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ABSTRACT
Background and purpose Recanalization strategies
mediated by intra-arterial fibrinolytic therapy in
combination with mechanical clot disruption may be a
more effective treatment approach than either therapy
used alone. There are few preclinical animal models to
evaluate these strategies. Here we report on a model to
simultaneously evaluate both of these treatment
approaches.
Methods Allogeneic clot was injected through the 6 F
guide catheter after creating >50% luminal stenosis of
the common carotid arteries of New Zealand White
rabbits. The stenosis was released after 1 h, allowing
sufficient time for clot–vessel wall interaction. Occlusion
was confirmed and each vessel was assigned to receive
either balloon angioplasty alone, intra-arterial tissue
plasminogen activator (tPA, Alteplase, Genentech,
San Francisco, California, USA), tPA delivery through
prototype balloon infusion wire (NIT Therapeutics,
Pittsburgh, Pennsylvania, USA), partial stent deployment
or partial stent deployment with locally delivered tPA. The
negative control received no treatment.
Results In vivo revascularization Thrombolysis in
Cerebral Infarction (TICI) score revealed that the balloon
infusion wire achieved a stable and higher
revascularization score of TICI 2B, with a lower dose of
tPA in comparison with other treatment strategies. All
treatment strategies resulted in endothelial denudation
and exposure of the internal elastic lamina.
Conclusions The proposed animal model permits
reliable and consistent thromboembolic occlusion of the
target vasculature and allows for an assessment of both
pharmacologic and mechanical revascularization
strategies for acute ischemic stroke.

INTRODUCTION
Current treatment strategies employed for acute
ischemic stroke remain pharmacologic thromboly-
sis and mechanical thrombectomy. Intravenous
thrombolytic tissue plasminogen activator (tPA,
Alteplase, Genentech, San Francisco, California,
USA) remains the only Food and Drug
Administration approved therapy for acute ische-
mic stroke for the past 16 years,1 nevertheless its
use remains limited to only approximately 5% of
patients presenting with acute ischemic stroke in
the USA.2 3 Intra-arterial thrombolytic administra-
tion allows for localized delivery of a reduced drug
dose at a much higher concentration that may
help in more effective lysis of the clot burden.4

Multimodal treatment strategies involving more

aggressive endovascular mechanical clot disruption
such as angioplasty or stenting when used in con-
junction with even lower doses of intra-arterial
thrombolytics may help achieve earlier recanaliza-
tion and reduce the risk of hemorrhage that is
inherent with the use of larger doses of systemic
and local thrombolytic therapy alone.5–7

To test this hypothesis in vivo, we require a suit-
able animal model for evaluation of mechanical
clot disruption coupled with thrombolytic therapy.
The prerequisites of such a model involve:
(1) target vessel having a diameter similar to the
human middle cerebral artery; (2) methodology
that permits consistent vascular occlusion at a pre-
specified location; (3) ability to access the lesion
endovascularly; and (4) ability of recombinant tPA
to have a comparable fibrinolytic effect in the
animal species as seen in humans. We selected
the rabbit common carotid artery (CCA) for this
research as the mean dimensions of the rabbit
CCA are 2.5 mm and comparable with the human
middle cerebral artery. Rabbits are amendable to
6 F transfemoral catheter access and the efficacy of
tPA in this species is well studied.8 In this model,
we evaluated various combinations of mechanical
and pharmacologic revascularization strategies.

MATERIALS AND METHODS
All procedures were performed in accordance with
the protocol approved by our university’s
Institutional Animal Care and Use Committee.
Eleven New Zealand white rabbits (male, mean
weight 3.53 kg) were used for pharmacomechanical
recanalization in 22 vessels.

Clot preparation
Silicone tubing with an inner diameter of 3.2 mm
was rinsed with 70% alcohol followed by 0.9%
saline prior to use. Whole blood was collected from
an anaesthetized donor rabbit, and mixed with the
anticoagulant citrate dextrose solution in a 10 : 1
ratio. The blood/anticoagulant citrate dextrose
mixture and thrombin (2.5 NIH U/ml blood) were
injected into the silicone tubing simultaneously to
rapidly initiate clotting. The clotted material was
allowed to mature for 1 h prior to use. During
aging, shrinkage of the clot resulted in diameter
reduction from 3.2 mm to 2.7 mm. The clot was
cut to have a length of 10 mm for creation of the
vascular occlusion.
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Animal procedure
Anesthesia was induced by an intramuscular injection of keta-
mine (35 mg/kg), xylazine (5 mg/kg) and glycopyrrolate
(0.01 mg/kg), and maintained with mechanical ventilation of
oxygen with 1–2% isoflurane. Continuous monitoring of heart
rate, respiration, oxygen saturation level (pulse oximetry), end
tidal CO2 and temperature allowed real time assessment of the
physiologic status of the animal.

A 6 F haemostatic introducer was placed into the right
femoral artery using a modified Seldinger technique following a
cut-down. The introducer was secured in place with the distal
aspect of the femoral artery ligated. A 6 F catheter was
advanced over the guidewire under x-ray fluoroscopy (Phillips
FD20, Best, The Netherlands). Heparin (100 IU/kg) was deliv-
ered intravenously. The intervention was done under angio-
graphic guidance.

Both CCAs were exposed through a ventral midline neck
incision and a 3-0 silk suture was placed bilaterally to create
>50% luminal stenosis 2–3 cm distal to the arterial origin. A
clot fragment (2.7 mm diameter and 10 mm length) was
injected into each CCA. The clot was delivered with a custom
syringe having an enlarged outlet to prevent clot fragmentation
and the syringe was connected directly to the catheter. Prior to
initiating the study, the clot was injected through the catheter
into a Petri dish to ensure that the clot remained intact and
preserved its original dimensions. Using this method, we found
the maximum diameter of the elastic clot that could be deliv-
ered through the catheter without fragmentation was 2.7 mm.
After injecting the clot into the CCA, diagnostic angiography
was performed to confirm the occlusion. Approximately 1 h
post occlusion, allowing sufficient time for vessel lumen–clot
interaction, the external sutures inducing the luminal stenosis
were released (figure 1). The treatment strategies were evalu-
ated as described in the section below.

The ability of the treatment modality to revascularize the
vessel was evaluated at the end of the procedure by assigning a
Thrombolysis in Cerebral Infarction (TICI) score based on the
final vessel angiogram.9

Revascularization strategies evaluated
Treatment strategies evaluated were either purely mechanical,
purely pharmacologic thrombolysis or a combination of the
two treatment strategies.

Purely mechanical treatment was evaluated using a compliant
Hyperglide 4×20 mm balloon (eV3 Neurovascular Inc, Irvine,
California, USA, n=3). Purely pharmacologic thrombolysis

(n=4) was evaluated by selective intra-arterial tPA delivery at
the occlusion site.

A novel treatment evaluated was the balloon infusion wire
(NeuroInterventional Therapeutics Inc, Pittsburgh, Pennsylvania,
USA, n=3), an investigational device which consists of a wire
body and a distal balloon. The balloon is inflated by injecting the
diagnostic or therapeutic fluid agent which then weeps through
the balloon orifices and thus can be used to evaluate combined
mechanical and pharmacologic tPA medicated thrombolytic
approaches.

Partial stent deployment entailed the temporary unconstrain-
ing of the self-expanding closed cell design stent (Enterprize
VRD; 4.5 mm×37 mm Codman and Shurtleff, Raynham,
Massachusetts, USA, n=5) within the clot to create a tempor-
ary bypass for 5 min to test the hypothesis that temporary
flow restoration and clot maceration against the vessel wall
may result in autolysis.

A further evaluation of the effect of partial stent deployment
coupled with site directed intra-arterial tPA was also made
(n=2) to evaluate whether mechanically exposing a larger
surface area of the clot to tPA results in a more expedited revas-
cularization. The control group (n=4) consisted of the vessel
with a confirmed occlusion but received no treatment.

Animal sacrifice and tissue harvest
At the end of the procedure the animals were injected with
500 IU/kg of heparin. Following euthanasia by injecting
sodium pentobarbital (150 mg/kg), normal saline was perfused
through the ascending aorta via a catheter until the effluent
from the external jugular vein ran clear. This was followed by
perfusion fixation using 4% paraformaldehyde. Both CCAs
were carefully harvested. The segment of the vessel that
received treatment was identified by carefully matching with
the angiography.

Histological analysis
The segment was further divided into a proximal segment
which was assigned for histology assessment and processed to
obtain 5–7 μm paraffin sections and stained with hematoxylin–
eosin. The sections were imaged at 10× and 20× magnification
with an Olympus AX-70 microscope (Olympus America,
Center Valley, Pennsylvania, USA).

Scanning electron microscopy
The distal segment was immersion fixed overnight in 2.5%
glutaraldehyde, washed in phosphate buffered saline and

Figure 1 Rabbit thromboembolic
occlusion model. (A) Angiogram
depicting the bilateral stenosis of the
common carotid artery prior to clot
injection (arrows). (B) Digital subtraction
angiography (DSA) post clot injection
(arrow) reveals an occlusion. After
allowing 45 min for vessel–clot
interaction, the external sutures were
released. (C) Post suture removal DSA
reveals a stable occlusion and no distal
clot migration.
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dehydrated through a graded series of ethanol concentrations to
100% and then critical point dried in carbon dioxide. The arter-
ial samples were mounted on to aluminum stubs, cut longitu-
dinally to expose the luminal surface, coated with silver
conductive paste, sputter coated with gold/palladium and
examined with an autoscan scanning electron microscopy
(SEM) (ETEC Corp, Hayward, California, USA) at 10 KV accel-
erating voltage. Serial SEM images were acquired at a magnifi-
cation of 500×, 2500× and 5000× for each half of the
longitudinal segment.

RESULTS
Evaluation of treatment efficacy
We successfully created thromboembolic occlusion with TICI 0
flow at the predetermined location within the target vessel.
Distal migration of the clot prior to treatment was observed in
one case (4.5%). In another case, there was spontaneous revas-
cularization of the control vessel, likely due to the systemic
effect of 4 mg tPA delivered to the contralateral artery.

Higher doses of intra-arterial tPA (4 mg) were required when
thrombolysis was used alone to achieve recanalization in our
animal model. The balloon infusion wire resulted in the most
consistent and a higher grade of recanalization (TICI 2B) with
2.75±1.08 mg tPA in comparison with balloon angioplasty,
partial stent deployment with and without tPA, or
intra-arterial tPA alone. The final revascularization score is pre-
sented in table 1 and a summary bar graph representation in
figure 2. Representative results of the device efficacy and safety
evaluations are presented in figure 3.

Safety of the treatment strategy
Evaluation of the histology and luminal SEM data revealed that
the endovascular damage caused by all treatment modalities
was similar, with endothelial cell denudation and exposure of
the internal elastic lamina. The damage was confined to the
operating area of the device; therefore, in the case of catheter
directed tPA, the vessel insult was confined to a small area.
Also, in a single case, angioplasty alone resulted in a focal
breach of the internal elastic lamina. A phenomenon described
as medial acellularity was observed sporadically with balloon
angioplasty (figure 4) and during operation of the balloon infu-
sion wire.10 It is described as medial smooth muscle cell death
due to balloon mediated arterial hyperdistension. This phenom-
enon is due to maximal transmission of the tensile stress by
balloon inflation to the smooth muscle cells which are firmly
attached to the matrix and may result in membrane disruption
and cell death.

DISCUSSION
A model system to simultaneously evaluate pharmacologic and
mechanical strategies has not been described previously in the
literature. Porcine extracranial circulation has been used exten-
sively to evaluate mechanical thrombectomy devices.11

However, the 10-fold resistance of porcine plasminogen to acti-
vation by recombinant tPA makes them unsuitable for the
evaluation of pharmacologic thrombolysis.12 13 Also, the
porcine vasculature is overly susceptible to vasospasm. With
the exception of the primates, rabbit fibrinolytic response is
closest to that of humans among animal species amenable to
endovascular approaches.14 The canine model has a weaker
fibrinolytic response to tPA and is also a much more expensive
model for these evaluations. In our proposed model, the surgi-
cal procedure involved is technically less challenging and the
vessels are easily accessible for explant and vascular safety ana-
lysis. Another advantage of this model is that the number of
animals used per study can be limited, since two device evalua-
tions can be carried out per animal, one in each CCA, as long
as the purely mechanical device or control evaluation precedes
the thrombolytic evaluation, so as not to confound the results
with systemic thrombolytic effect.

Also crucial for evaluation of thrombectomy devices are clin-
ically relevant emboli. Many of the previous models evaluating
thrombectomy devices have utilized clots prepared with
barium sulfate which are radiopaque. This helps in easy visual-
ization of the leading clot edge and is also useful to assess clot
engagement, retrieval and fragmentation.11 However, this clot
model is not ideal for thrombolysis studies. Also, studies char-
acterizing the mechanical properties of the clot have revealed
that the addition of barium sulfate results in reduction of clot
elasticity.15 Finally, the maximal firmness of the rabbit clots
with or without thrombin stimulation was found to be similar
to that of the human clots.16

Evaluation of the histomorphometric and luminal SEM data
reveals that the endovascular damage caused by the operation
of the balloon infusion wire, balloon angioplasty and partial
stent deployment was comparable with the damage caused by
conventional endovascular catheter and wire manipulation—
that is, endothelial cell denudation and exposure of the internal
elastic lamina—an acceptable level of vessel response.17–19

The strategy of using reconstrainable self-expanding stents
alone as temporary endovascular bypass, impaling the clot cir-
cumferentially between the stent interstices and the vessel
wall, immediately re-established a channel of flow within the

Table 1 Treatment performed and the final TICI revascularization
scores achieved for each arm of the study

Group Treatment N
tPA dose (mg)
(mean (SD))

TICI score (median
(range))

1 IA tPA only 4 3 (1.2) I (0–2A)
2 Angioplasty only 3 N/A I (0–2B)
3 Balloon infusion wire 3 2.75 (1.1) 2B (all cases 2B)
4 Partial stent deployment 5 N/A 0 (0–2A)
5 Partial stent deployment

and IA tPA
2 3 (1.4) 2A (0–2A)

6 Control 4 N/A 0 (0–2B)

IA, intra-arterial; N/A, not applicable; TICI, Thrombolysis in Cerebral Infarction; tPA, tissue
plasminogen activator.

Figure 2 Bar graph representation of treatment efficacy with final
Thrombolysis in Cerebral Infarction (TICI) scores post treatment. The
dose of tissue plasminogen activator (tPA) administered intra-arterially
is noted in the graph bars.
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occluded vessel for the duration the stent was deployed, as pre-
viously reported.20 However, shortly following resheathing of
the device, the vessel reoccluded, probably due to local platelet
aggregation. Also, partially unconstraining the stent, with site
directed delivery of tPA, produced inferior recanalization of a
median TICI 2A. Perhaps the limited recanalization resulted
from tPA being carried distally due to the temporary vascular
bypass providing modest systemic thrombolysis. Indeed, we
observed that a dose of 4 mg delivered intra-arterially may be
required to execute clot lysis in this model.

As with all preclinical models, this model system also has
some limitations. The device evaluation is performed in a
straight segment in the extracranial circulation. This does not
replicate the environment experienced by these devices in the
cerebral circulation where the vessels are more tortuous and his-
tologically distinct, lacking an external elastic lamina, scant
adventitia and also susceptible to significant vessel straighten-
ing as they are untethered to bone, muscle or fascia. Moreover,
a larger number of experiments would need to be conducted to
conclude the superiority of one treatment modality. Further,
this model only represents a large vessel occlusion and does not
lead to ischemic stroke where infarct volume and functional
outcomes would be valuable metrics for the benefit of the
treatment.

In conclusion, we have described a reliable in vivo model
system to allow for a controlled evaluation of the efficacy and
vascular safety of combined mechanical and pharmacological
therapies.
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