University of Massachusetts Medical School

eScholarship@UMMS

UMass Center for Clinical and Translational Science Research Retreat

2013 UMass Center for Clinical and Translational Science Research Retreat

May 8th, 12:30 PM - 1:30 PM

Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Karen A. Dunphy University of Massachusetts Amherst

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cancer Biology Commons, Cell Biology Commons, Neoplasms Commons, Oncology Commons, and the Translational Medical Research Commons

Dunphy KA, Roman-Perez E, Hooshyar R, Hagen MJ, Roberts AL, Guerrero-Zayas MI, Jerry DJ. (2013). Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells. UMass Center for Clinical and Translational Science Research Retreat. Retrieved from https://escholarship.umassmed.edu/cts_retreat/2013/posters/61

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu. Title: Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Authors: Karen A. Dunphy^{1,2}, Erick Roman-Perez¹, Rehaneh Hooshyar¹, Mary J. Hagen¹, Amy L. Roberts^{1,2}, Mara Isel Guerrero-Zayas¹, and D. Joseph Jerry^{1,2}

Institutional affiliations: ¹Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, MA 01003 & ²Pioneer Valley Life Sciences Institute, Springfield, MA 01199

Contact Information: Karen A. Dunphy Email: <u>kdunphy@vasci.umass.edu</u> Phone: (413)545-2427

Abstract:

Estrogen (17^B-estradiol) has paradoxical effects in both promoting and preventing breast cancer as estrogen activates proliferation, but also promotes p53-mediated surveillance pathways. Estrogen mediates its effects in target tissues through the activation of estrogen receptor subtypes: ER α and ER β . To examine the capability of these receptors in mediating surveillance as opposed to proliferation, selective estrogen receptor agonists were compared with 17_βestradiol for induction of proliferation and radiation induced apoptosis in vivo. Transcriptional regulation of estrogen-responsive genes was also compared in mouse mammary epithelium in vivo and in the human mammary MCF7 cell line transduced with a repressible ER_β. Selective activation of ERB with the agonist diarylpropionitrile (DPN) in vivo enhances p53-mediated apoptosis in the mouse mammary epithelium without stimulating proliferation. In addition, radiation-induced apoptosis is significantly reduced in mice lacking ER β (β ERKO). As expected, 17 β -estradiol or selective activation of ER α with pyrazole triol (PPT) induced the expression of estrogen-response genes including progesterone receptor, amphiregulin and trefoil factor 1. DPN and ER β failed to induce the expression of these genes. Interestingly, the $ER\beta$ agonist DPN selectively induced the expression of genes that repress proliferation including TGF^β2 while inhibiting proliferative canonical wnt signaling via beta-catenin by inducing WNT5a and AXIN2. DPN was also more potent in stimulating the expression of EGR1, a modulator of p53 activity. These results suggest that ER α and ER β have distinct roles in gene regulation. In addition, the ability of DPN and ER β to potentiate surveillance pathways while limiting proliferation suggests that ER β agonists may have the rapeutic and chemopreventive value in breast cancer.