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Alcohol and nicotine are often co-abused. As many as 80–95% of alcoholics are also smok-
ers, suggesting that ethanol and nicotine, the primary addictive component of tobacco
smoke, may functionally interact in the central nervous system and/or share a common
mechanism of action. While nicotine initiates dependence by binding to and activating
neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels normally
activated by endogenous acetylcholine (ACh), ethanol is much less specific with the ability
to modulate multiple gene products including those encoding voltage-gated ion chan-
nels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate
that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolim-
bic dopaminergic (DAergic) reward circuitry to affect brain reward systems. Like nicotine,
ethanol activates DAergic neurons of the ventral tegmental area (VTA) which project to
the nucleus accumbens (NAc). Blockade of VTA nAChRs reduces ethanol-mediated acti-
vation of DAergic neurons, NAc DA release, consumption, and operant responding for
ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation
of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR sub-
type responses to ACh and nicotine in vitro and in DAergic neurons.The smoking cessation
therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy
drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide
polymorphisms in nAChR subunit genes are associated with alcohol dependence pheno-
types and smoking behaviors in human populations. Together, results from pre-clinical,
clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive
properties of ethanol, as well as in nicotine and alcohol co-dependence.

Keywords: nicotine, alcoholism, acetylcholine, nicotinic receptors, mesolimbic dopamine system

INTRODUCTION
Alcoholism is the third leading cause of preventable mortality in
the world (Mokdad et al., 2004). Worldwide, about 2 billion people
consume alcohol, with 76.3 million who have diagnosable alco-
hol use disorders (AUDs). Additionally, when analyzing the global
burden of this disease, alcohol causes 2.5 million deaths per year
(4% of the worldwide total) (World Health Organization, 2011).
The estimated economic cost of alcoholism in the US alone, due
to health care costs as well as productivity impacts such as lost
wages, was $220 billion in 2005, which was significantly higher
than cancer ($196 billion) or obesity ($133 billion) (CASA, 2000).

Interestingly, several reports from the 1980s to 1990s have esti-
mated that 80% of alcohol-dependent people are also smokers
(Bobo, 1992; Miller and Gold, 1998) and that smokers have an
increased risk of developing AUDs (DiFranza and Guerrera, 1990;
Grant et al., 2004). In addition, while the smoking rates in the gen-
eral population of the U.S. have dramatically decreased over the
past two decades, smoking has remained high in alcoholic individ-
uals (Meyerhoff et al., 2006), with current estimates still between
70 and 75% (Bobo and Husten, 2000). These high rates of co-abuse
of nicotine and alcohol have led some researchers to define this
population as “alcoholic smokers” as compared to “smokers” (Lit-
tleton et al., 2007). Many hypotheses have been proposed as to the

basis of the high rates of nicotine and alcohol co-abuse. For exam-
ple, it is possible that alcohol use leads to nicotine use or vice versa
(Tyndale, 2003), or that because alcohol and nicotine are legal
and readily available, the likelihood of their co-use is increased
(Funk et al., 2006). However, mounting genetic, pre-clinical, and
clinical evidence indicates that neuronal nicotinic acetylcholine
receptors (nAChRs), the molecular targets of nicotine that initiate
dependence in smokers, may also contribute to alcohol’s abusive
properties. In addition, neuronal nAChRs may represent common
molecular targets where nicotine and ethanol functionally inter-
act, potentially explaining the widespread co-morbidity between
smoking and alcohol consumption. The focus of this review is
to highlight this evidence, summarize recent findings, and iden-
tify gaps in knowledge regarding the role of nAChRs in alcohol
dependence and nicotine and alcohol co-abuse.

NEURONAL nAChRs
Neuronal nAChRs are ligand-gated cation channels that are acti-
vated by the endogenous neurotransmitter acetylcholine (ACh)
and the exogenous tertiary alkaloid nicotine (Albuquerque et al.,
2009). They belong to the superfamily of Cys-loop ligand-
gated ion channels that include receptors for γ-amino butyric
acid (GABA, the GABAA, and GABAC receptor), glycine, and
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5-hydroxytryptamine (5-HT3) (Le Novere and Changeux, 1995;
Changeux and Edelstein, 1998). These ligand-gated ion channels
have similar structural and functional features. All subunits in this
family contain a pair of disulfide-bonded cysteines separated by 13
residues (Cys-loop) in their extracellular amino terminus (Karlin,
2002).

Neuronal nAChRs, like all members of the cys-loop family of
ligand-gated ion channels are formed by the arrangement of five
subunits to create a central pore (Albuquerque et al., 2009). The
structure of neuronal nAChRs is homologous to muscle nAChRs
(Karlin, 2002), for which the atomic structure has been determined
from electron microscopy studies from the fish electric organ
(Torpedo nAChRs) (Miyazawa et al., 2003; Unwin, 2005). Each
nAChR gene encodes a protein subunit consisting of a large amino-
terminal extracellular domain composed of β-strands, four trans-
membrane α-helices segments (M1-M4), a variable intracellular
loop between M3 and M4, and an extracellular carboxy-terminus
(Corringer et al., 2000) (Figure 1A). The extracellular N-terminus
contains the ACh binding domain that forms a hydrophobic
pocket located between adjacent subunits in an assembled recep-
tor (Sine, 2002). The M2 segment of all five subunits forms the
conducting pore of the channel, and regions in the M2 intracellu-
lar loop contribute to cation selectivity and channel conductivity
(Corringer et al., 2000) (Figure 1B).

In vertebrates, 12 genes encoding 12 distinct neuronal nAChR
subunits have been identified (Cholinergic Receptor Nicotinic
Alpha: CHRNA2-10 and Cholinergic Receptor Nicotinic Beta:
CHRNB2-4 encoding α2-α10 and β2-β4 nAChR subunits, respec-
tively all of which can be found in humans and other mammals,
except for α8 which has only been identified in avian species (Mil-
lar and Gotti, 2009). Subunits are classified as either α-, by the
presence of a Cys-Cys pair near the start of TM1, or non-α (β)

when the Cys pair is missing (Le Novere and Changeux, 1995;
Changeux and Edelstein, 1998).

Five subunits combine to form two classes of receptors: homo-
meric receptors containing only α subunits (α7-α9) or heteromeric
receptors that contain α and β subunits (α2- α6 and β2-β4) (Dani
and Bertrand, 2007) (Figures 1C,D). The most abundant subtypes
in the brain are the low affinity α7 homomeric and high affinity
α4β2∗ heteromeric nAChRs. An asterisk in nAChR nomenclature
(i.e.,α4∗,α4β2∗) indicates that other unidentified nAChR subunits
may also be present and can be read as “α4 subunit containing
nAChRs.” Importantly, heteromeric nAChRs are incredibly com-
plex as they can contain two or three alpha subunits co-assembled
with two or three beta subunits. For example, α4β2 nAChRs can
be formed by either two α and three β subunits [(α4)2(β2)3] or
three α and two β subunits [(α4)3(β2)2] (Zwart and Vijverberg,
1998; Nelson et al., 2003; Moroni et al., 2006). Each stoichiometry
of the nAChR exhibits distinct sensitivity to agonist: [(α4)2(β2)3]
nAChRs have a higher sensitivity to agonist (EC50=∼1 µM ACh);
whereas [(α4)3(β2)2] nAChRs have a lower sensitivity to ago-
nist (EC50=∼100 µM ACh) (Buisson and Bertrand, 2001; Nelson
et al., 2003; Moroni et al., 2006). In addition, more than one type
of alpha and/or beta subunit may be present in a functional recep-
tor. For example, a subtype identified in midbrain dopaminergic
(DAergic) neurons contains α4 and β2 subunits co-assembled with
α6 and β3 subunits to form the α4α6β2β3∗ nAChR (Salminen et al.,
2004, 2007; Zhao-Shea et al., 2011; Liu et al., 2012). This subunit
diversity allows for a vast array of nAChR subtypes each with dis-
tinct pharmacological and biophysical properties (McGehee and
Role, 1995; Gotti et al., 2007).

Neuronal nAChRs can exist in three conformational states and
are regulated by exposure to agonist: closed at rest, when the recep-
tor has low affinity for agonist and the channel is closed; the active

FIGURE 1 | Neuronal nAChR Structure. (A) Membrane topology of a
neuronal nAChR subunit. Each nAChR subunit contains four
transmembrane domains (M1-M4), an extracellular amino- and
carboxy-terminus, and a prominent M3-M4 intracellular loop of variable
length. (B) Five subunits coassemble to form a functional subunit. (C)
Homomeric receptors consist of α subunits only and usually have low

affinity for agonist. To date, only mammalian α7, α9, and α10 (not shown)
subunits may form functional homomers. (D) The majority of high affinity
nAChRs are heteromeric and consist of a combination of α and β subunits.
Importantly, multiple α subunits may coassemble with multiple β subunits
in the pentameric nAChR complex (illustrated here by α4α6β3β2). ACh
binding sites are depicted as red triangles.
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state, when agonist occupies the ligand binding site and the chan-
nel is open allowing cations to flow down their electrochemical
gradient; and the desensitized state, when the channel is occluded
and the receptor is unresponsive to ligand (Dani and Bertrand,
2007; Albuquerque et al., 2009).

Interestingly, while nAChRs mediate fast, direct synaptic trans-
mission at neuromuscular junctions and autonomic ganglia, there
are very few examples of fast nicotinic transmission in the mam-
malian brain (Dani and Bertrand, 2007). However, neuronal
nAChRs are expressed at the soma in neurons where they pre-
sumably modulate excitability directly. In addition, a significant
proportion of nAChRs are located on presynaptic terminals (Role
and Berg, 1996) where they facilitate Ca2+ dependent release of
neurotransmitters (McGehee et al., 1995; Wonnacott, 1997). This
may occur indirectly as a result of Na+ influx causing mem-
brane depolarization and activation of voltage-gated Ca2+ chan-
nels or directly through Ca2+ influx through the channel itself
(Albuquerque et al., 2009).

ETHANOL MODULATION OF NEURONAL nAChRs: IN VITRO
STUDIES
While ethanol modulates several ligand-gated ion channels includ-
ing GABAA, NMDA, and 5-HT3 receptors (For a review see
Spanagel, 2009), ethanol also potently modulates nAChRs at low
concentrations of ethanol (100 µM–10 mM), identifying nAChRs
as potential targets for ethanol action (Nagata et al., 1996). In het-
erologous expression systems, the effect of ethanol on nAChRs
depends on the subunit composition of the nAChR. Expres-
sion of different combinations of human neuronal nAChR alpha
and beta subunits in Xenopus oocytes, indicate acute ethanol
(75 mM) potentiates ACh-induced current of α2β4, α4β4, α2β2,
and α4β2 nAChRs while lower concentrations of ethanol (20–
50 mM) inhibits nicotine-induced current of α7 nAChRs and all
concentrations of ethanol tested have no effect on α3β2 or α3β4
nAChRs (Cardoso et al., 1999). Similar ethanol effects on heterol-
ogous expression of rat nAChRs in Xenopus oocytes have been
observed except that ethanol could potentiate or inhibit α3β4
nAChRs at all ethanol concentrations tested likely reflecting oocyte
batch to batch variability. In cultured rat cortical neurons, ACh-
evoked nAChR currents insensitive to α-bungarotoxin (α-Bgtx),
which blocks α7 nAChRs (i.e., heteromeric nAChRs) are signif-
icantly enhanced by physiologically relevant concentrations of
ethanol while nAChRs sensitive to α-Bgtx (i.e., α7 homomeric
nAChRs) are inhibited (Aistrup et al., 1999). Although not tested
directly the α-Bgtx insensitive current profile was most similar to
native α4β2∗ nAChRs (Marszalec et al., 1999).

Similar to other ligand-gated ion channels, ethanol potentiation
of nAChRs is hypothesized to be a result of the ethanol-induced
stabilization of the open channel state of the receptor (Wu et al.,
1994; Forman and Zhou, 1999; Zuo et al., 2004). Site directed cys-
teine mutagenesis and covalent labeling with sulfhydryl reagents
indicate that amino acid residues in the pore forming M2 region of
neuronal nAChR at least partly contribute to the ethanol binding
pocket (Borghese et al., 2002, 2003a,b). While individual amino
acid residues forming the ethanol binding pocket may be distinct
from other cys-loop receptors, the overall motif, the extracellular
domain of M2, is critical for ethanol actions on nAChRs as well

as GABAA and glycine receptors (Borghese et al., 2003a). Addi-
tionally, it is possible that the ethanol-induced inhibitory effect
seen with α7 nAChRs is due to the inherently fast desensitization
rate of these receptors, implying that ethanol inhibition results
in enhanced desensitization (Dopico and Lovinger, 2009). Thus,
these and in vivo studies discussed below, suggest that ethanol
modulation of nAChRs, either by enhancing or inhibiting func-
tion, may contribute to (1) the inherent mechanism of action of
ethanol reward and (2) the common co-abuse of nicotine and
alcohol.

NEURONAL nAChR EXPRESSION IN THE
MESOCORTICOLIMBIC DA PATHWAY
Although neuronal nAChRs are expressed throughout the CNS,
most studies focusing on the role of nAChRs in addiction have
examined the mesocorticolimbic “reward” circuitry. Indeed, it
is widely accepted that the mesocorticolimbic dopamine system
plays a central role in modulating the rewarding effects of drugs
of abuse (Wise and Bozarth, 1987; Koob, 1992).

The ventral tegmental area (VTA) is located in the ventral
midbrain, medial to the substantia nigra, and ventral to the red
nucleus. It is referred to as an “area” and not considered to be a
“nucleus” because the cryoarchitecture of the region is not well
defined such that the boundaries of the VTA are determined by its
neighboring structures (Fields et al., 2007; Ikemoto, 2007). Within
the VTA are two main cell populations, DAergic projection neu-
rons, which comprise ∼60% of cells in this region (Swanson,
1982), as well as local GABAergic interneurons and projection
neurons (Carr and Sesack, 2000; Margolis et al., 2006a). The
VTA receives inputs from regions throughout the CNS (Geisler
and Zahm, 2005) including glutamatergic projections from the
prefrontal cortex (PFC) (Sesack and Pickel, 1992), as well as
glutamatergic, cholinergic, and GABAergic projections from two
groups of mesopontine tegmental area neurons, the pedunculo-
pontine tegmental nucleus (PPTg) and the laterodorsal tegmental
nucleus (LDT; Figure 2A) (Cornwall et al., 1990; Semba and
Fibiger, 1992; Oakman et al., 1995). Other regions projecting to
the VTA include the nucleus accumbens (NAc), amygdala, ven-
tral pallidum, superior colliculus, and lateral hypothalamus (For
a review see Fields et al., 2007). Additionally, the lateral habenula
(LH), a small nucleus that is a part of the epithalamus, has been
shown to project to midbrain areas, and modulate the release of
DA from theVTA and substantia nigra pars compacta (Herkenham
and Nauta, 1979; Ji and Shepard, 2007; Matsumoto and Hikosaka,
2007).

Neurons in the VTA primarily project to the ventromedial stria-
tum including the NAc shell and core as well as smaller projections
to the PFC, hippocampus, entorhinal cortex, and lateral septal
areas (Fields et al., 2007). Furthermore, studies using retrograde
markers have shown that distinct groups of neurons originating
in the VTA project to specific forebrain regions (Fallon et al., 1984;
Margolis et al., 2006b). Projections to the NAc contain the largest
proportion of DA neurons, with 65–85% being DAergic, while the
PFC projections are only 30–40% DAergic (Swanson, 1982; Fal-
lon et al., 1984). The remaining component of VTA afferents to
the NAc and PFC contain GABAergic neurons (Carr and Sesack,
2000). The VTA is not a homogeneous region and can be divided
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FIGURE 2 | Neuronal nAChR expression in the reward pathway. (A)
Sagittal rodent section illustrating the simplified mesocorticolimbic and
habenulo-peduncular circuitry. Known neuronal nAChR subtypes
expressed in different nuclei are indicated [for a review see (Millar and
Gotti, 2009)]. (B) In the VTA, alcohol stimulates DAergic neurons at
least, in part, via nAChR activation. Ethanol increases ACh release (red
arrow, presumably through cholinergic projection from the LDT/PPTg)
which in turn activates nAChRs on DAergic neurons driving activity. In

addition, ethanol potentiates ACh activation at high affinity α4β2*

nAChRs (red plus sign). The effect of alcohol on additional nAChRs in
the VTA is unknown. This confluence of events in combination with
other effects of alcohol in the VTA ultimately increases DA release in
NAc (red arrow). VTA, Ventral tegmental area; NAc, Nucleus
accumbens; PFC, Prefrontal cortex; LH, Lateral habenula; MH, Medial
habenula; IPN, Interpeduncular nucleus; LDT, Lateral dorsal
tegmentum; PPTg, Pedunculopontine tegmentum.

into three sub-regions, the anterior VTA, posterior VTA, and the
tail VTA. Additionally, evidence indicates that each region may
project to distinct regions of the striatum and may also respond
differently to drugs of abuse including nicotine and ethanol (Rodd
et al., 2004a, 2010; Ikemoto, 2007; Shabat-Simon et al., 2008; Zhao-
Shea et al., 2011). Importantly, nAChRs are robustly expressed in
theVTA. DAergic neurons contain several nAChR subtypes includ-
ing α4β2∗, α4α5β2∗, α4α6β2∗, α6β2∗, α3β2∗, and α7 (Picciotto
et al., 1998; Champtiaux et al., 2002; Marubio et al., 2003; Grady
et al., 2007; Gotti et al., 2010; Zhao-Shea et al., 2011; Liu et al.,
2012); whereas GABAergic VTA neurons express α4β2, α7, and
α3β4 nAChRs (Figure 2A) (Klink et al., 2001; Mansvelder et al.,
2002; Pidoplichko et al., 2004; Nashmi et al., 2007; Tolu et al.,
2012).

NEURONAL nAChRs AND ETHANOL: IN VIVO STUDIES
The rewarding or reinforcing properties of ethanol and nicotine,
as with most drugs of abuse, are associated with an increase in
DA release in the NAc (Di Chiara and Imperato, 1988; Lewis
and June, 1990; Benwell and Balfour, 1992; Samson et al., 1992;
Diana et al., 1993; Weiss et al., 1993; Lanca, 1994; Pontieri et al.,
1996). Both drugs increase the baseline firing frequency of VTA
DAergic neurons and also increase the firing pattern from pha-
sic to bursting, facilitating NAc DA release (Mereu et al., 1984;
Gessa et al., 1985; Foddai et al., 2004; Exley et al., 2011; Li et al.,
2011). Although the precise role of NAc DA release in reward is
still under debate (Schultz, 2004; Salamone and Correa, 2012),
ethanol- and nicotine-induced release of DA is critical for the
onset and maintenance of dependence. Pharmacological blockade
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of DA receptors, destruction of DA neurons or lesioning of the
NAc reduces ethanol and nicotine self-administration (Kiianmaa,
1978; Koob and Weiss, 1990; Corrigall and Coen, 1991; Corri-
gall et al., 1992, 1994; Rassnick et al., 1993; Ikemoto et al., 1997).
In addition, rats will self-administer ethanol or nicotine directly
into the VTA (Gatto et al., 1994; Ikemoto et al., 2006), and more
specifically, the posterior VTA (Rodd et al., 2004b).

It is becoming increasingly clear that nicotine dependence is
initiated by activation of DAergic neurons via nAChRs contain-
ing α4 and β2 subunits with some contribution of α6∗ nAChRs
(Picciotto et al., 1998; Tapper et al., 2004; Maskos et al., 2005;
Pons et al., 2008; Exley et al., 2011; Tolu et al., 2012). In the
context of this review, we will not focus further on the mecha-
nistic bases of nicotine dependence; rather we direct readers to
a recent review article (De Biasi and Dani, 2011). In contrast
to nicotine, multiple mechanisms underlying ethanol-mediated
activation of VTA DAergic neurons have been proposed includ-
ing modulation of intrinsic ion channels within these neurons, as
well as ethanol-mediated alterations in synaptic input, both exci-
tatory and inhibitory (Okamoto et al., 2006; Job et al., 2007; Xiao
and Ye, 2008; Xiao et al., 2009; Rodd et al., 2010; Theile et al.,
2011; Guan et al., 2012). However, cholinergic signaling through
nAChRs also contributes to NAc DA release and ethanol rein-
forcement (Blomqvist et al., 1992, 1993, 1996; Ericson et al., 1998;
Nadal et al., 1998; Dyr et al., 1999; Le et al., 2000; Soderpalm
et al., 2000; Farook et al., 2009a; Kuzmin et al., 2009). One of the
most consistent findings implicating nAChRs in ethanol behav-
iors associated with reward/reinforcement is that the non-specific
nAChR antagonist, mecamylamine, reduces ethanol consumption
and blocks ethanol-induced DA release in the NAc. Originally dis-
covered by pioneering work of Soderpalm and Engel, systemic
mecamylamine significantly reduces ethanol-mediated extracel-
lular DA release in the NAc (Blomqvist et al., 1993), and reduces
ethanol consumption in rats (Blomqvist et al., 1996). The effect
of mecamylamine is localized to the VTA, as local infusion of
the antagonist in rat midbrain but not NAc reduces NAc DA
release elicited by ethanol (Blomqvist et al., 1997). VTA infusion
of mecamylamine also reduces rat operant responding for ethanol
and ethanol-associated cues, as well as consumption during relapse
(Lof et al., 2007; Kuzmin et al., 2009). In mice, mecamylamine
delivered systemically reduces ethanol consumption in C57Bl/6J
mice in the restricted access ethanol consumption “drinking in
the dark” (DID) paradigm (Hendrickson et al., 2009), a model
of binge drinking (Rhodes et al., 2005, 2007), as well as in the
two-bottle choice consumption assay (Farook et al., 2009a). What
is mecamylamine’s mechanism of action in reducing ethanol con-
sumption? In mice, mecamylamine apparently blocks activation of
VTA DAergic neurons by ethanol as measured by c-Fos induction
after challenge with an intraperitoneal injection (i.p.) of ethanol
(Hendrickson et al., 2009). More recently, it has been demon-
strated that mecamylamine blocks ethanol-mediated activation of
VTA DAergic neurons in mouse midbrain slices (Liu et al., 2013).
Mecamylamine also blocks the ability of ethanol to condition a
place preference in mice (Bhutada et al., 2012). Thus, these data
suggest that nAChR expressed in the VTA contribute to ethanol
activation of DAergic neurons and ethanol reward. The effects of
mecamylamine in these pre-clinical models may have predictive

validity as patients administered mecamylamine report reduced
pleasurable effects of alcoholic beverages (Chi and de Wit, 2003).
As discussed above, ethanol is not a direct agonist at nAChRs;
rather it potentiates or inhibits nAChRs depending on subtype.
Thus, nAChR involvement in ethanol reward implies that ethanol
must increase ACh concentrations in brain regions involved in
reward/reinforcement. To date, one study has measured extracel-
lular concentrations of ACh in the VTA of rats that voluntarily
consumed ethanol and found that ACh levels were increased after
ethanol consumption and shortly thereafter, DA concentrations
were elevated in the NAc as well (Larsson et al., 2005). These data
indicate that the increase in VTA ACh could drive activation of
DAergic neurons through nAChRs (Figure 2B). While the pre-
dominant VTA cholinergic afferents project from the PPTg and
LDT area (Oakman et al., 1995), brain regions that have also been
implicated in mediating natural as well as drug-reward behavior
(Yeomans et al., 1993), additional experiments will be needed to
verify that these inputs mediate ethanol-induced increases in VTA
ACh. In addition, the mechanism by which ethanol could elicit an
increase in ACh release into the VTA is unknown and warrants
further study.

NEURONAL nAChRs AND ALCOHOL: IDENTIFYING RELEVANT
SUBTYPES: PHARMACOLOGY
Because mecamylamine blocks virtually all subtypes of nAChRs, it
provides little insight into the subunit composition of key nAChRs
involved in ethanol activation of DAergic neurons or ethanol
behaviors associated with the VTA such as consumption. Thus,
several studies have used additional, more selective nAChR antag-
onists, in an effort to uncover the nAChR subtype(s) that may
be involved in ethanol’s mechanism of action (Table 1). Studies
in VTA responses to nicotine indicate that DAergic neurons con-
tain several nAChR subtypes including α4β2∗, α4α5β2∗, α4α6β2∗,
α6β2∗, α3β2∗, and α7 (Picciotto et al., 1998; Champtiaux et al.,
2002; Marubio et al., 2003; Grady et al., 2007; Gotti et al., 2010;
Zhao-Shea et al., 2011; Liu et al., 2012). Identifying the precise
subunit composition of nAChRs involved in ethanol consump-
tion and activation of VTA DAergic neurons is challenging due to
the sheer number of potential subunit combinations that may be
expressed in the VTA. However, identifying one or more nAChR
subtypes involved in ethanol activation of VTA and/or reward may
lead to novel targets to reduce consumption. Systemic injection or
VTA infusion of the competitive α4β2 nAChR antagonist, dihydro-
β-erythroidine (DHβE), in rats, fails to reduce ethanol-mediated
DA release in the NAc and ethanol intake (Ericson et al., 2003;
Chatterjee et al., 2011). In addition, low doses of DHβE also have
little effect on operant responding for ethanol in rats, although
a higher dose can reduce responding (Kuzmin et al., 2009). Sys-
temic injection of DHβE does not reduce consumption in mice as
measured in the DID assay nor ethanol-induced NAc DA release
(Larsson et al., 2002; Hendrickson et al., 2009). Together these data
suggest that α4β2 nAChRs may not be critical for ethanol reward
and consumption behavior. However, sensitivity of α4β2∗ nAChR
blockade by DHβE is dependent on the stoichiometry of the recep-
tor and the expression of other non-α4β2 subunits that may also
be present in an α4β2∗ nAChR complex (Harvey and Luetje, 1996;
Harvey et al., 1996; Le et al., 2000; Larsson et al., 2002; Ericson

www.frontiersin.org April 2013 | Volume 4 | Article 29 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/archive


Hendrickson et al. Nicotinic receptors in alcohol dependence

Table 1 | Neuronal nAChR ligands that modulate alcohol behaviors.

Drug nAChR subtype target Route of delivery Effect on ethanol behavior (in rodents)

Mecamylamine Non-selective antagonist i.p. Decreased ethanol intake in rats (Blomqvist et al., 1996)

i.p. Decreased ethanol intake in mice (Hendrickson et al., 2009)

i.p. Blocked ethanol-induced DA release in NAc in rats (Blomqvist et al., 1993)

i.p. Partially counteracted ethanol-induced enhancements of locomotor activity

and brain DA turnover in mice (Blomqvist et al., 1992)

i.p. Blocked ethanol-induced activation of DA neurons in mice (Hendrickson

et al., 2009)

i.p. Reduced operant self-administration and blocked deprivation-induced

increase in alcohol consumption in rats (Kuzmin et al., 2009)

VTA Reduced ethanol-induced accumbal DA release in rats (Ericson et al., 1998)

i.p. Reduced ethanol intake in rats (Le et al., 2000)

Nicotine Agonist s.c. (chronic) Increased ethanol intake in rats (Potthoff et al., 1983; Le et al., 2000)

s.c. (subchronic/acute) Increased ethanol intake in rats (Blomqvist et al., 1996; Le et al., 2000)

s.c. (subchronic) Increased ethanol preference in rats (Blomqvist et al., 1996)

s.c. (acute) Enhanced ethanol-induced locomotor stimulation in mice (Blomqvist et al.,

1992)

s.c. (subchronic) Enhanced ethanol-induced locomotor stimulation in rats (Blomqvist et al.,

1996)

s.c. (subchronic) Enhanced DA turnover-increasing effect of ethanol in rats (Johnson et al.,

1995)

s.c. (chronic) Decreased ethanol intake in rats (Sharpe and Samson, 2002)

s.c. (chronic) Decreased ethanol seeking in rats (Sharpe and Samson, 2002)

i.p. (acute) Decreased ethanol intake in mice (Hendrickson et al., 2011)

Varenicline α4β2 Partial agonist high

affinity α3β2, α3β4, α6*, α7

low affinity binding

i.p. and VTA Decreased ethanol intake in mice (Hendrickson et al., 2010; Kamens et al.,

2010; Santos et al., 2012)
i.p. Decreased ethanol intake in rats (Steensland et al., 2007)

i.p. Reduced ethanol seeking and consumption with no rebound increase in

ethanol after cessation in rats (Steensland et al., 2007)

i.p. Reduced operant ethanol self-administration and blocked

deprivation-induced relapse-like consumption in rats (Kuzmin et al., 2009)

s.c. Blocks increase in extracellular DA in NAc following acute ethanol injection

in rats (Ericson et al., 2009)

α-Conotoxin MII α6*, α3β2* Antagonist VTA Reduced alcohol-induced DA release in mice (Larsson et al., 2004)

VTA Reduced locomotor stimulation in mice (Larsson et al., 2004)

VTA Decreased self-administration of ethanol in rats (Kuzmin et al., 2009)

VTA Blocked deprivation-induced relapse-like ethanol consumption in rats

(Kuzmin et al., 2009)

DHβE α4β2* antagonist s.c. No effect on ethanol consumption in rats (Le et al., 2000)

s.c. No effect on DA-enhancing effect of ethanol in mice (Larsson et al., 2002)

i.p. Inhibited ethanol intake at 4mg/kg in rats (Kuzmin et al., 2009)

s.c. No effect on ethanol consumption in rats (Chatterjee et al., 2011)

MLA α7* antagonist i.p. No effect on DA-enhancing effect of ethanol in mice (Larsson et al., 2002)

i.p. No effect on self-administration of ethanol or deprivation-induced

relapse-like drinking in rats (Kuzmin et al., 2009)

i.p. No effect on ethanol consumption in DID in mice (Hendrickson et al., 2009)

α-Conotoxin PIA α6* antagonist VTA No effect on ethanol-induced locomotor stimulation or enhanced DA

release in mice (Jerlhag et al., 2006)

(Continued)
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Table 1 | Continued

Drug nAChR subtype target Route of delivery Effect on ethanol behavior (in rodents)

CP-601932 α3β4 and α4β2 high affinity

partial agonist

s.c. Decreased ethanol consumption and operant self-administration in rats

(Chatterjee et al., 2011)

PF-4575180 α3β4 high affinity partial

agonist

s.c. Decreased ethanol consumption and operant self-administration in rats

(Chatterjee et al., 2011)

Lobeline Non-selective antagonist,

particularly at β2* nAChRs

s.c. Reduced ethanol consumption in DID and during continuous ethanol

access in mice (Farook et al., 2009b; Sajja and Rahman, 2011)

s.c. Reduced ethanol-induced DA and its metabolite levels in ventral striatum in

mice (Sajja et al., 2010)

Cytisine Low-efficacy partial agonist

with high affinity for α4β2*

nAChRs. Full agonist at β4*

and α7* nAChRs

s.c. Reduced ethanol consumption in DID in mice and during continuous

ethanol access in mice (Hendrickson et al., 2009; Sajja and Rahman, 2011)
s.c. Reduced ethanol-induced DA and its metabolite in mice (Sajja et al., 2010)

Sazetidine-A Highly selective α4β2

desensitizer

s.c. Reduces alcohol intake in rats (Rezvani et al., 2010)

et al., 2003; Moroni et al., 2006; Lof et al., 2007; Kamens and
Phillips, 2008). The α7 selective antagonist, methyllycaconitine
(MLA), does not affect ethanol-mediated behaviors including con-
sumption,ethanol-induced DA release in NAc and ethanol operant
responding in rats, as well as, consumption in mice. While caution
with interpretation of these results is warranted due to data indi-
cating higher concentrations of MLA may also antagonize non-α7
nAChRs (of an unknown nAChR subtype that may include α6
and/or α3 subunits (Mogg et al., 2002)), homomeric α7 nAChRs
may not be involved in ethanol reinforcement (Larsson et al., 2002;
Hendrickson et al., 2009; Kuzmin et al., 2009). On the other hand,
the α3β2∗, β3∗, and α6∗ subtype-selective antagonist, α-conotoxin
MII (Cartier et al., 1996), when infused into the VTA does inhibit
ethanol consumption, operant responding, and DA release in the
NAc of rats (Larsson et al., 2004, 2005; Kuzmin et al., 2009) and
reduce ethanol-induced locomotor stimulation and increases in
NAc DA release in mice (Larsson et al., 2004; Jerlhag et al., 2006).
Importantly, recent data indicate that approximately half of α-
conotoxin MII-sensitive nAChRs in the striatum also contain the
α4 subunit (Grady et al., 2007; Salminen et al., 2007) and deletion
of β2∗ nAChRs nearly abolishes α-conotoxin MII binding in the
VTA (Marubio et al., 2003). However, infusion of α-conotoxin PIA,
which may have more selectivity for α6∗ nAChRs than α3∗ nAChRs
(Dowell et al., 2003), failed to reduce ethanol-induced DA release
in NAc when infused in the VTA suggesting that α3∗ nAChRs may
be more critical for ethanol reward. Finally, systemic injection of
the α3β4∗ nAChR-selective antagonist 18-methoxycoranaridine
(18-MC) reduces ethanol consumption in alcohol-preferring rats
(Rezvani et al., 1997). However, direct infusion of 18-MC into
the VTA fails to reduce alcohol consumption (Carnicella et al.,
2010) in rats consistent with data indicating low expression of β4∗

nAChRs in VTA DAergic neurons (Gotti et al., 2010; Zhao-Shea
et al., 2011).

NEURONAL nAChRs AND ALCOHOL: IDENTIFYING RELEVANT
SUBTYPES: MOUSE GENETICS
Behavioral studies in genetically engineered mice have also been
used to glean information on nAChR subtypes that may be
involved in alcohol consumption and reward. Mice that do not
express chrnb2, the gene encoding the nAChR β2 subunit (β2 KO)
consume and prefer ethanol in a 24 h access two-bottle choice
paradigm similar to wild-type (WT) littermates indicating that
β2∗ nAChR may not play a role in baseline ethanol consumption
in this assay (Kamens et al., 2010). Similarly, α6 KO and β3 KO
mice consume ethanol similar to WT in a 24 h access two-bottle
choice consumption assay (Kamens et al., 2012). Female α7 KO
mice consume significantly less ethanol in this paradigm com-
pared to female WT littermates; whereas male α7 KO and WT
mice consume similar amounts of ethanol indicating a potential
gender effect of α7 nAChRs on ethanol consumption (Kamens
et al., 2010). α5 KO mice do not differ in acute ethanol consump-
tion, as measured by the DID assay, compared to WT (Santos et al.,
2012). Together, these data indicate that nAChRs containing α5,
α6, β2, or β3 subunits may not be critical for ethanol consumption
per se. However, as nAChRs are robustly expressed in a variety of
brain regions, subunit compensation may occur in a KO mouse
background (Drago et al., 2003). Thus, these results will need to be
verified using shRNAs to knock-down nAChR subunits in discreet
brain regions. Interestingly, sleep time elicited by high doses of
ethanol is increased in α6 and α5, but not β3 KO mice compared
to their WT littermates indicating a role for α6∗ and α5∗ nAChR in
alcohol-induced sedation (Kamens et al., 2012; Santos et al., 2012).

In contrast to the majority of KO models discussed above, acute
ethanol consumption in the DID paradigm is significantly less in
α4 KO mice compared to WT for high (20%) but not low (2%) con-
centrations of ethanol implicating a role for α4∗ nAChR in ethanol
consumption (Hendrickson et al., 2010, 2011). In addition, the
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ability of ethanol to condition a place preference in α4 KO mice is
reduced compared to WT. Conversely, in mice harboring a point
mutation in α4∗ nAChRs that renders receptors hypersensitive
to agonist [the Leu9′Ala α4 knock-in line (Tapper et al., 2004;
Fonck et al., 2005)], a sub-threshold dose of ethanol is sufficient
to condition a place preference indicating that α4∗ nAChRs mod-
ulate alcohol reward (Liu et al., 2013). Consistent with behavioral
data, ethanol activation of VTA DAergic neurons is reduced in
α4 KO midbrain slices and more robust in Leu9′Ala midbrain
slices. Finally, ethanol potentiates the response to bath applied
ACh in midbrain DAergic neurons and potentiation is abolished
in DAergic neurons of α4 KO mice (Liu et al., 2013). Together,
these data indicate that α4∗ nAChRs in VTA DAergic neurons may
contribute to ethanol activation of the VTA and alcohol reward
although additional experiments are needed to confirm that the
observed difference in ethanol-mediated behaviors in these mouse
models are due to α4∗ nAChRs in the VTA as these receptors are
expressed throughout the CNS (Baddick and Marks, 2011).

NICOTINE AND ALCOHOL INTERACTIONS: IN VIVO STUDIES
Human studies have shown that individuals dependent on alco-
hol have higher rates of nicotine dependence (Room, 2004), and
smokers tend to consume more ethanol than non-smoking alco-
hol users (York and Hirsch, 1995). Unlike the majority of clinical
studies, nicotine administration can either increase ethanol intake
(Potthoff et al., 1983; Blomqvist et al., 1996; Smith et al., 1999;
Le et al., 2000; Clark et al., 2001; Ericson et al., 2003), or decrease
ethanol intake (Nadal et al., 1998; Dyr et al., 1999; Sharpe and
Samson, 2002) in rats. These conflicting results have led to a com-
plex and interesting questions: under what conditions (i.e., time
delay between nicotine and ethanol, dose of nicotine, length of
ethanol presentation, acute versus chronic nicotine/ethanol etc.)
does nicotine increase ethanol intake, and what conditions cause
a decrease in ethanol intake?

Blomqvist et al. (1996) demonstrated that daily nicotine during
ethanol deprivation and ethanol reinstatement increases ethanol
intake and preference in rats shown to have a medium baseline
preference (25–65%) for ethanol over water. Similarly, Le et al.
(2003) demonstrated that rats increased lever presses for ethanol
during the course of daily nicotine injection paired 15 min prior
to an operant session. These data are in agreement with various
other experiments in which nicotine was given either constantly
or repeatedly (Potthoff et al., 1983; Smith et al., 1999; Ericson
et al., 2000; Olausson et al., 2001). In rats, nicotine can also
reinstate alcohol seeking after extinction and increase ethanol self-
administration when administered during an ethanol deprivation
period (Lopez-Moreno et al., 2004). Interestingly, rats given nico-
tine only during the relapse period, once self-administration has
resumed after a deprivation period, consume less ethanol, and
rats given nicotine during both abstinence and relapse increased
ethanol intake compared to control (Alen et al., 2009).

In contrast, Sharpe and Samson demonstrated that ethanol
intake and lever pressing during operant ethanol self-
administration are both decreased after a high dose of nicotine
(0.7 mg/kg, subcutaneous injection (s.c.), expressed as free base
nicotine) 30 min prior to ethanol self-administration, and with
a lower dose of nicotine (0.35 mg/kg, s.c.). While locomotor

depression by nicotine could potentially confound the interpre-
tation of decreased ethanol self-administration, this is unlikely as
nicotine injections did not decrease sucrose self-administration.
Thus, Sharpe and Samson (2002) propose that nicotine could be
acting as a reinforcer of ethanol, decreasing the amount of ethanol
necessary to achieve satiety. This is in agreement with other stud-
ies in which nicotine is administered either immediately prior to,
or within 30 min of, ethanol presentation or self-administration
(Nadal et al., 1998; Damaj, 2001).

To reconcile differences in nicotine effects on ethanol consump-
tion and self-administration, Hauser et al. demonstrated that acute
nicotine administration affects ethanol seeking and relapse in a
time-dependent manner. Nicotine injection immediately prior to
an ethanol operant self-administration session in ethanol prefer-
ring rats elicits reduced responding for ethanol compared to a
saline injection; whereas nicotine exposure 4 h prior will increase
responses (Hauser et al., 2012). These data indicate that acute nico-
tine may initially act as a substitute for ethanol at the immediate
time-point causing a reduction in craving for ethanol and, at the
later time-point, nicotine may lead to desensitization of nAChRs
in the brain, enhancing ethanol seeking.

As in rats, acute nicotine immediately prior to presentation of
ethanol in the DID paradigm reduces consumption in mice (Hen-
drickson et al., 2009); whereas chronic nicotine treatment increases
consumption (Sajja and Rahman, 2012). The reduction of ethanol
consumption is mediated by nAChRs containing the α4 subunit:
nicotine fails to reduce consumption in α4 KO mice; whereas acute
sub-threshold nicotine doses are sufficient to reduce consumption
in Leu9′Ala mice (Hendrickson et al., 2011). The effect of acute
nicotine activates the posterior VTA as measured by increased c-
Fos in mouse VTA DAergic neurons while an additional injection
of ethanol does not further activate these neurons, consistent with
nicotine substituting for ethanol during this treatment schedule
(Hendrickson et al., 2009).

The mechanistic basis of chronic nicotine on ethanol con-
sumption is unclear. However, nicotine potentiates the response
to ethanol in VTA DAergic neurons (Clark and Little, 2004) and
repeated nicotine infusion into the posterior VTA increases the
stimulatory effects of ethanol (Ding et al., 2012). These data
indicate that chronic nicotine treatment may actually increase
the reinforcing/rewarding properties of alcohol. Interestingly,
chronic nicotine upregulates midbrain nAChRs which may lead
to increased DAergic neuron activation by ethanol (Nashmi et al.,
2007).

NEURONAL nAChR LIGANDS FOR REDUCING ETHANOL
CONSUMPTION
While several areas of alcoholism research exist, the end goal of
the majority of research is to identify new and improved treat-
ment options for those suffering from alcoholism. Currently, there
are three FDA approved medications for treating alcoholism. The
first, disulfiram, was approved in 1954, and is classified as an anti-
relapse medication (Christensen et al., 1991). It is an acetaldehyde
dehydrogenase inhibitor, which after drinking alcohol allows the
buildup of acetaldehyde in the blood, causing symptoms includ-
ing headache, nausea, vomiting, weakness, mental confusion, or
anxiety (Christensen et al., 1991). However, in recent years, many
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physicians have stopped prescribing this drug because of the severe
symptoms it causes and the fact that if a patient wished to drink
again, they could simply not take their medication. Naltrexone,
available since 1994, is a competitive opioid receptor antagonist
that works by decreasing the euphoric effects produced by alcohol.
It is considered to be an anti-relapsing drug because it decreases
heavy drinking in patients with alcoholism and prevents relapse to
heaving drinking (O’Malley et al., 1992; Volpicelli et al., 1992). The
third drug, acamprosate, is a partial agonist of NMDA glutamate
receptors and an antagonist of metabotropic glutamate receptors
and is thought to act as an anti-craving medication by inhibit-
ing glutamate signaling (Mason, 2003; Mason et al., 2006). While
European studies have reported modest benefits with acamprosate,
these studies have not been reproducible in the US (Pettinati et al.,
2006).

Unfortunately, while these medications have been effective for
some, only 20–30% of treated patients respond to the anti-craving
and anti-relapsing compounds (Spanagel, 2009). Interestingly,
new studies have shown that people with different genetic profiles
may drink for different reasons, and also that they may respond
better to one type of medication versus another. For example,
populations with a specific type of mu opioid receptor respond to
naltrexone better than others, and this group has been described as
“feel good drinkers”(Oslin et al., 2006; Anton et al., 2008). Another
population of alcoholics report that they drink to relieve feelings
of stress and anxiety (Kuehn, 2009) for which new medications are
currently being tested (George et al., 2008). This large variability
in patient response is a driving force in identifying new molecular
targets for improved pharmacotherapeutic drugs. Consequently,
the main focus of alcoholism treatments has been to restore the
balance to the different biochemical pathways in the brain that are
disrupted during alcohol dependence.

Varenicline, an α4β2 partial agonist clinically approved as a
smoking cessation therapeutic (Coe et al., 2005; Gonzales et al.,
2006; Jorenby et al., 2006; Tonstad et al., 2006; Steensland et al.,
2007),can reduce ethanol intake,ethanol seeking,and cue-induced
ethanol reinstatement in rats (Steensland et al., 2007; Wouda et al.,
2011) and ethanol consumption in mice (Hendrickson et al., 2010;
Kamens et al., 2010; Santos et al., 2012). In addition, varenicline
can also reduce the enhancing effect of chronic nicotine on ethanol
self-administration in rats (Bito-Onon et al., 2011). Coupled with
clinical data indicating that varenicline reduces ethanol consump-
tion in heavy drinking smokers (McKee et al., 2009; Fucito et al.,
2011; Mitchell et al., 2012), uncovering the mechanism of action
of varenicline could lead to more refined nAChR partial agonists
for the treatment of alcoholism. In mice, systemic injection of
lower doses of varenicline immediately prior to ethanol bottle
presentation reduces ethanol consumption in the DID paradigm
(Hendrickson et al., 2010). In addition, this effect of varenicline
is reduced in α4 KO mice and enhanced in mice that express α4∗

nAChR that are hypersensitive to agonist indicating that activation
of α4∗ nAChR may underlie varenicline effects on binge drinking.
However, while varenicline was designed to be selective for α4β2∗

nAChRs at low doses, at high concentrations, varenicline is also
a partial agonist at α6β2∗ nAChRs, a full agonist at α3β4 and α7
nAChRs, as well as at 5-HT3 receptors (Mihalak et al., 2006; Papke
et al., 2010; Lummis et al., 2011; Bordia et al., 2012), which may

also explain some of its effects on ethanol consumption especially
in response to high doses used to reduce ethanol preference and
seeking in most studies using the two-bottle choice 24 h access par-
adigm of ethanol consumption. Indeed, varenicline still reduces
ethanol consumption in β2 and α7 KO mice (Kamens et al., 2010).
Varenicline also reduces ethanol consumption in the DID para-
digm in α5 KO mice (Santos et al., 2012). Thus, the mechanism
of varenicline induced reduction in ethanol consumption and the
nAChR subtype responsible for this effect is still unclear. However,
acutely, varenicline reduces ethanol-mediated DA release in NAc of
rats, an effect that diminishes with repeated exposure of the partial
agonist (Ericson et al., 2009), consistent with varenicline reducing
the rewarding properties of ethanol. In contrast, a recent clinical
study found that varenicline potentiated aversion to ethanol in
social drinkers (Childs et al., 2012), suggesting the agonist may
reduce consumption through an anti-reward pathway.

In addition to varenicline, pre-clinical data are emerging
regarding other nAChR ligands that may prove effective in
reducing ethanol consumption. Sazetidine-A, an α4β2∗ nAChR-
selective “desensitizer” and partial agonist can reduces ethanol
consumption in rats (Rezvani et al., 2010). Lobeline, an antag-
onist with high affinity for α4β2∗ and α3β2∗ nAChRs reduces
ethanol consumption in mice in the DID and two-bottle choice
paradigm (Farook et al., 2009b). Cytisine, a partial agonist that
preferentially activates high affinity β2∗ nAChRs at low doses but
also is a full β4∗ nAChR agonist at high doses also reduces ethanol
consumption (Bell et al., 2009; Hendrickson et al., 2009; Sajja and
Rahman, 2011, 2012). Both lobeline and cytisine reduced ethanol-
mediated DA release in ventral striatum of mice consistent with
blocking of ethanol reward/reinforcement (Sajja et al., 2010). In
addition, lobeline and cytisine also reduce the increase in alco-
hol consumption that occurs with chronic nicotine exposure in
the DID paradigm (Sajja and Rahman, 2012). Finally, novel par-
tial agonists targeting α3β4∗ nAChRs reduce ethanol consumption
and seeking in rats (Chatterjee et al., 2011).

NEURONAL nAChR SUBUNIT GENES AND ALCOHOL: HUMAN
GENETIC ASSOCIATION STUDIES
There is growing evidence that suggests that common genes may
influence the development of alcohol and nicotine behaviors indi-
vidually as well as contribute to both disorders in humans (True
et al., 1999; Bierut et al., 2000; Madden and Heath, 2002). Using
twin studies, it was determined that identical twins are two times as
likely to be dependent on alcohol and/or nicotine if the other twin
is dependent, compared to fraternal twins (Heath et al., 1997).

Recent genome wide association studies have identified sev-
eral polymorphisms within genetic loci that includes the nAChR
subunit genes CHRNA5/A3/B4 (which encode the nAChR α5,
α3, β4 subunit, respectively), that are associated with nicotine
dependence, COPD, and lung cancer (Amos et al., 2008; Berrettini
et al., 2008; Bierut et al., 2008; Hung et al., 2008; Saccone et al.,
2010). Interestingly, genetic variation in these genes has also been
associated with age of initiation of smoking and alcohol use and
level of response of alcohol use (Joslyn et al., 2008; Schlaepfer
et al., 2008). Two SNPs associated with nicotine dependence and
lung cancer have been found to also be associated with a low level
of response to alcohol, a phenotype considered a risk factor for
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likelihood of developing an AUD (Joslyn et al., 2008). Thus, com-
mon SNPs may confer susceptibility to both nicotine dependence
and alcoholism. In addition, genetic variation in CHRNA5, dis-
tinct from those associated with nicotine dependence, are also
associated with alcohol dependence (Wang et al., 2009). The
mechanistic bases for how polymorphisms in CHRNA5/A3/B4
modulate nicotine and alcohol phenotypes are unclear although
distinct SNPs in CHRNA5 have been shown to affect α4β2 nAChR
function in vitro and mRNA expression in human brain (Bierut
et al., 2008; Wang et al., 2009). It is also unclear if genetic vari-
ation in CHRNA5/A3/B4 is specific for modulation of nicotine
and alcohol dependence as SNPs are also associated with cocaine
and opioid dependence, as well as substance use initiation (Grucza
et al., 2008; Sherva et al., 2010; Lubke et al., 2012; but see Chen
et al., 2012). Thus, SNPs in this region may affect aspects of addic-
tion common to all drugs of abuse, such as reward, tolerance,
or withdrawal. Alternatively, CHRNA5/A3/B4 may play a role in
general risk taking behavior or impulsivity which may significantly
predispose one to drug addiction (Stephens et al., 2012).

Additional genes encoding nAChR subunits have been linked
to alcohol phenotype. SNPs in CHRNB2, have been associ-
ated with the subjective responses to both alcohol and nicotine
(Ehringer et al., 2007); whereas only a modest association of alco-
hol responses with CHRNA4 SNPs were reported. An additional
study identified a CHRNA4 SNP associated with alcoholism in a
small Korean population (Kim et al., 2004). Finally, SNPs within
CHRNA6 and CHRNB3 are associated with heavy alcohol con-
sumption (Hoft et al., 2009; Landgren et al., 2009), as well as
smoking behavior (Thorgeirsson et al., 2010).

Together these human genetic studies indicate that heritable
polymorphisms within nAChR subunit genes may predispose dis-
tinct populations to increased risk for AUDs and, perhaps nicotine
and alcohol co-dependence.

FUTURE DIRECTIONS
Emerging evidence indicates that SNPs within genes encoding
nAChR subunits are associated with alcohol dependence pheno-
types. Additional research is needed to understand how SNPs in
these subunits modulate the effects of ethanol on nAChRs directly
and in animal models of ethanol dependence. It will also be
critical to expand the focus of nAChRs and ethanol effects on
circuits outside of the mesocorticolimbic pathway. Indeed, recent
data indicate that nicotine intake is controlled by the habenulo-
peduncular axis. This circuit consists of a small, epithalamic struc-
ture, the habenula (Hb) which can be divided into medial (MH)
and lateral (LH) sub-regions (Hikosaka, 2010). The Hb projects

to its target brain regions through a conspicuous bundle of axons
that make up the fasciculus retroflexus. The LH projects to the
rostromedial tegmental nucleus that is involved in the modulation
of DA release from the susbstantia nigra pars compacta and VTA
(Kaufling et al., 2009; Bromberg-Martin et al., 2010a,b; Balcita-
Pedicino et al., 2011; Hong et al., 2011; Lecca et al., 2011). The
MH projects to the interpeduncular nucleus (IPN) which, in turn,
projects to the median and dorsal raphe nuclei in addition to other
brain regions (Figure 2A) (Morley, 1986). Recent data indicate
that expression of nAChRs containing the α5 and/or β4 subunits
within the MH control nicotine intake such that genetic deletion
of α5 nAChRs increases acute intake; whereas overexpression of
the β4 nAChR subunit reduces intake and increases sensitivity to
nicotine’s aversive properties (Fowler et al., 2011; Frahm et al.,
2011). Thus, while the mesocorticolimbic pathway confers acute
nicotine reward/reinforcement, the MH-IPN pathway may signal
nicotine aversion (but see Laviolette et al., 2008). In addition, the
Hb-IPN is a critical circuit for the expression of physical signs
of nicotine withdrawal (Salas et al., 2009). Because (1) SNPs in
nAChR subunit genes CHRNA3/A5/B4 are associated with alco-
hol dependence phenotypes, (2) these genes are robustly expressed
in the Hb-IPN circuitry, and (3) α3β4 ligands modulate ethanol
consumption in rodent models, future studies should explore the
role of MH-IPN nAChRs in ethanol consumption and withdrawal
behaviors.

SUMMARY
Neuronal nAChR represent novel therapeutic targets to not only
treat nicotine dependence, but also alcohol dependence. The rein-
forcing properties of acute ethanol, are mediated, in part, by α4∗

nAChRs, likely expressed in DAergic neurons of the mesocorticol-
imbic pathway. Ethanol potentiates the response of high affinity
heteromeric nAChRs to both ACh and nicotine. Thus, if ethanol
increases ACh release in the VTA, DAergic neurons will be acti-
vated via nAChRs and ethanol will further potentiate this effect
(Figure 2B). Chronic nicotine may upregulate these receptors
and increase the reinforcing properties of ethanol. Future studies
should focus on identifying additional nAChR subunits critical for
ethanol effects within and outside the mesocorticolimbic circuitry.
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