of targets like p21

SIN

MOR

Interphase
(Cell growth)

Mitosis
(Cell Division)

MOR

Figure 2 A dual role for the SIN in MOR pathway regulation.
The SIN mediated regulation of MOR during mitosis appears to
have two distinct cell cycle dependent effects on MOR function.
While the SIN inhibits MOR activity during mitosis to keep MOR
from interfering with cytokinesis, it may also play a role in
enhancing MOR activity during the following interphase in order
promote polarized growth.
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and c-Myc makes them highly appealing candidates for
cancer therapy [1]. However, the presence of multiple
isoforms of core components of the pathway like the
Ste-20 like kinases, scaffold proteins, and MOB activa-
tors adds to the diversity of their biological functions;
making it difficult to dissect these complex signaling
networks in mammals. Therefore, examination of these
pathways in relatively simple model systems like S.
pombe can provide highly useful cues enabling us to
pursue a more clear understanding of their functions in
humans.
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