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Post-Transcriptional Regulation of Glutathione Peroxidase Gene Expression by

Selenium in the HL-60 Human Myeloid Cell Line

By Sunil Chada, Constance Whitney, and Peter E. Newburger

We have used a cloned eDNA for the major human seleno-

protein. glutathione peroxidase (GPx). to assess the mode

of regulation of human GPx gene (GPX-1 ) expression by

selenium. When the HL-60 human myeloid cell line is grown

in a selenium-deficient medium. GPx enzymatic activity
decreases 30-fold compared with selenium-replete cells.

Upon return to a medium containing selenium in the form of

selenite. GPx activity in the cells starts to increase within

48 hours and reaches maximal (selenium-replete) levels at

7 days. Steady-state immunoreactive protein levels corre-

G LUTATHIONE peroxidase (GPx; EC 1.1 1.1.9) is the

most extensively characterized mammalian selenopro-

tein.’�3 The enzyme catalyzes the degradation of peroxides

and hydroperoxides to the corresponding alcohol, using

reduced glutathione as a specific hydrogen donor4’5

GPx
H2O2 + 2GSH -‘GSSG + 2H2O.

GPx serves as an important element of the cellular antioxi-

dant defense system by detoxifying peroxides and hydroper-

oxides that would otherwise damage cell membranes and

DNA.”6’7

The enzyme is a homotetramer, with each subunit contain-

ing one atom of selenium.8 Selenium resides in the protein in

a catalytically active selenocysteine residue at amino acid

47,9 The presence of selenocysteine in the active site raises

the important question of how this unusual moiety is incorpo-

rated into GPx. The two major possibilities are post-transla-

tional addition of selenium into a common amino acid or

direct cotranslational incorporation of selenocysteine.

Immunologic studies have failed to find any evidence for a

GPx precursor protein or apoenzyme.’#{176}” Cycloheximide and

puromycin have been shown to inhibit the incorporation of

radiolabeled selenium into GPx in isolated perfused rat

liver.’2 Further studies have suggested that rat liver contains

a species of tRNA that is specific for selenocysteine and that

the aminoacylated tRNA is more active in an in vitro protein

synthesis system than selenite, selenocysteine, or the deacyl-

ated tRNA.’3 Isotope dilution studies have indicated that

free selenocysteine is not an intermediate in the labeling of

GPx by [755e]-selenite.’2 Together, these data suggest, but do

not directly demonstrate, a translational mechanism for

selenocysteine incorporation into GPx. Sequence analysis of

the murine glutathione peroxidase gene has revealed the

selenocysteine residue to be encoded by a thymine-guanine-

adenine (TGA) “termination” codon.’4 An identical codon,

and overall similar sequences, have recently been reported

for the human GPx (GPXJ) gene in clones isolated from

human liver cDNA,’5 kidney cDNA,’6 and genomic’7
libraries.

Using oligonucleotides directed against the bovine amino

acid sequence, we have also isolated cDNA clones corre-

sponding to the human GPx mRNA.’8 The present study

used the cloned GPx cDNA to examine the regulation of the

human GPXJ gene in response to selenium depletion and

late with enzymatic activity. Cycloheximide inhibits the rise

in GPx activity that accompanies selenium replenishment.

indicating that protein synthesis is required for the

increase. However. GPx mRNA levels and the rate of

transcription of the human GPx gene change very little and

thus appear to be independent of the selenium supply.

Thus the human GPx gene appears to be regulated post-

transcriptionally. probably cotranslationally. in response to

selenium availability.

@1989 by Grune & Stratton, Inc.

repletion, using the HL-60 human myeloid leukemia cell

line’9 as an in vitro model system. This cell line can be

cultured in defined medium with and without sodium selenite

supplementation,�#{176} thus allowing selenium-dependent regu-

lation of GPx activity in a homogeneous cell population free

of the effects of whole organism nutrition and metabolism.

MATERIALS AND METHODS

Cells. HL-60 cells (originally obtained from Dr R. Gallo’9) were
maintained in RPMI 1640 medium, supplemented with either

insulin, transferrin, and selenium (ITS; ITS premix, Collaborative
Research, Inc. Lexington, MA) containing insulin (5 pg/mL),
transferrin (5 pg/mL) and selenium as sodium selenite (5 ng/mL);
or insulin and transferrin (IT) only.�#{176}

In order to assess whether selenium deprivation caused severe

generalized biological consequences, selenium-replete cells (cultured

for 30 days in ITS medium) and selenium-deficient cells (day 20 in
IT medium) were examined for their ability to differentiate morpho-
logically and functionally. Table 1 shows cell morphology, assessed

by differential counting of Wright-Giemsa-stained cytocentrifuge
preparations of HL-60 cells cultured for 3 weeks in ITS or IT

medium and then treated with 80 mmol/L dimethylformamide

(DMF) to induce granulocytic differentiation.2’ Selenium-deficient

and selenium-replete cells developed equally well into the expected

pattern of distribution into progressively more mature myeloid cell

types. Cells grown in IT and ITS also exhibited similar levels of

functional differentiation as assayed by reduction of nitroblue

tetrazolium dye,� used as a measure of respiratory burst function
(Table 2). When ITS, IT, or serum-supplemented cells were treated
with phorbol myristate acetate (l0’ mol/L) to induce macrophagic

differentiation,23 they also differentiated similarly, as assayed by
morphology and adherence (data not shown).
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Table 1 . Effect of Selenium on Morphologic Differentiation of

HL-60 Cells

Cells

Granulocytic Differentiat ion Stage

Promyelo Myelo Meta Band PMN

Day 0

IT

ITS

83

87

9 2

9 4

1

0

0

0

Day 2

IT

ITS

49

51

50 1

36 7

0

4

0

2

Day 4

IT

ITS

5

9

71 20

50 30

4

7

0

5

Day 6

IT

ITS

2

1

41 36

35 41

16

24

5

9

HL-60 cells were grown in selenium-replete (ITS) or -deficient (IT)

medium as indicated. Granulocytic differentiation was induced by the

addition of dimethylformamide (DMF) for the times indicated. and the

percentages of differentiated cells assayed morphologically.

Abbreviations: Promyelo, promyelocyte; Myelo, myelocyte; Meta.

metamyelocyte; Band, band neutrophil; PMN. polymorphonuclear leuko-

cyte.

GPx activity. GPx enzymatic activity was monitored using an

adaptation of the coupled peroxidase-reductase method of Beutler.24
Cells were adjusted to 2 x 107/mL in Dulbecco’s phosphate-

buffered saline (PBS) pH 7.4. Both sample and reference cuvettes
contained 106 cells, 0.05% Triton X-l00, 0.2 mmol/L reduced
nicotinamide-adenosine dinucleotide phosphate (NADPH), 2

mmol/L reduced glutathione (GSH), and I U/mL glutathione

reductase. The oxidation of NADPH upon addition of t-butyl
hydroperoxide to the sample cuvette was followed spectrophoto-

metrically at 340 nm.�#{176}
Protein separation and detection (Western blotting). Postnu-

clear supernatant fractions from 3 x 106 cells, pretreated with 1

mmol/L diisopropyl fluorophosphate, were prepared as described,25

electrophoresed under reducing conditions on a I 0% sodium dodecyl

sulfate (SDS)-polyacrylamide gel, transferred to nitrocellulose by

standard procedures,26 detected with polyclonal anti-GPx antiserum,

and stained with a goat-anti-rabbit alkaline-phosphatase-coupled

second antibody.

cDNA clones. Human GPx cDNA’8 or its restriction fragments
(digested according to the endonuclease supplier’s instructions) were

Table 2. Functional Differentiation of HL-60 Cells Grown in

Selenium-Replete. Selenium-Deficient. or Fetal Calf

Serum-Containing Medium

NBT ReduCtiOn
Cells Medium 1% Positive)

HL-60 ITS 87
HL-60 IT 89

HL-60 FCS 88
Granulocytes - 98

HL-60 cells were cultured as indicated in RPMI 1 640 medium

containing ITS, IT, or 10% fetal calf serum (FCS) and harvested after 6

days of further incubation in the same medium containing 60 mmol/L

DMF. Granulocytes were isolated from human peripheral blood and

superoxide-generating capacity was determined as the percentage of

cells capable of NBT dye reduction, as described in Materials and

Methods.

gel purified, then cleared ofcontaminating agarose and salt by glass

beads (GENE-CLEAN; Bio 101, Inc. La iolla, CA) and ethanol

precipitation. When necessary, the cDNA was radiolabeled to a
specific activity ofO.5 to 2 x lO� cpm/zg using random oligonucleo-
tide primers.27 Other cDNA clones included human tubulin� (pro-
vided by Dr P. Dobner), heavy chain of phagocyte NADPH oxidase

b-cytochrome,29 phosphoglycerate kinase�#{176}(provided by Dr S.H.

Orkin, The Children’s Hospital, Boston, MA), heavy and light

chains of ferritin3’ (provided by Dr H. Munro, Tufts University,

Boston, MA), and chicken $-actin32 (provided by Dr R. Singer,

University of Massachusetts Medical School, Worcester).
RNA preparation and analysis. Whole-cell RNA was extracted

using the guanidine-HCI method33 and polyadenylated RNA iso-

lated by passage over an oligo-dT cellulose column using standard

methods.M Whole cell or polyadenylated RNA was quantitated
spectrophotometrically, denatured, electrophoresed in a 1 .2% aga-
rose-formaldehyde gel, and then transferred to nitrocellulose or

nylon filters by standard methods.� Slot blots from similarly
prepared RNA were performed using a Schleicher & Schuell
Minifold II apparatus according to the instructions of the manufac-
turer (Keene, NH). Procedures for prehybridization, hybridization,

filter washes, and filter stripping were performed as described by

Gatti et al.35 Control RNA from the cellular slime mold Dictyoste-

hum discoideum was provided by Dr Alan iacobson.
Nuclear runon assay for transcription rates. Nuclear runons

were performed with minor modifications of the method developed

for HL-60 cells by Linial et al.36 HL-60 cells were harvested, washed
once in cold PBS and once in reticulocyte standard buffer (10

mmol/L Tris, pH 7.4; 10 mmol/L NaCI; 3 mmol/L MgC12), and
then lysed with 0.5% NP-40 in reticulocyte standard buffer. Nuclei

were collected by centrifugation at 50 x g. washed twice in

reticulocyte standard buffer, and resuspended in nuclear freezing

buffer (40% glycerol; 50 mmol/L Tris, pH 8.3; 5 mmol/L MgCl2;
0.1 mmol/L EDTA) before immediate use or freezing at - 70#{176}C.At

the time of the assay, the nuclear suspensions receive additions of 20

�tL of 32P-UTP (3,000 Ci/mmol/L; 10 �Ci/�L) and 60 zL of runon

buffer (25 mmol/L Tris, pH 8.0; 12.5 mmol/L MgCI2; 750 mmol/L

KCI: I .25 mmol/L each of adenosine triphosphate [ATPJ, guano-

sine triphosphate [GTPJ, and cytodine triphosphate [CTP]; 1 izmol/
L uridine triphosphate [UTP]; 100 �g creatine phosphokinase;

I mmol/L dithiothreitol; and 20 mmol/L phosphocreatine). After

incubation for 30 minutes at 26#{176}C,the reaction was stopped by
addition of DNase I and CaC12. Newly synthesized RNA was then

extracted, precipitated, and finally resuspended in hybridization

buffer. Trichloroacetic acid-precipitable cpm were determined and
equal counts for each sample within an experiment, usually 3 to 20 x

106 cpm, were then used for hybridizations. Specific sequences
synthesized in the reaction were detected by hybridization to nonla-

beled cDNA probes that were denatured by boiling and applied to

filters in a slot-blot apparatus. The filters were baked, prehybridized,
and hybridized with the labeled, newly synthesized, RNA for 36 to

48 hours at 65#{176}C.The filters were washed, dried, and exposed to
roentgenographic film for autoradiography.

Probes for the nuclear runoffs included a 350 bp fragment
containing the 5’ portion of the GPx cDNA, a 600 bp clone from the

central region of the GPx cDNA, and a I 50 bp restriction fragment

representing the 3’UT region of the GPx cDNA; M13 phage (not

shown) and pBR322 plasmid served as negative controls for nonspe-
cific hybridization.

Densitometry of Northern blots and nuclear runoffs were per-
formed on a Helena Laboratories QuickScan (Beaumont, TX) and

areas under the curves determined by the weight of cut-out chart

paper. For Northern blots, results for the GPx probe were normal-
ized to the relative densities of the /3-actin or phosphoglycerate
kinase signals.
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Effect of selenium on GPx activity and protein. We

have used the HL-60 cell line’9 as a model system to study

the regulation of expression of the human GPx gene by

selenium. This cell line may be maintained in a defined

medium consisting of RPMI 1640 plus insulin and trans-

ferrin, with or without supplemental selenium (IT and ITS

media, respectively).20

To examine the effects of selenium depletion, HL-60 cells

grown in ITS medium were pelleted and resuspended in IT.

Alternatively, cells cultured in IT medium for 2 to 4 weeks to

deplete them of selenium were selenium replenished by

transfer to ITS medium. Aliquots were removed at various

timepoints during these treatments. As shown in Fig I, cells

from selenium-replete medium (ITS point at day 1) con-

tamed substantial amounts of GPx enzymatic activity

(slightly less than 250 nmol/L NADPH oxidized/min/lO’

cells). When these cells were transferred to selenium-

deficient medium (ITS -bIT curve), a time-dependent

decrease in enzymatic activity occurred. After 20 days in

selenium-deficient medium, the cells contained only 4% of

the GPx activity of the initial selenium-replete cells. When

selenium-deficient cells were returned to selenium-replete

medium (IT - ITS), enzymatic activity increased 25-fold to

the level of fully replete cells over approximately seven days.

Thus, the exogenous selenium supply appears to control the

enzymatic activity of GPx in these cells. The rate of change

of enzyme activity with selenium replenishment is slower

than might be expected if selenium were incorporated into a

pre-existing stable apoenzyme.

Total cellular proteins isolated from selenium-replete and

selenium-deficient HL-60 cells were analyzed using a poly-

clonal antibody raised against human erythrocyte GPx.’#{176}

The Western blot shown in Fig 2 indicates that selenium

depletion causes a rapid decrease in cellular GPx immunore-

active protein, with negligible levels being observed after

seven days in IT medium. When these cells were returned to

selenium-replete (ITS) medium (ie, day 20 in IT was day 0

0

C

E

0�,�

It)

a

z
0
E
C

Fig 1 . GPx activity of HL-60 cells during selenium depletion and

replenishment. Selenium-replete cells (ITS) were transferred to
selenium-deficient medium (ITS -� IT) and GPx activity assayed at
the indicated number of days tborein (abscissa). Selenium-deficient

cells (IT) were transferred to selenium-replete medium (IT -‘ ITS)
and GPx activity similarly assayed. GPx activity was measured

spectrophotometrically as the oxidation of NADPH. as described in
Materials and Methods.

GLUTATHIONE PEROXIDASE GENE EXPRESSION 2537

RESULTS in ITS), GPx protein was detectable after 2 days, and was

substantially higher after 30 days of selenium replenishment.

These changes in immunoreactive GPx protein roughly cor-

relate with GPx enzymatic activity, and thus further support

the model of selenium regulation of GPx synthesis, as

opposed to insertion into a pre-existing apoenzyme. The

findings also confirm our previous studies using the same

antibody in a radioimmunoassay.’#{176}

Inhibition of protein synthesis by cycloheximide (CYX)

was used to investigate whether the increase in GPx activity

with selenium is due to de novo protein synthesis in

selenium-replenished cells. As illustrated in Fig 3, selenium-

deficient cells (equilibrated in IT medium) showed a 4.6-fold

increase in GPx activity 24 hours after transfer to ITS

medium. However, when the ITS also contained CYX 50

j�g/mL (ITS + CYX), the rise in activity was nearly abol-

ished, with only a 1 .6-fold rise evident. CYX treatment of

selenium replete cells (ITS + CYX in the lower panel of Fig

3) caused a decrease in GPx activity similar in magnitude to

that observed when the replete cells were transferred to

selenium-deficient medium (IT; lower panel). The combina-

tion of CYX and selenium depletion (IT + CYX) did not

diminish GPx activity significantly more than either treat-

ment alone. These results indicate that the increase in

activity observed with selenium replenishment requires pro-

tein synthesis.

CYX treatment of ITS cells produced a decrease in

activity similar to that observed when selenium was removed
from replenished cells. This finding suggests a rapid inhibi-

tion of synthesis of GPx protein and is consistent with the

model of a specific translational block in the absence of

selenium.

Effect of selenium on GPx gene expression. We next

examined GPX mRNA levels in selenium-replete cells

(grown in ITS medium for 30 days) or selenium-deficient

cells (grown in IT medium for 20 days). Figure 4 shows an

autoradiograph of a slot blot from such an experiment. The

indicated amounts of total cellular RNA from ITS cells and

IT cells were probed with the cDNA for GPx. RNA from the

cellular slime mold D discoideum served as a negative

control. Densitometric scans of this blot and Northern blots

from similar experiments (not shown) demonstrated a range

of only 1.2- to 2.3-fold more GPX mRNA in selenium-

replete than in selenium-deficient cells, relative to the levels

of constitutively expressed control transcripts (f3-actin and

phosphoglycerate kinase). On the slot blot, the ratios were

similar at each RNA amount loaded (range, 1.36 to 1.99).

Thus, selenium depletion caused a decrease in steady-state

levels of GPx mRNA, but the change was not nearly

sufficient to explain the 25-fold difference in enzyme activity
0 1 2 3 5 7 20 and content.

Days In order to test whether selenium depletion affects GPx

gene expression at the level of transcription, nuclear runon

experiments were performed to examine transcription rates

of the GPx gene in selenium replete (ITS) or deficient (IT)

cells. Radiolabeled runoff RNA from ITS and IT cells was

hybridized with filters bearing slots with immobilized cDNA

fragments representing the 5’ end, the middle, and the 3’ end

of the GPx transcription unit. The results are shown in Fig 5

ITS

300�

200

100

. . . .
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DAY:O 1 5 7

Se-Deficient IT U
(IT) ITS

ITS+CYX �

Se-Replete ITS
(ITS) ITS + CYX

IT

IT +CYX

Fig 3. Effect of CYX on GPx activity during selenium replenish-
ment. Selenium-deficient or -replete HI-SO cells were pelleted and
resuspended in either IT or ITS medium. with CYX 50 �tg/mL in the
indicated groups. GPx enzyme activity. shown as the horizontal
bars. was measured spectrophotometrically 24 hours later.
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28kd-”

18kd-�’

ITS-”�IT

0 2 5

IT-ITS

Fig 2. Immunoreactive GPx protein in HL-60 cells during selenium depletion and replenishment. analyzed by Western blotting.

Selenium-replete cells were transferred to selenium-deficient medium (IT) and protein extracted at days 1 . 5. 7. and 20 (as indicated) of

selenium depletion. The resultant selenium-deficient cells were transferred to selenium-replete medium (ITS. day 20 in IT becomes day 0
in ITS) and protein extracted at days 2. 5. and 30 (as indicated) of selenium replenishment. Western blot analysis using a polyclonal
anti-GPx antibody was performed as described in Materials and Methods; the size markers on the left indicate the positions of 28-Kd and
1 8-Kd molecular weight standards.

The signals obtained from all three GPx probes were only

slightly higher in the replete relative to the deficient cell

nuclei. Similar ITS to IT labeling ratios were observed for

the GPx probe at the 5’ and 3’ ends of the mRNA, indicating

that there was no interruption of transcription37 between the

two exons in selenium-deficient cells. The other genes studied

in this experiment (/3-actin, phagocyte cytochrome b heavy

chain [X-CGD], and ferritin heavy and light chains) dis-

played a similar, slight difference in transcription rates in

selenium-deficient and -replete cell nuclei. The observed

transcription rates parallel the steady-state levels of the

transcripts, indicating a small but general transcriptional

enhancement in the selenium-replete state (or inhibition in

selenium deficiency). Overall, these results support the infer-

ence that the major degree of regulation of GPx expression

by selenium is not mediated at the level of gene tran-

scription.

DISCUSSION

We have used the human HL-60 myeloid cell line as a

model system to study the relationship between selenium

supply and the expression of the human gene for GPx, an

unusual mammalian selenoprotein incorporating selenocys-

teine in its active site.9 GPx enzymatic activity was approxi-

GPx ACTIVITY

RESUSPENSION (nmol NADPH oxidized/mini 10’ cells)
CELLS MEDIUM 0 100 200 300

I- I I I

mately 30-fold higher in selenium-replete than -deficient

cells. When replete cells were deprived of selenium, enzy-

matic activity decreased rapidly, reaching selenium-deficient

baseline levels after approximately 10 days. Replenishment

of deficient cells with selenium led to a marked increase in

activity (to 25% of selenium-replete) within 24 hours and full

activity after 7 days. Steady-state levels of GPx protein

correlated with enzymatic activity. CYX studies showed that

the increase in GPx activity in response to selenium required

protein synthesis, and that the decrease in activity upon

selenium deprivation may be mimicked by blocking protein

synthesis. However, steady-state levels of GPx mRNA and

the rate of transcription of the GPx gene were essentially

independent of the selenium supply. These studies show that

the availability of selenium controls human GPx activity and

that regulation is exerted at a post-transcriptional level.

The relationship between selenium supply and GPx

enzyme activity in vivo has received extensive investigation

both experimentally in animals38 and clinically in humans.39’�#{176}

ITS IT p�g RNA loaded

2

5
HL-60

10

20

20 Dictyostelium

Fig 4. GPx mRNA expression in selenium-replete (ITS) and
-deficient (IT) HI-SO cells. The cells were cultured for 3 weeks in
the indicated medium before harvesting for extraction of total
cellular RNA and slot blot analysis as described in Materials and
Methods. Total cellular RNA from the cellular slime mold D discoi-
deum served as a negative control. Each slot contained the amount
of RNA indicated to the right.
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5,

GPx

3,

pBR

X-CGD

TUBULIN

�-ACTI N

FERRITI Nf H
[L

ITS IT

Fig 5. Transcription of GPx mRNA in nuclei from selenium-
replete and -deficient HI-SO cells. The autoradiograph shows the
amount of RNA transcribed in vitro by nuclei from cells grown in ITS

or IT medium. The labels on the left indicate the cDNA probes used

to identify the newly synthesized mRNA: GPx probes. including full
length eDNA (center) and restriction fragments from its 5’ and 3’
ends as indicated; pBR (plasmid negative control); the phagocyte
cytochrome b heavy chain (X-CGD); tubulin; $-actin; and ferritin
heavy (H) and light (1) chains.

However, the effect of selenium deprivation on GPx gene

expression in vivo has been studied only recently by several

groups reporting differing results. Saedi et al,4’ using a murine

GPx cDNA, and Yoshimura et al,42 using a rat GPx cDNA,

found on Northern blot analysis that liver from selenium-

deficient rats contained much lower GPx mRNA levels than

liver from selenium-replete rats. However, Reddy et al,43 using

a rat GPx cDNA in similar experiments, found virtually equal

levels of GPx transcripts in selenium-deficient and -replete

liver extracts. Our results, in a defined in vitro system, are

more consistent with the latter findings, which are also

suggestive of post-transcriptional regulation. However, vary-

ing control mechanisms may operate in studies involving

different species, cell lineages, and experimental designs.

A likely mechanism of post-transcriptional regulation

would be cotranslational insertion of selenocysteine into GPx.

Recently, analyses of the murine’4 and human’5”6”8 GPx

cDNA sequences have demonstrated the very unusual occur-

rence of the TGA “terminator” codon at the position encoding

selenocysteine. The carbon backbone of selenocysteine in GPx

has recently been shown to be derived from serine” rather

than cysteine. Taken together with Tappel’s previous demon-

stration of a selenocysteyl-tRNA,’3 these findings suggest the

following cotranslational model for insertion of selenocysteine

into GPx: a uracil-guanine-adenine (UGA)-recognizing

tRNA is charged with serine, which is then enzymatically

altered to generate a selenocysteyl-tRNA, which in turn

incorporates selenocysteine directly at the UGA codon occur-

ring in the appropriate codon context. Such a cotranslational

mechanism for selenocysteine incorporation at a UGA codon

has recently been directly demonstrated in the synthesis of

formate dehydrogenase in Escherichia co/i.45

Possible candidate tRNAs for this process are the opal

(UGA) suppressor tRNA species that have been character-

ized by Hatfield et al in mammalian, avian, and Xenopus

tissues; they are the only known naturally occurring suppres-

sor tRNAs in higher eukaryotes.� They are aminoacylated by

seryl-tRNA synthetase and then phosphorylated to form

phosphoseryl-tRNA. Their unique features and extreme con-

servation suggest that they may be used in specific biochemi-

cal processes requiring suppression of terminator codons

within specific sequence contexts.� The insertion of selenocys-

teine into GPx may represent one such condition, in that the

modified amino acid is derived from serine and the sequence

context of the UGA is unusual and perhaps conducive to

selective secondary structure.’8

Thus, regulation could proceed by control of the translation

process at the mRNA UGA triplet that can function either as

the codon for selenocysteine or as a terminator. Selenium

incorporated into a selenocysteyl-tRNA could allow transla-

tional read-through whereas, in the absence of selenium, the

selenocysteine tRNA could remain unacylated and the UGA

codon would then function in its more usual terminator

capacity. Alternatively, translation in the absence of selenium

could proceed at a normal or somewhat reduced rate, but with

misincorporation of a different amino acid (eg, phosphoser-

ine�). In that case, the resultant inactive protein would also

have to be very unstable in order to escape detection by the

polyclonal antisera used in our western blots (Fig 2) and

radioimmunoassays)#{176} The Western blot also failed to detect

any truncated GPx polypeptide, the translation product that

would be expected if termination were taking place at the

UGA codon in selenium-deficient cells. However, such a short

(46-amino acid) peptide may be unstable in the cytoplasmic

milieu and rapidly degraded.

Alternatively, a post-translational mechanism of control

would provide a consistent, but less attractive, model for the

present studies. Direct insertion of selenium into the com-

pleted 22 Kd GPx polypeptide has been proposed.47’� The

latter study suggested that selenocysteine was generated by a

modification reaction between the side chain of cysteine in the

polypeptide and a precursor selenium compound. However,

such post-translational insertion of selenium into a stable

apoenzyme is unlikely in view of the relatively slow kinetics

and dependence on protein synthesis for rise in GPx activity

after selenium replenishment (Figs I and 3), as well as the

absence of immunoreactive GPx protein on Western blotting

(Fig 2). The existence of a labile apoenzyme cannot be ruled

out. However, it would have to be either very unstable in the

absence of selenium or not be recognized by the anti-GPx

antibody used in this study. The latter possibility is unlikely

since the antibody, generated against purified human erythro-

cyte GPx, is polyclonal and recognizes both native and

SDS-denatured GPx protein. However, selenium could be

required to stabilize a labile GPx apoenzyme in the manner of

metal-binding proteins, such as ferritin,49 that may be pro-

tected against degradation by the prosthetic group.
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Finally, more complex mechanisms could account for the

post-transcriptional regulation of human GPx expression by

selenium. For example, further analogies may be drawn to the

regulation of ferritin synthesis by iron, mediated both by

iron-responsive mRNA elements�#{176} and by protection of the

protein from proteolytic degradation.49 Selenium could also

play a role in the recruitment of GPx mRNA onto polysomes

or in the regulation of its translational initiation.

The present studies show that the human GPx gene is

1. Floh#{233}L: The glutathione peroxidase reaction: Molecular basis

of the antioxidant function of selenium in animals. Curr Top Cell
Regul 27:473, 1985

2. Behne D, Hilmert H, Scheid 5, Gessner H, Elger W: Evidence

for specific selenium target tissues and new biologically important

selenoproteins. Biochim Biophys Acts 966:12, 1988
3. Danielson KG, Medina D: Distribution of selenoproteins in

mouse mammary epithelial cells in vitro and in vivo. Cancer Res

46:4582, 1986
4. Mills GC: Glutathione peroxidase: An erythrocyte enzyme

which protects hemoglobin from oxidative breakdown. J Biol Chem

229:189, 1957

5. Tappel AL, Hawkes WC, Wilhelmsen EC, Motsenbocker MA:

Selenocysteine-containing proteins and glutathione peroxidase. Meth-
ods Enzymol 107:602, 1984

6. Fridovich I: The biology of oxygen radicals. Science 201:875,

1978

7. SchraufstAtter I, Hyslop PA, Jackson JH, Cochrane CG: Oxi-

dant-induced DNA damage of target cells. J Clin Invest 82:1040,
I 988

8. Tappel AL: Selenium-Glutathione peroxidase: Properties and
synthesis. Curr Top Cell Regul 24:87, 1984

9. Forstrom JW, Zakowski ii, Tappel AL: Identification of the

catalytic site of rat liver glutathione peroxidase as selenocysteine.

Biochemistry 17:2639, 1978
10. Takahashi K, Newburger PE, Cohen Hi: Glutathione peroxi-

dase protein. Absence in selenium deficiency states and correlation
with enzymatic activity. J Clin Invest 77:1402, 1986

I I . Yoshimura 5, Komatsu N, Watanabe K: Purification and
immunohistochemical localization of rat liver glutathione peroxidase.
Biochim Biophys Acta 621 :1 30, 1980

I 2. Sunde RA, Hoekstra WG: Incorporation from selenite and

selenocysteine into glutathione peroxidase in the isolated perfused rat

liver. Biochem Biophys Res Commun 93:1 181, 1980
13. Hawkes WC, Tappel AL: In vitro synthesis of glutathione

peroxidase from selenite. Translational incorporation of selenocys-

teine. Biochim Biophys Acts 739:225, 1983
14. Chambers I, Frampton J, Goldfarb P. Affara N, McBain W,

Harrison PR: The structure ofthe mouse glutathione peroxidase gene:

The selenocysteine in the active site is encoded by the “termination”
codon,TGA. EMBOJ 5:1221, 1986

15. Fallon Hi, Frei E III, Davidson JD, Trier iS, Burk D:

Leukocyte preparations from human blood: Evaluation of their mor-

phologic and metabolic state. J Lab Clin Med 59:779, 1962
16. Sukenaga Y, Ishida K, Takeda T, Takag.i K: cDNA sequence

coding for human glutathione peroxidase. Nucleic Acids Res 15:7 178,

I987

17. Ishida K, Morino T, Takagi K, Sukenaga Y: Nucleotide
sequence of a human gene for glutathione peroxidase. Nucleic Acids
Res 15:10051, 1987

18. Chada 5, Whitney C, Newburger PE: Isolation and regulation
of the human glutathione peroxidase gene, in Cerutti P, Fridovich I,

regulated post-transcriptionally by selenium. The data are

most consistent with, but do not directly demonstrate, cotrans-

lational insertion of selenocysteine by specific suppression of a

UGA codon in selenium replete cells and termination of

translation in selenium deficiency. The studies provide a basis

for the further elucidation of the precise control mechanisms

involved and for the determination of the role of the UGA

codon and its surrounding structure in the synthesis of GPx

and other selenoproteins.

McCord i (eds): Oxy-Radicals in Molecular Biology and Pathology.
New York, NY, Liss, 1988, p 273

19. Collins Si, Gallo RC, Gallagher RE: Continuous growth and
differentiation of human myeloid leukaemic cells in suspension cul-

ture. Nature 270:347, 1977
20. Speier C, Baker 55, Newburger PE: Relationships between in

vitro selenium supply, glutathione peroxidase activity and phagocytic

function in the HL-60 human myeloid cell line. J Biol Chem
260:8951, 1985

21. Collins Si, Ruscetti FW, Gallagher RE, Gallo RC: Terminal

differentiation of human promyelocytic leukemia cells induced by
dimethyl sulfoxide and other polar solvents. Proc NatI Acad Sd USA

75:2458, 1978

22. Newburger PE, Chovaniec ME, Greenberger iS, Cohen Hi:
Functional changes in human leukemic cell line HL-60: A model for

myeloid differentiation. i Cell Biol 82:3 1 5, 1979
23. Rovera G, Santoli D, Damsky C: Human promyelocytic

leukemia cells in culture differentiate into macrophage-like cells when
treated with phorbol ester. Proc NatI Aced Sci USA 76:2779, 1979

24. Beutler E: Red Cell Metabolism (ed 3). Philadelphia, PA,

Grune & Stratton, 1984, p74
25. Dinauer MC, Orkin S. Brown R, iesaitis AJ, Parkos CA: The

glycoprotein encoded by the X-linked chronic granulomatous disease

locus is a component of the neutrophil cytochrome b complex. Nature
327:717, 1987

26. Towbin H, Staehelin T, Gordon i: Electrophoretic transfer of

proteins from polyacrylamide gels to nitrocellulose sheets: Procedure
and some applications. Proc Nail Acad Sci USA 76:4350, 1979

27. Feinberg AP, Vogelstein B: Addendum to a technique for
radiolabelling DNA restriction endonuclease fragments to high spe-

cific activity. Anal Biochem 137:266, 1984
28. Hall iL, Dudley L, Dobner PR, Lewis SA, Cowen NJ:

ldentification of two human beta-tubulin isotypes. Mol Cell Biol

3:854, 1988
29. Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, New-

burger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH: Cloning
the gene for an inherited disorder-chronic granulomatous disease-
on the basis of its chromosomal location. Nature 322:32, 1986

30. Michelson AM, Markham AF, Orkin SH: Isolation and DNA

sequence of a full-length cDNA for human X chromosome-encoded
phosphoglycerate kinase. Proc Natl Aced Sci USA 80:472, 1983

3 1 . Aziz N, Munro HN: Both subunits of rat liver ferritin are

regulated at a translational level by iron induction. Nucleic Acids Res

14:915, 1986
32. Cleveland D, Lopata MA, MacDonald R, Cowan N, Rutter

W, Kirschner M: Number and evolutionary conservation of alpha-

and beta-tubulin and cytoplasmic actin genes using specific cloned
cDNA probes. Cell 20:95, 1980

33. Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns
GAP, Latt SA, Orkin SH: Human von Willebrand factor: Isolation of
complementary DNA clones and chromosomal location. Science
228:1401, 1985

 For personal use only. at UNIV OF MASSACHUSETTS on April 3, 2008. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


GLUTATHIONE PEROXIDASE GENE EXPRESSION 2541

42. Yoshimura 5, Takekoshi 5, Watanabe K, Fujii-Kuriyama Y:
Determination of nucleotide sequence of cDNA coding rat gluta-

34. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A
Laboratory Manual. Cold Spring Harbor, NY, Cold Spring Harbor
Laboratory, 1982, p 197

35. Gatti RA, Concannon P. Salser W: Multiple use of southern
blots. Biotechniques 2:148, 1984

36. Linial M, Gunderson N, Groudine M: Enhanced transcription
of c-myc in bursal lymphoma cells requires continuous protein synthe-

sis. Science 230:1 126, 1985
37. McCachren SS Jr. Salehi Z, Weinberg iB, Niedel JE: Tran-

scription interruption may be a common mechanism of c-myc regula-

tion during HL-60 differentiation. Biochem Biophys Res Commun

151:574, 1988

38. Baker 55, Cohen Hi: Altered oxidative metabolism in sIc-

nium-deficient rat granulocytes. i Immunol 130:2856, 1983
39. Van Rij AM, Thompson CD, McKenzie iM, Robinson MF:

Selenium deficiency in total parenteral nutrition. i Clin Nutr

32:2076, 1979

40. Cohen Hi, Chovaniec ME, Mistretta D, Baker 55: Selenium
repletion and glutathione peroxidase-differential effects on plasma

and red blood cell enzyme activity. Am i Clin Nutr 41:735, 1985
41. Saedi MS. Smith CG, Frampton i, Chambers I, Harrison PR,

Sunde RA: Effect of selenium status on mRNA levels for glutathione

peroxidase in rat liver. Biochem Biophys Res Commun 153:855,
I 988

thione peroxidase and diminished expression of the mRNA in sIc-
nium-deficient rat liver. Biochem Biophys Res Commun 154:1024,
I 988

43. Reddy AP, Hsu BL, Reddy PS, Li N, Thyagaraju K, Reddy
CC, Tam MF, Tu C-PD: Expression ofglutathione peroxidase I gene
in selenium-deficient rats. Nucleic Acids Res I 6:5557, 1988

44. Sunde R, Evanson i: Serine incorporation into the selenocys-
teine moiety of glutathione peroxidase. i Biol Chem 262:933, 1987

45. Leinfelder W, Zehelein E, Mandrand-Berthelot MA, B&k A:
Gene for a novel tRNA species that accepts L-serine and cotransla-
tionally inserts selenocysteine. Nature 331:723, 1988

46. Lee Bi, de Ia Pena P. Tobian JA, Zasloff M, Hatfield D:

Unique pathway of expression of an opal suppressor phosphoserine

tRNA. Proc NatI Aced Sci USA 84:6384, 1987

47. Yasumoto K, Iwami K, Yoshida M: Vitamin B6-dependence
of selenomethionine and selenite utilization for glutathione peroxidase

in the rat. i Nutr 109:760, 1979

48. Diplock AT: Metabolic and functional defects in selenium

deficiency. Philos Trans R Soc Lond [BiolJ 294:105, 1981

49. Drysdale JW, Munro HN: Regulation of synthesis and turn-

over of ferritin in rat liver. J Biol Chem 241 :3630, 1966

50. Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault

TA, Klausner RD. Harford iB: Iron-responsive elements: Regulatory

RNA sequences that control mRNA levels and translation. Science
240:924, 1988

 For personal use only. at UNIV OF MASSACHUSETTS on April 3, 2008. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl

	Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line
	Let us know how access to this document benefits you.
	Repository Citation

	tmp.1208198403.pdf.SVKw_

