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Developmental Separation of V(D)J Recombinase Expression 
and Initiation of IgH Recombination in B Lineage 
Progenitors In Vivo

 

Lisa Borghesi and Rachel M. Gerstein

 

Molecular Genetics and Microbiology, University of Massachusetts Medical School (UMMS), Worcester, MA 01655

 

Abstract

 

In B lineage progenitors, V(D)J recombination occurs only during distinct stages of development
and is restricted to immunoglobulin loci. This process is thought to be controlled by both reg-
ulated expression of the V(D)J recombinase and by limited accessibility of target loci to the
recombinase complex. However, it is unknown whether these two processes occur concomi-
tantly in developing B lineage progenitors or whether these events are temporally distinct and,
therefore, potentially independently regulated. To distinguish between these possibilities, we
developed a transgenic V(D)J recombination substrate that is not governed by the same chromatin
remodeling constraints as endogenous immunoglobulin heavy chain (IgH) loci and examined
the requirements for V(D)J recombination to initiate in early B lineage progenitors. We find
that single B lineage precursors express an active V(D)J recombinase in vivo before the stage

 

when IgH rearrangements are frequently detectable. Our results indicate that the onset of
recombinase activity and the initiation of IgH recombination are developmentally distinct
events in the B lineage.

Key words: B lymphopoiesis • V(D)J recombination • chromatin • immunoglobulin 
heavy chain • hematopoiesis

 

Introduction

 

V(D)J recombination, the site-specific DNA recombination
process that assembles genes encoding variable regions of
antigen receptor loci, produces the extraordinary diversity
characteristic of the adaptive immune response. During B
and T lymphopoiesis, two key events must occur in order
for V(D)J recombination to initiate: (a) developmentally
regulated expression of an active V(D)J recombinase (1, 2)
and (b) permissive changes in chromatin accessibility of
antigen receptor loci (3–7). Although great strides have
been made toward understanding the role of chromatin
modification in enabling V(D)J recombination, it is unknown
whether induction of recombinase expression occurs con-
comitant with changes in locus accessibility or whether
these events are temporally distinct and, therefore, poten-
tially independently regulated.

The V(D)J recombinase is composed of recombinase-
activating gene (RAG)1 and RAG2 as well as Ku70 and
Ku80, DNA-PKcs, DNA ligase IV, XRCC4, and Artemis.
The RAG proteins are the only components of the recom-

binase currently known to exhibit lineage specificity. 

 

rag

 

genes are transcribed in both a lymphoid-restricted (8, 9)
and stage-specific (2, 10–13) manner and are thought to
limit V(D)J recombinase activity to developing B and T cells.

It is critical to appreciate at least two lines of evidence
suggesting that expression of 

 

rag

 

 transcripts alone cannot
be a definitive indicator of the presence of recombinase
activity. First, B and T cell precursors that express 

 

rag

 

 tran-
scripts but lack RAG protein have been identified (2, 14).
Second, although RAG2 (but not RAG1) levels fluctuate
greatly during cell division, transcription of both 

 

rag

 

 genes
remains relatively steady state (14, 15). Moreover, because
RAG degradation is tied to the cell cycle recombinase activity
depends not only on accumulation of RAG proteins but
also relocalization of RAG2 to the nucleus subsequent to
each cell division (14–16). Finally, it is also unknown
whether the presence of RAG protein accurately indicates
activity of the entire V(D)J recombinase complex. For
these reasons, the developmental expression of recombinase
activity in the earliest lymphoid subsets remains unclear.

 

Address correspondence to Rachel M. Gerstein, University of Massachusetts
Medical School, Molecular Genetics and Microbiology, 55 Lake Ave.
North, S5-714, Worcester, MA 01655. Phone: (508) 856-1044; Fax:
(508) 856-5920; email: rachel.gerstein@umassmed.edu

 

Abbreviations used in this paper:

 

 GFP, green fluorescence protein;

 

 

 

IgH, Ig
heavy chain; RAG, recombinase-activating gene; RSS, recombination
signal sequence.
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Within the B cell compartment, 

 

rag

 

 transcripts are readily
detectable in the fraction B (IgM

 

�

 

B220

 

�

 

CD43

 

�

 

CD24

 

�

 

)
stage of development (11) when 

 

�

 

60% of cells have D-J

 

H

 

joins (1, 13). In contrast, only rare (

 

�

 

4% of cells) D-J

 

H

 

 re-
arrangements are detectable in fraction A

 

2

 

 (17). Recent ev-
idence suggests that 

 

rag

 

 genes may be expressed in fraction
A

 

2

 

 or even earlier stages of development. In fraction A

 

2

 

(B220

 

�

 

AA4.1

 

�

 

CD4

 

�

 

CD24

 

�

 

), 

 

rag2

 

 locus transcription was
detectable using a green fluorescence protein (GFP) re-
porter construct (12) but not by PCR analysis (13, 18). As
another example, 

 

rag1

 

 and 

 

rag2

 

 expression is detectable in
lin

 

�

 

ckit

 

lo

 

 progenitors, bipotential cells that retain the capac-
ity to give rise to B cells and NK cells in vitro (19), and
D

 

H

 

-J

 

H

 

 rearrangements are detectable among CLPs (20).

Currently, it is unknown when V(D)J recombinase ex-
pression and activity occurs relative to the changes in acces-
sibility that enable recombination of Ig antigen receptor
loci. For example, finding only rare D-J

 

H

 

 rearrangements in
fraction A

 

2

 

 could reflect lack of recombinase activity or in-
ability to recombine Ig heavy chain (IgH) due to con-
strained chromatin. This important issue bears not only on
our understanding of basic control of V(D)J recombination
initiation but also on understanding extrinsic signals that
may control these two processes separately. To begin to ad-
dress this problem, we developed a flow cytometric assay for
V(D)J recombinase activity in vivo in which V(D)J recom-
bination is indicated by a fluorescent reporter gene. This ap-
proach enables us to examine in vivo the relationship be-

Figure 1. V(D)J recombinase
activity in early B lineage precur-
sors. (A) The transgenic H2-
SVEX substrate contains VEX
(white rectangle) driven by the
murine H2K promoter (black
rectangle). VEX within the sub-
strate is initially in the antisense
orientation and is flanked by V(D)J
recombination signal sequences
(triangles) which direct inver-
sional recombination. (B) Bone
marrow from SB110 H2-SVEX
transgenic mice was stained with
antibodies to Ly6C, DX5, B220,
CD43, CD19, CD24, and IgM in
order to examine VEX expression
throughout B cell development.
The percentage of cells in each
region is given. The data are rep-
resentative of three independent
experiments.
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tween V(D)J recombinase activity and antigen receptor
locus rearrangement in developing lymphocyte precursors.

 

Materials and Methods

 

Mice. 

 

C57BL/6 and RAG1

 

�

 

/

 

�

 

 mice were obtained from
the Jackson Laboratories. RAG2 GFP reporter NG BAC mice
(FVBN) (12) were backcrossed to C57BL/6 in our laboratory for
12 generations. All mice were treated humanely in accordance
with federal and state government guidelines and UMMS institu-
tional animal committees.

 

Construction of H2-SVEX Transgenic Mice. 

 

The H2-SVEX
transgene was constructed by placing the RSS-VEX-RSS frag-
ment (Fig. 1 A) into the H2K (HIL) transgenic vector using a
unique NotI restriction site located between the H2 promoter
and the H2 exon fragment as described previously (21). The H2K
cassette vector expresses genes under the control of the H2K pro-
moter/enhancer and Moloney MuLV enhancer/poly(A), typi-
cally at high levels in HSC and all hematolymphoid cells (21). In-
bred C57BL/6 transgenic mice were generated using standard
procedures (21).

 

Single Cell PCR. 

 

For single cell PCR analysis, cells were
sorted directly into Eppendorf 96-well plates containing 10 

 

�

 

l/
well of lysis buffer (1

 

�

 

 Promega Mg

 

2

 

�

 

-free PCR buffer, 0.5 mg/
ml proteinase K, 9.2 

 

�

 

g/ml tRNA [Sigma-Aldrich]). Plates were
incubated at 55

 

�

 

C for 1 h, 95

 

�

 

C for 10 min, and stored at 

 

�

 

80

 

�

 

C.
The PCR protocol involves two rounds of amplification with
heminested primers (1, 22). Primers used were DFLe1 (5

 

�

 

),
ACAAGCTTCAAAGCACAATGCCTGGCT; DFLe(G

 

�

 

C)
(5

 

�

 

), ACGTCGACTTTT(G or C)TCAAGGGATCTACT-
ACTGT; J

 

H

 

4e1 (3

 

�

 

), AGGCTCTGAGATCCCTAGACAG;
J

 

H

 

4e2 (3

 

�

 

), GGGTCTAGACTCTCAGCCGGCTCCCTCA-
GGG; and J1 (3

 

�

 

), AATGTGCAGAAAGAAAAAAGCCAG. In
the first round, PCR amplification was performed with 10 

 

�

 

l sin-
gle cell lysate (or 1 

 

�

 

l of control DNA 

 

�

 

 9 

 

�

 

l ddH

 

2

 

O) in 25 

 

�

 

l
total volume containing 0.25 

 

�

 

M dNTP, 0.5 U KlenTaq LA, 1

 

�

 

KlenTaq LA buffer (40 mM Tricine-KOH [pH 9.2 at 25], 15
mM KOAc, 3.5 mM Mg(OAc)

 

2

 

, 7.5 

 

�

 

g/

 

�

 

l BSA), 0.5 mg/ml
BSA, and 2 

 

�

 

M of each first round primer (DFLe1, 5

 

�

 

J

 

H

 

1, J

 

H

 

4e1).
In the second round, 1 

 

�

 

l of first round product was added to a
25-

 

�

 

l reaction volume using the same conditions described above
except that second round primers (DFLe[G

 

�

 

C] and 5

 

�

 

JH

 

4

 

 to de-
tect D-J

 

H

 

; 5

 

�

 

J

 

H

 

1 and J

 

H

 

4e2 to detect germline) were used. Both
rounds of PCR used the following conditions: 95

 

�

 

C for 1 min,
41 cycles of 94

 

�

 

C for 1 min, 60

 

�

 

C for 1 min, 72

 

�

 

C for 90 s, and
72

 

�

 

C for 10 min. Only samples producing either a germline
product or a specific rearrangement product are included in the
analysis (

 

�

 

68% of sorted single cells yielded a PCR product).

 

Cell Sorting and Flow Cytometry. 

 

Freshly isolated cells were
resuspended to 3 

 

�

 

 10

 

7

 

/ml in staining media containing biotin-,
flavin-, and phenol red–deficient RPMI 1640 (Irvine Scientific),
10 mM Hepes, pH 7.2, 0.02% sodium azide, 1 mM EDTA, and
3% newborn calf serum, and treated with 2.4G2 Fc block for 10
min on ice. Cells were incubated with primary antibodies for 20
min, then washed three times, incubated with streptavidin re-
agents for 15 min, and then washed three more times. After the
final wash, samples were resuspended in 1 

 

�

 

g/ml propidium io-
dide to exclude dead cells. VEX was detected using 407-nm exci-
tation (23), and GFP from NG transgenics was detected using
488-nm excitation. Primary antibodies included AA4.1 biotin,
B220 APC or Cy5PE or FITC, BP-1 biotin (6C3), CD4 Cy5PE
or PE, CD19 Cy5PE or FITC, CD24 (clone 30-F1) Alexa 594,

Cascade blue or FITC, CD43 PE, Ly6C biotin or FITC, DX5
biotin or FITC, and IgM (clone 331) biotin or FITC. Secondary
reagents were SA-Cy5PE, SA-Alexa 594, SA-Cy7PE, or SA-
APC. Antibodies were purchased from BD Biosciences, eBio-
science, Southern Biotechnology Associates, Inc., or CALTAG,
or purified and conjugated as described (23). Flow cytometry was
performed on a 3 laser, 7 detector DIVA FACSVantage or a 3 la-
ser 9 detector LSRII (Becton Dickinson). Data were analyzed
with FlowJo software (Tree Star).

 

Results and Discussion

 

The H2-SVEX Transgenic Recombination Substrate. 

 

The
V(D)J recombination substrate H2-SVEX expresses VEX-
GFP (23) as a consequence of V(D)J recombination. As
shown in Fig. 1 A, the VEX gene is initially in the anti-
sense orientation and is flanked by V(D)J recombination
signal sequences (RSSs). RSSs in this orientation mediate
inversion such that after recombination VEX is in the cor-
rect orientation for expression. Cells that undergo V(D)J
recombination are VEX

 

�

 

; these cells are easily detected and
quantified by FACS

 

®

 

. VEX expression and H2-SVEX re-
arrangement completely depends on the presence of 

 

rag1

 

,
and coding joint and signal joint recombination products
have the expected sequence (21).

H2-SVEX recombination is not governed by the same
chromatin remodeling constraints as endogenous IgH or
TCR antigen receptor loci for two reasons. First, the H2-
SVEX construct is driven by an active H2K promoter/Mo-
MLV enhancer that enables robust transgene expression,
and presumably, accessibility in primary pro-B and pro-T
cells (21). Second, the H2-SVEX substrate does not con-
tain Ig (or TCR) locus transcription regulatory regions and,
therefore, cannot be regulated in the same manner as en-
dogenous IgH (or TCR) loci. Thus, the absence of com-
mon regulatory motifs between the H2-SVEX substrate
and endogenous antigen receptor loci enables us to distin-
guish cells with an active V(D)J recombinase but inaccessi-
ble IgH loci from cells that have an active recombinase and
accessible loci.

 

V(D)J Recombinase Activity in the Earliest B Lineage Precur-
sors.

 

We have shown previously that VEX expression is
both efficient and restricted to lymphocytes. For example,
84–86% of CD19

 

�

 

IgM

 

�

 

 splenic cells and 91–93% of
CD3

 

�

 

 splenic T cells are VEX

 

�

 

, whereas 

 

�

 

0.5% of my-
eloid and granulocytes express VEX (21). As bone marrow
pro-B cells are actively rearranging IgH genes and preB
cells are actively rearranging IgL genes (1, 11, 22), pro- and
preB cells should express an active V(D)J recombinase ca-
pable of rearranging the H2-SVEX substrate, and we ex-
amined VEX expression at these stages of development.

As shown in Fig. 1 B, within the DX5

 

�

 

Ly6C

 

�

 

IgM

 

�

 

subset of bone marrow, VEX is expressed in 91% of both
B220

 

�

 

CD43

 

�

 

CD19

 

�

 

CD24

 

�

 

 pro-B cells (third row, mid-
dle panels) and B220

 

�

 

CD43

 

�

 

CD19

 

�

 

CD24

 

2

 

�

 

 preB cells
(third row, right panel). Similar results were obtained with
two independent H2-SVEX founder lines (SB110 and
SB88), indicating position-independent recombination of

 on July 15, 2008 
w

w
w

.jem
.org

D
ow

nloaded from
 

 Published February 9, 2004

http://www.jem.org


 

V(D)J Recombinase Activity Precedes IgH Rearrangement

 

486

the transgenic substrate (not depicted). Importantly, the
B220

 

�

 

CD43

 

�

 

CD19

 

�

 

CD24

 

LO

 

 pre-pro-B cell population
(24) has 17% VEX

 

�

 

 cells (Fig. 1 B, fourth row, middle
panels). This pre-pro-B cell population has been shown to
produce B lineage lymphocytes with extraordinarily high
cloning efficiency and is one of the earliest defined B lin-
eage–restricted subsets (24).

Because VEX is driven by a constitutively active pro-
moter, VEX acts a permanent marker of cells that have,
or had, V(D)J recombinase activity. Therefore, typically

 

	

 

90% of immature bone marrow B cells (Fig. 1 B, third
row, left panels) are VEX

 

�, whereas rag1 and rag2 expres-
sion are down-regulated in this B cell population (2). Inter-
estingly, a small decrease in the percentage of VEX� cells is
consistently detected within more mature B cell subsets,
since 84% of IgM�CD19� splenic B cells (21) and 72% of
recirculating IgM� bone marrow B cells (Fig. 1 B, fourth
row, left panels) are VEX�. This decrease is unlikely to be
due to reduced expression of the recombination reporter
transgene because expression of a second transgene, H2-

BEX (which is analogous to H2-SVEX except that V(D)J
recombination is not required for GFP expression), is ex-
pressed at uniformly high levels (	95%) throughout all
stages of B cell development (not depicted). Alternatively,
it is possible that somatic hypermutation or other late stage
events may influence H2-SVEX recombination or expres-
sion. Thus, H2-SVEX may be a useful tool for examining
molecular processes characteristic of mature B cells. To-
gether, these experiments indicate that H2-SVEX is effi-
ciently recombined in the earliest B lineage progenitors in
vivo and that VEX expression is readily detectable in these
developmental populations.

Simultaneous Analysis of rag Expression and Recombinase Ac-
tivity in B Lineage Progenitors. Progenitor B cells can be
divided into specific developmental subsets in which D-JH
rearrangements are not readily detectable. Fraction A cells
largely retain germline configuration of endogenous IgH
loci (11, 12, 17), and there are two possible explanations
for this observation: (a) the V(D)J recombinase is not yet
expressed or (b) the V(D)J recombinase is expressed but

Figure 2. Simultaneous analysis
of rag2 transcription and recombi-
nase activity in B lineage progeni-
tors. (A) Bone marrow obtained
from the F1 progeny of RAG2
GFP � H2-SVEX (SB110)
animals (fourth column) was
stained with antibodies to iden-
tify B lineage progenitors. The
B220�CD43�DX5�Ly6C�IgM�

subset of bone marrow was then
gated to examine CD19�CD24�

pre-pro-B cells (first row),
CD19�CD24� early pro-B (sec-
ond row), and CD19�CD24�

late pro-B (third row) cells.
Gated samples were simulta-
neously examined for GFP ex-
pression, an indicator of rag2
transcription, and VEX expres-
sion, an indicator of V(D)J re-
combinase activity. Because the
GFP expression in RAG2 GFP
NG animals is so bright (12), a
small percentage (�3%) of the
GFPBRIGHTVEX� cells fall into
the GFP�VEX� quadrant due
to limitations of compensation.
Therefore, bone marrow from
single transgenic RAG2 GFP
NG mice (second column),
single transgenic H2-SVEX
transgenic mice (third column),
and nontransgenic B6 control
mice is provided for comparison.
The percentage of cells in each
region is given. (B) VEX and GFP
expression was similarly exam-
ined in Ly6C�DX5� fraction
A2 (AA4.1�B220�CD24�CD4�)
bone marrow cells. The data
are representative of two to
five independent experiments.
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IgH loci are not accessible to the recombinase complex due
to chromatin restrictions. We predicted that if the V(D)J
recombinase is active as early as the fraction A stage of de-
velopment, it will recombine the H2-SVEX target regard-
less of endogenous IgH loci susceptibility.

For these experiments, we analyzed VEX expression in
progenitor B subsets derived from the progeny of crosses
between H2-SVEX and NG transgenic RAG2 reporter
mice (12). This approach enables us to examine both
RAG2 gene transcription (GFP) and V(D)J recombinase
activity (VEX) in single lymphocyte progenitors. VEX and
GFP have distinct excitation requirements, and thus can be
readily resolved (23). Fig. 2 A depicts GFP versus VEX
(within B220�CD43�DX5�Ly6C�IgM� cells) for pre-
pro-B (CD19�CD24�/LO), early pro-B (CD19�CD24�),
and late pro-B (CD19�CD24�) cells.

Within pre-pro-B cells from SB110 H2-SVEX animals,
10–20% of the cells are VEX� (Fig. 2 A, top row) indicat-
ing the presence of an active V(D)J recombinase complex
at this stage in development. Similar results are observed
with SB88 H2-SVEX mice (not depicted). These data are
supported by the fact that nearly 90% of pre-pro-B cells ex-
press the GFP reporter of rag2 (Fig. 2 A, top row, second
and fourth columns). Moreover, 16–20% of this subset and
26% of Ly6C�DX5� fraction A2 cells simultaneously ex-
press GFP and VEX (compare the top row, fourth column
of Fig. 2 A with Fig. 2 B; and not depicted), providing ev-
idence using independent transgenic strains that the V(D)J
recombination machinery is both present and active in this
developmental subset. It remains unclear whether the mod-
est percentage (9.4–18%) of GFP�VEX� pre-pro-B and
pro-B cells reflects a population of precursors that simply
has not yet received the appropriate developmental signals
or a population of non–B lineage contaminants. The ability
to sort these subsets based on GFP and VEX expression
will provide a useful tool for evaluating their contribution
to the B lineage.

Although the percentage of GFP� cells remains uni-
formly high (	70%) across the pro-B subsets, the percent-
age of cells that express both GFP and VEX progressively
increases from 16% in pre-pro-B to 61% in early pro-B and
84% in late pro-B. This is consistent with previous detec-
tion of rag2 transcripts at very low levels in fraction A cells
and markedly higher levels of transcripts in later pro-B
cells. These observations provide direct evidence that the
V(D)J recombinase is expressed and active in pre-pro-B/
fraction A2 cells, despite the fact that the majority of these
cells are not rearranging endogenous IgH loci (13, 17, 18).

By examining the H2-SVEX and RAG2 reporter trans-
genes, we also find that rag expression is proportional to re-
combinase activity in pro-B cells but only to a degree. As
the mean fluorescence intensity of GFP within the GFP�

subset increases from 484 to 666 as cells progress from pro-
pre-B to early pro-B, indicating a higher per cell level of
GFP, the percentage of cells that express VEX also in-
creases (Fig. 2 A, pre-pro-B compared with early pro-B).
However, even within the GFP-expressing subset not all

GFP� pro-B cells recombine the substrate (Fig. 2 A). That
VEX expression within pro-B cells is proportional to rag
transcript levels is also clearly shown by our analysis of Erag
mice in which VEX is modestly decreased in pro-B cells
lacking one copy of the Erag enhancer of rag expression and
severely decreased in mice lacking both copies of the en-
hancer (21). Together, these results suggest that (a) V(D)J
recombination occurs most efficiently in cells that express
high levels of rag1 and rag2 and (b) rag gene transcription
may not be the only factor that dictates or limits efficient
V(D)J recombination.

V(D)J Recombinase Activity in B Lymphoid Progenitors with
Germline IgH Loci. To directly compare the developmen-
tal stages at which recombination activity and IgH rear-
rangement is induced, we characterized IgH rearrangement
status in VEX� and VEX� early B lineage progenitors. Ac-
cording to one model, the earliest B cells arise from the
CD4�AA4.1� subset (fraction A2) of total fraction A, and
the majority of these cells have germline IgH (13, 17). Typ-
ically, 20–30% of Ly6C�DX5� fraction A2 cells isolated
from H2-SVEX animals express VEX (Fig. 2 B, and not de-
picted) versus 0% from control B6. Moreover, 26% of
Ly6C�DX5� fraction A2 cells simultaneously express VEX
and GFP (Fig. 2 B). Then, we sorted single fraction A2 cells
on the basis of VEX expression and directly examined IgH
rearrangement status by single cell PCR.

All IgH recombination events within fraction A2 are
contained within the VEX� subset. We found that 22/43
VEX� and 0/34 VEX� fraction A2 progenitors have
detectable D-JH joins (Table I). According to another
model (24), B lineage development proceeds through a
B220�CD43�CD19�DX5�Ly6C� stage. When single
cells from this subset were purified, as with fraction A2, we
found that all D-JH recombination events are contained
within the VEX� subset (11 out of 25 in VEX� and 0
out of 33 in VEX� cells; Table I). Both models pre-
dict developmental progression through the fraction
B(B220�CD43�CD24�BP-1�) stage, and we found nearly

Table I.  Single Cell Detection of D-J Joins at IgH Loci

Progenitor subset VEX No. of D-JH
�/N cells

Fraction A2

�

�

22/43
0/34

Pre-pro-B cells
�

�

11/25
0/33

Fraction B
�

�

28/29
15/34

Single cells sorted from H2-SVEX transgenics (SB110 or SB88) were
analyzed by PCR to detect D-JH joins (see Materials and Methods).
Fraction A2 is defined as AA4.1�B220�CD24�CD4�, pre-pro-B
cells are B220�CD43�CD19�DX5�Ly6C�, and fraction B is
B220�CD43�CD24�BP-1�.
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all VEX� fraction B cells (28 out of 29 cells analyzed; Table
I) had D-JH joins.

These data highlight two important findings. First, our
data showing that only half of VEX� early B cell progeni-
tors (defined according to either of two developmental
models) have D-JH joins provides evidence that V(D)J re-
combinase expression and V(D)J recombination initiation
of antigen receptor loci are separable events. This observa-
tion suggests not only that recombinase expression may
precede chromatin remodeling in B cell development but
also that recombinase activity and chromatin accessibility
may be separately regulated. IL-7 influences VH locus ac-
cessibility in pro-B cells (4); however, factors that control
D-JH accessibility in the earliest stages of B lineage develop-
ment remain uncharacterized.

Second, one of the most striking characteristics of the
H2-SVEX system is the accuracy with which VEX expres-
sion predicts V(D)J recombination of IgH. All of the frac-
tion A2 progenitors or B220�CD43�CD19�DX5�Ly6C�

pre-pro-B cells that had detectable D-JH recombination
events were contained within the VEX� subset (Table I).
This is an important observation as it is clear that the earli-
est B lineage precursor subsets including fraction A are not
homogenous populations (25, 26); yet few tools are avail-
able for dividing these subsets on the basis of relevant mo-
lecular characteristics. One prediction drawn from our
findings is that VEX� fraction A2 or pre-pro-B cells con-
tain a subset of cells that are in the process of chromatin re-
modeling of the D-JH region of IgH.

In conclusion, by using a transgenic V(D)J recombina-
tion reporter substrate that lacks Ig or TCR locus transcrip-
tional control elements, we assayed recombinase activity at
a transgenic locus subject to different accessibility con-
straints than IgH. Our findings demonstrate that the V(D)J
recombinase is active in early B lineage progenitors with
germline IgH status and provide direct evidence that devel-
opmentally regulated expression of the V(D)J recombinase
is not the limiting step to initiation of recombination at an-
tigen receptor loci. The major implications of these data are
that recombinase expression and IgH recombination are
developmentally distinct events. We have already begun to
dissect control of recombinase activity in lymphoid pro-
genitors (21), and we expect the H2-SVEX model system
to be similarly valuable for investigators studying the signal-
ing pathways and specific mechanisms of chromatin modi-
fications that contribute to “active” versus “inactive” re-
combination targets (7). For example, it would be useful to
compare the relative frequency of histone modifications at
distinct recombination targets (e.g., IgH and H2-SVEX)
that we predict would have varying levels of accessibility
during the pre-pro-B stage of development.
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