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Poly(A) RNA Codistribution with Microfilaments: 
Evaluation by In Situ Hybridization and 
Quantitative Digital Imaging Microscopy 
Krishan  L. Taneja,* Lawrence M. Lifshitz,* Fredric S. Fay,* and Robert H. Singer* 
Departments of* Cell Biology and * Physiology and the Biomedical Imaging Facility, University of Massachusetts Medical Center, 
Worcester, Massachusetts 01655 

Abstract. The distribution of poly(A) RNA has been 
visualized in single cells using high-resolution fluores- 
cent in situ hybridization. Digital imaging microscopy 
was used to quantitate the signal in various cellular 
compartments. Most of the poly(A) signal remained 
associated with the cellular filament systems after solu- 
bilization of membranes with Triton, dissociation of 
ribosomes with puromycin, and digestion of non- 
poly(A) RNA with ribonuclease A and T~. The actin 
filaments were shown to be the predominant cellular 
structural elements associating with the poly(A) be- 
cause low doses of cytochalasin released about two- 

thirds of the poly(A). An approach to assess the ex- 
tent of colocalization of two images was devised using 
in situ hybridization to poly(A) in combination with 
probes for ribosomes, membranes, or F-actin. Digital 
imaging microscopy showed that most poly(A) spa- 
tially distributes most significantly with ribosomes, 
slightly less with F-actin, and least of all with mem- 
branes. The results suggest a mechanism for anchoring 
(and perhaps moving) much of the cellular mRNA 
utilizing the interaction between actin filaments and 
poly(A). 

T 
HE nucleic acids in the cell are organized in a spatially 
coherent manner. Evidence suggests that the DNA is 
nonrandomly positioned within the nucleus (Manu- 

elidis et al., 1982; Lawrence et al., 1988), that the RNA 
transcribed from genes does not diffuse but is contained spa- 
tially along "tracks" which proceed toward the nuclear enve- 
lope (Lawrence et al., 1989). Once out of the nucleus, 
mRNA can be spatially organized within different cellular 
regions (Lawrence and Singer, 1986). 

By what mechanisms might specific nucleic acid informa- 
tion be transduced into spatial information? Clearly, to main- 
tain spatial order of the nucleic acids, they must be trans- 
ported correctly throughout the cell and random diffusion 
minimized. Structural elements of the cell most likely an- 
chor these molecules. Evidence over the last few decades in- 
dicates that mRNA is not free to diffuse within the cytoplasm 
but is bound to cellular structural elements ("the cytoskele- 
ton") (Lenk et al., 1977). Components of the cytoskeleton 
implicated in the binding of mRNA or ribosomes (reviewed 
in Nielson et al., 1983; Hesketh et al., 1991) include micro- 
filaments (Howe and Hershey, 1984; Ramaekers et al., 1983; 
Toh et al., 1980; Adams et al., 1983; Singer et al., 1989), 
intermediate filaments (Zumbe et al., 1982), and microtra- 
beculae (Wolosewick and Porter, 1979). The structural site 
to which the mRNA is tethered is unknown. 

Address all correspondence to Robert H. Singer. 

Furthermore, the site on the mRNA which interacts with 
cytoskeletal elements is likewise unknown. A good candi- 
date for a direct attachment site would be the poly(A) which 
is present at the 3' end of almost all eukaryotic mRNA (Shei- 
ness and Darnell, 1973; Karpetsky et al., 1979; Brawerman, 
1981). An alternate possibility is that some, or most, mRNA 
could be associated with the cytoskeleton through nascent 
protein chains (Isaacs and Fulton, 1987), or ribosomes 
(Howe and Hershey, 1984). 

Hence, very little is known about the structural basis of 
cell-nucleic acid interactions. Almost all work assessing 
mRNA-cytoskeletal interactions has been based on cell 
fractionation and subsequent biochemical analysis, but the 
spatial distribution of the population of mRNAs and their as- 
sociation with specific filamentous proteins has never been 
visualized within single cells. To determine the spatial rela- 
tionship between mRNA and cell structure we have colocal- 
ized poly(A) sequences on mRNA with cytoskeletal ilia- 
merits using immunofluorescence to detect a hybridized, 
biotinated poly dT probe simultaneously with cytoskeletal 
proteins. Most importantly, quantitation of poly(A) codistri- 
bution with various cellular compartments was done using 
digital imaging microscopy. This approach provided the 
means to assess the amount of poly(A) associated with the 
nucleus, ribosomes, membranes, or various filament sys- 
tems, and the significance of the codistribution. Further- 
more, it allowed quantitation of the effects of treatments to 
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disrupt protein synthesis or filament systems, or of ribo- 
nuclease treatment on the retention of poly(A) within the 
cell. We have found that poly(A) RNA is distributed nonuni- 
formly throughout the cell sequestered within various sub- 
compartments of the nucleus and the cytoplasm. We provide 
evidence that much of the cytoplasmic poly(A) may be either 
directly or indirectly attached to actin filaments. This sug- 
gests a mechanism by which mRNA can be spatially posi- 
tioned within the cell. 

Materials and Methods 

Cell Culture 
Human diploid fibroblast cells were plated at a density of 105 cells per 
100-mm 2 dish containing autoclaved gelatin-coated coverslips in Dul- 
becc~s Minimal Essential Medium (DMEM), low glucose supplemented 
with 10% FBS. To fix cells, the coverslips were washed in I-IBSS and im- 
mersed in 4% paraformaldehyde in PBS (2.7 mM KC1, 1.5 mM KH2PO,, 
0.137 M NaCI, and 8 mM Na2HPO4, pH 7.5) containing 5 mM MgCl2 for 
15 min at room temperature. After fixation cells were washed twice with 
70% ethanol and stored in 70% ethanol at 4~ 

Preparation and Labeling of Oligonucleotide Probe 
Poly dT (55 bases) and poly dA (55 bases) were synthesized and purified 
by PAGE. For 3'-end labeling, probe (25 pM) in 50/~1 was incubated with 
25/~M of bio-16-dUTP (BMB), 140 mM potassium cacodylate, 30 mM 
Tris-HCl, pH 7.6, 1 mM CoC12, 0.1 mM DTT, and 100 U terminal trans- 
ferase (BMB) at 37~ for 60 rain. For Y-end labeling, 5 pM of probe was 
incubated at 370C for 60 rain with 100/~Ci of 32p~-ATP (>3,000 Ci/mM) 
(Amersham Corp., Arlington Heights, IL) in 20/~1 volume containing 25 
mM MgCI2, 25 mM B-mereaptoethanol, 175 mM Tris-HC1, pH 7.5, and 
20 U of T4 polynucleotide kinase (Amersham Corp.). The reaction prod- 
ucts were purified by gel filtration on 1 x 20-cm G-50 sephadex column. 

Preparation of Nick-Translated Probe 
A pBR322 plasmid containing chick B-actin eDNA (Cleveland et al., 1980) 
and one containing chick c~-tubulin eDNA (Cleveland et al., 1980; Valen- 
zuela et ai., 1981) were mixed in equal amounts, DNA (0.5/~g) was nick 
translated in 30 #1 containing 50 nun Tris, pH 7.2:10 mM MgSO4; 0.1 mm 
DTT; 60/~m each of dATP, dTTP, dGTP; 100 pM of o~p 32 dCTP (800 
Ci/mmole); DNAse 0.2/~g and DNA polymerase 10 U for 2 h at 16~ 
Nick-translated product was purified over sephadex G-50 column, the 
specific activity was '~2 x 10 s cpm//~g. 

Hybridization and Detection 
5 ng of the probe was dried with E. Coil tRNA (10/zg) and sonicated salmon 
sperm DNA (10/zg) and then suspended in 10/zl of 30% formamide con- 
raining 20 mM sodium phosphate, pH 7.0. Before hybridization, the probe 
was fifixed with 10/~1 of hybridization buffer with a final concentration of 
the probe 250 ng/ml in 15% formamide, 10% dextran sulfate, 2x  SSC 
(.3 M NaC1, .03 M citric acid, pH 7.0), 0.2% BSA, 10 mM sodium phos- 
phate, pH 7.0, and .5 mg/ml each of E. Coil tRNA and salmon sperm DNA. 
Fixed cells were rehydrated in PBS plus 5 mM MgC12 for 10 min and pre- 
hybridized in 15% formamide, 2x  SSC and 10 mM sodium phosphate, pH 
7.0, at room temperature for 10 rain. The coverslips were placed cell side 
down on parafilm containing 20/zl of hybridization mix and incubated at 
370C for 2-3 h in a humidified incubator. After hybridization eoverslips 
were washed successively 30 rain each with 15% formamide, 2x  SSC, 
10 mM sodium phosphate, pH 7.0, at 370C; twice with 15% formamide, 
1• SSC, 10 mM sodium phosphate, pH 7.0, at 37~ and twice with 1• 
SSC at room temperature. After hybridization and washing, the coverslips 
were rinsed in 4• SSC, 0.01% Triton for 5 rain, then were incubated with 
Texas red-avidin (2.5/~g/ml) or with fluorescein-avidin (10/Lg/ral) in 4x  
SSC, 1% BSA for 45 rain at room temperature. The coverslips were washed 
twice with 4x  SSC, 0.01% Triton for 10 rain each at room temperature and 
once with PBS for 5 min at room temperature. The coverslips were mounted 
on the slides in DABCO (2.3 mg of DABCO in 50% glycerol in PBS) con- 
taining DAPI or propidium iodide. 

Triton Extraction 
The coverslips containing cells were washed with HBSS to remove the 
medium and with cold CSK buffer (0.3 M sucrose, 0.1 M KCI, 5 mM 
MgCI2, 10 mM Pipes, pH 6.9, 2 mM EGTA, 1.2 mM PMSE 2 mM 
vanadyl complex, 1/zg/ml leupeptin, and 1 #g/ml trypsin inhibitor). The 
cells were extracted with 0.5 % Triton in C SK at 4 ~ and washed twice with 
CSK buffer. After washing, cells were fixed in 4% paraformaldehyde in PBS 
containing 5 mM MgC12 for 15 min at room temperature. The coverslips 
were washed twice with, and stored in, 70% ethanol at 4~ 

Ribonuclease Treatment 
Paraformaldehyde fixed cells stored in 70% ethanol were rehydrated in 1 x 
PBS containing 5 mM MgCI2 for 10 min at room temperature and rinsed 
with RNase buffer (10 mM Tris-HC1, pH 7.5, 150 mM NaC1, 1.5 mM 
MgC12). The cells were then treated with RNase A (0.2 mg/ml), RNase Tl 
(0.2 mg/ml) in RNase buffer for a short time at room temperature. Under 
this condition the poly(A) region of mRNA is resistant to degradation by 
ribonuclease (Kish and Pederson, 1976; Kwan and Brawerman, 1972). For 
control experiments, cells were treated with RNase A (0.2 ~g/ml), RNase 
T1 (0.2 #g/ml), and RNase T2 (1,000 U/ml) for 30-60 rain at 37~ before 
hybridization. 

Drug Treatment 
For experiments requiring the release of ribosomes and protein synthesis 
inhibitors, cells were treated with puromyein (I00/~g/ml), NaF (10 mM), 
cycloheximide (5/~g/ml), and emetine (50 raM) for 30 rain at 370C and then 
fixed with paraformaldehyde. Parallel experiments were done by extracting 
the cell with 0.5% Triton in CSK buffer before fixation. For disrupting the 
specific filaments, cells were treated with colcemid 5 /~g/rni for 1 h to 
depolymerize the microtubules and for 3 h to collapse the vimentin fila- 
ments perinuclearly. The cells were treated with cytochaiasin D for 30 rain 
to depolymerise the actin filaments. After drug treatment, the cells were 
fixed in paraformaldehyde with and without Triton extraction. 

Immunofluorescence Labeling 
Cells were rinsed with PBS containing 0.1% Triton for 5 rain at room tem- 
perature and then with PBS for 2 min. In case of actin filaments, cells were 
incubated in FITC-phalloidin (Molecular Probes, Inc., Eugene, OR) 1:10 
diluted in PBS (10/~g/ml) at 37~ for 30 rain. After incubation cells were 
washed twice with PBS for 30 min each, and mounted on the slide in 
DABCO. For microtubules, actin filaments, and vimentin filament labeling, 
cells were incubated at 37~ for 30 rain either with mouse anti-tubulin 
(Amersham Corp.) diluted 1:50 in antibody dilution buffer (2x SSC, 2% 
goat serum, 1% BSA, and 0.05% Triton) or with mouse anti-actin (East- 
Acres Biologieals, Southbridge, MA) diluted 1:50 in antibody dilution 
buffer or with mouse anti-vimentin (Amersham Corp.) diluted 1:20 in anti- 
body dilution buffer. Cells were washed with 2 x SSC, 0.05 % Triton for 30 
rain at room temperature. After washing, cells were further incubated with 
FITC-conjngated goat anti-mouse IgG (Cappel Laboratories, Malvern, PA) 
1:50 diluted in antibody dilution buffer for 30 rain at 37~ After incubation 
cells were washed two times with 2x SSC, 0.05% Triton for 30 rain each, 
and once with PBS for 2 min at room temperature. The coverslips were 
mounted in DABCO. 

Membrane Labeling 
Paraformaldehyde-fixed cells were washed with 0.1 M sucrose and 0.1 M 
sodium cacodylate, pH 7.6, for 10 min at room temperature. Cells were 
stained with 2.0 ttg/rnl of DiOC6 (3, 3'-dihexyloxacarbocyanine iodide, a 
lypophilic cationic fluorescence dye selectively stained mitochondria and 
ER) for 30 s at room temperature (Terasaki et al., 1984). The coverslip was 
washed with 0.1 M sucrose and 0.1 M sodium cacodylate, pH 7.6, for 10 
min and then with PBS for 10 rain. The coverslip was mounted on the slide 
with DABCO and visualized under the microscope using a fluorescein filter. 

RNA Fractionation 
Equal amount of cells (3 • 105) were grown in 60-mm dishes and one dish 
was used for each time point either with or without puromycin (100/~g/ml). 
Cells were extracted with 350/~1 of Triton X-100 (0.5%) in CSK buffer 
(0.1 M KC1; 0.3 M sucrose; 5 mM MgC12; 2 mM EGTA; 10 mM Pipes, 
pH 6.9; 2 mM Vanadyl complex: 1/zg/ml leupeptin; 1/~g/ml trypsin inhibi- 
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tor; and 1.2 mM PMSF) for indicated time. The supernatant was collected 
in a microfuge tube containins 50 #1 of 10% SDS. Cells were further ex- 
tracted with 300 ttl ofRSB (Ornelles et al. 1986) Majik buffer (1% deoxy- 
cholate; 0.5% Tween 40; NaCI 10 mM; MgCh 3 mM; Tris 10 mM, pH 
7.4; PMSF 1.2 mM; Vanadyl complex 2 mM) with vigorous disruption of 
cytoskeleton. Nuclei were removed by centrifugmion at 5,000 g for 5 rain 
and the supernatant was collected in a tube containing 50/~1 of 10% SDS. 
The nuclear pellet was suspended in 300/d of RSB Majik buffer and 50 
~tl of 10% SDS, the solution was passed through a small bore three times 
to shear the nucleus. All the samples were extracted twice with phenol and 
chloroform and precipitated with 2 1/2 vols of ethanol. The RNA pellet was 
washed with ethanol and lyophilized. Triton supernatant and wash RNA 
were combined and the RNA was dissolved in 20 ~tl of Dietbyl pyrocar- 
bonate-treated water. RNA was transferred to slot blot and hybridized with 
iP2-1abeled poly dT (55-mer) probe. The blot was quantitated by beta-scan 
or densitometry. 

Digital Imaging Microscopy 

ImageAcqu/s/ffon. Images o f t  h e  distribution of fluorescence in single cells 
were obtained with a Zeiss IM-35 microscope (Carl Zeiss, Inc., Thorn- 
wood, NY) equipped for epifluorescence and modified to obtain images at 
various planes within the cell (Fay et al., 1989). Changes in position of the 
focus were effeeted by a computer-controlled stepper motor using feedback 
from an eddy current sensor that sensed the position of the nose piece rela- 
tive to the underside of the specimen stage. Images at each Rr.al plane were 
acquired with a thermoelectrically cooled CCD (model 220; Photometrics 
Inc., Tucson, AZ) using an RCA CCD chip whose output was digitized with 
an accuracy at 1:214 at 50 kHz. The duration of exposure of the specimen 
to the excitation source was by a computer-controlled shutter and wave- 
length selector system. Camera and microscope functions were controlled 
and coordinated by a PDP-I1/73 microcomputer and data acquired from 
the CCD was stored on hard disk and subsequently transferred via Ethernet 
to a Silicon Graphics 4D/GTX super work station for further processing. 
Data was archived on a Tahiti Erasable Optical Disk having 1 GB capacity. 
To be able to subsequently process images to remove out-of-focus informa- 
tion the 3-D optical transfer function of the microscope was determined 
each day by obtaining a series of optical sections of a .19-/tin diameter latex 
sphere in which fluorophors with appropriate emission characteristics were 
embedded (Molecular Probes, Inc.). Typically, images of the point fluores- 
cence source were obtained at .25-/J.m intervals and a total of 15 images 
above and below the point of optimum focus was obtained. In addition, for 
each experiment we recorded the dark current from the camera and a flat 
field to correct for nonuniformities in the transmission characteristics of the 
optics and CCD detector. 

Image Restoration, To obtain a more precise view of the distribution of 
molecules that were fluorescently labeled in individual cells, the series of 
optical sections taken of each cell was subject to further processing to cor- 
rect for the distortions introduced by the microscope and camera system. 
The process used is based upon rngularization theory and constrains the so- 
lution to the inverse problem to be nonnegative (i.e., regions devoid of 
fluorescent molecules can have values no less than zero). Basically, the 
problem is formulated to obtain an estimate of the molecular distribution 
inside the cell that represents a balance between finding the estimate that 
represents a least-squares best fit to the data and an estimate which is most 
smooth as defined by the L e norm. The extent to which the solution 
satisfies one or the other condition is determined by a weighting constant 
which for these studies was typically set at 10 4 representing the extent to 
which the smoothness criteria was used in the estimation of molecular dis- 
tribution within the cell. We have previously shown that the images of mo- 
lecular distribution obtained are relatively insensitive to the weighting con- 
stant used for the amount of smoothness used in the restoration algorithm. 
The algorithm has been described in considerable detail (Fay et al., 1989; 
Carrington et al., 1990). The estimate of molecular distribution is found 
using this theory in an interactive manner and typically satisfactory restora- 
tion took 50 iterations (further iterations produced no detectable improve- 
ment in the clarity within the image). 

Visualization and Analysis. Individual optical sections in the restored 
3-D data sets were inspected and analyzed using computer graphics soft- 
ware developed for the Silicon Graphics super work station which are now 
available for a PC from CSPI, Inc. (Billerica, Mass.). To assess the amount 
of label present in the nucleus and cytoplasm of any cell, individual optical 
sections were displayed and a mouse-driven cursor used to outline the cell 
perimeter as well as the perimeter of the nucleus. The computer then calcu- 
lated the sum of the intensities present within the cytoplasm and nucleus, 
respectively. The complete 3-D arrangement of molecules in the cell could 

be visualized by projecting the 3-D data set from different perspectives and 
then displaying those different perspective views sequentially and using ki- 
netic clues to assess the 3-D relations of fluorescent structures within the 
cell. Alternatively, two different perspective views of the 3-D data sets sepa- 
rated by 12" were displayed on the odd and even lines of a special video 
monitor having a Tecktronics Magic Window placed in front of the viewing 
screen to allow the investigator to simultaneously see with the left and right 
eye, two different views of the distribution of molecules within a cell. The 
binocular disparity in those two images provided the necessary cues for the 
investigator to assess the 3-D relations of molecules within the cell. In cells 
that were labeled for two different classes of molecules, using two different 
colored fluorophores we assessed the extent to which the two molecules 
were similarly distributed by calculating the percent of the fluorescent signal 
of one molecule that codistributed in 3-D with the other. This could be 
visualized by combining the two images and coding the information in each 
of the two image pairs in two different colors (typically red and green) and 
turning those vowels that contained both labeled molecules at levels above 
threshold white. Those voxels containing neither molecule were black. The 
codistribution as a function of threshold levels is described in more detail 
in the Appendix. 

Results 

The Distribution of Poly(A) RNA in Single Cells Using 
Conventional Microscopy 

T h e  in t r ace l lu la r  d i s t r ibu t ion  o f  po ly (A)  R N A  was revea led  
by  h i g h  re so lu t ion  f luorescence  in si tu hybr id i za t ion  us ing  a 
po ly  d T  p r o b e  (55 bases )  end - l abe l ed  wi th  b io t in  and  de-  
t ec ted  wi th  f luoresce in  o r  Texas r e d - c o n j u g a t e d  avidin .  Fig. 
1 A shows the  de tec t ion  o f  po ly (A)  R N A  wi th in  the  nuc leus  
a n d  cy top la sm.  No  s ignal  was de tec ted  w h e n  b io t iny la ted  
po ly  d A  (55 bases )  p r o b e  was used  o n  the  s ame  cel ls  (Fig. 
1 C ) ,  and  t r e a t m e n t  wi th  R N A s e s  A ,  Tt ,  a n d  T2 before  hy- 
b r id i za t i on  wi th  b io t iny la ted  po ly  d T  (Fig. 1 D)  c o n f i r m e d  
tha t  the  s ignal  in  Fig. 1 A resu l ted  f r o m  hyb r id i za t i on  to  
poly(A). 

The distribution of poly(A) was nonrandom throughout 
the cell. Discrete focal concentrations of poly(A) were seen 
in the nucleus and these observations have been described in 
more detail elsewhere (Carter et al., 1991). We concentrate 
here on the mRNA component of poly(A) in the cytoplasm. 
As could be seen in the phase-contrast micrograph (Fig. l 
B), the signal became weaker as the cytoplasm become less 
phase dense. Patchy areas in the cytoplasm could be seen 
where little poly(A) could be detected. These darker patches 
appear to be parts of the internal membrane system, and 
were verified by the use of the lipophilic, cationic fluorescent 
dye, DiOC~ (Terasaki et al., 1984) which filled these 
"holes" in the poly(A) signal. Fig. I, E and F shows the distri- 
bution of poly(A) compared with the membrane signal. 
Where poly(A) and membranes overlap, a yellow color is 
evident. The green represents the holes filled with mem- 
brane. 

Quantitation of Poly(A ) Retention After Drug 
Treatments and Triton Extraction 

T h e  a m o u n t  o f  f luorescen t  p r o b e  hyb r id i zed  to  an  ind iv idua l  
cel l  was quan t i t a t ed  us ing  digi ta l  microscopy.  T h e  2 -D 
p ro jec t ion  o f  e ach  cel l  was  m e a s u r e d  ( th is  is a good  approxi -  
mar ion  o f  v o l u m e  s ince  the  cel ls  were  ve ry  wel l  sp read  and  
f la t tened to  the  subs t ra te )  and  the  abso lu te  a m o u n t  o f  
po ly (A)  in the  nuc leus  and  c y t o p l a s m  in each  cel l  c o m p a r e d .  

To quan t i t a t e  the  po ly (A)  con t en t  o f  s ingle  cells,  we mea -  
su red  the  a m o u n t  o f  f luo rescence  o b t a i n e d  f r o m  each  cel l  

Taneja et al. Poly(A) RNA Codistribution with Microfilaments 1247 
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Figure L Detection and distribution of poly(A) RNA intracellularly. Human diploid fibroblast ceils were fixed and then hybridized with 
biotinylated oligonucleotide probes and the hybridized probe was detected with avidin conjugated to fluorescein or Texas red. (,4) Cells 
hybridized with poly dT-biodUTP probe detected with avidin-fluorescein; (B) phase-contrast picture of A; (C) cells hybridized with poly 
dA-biodUTP probe detected with avidin and Texas red cotmterstained with DAPI (double exposure); (D) same as A but the cells were 
treated with RNAse A, Tl, and T2 before hybridization and were also counterstained with DAPI (double exlxrSUre); (E) same as A but 
detected with Texas red avidin conjugate; and (F) ceils in E were further stained for membranes by lipophilic dye DiOC6. Bars: (A-D) 
16 #m; (E and F) 24 #m. 

using an interactive computer imaging system. Total fluores- 
cent light was captured and digitized using a cooled, slow 
scan CCD camera and a PDPll/73 computer (see Materials 
and Methods) and displayed on a graphics screen. Random 
ceils were chosen, the nucleus and cytoplasm outlined, and 
numerical values obtained for the total integrated fluores- 
cence intensity (IFI) of each cellular compartment. Mea- 

surements of single cells showed a linear relationship using 
a lost-squares fit when comparing cytoplasmic signal with 
cytoplasmic area (Fig. 2 A). This indicated that cytoplasmic 
concentrations of poly(A) (per unit area) remained mostly 
constant despite variations in cytoplasmic or nuclear size, or 
detergent treatment (see below). This suggests that the con- 
centration of poly(A) RNA within each cellular compart- 
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Figure 2. Quantitation of poly(A) and total RNA in cell populations 
and in single cells (1Yiton, puromycin, and RNAse treatment). (,4) 
Poly(A) content in the cytoplasm of individual ceils. Human 
diploid fibroblasts were hybridized with biotinylated poly dT probe 

ment is maintained constant by the cell. Biochemical studies 
have shown that the cell extracted with the nonionie deter- 
gent Triton X-100 solubilizes most of the cytosol but leaves 
the cytoskeletai framework intact (Leak et al., 1977; Jeffrey, 
1984; Pudney and Singer, 1979). To evaluate the association 
of poly(A) with this cellular structure, we used two means 
of quantitation. The first was quantitation of in situ hybrids 
in individual cells, using digital imaging microscopy and the 
second was a biochemical approach in which ceils were frac- 
tionated. To visualize the distribution of poly(A) RNA 
directly on the cytoskeleton of human diploid fibroblast 
cells, cells were extracted with 0.5% Triton and fixed in 
paraformaldehyde before hybridization. Statistically, little 
difference between the absolute amount of poly(A) RNA was 
detected when comparing the two cell populations. 

The retention of poly(A) RNA after extraction in Triton 
was then analyzed biochemicaUy as a function of time in ex- 
traction buffer (Fig. 2 B). RNA was extracted from the Tri- 
ton supernatant and the remainder of the cell. The isolated 
RNA was adsorbed to filters ("slot blot"), then hybridized 
with poly dT probe labeled with 32p-7-ATP, and the amount 
of hybridization determined directly using quantitation of the 
radioactivity directly (Betascope 603; Betagen, Waltham, 
MA) and densitometry. Each fraction was expressed as a 
percent of total poly(A) RNA in unextracted cells. •27% of 
the poly(A) dissociated from the cytoskeleton in the first 3 
min of extraction and little change was seen subsequently up 
to 10 rain. 

and detected with fluorescein-conjugated avidin. Random cells 
were chosen from 2-3 coverslips for control and Triton-extracted 
cells, and the images were taken by CCD camera. The area in pixels 
(each pixel equals 0.246 #m 2) and the amount of the signal in the 
nucleus and cytoplasm was isolated on an interactive graphics 
screen and processed (see Materials and Methods). Data was fit 
with the least-squares method. Control (o) (n = 22); Triton ex- 
traction ( �9 ) (n = 30). (B) Retention of poly(A) RNA in cell popula- 
tions: effects of Triton and puromyein treatment. Cells grown on 
plastic dishes (60 ram, 3 x 10 ~ cells) were washed and extracted 
with Triton. At various times the supernatant was removed and cells 
were scraped off the plate and separated into nucleus and cytoskele- 
ton. RNA isolated from each fraction was blotted onto a filter, 
probed with "y-p32ATP labeled-poly dT (55-mer). Radioactivity 
was detected using a betascope or optical density scanning. Non- 
soluble poly(A) (t3); nonsoluble poly(A) after treatment with 
puromycin for 30 rain before Triton extraction (-).  (C) Retention 
of poly(A) and total RNA in the cytoplasm of single cells: effects 
of Triton, puromycin, and RNAse. Control cells were treated as de- 
scfibed from left to right: (1) no treatment (n = 22); (2) Triton ex- 
tracted for 1 min (n = 30); (3) puromycin treatment for 30 rain be- 
fore Triton (n = 20); (4) RNAse A and T~ for 5 min at room 
temperature after Triton and fixation (n = 7); and (5) RNAse A, 
T~, and T2 for 30 n~n at 37~ after Triton and fixation (n = 3). 
Ceils were then subjected to in situ hybridization and the poly(A) 
RNA detected by avidin fluorescein and the total RNA (mostly 
ribosomal RNA) in the same cells by propidium iodide. The ceils 
were then analyzed by digital imaging microscopy and an interac- 
tive graphics program to measure the total integrated fluorescence 
intensity from the nucleus and the total cell. The cytoplasm (total 
cell minus nucleus) was plotted as an average value. The untreated 
ceils were set at 100% and all subsequent measurements expressed 
as a percent of control. Bar represents SEM. Poly(A) RNA (fluores- 
cein) (�9 total RNA (propidiurn iodide) (~). 
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Figure 3. Retention of poly(A) RNA and total RNA visualized in single cells: effect of Triton extraction, puromyein, and RNAse. (A, 
C, and E) Poly(A) RNA detected in Triton-extracted cells (1 rain) using poly dT-biodUTP hybridized and detected with avidin-fluorescein 
conjugate. (B, D, and F) Total RNA detected in the same cells with propidium iodide (DNA was also detected in the nucleus). (C and 
D) Puromyein treatment before Triton extraction and fixation. (E and F) RNAse A- and Tl-treated cells after Triton extraction and fixa- 
tion. Exposure times were (,4, C, and E) 45 and (B, D, and F) 15 s, both on Kodacolor Gold 400 ASA film (Eastman Kodak Co., Rochester, 
NY). Bar, 17 #m. 

A second fluorescent (red) label, the intercalating dye 
propidium iodide was used (Frankfurt, 1980) to detect 
double-stranded RNA most of which is ribosomal RNA. 
This provided an additional measure of the RNA content 
(red) independent of poly(A) (green) and also was indicative 
of the functional state of the mRNA. Polysomes still re- 

mained attached to the message through the Triton extrac- 
tion as indicated by the propidium iodide signal (Fig. 3 B). 
The histogram in Fig. 2 C (2) represents the percent loss of 
poly(A) RNA and total RNA (ribosomal RNA) with Triton 
extraction and represents a summary of Fig. 3, A and B. Tri- 
ton extraction for 1 min removed ,,o11% of the poly(A) sig- 
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nal, in agreement with results obtained using biochemical 
fractionation techniques (Fig. 2 B). However it removed half 
of the ribosomal signal suggesting that these represented 
ribosomes unassociated with mRNA. 

The role of ribosomes and nascent polypeptide chains in 
the association of poly(A) RNA to the cytoskeleton was in- 
vestigated by treating the cells with puromycin before cells 
were extracted with Triton and fixed with paraformaldehyde. 
The visualization of single cells is represented in Fig. 3, C 
and D and shows that poly(A) signal can be quantitatively 
and spatially separated from ribosomal signal. Dissociation 
of ribosomes and nascent chains from mRNA resulted in 
>50% of the poly(A) RNA remaining in the cell after in situ 
hybridization whereas the ribosomal RNA was reduced to 
<16% after in situ hybridization (Fig. 2 C, 3). This suggests 
that the remaining mRNA is associated directly with the 
cytoskeleton, rather than through the ribosomes or nascent 
chains. This also confirms the use of propidium iodide as a 
ribosome-specific stain. 

The loss of poly(A) RNA after in situ hybridization was 
,039 % more when cells were treated with puromycin before 
Triton extraction. When the retention of poly(A) was mea- 
sured by fractionation of the cell (Fig. 2 B), there was a loss 
of poly(A) RNA ,010-20% more with puromycin in the 
cytoplasm (we measured nuclear poly(A) RNA to be 19% 
of cellular poly(A) and this remained unaffected with 
puromycin). This loss ofpoly(A) RNA with puromycin treat- 
ment may be expected of messages which were attached 
via nascent chains; there is a possibility that these were 
membrane-associated messages. The higher retention of 
poly(A) using fractionation compared with hybridization to 
single cells may be in part due to the inability of the fixative 
to retain the poly(A) throughout the rigorous conditions of 
in situ hybridization. We have shown a loss of actin mRNA 
from extracted cells when paraformaldehyde was used as a 
fixative instead of glutaraldehyde (Singer et al., 1989). In 
this case where fixation in paraformaldehyde was necessary 
due to induced autofluorescence by glutaraldehyde, the in- 
creased loss of in situ hybridization over cell fractionation 
(,029 %) after puromycin treatment followed by 1 min of Tri- 
ton extraction may reflect the fact that ribosomes or nascent 
chains provide additional stability by cross-linking poly(A) 
RNA to the cytoskeleton. To minimize these losses, we de- 
veloped a less disruptive protocol, using 15% formamide 
and hybridization for only 1/2 h. This substantially reduced 
poly(A) loss and supported this interpretation (data not 
shown). 

Since the results with puromycin and Triton extraction in- 
dicated that the majority of poly(A) RNA was associated 
directly with the cytoskeleton, we wished to evaluate in 
more detail whether poly(A) or some other part of the 
mRNA molecule was involved in binding this subset of 
mRNA to the cytoskeleton. The distribution of poly(A) oc- 
casionally suggested association with fibrils (Fig. 3 A). Cells 
fixed on coverslips were treated with RNase A and T1 un- 
der conditions which digest the mRNA but to which the 
poly(A) is resistant (Kish and Pederson, 1976; Kwan and 
Braverman, 1972). If poly(A) is necessary for binding 
mRNA to the cytoskeleton, the relatively insensitive 
poly(A) region should remain attached to the cytoskeleton. 
However, if poly(A) is not involved in binding the rest of the 
mRNA to the cytoskeleton, digestion of non-poly(A) regions 

should release it. The results are shown in Fig. 3, E and E 
When poly(A) RNA was digested with RNase A and T~ un- 
der conditions which protect the poly(A) tail, 42% of the 
poly(A) remained attached to the Triton-extracted cytoskel- 
eton and the ribosomal RNA revealed by the propidium io- 
dide stain was reduced to background levels (,'ol.9%) (Fig. 
2 C, 4), as would be expected if the mRNAs to which poly- 
ribosomes attach is released. The digestion of the mRNA 
was further confirmed by Triton extracting the cells, treating 
with low levels of RNase A and T~, isolating the cytoskele- 
tal bound and released RNA and then blotting the fraction 
and then probing each fraction for poly(A) or actin mRNA 
and tubulin mRNA. Both mRNAs were digested from the 
cytoskeleton but poly(A) remained (Fig. 4). This result sug- 
gested that a significant fraction of the poly(A) was attached 
to the cytoskeleton, either directly or near enough to he 
fixed onto the filaments during fixation. Since the amount of 
poly(A) retained in puromycin-treated cells and RNase- 
treated cells is almost equal, it is possible that this is the same 
population ofpoly(A) RNA, and represents molecules which 
are anchored to the cytoskeleton directly or indirectly 
through the poly(A) tail. The released molecules may belong 
to the subset attached via nascent chains, some non-poly(A) 
part of the RNA, or molecules with weak affinity to the 
cytoskeleton. 

Association of Poly(A) RNA with Actin Filaments 

Because in situ hybridization revealed the spatial distribution 
of poly(A) RNA in single cells for the first time, codistribu- 
tion with other cellular structures can be investigated. To de- 
termine which of the cytoskeletal components is associated 
with poly(A) RNA, we used fluorescent in situ hybridization 
coincident with immunofluorescence for specific cytoskele- 
tal filaments in individual cells. Fig. 5, A, C, and E shows 
the hybridization pattern to poly(A) RNA (red) labeled with 
antibodies for vimentin, tubulin, and with phalloidin for ac- 
tin filaments (green), respectively. The detection of actin by 
phaUoidin stains predominantly stress fibers. Where the red 
and green colors are congruent, a combined yellow color 
was evident. The double label immunofluorescence demon- 
strated that none of the fibers visualized by these antibodies 
showed a complete congruence with the poly(A) signal. 

Figure 4. Preferential retention 
of poly(A) on the cytoskeleton 
compared to tubulin or actin- 
mRNAs. Human fibmblasts in 
culture were extracted with 
0.5 % Triton in CSK buffer for 
1 min, the supernatant was 
removed, and the pellet was 
treated with RNAse A and T1 

for 10 min at 4~ The supernatant was removed and the cells were 
vortexed and separated into nuclear and cytoskeletal fractions. 
RNA was isolated from each fraction and blotted onto nitrocellu- 
lose papers. One blot was probed with ~/P32-ATP labeled poly dT 
(55 bases) and the other was probed with p32 nick-translated actin 
and tubulin cDNA probe. (A and B) Cells were treated with 0 U 
of RNAse; (C and D) cells were treated with 10 U each of RNAse 
A and T1; (A and C) probed with poly dT; and (B and D) probed 
with tubulin and actin eDNA. S~, Triton supernatant; $2, RNAse 
supernatant; CSK, cytoskeletal fraction; and NUC, nuclear 
fraction. 
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Figure 5. Double labeling of poly(A) RNA and filament proteins in single cells: effect of colcemid or cytochalasin. Poly(A) RNA was 
detected using avidin-Texas red and cells were then exposed to fluorescein conjugated to phalloidin (actin detection) or antibodies to vimen- 
tin or tubulin, cells in A-D were double exposures: fluorescein 15 s, and Texas red 45 s. Cells in E-G were exposed for 40 s using a dual 
filter. (A and B) Poly(A) and vimentin. Colcemid treatment for 3 h in B before fixation. (C and D) Poly(A) and tubulin. D was Triton 
extracted at 4~ (1 min) before fixation. (E, F, and G) Poly(A) and actin. F and G were treated with cytochalasin D for 30 min before 
fixation, 0.5 ttg/ml and G was also extracted with Triton before fixation. Bar, 16 tzm. 

Therefore poly(A) did not decorate along the length of  
microtubules, intermediate filaments, or  stress fibers. How- 
ever, it was possible that most of  the poly(A) RNA was pres- 
ent on the diffuse network of  6-nm actin filaments, not easily 
resolved by the immunofluorescence. 

I f  poly(A) was associated with the actin isotopic network, 
there are three ways to visualize this: to treat the ceils with 
drugs known to disrupt each of  the filaments, to use higher 
spatial resolution light microscopy methods, or to directly 
visualize the 6-nm filaments by EM. The first two ap- 
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Figure 6. Quantitation of poly(A) and total RNA in single cells 
after colcemid or cytochalasin D. (A) Retention ofpoly(A) and total 
RNA in single cells after Triton and colcemid treatment. Cells were 
treated as follows: (1) control cells (n = 22); (2) Triton extraction 
(n = 30); and (3) colcemid treatment for 3 h before Triton extrac- 
tion (n = 10). Cells were then fixed in paraformaldehyde before hy- 

proaches are described here and the ultrastructural approach 
elsewhere (Bassell, G., C. Powers, K. Taneja, and R. Singer, 
manuscript submitted for publication). To establish a tighter 
correlation between poly(A) and particular filaments, we 
disrupted cytoskeletal filaments and studied this effect on the 
distribution and retention of poly(A). Because this correla- 
tion required more subtle distinctions than an all-or-none 
effect, it was important to rigorously quantitate the amount 
ofpoly(A) affected by each treatment. Triton extraction (Fig. 
5 D) at 4~ or colcemid (not shown) depolymerized most of 
the microtubules and after Triton the subunits were released 
into the supernatant. Neither showed any effect in the reten- 
tion or the nonrandom distribution of poly(A) RNA. Longer 
treatments with colcemid (3 h) partially collapsed the vimen- 
tin filaments to the perinuclear area, and the retention and 
more importantly, the distribution of poly(A) was not obvi- 
ously affected. The spatial partitioning of the vimentin fila- 
ments away from part of the poly(A) signal is particularly 
striking (Fig. 5 B). Furthermore, colcemid treatment for 3 h 
before Triton extraction did not remove significantly more 
poly(A) RNA or ribosomal RNA than Triton alone showing 
that most of the poly(A) RNA ('~,95%) and polysomes 
('~57%) remained qualitatively (Fig. 5 B), and quantita- 
tively (Fig. 6 A, 3) unaffected by these perturbations to 
microtubules and intermediate filaments. The morphology 
of the cell was not affected as determined by phase micros- 
copy (Goldman, 1971) and immunostaining by phalloidin 
showed minimal disruption of actin filaments. This demon- 
strated that the majority of poly(A) RNA is not linked to the 
microtubules or vimentin filaments in the steady state, how- 
ever some overlap with vimentin (yellow areas) is still pos- 
sible. The association of a subset of poly(A) with vimentin 
is currently being investigated in detail (Bassell, G., C. 
Powers, K. Taneja, and R. Singer, manuscript submitted for 
publication). 

In marked contrast, cytochalasin D (Fig. 5, F and G), 
which perturbs the actin filament system (Ornelles et al., 
1986) caused a drastic effect on poly(A) retention. Untreated 
cells (Fig. 5 E)  and cytochalasin D-treated cells (Fig. 5 F)  
show the same distribution of poly(A) even though most of 
the stress fibers and apparently the actin filaments were dis- 
rupted with cytochalasin D (0.5 t~g/ml), but some actin fila- 
ments still stained with phalloidin along the plasma mem- 
brane. However, as soon as the plasma membrane was 
permeabilized with Triton, a majority of the poly(A) 

bridization with biotinylated poly dT. Quantitation was done by 
digital imaging microscopy as in Fig. 2 C. Poly(A) RNA (fluores- 
cein) (m). Total RNA (propidium iodide) (B). (B) Poly(A) RNA 
retention in single cells after cytochalasin D treatment, either with 
or without puromycin. Cells were treated with varying concentra- 
tions of cytochalasin D (CD) and then Triton extracted to remove 
released RNA. Fluorescence in single cells was quantitated by digi- 
tal imaging microscopy (5-7 cells per point). Signal was expressed 
as percent of control (Triton-extracted cells with no drug). Poly(A) 
RNA in Triton-extracted cells exposed to CD (t2). Poly(A) RNA 
in Triton-extracted cells exposed to CD and puromycin (1). (C) 
Total RNA retention in single cells after cytochalasin D treatment. 
Same samples as B, but the total RNA was detected by propidium 
iodide. Total RNA, Triton, and CD (D). Total RNA, Triton, CD, 
and puromycin treated (-). 
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(~,,70%) and ribosomal RNA (87%) along with much of the 
actin protein were extracted into the supernatant (Fig. 5 G). 
This indicated that, after cytochalasin D treatment, this sub- 
set of poly(A) RNA was held in place by fixation of the cell, 
but was no longer attached to cellular structures. The distri- 
bution of vimentin filaments was not affected by cytochalasin 
D and Triton treatment (not shown). Possibly the poly(A) 
not released by cytochalasin and Triton is retained on the in- 
termediate filament network. This conclusion is supported 
by quantitative analysis of the fluorescent images obtained 
under these different conditions. In Fig. 6 A, the retention 
of poly(A) and ribosomes after colcemid and Triton treat- 
ment (3) showed no significant difference when compared 
with Triton alone (2). Fig. 6 B represents the percent reten- 
tion of poly(A) RNA in the cytoplasm after increasing doses 
of cytochalasin D with or without puromycin treatment and 
then subsequent Triton extraction before fixation. Total 
fluorescence was calibrated on each cell by digital imaging 
as described in Materials and Methods. In Fig. 6 B, 40 % of 
the poly(A) RNA was lost with puromycin treatment alone. 
An additional 40 % loss of poly(A) RNA occurred with very 
low doses of cytochalasin D (0.1/xg/ml) whether or not cells 
had been treated with puromycin. This observation suggests 

that puromycin and cytochalasin may interact with different 
subsets of poly(A) RNA. Polyribosomes were also quanti- 
tated using propidium iodide in the same samples and the 
signal was released by cytochalasin D identical to the 
poly(A) (Fig. 6 C). 

As described previously, the association of poty(A) may 
be with the single, 6-nm actin filaments. When actin was la- 
beled with FITC-phalloidin, the stress fibers and actin bun- 
dles were labeled overwhelmingly and actin meshwork was 
difficult to visualize (Fig. 5 E). To improve the labeling of 
the meshwork, we screened for and selected a monoclonal 
actin-antibody (East-Acres Biologicals) which predominantly 
labeled the actin meshwork rather than the fiber bundles. 
This antibody was confirmed by Western blots to be specific 
for actin protein. Previous work (Hoock et al., 1991) has 
shown that specific mAbs may not decorate stress fibers. 
This may be due to unavailability of this epitope in the stress 
fiber. Fig. 7, A and B shows the correlation of actin and 
poly(A) in the intact cell. The actin at the leading edge is evi- 
dent with some poly(A) signal in the lamellipod. We used 
a Triton-extracted cell to remove G-actin which obscured 
correlation of F-actin with poly(A) (Fig. 7, C and D). This 
showed the spatial distribution of poly(A) RNA (Fig. 7 C) 

Figure 7. Double labeling of poly(A) and F-actin. Poly(A) was detected with Texas red--conjugated avidin and F-actin detected with an 
actin-antibody (East Acres Biologicals, Southbridge, MA). Exposure time, 45 s on Kodak TMAX 400 ASA film (Eastman Kodak Co.). 
(,4) Distribution of poly(A) in an intact cell; (B) distribution of actin as in A; (C) distribution of poly(A) in a cell extracted with Triton 
before hybridization; and (D) distribution of actin as in C. Bar, 16.5 #m. 
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Figure 8. Digital imaging microscopy analysis of the coincidence 
of poly(A) with ribosomes, membranes, and F-actin. Poly(A) was 
detected by fluorescein (A) or Texas red-conjugated avidin (B and 
C) and the cells stained for ribosomal RNA with propidium iodide 
(A), F-actin with actin-antibody (B), or for ER with DiOC6 (C). 
Cells in A and B are Triton extracted. 3-D images were obtained 
at 0.25 #m intervals in the Z-axis and restored to remove out-of- 
focus information. After restoration two images at each wavelength 

corresponded roughly but not identically with actin filaments 
(Fig. 7 D). In Fig. 7 D, actin was detected in the nucleus 
when the nuclear membrane was permeabilized with Triton, 
showing some overlap with nuclear poly(A). There was also 
F-actin associated with the nuclear envelope, only seen after 
Triton treatment. 

To visualize the extent to which F-actin and poly(A) codis- 
tribute within the cell, we used the digital imaging micro- 
scope to provide an assessment of spatial congruence of the 
two labels. Optical sections at each wavelength were taken 
and processed to remove fluorescent light not contributing 
to the particular section (Fay et al., 1989). Two images from 
the same plane were then superimposed using fiduciary 
markers. To facilitate visualization of the codistribution, we 
have used the following pseudocoloring scheme: those 
voxels which contained poly(A) alone were ULrned red, those 
that contained only actin were green, those that contained 
both were white, and those that contained neither poly(A) 
nor actin were black. Images encoded in the same way were 
also created for cells dual labeled for one group of poly(A) 
(green) and ribosomal RNA (red), and another group of 
poly(A) (red) and membranes (green). These two types of 
images were obtained to determine the range over which the 
distribution function varied in these cells: poly(A) and ribo- 
somes would be expected to codistribute closely whereas 
poly(A) and membranes would not. Fig. 8 shows typical op- 
tical sec~ons of cells labeled and displayed in this manner. 
As expected, the cell labeled for poly(A) and ribosomal 
RNA has few red and green voxels; most voxels are white 
or black indicating a high degree of similarity in the distribu- 
tion of these species (Fig. 8 A). In contrast, the cell labeled 
for membranes and poly(A) (Fig. 8 C) has few white voxels 
and many red and green voxels indicative of a low extent of 
codistribution of these species. As shown in Fig. 8 B, actin 
and poly(A) appear to have a high degree of codistribution; 
there are more red and green voxels than the poly(A) ribo- 
some sample but the majority are white. This confirms the 
high level of codistribution between actin and poly(A). How- 
ever, when two signals are broadly distributed throughout 
the cell, it becomes essential to evaluate the degree of 
colocalization of the two images in an objective manner, to 
assure that their .3verlap does not occur solely by chance. A 
mathematical analysis was therefore undertaken (see Appen- 
dix) to determine quantitatively the codistribution of two 
probes detected by different fluorochromes. This serves as 
a paradigm for analysis of data obtained by digital imaging 
microscopy. The images over a range of biologically plausi- 
ble threshold windows (see Fig. A1) were analyzed for each 
image pair to determine the probability that the observed 
codistribution could have been produced by random (i.e., in- 
dependent) factors (see Figs. A2-A4). None of the image 
pairs was found to represent independent distributions with 
respect to each other. That is, the signals of each image were 
dependent on some cellular feature in common to both. The 
mean colocalization values for each image pair (determined 
over a reasonable threshold range) varied between each of 
the image sets: the poly(A)/ribosome set (Fig. 8 A), had 81% 

(green and red) were taken from the same Z plane and were super- 
imposed. Each image was thresholded above the noise and each 
pixel which contains both wavelengths is represented as white. 
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mean colocalization between the two images, the poly(A)/ 
aetin pair (Fig. 8 B) had 54%, the poly(A) membrane pair 
(Fig. 8 C) had 5.8% (see Appendix for derivations). There- 
fore this statistical analysis not only provides a quantitative 
approach to digital image colocalization, but also confirms 
visual inspection of codistribution of much of the poly(A) 
with F-actin. It should be noted that after Triton extrac- 
tion, the coloealiTation of poly(A) with actin is 67% of the 
colocalization of poly(A) with ribosomes, a number that 
compares favorably with the actual measurements of the 
proportion of poly(A) associated with actin filaments after 
cytochalasin treatment. 

Discussion 
This work defines the spatial compartmentalization of 
poly(A) RNA within the cytoplasm of the cell and some 
aspects of the mechanism by which the cell achieves this non- 
random distribution. Considerable previous literature has 
dealt with the interaction of mRNA, or poly(A) with the 
cytoskeleton (Lenk et al., 1977; Lenk and Penman, 1979; 
Cervera et al., 1981; van Venrooij et al., 1981; Jeffrey, 1982; 
Pramanik et al., 1986; Davis et al., 1987). We extend this 
work to focus on spatial congruence of nucleic acids with 
structures or compartments within single cells, and measure 
the amount and concentration of nucleic acids coincident 
with other components throughout the cell. This has allowed 
a view of mRNA-cytoskeletal interactions which involves 
spatial quantitation. 

If mRNA is restricted to a specific cytoskeletal compart- 
ment within the cell, the synthesis of proteins must also be 
subject to these same spatial constraints. This observation 
would have profound implications for the control of cellular 
structure and function; roughly two thirds of the mRNA is 
associated with the actin filament system and therefore there 
must be a correspondence between the site of protein synthe- 
sis and the distribution of actin. Since a complete analysis 
of the mechanism of protein sorting must include the knowl- 
edge as to where proteins begin their journey, this spatial un- 
derstanding is essential. This becomes even more important 
when considering that diffusion is severely limited within the 
cytoplasm (Luby-Phelps et al., 1986). Macromolecules 
diffuse considerably more slowly than in an aqueous envi- 
ronment and complexes of these macromolecules exceeding 
260 A are immobile (Luby-Phelps and Taylor, 1988). There- 
fore, the closer a protein can be synthesized to its end site 
results in promotion of its assembly into multipolypeptide 
complexes since the site of synthesis can create high concen- 
trations in that region with the minimum diffusion distance. 
We have already demonstrated that specific messages can be 
distributed regionally within the cell (Lawrence and Singer, 
1986; Sundell and Singer, 1990, 1991) and therefore a mech- 
anism which serves to anchor messages so as to prevent their 
diffusion would play an important role in the localization of 
specific sequences. The codistribution of much of the 
poly(A) with actin filaments detectable at the resolution of 
the light microscope suggests a physical interaction (within 
.2 #m). This interaction is corroborated by the resistance of 
poly(A) to removal from the actin cytoskeleton upon RNase 
digestion, indicating that poly(A), or sequences very close 
to poly(A), are involved in this linkage. Possibly the poly(A) 
binding protein (Sachs et al., 1986) plays some role in this 

association. Messenger RNA is known to be translated when 
associated with the cytoskeleton (Cervera et al., 1981) and 
this translatability can be disrupted by cytochalasin D (Or- 
nelles et al., 1986). The poly(A) binding protein in yeast is 
important for translation of mRNA, possibly by virtue of its 
interaction with the 60 S subunit-initiation complex (Sachs 
and Davis, 1989; Munroe and Jacobson, 1990). Recently, 
translation initiation has been shown to require a poly(A) 
binding protein-associated ribonuclease (Sachs and Dear- 
doff, 1992). Furthermore, the elongation factor EFla has 
been shown to be an actin-binding protein in Dictyostelium 
(Yang et al., 1990). This evidence points toward an actin as- 
sociated translation factor interacting with poly(A) which is 
important for mRNA translation. 

While this work addresses the anchoring of mRNA in the 
steady state, it also has implications for the movement of 
mRNA through the cell. We have suggested that mRNA (in 
the case of expression of an integrated EBV genome) follows 
a "track" from the site of transcription toward the nuclear 
envelope (Lawrence et al., 1989). This would imply that 
mRNA can exit asymmetrically into the cytoplasm. If 
mRNA then becomes loaded with ribosomes, it will be 
nondiffusible (Luby-Phelps and Taylor, 1988), and hence 
pile up at the outer nuclear envelope. Therefore a way to 
move rnRNA throughout the cytoplasm must exist. This is 
another potential role for the microfilament system, and im- 
plies that actin-based motility may have a role in this move- 
ment. Alternatively, mRNA may diffuse freely to the actin 
comp~utment in a receptor-ligand model. This diffusion 
would occur from the point of nuclear pore exit, and would 
predict that at this point, the mRNA would be lost upon Tri- 
ton extraction. However, there is no visible evidence that 
such a clear zone exists around the nucleus where mRNA 
can be selectively removed; to the contrary, message appears 
even more intense perinuclearly. 

Actin mRNA in spreading ceils can relocalize to the lamel- 
lipodia of the cell using primarily actin filaments (Sundell 
and Singer, 1991). It is not apparent how this mRNA can dis- 
tinguish different compartments within the same filament 
system. Possibly this spatial specificity involves proteins 
which recognize both the nucleic acid and the actin 
cytoskeleton. The plethora of actin-binding proteins, some 
of which are involved in motility may help to provide mes- 
sage "flow, and may distinguish subcompartments on the 
filament system. Finally, while a majority of mRNAs are as- 
sociated with the microfilament compartment, this work 
should not de-emphasize the importance of the association 
of mRNA with other filament systems such as intermediate 
filaments or microtubules in achieving spatial compartmen- 
talization. The precise evaluation of poly(A)-cytoskeletal 
interactions will require a high resolution ultrastructural 
analysis combining in situ hybridization with immunocyto- 
chemistry (Bassell, G., C. Powers, K. Taneja, and R. Singer, 
manuscript submitted for publication). 

Appendix: Quantitative Evaluation 
of the Extent of Colocalization between 
Two Images 

Overview of Statistical Analysis 
Two registered images will be completely colocalized if the 
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Figure A/. The images from Fig. 8 B poly(A) at three different thresholds: (.4) at a threshold which is too low. The complete filling in 
of the cell to the very edges is nonbiological for the poly (A) distribution, (B) at a threshold with the reasonable range, and (C) at a threshold 
which is too high. Signal is dearly disappearing at threshold in C since the poly(A) distributes more completely throughout the cytoplasm 
(see Fig. A3). 

corresponding voxels in each image have equivalent (binary) 
values. For sparsely labeled images with discrete structures, 
the nonrandom nature of a high degree of colocalization be- 
comes immediately apparent, e.g., as a visually recogniza- 
ble pattern. However, when dealing with diffusely labeled 
structures, it is difficult to determine visually whether the 
observed colocalization could be due merely to random fac- 
tors. For instance, since actin and poly(A) are diffusely dis- 
persed throughout the cytoplasm it is important to assess 
how much of their colocalization could have occurred by 
chance. 

To have confidence in the colocalization numbers pro- 
duced from the data, two tests must be performed. The first 
examines the sensitivity of the colocalization to different 
thresholds which may be used to distinguish signal from 
background. The second is a determination of the probabil- 
ity that the resulting observed amount of colocalization could 
have occurred entirely by chance; expressed as the signifi- 
cance that the observed colocalization over the threshold 
range is due to nonrandom factors (such as intraceUular or- 
ganization). The proportion of the image which is coloeal- 
ized is less important than whether the observed colocaliza- 
tion (whatever its percentage happens to be) is due to chance 
or not. 

The necessity for examining the sensitivity of the colocali- 
zation to thresholding arises because the thresholds used to 
distinguish signal from background are difficult to precisely 
define with any degree of certainty. We have chosen to exam- 
ine colocalization over a range of"reasonable" thresholds for 
both images involved. Reasonable is defined so that the 
lowest threshold is clearly too low (some "background ~ is 
still seen) and the highest threshold is clearly too high (some 
specific signal is lost); this threshold range will therefore in- 
clude the best threshold. For example, Fig. A1 shows the 
rhodamine-labeled data set of Fig. 8 B (the poly[A] actin set) 
at three different thresholds. 

Fig. A3 shows colocalization as a function of thresholds 
in the fluorescein (abscissa)- and rhodamine (ordinate)- 
labeled data set of Fig. 8 B. The intensity is proportional to 
the percent colocalization. The range of reasonable thresh- 

olds is outlined by a black-white-black border. Within this 
region the percent colocalization varies from 18-86 % of the 
positive voxels. The colocalization calculated is the probabil- 

Figure A2. (Le~ panel) Colocalization as a function of thresholds 
in fluorescein (poly[A]) and propidium iodide (rRNA) in the data 
set from Fig. 8 A. The intensity is proportional to the percent of 
colocalization. The range of reasonable thresholds is outlined by a 
black-white-black border. Within this region colocalization varies 
from 29 to 99%. The mean colocalization is 81% with a standard 
deviation of 19.6, Note: this colocalization is the probability of ob- 
serving a rRNA voxel above threshold given that the same voxel in 
the poly(A) image is above its threshold (see text). (R/ght pane/) 
This image shows the probability that each of the colocalizations 
(or, more precisely, the observed joint distributions, see the text) 
shown on the left image could have been generated by independent 
processes in the two images. Intensity is proportional to probability 
with white being equal to a probability of one. All probabilities 
within the reasonable range are essentially zero indicating that the 
probability of the corresponding voxel in the original images being 
colocalized randomly is zero. These probabilities were derived by 
applying a chi-squared test to a contingency table (see text). 
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Figure A3. (Left panel) Colocalization as a function of thresholds 
for the data set in Fig. 8 B. Colocalization varies from 18 to 86% 
within the specified threshold range. The mean colocalization is 
54.0% and the standard deviation is 21.0. Note: this is the probabil- 
ity of observing the actin labeled image given information about the 
poly(A) image. (Right panel) The probability of observing the co- 
loealizations shown on the left if the images were independent. All 
probabilities within the specified threshold range are zero, i.e., the 
image sets are not independent (see legend to Fig. A2). 

ity of observing a rhodamine-labeled poly(A) voxel above 
threshold given that the same voxel in the fluorescein (actin) 
image is above its threshold. In other words, the above thresh- 
old voxels in the fluorescein image can be thought of as holes 
in a mask. The percent colocalization is then the percentage 
of holes which peer through to an above threshold voxel in 
the rhodamine image. If  the reverse were calculated (i.e., the 
probability of observing an above threshold fluorescein voxel 

given that the rhodamine voxel was above threshold) differ- 
ent colocalization percentages would result (but such a cal- 
culation would not test the biological question of poly[A] 
colocalized with actin but rather the less interesting actin 
colocalized with poly[A]). 

Perhaps more important than the exact colocalization per- 
centages is the probability that any of these percentages 
could have been generated due to random factors. The prob- 
ability of such an occurrence, for the entire range of reason- 
able thresholds for the data set in Fig. 8 B is essentially zero 
(see the right image in Fig. A3). These probabilities were de- 
rived by applying a chi-squared test to a contingency table 
(Mendenhall, W. and R. L. Scheaffer. 1973. Mathematical 
Statistics with Applications. Duxbury Press, North Scituate, 
MA) as described below. Similarly, Figs. A2 and A4 show 
colocalization as a function of thresholds and associated 
probabilities for the data sets shown in Fig. 8, A and C. 

Analysis of  a Contingency Table via a Chi-squared Test 

The hypothesis that the observed colocalization is due to 
"random factors" is modeled mathematically by specifying 
that the probability of voxel i in one image (Vli) being 
above (or below) threshold "1"1 is independent of the similarly 
positioned voxel in the other image being above (or below) 
its threshold. If this is the case, then P(Vll > TI, V2i > I"2) 
= P(Vli > T1) * P(V2i > T2). Similarly for the other three 
possible paired outcomes (e.g., VL > T1 when V2~ ~< T2). 
In other words, the joint probability of a given voxel in image 
1 and the equivalent voxel in image 2 both being above (or 
below) their respective thresholds is simply the product of 
the individual probabilities [P(x~,) = P(x)P(y)]. If the two 
images are independent of each other, then this relationship 
will hold (but the converse is not necessarily true). The joint 
probability of both voxels being above threshold is the proba- 
bility of a "colocalization eventY 

To compare the observed joint distribution with the distri- 
bution which would be expected if the images were indepen- 
dent of each other, a contingency table (see Fig. AS) is 

Figure A4. (Leflpanel) Colocalization as a function of thresholds for the data set of Fig. 8 C Colocalization varies from 1 to 14% within 
the specified threshold range. The mean colocalization is 5.8% and the standard deviation is 3.4. Note: this is the probability of observ- 
ing the membrane image given information about the poly(A) image. (Right panel) The probability of observing the colocalizations 
shown on the left if the images were independent. All probabilities within the specified threshold range are zero, i.e., the images are not 
independent (see legend to Fig. A2). 
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Figure .45. Contingency table for the test of independence of two 
images. 

created and a chi-square test is applied to it. A, B, (7, and 
D are the observed number of voxels in each of the four cate- 
gories. Only voxels in the region of interest of the cell are 
included (e.g., only those within the cytoplasm, excluding 
the nucleus). Adding the observations along a row or column 
and then dividing by the total number of voxels (in the region 
of interest) produces an estimate of the marginal probability 
distribution for each image (i.e., the probability of a voxel 
being above or below threshold given no information about 
the status of the voxel in the other image). These calculated 
marginal distributions are the maximum likelihood estimates 
of the true marginal distributions. Multiplying appropriate 
marginal probabilities then produces the joint probability of 
colocalization, assuming independence. This joint probabil- 
ity is then multiplied by the total number of voxels 
(A+B+C+D) to produce a predicted number of voxels for 
each of the four colocalization categories. The chi-square 
test computes the chi-square statistic: 

, ~  ( O , -  E,) 2 
X 2 d.--d 

i=, Ei 

This statistic is converted into a probability by calculating 
the area under a chi-square distribution of one degree of free- 
dom from this value to infinity (i.e., the area of the tail of 
the distribution). The calculated area is the probability that 
two independent images would produce an observed distri- 
bution which differed by the observed amount or more from 
the predicted distribution. These are the numbers shown on 
the right panels of Figs. A2, A3, and A4. 

The resulting probability can be used to decide whether 
the spatial distributions of fluorescence in the two images are 
independent of each other. For example, if the probability is 
<.01 it can be concluded that, within a 99% confidence limit, 
the two image intensity distributions are not independent 
(i.e., they are dependent). On the other hand, if the probabil- 
ity were equal to, e.g., .2, one could not conclude (at a 99% 
confidence level) that the images were dependent. It is im- 
portant to note that in this situation the converse (i.e., that 
the images are independent) can not necessarily be con- 

cluded either. So, if the chi-square statistic produces a very 
small probability one can confidently state that the images 
are not independent, but if the probability is "large" it is 
difficult to conclude anything. 

Discussion of the Chi-squared Contingency 
Table Analysis 
This measure of the probability of colocalization due to 
chance (i.e., due to independent events) has the nice charac- 
teristic of being simple to calculate. It also has the important 
property that it is applicable no matter what the correlation 
is among pixels within an image. This is necessary since 
pixel fluorescence is often highly correlated within an image 
since it is not uncommon for labeled structures to have a spa- 
tial extent greater than a voxel (which is typically ,~.25/zm 
in our imaging configuration). The principal limitation of the 
chi-square test applied to a contingency table, is that it does 
not include a model of the expected structure shapes and 
their positions in the images. It is therefore only able to de- 
cide dependency when observations produce a small proba- 
bility and it is not able to decide independence when obser- 
vations produce a large probability. We are planning on 
removing this restriction by developing and incorporating 
models of the expected structures. 
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Qualitative aspects of  poly(A) distribution with the cell were presented at 
the American Society of Cell Biology meetings (Taneja, K., J. Lawrence, 
and R. Singer. 1989. J. Cell Biol. 109:269a). 
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