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BrassicaVegetable Consumption Shifts Estrogen Metabolism in
Healthy Postmenopausal Women1

Jay H. Fowke,2 Christopher Longcope, and
James R. Hebert
Division of Preventive and Behavioral Medicine (J. H. F., J. R. H.), and
Department of Obstetrics and Gynecology (C. L.), University of Massachusetts
Medical Center, Worcester, Massachusetts 01655

Abstract
Previous studies suggest that the estrogen metabolite 16a-
hydroxyestrone acts as a breast tumor promoter. The
alternative product of estrogen metabolism, 2-
hydroxyestrone, does not exhibit estrogenic properties in
breast tissue, and lower values of the ratio 2-
hydroxyestrone:16a-hydroxyestrone (2:16) in urine may
be an endocrine biomarker for greater breast cancer risk.
Vegetables of theBrassicagenus, such as broccoli,
contain a phytochemical, which may shift estrogen
metabolism and increase the 2:16 ratio. Adding 500 g/day
of broccoli to a standard diet shifts 2:16 values upward in
humans; however, it is unknown as to whether healthy
women are able to consume a sufficient quantity of
Brassicato affect breast cancer risk through this
mechanism. In this study, 34 healthy postmenopausal
women participated in an intensive intervention designed
to facilitate the addition of Brassicato the daily diet. The
diet was measured by repeated 24-h recall, and estrogen
metabolites were measured by enzyme immunoassay in
24-h urine samples. In a crude analysis, there was a
nonsignificant increase in the urinary 2:16 ratio
associated with greaterBrassicaconsumption. With
adjustment for other dietary parameters, Brassica
vegetable consumption was associated with a statistically
significant increase in 2:16 values, such that for each 10-
g/day increase inBrassicaconsumption, there was an
increase in the 2:16 ratio of 0.08 (95% confidence
interval, 0.02–0.15). To the extent that the 2:16 ratio, as
measured in urine, is associated with breast cancer risk,
future research should considerBrassicavegetable
consumption as a potentially effective and acceptable
dietary strategy to prevent breast cancer.

Introduction
The estrogen metabolite 16HE3 is produced when E1 is hy-
droxylated on the 16th carbon. Much like E2, 16HE increases
breast cell proliferationin vitro (1–3). 16HE binds covalently to
the estrogen receptor (1), has a lower binding affinity for sex
hormone-binding globulin than E2 (4), promotes mammary
gland tumors in murine models of breast cancer (1), and may
act directly on DNA as a mutagen (5). Alternatively, E1 may be
irreversibly metabolized to 2HE by several hepatic or extrahe-
patic P-450 isoforms. Unlike the 16HE metabolite, 2HE has a
low affinity for the estrogen receptor, and 2HE is rapidly
methylated by catechol-O-methyl transferase in the circulation
(1, 2). In addition to a lower estrogenic potential, there is
evidence to suggest that the 2-hydroxylated metabolites inhibit
angiogenesis (6–8). Because the metabolic pathways leading to
either 2HE or 16HE are irreversible, the relative activity of
these two metabolic pathways (2HE:16HE5 2:16), as meas-
ured in urine, may be an endocrine biomarker for breast cancer
risk in humans (9–12). Higher urinary 2:16 scores suggest
protection from breast cancer, whereas lower urinary 2:16
scores suggest greater risk (13).

IGSLs are a category of phytochemicals that are capable of
shifting estrogen metabolism and increasing the urinary 2:16
ratio. IGSLs are unique to vegetables of theBrassicagenus, the
most common of which in the United States are Brussels
sprouts, broccoli, cabbage, kale, turnips, collards, and cauli-
flower. With cutting or chewing of the vegetable, IGSLs are
degraded by the plant enzyme myrosinase to a variety of indole
structures, including I3C, DIM, indole-3-acetonitrile, indole-3-
acetic acid, and AG (14, 15). In the body, these indole-con-
taining compounds are either chemically or enzymatically con-
verted to indolo[3,2-b]carbazole, a moderate aryl hydrocarbon
receptor agonist (16–18). The activated aryl hydrocarbon re-
ceptor binds to specific sites on DNA and induces the expres-
sion of P-450 enzymes of the CYP1 family in hepatic and
extrahepatic tissue (19–22). These P-450 enzymes hydroxylate
E1 on the second carbon, leading to greater 2HE production and
decreasing the pool of E1 available for conversion to 16HE,
thus increasing the 2:16 ratio (21, 23–27). In three small human
intervention studies, the daily administration of I3C pills (400
mg/day) or broccoli (500 g/day) significantly increased the
urinary 2:16 value (21, 28, 29), consistent with reduced breast
cancer risk.

There is incomplete evidence to demonstrate thatBrassica
vegetable consumption protects against breast cancer. In animal
models of breast cancer, dietary I3C (25, 30–32) or a diet with
cabbage (33) reduces tumor incidence or delays tumor onset.
Results from one cross-national study found that those coun-

Received 12/1/99; revised 5/3/00; accepted 5/17/00.
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3 The abbreviations used are: 16HE, 16a-hydroxyestrone; E1, estrone; E2, serum
17b-estradiol; 2HE, 2-hydroxyestrone; IGSL, indole glucosinolate; I3C, indole-
3-carbinol; DIM, 3,39-diindolylmethane; AG, ascorbigen; 24HR, 24-h recall; CI,
confidence interval.

773Vol. 9, 773–779, August 2000 Cancer Epidemiology, Biomarkers & Prevention



tries with higher cabbage intake had a lower breast cancer
mortality rate (34). Despite the availability only of data on
cabbage of the entireBrassicagenus, intercountry differences
in cabbage consumption are sufficiently large to increase the
likelihood of detecting a specific protective association. Obser-
vational studies conducted within a population have not iden-
tified a consistent association betweenBrassica intake and
breast cancer risk. (35–39). One of these studies did find a
significant reduction in breast cancer risk withBrassicaintake;
however, there was no dose-response trend in this association
[relative risk, 0.79 (0.67–0.92); Ref. 35]. These studies are
limited by the very low levels ofBrassicaintake in the popu-
lations under evaluation, the limitations of individual dietary
assessment techniques (e.g., food frequency questionnaires),
and the absence of data regarding how the vegetables are
prepared before consumption.

Dietary interventions can create variability in the food
consumption pattern of a targeted study group, such that it may
be possible to detect a physiological response consistent with
reduced cancer risk. In this study, the intervention protocol
facilitated dailyBrassicaconsumption among free-living post-
menopausal women. The objective was to reach a level of
Brassica intake consistent with the range and variability of
amounts consumed in Japan or other Asian countries (40–42).
An association betweenBrassicaintake and higher urinary 2:16
values would suggest that healthy free-living postmenopausal
women are able to shift their own estrogen profiles in such a
way as to reduce breast cancer risk. Such a result would suggest
thatBrassicavegetables should be further evaluated as a strat-
egy to reduce breast cancer risk.

Materials and Methods
Recruitment and Eligibility. Eligible women received a neg-
ative X-ray mammogram and a negative digital mammogram
from the Department of Radiology at the University of Mas-
sachusetts Memorial Health Center within the 12 months before
study entry. This institution screens and treats patients primar-
ily residing in Worcester, Massachusetts and the surrounding
communities, while a much smaller portion of patients are
referred from Greater Boston or from one of the other five New
England states.

The study was restricted to women.45 years of age,
without a menstrual cycle in the past 12 months, without
present liver or kidney disease, and without adrenalectomy.
Women with a hysterectomy but without ovariectomy were at
least 54 years of age. Women were excluded if they presently
used any tobacco products, antibiotics, hormone replacement
therapy, nonprescription hormones (e.g., melatonin, dehydro-
epiandrosterone), black-cohosh, tamoxifen, diabetes medica-
tion, or cimetidine. Women under a physician-recommended
diet or who reported a strong dislike forBrassicavegetables
were excluded. Participants received no monetary compensa-
tion. Thirty-seven women met all eligibility criteria and started
the study; however, three participants dropped-out because of
family illness or scheduling conflicts. This analysis is restricted
to the 34 participants who completed the intervention.
Dietary Intervention. The study population was divided into
three groups of women, with between 9 and 13 women/group.
The dietary intervention was administered to each of these
groups, and it consisted of four classes over a 4-week period
(Fig. 1). The goal of the intervention was to facilitate the
incorporation ofBrassicainto the daily diet. Participants were
asked to consumeBrassica every day, at a frequency and
vegetable combination that would approach a 70-mg/day intake

of IGSLs. Estimated indole content for each vegetable was
extracted from a review by Rosaet al. (43).

During the intervention, participants were guided through
the various theories underlying the hypothesized health benefits
of Brassicaconsumption. To improve compliance, each par-
ticipant completed two 3-day food diaries as a tool to self-
monitor theirBrassicavegetable intake. In addition, each par-
ticipant was given written material describing the study
protocol and a cookbook containing recipes that useBrassica
vegetables. A portion of each class took place in a teaching
kitchen, where participants prepared various dishes containing
Brassicausing techniques consistent with the principles of the
study. During the classes, emphasis was placed on proper
handling and preparation of the vegetables because vegetable
preparation affects both the glucosinolate concentration and
decomposition of glucosinolates withinBrassica.
Participant Characteristics. Demographics, reproductive
history, health history, tobacco use, alcohol use, and medication
use were collected by questionnaire during the baseline study
period. Additional questionnaires were administered at fol-
low-up to identify any changes in tobacco or medication use.
The psychological constructs “Social Approval” and “Social
Desirability” were measured by questionnaire during the base-
line period (44–46).
Urine and Blood Collection. The study design and sample
collection schedule are illustrated in Fig. 1. Study participants
provided two 24-h urine samples and two blood samples before
the intervention,;2 weeks apart. Additional urine and blood
samples were collected during the last week of the intervention.
Both written and oral instructions regarding the urine collection
protocol were administered to all participants.
Dietary Assessment.The diet was measured by 24HR during
each week that urine and blood samples were collected. Sub-
jects were telephoned on three randomly assigned days (2
weekdays and 1 weekend day) and asked to describe the foods
and portion sizes consumed during the prior day. A structured
interview protocol was strictly followed, all interviews were
conducted by highly trained registered dietitians, and partici-
pants were provided a two-dimensional chart of typical foods to
assist with portion size estimation. Nutrient calculations were
performed using the Nutrition Data System software, developed
by the Nutrition Coordinating Center, University of Minnesota
(Minneapolis, MN; Food Database: 13A; Nutrient Database:
28; Ref. 47). Nutrients derived from supplements were added to
the dietary estimates. Data from the three 24HR administered
within a given week were averaged, providing the single best
estimate of each participant’s dietary intake for that week.

Brassica vegetables were identified in the 24HR data.
Data regarding the types ofBrassicavegetable, the amount of
vegetable, and whether the vegetable was consumed cooked or
raw, were extracted. The grams ofBrassicathat were reported

Fig. 1. Study design and data collection schedule.Arrows, weeks during the
study in which three 24HR were administered and a 24-h urine sample and blood
sample were collected.
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as cooked were adjusted to reflect grams of raw (fresh)Bras-
sica. IGSL intake (mg/day) was calculated using published
IGSL concentrations in fresh/raw vegetables across the variet-
ies ofBrassica(43) and the amount ofBrassicareported in the
24HR.
Body Measurements.Weight, height, and the circumferences
of the waist, abdomen, and hips were measured during each
week in which a urine sample was collected. Body mass index
was calculated as weight (kg)/height (m)2, and the waist:hip
ratio was calculated by dividing the waist circumference by the
hip circumference. Total body fat was calculated using the Tran
and Weltman prediction equation, which combines measures of
body circumference, weight, age, and height to produce an
estimate of the fat (kg) in the body (48, 49). This prediction
equation has been validated in women.50 years of age.
Laboratory Analyses. Urinary 2HE and 16HE were measured
at the University of Massachusetts Medical School (C. Long-
cope) using a solid-phase enzyme immunoassay kit from Im-
muna Care Corporation (50). All assays were performed on
samples in random order, in triplicate, within one batch, and by
a single technician who was blinded as to the sequence of the
sample collection. Serum E2 levels were measured by radio-
immunoassay (Diagnostic Products Corp., Los Angeles, CA).
There were six serum samples from four individuals that had
unexpectedly high (.40 pg/ml) E2 levels. For these samples,
the E2 assay was repeated, with identical results. The intra-
assay coefficients of variation for E2, 2HE, and 16HE were
3.4%, 4.0%, and 4.0% respectively, whereas interassay coeffi-
cients of variation were 6.8%, 10.0%, and 9.9%, respectively.
Standard urine samples were from women of a similar age and
estrogen level as the study participants.
Statistical Analysis. Individual changes inBrassicaconsump-
tion or urinary 2:16 values between baseline and the interven-
tion study phase were calculated by subtraction. Across the two
baseline measurements, urinary 2:16 values andBrassicaintake
were not significantly different. Therefore, these values were
pooled to provide a more stable baseline estimate. Changes in
2:16 were compared with changes inBrassica intake using
least-squares linear regression (SAS/STAT Statistical Soft-
ware, version 6.12, SAS Institute, Cary, NC). The regression
coefficient (b) represents the change in 2:16 for each 10-g/day
change inBrassicaintake. Additionally, the pattern of the 2:16
ratio was evaluated across categories of the change inBrassica
vegetable intake. The significance of the a linear trend was
determined by inclusion into the regression model of a contin-
uous variable with values representing each category of change
in Brassicaintake.

Several dietary macronutrients (i.e., total fat, protein, car-
bohydrates, energy, and fiber) and body habitus measures were
defined a priori as potentially affecting urinary 2:16 values.
Although the mechanisms by which these nutrients may affect
urinary estrogen metabolite levels are uncertain, these factors
previously have been associated with estrogen metabolism,
drug metabolism, or the excretion of estrogens and are treated
as potential confounders (51–53). Adjusted regression coeffi-
cients were calculated to remove the influence of changes in
these factors over time. Baseline 2:16 values were forced into
the regression model to control for the possibility that large
change scores result from unusual baseline values (regression to
the mean).

The association betweenBrassicaintake and 2:16 values
were evaluated in a cross-sectional nature during the interven-
tion study phase to explore the possibility of identifying an
association between 2:16 and the diet across individuals.

The impact of the dietary intervention on total estrogen
production was evaluated by comparing E2 values over the
study by repeated measures ANOVA. An unstructured covari-
ance matrix was used because this approach provided the best
fit of the data (54). The distribution of serum E2 was highly
skewed, and E2 levels were transformed logarithmically (base
e) to meet the statistical assumptions.

Results
Participants ranged in age from 49 to 77 years, and they
averaged 61 years of age. Most study participants were edu-
cated beyond the high school level, were unemployed, and
shared housing with another person (Table 1).

Before the intervention,Brassicavegetable consumption
averaged;9 g/day (Table 2). During the intervention study
phase,Brassicaconsumption increased to 193 g/day. The fre-
quency of Brassica vegetable consumption increased from
about two servings per week at baseline to about two servings
per day during the intervention phase, and estimated IGSL
intake (mg/day) followed the same trend as self-reported Bras-
sica vegetable intake.

At baseline, the average urinary 2:16 ratio was 2.27, and
increased to 2.38 during the intervention (Table 2). Serum E2
levels were 20 pg/ml at baseline and 16 pg/ml during the
intervention study phase. Crude urinary 2:16 levels and E2
levels did not significantly change across the two baseline
measures and the intervention measurement (repeated meas-
ured ANOVA of 2:16 or E2 across time:P 5 0.31 andP 5
0.35, respectively). E2 levels, or changes in E2 levels over time,
were not significantly associated with urinary 2:16 values.
Disease history, family history of breast cancer, or other breast
cancer risk factors were not consistently associated with urinary
2:16 values or adherence to the intervention guidelines (not
shown).

The crude association between changes inBrassicaintake
and changes in 2:16 values indicated that urinary 2:16 values

Table 1 Study population characteristicsa

Factor n

Employment statusb

Employed 14
Unemployed 20

Living status
Alone 9
Not alone 25

Education level
High school 6
Any college 28

Religious affiliation
Roman Catholic 13
Other 21

Prior breast cancerc

Yes 5
No 29

Family breast cancer history
Yes 13
No 21

Age (yr)
#60 14
.60 20

a n 5 34.
b Combined part-time and full-time status.
c Greater than 5 years before study entry.
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increased 0.03 for every 10 g ofBrassicaconsumed (regression
coefficient5 0.03; 95% CI,20.02 to 0.06).

Several dietary variables were considered as potential
sources of bias, including changes in dietary protein (g), fat (g),
carbohydrates (g), energy (kcal), and fiber (g), as well as
previously defined body habitus measures and psychosocial
scales that have been linked with dietary misreport. Dietary fat
intake, carbohydrate intake, and measures of body habitus did
not alter theBrassica-2:16 association and were not significant
predictors of 2:16, and these parameters were excluded from
the final model to improve the precision of the analysis. With
adjustment for dietary fiber, protein, energy, and scores of
social approval, the increase inBrassica consumption from
baseline to intervention was significantly associated with an
increase in the 2:16 ratio, such that each 10-g/day increase in
Brassicaconsumption increased the 2:16 ratio by 0.08 (regres-
sion coefficient5 0.08; 95% CI, 0.02–0.15). Similarly, esti-
mated indole intake shifted the urinary 2:16 ratio upward (re-
gression coefficient5 0.21; 95% CI, 0.03–0.39 for 10 mg/day
of IGSL).

Participant compliance from baseline to the intervention
study phase was categorized into four groups to explore any
dose-response relationship. Changes inBrassica intake were
categorized across quartiles of the distribution, and crude and
adjusted changes in urinary 2:16 values were calculated. Those
participants who consumed lessBrassicadid not show any
increase in urinary 2:16 values (Table 3). Those participants
who consumed moreBrassicahad a greater increase in urinary
2:16 values, with a significant linear dose-response trend in the
adjusted analysis.

In a cross-sectional analysis during the intervention phases
of the study,Brassicaconsumption was generally associated
with higher urinary 2:16 values, but no association was statis-
tically significant [regression coefficient5 0.03; 95% CI,
20.05 to 0.12; adjusted for energy (kcal), fiber (g), protein (g),
and social approval score]. In contrast toBrassicaintake, the

IGSL index was not associated with greater 2:16 values, [re-
gression coefficient5 20.02, 95% CI,20.21 to 0.16 for each
10 mg/day in IGSL intake; adjusted for energy (kcal), fiber (g),
protein (g), and social approval score]. WhenBrassicaintake or
IGSL values were categorized at the median level within the
intervention study phase, urinary 2:16 levels were about 0.3–
0.5 greater among participants reporting higherBrassicaintake
or higher IGSL intake (Table 4), consistent with a shift in
estrogen metabolism toward 2HE in response to IGSL con-
sumption.

The shift in 2:16 values appeared sensitive to the types of
vegetables consumed. When the amount of broccoli, cabbage,
Brussels sprouts, or otherBrassica are considered simulta-
neously in a multivariable model, an increase of 10 g of cab-
bage was associated with an increase of 0.07 (95% CI,20.04
to 0.19) in the urinary 2:16 value, whereas an increase of 10 g
of broccoli was associated with an increase of 0.01 (95% CI,
20.09 to 0.11) in 2:16 values. However, lightly cooked and raw
Brassicaappear equally able to shift the 2:16 ratio [cooked:
regression coefficient5 0.03, 95% CI,20.03 to 0.10); raw:
regression coefficient5 0.03, 95% CI,20.08 to 0.13; for each
10-g/day vegetable].

Discussion
When studies are conducted in animals or when widely diver-
gent populations are compared, the dietary differences are very
large, and an association between diet and breast cancer is more
easily detected (55). On the other hand, a causal relationship
between a dietary component and breast cancer may be ren-
dered undetectable when using an imprecise measure in a
population having little variability in the dietary component of
interest (56, 57). An intensive intervention was used to greatly
increase the consumption ofBrassica vegetables, a dietary
factor potentially important in modifying breast cancer risk (29,
34, 35, 58), within a highly selected and targeted study group.
Additionally, this protocol provided the opportunity to guide
participants through the dietary change and to informally mon-
itor dietary compliance and health-related consequences of the
intervention.Brassicavegetable consumption increased about
20-fold among free-living women in response to the interven-
tion protocol. There were no serious side-affects associated
with adherence. The minority of participants who reported
minor gastrointestinal discomfort (n 5 15) generally found that
this side-effect diminished with time and with experimentation

Table 2 Brassicavegetable intake, IGSL intake, the 2HE:16HE ratio, and E2
levelsa

Study phase Mean SD Range

Brassicab (g/day)
Baselinec 8.8 10.2 0–42.1
Intervention 193.5 76.7 53.6–371.5
Intervention–baselined 184.6 77.3 52.1–371.5

IGSL (mg/day)e

Baseline 2.2 2.6 0–10.9
Intervention 70.5 29.9 12.6–146.9
Intervention–baseline 68.3 30.3 12.2–140.7

2:16f

Baseline 2.27 0.97 0.58–4.21
Intervention 2.38 1.31 0.37–5.43
Intervention–baseline 0.11 1.05 21.78–2.53

E2 (pg/ml)g

Baseline 20 22 3–114
Intervention 16 11 2–43
Intervention–baseline 25 20 289–25

a n 5 34.
b Brassicavegetable consumption measured by 24 HRs.
c Baseline: data averaged across the baseline 1 and baseline 2 study phases.
d Intervention-baseline: change in value from the average of the baseline values
to the intervention study phase.
e IGSL glucosinolate intake calculated from published indole concentrations and
self-reportedBrassicaconsumption.
f 2HE:16HE ratio as measured from 24-hour urine samples.
g Measured in a morning blood sample.

Table 3 Change in the 2HE:16HE ratio by level of change inBrassicafrom
baseline to intervention consumption levels (g/day)a

Brassicab Crudec Adjustedd

n Range (g/d) 2:16e (95% CI) 2:16 (95% CI)

8 52–108 20.19 (20.96 to 0.57) 20.51 (21.33 to 0.31)
9 109–173 20.16 (20.87 to 0.56) 20.16 (20.78 to 0.46)
9 174–246 0.48 (20.24 to 1.21) 0.25 (20.40 to 0.90)
8 247–372 0.33 (20.43 to 1.10) 0.91 (0.13 to 1.70)

P trendf 0.17 0.02

a n 5 34.
b Brassicavegetable intake measured by 24 HR.
c Adjusted for baseline 2:16 only.
d Adjusted for baseline 2:16, fiber (g of water-soluble), protein (g), energy (kcal),
social approval score.
e 2:16, change in 2HE:16HE (intervention-baseline), as measured in 24-h urine
samples.
f Two-sided trend test using a continuous variable with values representing each
category ofBrassicaintake.
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of different vegetables. The results of this study indicate that
the consumption ofBrassicavegetables, as prepared and con-
sumed by healthy postmenopausal women in the United States,
was significantly associated with higher urinary 2:16 values,
suggesting thatBrassicavegetables should be further explored
as an additional dietary strategy to reduce breast cancer risk in
the population.

Kall et al. (21) found the urinary 2:16 ratio increased 0.40
with administration of 500 g of broccoli/day to a small group of
young men and women, and Bradlowet al.(29) observed a 0.40
shift in 2:16 with the daily administration of pills containing
I3C. Unlike pills, Brassicavegetables expose the body to a
complex mixture of indole structures, including I3C, AG, and
DIM; and AG or DIM may be more potent than I3C alone (18,
59, 60). In this study, different vegetable types appeared to be
effective in shifting the urinary 2:16 ratio, with cabbage intake
having the strongest effect. Finally, the larger response ob-
served in this study might be specific to postmenopausal
women, or advances in the laboratory procedures used to detect
estrogen metabolites in urine.

Glucosinolates and glucosinolate break-down products are
hydrophilic, and as much as 63% of the glucosinolate content
of a vegetable may leach into the cooking water during boiling
(20, 26). However, vegetable preparation did not diminish the
ability of the vegetables to shift estrogen metabolism in this
study. Participants were instructed to cook theBrassicaonly
lightly, by either light steaming or as stir-fry, and they were
provided guided practice in vegetable preparation techniques.
Steaming provides less opportunity for leaching, and stir-fried
vegetables retain glucosinolate levels (61). Light cooking may
disrupt plant cell membranes without leaching of the indoles
into the cooking medium, providing the opportunity for my-
rosinase to release these indoles for eventual conversion to
indolo[3,2-b]carbazole (15, 18, 20, 26, 62, 63).

Another potential source of error in a study such as this is
improper collection of biological samples. There was no indi-
cation that the 24-h urine samples were collected improperly.
All participants understood the urine collection procedure, and
participants recorded the time and dates of urine collection. The
relationship betweenBrassicaconsumption and the 2:16 ratio
was not significantly modified by the time period between urine

collection and storage (i.e., urine age), and there was no evi-
dence of differences in sample handling over time. However,
there was no way to be sure of whether samples were contam-
inated or whether urine samples represented a complete 24-h
collection.

The single-armed design could not control for any unmea-
sured factors. Duplicate baseline measures were collected to
produce a stable estimate of the usual dietary intake and hor-
mone levels. There were no significant differences in nutrient
or hormone values between these baseline time points, suggest-
ing that these factors, at the very least, were consistent across
the short term within study population. Prescription medication
use was monitored throughout the study, and participants fol-
lowed a stable drug regime. Soy food and bean food consump-
tion was very low in this Central Massachusetts study popula-
tion consisting primarily of European-Americans, with
consumption consistently estimated at about 0.25 g/day, on
average (only eight participants ate any bean or soy products).
Not surprisingly, this very low soy-food intake was not asso-
ciated with urinary 2:16 values. The short duration of the
intervention (4 weeks) minimized the opportunity for the in-
fluences of seasonal variation in the diet or a social trend that
might affect 2:16 values.

The laboratory data suggest the hypothesis that 2:16 is
important in breast cancer etiologically, but epidemiological
studies evaluating the role of 2:16 and breast cancer risk are
inconsistent. Four case-control studies found significantly
lower 2:16 levels or higher 16HE levels among breast cancer
cases (13, 64–66), whereas a recent analysis of a prospective
study reported a nonsignificant 30% reduction in breast cancer
risk with higher urinary 2:16 values (67). Recently, Ursinet al.
(68) reported an inconsistent finding, where only women who
were in the middle tertile of the 2:16 distribution were less
likely to be diagnosed with breast cancer [ORT2 versusT1 5 0.34
(0.12–0.98); ORT3 versusT1 5 1.13 (0.46–2.78)]. At present, it
is not possible to conclude that 2:16 is a valid endocrine
biomarker for breast cancer risk. Further studies should be
conducted to evaluate this relationship.

To the extent that the urinary 2:16 ratio is etiologically
relevant to breast cancer, frequentBrassicaintake may be able
to reduce breast cancer risk. Studies evaluating urinary 2:16

Table 4 Crude and adjusted mean 2HE:16HE ratio values within levels ofBrassicaintake or IGSL intake during the intervention study phase; with 95% CIs andPs
for difference in 2:16 across categoriesa

Intakeb Range n Mean 2:16
Difference

in 2:16
95% CI Pg

Brassicac (g/day)
132.4 53–181 17 2.16e 0.45e 20.45 to 1.37 0.32
254.5 182–371 17 2.61e

IGSLd (mg/day)
52.6 2–67 17 2.12e 0.53e 20.38 to 1.44 0.25
85.1 68–146 17 2.65e

Brassicac (g/day)
132.4 53–181 17 2.25f 0.27f 20.94 to 1.48 0.65
254.5 182–371 17 2.52f

IGSLd (mg/day)
52.6 2–67 17 2.15f 0.47f 20.54 to 1.49 0.35
85.1 68–146 17 2.62f

a n 5 34.
b MedianBrassicaor IGS intake within each category.
c Derived from 24 HRs.
d Estimated IGSL intake calculated from published estimates and self-reportedBrassicaconsumption.
e Crude: Adjusted for baseline 2:16 only.
f Adjusted: mean 2:16 values and differences in 2:16 adjusted for energy (kcal), protein (g), fiber (g), and social approval scores.
g Two-sidedP under null hypothesis that the difference equals 0.
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values and breast cancer risk identify differences in 2:16 values
between the case and control series ranging from 0.1 to 0.7. A
shift of 0.08 in the 2:16 ratio for every 10 g/day ofBrassica
suggests that the population would need to increaseBrassica
consumption between 12.5 g/day to 75 g/day to move 2:16
ratios to a favorable level to affect the causal mechanism
leading to breast cancer. Of course, caution must be used when
comparing results across laboratories, and the above interpre-
tation should be considered only as a rough guideline.Brassica
vegetable consumption in the United States is estimated be-
tween 5 and 11 g/day (fresh; Refs. 41 and 69). This suggests
that even a small increase inBrassicavegetable consumption
across the population could have an impact on the incidence of
breast cancer.

Presently, there are three approaches to risk reduction:
prophylactic surgery, pharmaceuticals, and behavioral change.
None of these options are universally acceptable or appropriate.
It would be ideal to have a variety of strategies that could be
tailored to an individual’s characteristics and risk profile.Bras-
sica vegetable consumption appears to shift estrogen metabo-
lism in a way consistent with reduced breast cancer risk. Future
work should clarify the relationship between the 2:16 endocrine
biomarker and breast cancer and the relationship betweenBras-
sica intake and breast cancer risk, and it should identify those
women most susceptible to the beneficial action of increased
Brassicaconsumption.
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