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Accelerating Protein Docking in ZDOCK Using an
Advanced 3D Convolution Library
Brian G. Pierce1, Yuichiro Hourai2, Zhiping Weng1*

1 Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 2 Computational
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Abstract

Computational prediction of the 3D structures of molecular interactions is a challenging area, often requiring significant
computational resources to produce structural predictions with atomic-level accuracy. This can be particularly burdensome
when modeling large sets of interactions, macromolecular assemblies, or interactions between flexible proteins. We
previously developed a protein docking program, ZDOCK, which uses a fast Fourier transform to perform a 3D search of the
spatial degrees of freedom between two molecules. By utilizing a pairwise statistical potential in the ZDOCK scoring
function, there were notable gains in docking accuracy over previous versions, but this improvement in accuracy came at a
substantial computational cost. In this study, we incorporated a recently developed 3D convolution library into ZDOCK, and
additionally modified ZDOCK to dynamically orient the input proteins for more efficient convolution. These modifications
resulted in an average of over 8.5-fold improvement in running time when tested on 176 cases in a newly released protein
docking benchmark, as well as substantially less memory usage, with no loss in docking accuracy. We also applied these
improvements to a previous version of ZDOCK that uses a simpler non-pairwise atomic potential, yielding an average speed
improvement of over 5-fold on the docking benchmark, while maintaining predictive success. This permits the utilization of
ZDOCK for more intensive tasks such as docking flexible molecules and modeling of interactomes, and can be run more
readily by those with limited computational resources.
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Introduction

Interactions between biomolecules are crucial to the function of

biological systems, forming the basis of normal and aberrant

cellular behavior, as well as defense against external pathogens. To

fully understand these interactions, atomic-level descriptions of the

structures of their binding interfaces are essential. While the

structures of many protein-protein complexes have been charac-

terized experimentally via x-ray crystallography and deposited in

the Protein Data Bank (PDB; [1]), the majority of known

complexes have not, providing an opportunity for predictive

computational techniques to help elucidate these structures.

Molecular docking approaches, which take two (or more)

structures as input and predict the structure of their complex,

are increasingly being used for this purpose [2].

The success of protein-protein docking algorithms in the past

decade has given rise to several exciting developments in the field.

This includes addressing molecular flexibility during binding by

‘‘cross-docking’’ ensembles representing snapshots of mobile

structures [3,4,5], or combining docking results of rigid (or semi-

rigid) substructures [6,7]. On a larger scale, other recent work

includes the application of protein-protein docking to predict the

structure of the yeast interactome [8], and the use of protein

docking to distinguish binding versus nonbinding proteins based

on docking scores [9]. These areas of progress indicate that faster

and more efficient docking algorithms are key to helping improve

both predictive accuracy and proteomic coverage.

Previously our laboratory developed the program ZDOCK,

which uses a grid-based representation of two proteins and a 3-

dimensional (3D) fast Fourier transform (FFT) to efficiently explore

the rigid-body search space of docking positions [10]. The most

recent version, ZDOCK 3.0, has a scoring function that includes

shape complementarity, electrostatics, and a pairwise atomic

statistical potential developed using contact propensities of

transient protein complexes [11]. ZDOCK 3.0 showed vast

improvements in its predictive ability versus the previous version

when tested on a protein-protein docking benchmark [11], and

has led to highly successful performance in the blind protein

docking experiment, CAPRI [12,13]. However, with the improved

accuracy due to the pairwise statistical potential, the running time

and memory usage of ZDOCK increased significantly, as seven

FFTs (rather than two in the previous version, ZDOCK 2.3 [14])

needed to be computed per docking orientation.

To reduce this computational burden and make proteomic scale

docking and ensemble docking approaches more tractable, we

have developed a new version of ZDOCK that retains the

predictive accuracy of ZDOCK 3.0 while vastly improving its

computational performance. This was achieved by integrating an

FFT library that was designed to improve 3D FFT performance

[15], as well as several improvements to the molecular discretiza-
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tion to further reduce the grid size required to represent the input

proteins. These optimizations were evaluated against 176 test cases

in a newly released version of a protein docking benchmark [16],

resulting in over 8.5-fold average improvement in running time.

We also implemented these updates on ZDOCK 2.3, for those

users who have pipelines or protocols in place with this tool (e.g.

protein/DNA docking [17]), which resulted in 5.5-fold improve-

ment in running time. Examining the test cases with the highest

levels of running time improvement showed that the primary

factor in improving performance is the reduced grid size due to the

new FFT library.

Methods

ZDOCK Overview
The ZDOCK algorithm, which followed from initial efforts in

FFT-based protein docking [18,19] and was described in detail by

Chen and Weng [10], includes the following steps (not including

the pre-processing step of marking surface atoms and atom types

in PDB files). The terms ‘‘receptor’’ and ‘‘ligand’’ refer to the two

input proteins, with the receptor generally being the larger protein

or known to function as a receptor in vivo (e.g. an antibody in an

antibody/antigen interaction).

ZD1. Center receptor coordinates at origin based on
center of mass.

ZD2. Center ligand coordinates at origin based on
center of mass.

ZD3. Select cubic grid size to contain centered
molecules for FFT.

ZD4. Discretize receptor, assigning scores to 3D grid(s) of

complex numbers.

ZD5. Rotate input ligand to random orientation, if specified.

ZD6. Rotate ligand to Euler angles from uniformly distributed

set, and discretize.

ZD7. Perform 3D FFT to compute convolution be-
tween ligand and receptor grids, and select top scoring
position from the resultant grid.

ZD8. Repeat steps 6–7 for a total of 3,600 ligand rotations (15u
angular sampling) or 54,000 ligand rotations (6u angular

sampling).

Here we present major improvements to ZDOCK’s initial

orientation and FFT procedures (bold steps above), while not

modifying the discretization protocols that embody the ZDOCK

scoring function. Previous ZDOCK versions and their scoring

terms include: ZDOCK 1.3 [10]: Grid-based shape complemen-

tarity, atomic contact energy (ACE; [20]), electrostatics: ZDOCK

2.1 [21]: Pairwise shape complementarity (PSC); ZDOCK 2.3

[14]: PSC, ACE, electrostatics; ZDOCK 3.0 [11]: PSC, interface

atomic contact energy (IFACE), electrostatics.

ZDOCK Modifications
Modification of ZDOCK to improve its efficiency consisted of

the following successive improvements:

1.Integrating the Conv3D library. This entailed replacing

the standard FFT library calls (FFTW for Linux/MacOS,

ESSL for IBM platforms) for performing 3D convolution.

Previously, ZDOCK discretized the receptor and ligand (the

two input proteins) onto two cubic (NxNxN, where N is the

dimension of each side) 3D grids. The Conv3D library, which

is based on FFTW (http://www.fftw.org), and is optimized

specifically for high efficiency convolution of 3D molecular

structures [15], effectively allows for non-cubic rectangular

grids by performing a series of 1D FFT operations that skip

empty rows of the 3D cube. With Conv3D, we selected a

rectangular 3D grid to contain the receptor, which is fixed

during the ZDOCK run, while for the ligand (which is rotated

through a series of Euler angles during ZDOCK) a cubic grid

was maintained, to allow for a constant grid size through

successive ligand rotations. In addition, the Conv3D library

uses single rather than double precision (the latter of which is

default in FFTW and used by ZDOCK previously), which

required minor modifications to the ZDOCK code. This

change in decimal representation, which helped improve

memory and computational time, led to minor changes in

scores for some test cases between ZDOCK runs, but no

significant change in success rate.

2.Optimal centering of the input proteins. We further

optimized ZDOCK by reducing the grid sizes of the receptor

and ligand through careful selection of the molecular centers

for grid placement. Prior to discretization onto the grid in

ZDOCK, the input receptor and ligand are translated from

their original coordinates to the origin (Steps ZD1 and ZD2

above). This translation was formerly selected using the

molecules’ centers of mass, but this can be non-optimal,

particularly where a protein’s mass distribution is not even. In

the current ZDOCK implementation, we compute the

receptor’s maximal dimensions along each Cartesian axis and

use the halfway points in each dimension for its grid center. For

the ligand, which rotates through a series of angles during

ZDOCK, we calculated its center as the origin of a bounding

sphere using the algorithm proposed by Ritter [22]. This

attempts to calculate the origin and radius denoting a sphere

that encompasses all points of the ligand within a sphere of

minimal size. As a minimal bounding sphere is not guaranteed

through this algorithm, the bounding sphere radius from

Ritter’s algorithm was compared to the radius for the center of

mass (i.e. the greatest distance of any atom from the center of

mass), and the method (bounding sphere or center of mass)

giving the minimum radius was selected for centering the

ligand.

3.Rotation of the receptor. Another improvement of

ZDOCK is the use of a rotated receptor with respect to its

input angular orientation. This gives improved efficiency

versus a receptor with an input rotation that would leave

excess unoccupied grid points when discretized onto a

rectangular grid. To select this receptor rotation, ZDOCK

iterates through 3,600 evenly distributed Euler angles (the

same as those used by ZDOCK to rotate the ligand in step

ZD6 above, provided by Dr. Julie C. Mitchell) and evaluates

the grid size required for each rotated receptor. The angle

with the minimum required grid size is then chosen for input

receptor rotation.

4.Switching of the ligand and receptor. In the past,

ZDOCK has kept the user-specified receptor fixed during

ZDOCK execution, while rotating the ligand and re-discretiz-

ing it for each rotational angle. In the current ZDOCK

version, this has been modified so that the receptor and ligand

can be switched dynamically during ZDOCK execution. This

switch is evaluated at the beginning of ZDOCK execution, by

calculating the minimum grid required by the switched

receptor and ligand (rotating the ligand through the 3,600

angles as described above), and comparing with the grid size

from the original receptor and ligand. Based on the grid size

comparison, either the original receptor will be fixed, or the

ligand and receptor will be switched so that the ligand will be

fixed and bounded by a rectangular grid.

Accelerating ZDOCK with Advanced 3D Convolution
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Table 1. Average running time, running time fold improvement, and memory usage of optimized ZDOCK versions.

Name Optimization1 Running Time (min) Fold Improvement2 Memory (MB)

ZDOCK 3.0 - 167.1 - 700

ZDOCK 3.0.1 Conv3D 26.5 6.4 303

ZDOCK 3.0.2f Conv3D+Cent 23.2 7.2 282

ZDOCK 3.0.2 Conv3D+Cent+Rot+Switch 18.9 8.6 256

ZDOCK 2.3 - 53.2 - 296

ZDOCK 2.3.1 Conv3D 13.1 4.0 215

ZDOCK 2.3.2f Conv3D+Cent 11.2 4.7 203

ZDOCK 2.3.2 Conv3D+Cent+Rot+Switch 9.3 5.5 191

All values are averages from running ZDOCK on 176 unbound docking test cases, each run using a single 2.8 GHz 64-bit Opteron processor with 8 GB available RAM.
Bold rows correspond to the fully optimized ZDOCK versions.
1Optimization scheme. Conv3D = new 3D FFT library, Cent = optimal receptor centering, Rot = optimal receptor rotation, Switch = switch ligand and receptor. See
Implementation section for details.

2Average fold improvement in running time versus the previous major ZDOCK version (3.0 or 2.3).
doi:10.1371/journal.pone.0024657.t001

Figure 1. Success rate and hit count of original and optimized versions of ZDOCK for all test cases (A, B) and rigid-body test cases
(C, D) of docking Benchmark 4.0. ZDOCK 3.0.2f and 2.3.2f represent the optimized versions with receptor rotation and receptor/ligand switching
turned off, while ZDOCK 3.0.2 and 2.3.2 represent the fully optimized versions of ZDOCK 3.0 and ZDOCK 2.3, respectively. Success rate is defined as
the percentage of cases with hits (RMSD less than or equal to 2.5 Å when comparing with Ca atoms in the bound interface to corresponding Ca
atoms in the prediction) for a given number of top-ranked ZDOCK predictions per test case, while hit count is the average number of hits across the
set of cases for a given number of top-ranked ZDOCK predictions per test case.
doi:10.1371/journal.pone.0024657.g001
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ZDOCK Implementation
We previously released ZDOCK 2.3 and 3.0 with the Conv3D

library (Step 1) as interim versions, named ZDOCK 2.3.1 and

ZDOCK 3.0.1 respectively. The current releases include Steps 1–

4 and are ZDOCK 2.3.2 and ZDOCK 3.0.2. Due to the input

rotation of the receptor and the possible switching of the ligand

and receptor, the ZDOCK output file format required slight

modification of its header format, and consequent updating of the

code to create ZDOCK predictions (create_lig) from the output

file. However, the create_lig program still generates structural

predictions with the receptor fixed with respect to the coordinates

of the input PDB file, so that the internal optimization of the

receptor and ligand coordinates for ZDOCK discretization are not

visible to the end user.

We also introduced a command line flag in ZDOCK (‘‘-F’’) to

provide users the option of keeping the input receptor fixed (not

rotated or switched with the ligand) during ZDOCK execution,

resulting in the same ZDOCK output file format as previous

versions. This entails Steps 1 and 2 (without Steps 3 and 4), and

can be used for improved performance versus the base ZDOCK

version (2.3 or 3.0) when users require the original ZDOCK

output file format for their post-processing pipeline.

Figures
Data plots were generated using gnuplot (http://www.gnuplot.

info), and molecular structures were visualized using PyMOL

(http://www.pymol.org).

Results

Computational Performance
After updating ZDOCK versions 3.0 and 2.3 with the Conv3D

FFT library and improved molecular representation (detailed in

the Implementation section), we tested these new versions (3.0.2

and 2.3.2) for their computational efficiency using all 176 unbound

test cases of protein-protein docking Benchmark 4.0 [16]; results

are given in Table 1. Each run of ZDOCK used default angular

sampling (3,600 ligand rotations), and a single 2.8 GHz 64-bit

Opteron processor with 8 GB available RAM. To test the

improvements due to specific modifications, we also measured

the performance of ZDOCK with Conv3D only (Step 1 in

Implementation; 3.0.1 and 2.3.1), and Conv3D with improved

centering (Steps 1 and 2; 3.0.2f and 2.3.2f).

The most dramatic improvements were seen for ZDOCK 3.0.2,

with 18.9 minutes average running time for the docking

benchmark, from an original average running time of 167.1 min-

utes. This is nearly three times less than the average running time

for ZDOCK 2.3 on the docking benchmark. On average, this

version had an 8.6-fold improvement in running time versus

ZDOCK 3.0; this was significantly higher than the 6.4-fold

improvement from Conv3D alone (ZDOCK 3.0.1), though

integrating Conv3D was evidently responsible for the majority of

the running time improvement. Required memory concomitantly

was reduced for these ZDOCK improvements, with less than half

of the memory for ZDOCK 3.0 required, on average, by ZDOCK

3.0.2 (256 MB, versus 700 MB for ZDOCK 3.0).

Mirroring the improvements for ZDOCK 3.0, the running time

and memory usage of ZDOCK 2.3 were also improved via these

library and discretization modifications, although to a lesser extent

(5.5-fold versus 8.6-fold improvement in running time). While

ZDOCK 2.3 has over three times faster average running time on

the docking benchmark versus ZDOCK 3.0, ZDOCK 2.3.2 is still

over twice as fast as ZDOCK 3.0.2.

Docking Success and Hit Count
To ensure that the predictive accuracy of ZDOCK was

maintained during optimization, we measured the success rates

and the average number of hits for the original and updated

versions of ZDOCK (Figure 1). As before, hits are defined as

predictions with interface Ca root mean square distance (RMSD)

Figure 2. ZDOCK running time and grid size comparison for all
176 Benchmark 4.0 test cases. (A) ZDOCK 3.0 running time versus
ZDOCK 3.0.2 running time on a single 2.8 GHz processor; outlier test
cases 2VIS, 1I4D, and 1N2C are labeled. (B) ZDOCK 3.0 grid size versus
ZDOCK 3.0 running time for all test cases. Grid size is the product of the
number of points in each dimension of the cubic grid, calculated based
on the sum of the cubic grids calculated for the ligand and receptor
individually. (C) ZDOCK 3.0.2 grid size versus ZDOCK 3.0.2 running time
for all test cases. Grid size is the product of the number of grid points in
each dimension, N_x*N_y*N_z, where N_x is calculated using the
number of grid points for the receptor in the x dimension plus the
number of points of the ligand grid in the x dimension (which is equal
to the number of points for the y and z dimensions as the ligand is in a
cubic grid), and likewise for the other dimensions N_y and N_z.
doi:10.1371/journal.pone.0024657.g002
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#2.5 Å from the bound structure, and framework regions of

antibodies were blocked prior to docking, to avoid non-CDR

binding predictions as described previously [10]. Details of the

ZDOCK results are given in Tables S1 and S2.

As shown on a previous version of the docking benchmark [11],

the success rate for ZDOCK 3.0 and hit count are substantially

higher than for ZDOCK 2.3; this is also seen for the new ZDOCK

implementations presented here (ZDOCK 3.0.2f and ZDOCK

3.0.2 versus ZDOCK 2.3.2f and ZDOCK 2.3.2). These new

versions of ZDOCK have approximately the same success rates of

the respective previous versions, with some minor differences (e.g.

higher success at N = 2 for ZDOCK 3.0.2f) that appear

insignificant and not sustained for varying numbers of predictions.

Hit counts (Figure 1B and 1D) likewise follow similar trends as the

previous ZDOCK versions; although there are slightly higher hit

counts for ZDOCK 3.0.2f and ZDOCK 3.0.2 versus ZDOCK 3.0

at larger numbers of predictions, this is much smaller and less

significant than the differences between ZDOCK 2.3 and

ZDOCK 3.0. For the rigid-body cases (121 out of 176 cases;

Figure 1C and 1D), there is an upward shift in success rate and hit

count compared with the results for all test cases (Figure 1A and

1B), which is to be expected given the lower binding conforma-

tional changes of these cases on average. However, considering

just the rigid-body cases does not yield any differences in the

relative docking success between the ZDOCK versions.

Computational Performance Details
To examine the extent of the running time improvement among

individual cases, we compared running times for ZDOCK 3.0

with ZDOCK 3.0.2 for all 176 Benchmark 4.0 test cases

(Figure 2A; running time details are given in Tables S3 and S4

for ZDOCK 2.3.2 and 3.0.2 respectively). Most cases follow the

trend of 8.6-fold average improvement, with the exception of a few

outlier points. This includes 2VIS and 1I4D, which showed

greater-than-average improvement of 14.7-fold and 21.7-fold in

running time, respectively, and 1N2C, which was below the

average but still had a substantial 6.4-fold improvement in running

time. The minority of cases (46 out of 176) had ligand and receptor

switched by ZDOCK 3.0.2 (Table S3), and some of these (e.g.

2VIS) clearly had dramatic improvements in running time. The

high correlation between grid size and running time is shown in

Figures 2B (ZDOCK 3.0; R = 0.99) and 2C (ZDOCK 3.0.2;

R = 0.98). This indicates that the efficient use of the grid search

space by ZDOCK 3.0.2 provides the basis for the improvements

in running time across the docking benchmark.

Also evident is the clustered nature of running times for

ZDOCK 3.0, as seen in the horizontal bands in Figure 2A and the

overlapping points in Figure 2B (making the plot appear sparser

than Figure 2C). This is due to the cubic grid size in ZDOCK 3.0

being selected from a finite set of numbers (as specified by FFTW,

or ESSL for IBM ZDOCK compilations), which in turn leads to

similar running times between cases that share the same grid size.

With Conv3D, the receptor grid size is selected from a finite set of

numbers for each x, y, and z dimension, leading to more possible

3D grid sizes available and a consequent dispersion of running

times versus those for ZDOCK 3.0.

An individual example of a test case with dramatic speed

improvement is shown in Figure 3, which shows the structure of

the 1I4D receptor and its representative grids for ZDOCK 3.0 and

3.0.2. Is clear that the ability to use a rectangular rather than a

cubic grid to represent this elongated protein, along with optimal

alignment along the x, y, and z axes, enables the vast improvement

in efficiency for this test case. On the other hand, 1N2C, which has

below-average improvement as noted above, has two globular

symmetric proteins as receptor and ligand, offering less opportu-

nity for optimizing docking speed via grid size reduction or

rotation of an input molecule.

Discussion

These new versions of ZDOCK can be utilized more readily by

those with limited computing resources, as well as those who are

addressing challenging areas at the forefront of structural

prediction, such as molecular flexibility and 3D network modeling.

In fact, ZDOCK 3.0 (which has the same scoring function as

Figure 3. Grid sizes and initial rotation of the receptor of test case 1I4D, front (lengthwise) view (left) and side view (right). The outer
(gray) box represents the grid for the receptor given by ZDOCK 3.0 and the gray molecule represents its corresponding centered orientation, while
the blue molecule and black box represent the rotated and centered molecule and grid for ZDOCK 3.0.2. Grid dimensions for ZDOCK 3.0 are
14061406140 = 2,744,000 cells, while the dimensions for ZDOCK 3.0.2 are 406666134 = 353,760 cells.
doi:10.1371/journal.pone.0024657.g003
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ZDOCK 3.0.2, without performance optimization) was used to

predict the structure of the yeast interactome using a large

supercomputing cluster [8]. We hope that the improved efficiency

in ZDOCK 3.0.2 will permit further utilization of this docking tool

in advanced research efforts. Structural interactome modeling in

particular has had numerous recent advances [23], and rigid-body

docking of domains and proteins from structural genomics efforts

can complement atomic-level interactions modeled based on

homology, and build upon the success in modeling structures of

sub-proteome interaction networks [24].

Others have recently presented algorithms that perform fast

rigid-body protein docking using FFT approaches. Notably, the

program Hex, which uses spherical harmonics rather than a 3D

Cartesian grid to represent proteins, but does not contain atomic

pairwise potential terms as in ZDOCK 3.0.2, was optimized using

graphical processors to achieve very high docking efficiency [25].

In the same study, comparison of ZDOCK 3.0.1 with the program

PIPER (which has pairwise potential terms based on docking

decoys [26]) found ZDOCK 3.0.1 to be over 50 times faster when

both are run on a single CPU of the same speed.

Future work will include the development and validation of

ensemble and cross-docking approaches using ZDOCK 3.0.2, as

well as incorporating it into the ZDOCK server (http://zdock.bu.

edu), which at present uses ZDOCK 2.3 as the computational

requirements of ZDOCK 3.0 precluded its use in the server

framework.

By incorporating several methods to improve computational

efficiency into the ZDOCK program, we have achieved

significant performance gains for two versions of the ZDOCK

program, with no loss in docking accuracy. The two new versions

of ZDOCK presented here, 2.3.2 and 3.0.2, are freely available

to academic and non-profit users at: http://zlab.umassmed.edu/

zdockconv3d/.

Supporting Information

Table S1 Predictive performance of ZDOCK 2.3, 2.3.1, 2.3.2f

and 2.3.2 for the test cases in Benchmark 4.0.

(PDF)

Table S2 Predictive performance of ZDOCK 3.0, 3.0.1, 3.0.2f

and 3.0.2 for the test cases in Benchmark 4.0.

(PDF)

Table S3 Running times of ZDOCK versions 2.3, 2.3.1, 2.3.2f,

and 2.3.2 for the test cases in Benchmark 4.0.

(PDF)

Table S4 Running times of ZDOCK versions 3.0, 3.0.1, 3.0.2f,

and 3.0.2 for the test cases in Benchmark 4.0.

(PDF)
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