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Opinion

Type 1 Interferons and Antiviral CD8 T-Cell Responses
Raymond M. Welsh*, Kapil Bahl¤, Heather D. Marshall¤, Stina L. Urban

Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America

Type 1 interferons (IFNs) were the first

cytokines discovered and include IFNb,

.ten forms of IFNa, and several other

related molecules that all bind to the same

type 1 IFN receptor (IFN1R). Type 1 IFNs

are commonly referred to as ‘‘viral’’ IFNs

because they can be induced directly by

virus infections, in contrast to ‘‘immune’’

IFN, or IFNc, which is synthesized after

receptor engagement of T cells and

natural killer (NK) cells during immune

responses. Type 1 IFNs get induced by

viral nucleic acids and proteins acting on

cellular signaling molecules such as Toll-

like receptors and RNA helicases, which,

in turn, release transcription factors into

the nucleus. Mice lacking IFN1R appear

normal in a pathogen-free environment

but are extraordinarily susceptible to virus

infections [1]. This susceptibility is partial-

ly due to IFN-regulated genes that sup-

press viral replication, but type 1 IFNs also

have many immunoregulatory properties

that could also affect host susceptibility to

infection.

Indications of the immunoregulatory

roles of type 1 IFN came in the 1970s

with observations that IFN upregulated

the expression of class 1 MHC antigens

[2], enhanced histamine secretion by

triggered Mast cells [3], and cytolytically

activated NK cells [4–6]. Several studies

showed that addition of IFN to mixed

lymphocyte cultures could enhance or

inhibit T-cell proliferation, depending on

the dose [7]. IFN was then shown to elicit

NK cell proliferation in vivo by a mech-

anism involving the induction of IL-15, a

growth factor for NK cells [8,9]; a similar

phenomenon of IFN and IL-15 was later

shown for the division of memory T cells

[10]. In the past decade a substantial

number of new insights have developed in

regards to how IFN can directly or

indirectly affect T-cell responses to viral

infections. IFN can affect T-cell responses

by acting on the antigen-presenting cells

(APCs), by acting on the T cells, or by

inducing other cytokines and chemokines

that regulate T-cell responses. Of note is

that the phenotype of the T cells and the

timing of IFN exposure are of essence, as

IFN can inhibit proliferation or induce

apoptosis under some circumstances yet be

dramatically stimulatory under other con-

ditions. Depending on their activation

status, T cells can change their expression

levels of IFN1R and their expression of

signaling molecules downstream from the

IFN1R.

Mechanisms of IFN Signaling
and Gene Activation

All type 1 IFNs bind to a receptor of

two chains, IFNaR1, which is constitu-

tively bound to tyrosine kinase 2 (TYK2),

and IFNaR2, which is constitutively

bound to Janus kinase 1 (JAK1). Ligand

binding induces dimerization of both

receptor chains and the phosphorylation

of TYK2, JAK1, and the intracellular

tyrosine residues of each IFN1R chain

[11–13]. The transphosphorylation of

both chains by these kinases results in

activation of signal transducers and acti-

vators of transcription (STATs) 1 and 2.

These form complexes that are translocat-

ed into the nucleus and activate the

transcription of a wide variety of genes

regulated by IFN-stimulated response

elements (ISRE) [14,15]. Type 1 IFNs

can limit CD8 T-cell expansion when

acting through STAT1, but they can also

activate other STATs and promote T-cell

expansion when, for example, acting

through STAT4 [16,17]. Type 1 IFNs

can also activate STAT 3 and 5, which

can mediate antiapoptotic and promito-

genic effects in T cells that escape the

antimitotic effects of IFN by downregulat-

ing STAT1 after activation [13,18].

Type 1 IFN plays a major role in the

CD8 T-cell response to viral infection, and

its effects are on both the APCs (Figure 1A

and 1B) and on the T cells (Figure 1D). T

cells that are exposed to their cognate

peptide antigen presented in the context of

MHC (pMHC) on APC-like dendritic cells

(DCs) get costimulated through receptors

such as CD28 and CD40 ligand and

undergo a differentiation program associ-

ated with several cycles of division, the

expression of the transcription factors t-bet

and eomesodermin, followed by the ac-

quisition of effector functions (Figure 1D).

These effector functions include cytotox-

icity associated with the synthesis of the

cytolytic proteins like perforin and the

ability to secrete antiviral cytokines such as

IFNc [19–22]. Type 1 IFN upregulates

expression of both MHC and costimula-

tory molecules and in so doing can greatly

affect the initiation of these T-cell respons-

es (Figure 1A and 1D) [23]. Overall, there

is dramatic upregulation of MHC even in

nonprofessional APC throughout the host

during the course of a viral infection [24].

Costimulation of CD8 T Cells by
Type 1 IFN

Type 1 IFN can provide a major

costimulatory effect in its own right by

binding to the IFN1R on CD8 T cells and

greatly augmenting their proliferation

(Figure 1D) [17,25,26]. IFNc, if present,

can elicit a similar effect [27]; this was

demonstrated in IFN1R bone marrow

chimeric mice infected with lymphocytic

choriomeningitis virus (LCMV), where the

IFN1R+ CD8 cells greatly outgrew the

IFN1R- CD8 T cells. Interestingly, this

effect was much less profound with

vaccinia virus, which is a poor type 1

IFN inducer. Vaccinia virus, however, is a
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Figure 1. Effect of type 1 IFN on T-cell activation, proliferation, and apoptosis. This schematic shows the effects of type 1 IFN on antiviral
CD8 T-cell responses. (A) A virus infects an APC and induces IFN, which upregulates MHC and costimulatory molecules. (B) Activated APCs migrate
into the spleen and lymph nodes to present viral pMHC to T cells. (C) IFN promotes apoptosis of preexisting memory T cells, which are rapidly
phagocytosed by CD8a+ DCs. (D) IFN directly promotes the proliferation of antigen (Ag)-specific CD8 T cells at the beginning of the response. (E) IFN
indirectly enables late comer Ag-specific T cells to become immediate effectors, but directly inhibits proliferation. (F) After synchronized contraction,
the host is left with a new population of memory T cells and a loss of preexisting memory cells.
doi:10.1371/journal.ppat.1002352.g001
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good inducer of IL-12, and IL-12 seems to

play a compensatory stimulatory role for T

cells in that infection [28]. IFN 1 has

potent growth-inhibitory and apoptotic

properties, so one might be surprised

about this direct augmentation of prolifer-

ation. However, as mentioned above, IFN

1–induced growth inhibition is in part

mediated through STAT1, but antigen-

activated CD8 T cells during LCMV

infection downregulate STAT1 and get

released from that block [29]. Mice

lacking STAT1 experience a putative

‘‘nonspecific’’ proliferation of their CD8

T cells, so it is speculated that IFN 1

signaling through STAT1 may retard

nonspecific proliferation and allow the

antigen-specific T cells to develop. The

action of IFN 1 through other STAT

molecules can induce antiapoptotic effects

and augment the proliferation of T cells.

Altered T-Cell Differentiation
and Proliferation Caused by
Out-of-Sequence Signaling

The timing of IFN exposure can greatly

affect the T-cell differentiation pathway

and the magnitude of the T-cell response.

It is well established that exposure to IFNc
promotes the differentiation of CD4 T

cells into IFNc-secreting Th1 cells [30,31],

but here we are talking about a timing-

dependent exposure of CD8 T cells to type

1 IFN. Exposure of naı̈ve CD8 T cells to

APC and IFN before exposure to cognate

antigen upregulates the T-cell expression

of eomesodermin and sensitizes T cells to

enter an altered differentiation pathway on

encounter with cognate antigen (Figure 1E)

[32]. Instead of undergoing several divi-

sions before exerting effector functions,

these sensitized CD8 T cells retain a naı̈ve

antigenic phenotype but act like memory

cells and develop effector-cell properties

associated with cytokine production and

cytolytic activity within 2–4 h. This is not

due to a direct effect of IFN on the T cells,

as it occurs even if T cells lack IFN1R. It is

more likely due to IFN acting on the

APCs, which need to express the restrict-

ing MHC molecule for the cognate

peptide to sensitize the T cells to respond

differently to the cognate peptide.

We propose that the enhanced expres-

sion of MHC- presenting self-peptide

provides a low level stimulus to naı̈ve T

cells, enabling them to retain a naı̈ve T-

cell antigenic phenotype yet produce

transcription factors that allow them to

respond to cognate peptide like a memory

T cell.

A common phenomenon occurring

during the course of a viral infection is a

transient immune deficiency whereby T

cells respond poorly to T-cell mitogens in

vitro and to challenge with nonviral

antigens in vivo [33]; this is, in fact, why

one should not get vaccinated during

illness. Several phenomena could account

for this deficiency, including growth of

virus in T cells, impaired antigen presen-

tation, competition for T-cell growth

factors, and induction of activation-in-

duced cell death in a Fas ligand-rich

environment. However, we have recently

shown that type 1 IFN itself may account

for much of this immune suppression, if

the T cells are exposed to the IFN before

cognate antigen encounter (Figure 1E)

[34]. Prior exposure to IFN before cognate

antigen stimulus impairs the proliferation

of T cells after the antigen stimulus, even

in the presence of IFN acting as a

costimulatory factor, and the inhibition

of proliferation in this case requires

IFN1R on the T cells. The molecular

mechanism for this IFN-induced impair-

ment of proliferation is unknown, but this

is reminiscent of earlier work showing that

NK cells become hyporesponsive to IFN-

mediated activation after having received

a prior IFN stimulus [35,36].

Therefore, T cells that receive an IFN

stimulus prior to cognate antigen exposure

become sensitized to immediately become

effector cells by an indirect IFN-dependent

mechanism; but they undergo reduced

proliferation by a direct IFN-dependent

mechanism. Together these mechanisms

may limit de novo T-cell responses in the

midst of a viral infection and may aid in

the synchronization of the contraction

phase of the immune response, because

T cells recruited late into the antiviral

response would undergo reduced clonal

expansion.

IFN-Induced Apoptosis and
Attrition of Memory T Cells

IFN-inducing viral infections have a

deleterious effect on memory CD8 and

CD4 T cells specific to other antigens. We

show here that memory-phenotype CD8

T cells express moderately higher levels of

IFN1R than do naı̈ve T cells (Figure 2),

and it is not unusual for 50%–80% of the

memory CD8 T cells to undergo an IFN-

induced apoptosis early during infection

(Figure 1C) [37–40]. Some naı̈ve cells also

die in the earlier stages of infection, but to

a much lower extent. This apoptosis is

associated with elevated caspases, annexin

V-staining, and DNA fragmentation and is

at least partially dependent on Bim, known

to be a proapoptotic molecule induced by

type 1 IFN [39,41]. Of note is that type 1

IFN inducers drive a substantial increase

in the number of the highly phagocytic

CD8a+, CD11c+ DC population into the

spleen of mice (Figure 1B and 1C) [39].

These DC assimilate apoptotic cells and

become reactive with Annexin V in the

process, making it difficult to quantify

apoptotic T cells directly ex vivo and easy

to confuse CD8+ T cells with CD8+ DC.

The IFN-induced apoptosis of memory T

cells can occur in the presence of cognate

antigen [38], leading one to question why

such a mechanism should exist, as one

might want to rapidly recruit antigen-

specific memory cells into an immune

response. One possibility is that this loss in

memory cells is well tolerated because of

their initial high frequencies and that it

creates room for new T-cell responses to

vigorously develop. It has been known for

decades that partial depletion of lympho-

cyte populations can augment new T-cell

responses [42,43]. Further, should these

memory T cells cross-react with another

pathogen, a reduction in their number

may prevent them from overzealously

dominating the T-cell response to the

cross-reactive epitope [38]. This IFN-

induced loss in memory T cells at the

beginning of infections would allow for a

more diverse and presumably more effec-

tive T-cell response to that pathogen.

Memory T cells may often be present in

clonal excess such that the host can reduce

their numbers without deleterious effects.

However, a series of infections with

heterologous pathogens has been shown

to reduce memory T-cell numbers to levels

that compromise the host’s resistance to

infections [44,45].

Conclusion: Sequence of Type 1
IFN–Induced Events during a
Viral Infection

We now can envisage the series of type

1 IFN–induced events that control CD8

T-cell responses to viral infections

(Figure 1). A virus will infect a host and

possibly a DC and induce IFN that

upregulates MHC and costimulatory mol-

ecules, and then the activated DC mi-

grates into the spleen and lymph nodes

(Figure 1A and 1B). IFN induces the

apoptosis of many of the memory cells

and some of the naı̈ve cells, making room

in the immune system to drive a strong T-

cell response (Figure 1C). The antigen-

specific T cells downregulate the antipro-

liferative STAT1, allowing IFN signals to

go through other STAT molecules that

inhibit apoptosis and promote prolifera-

tion (Figure 1D). Type 1 IFN acts as a

strong costimulatory factor driving T-cell

PLoS Pathogens | www.plospathogens.org 3 January 2012 | Volume 8 | Issue 1 | e1002352



expansion. Late comer T cells in the

immune response will be indirectly sensi-

tized by IFN to immediately become

effector cells but at the expense of

proliferation, which is suppressed by direct

IFN signaling (Figure 1E). After the virus is

cleared, the T-cell response synchronously

contracts, leaving the host with a pool of

new memory cells and a loss of previously

existing ones (Figure 1F).
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