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The Effect of IFN-� and TNF-� on the NADPH Oxidase
System of Human Colostrum Macrophages, 

Blood Monocytes, and THP-1 Cells

ANA CAROLINA ALMEIDA,1 JUSSARA REHDER,1 SILVANA DALGÈ SEVERINO,1

JOSÉ MARTINS-FILHO,1 PETER E. NEWBURGER,2 and ANTONIO CONDINO-NETO1,3

ABSTRACT

The aim of this work was to analyze the effect of Interferon-� (IFN-�) and tumor necrosis factor-� (TNF-�)
on NADPH oxidase activity and gp91-phox gene expression in human colostrum macrophages (CM), periph-
eral blood monocytes (PBM), and myelomonocytic THP-1 cells. We also investigated the effect of IFN-� on
the release of TNF-� by these cells. Our results show that under basal culture conditions, CM release more
superoxide than PBM and THP-1 cells (p � 0.05). The addition of IFN-�, alone or in combination with TNF-�,
increased spontaneous superoxide release by PBM and THP-1 cells (p � 0.05) and increased phorbol myris-
tate acetate (PMA)-stimulated superoxide release by CM, PBM, and THP-1 cells (p � 0.05). The NADPH ox-
idase activity of THP-1 cells consistently remained lower than that of CM or PBM, despite a dramatic re-
sponse to IFN-� and TNF-�. Under basal conditions, gp91-phox gene expression was significantly higher in
CM and PBM compared with THP-1 cells (p � 0.05). The addition of IFN-� alone or in combination with
TNF-� caused a dramatic increase in gp91-phox gene expression in THP-1 cells (p � 0.05) but not in CM or
PBM. Under basal conditions or in the presence of IFN-�, CM released more TNF-� than PBM or THP-1
cells (p � 0.05). In addition, PBM released more TNF-� than THP-1 cells (p � 0.05). IFN-� did not signifi-
cantly augment the release of TNF-� by these cells (p � 0.05). Thus, IFN-� and TNF-� induced equivalent
gp91-phox gene expression in THP-1 cells compared with CM or PBM but did not bring about equivalent
NADPH oxidase activity. TNF-� release was higher in more mature cells. This partial divergence of gp91-
phox gene expression, NADPH oxidase activity, and TNF-� release is probably a consequence of different
events of myeloid cell biology and relates at least in part to cell differentiation state.
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INTRODUCTION

HUMAN COLOSTRUM MACROPHAGES (CM) are mature mono-
cytic cells that protect the mother against mastitis(1,2)

and augment the immature immune system of the neonate.(3)

These cells synthesize defense factors, including complement
components (factors B, C2, C3, and C4),(4,5) lactoferrin, lyso-
zyme,(3,6) granulocyte-macrophage colony-stimulating factor
(GM-CSF),(7) leukotriene B4 (LTB4), LTC4,(8) transforming
growth factor-� (TGF-�),(9) prostaglandin E2 (PGE2).(10) They
represent 30%–80% of the human colostrum leukocyte popu-
lation, which varies from 500 to 10,000 cells/ml.(3) CM cells

express MHC class II molecules,(11) develop antibody-depen-
dent cellular cytotoxicity,(12,13) ingest and kill bacteria,(14) and
display the morphology and motility of activated cells.(3)

Colostrum is an important and accessible source of human mac-
rophages.

Professional phagocytes, such as neutrophils, eosinophils,
monocytes, and macrophages, share a metabolic function
termed the “respiratory burst,” which is triggered by inflam-
matory stimuli or infection. These stimuli activate the NADPH
oxidase system, which catalyzes the donation of one electron
from NADPH to molecular oxygen, converting it into super-
oxide anion (O2

�), which is rapidly converted to secondary toxic
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oxygen species, such as hydrogen peroxide (H2O2), hydroxyl
radical (OH•), and hypochlorous acid (HOCl), all of which are
important microbicidal agents.(15–17)

The phagocyte NADPH oxidase is a multicomponent en-
zyme system. The final electron donor is a heterodimeric flav-
ocytochrome b, composed of a 91-kDa glycoprotein (gp91-
phox) and a 22-kDa polypeptide (p22-phox). Following
activation, the flavocytochrome b associates with Rap1A(15,18)

and other cytosolic proteins, including p47-phox, p67-phox,
p40-phox, and p21Rac.(19,20) The gp91-phox and p22-phox
genes (also termed CYBB and CYBA, respectively) undergo par-
allel induction by various cytokines, including interferon-�
(IFN-�), in monocyte-derived macrophages and granulo-
cytes.(21,22) In the human myelomonocytic THP-1 cell line,
IFN-� and tumor necrosis factor-� (TNF-�) cause differentia-
tion followed by a synergistic upregulation of the NADPH ox-
idase system, reflected by an enhancement of superoxide re-
lease, cytochrome b558 content, and expression of the
gp91-phox and p47-phox genes.(23)

The aim of the current work was to investigate the effects of
IFN-� and TNF-� on the NADPH oxidase system of human
myeloid cells in different developmental stages, analyzing both
superoxide release and gp91-phox gene expression in CM, pe-
ripheral blood monocyte (PBM), and THP-1 cells. In addition,
we analyzed the effect of IFN-� on the release of TNF-� by
these cells.

MATERIALS AND METHODS

Cell isolation

Colostrum samples were manually collected and centrifuged
(160g for 15 min at 4°C) to separate cells from the fat and aque-
ous layers. The cell button was resuspended in RPMI 1640
medium and centrifuged over a Ficoll-Paque density gradient
1077.(24) The upper layer containing mononuclear leukocytes
was transferred to polystyrene plates, where CM were isolated
by adherence. Monocytes were isolated by centrifugation of
blood samples of the same donor over Ficoll-Paque and adher-
ence on polystyrene plates. Colostrum and blood samples were
collected up to 72 h postpartum. Macrophages/monocytes were
98% pure and showed �90% viability.

Cell culture

Macrophages, PBM, and THP-1 cells were cultured under
endotoxin-free conditions (�10 pg/ml) in RPMI 1640 medium
supplemented with 10% heat-inactivated fetal bovine serum
(FBS), 2 nM L-glutamine, 100 U/ml penicillin, and 100 �g/ml
streptomycin, at 37°C in a humid atmosphere with 5% CO2.(25)

IFN-� (100 U/ml) alone or in combination with TNF-� (1000
U/ml) was added to cultures for 48 h as indicated.

NADPH oxidase activity

Superoxide release was quantified by superoxide dismutase
(SOD)-inhibitable cytochrome c reduction as described Mc-
Cord and Fridovich,(26) modified by Condino-Neto et al.(23)

Briefly, on the day of the experiment, plates CM, PBM, or
THP-1 cells were centrifuged, and the supernatant was re-

moved. The cells were incubated in Hanks’ balanced salt solu-
tion (HBSS) (without phenol red) containing cytochrome c (50
�M) for 1 h at 37°C in a humidified 5% CO2 atmosphere. Half
of the wells received SOD (60 U/ml) at the beginning of the
incubation. In another set of identical plates, phorbol myristate
acetate (PMA) (30 nM) was added at the start of the incuba-
tion as an activator of superoxide release. After incubation, all
plates were placed on ice, and the other half of the wells re-
ceived SOD (60 U/ml). The plates were centrifuged again, and
the absorbance of the supernatants was monitored at 550 nm.
The results were calculated from the difference between the ab-
sorbance of the tubes with or without SOD during the incuba-
tion and expressed as nmol superoxide/106 cells/h.

gp91-phox gene expression

Expression of the gp91-phox gene (MIM.300481) was as-
sessed by relative RT-PCR analysis using an Ambion Quan-
tumRNA 18S Internal Standards kit (Ambion, Austin, TX). To-
tal cell RNA was extracted by the guanidine HCl method.(27)

Reverse transcription was performed with SuperScript II RT
(GIBCO BRL, Gaithersburg, MD) and random hexamers. The
cDNA was amplified by 30 cycles of PCR with oligonucleo-
tide primers specific for gp91-phox (nucleotides [nt] 32 [exon
1]–443 [exon 5]) (GenBank accession number NM 000397).
The PCR products were analyzed by electrophoresis in ethid-
ium bromide-stained agarose gels. Relative gene expression was
measured by Image Master software (Amersham Pharmacia
Biotech, Piscataway, NJ).

TNF-� release

For ELISA assays of TNF-�, 96-well plates were incubated
with anti-TNF-� capture antibody overnight at ambient temper-
ature. After receiving blocking solution, plates were incubated
with cell culture supernatant, followed by detection antibody.
After this incubation, plates were incubated with streptavidin-
horseradish peroxidase (HRP), substrate solution, and stopping
solution, respectively. The optical density (OD) was monitored
in an ELISA reader at 450 nm. Results were expressed in
picograms of TNF-�/106 cells (DuoSet Human TNF-�, R&D
Systems, Minneapolis, MD).

Statistics

Descriptive statistics were performed, and the results are rep-
resented by bar graphs showing mean � standard deviation
(SD) values. Kruskal-Wallis and Mann-Whitney U-test were
used for comparisons among groups; p � 0.05 was considered
significant.(28,29)

RESULTS

NADPH oxidase activity

Spontaneous superoxide release by CM (n � 13) cultured in
basal conditions was significantly higher compared with PBM
(n � 20) or THP-1 cells (n � 8) (p � 0.05, Kruskal-Wallis test)
(Fig. 1). The addition of IFN-� alone or in combination with
TNF-� caused a significant increase in spontaneous superox-
ide release by PBM and THP-1 cells (p � 0.05, Mann-Whitney
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test) (Fig. 1), but not by CM (p � 0.05, Mann-Whitney test)
(Fig. 1).

PMA (30 nM)-stimulated superoxide production was mea-
sured in CM (n � 26), PBM (n � 37), and THP-1 (n � 31) cells

cultured in basal conditions. Results were similar for CM and
PBM (p � 0.05, Kruskal-Wallis test) (Fig. 2), but superoxide
release by THP-1 cells was significantly lower compared with
CM or PBM (p � 0.05, Kruskal-Wallis test) (Fig. 2). The ad-
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FIG. 1. Bar graph showing mean � SD of spontaneous superoxide release by CM (n � 13), PBM (n � 20), and THP-1 cells (n �
8) (nmol of superoxide/106 cells/h). Cells were cultured in basal conditions or with IFN-� 100 U/ml alone or in combination with
TNF-� 1000 U/ml for 2 days. p � 0.05. CM control � PBM control � THP-1 cells (p � 0.05, Kruskal-Wallis test); PBM control �
PBM IFN-�/TNF-a (p � 0.05, Mann-Whitney); THP-1 control � THP-1 IFN-�/TNF-� (p � 0.05, Mann-Whitney).

FIG. 2. Bar graph showing mean � SD values of PMA-stimulated superoxide anion release (nmol of superoxide/106 cells/h)
by CM (n � 26), PBM (n � 37), and THP-1 cells (n � 31). Cells were cultured in basal conditions or with IFN-� 100 U/ml alone
or in combination with TNF-� 1000 U/ml for 2 days. *p � 0.05. THP-1 control � CM control � PBM control (p � 0.05, Kruskal-
Wallis test); CM IFN-�/TNF-� � CM control (p � 0.05, Mann-Whitney); PBM IFN-�/TNF-� � PBM control (p � 0.05, Mann-
Whitney); THP-1 IFN-�/TNF-� � THP-1 control (p � 0.05, Mann-Whitney); THP-1 IFN-�/TNF-� � CM IFN-�/TNF-� � PBM
IFN-�/TNF-� (p � 0.05, Kruskal-Wallis test).
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dition of IFN-� or IFN-� and TNF-� caused a significant in-
crease in PMA-stimulated superoxide release by CM, PBM, and
THP-1 cells (p � 0.05, Mann-Whitney test) (Fig. 2). However,
PMA-stimulated superoxide by THP-1 cells cultured with IFN-�
or IFN-� and TNF-� remained consistently lower compared
with CM or PBM (p � 0.05, Kruskal-Wallis test) (Fig. 2).

Gene expression studies

Under basal conditions, gp91-phox gene expression was sig-
nificantly higher in CM (n � 13) and PBM (n � 15) compared
with THP-1 cells (n � 9) (p � 0.05, Kruskal-Wallis test) (Fig.
3). The addition of IFN-� or of IFN-� and TNF-� caused a sig-
nificant increase in gp91-phox gene expression in THP-1 cells
(p � 0.05, Mann-Whitney test) (Fig. 3) but not in CM or PBM
(p � 0.05, Mann-Whitney test) (Fig. 3). Thus, IFN-� in com-
bination with TNF-� induced THP-1 cells to express equiva-
lent levels of gp91-phox transcripts compared with CM or PBM,
but without equivalent NADPH oxidase activity.

TNF-� release

Under basal conditions, the TNF-� release by CM (n � 6)
and PBM (n � 7) was significantly higher compared with
THP-1 cells (n � 6) (p � 0.05, Kruskal-Wallis Test) (Fig. 4).
Culturing CM, PBM, and THP-1 cells with IFN-� for 48 h
caused a modest increase in the TNF-� release by these cells
(p � 0.05, Mann-Whitney test) (Fig. 4). In addition, after 48 h
culture with IFN-�, CM (n � 5) and PBM (n � 7) released
higher levels of TNF-� compared with THP-1 (n � 6) cells
(p � 0.05, Kruskal-Wallis Test) (Fig. 4).

DISCUSSION

In the current model, THP-1 cells represent an early phase
of mononuclear phagocyte development, PBM are in an inter-
mediate state of development, and CM represent tissue cells in
a terminal maturation state. Our results show that under basal
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FIG. 3. (A) Ethidium bromide-stained agarose gel of RT-PCR products representing gp91-phox gene expression in CM, PBM,
and THP-1 cells. Cells were cultured in basal conditions or with IFN-� 100 U/ml and TNF-� 1000 U/ml for 2 days. The upper
band represents gp91-phox transcripts, and the lower band represents 18S rRNA normalization controls. Lane 1, base pair marker
(100 bp); lane 2, CM control; lane 3, PBM control; lane 4, CM � IFN-�/TNF-�; lane 5, PBM � IFN-�/TNF-�; lane 6, THP-1
cell control; lane 7, THP-1 cells � IFN-�/TNF-�. (B) Bar graphs showing mean � SD for relative expression of the gp91-phox
gene in CM (n � 13), PBM (n � 15) and THP-1 cells (n � 9). Cells were cultured in basal conditions and with IFN-� 100 U/ml
alone or in combination with TNF-� 1000 U/ml. CM � PBM � THP-1 (control) (p � 0.05, Kruskal-Wallis test); THP-1 IFN-
�/TNF-� � THP-1 control (p � 0.05, Mann-Whitney). Asterisks indicate that control � IFN-� � IFN-�/TNF-�.

http://www.liebertonline.com/action/showImage?doi=10.1089/jir.2005.25.540&iName=master.img-002.jpg&w=366&h=349


conditions, CM spontaneously release more superoxide than
PBM and THP-1 cells. The addition of IFN-� or of IFN-� plus
TNF-a caused a significant increase in spontaneous superoxide
release by PBM and THP-1 cells and also increased PMA-stim-
ulated superoxide release by CM, PBM, and THP-1 cells. IFN-�
alone or in combination with TNF-a did not enhance gp91-phox
gene expression by CM or PBM, unlike THP-1 cells, in which
the cytokines induced a significant increase in the expression
of this gene encoding a key component of the NADPH oxidase
complex. Accordingly, CM released more TNF-� than PBM,
which in turn released more TNF-� than THP-1 cells, showing
that TNF-� release correlates with the mononuclear phagocyte
maturation state.

The results obtained with PBM confirmed previous obser-
vations(30,31) in which culturing human monocytes with IFN-�
and TNF-a for 48 h caused them to release more superoxide.
Cummings et al.,(32) measuring superoxide release by both CM
and PBM freshly isolated from the same individual, also found
that spontaneous superoxide release from CM exceeds that from
PBM, but after PMA stimulation, the values became equiva-
lent.

The current results comparing stimulated superoxide release
from CM and PBM also concur with previous observations.
Tsuda et al.(33) showed that CM stimulated by opsonized zy-
mosan or PMA release similar amounts of superoxide anion and
H2O2 compared with monocytes. These findings were con-
firmed by Speer et al.,(14) who showed that freshly isolated,
PMA-stimulated CM release superoxide and H2O2 at rates sim-
ilar to those of PBM. Furthermore, Pabst et al.(34) showed that

human milk macrophages, peritoneal macrophages, and human
blood monocytes appeared to be already primed for a vigorous
oxygen radical response.

The current experiments also confirm our previous find-
ing(23) that culturing THP-1 cells with IFN-� alone or in combin-
ation with TNF-a for 48 h induces these cells to differentiate,
to express increased NADPH oxidase activity and cytochrome
b content, and to upregulate genes encoding NADPH oxidase
components. Even with the considerable induction of NADPH
oxidase activity in THP-1 cells by IFN-� and TNF-�, however,
it is not sufficient to reach the levels expressed in PBM and
CM.

The higher amounts of TNF-a release by more differentiated
cells do not definitively account for these observations. The
most probable explanation is that the NADPH oxidase system
in mononuclear phagocytes is activated during its in vivo matura-
tion by a large number of chemical stimuli with which THP-1
cells do not have contact during in vitro maturation. These stim-
uli include not only cytokines and chemokines but also NADPH
oxidase products. The reactive oxygen species (ROS) regulate
cellular growth, differentiation, proliferation, apoptosis, and
gene expression.(35–38) Furthermore, THP-1 cells are a leuke-
mia-derived, continuous cell line with distinct genotypic and
phenotypic characteristics.

Our gene expression studies showed that the cytokines IFN-�
and TNF-� upregulated gp91-phox expression in THP-1 cells,
as shown in our previous work,(23) and reached levels equiva-
lent to CM and PBM. However, the colostrum and blood-de-
rived cells did not show a significant change in gp91-phox gene
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FIG. 4. Bar graphs showing mean � SD values of TNF-� release (pg TNF-�/106 cells) by CM (n � 11), PBM (n � 14), and
THP-1 cells (n � 12). Cells were cultured in basal conditions or with IFN-� 100 U/ml. *p � 0.05. THP-1 control � PBM con-
trol � CM control (p � 0.05, Kruskal-Wallis test); THP-1 IFN-� � PBM IFN-� � CM IFN-� (p � 0.05, Kruskal-Wallis test);
CM control � PBM control (p � 0,05, Mann-Whitney); CM control � THP-1 control (p � 0.05, Mann-Whitney); PBM con-
trol � THP-1 control (p � 0.05, Mann-Whitney); CM IFN-� � PBM IFN-� (p � 0.05, Mann-Whitney); CM IFN-� � THP-1
IFN-� (p � 0.05, Mann-Whitney); PBM IFN-� � THP-1 IFN-� (p � 0.05, Mann-Whitney).
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expression in response to these cytokines. Notably, CM released
the highest amounts of TNF-� compared with PBM or THP-1
cells, and the release of this cytokine was not subject to strong
modulation by IFN-�, showing that other factors may influence
this function in vivo.

In contrast, Newburger et al.(22) reported that human mono-
cyte-derived macrophages cultured for 24 h with IFN-� show
a 12-fold increase in gp91-phox gene expression and that treat-
ment with lipopolysaccharide (LPS), TNF-�, or macrophage
CSF (M-CSF) or GM-CSF increases gp91-phox and, to a lesser
extent, p22-phox transcript levels. Cassatella et al.(39) also
showed that a 24–48-h treatment with IFN-� increases gp91-
phox levels in monocyte-derived macrophages. The differences
between our results and those previously reported may be at-
tributed to differences in culture time and cytokine concentra-
tion.

Thus, gp91-phox gene expression is already highly expressed
in CM and PBM, probable because of the effects of stimuli re-
ceived during maturation, such as interleukin-3 (IL-3), CSF-1,
GM-CSF, IL-4, and IL-13,(40) and also because of the autocrine
modulation by TNF-� and ROS. THP-1 cells are undifferenti-
ated precursor of monocytes and macrophages and, thus, are
able to respond more to IFN-� and TNF-�. In addition, their
leukemic origin(23) may contribute to a different response com-
pared with primary monocytes and macrophages.

Winston et al.(41) showed that TNF-� mediates macrophage
differentiation and IFN-� appears to act as a molecular switch.
In the presence of IFN-�, stimulation of macrophages with
TNF-� causes macrophage differentiation along a pathway in
which inducible nitric oxide synthase (iNOS) is expressed,
whereas in the absence of IFN-�, stimulation of macrophages
with TNF-� causes differentiation along a pathway in which
insulin-like growth factor-1 (IGF-1) is expressed.

Our experiments show that IFN-� did not strongly mod-
ulate TNF-� release by CM, PBM, or THP-1 cells. Mono-
cytes and macrophages are a major source of TNF-�.(42)

Studies have shown that LPS-induced TNF-� release is, at
least in part, a result of NF-�B activation.(43,44) LPS rapidly
activates TNF-� gene transcription, which causes an increase
in steady-state TNF-� mRNA levels, the translation of which
accounts for the observed dramatic increase in secreted TNF-
� protein.(45)

Our results also show that TNF-� release is directly related
to the cell maturation state. Thus, TNF-� release in culture
medium may provide an autocrine mechanism that can influ-
ence the NADPH oxidase system, potentiating cell responses
to other cytokines.

The release of superoxide is a consequence of gene expres-
sion and downstream events, including translation, RNA and
protein stability, receptor activation, and signal transduction, all
of which can vary according to a cell’s stage of differentiation.
We conclude that regulation of the NADPH oxidase system in
human myelomonocytic cells by IFN-� and TNF-� is a conse-
quence of different events of cell biology and is related at least
in part to cell differentiation. Better understanding of NADPH
oxidase regulation will strengthen the basis for modulating its
expression in conditions with high risk for oxidant-mediated in-
flammation and tissue injury. Specific knowledge of human CM
function should shed light on the contribution of breastfeeding
to the host defense of the neonate.
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