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REVIEW

Intraflagellar Transport and Cilia-Dependent Renal Disease:
The Ciliary Hypothesis of Polycystic Kidney Disease

GREGORY J. PAZOUR
Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts

Abstract. Epithelial cells that line mammalian kidney nephrons
have solitary nonmotile primary cilium projecting from their
surface into the lumens of the ducts and tubules. Mutations that
block the assembly of these cilia cause cystic kidney disease.
The products of human autosomal dominant and recessive
polycystic kidney disease genes and products of the nephron-

ophthisis disease genes are at least partially localized to pri-
mary cilia. This suggests that the cilium serves as an organiz-
ing center for the early steps of the signal transduction pathway
that is responsible for monitoring the integrity of the kidney
nephron and controlling cell proliferation and differentiation.

The discovery that the mutation in the Tg737orpk mouse
model of polycystic kidney disease (PKD) affected assembly
of cilia in kidney tubules has fueled new interest in primary
cilia. These organelles were first described in 1898 (1) and
have subsequently been found on most cells in vertebrate
organisms (2). (For a comprehensive list of publications on the
occurrence of primary cilia, see http://www.primary-cilium.
co.uk/.) Until recently, little analysis of the function of primary
cilia had been carried out, and there was no strong evidence
that linked them to the health and development of vertebrate
organisms. Recent research has changed this, demonstrating
that primary cilia are important for many aspects of vertebrate
heath. The following briefly reviews current research on the
importance of primary cilia in the cause of PKD and other
diseases.

Cilia and flagella are whip-like organelles that project from
the surface of cells. These organelles have been widely mod-
ified through evolution to provide diverse motility and sensory
functions. Motile cilia power the movement of sperm and
protistans and move liquid and particles over the epithelial
surfaces in metazoans. The sensory functions of cilia are ex-
tremely diverse. In vertebrates, sensory functions include the
detection of light and odorants in the vertebrate eye and nose
and possibly the detection of flow in the kidney nephron (3). In
invertebrates, sensory functions include detection of osmolar-
ity changes, chemoattractants, chemorepellants, and sound
(4,5).

In eukaryotes, whether a particular cilium/flagellum is called
a cilium or a flagellum is based more on historical usage than

on structure or function, so the terms can be considered inter-
changeable. However, these organelles should not be confused
with prokaryotic flagella or eukaryotic stereocilia. The pro-
karyotic flagellum is a non–membrane-enclosed extracellular
appendage, whereas the eukaryotic flagellum is a membrane-
enclosed intracellular organelle. Furthermore, the protein com-
position of the two structures is different, and they are assem-
bled by independent mechanisms. Eukaryotic stereocilia are
microvilli that superficially resemble cilia but have cytoskel-
etons composed of actin rather than tubulin as is found in cilia.
Consequently, the structures are composed of largely different
sets of proteins and are assembled by different mechanisms. To
confuse the situation, stereocilia and sensory cilia can often
play analogous roles in different organisms. For example, in
the insect eye, rhodopsin is organized in microvilli (rhab-
domeres), whereas in the vertebrate eye, rhodopsin is orga-
nized in cilia (rod outer segments). The opposite situation
occurs in hearing. In insects, sound is detected by cilia,
whereas in vertebrates, sound is detected by microvilli (stere-
ocilia) (5). In the kidney, microvilli are present throughout the
nephron but are extremely prominent in the proximal tubule,
where they increase surface area to facilitate absorption (6).
Whether these microvilli play a sensory role remains to be
determined, but it has been hypothesized that they could serve
as flow sensors (7) much the way cilia have been proposed to
be flow sensors (8).

At the core of cilia and flagella is a microtubule-based
cytoskeleton called the axoneme (Figure 1). In motile cilia, the
axoneme is usually composed of nine outer doublet microtu-
bules surrounding a central pair of microtubules (called a 9 �
2 axoneme), whereas the axoneme of primary cilia is typically
composed of the nine outer doublet microtubules without a
central pair (called a 9 � 0 axoneme). Other arrangements of
microtubules can be found. The axonemal microtubules serve
as scaffolding to organize associated protein complexes and
serve as binding sites for microtubule-based molecular motors.
Most of what we know about the composition of eukaryotic
cilia comes from biochemical and genetic studies of the single-
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celled eukaryote Chlamydomonas reinhardtii. Flagella isolated
from this organism contain ~450 different proteins (9). Cur-
rently, 94 of these proteins have been at least partially charac-

terized by biochemical or genetic means. Nearly all of the
characterized proteins have close mammalian homologues, as
do many of the uncharacterized proteins. Along with proteomic
data (10), this suggests that the mammalian motile cilium is
equally complex. Primary cilia have not been purified from any
source; thus, the composition of their proteome is unknown. It
is likely that they share core components with motile cilia and
will probably contain several hundred different proteins.

The cilium is covered by an extension of the plasma mem-
brane called the ciliary or flagellar membrane (Figure 1). This
membrane is continuous with the plasma membrane of the cell
but is a separate domain with a unique complement of proteins
(11). It is thought that the ciliary necklace, which is a group of
cytoskeletal-anchored membrane proteins located at the base of
the cilium, serves to isolate the ciliary membrane from the rest
of the plasma membrane (12). Available data, albeit limited,
suggest that there is a direct pathway for placement of proteins
on the ciliary membrane. In algae (Ochromonas and Chlamy-
domonas), the secretion of the mastigonemes, which are ciliary
membrane proteins, seems to occur only at the anterior end of
the cell, where the cilia are found (13,14). In Ochromonas, the
mastigoneme-containing vesicles were observed fusing with
the plasma membrane just outside the cilium (13). It is thought
that the fusion site is outside the cilium because vesicles are too
large to fit through the constriction or “flagellar pore” at the
base of the cilium (see reference 15). A similar situation has
been observed with opsin in vertebrate photoreceptors (16).
Opsin is a seven-transmembrane protein that is concentrated in
the membranes of the photoreceptor outer segment, which is a
modified cilium. In the photoreceptor cell body, opsin-contain-
ing vesicles seem to be trafficked directly from the Golgi
complex to the base of the cilium, where they fuse with the
plasma membrane. Once the ciliary membrane protein–con-
taining vesicle fuses with the plasma membrane, the ciliary
membrane protein must be directed into the cilium and not
allowed to diffuse away into the rest of the plasma membrane.
The mechanism by which this is accomplished is unknown.
Very little is known about the mechanisms by which ciliary
membrane proteins are targeted to this domain. In Leishmania,
a sequence near the N-terminus, was found to be necessary for
targeting a glucose transporter to the ciliary membrane (17),
whereas an unrelated sequence near the C-terminus of opsin
was found to be necessary and sufficient for targeting to the
outer segment of frog photoreceptors (18). It is not known
whether the Leishmania targeting sequence functions as a type
of address to direct the protein to the ciliary membrane or
functions to retain the protein in the cilium after it has been
directed there by other mechanisms. The C-terminal end of
mammalian opsin binds to the Tctex1 light chain of cytoplas-
mic dynein. It has been proposed that cytoplasmic dynein is the
motor that transports the opsin-containing vesicles from the
Golgi apparatus to the base of the cilium (19). Microtubule
polarity suggests that dynein or a minus-end directed kinesin
would be responsible for transporting vesicles from the Golgi
apparatus to the cilium.

The ciliary outer doublet microtubules are templated from
the basal body at the base of the cilium. The basal body is

Figure 1. Diagram of a kidney primary cilium and associated structures. The
primary cilium is composed of a microtubule-based cytoskeleton called the
axoneme, which is covered by an extension of the apical plasma membrane
called the ciliary membrane. The axoneme of a primary cilium is typically
composed of nine doublet microtubules, only two of which are shown here.
The microtubules of the axoneme are templated from the basal body, or
mother centriole. The daughter centriole is not ciliated. The centrioles are at
the center of the centrosome, which is composed of the centrioles and
associated pericentriolar material. In addition to its role in cilia assembly, the
centrosome serves as the microtubule organizing center in interphase cells, is
important for organizing the mitotic spindle during mitosis, and organizes
regulatory proteins that control cell-cycle progression and other aspects of
cell physiology. Primary cilia are assembled by intraflagellar transport (IFT).
During IFT, large particles are transported along the ciliary microtubules by
kinesin-II and dynein 2/1b. The IFT particles are composed of at least 17
polypeptides. The Tg737orpk mouse model of polycystic kidney disease has
a mutation in the gene encoding the IFT88 subunit (also known as polaris) of
the IFT particle. Products of most cystic kidney disease genes have been at
least partially localized to the cilium or basal body region (centrosome). The
exact locations of the disease gene products in the cilium or basal body region
have not been established. The polycystins and fibrocystin are transmem-
brane proteins and are presumably present either in the ciliary membrane or
in membranous vesicles in the cell body at the base of the cilium.
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composed of nine triplet microtubules cross-linked into a barrel
(20,21). The basal body is also known as the centriole, which
forms the core of the centrosome. The centrosome is composed
of a pair of centrioles and the surrounding pericentriolar ma-
terial. This organelle serves as the microtubule-organizing cen-
ter for interphase cells and is also important for organizing the
mitotic spindle during mitosis. Recent evidence indicates that
the centrosome is involved in controlling cell-cycle progress
through cytokinesis and entry in S phase (22,23). Proteomic
analysis of centrosomes indicates that like cilia, centrosomes
are highly complex and composed of �100 proteins (24).
Many of these are coiled-coil proteins and may be structural
subunits of the centrosome. However, a variety of kinases and
phosphatases, including ones important to G1-S (25,26) and
G2-M (27) transitions and to cytokinesis (28), are localized to
centrosomes. The centrosome is beginning to be thought of as
a central regulator of cell-cycle progression and cellular control
(29,30).

Ciliary Assembly Mechanisms
Eukaryotic cilia and flagella are assembled via a process

called intraflagellar transport (IFT). During IFT, large protein
complexes are transported along the ciliary microtubules from
the cell body to the ciliary tip and then back to the cell body
(31). These protein complexes are thought to carry ciliary
precursors from their site of synthesis in the cell body to their
site of assembly at the tip of the cilium. Several excellent
reviews have recently been written about IFT (15,32,33), so I
focus on genes that have been genetically characterized in
mouse.

The IFT particles purified from Chlamydomonas are com-
posed of at least 17 polypeptides (34,35). The IFT particle
proteins are rich in protein–protein interaction domains that are
likely to be important in holding the complex together and in
connecting the particles to the motors and cargo. The mamma-
lian particle has not been purified, but all of the proteins found
in the Chlamydomonas particle are conserved in mammals and
the mammalian particle is approximately the same size as the
Chlamydomonas particle, suggesting a very similar composi-
tion (36). Genes encoding IFT particle proteins have been
analyzed genetically in several species, including IFT88 (also
known as polaris) and IFT172 in mouse. Mutations in the gene
encoding the IFT88 subunit completely block ciliary assembly
in Chlamydomonas (37) and Caenorhabditis (38,39). In Dro-
sophila, mutations in this gene block assembly of the chor-
dotonal organ cilia but do not block assembly of the sperm
flagella, which is assembled in the cytoplasm by an IFT-
independent mechanism (40). The Tg737orpk mouse carries a
hypomorphic mutation in the gene encoding IFT88, resulting
in stunted cilia growth in the kidney (37) and other organs. The
mouse is severely growth retarded and develops cystic kidneys,
liver biliary duct hyperplasia and dysplasia, polydactyly, and
hydrocephaly (41). In addition, the mouse develops pancreatic
cysts (42,43), shows photoreceptor rod cell outer segment
abnormalities and retinal degeneration (36), has smaller-than-
normal testis (hypogonadism), and is male sterile (SanAgustin
et al., in preparation). Unexpected, motile cilia in the trachea

appear normal when examined by transmission or scanning
electron microscopy (Vucica and Pazour, unpublished results).
Further effort will be required to understand how this occurs,
but it may involve alternative splicing of the message to
produce a functional product in this tissue. Null alleles of the
gene encoding IFT88 in mouse completely block assembly of
the cilia on the embryonic node and result in left-right asym-
metry defects and embryonic lethality (44,45).

A ciliary assembly defect or a lack of cilia is likely to
underlie all of the pathologies seen in the Tg737orpk mouse.
The ducts in the kidney, liver, and pancreas, where the patho-
logic changes are found, all are lined by a ciliated epithelium.
The cilia on these cells are likely to play important roles in
control of proliferation, polarization, and differentiation (see
below). The outer segments of rod and cone photoreceptor
cells are developmentally derived from a cilium and can be
thought of as highly modified cilia. Thus, a ciliary assembly
defect could lead directly to defects in development and main-
tenance of this structure. Likewise, ciliary assembly defects
could lead directly to sperm defects. The mechanism behind
hydrocephaly is less clear, although hydrocephaly has also
been observed in dogs, rats, and mice with defects in motile
cilia (46–49). This suggests that motile cilia in the brain play
a role in maintaining proper balance of cerebrospinal fluid. The
ependymal cilia in the ventricles would be good candidates as
these are defective in the Tg737orpk mouse (50). Likewise, the
mechanism behind polydactyly is not straightforward (51) but
also has been observed in the hpy mouse with a motile cilia
defect (47). Left-right asymmetry defects have been long as-
sociated with ciliary defects in human (52) and are thought to
be a result of defective cilia on the embryonic node (53–55).

Similarly, mutations in the gene encoding IFT172 in
Chlamydomonas (35) (Hou et al., unpublished observations)
and Caenorhabditis (35,56) block ciliary assembly. In mouse,
a mutation in the gene encoding IFT172 results in a phenotype
similar to that seen with the IFT88 null allele. It is interesting
that the null phenotypes of IFT88 and IFT172 in mice are
similar to what is seen when hedgehog signaling is defective.
IFT88 and IFT172 have been placed in the hedgehog pathway
downstream of Patched1, Smoothened, and RAB23 but up-
stream of Gli3, suggesting that the IFT system antagonizes
production or activity of the Gli3 repressor (45). Whether this
indicates a novel role of IFT in cytoplasmic signaling or an
additional role for cilia remains to be determined.

Work in sea urchins (57), Chlamydomonas (58), and Tetra-
hymena (59) indicates that heterotrimeric kinesin-II is respon-
sible for transporting IFT particles from the cell body to the tip
of the cilium. Mutationally blocking the action of kinesin-II in
Chlamydomonas and Tetrahymena completely prevents ciliary
assembly. In sea urchins, injection of a function-blocking an-
tibody prevented most ciliary assembly; however, short pro-
cilia were still formed, suggesting that another motor may play
a role in the early steps of assembly. In Caenorhabditis, mu-
tation of the kinesin-encoding osm-3 gene prevents cilia as-
sembly, but OSM-3 does not seem to be a typical heterotri-
meric kinesin-II (60). Caenorhabditis contains a typical
heterotrimeric kinesin, but mutations in these genes have not
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be reported, so their involvement in IFT is unknown (60). Null
mutations in the genes encoding either of the motor subunits of
kinesin-II in mouse block ciliary assembly on the embryonic
node and lead to embryonic lethality (53–55). Targeted dele-
tion of the KIF3A kinesin-II subunit in the retina after rod outer
segments had formed resulted in accumulation of membranous
material in the inner segment at the base of the connecting
cilium and a retinal degeneration phenotype (61). Targeted
deletion of this subunit in kidney epithelium blocks assembly
of primary cilia (62), which is discussed more below. The
mammalian orthologue of C. elegans OSM-3 is KIF17. This
protein has been implicated in neuronal transport of NMDA
receptors, and overexpression is reported to improve working
memory (63), but the involvement in ciliary assembly has not
been examined.

Dynein 1b/2 carries the IFT particles from the ciliary tip to
the base of the cilium. This isoform of dynein is phylogeneti-
cally approximately equally related to the major isoform of
cytoplasmic dynein as it is to axonemal dyneins involved in
flagellar motility (64). Mutations in the genes encoding the
motor subunit of this dynein in Chlamydomonas (65,66) and C.
elegans (67) cause the cells to form short cilia that are filled
with IFT particles. Apparently, kinesin-II transports the parti-
cles into the cilium, which accumulate as a result of the lack of
a motor to return them to the cell body. Dynein2/1b also
contains a light intermediate chain called LIC3, D2LIC, or
D1bLIC. Mutations in this gene in Caenorhabditis (68) and
Chlamydomonas (69) cause a retrograde phenotype similar to
that seen by the motor subunit mutations. This phenotype is
also seen by mutations in the 8-kD dynein light chain in
Chlamydomonas (70). No mutations in any of these genes have
been reported in mammals, although the heavy and light inter-
mediate chains are found localized to the Golgi apparatus as
well as the basal body region (71–73). Injection of antibodies
against the heavy chain dispersed the Golgi complex, but it was
not reported whether this also affected ciliary assembly (71).

Ciliary Assembly Defects Lead to PKD
The first indication that ciliary defects could lead to PKD

came from analysis of the Tg737orpk mouse. This mouse was
identified in a screen of insertional mouse mutants as having
cysts in the kidney and pancreas, hepatic fibrosis, hydroceph-
aly, and polydactyly (41). Kidney and pancreatic cysts in
combination with hepatic fibrosis are similar to what is seen in
humans with autosomal recessive PKD, and this mouse be-
came one of the models for this disease (74). The Tg737 gene
product (IFT88 or polaris) is a subunit of the IFT particle (37).
As discussed above, mutations in the gene encoding IFT88 in
Chlamydomonas, Caenorhabditis, and Drosophila block the
assembly of cilia (37–40). The Tg737orpk allele was generated
by integration of exogenous DNA into an intron. This results in
a hypomorphic allele (41), which impairs but does not com-
pletely block assembly of kidney cilia (37). Complete null
alleles of this gene are embryonic lethals, precluding analysis
of the assembly of kidney cilia. These embryos lack cilia on
their nodes (44), supporting the idea that the primary defect in
the Tg737orpk mouse is an inability to assemble cilia.

Additional evidence that ciliary assembly defects lead to
PKD was provided by analysis of targeted knockouts of the
KIF3A subunit of kinesin-II in kidney epithelium (62). Kine-
sin-II is a heterotrimeric kinesin that is involved in vesicular
transport in neurons and melanosomes, transport between the
endoplasmic reticulum and the Golgi complex, and transport of
IFT particles from the cell body to the ciliary tip (75). Com-
plete deletion of KIF3A leads to embryonic lethality at day 10
post coitum (53,55) precluding analysis of kidney develop-
ment. For overcoming the embryonic lethality, the cre-lox
system was used to delete KIF3A specifically in kidney epi-
thelium after birth. As discussed above, kinesin-II is required
for ciliary assembly in mouse, and deletion of KIF3A in kidney
epithelium resulted in absence of cilia on these cells. Cyst
formation followed the loss of cilia in these kidneys, support-
ing the idea that ciliary assembly defects can lead to cyst
formation. However, the involvement of kinesin-II in multiple
other transport pathways (75) requires caution to be used in the
interpretation of these results.

Additional evidence that cilia are central players in PKD
came from a genetic analysis of zebrafish mutants (76). Sun et
al. (76) identified 12 complementation groups that cause cysts
in the pronephros of fish embryos and cloned the correspond-
ing genes for 11 of these. Of these 11 genes, three encoded
subunits of the IFT particle (IFT172/curly, IFT81/larry, IFT57/
mo), one (scorpion) blocked ciliary assembly by unknown
mechanism, and another two (pkd2, qilin) encoded proteins
known to be localized to cilia in other organisms. Thus, of the
11 genes identified in this screen, six are connected to cilia and
four are involved in ciliary assembly.

Cystic Kidney Disease Gene Products Are
Localized to Cilia

Primary cilia are thought to be sensory organelles that or-
ganize receptors and early steps of signal transduction cascades
that monitor parameters outside cells (reviewed in reference
77). The leading hypothesis linking ciliary assembly defects to
PKD proposes that the proteins that are responsible for moni-
toring the need for epithelial cell division are localized to cilia.
The mechanism by which epithelial cells determine the need to
proliferate is not clear. However, the cloning of genes that are
responsible for PKD in human and mouse has identified sev-
eral candidates for components of the signal transduction
cascade.

Most of the products of human cystic kidney disease genes
are at least partially localized to the primary cilium or basal
body/centrosomal region. These include polycystin-1 and -2
(78–80), which are defective in humans with autosomal dom-
inant PKD (81,82). The ciliary level of polycystin-2 is elevated
in the kidney of Tg737orpk mice, suggesting that IFT plays a
role in recycling this protein back to the cell body or in
maintaining the proper level in the cilia (78). Ciliary localiza-
tion of epitope-tagged polycystin-2 (83) has also been ob-
served, providing confirmation of the immunofluorescence re-
sults obtained with antibodies directed against the native
protein. In addition, mice with a targeted knockout of PKD2
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show left-right asymmetry defects (84), which are a common
phenotype caused by ciliary mutations in humans (52) and
rodents (85). Bending kidney primary cilia elevates cellular
Ca2� (3). This response is blocked by mutations in polycys-
tin-1 or addition of antibodies against polycystin-2. It has been
proposed that this is the mechanism by which the polycystins
monitor the state of the kidney epithelium and the need for cell
division (80).

Fibrocystin or polyductin, the product of the PKHD1 gene,
which is defective in humans with autosomal recessive PKD,
has also been shown to localize to cilia and basal bodies
(86–89). This large ~450-kD protein is predicted to have a
single transmembrane domain near the C-terminal end with a
large extracellular domain (90,91). The protein is conserved in
Chlamydomonas but not in nonciliated organisms such as
Saccharomyces and Arabidopsis, which is consistent with a
ciliary function. Reducing the amount of fibrocystin in ciliated
liver bile duct epithelial cells shortened the cilia on these cells
to ~40% of normal (89). The mechanism by which this oc-
curred is not clear. It may be that fibrocystin is required for
assembly of cilia in a way analogous to the Tg737 gene product
(37). However, unlike the Tg737 gene product, fibrocystin is
not a known subunit of the IFT particle. Alternatively, fibro-
cystin may be a structural protein of the cilium and have no
involvement in ciliary assembly. Several examples are known
in Chlamydomonas, where defects in structural components
affect flagellar length even though the affected proteins are not
thought to be involved in ciliary assembly (e.g., reference 92).

The products of the nephronophthisis disease genes are also
connected to cilia. Nephronophthisis is a cystic kidney disease
that is associated with retinal degeneration in ~10% of cases.
When the two disorders are found together it is called Senior-
Loken syndrome. The NPHP1 gene product nephrocystin-1
(also called nephrocystin) is an SH3 domain–containing pro-
tein (93). This protein was found in a proteomic analysis of
human respiratory cilia (10) and was shown to localize to cilia
in cultured kidney cells (94). Nephrocystin-1 co-immunopre-
cipitates with the NPHP2 gene product inversin (94). Mice
with defects in inversin have left-right asymmetry defects and
develop cystic kidneys (95,96). Inversin is an ankyrin-repeat
protein that can be found associated with centrosomes (97–99)
and cilia (94,99) in tissue culture cells, and GFP-tagged inver-
sin localizes to cilia in mice (98). The role of inversin in cilia
is controversial, and it has been proposed that the left-right
asymmetry defect may be due to nonciliary inversin (97).
Nephrocystin-3 (100) and nephrocystin-4 (also called nephro-
retinin) (101,102), which are the gene products of the NPHP3
and NPHP4 genes, have not been shown to localize to cilia or
basal bodies. However, nephrocystin-4 co-immunoprecipitates
with nephrocystin-1 (102), suggesting that it will co-localize
with nephrocystin-1 in the cilia.

Bardet-Biedl and Oral-Facial-Digital syndrome gene prod-
ucts have also been localized to basal bodies or centrosomes.
Bardet-Biedl syndrome is a relatively rare disorder that typi-
cally includes obesity, mental retardation, hypogenitalism, pig-
mentary retinopathy, renal defects including cystic kidneys,
and, in some cases, polydactyly. This disorder seems to be very

genetically heterogeneous with seven genes cloned thus far.
Very little is known about the functions of these except that
BBS6 encodes a chaperonin-like molecule (103). Like the
PKHD1 gene discussed above, most BBS genes are conserved
in Chlamydomonas but not in yeast or plants, suggesting a cilia
or basal body function. Consistent with this, BBS4, BBS5,
BBS7, and BBS8 localize to basal bodies and centrosomes
(104–107), and BBS7 and BBS8 are reported to traffic along
cilia in C. elegans similar to IFT proteins (107). In cultured
mammalian cells, reduction in the amount of BBS4 seems to
impair centrosome function in organizing interphase microtu-
bules and causes cell-cycle arrest and apoptosis (105). It is
interesting that mice homozygous for null alleles of BBS4 are
viable (108). These mice do not assemble sperm flagella, but
other types of cilia seem to assemble normally. The cilia may
not be properly maintained as rod outer segments show age-
related degeneration (108). Likewise, the product of the Oral-
Facial-Digital-1 gene OFD1 localizes to centrosomes (109).
The OFD1 gene is located on the X chromosome, and affected
females typically have abnormalities of the oral cavity, face,
and digits including polydactyly, whereas XY males die in
utero. Kidney and pancreatic cysts are also observed. OFD1 is
a coiled-coil protein (110) that purifies with centrosomes (24)
and co-localizes with �-tubulin at the centrosome (109).

Unanswered Questions
At this point, it is clear that ciliary assembly defects can lead

to cystic kidney disease and that many of the products of
human cystic kidney disease genes are at least partially local-
ized to cilia. However, the mechanism by which this works is
still being elucidated. I favor the idea that cilia serve as cellular
antennae by organizing receptors and early steps of signal
transduction pathways needed to monitor the cell’s extracellu-
lar environment. Thus, receptors for monitoring the state of the
epithelium and proteins to amplify this signal and transmit it to
the cell body need to be localized to the kidney primary cilia
analogous to the way that photoreceptors, heterotrimeric G-
proteins, phosphodiesterases, and cyclic nucleotide gated chan-
nels all are localized in photoreceptor cilia in the retina. The
polycystins are the lead candidates for the initial steps of this
pathway. The observation that the polycystins are required for
detecting flow suggests that flow may be the critical parameter
in monitoring the need for proliferation and preventing cyst
formation (80). However, more detailed experimentation is
needed to explain how the cell integrates changes in flow rates
that result from dehydration versus those that result from
enlargement of the nephron as well as flow rate changes that
occur along the length of the nephron as a result of absorption.
Furthermore, extrapolating this to other vertebrates such as fish
that have motile cilia in the ducts (111) is problematic and
needs to be addressed.
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