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The Effect of IFN-g and TNF-a on the Eosinophilic
Differentiation and NADPH Oxidase Activation of 

Human HL-60 Clone 15 Cells

JUAN A. LOPEZ,1 PETER E. NEWBURGER,2 and ANTONIO CONDINO-NETO1

ABSTRACT

The aim of this study was to investigate the effect of interferon-g (IFN-g) and tumor necrosis factor-a
(TNF-a) on NADPH oxidase activity and gp91-phox gene expression in HL-60 clone 15 cells as they differ-
entiate along the eosinophilic lineage. The results were compared to the eosoniphilic inducers interleukin-5
(IL-5) and butyric acid. IFN-g (100 U/ml) and TNF-a (1000 U/ml) or IL-5 (200 pM) caused a significant in-
crease in the expression of the eosinophil peroxidase (EPO) and the major basic protein (MBP) genes. Simi-
lar results were observed when the cells were cultured with 0.5 mM butyric acid for 5 days. IFN-g (100 U/ml)
and TNF-a (1000 U/ml) also caused a significant increase in superoxide release by HL-60 clone 15 cells after
2 days compared with control or with butyric acid-induced cells. After 5 days, these cytokines and butyric
acid induced an even stronger release of superoxide. HL-60 clone 15 cells cultured with IFN-g and TNF-a
for 2 days showed a significant increase in gp91-phox gene expression. We conclude that IFN-g and TNF-a
are sufficient to induce the differentiation of HL-60 clone 15 cells to the eosinophilic lineage and to upregu-
late gp91-phox gene expression and activity of the NADPH oxidase system.
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INTRODUCTION

EOSINOPHILS ARE TERMINALLY DIFFERENTIATED granulocytes
that develop in the bone marrow, reside predominantly in

submucosal tissues, and are involved in defense against para-
sites.(1) They are also recruited to sites of specific immune re-
actions, including allergic diseases, such as asthma, rhinitis,
and atopic dermatitis. Although their precise life span is not
known, eosinophils live longer than neutrophils and may sur-
vive for weeks within tissues.(1) Eosinophils can behave as 
effector cells that release cytoplasmic granule-associated pro-
teins, specific lipid mediators, and reactive oxygen intermedi-
ates, such as superoxide, hydrogen peroxide, chloramines, and
hydroxyl radicals, all of which can lead to tissue damage and
airway hyperreactivity.(2) They can also act as regulatory cells,
secreting such cytokines as granulocyte-macrophage colony-
stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5,
which influence other regulatory or effector cells of the im-
mune system.(1,3–5)

Cytokines, such as GM-CSF, IL-3, and IL-5, promote
eosinophilopoiesis in vivo, upregulate eosinophil functions, and

enhance survival of the mature cells.(6) IL-5 also can rapidly
induce the release of developed eosinophils from the marrow
into the circulation.(7) Proinflammatory cytokines, such as in-
terferon-g (IFN-g) and tumor necrosis factor-a (TNF-a), sup-
port the in vitro survival and enhance certain functions of
eosinophils, such as the expression of Fc receptors and adhe-
sion molecules.(8) Controversially, IFN-g and TNF-a also en-
hance CD95 expression, which causes an increase in FasL-me-
diated apoptosis of eosinophils in vitro.(9)

As in other phagocytes, generation of reactive oxygen inter-
mediates by eosinophils follows the activation and assembly of
NADPH oxidase on the plasma membrane.(10,11) The NADPH
oxidase system can be induced by several cytokines, particu-
larly IFN-g and TNF-a, in monocytes and granulocytes.(12,13)

IFN-g also increases gene expression of gp91-phox in phago-
cytes of patients with chronic granulomatous disease(14) and im-
proves splicing and stability of these gene transcripts in unusual
kindreds with splice region intronic mutations.(15,16)

Several models have been used to investigate the differenti-
ation of eosinophils. Clone 15 of the HL-60 cell line provides
a well-characterized in vitro system.(17) When these cells are
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stimulated with butyric acid (BA), they differentiate into cells
with characteristics of mature eosinophils.(18) The aim of this
study was to investigate the effect of IFN-g and TNF-a on
NADPH oxidase activity and gene expression of gp91-phox in
human HL-60 clone 15 cells according to their developmental
stage along the eosinophilic lineage.

MATERIALS AND METHODS

Cell culture

The promyelocytic human HL-60 clone 15 cell lineage was
obtained from the American Type Culture Collection (Rock-
ville, MD) and cultured (0.5–1.0 3 106 cells/ml) in RPMI 1640
medium containing fetal bovine serum (FBS) (10% v/v), L-glu-
tamine (2 mM), penicillin (100 U/ml), and streptomycin (100
mg/ml) at 37°C in a humidified 5% CO2 atmosphere. Positive
controls were HL-60 clone 15 cells differentiated to the
eosinophilic lineage with BA (0.5 mM).(11) Comparisons were
established among cells cultured with IL-5 (200 pM) or IFN-g
(100 U/ml) and TNF-a (1000 U/ml) for different lengths of
time. Cell viability was assessed by trypan blue exclusion.

Characterization of HL-60 clone 15 eosinophilic
differentiation

The eosinophilic differentiation of HL-60 clone 15 cells was
assessed by morphology (eosinophilic granules on May-Grün-
wald staining) and expression of genes encoding two
eosinophil-specific proteins, eosinophil peroxidase (EPO) and
major basic protein (MBP), by reverse transcription and poly-
merase chain reaction (RT-PCR) analysis. Total RNA was ex-
tracted using the guanidine HCl method.(19) Reverse transcrip-
tion was performed with SuperScript II RT (GIBCO-BRL,
Gaithersburg, MD) and random hexamers. The synthesized
cDNA was amplified by 30 cycles of PCR with oligonucleotides
specific for EPO (bp 427–444, exon 1, and bp 326–343, exon
3) (GenBank accession numbers M29904 and M29905), MBP
(bp 1858–1875, exon 2, and bp 3158–3175, exon 4) (GenBank
accession number M34462), or b-actin, a constitutive gene con-
trol (bp 920–943 and bp 1494–1471) (GenBank accession num-
ber NM001101). The PCR products were analyzed by elec-
trophoresis in ethidium bromide-stained agarose gels. Relative

gene expression was measured by Image Master® software
(Amersham Pharmacia Biotech, Piscataway, NJ).

NADPH oxidase activity

Superoxide release was quantified by superoxide dismutase
(SOD)-inhibitable cytochrome c reduction as described by Mc-
Cord and Fridovich(20) and by Condino-Neto and New-
burger.(15) The results were expressed as nmol of superoxide
released by 106 cells per hour.

gp91-phox gene expression

Expression of the gp91-phox gene was assessed by relative
RT-PCR analysis using a QuantumRNA™ 18S Internal Stan-
dards kit (Ambion, Austin, TX). Total cell RNA was extracted
by the guanidine HCl method.(19) Reverse transcription was per-
formed with SuperScript II RT and random hexamers. The
cDNA was amplified by 30 cycles of PCR with oligonucleotides
specific for gp91-phox (bp 32 exon 1–bp 443 exon 5) (Gen-
Bank accession number NM 000397). The PCR products were
analyzed as described.

Statistics

Descriptive statistics were performed, and comparisons were
established by the Mann-Whitney test. A p value ,0.05 was
considered significant.(21)

RESULTS

HL-60 clone 15 cells cultured with BA express the
eosinophil-specific markers EPO and MBP

HL-60 clone 15 cells were cultured with 0.5 mM BA for 7
days. During this period, the cell viability was 85%–95% (n 5

10), compared with 95% viable control cells (n 5 4). The via-
bility of HL-60 clone 15 cells cultured with 0.5 mM BA de-
creased dramatically to 25% after 14 days of culture (n 5 4).

RT-PCR analysis of the specific eosinophil products MBP
and EPO was used to demonstrate BA-induced eosinophilic dif-
ferentiation of HL-60 clone 15 cells. Figure 1 shows that gene
expression of EPO and MBP was higher on days 3 and 7 of
HL-60 clone 15 cell culture with 0.5 mM BA (lanes 2 and 3,
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FIG. 1. HL-60 clone 15 cells cultured with BA acid express the eosinophil-specific markers EPO and MBP. RT-PCR analysis
demonstrates higher EPO and MBP gene expression in HL-60 clone 15 cells cultured with 0.5 mM BA for 3 or 7 days (lanes 2
and 3, respectively) compared with day 1 (lane 1). b-Actin gene expression was detected in all samples.



respectively) compared with day 1 (lane 1). Constitutive ex-
pression of the b-actin gene was detected in all samples. These
results confirm previous findings regarding this model sys-
tem.(17)

Effect of IFN-g and TNF-a compared with IL-5 or 
BA on EPO and MBP gene expression in HL-60 
clone 15 cells

Culturing HL-60 clone 15 cells with IFN-g (100 U/ml) and
TNF-a (1000 U/ml) for 2 days caused an increase in EPO and
MBP gene expression compared with control cells (Fig. 2, p ,
0.05, n 5 4, Mann-Whitney test). Similar results were observed
when these cells were cultured with IL-5 (200 pM) for 7 days
(Fig. 2) (p , 0.05, n 5 4, Mann-Whitney test) or with BA (0.5
mM) for 5 days (Fig. 2) (p , 0.05, n 5 4, Mann-Whitney test).
The addition of IFN-g (100 U/ml) and TNF-a (1000 U/ml) dur-
ing the last 2 days of culture increased EPO gene expression in
HL-60 clone 15 cells differentiated with BA (0.5 mM) for 5
days compared with cells cultured with only IFN-g (100 U/ml)
and TNF-a (1000 U/ml) for 2 days or with control cells (Fig.
2) (p , 0.05, n 5 4, Mann-Whitney test).

Effect of IFN-g and TNF-a or BA on NADPH oxidase
activity of HL-60 clone 15 cells

IFN-g (100 U/ml) and TNF-a (1000 U/ml) caused a signif-
icant increase in superoxide release by HL-60 clone 15 cells 
after 2 days of culture compared with cells cultured in basal
conditions or with BA alone (Fig. 3) (p , 0.05, n 5 4, Mann-
Whitney test). The addition of IFN-g (100 U/ml) and TNF-a
(1000 U/ml) during the last 2 days to HL-60 clone 15 cells cul-
tured with BA (0.5 mM) for 5 days caused a stronger release

of superoxide (Fig. 3) (p , 0.05, n 5 4, Mann-Whitney test).
BA alone (0.5 mM) caused a significant increase in superoxide
release by HL-60 clone 15 cells only after 7 days of culture
compared with basal conditions (Fig. 3) (p , 0.05, n 5 4,
Mann-Whitney test). No additive effect of BA with IFN-g and
TNF-a was observed after 7 days of culture (Fig. 3) (p . 0.05,
n 5 4, Mann-Whitney test). IFN-g (100 U/ml) and TNF-a
(1000 U/ml) caused a dramatic decrease in HL-60 clone 15 cell
viability after 5 or 7 days of culture, impeding the NAPDH ox-
idase activity assay.

gp91-phox gene expression during differentiation of
HL-60 clone 15 cells with BA

HL-60 clone 15 cells differentiated with BA (0.5 mM) for 3
or 7 days showed a pattern of increasing gp91-phox gene ex-
pression compared with cells cultured under basal conditions
(Fig. 4) (p , 0.05 in both situations, n 5 4, Mann-Whitney
test). gp91-phox gene expression was higher in HL-60 clone 15
cells differentiated with BA (0.5 mM) for 7 days compared with
the same cells differentiated with BA for 3 days (Fig. 4) (p ,

0.05 in both situations, n 5 4, Mann-Whitney test). THP-1 cells
cultured with IFN-g (100 U/ml) and TNF-a (1000 U/ml) for 2
days and HeLa cells cultured under basal conditions were in-
cluded as positive and negative controls, respectively. Consti-
tutive b-actin gene expression was detected in all samples.

Effect of IFN-g and TNF-a on gp91-phox gene
expression during differentiation of HL-60 
clone 15 cells to eosinophilic lineage

Culturing HL-60 cells with IFN-g (100 U/ml) and TNF-a
(1000 U/ml) for 2 days caused a significant increase in the rel-
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FIG. 2. The effect of IFN-g and TNF-a on expression of EPO and MBP genes in HL-60 clone 15 cells. IFN-g (100 U/ml) and
TNF-a (1000 U/ml) or IL-5 (200 pM) caused a significant increase in EPO and MBP gene expression compared with control
cells. Similar results were observed when these cells were cultured with 0.5 mM BA for 5 days. The addition of IFN-g (100
U/ml) and TNF-a (1000 U/ml) during the last 2 days of culture increased EPO gene expression of HL-60 clone 15 cells differ-
entiated with 0.5 mM BA. *p , 0.05, n 5 4, Mann-Whitney test.



ative expression of gp91-phox gene (Fig. 5) (p , 0.05, n 5 4,
Mann-Whitney test). Incubation of HL-60 clone 15 cells with
BA (0.5 mM) for 5 days did not increase the relative expres-
sion of gp91-phox gene (Fig. 5) (p . 0.05, n 5 4, Mann-Whit-
ney test). However, IFN-g (100 U/ml) and TNF-a (1000 U/ml)
significantly stimulated the relative expression of gp91-phox
gene in HL-60 clone 15 cells when these cytokines were added
to the culture during the last 48 h of a 5-day incubation with
BA (Fig. 5) (p , 0.05, n 5 4, Mann-Whitney test).

DISCUSSION

We have assessed cell differentiation along the eosinophil
lineage by measuring the expression of genes encoding
eosinophil-specific proteins MBP and EPO.(22) MBP gene ex-
pression was detectable as early as the first day of culture. Dur-
ing active growth, these cells expressed the MBP gene as a
marker of the eosinophilic lineage(23) as part of a differentia-
tion program that led to eosinophilic differentiation under fa-
vorable culture conditions.(24) Such in vitro eosinophil differ-
entiation models may be useful for clarifying the relations
between eosinophil-specific gene expression and the progres-
sion of allergic diseases.(25)

The present results show that IFN-g and TNF-a induce HL-
60 clone 15 cells to differentiate to the eosinophilic lineage af-
ter 2 days of culture, as previously described with BA.(17) This
finding suggests that IFN-g and TNF-a are sufficient to induce

eosinophilic differentiation in this model system. We also found
an increase in EPO and MBP gene expression compared with
control cells when HL-60 clone 15 cells were cultured with BA
alone (0.5 mM) for 5 days, or when IFN-g (100 U/ml) and 
TNF-a (1000 U/ml) were added to this culture during the last
2 days. However, IFN-g and TNF-a along with BA presented
no additive effect to induce expression of the MBP gene.

IL-5 is a known eosinophilopoietic factor in vivo.(6) The lit-
erature shows that IFN-g stimulates IL-5 gene expression in
eosinophilic cell lines.(26) IL-5 and TNF-a act synergistically
to induce expression of intercellular adhesion molecule-1
(ICAM-1) and HLA-DR on eosinophils.(27) Butyrate inhibits
the release of IL-5, IFN-g and TNF-a in a whole blood
model.(28) IL-5 mRNA has been found in EoL-1 cells cultured
with IFN-g (1000 U/ml) for 72 h,(26) suggesting that IFN-g
stimulates IL-5 transcription. In our study, IL-5 (200 pM) also
stimulated the expression of EPO and MBP genes after 7 days
of culture, accompanied by eosinophil-like differentiation, as
previously reported by other investigators.(25,29–31) Thus, it is
possible that these interactions influence our model system, a
subject for current research in our laboratory.

IFN-g,(32) TNF-a,(13) and IL-5(27) upregulate the NADPH
oxidase system in different cell lineages. For example, IFN-g
and TNF-a enhance luminol-dependent chemiluminescence
and hydrogen peroxide release by EoL-1 cells.(33,34) Our results
show that BA alone induced a significant increase in the
NADPH oxidase activity of HL-60 clone 15 cells. Moreover,
after 2 days of culture, IFN-g and TNF-a also caused a signif-
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FIG. 3. The effect of IFN-g and TNF-a on the NADPH oxidase activity of HL-60 clone 15 cells. IFN-g (100 U/ml) and TNF-
a (1000 U/ml) caused a significant increase in the superoxide release by HL-60 clone 15 cells after 2 days of culture compared
with control or 0.5 mM BA cultured cells. After 5 days of culture, these cytokines and BA (0.5 mM) induced a stronger release
of superoxide by HL-60 clone 15 cells. *p , 0.05, n 5 4, Mann-Whitney test. BA (0.5 mM) causes a significant increase in
NADPH oxidase activity in HL-60 clone 15 cells after 7 days of culture. However, at this time, BA did not potentiate IFN-g and
TNF-a-induced superoxide release. p . 0.05, n 5 4, Mann-Whitney test.
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icant increase in the superoxide release by these cells, showing
that IFN-g and TNF-a are sufficient to induce NADPH oxidase
activity in the eosinophilic lineage, as previously shown in other
myeloid cell lines.(13,35) IFN-g and TNF-a also demonstrated
a significant activation of the NADPH oxidase system in HL-
60 clone 15 cells cultured for 5 days with BA (0.5 mM), but
not for 7 days. This effect was not observed in the induction of
genes encoding the eosinophil-specific marker MBP, suggest-
ing that eosinophilic differentiation and development of the
NAPDH oxidase system occur in parallel but may follow dis-
tinct downstream pathways.

Our results also show that BA induced the expression of the
gp91-phox gene after 3 or 7 days of culture. In this case, a sig-
nificant release of superoxide was observed only after 7 days
of culture with BA alone, showing that the NADPH oxidase
activity in this model system is at least partly dependent on
events other than gene expression. Moreover, BA upregulated
the expression of the gp91-phox gene faster than the eosinophil-
specific genes EPO and MBP, indicating that expression of the

gp91-phox gene may be more sensitive to BA or may occur
earlier in the eosinophil differentiation program than the EPO
and MBP genes.

In addition, we found a significant increase in the relative
expression of the gp91-phox gene in HL-60 clone 15 cells cul-
tured for 48 h with IFN-g and TNF-a, which is compatible with
the superoxide release assays. Thus, these cytokines are suffi-
cient to induce eosinophilic differentiation and to induce the
expression of a gene encoding an NADPH oxidase component.
In this model, superoxide release by HL-60 clone 15 cells cul-
tured with IFN-g and TNF-a is regulated at least in part at the
gene expression level.

For over two decades, eosinophils have been considered im-
portant effector cells in the pathogenesis of atopic diseases.(1)

IL-5 is essential for terminal differentiation of committed
eosinophil precursor cells.(2) It also activates(3) and prolongs
survival of mature eosinophils in the tissues.(4) However,
Leckie et al.(36) found, surprisingly, that a monoclonal antibody
(mAb) directed against IL-5 (Mepolizumab) had no effect on
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FIG. 4. gp91-phox gene expression during differentiation of HL-60 clone 15 cells with BA. HL-60 clone 15 cells differenti-
ated with BA (0.5 mM) for 3 or 7 days showed a pattern of increasing gp91-phox gene expression. Expression of the gp91-phox
gene was higher in cells differentiated for 7 days compared to 3 days. *p , 0.05, n 5 4, Mann-Whitney test.



late-phase asthmatic reaction or airway hyperresponsiveness in
patients with mild asthma. In addition, Kips et al.(37) tested the
effects of a second humanized anti-IL5 mAb (SCH55700) in
patients with severe asthma and showed that the improvement
in FEV1 was not sustained and was observed only with the sub-
maximal dose of this drug. Even in animal models of asthma,
there is residual tissue eosinophilia in the airways after anti-IL-
5 administration.(36,37) More than disappointing, these results
show that anti-IL-5 is not a definitive solution for atopic dis-
eases and that several other factors may influence eosinophils
in atopy. Recently, however, some groups became interested in
investigating the role of Th1 cytokines in the pathophysiology
of atopy.(38)

Our aim was to investigate the effect of IFN-g and TNF-a
(archetypical Th1 cytokines) on NADPH oxidase activity and
gp91-phox gene expression in HL-60 clone 15 cells as they dif-
ferentiate along the eosinophilic lineage. In this paper, we pro-
vide evidence that IFN-g and TNF-a may also influence
eosinophils in atopic disease. This may be a starting point for
future research in animal or clinical models, which may bring
new insights to the pathophysiology of allergic diseases.

We conclude that IFN-g and TNF-a are sufficient to induce
the differentiation of HL-60 clone 15 cells to the eosinophilic

lineage and to develop and activate their NADPH oxidase sys-
tem. BA, IFN-g, and TNF-a significantly activate the NADPH
oxidase system of these cells. This observation suggests that
BA, IFN-g, and TNF-a use both common and distinct path-
ways to stimulate the NAPDH oxidase system, which is regu-
lated at least in part by the developmental stage of eosinophilic
differentiation. Thus, eosinophil differentiation and release of
reactive oxygen intermediates should be considered in chronic
inflammatory diseases in which IFN-g and TNF-a are involved.
The induced differentiation of HL-60 clone 15 cells should pro-
vide a useful model system for further investigation of the de-
velopment of the NADPH oxidase system in the human
eosinophilic lineage and its function in chronic inflammation.
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FIG. 5. Effect of IFN-g and TNF-a on gp91-phox gene expression during differentiation of HL-60 clone 15 cells. HL-60 clone
15 cells cultured with IFN-g (100 U/ml) and TNF-a (1000 U/ml) for 2 days showed a significant increase in the relative ex-
pression of the gp91-phox gene. BA (0.5 mM) exposure for 5 days did not cause a significant increase in gp91-phox gene ex-
pression in HL-60 clone 15 cells. However, the combination of BA (0.5 mM), IFN-g (100 U/ml), and TNF-a (1000 U/ml) for 5
days caused a significant increase in gp91-phox gene expression. *p , 0.05, n 5 4, Mann-Whitney test.
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