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Abstract

The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by
one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-
termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction
factor TRIM5a has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we
describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative
splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA). We
detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part
from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl
monkeys. The CypA insertion is linked to a mutation in the 39 splice site upstream of exon 7, which may prevent or reduce
expression of the a-isoform. All pig-tailed macaques (M. nemestrina) screened were homozygous for the CypA insertion. In
contrast, the CypA-containing allele was present in 17% (17/101) of rhesus macaques (M. mulatta). The block to HIV-1
infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals.
HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus,
unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1.
Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares ,80% amino-acid
identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate
lineages constitutes a remarkable example of convergent evolution. Based on the presence of the CypA insertion in separate
macaque lineages, and its absence from sooty mangabeys, we estimate that the Macaca TRIM5-CypA variant appeared 5–10
million years ago in a common ancestor of the Asian macaques. Whether the formation of novel genes through alternative
splicing has played a wider role in the evolution of the TRIM family remains to be investigated.
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Introduction

The primate TRIM5a protein poses an intrinsic barrier to

retroviral replication, blocking infection at an early, post-entry stage

in the viral replication cycle [1]. TRIM5 homologues are present in

multiple primate lineages [2,3], including humans and apes, old

world monkeys (Asian and African) and new world monkeys (South

American), as well as in other mammalian species, including cows

[4,5] and rabbits [6]. A high degree of TRIM5 sequence divergence

between primate species has been reported, as well as evidence for

positive selection operating on TRIM5a subdomains responsible for

determining target specificity [2,3]. The TRIM5 gene of rhesus

macaques and sooty mangabeys is highly polymorphic [7], while the

human locus may have experienced a reduction in diversity, possibly

due to a selective sweep [8].

Owl monkeys (Aotus sp) have an unusual TRIM5 locus,

containing a retrotranspositional insertion of a cyclophilin A

(CypA) pseudogene into the short intron separating the 7th and 8th

exons [9,10]; as a result, owl monkey cells express a TRIM5-CypA

fusion protein (TRIMCyp). Because cellular CypA binds to HIV-1

capsid (CA) [11–13], the TRIMCyp fusion protein can block

HIV-1 infection via an interaction between the CypA domain of

TRIMCyp and the incoming viral capsid [14–16]. The block to

HIV-1 infection of cells expressing owl monkey TRIMCyp can

also be overcome by treatment of target cells with the anti-CypA

drug cyclosporine A (CsA) [9,10,17]. The TRIMCyp variant is

present in multiple species within the Aotus genus, and is thought to

have arisen in a common ancestor of extant owl monkeys between

4.5 and 22 million years ago [18]. Given the well-established

antiretroviral activity of TRIM5a ([1] and reviewed in [19–23]),
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the ability of CypA to interact with the CA proteins of several

lentiviruses [24], and the capacity of TRIMCyp to block replication

of HIV-1, SIVagm and FIV [9,10,14], it is possible that fixation of

the CypA insertion in the Aotus lineage was driven by positive selection

in the face of infection by an unknown lentiviral pathogen.

The owl monkey CypA insertion has not been found in other

primate species, including other new world primates related to owl

monkeys [9,18]. Here we report that a distinct, but strikingly similar,

TRIM5-CypA gene evolved independently in Asian monkeys of the

genus Macaca, sometime in the last 5 million to 10 million years. The

appearance of two such similar genes during primate evolution

stands as a remarkable example of convergent evolution.

Results

We have previously reported that the TRIM5 coding sequence

of old world monkeys is highly polymorphic [7]. In the course of

genotyping the TRIM5 locus in a colony of captive bred rhesus

macaques, we identified a single-nucleotide polymorphism in the

terminal nucleotide of intron 6 (Figure 1). The SNP is the result of

a G-to-T substitution that alters the canonical 39 splice acceptor

site (AG to AU) immediately upstream of exon 7. Initial sequence

data revealed the presence of this mutation in 2 of 8 animals,

including one homozygote (T/T) and one heterozygote (G/T).

The cis-acting AG element at the end of introns is a highly

conserved feature of 39 splice sites, and the presence of such a

mutation is predicted to interfere with mRNA splicing.

A closely linked substitution in intron-6, 16 nucleotides

upstream of the 39ss, creates a recognition site for the bacterial

NsiI restriction endonuclease. The NsiI restriction site polymor-

phism thus permitted rapid genotyping of a large number of

additional animals for the possible presence of the linked 39ss G/T

SNP. Archived genomic DNA samples from 101 animals were

chosen at random and genotyped by PCR amplification and NsiI

digest; of these, 84 were predicted to be wild type (G/G), 16

heterozygous (G/T) and one was homozygous for the mutation

(T/T). The genotypes of eight putative heterozygotes and a single

homozygote were confirmed by direct sequencing of PCR

products. The observed frequency of the T allele was 8.9%

(genotypes were 84 G/G, 16 G/T, and 1 T/T). We also genotyped

the sire and dam of animal 173-02 (which was homozygous for the

minor allele (T/T)). Both parents carried the T allele (both were G/

T heterozygotes), as would be predicted if the G and T sequences

were segregating as alleles of a single locus (Figure 1). It is therefore

unlikely that the T allele is derived from another TRIM gene, a

duplication of the TRIM5 locus, or a repetitive element with chance

similarity to intron 6 of the true TRIM5 locus.

In parallel, genotyping of sixteen pig-tailed macaques (Macaca

nemestrina) revealed the presence of the identical substitution in this

species. Surprisingly, all sixteen animals were homozygous for the

39ss G-to-T substitution (T/T), suggesting that the mutation may

be fixed in M. nemestrina. Although unlikely, it is also possible that

these animals are descended from a small founder population in

which the T allele was present at high frequency. Recently,

another group reported that this same mutation does, in fact,

result in aberrant splicing of TRIM5 mRNA transcripts in pig-

tailed macaques [25]. In that study, all fourteen animals were also

reported to carry the T allele. In concordance with their findings

[25], we also found that TRIM5 a-isoform transcripts in these

animals were the result of aberrant splicing and did not restrict

HIV-1 or N-tropic MLV (Figure S2).

To begin to test the effects of TRIM5 polymorphisms on viral

infectivity, fresh blood samples were obtained from 22 rhesus

macaques that were in the process of undergoing routine

veterinary examination at the New England Primate Research

Center. In addition, whole blood was obtained from animal 173-

02, the previously identified T/T homozygote described above.

PHA-activated, IL-2 stimulated lymphocytes were prepared from

these samples and used as target cells for single-cycle infectivity

measurements, using VSV-pseudotyped, HIV-1 and SIV particles

carrying a transducible EGFP reporter construct (Figure 2).

Uninfected PBMC aliquots from each animal were used to

prepare genomic DNA. The genotypes of the donor animals were

then determined, and found to include 19 wild-type homozygotes

(G/G) and three heterozygotes (G/T), in addition to the previously

typed animal 173-02 (T/T). Mean infectivity (% GFP-positive

cells) was significantly different between PBMC of wild type

homozygotes (G/G) and PBMC from animals carrying at least one

copy of the T allele (G/T and T/T) (0.04%+/20.007% vs

0.12%+/20.05; p = 0.0068; unpaired, two-tailed t test). The

difference remained significant even if the single T/T individual

was excluded (0.04%+/20.007 vs 0.13%+/20.07; p = 0.0080).

Infectivity of VSV-pseudotyped SIV was measured in parallel, and

no significant difference in infectivity was found for the different

genotypes, consistent with evidence that TRIM5a has little or no

restricting activity against SIV (1.36% for G/G vs 1.66% for G/

T+T/T; p = 0.3490). However, even in cells from individuals

bearing a T allele (G/T and T/T), the mean infectivity of HIV-1

was still substantially lower than that of SIV. This may indicate

that sufficient TRIM5a is expressed in these cells, or alternatively,

that other post-entry blocks to HIV-1 infection are present.

The presence of a putatively debilitating mutation in a

conserved 39ss element at high frequency in two species is

surprising, and suggests that the substitution may have had positive

functional consequences for the host. Inspection of the annotated

rhesus macaque genome revealed the presence of CypA-related

sequences downstream of TRIM5, and in the same transcriptional

orientation. To ask whether the G-to-T substitution in the intron-6

39ss could lead to formation of a hybrid TRIM5-CypA transcript

by alternative splicing, we screened several animals of different

genotypes by RT-PCR, using a forward primer derived from the

Author Summary

The TRIM5 gene encodes TRIM5a, a protein that blocks
infection of the cell by retroviruses. We previously found
that the TRIM5a protein of old world monkeys was highly
polymorphic. Here, we describe a substitution in a highly
conserved, non-coding element normally required for
correct splicing of TRIM5a messenger RNA. While it is
difficult to prove positive selection for a non-coding
change, the frequency of this mutation in two different
species of Asian monkeys (Macaca sp) raised the possibility
that the mutation was once evolutionarily advantageous.
As it turns out, monkeys carrying this substitution also
carry a nearby cyclophilin-A (CypA) pseudogene, and these
individuals express chimeric mRNA encoding a fusion
between the TRIM5 and CypA sequences. Thus, the
mutation, which interferes with expression of the normal
TRIM5a protein, instead contributes to expression of a
novel protein. Remarkably, this is the second example of
the appearance of a TRIM5/CypA chimera during primate
evolution, the other having occurred in a new world
monkey lineage (Aotus sp). Cellular CypA binds to the
capsid proteins of several lentiviruses, and we believe that
TRIM5-CypA proteins were at one time selected for the
ability to block infection by retroviral pathogens, possibly
related to modern lentiviruses.

TRIM5-CypA in Old World Monkeys

PLoS Pathogens | www.plospathogens.org 2 2008 | Volume 4 | Issue 2 | e1000003



beginning of the TRIM5a ORF and a reverse primer corresponding

to a conserved region of CypA. A strong band of approximately

1.5 Kb was readily amplified from cellular RNA of rhesus macaques

173-02 (T/T) and 210-02 (G/T); we failed to detect this fragment

using RNA from homozygous wild type (G/G) individuals (n = 4).

Thus, expression of these transcripts correlates with the presence of

at least one copy of the T allele (G/T or T/T genotypes).

The RT-PCR product from animal 173-02 was cloned and

multiple, insert-containing clones were sequenced. For every clone

analyzed, the insert sequence was predicted to encode a TRIM5-

CypA fusion protein. Furthermore, in every case, the demarcation

between TRIM5 and CypA sequences occurred precisely at a

known mRNA splice site, indicating that hybrid transcripts were

not artifacts generated by RT-PCR. Two types of transcripts were

detected. In some clones (n = 6), the hybrid transcript was formed

by splicing from the 39 terminus of TRIM5 exon 4 to a CypA

ORF. The 59 splice site of exon 4 follows the first nucleotide in a

codon, and splicing to the CypA 39ss from exon 4 results in a

frame shift relative to the CypA sequence and a stop codon soon

after the splice junction. As a result, the predicted protein product

of these transcripts is almost identical to the TRIM5 e-isoform,

except for the addition of 11 C-terminal amino acids derived from

the CypA insertion. The remaining clones (n = 4) were formed by

mRNA splicing between the 39 terminus of exon 6 and the CypA

ORF, and resulted in a single 468 amino-acid open reading frame

extending from the TRIM5 AUG initiation-codon, to a UAA

stop-codon at the end of the CypA ORF (Figure 3). These results

are consistent with a mechanism whereby the G-to-T substitution

in the intron-6 39ss suppresses splicing to exon 7 and promotes

alternative splicing to a downstream CypA coding sequence.

Surprisingly, the nucleotide sequence of the CypA ORF in the

TRIM5-CypA chimeric transcripts was not identical to any of the

CypA sequences proximal to TRIM5 in the rhesus macaque

reference sequence (Mmul_051212), which would be expected if

one of these were the source of the CypA sequences in the chimeric

transcripts. In order to identify the origin of the downstream CypA

exon, genomic DNA samples from 5 rhesus macaques (one T/T

homozygote, 2 G/T heterozygotes and 2 G/G homozygotes) and

from two pig-tailed macaques (both homozygous T/T) were used

as templates for PCR, using a forward primer derived from exon 6

of the rhesus TRIM5 gene and a reverse primer corresponding to

the 39 end of cyclophilin A. A single band of approximately 2.5 Kb

was amplified from all 3 rhesus macaque samples carrying the 39ss

T substitution, as well as from both pig-tailed macaque samples

Figure 1. The macaque TRIM5 locus. A. Schematic depiction of the primate TRIM5 locus including the seven coding exons (grey shaded regions)
and introns, and the nucleotide sequence in the region of the 39ss G/T SNP at the terminus of intron 6. Sequencing analysis confirmed that an NsiI
restriction site was linked to the G/T change, and PCR amplification followed by NsiI digestion was used as an allelic discrimination assay to survey
multiple individuals from two species of macaque. B. PCR/NsiI allelic discrimination in rhesus macaques (M. mulatta). C. Pedigree depicting genotype
of rhesus macaque 173-02 (homozygous T/T) along with its dam (220-97; heterozygous G/T) and sire (76-99; heterozygous G/T). D. PCR+NsiI
screening of sixteen Pig-tailed macaques (M. nemestrina). E. A second PCR screen of genomic DNA samples for the presence of a CypA insertion
downstream of TRIM5. A gel revealing the presence of the insertion in 173-02 (T/T), 220-97(G/T), and 76-99 (G/T) (lanes 2–4) is shown. The insertion
was not found in two wild type (G/G) individuals (lanes 5 and 6), but was present in two pig-tailed macaques (both T/T) (lanes 7 and 8).
doi:10.1371/journal.ppat.1000003.g001

TRIM5-CypA in Old World Monkeys
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(Figure 1E). The band was not detected using samples from either

of the 2 rhesus G/G homozygotes as templates. Five additional G/

T heterozygotes and 29 G/G homozygotes were screened, and the

putative CypA insert was only detected in the heterozygous

individuals (data not shown). Finally, primers flanking the insertion

site were used to screen the same samples for the presence or

absence of the insert. In this case, alleles could be discriminated on

the basis of size, with the presence of the insert resulting in a band

of approximately 2.5 kb and absence of the insert resulting in a

band of approximately 2.0 kb. Rhesus macaque 173-02 (T/T) and

both pig-tailed macaque samples yielded a single band consistent

with the presence of two copies of the CypA+ allele, whereas G/T

heterozygotes, including the sire and dam of animal 173-02,

yielded two bands; all of the G/G homozygotes yielded a single

band of 2.0 kb (Figure S3). Thus, there was an absolute correlation

between presence of the G-to-T substitution in the intron-6 39ss

and the presence of the inserted CypA pseudogene.

The amplified fragment was cloned and multiple clones were

sequenced on both strands. Analysis of these sequences revealed

the presence of an intronless, CypA-pseudogene inserted 920

nucleotides downstream of the TRIM5a stop codon in exon 8 of

TRIM5. The CypA insert is not present in the current rhesus

macaque whole genome assembly (Mmu1_051212; rheMac2). A

continuous 533 bp stretch of the inserted sequence (excluding the

PCR primer target sequence) was identical to the CypA portion of the

hybrid transcripts cloned by RT-PCR, confirming this as the source

of the CypA sequence present in the cDNA clones. A BLAST query

of the nonredundant nucleotide database also identified three

unpublished sequence entries described as TRIM5-CypA mRNA

from pig-tailed macaques (accession #DQ308404-DQ308406) [26].

The rhesus macaque and pig-tailed macaque TRIM5-CypA amino-

acid sequences were 99% identical, while the predicted proteins from

both macaque species shared only 81% identity with the TRIMCyp

protein of owl monkeys (Figure 3).

We next sought to determine whether the TRIM5-CypA variant

was present in other old world primates. Sooty mangabeys (Cercocebus

atys) are an African species related to the Asian macaques, and the

age of the most recent common ancestor of sooty mangabeys and

macaques has been estimated at ,10 million years [27,28]. To

determine whether the TRIM5-CypA allele was present in this

Figure 2. Single-cycle infection assays. Cells were infected at a low M.O.I., to reduce possible effects of saturation. Virus stocks were first titered
by serial dilution and infection of CRFK cells (Figure S1), and equivalent infectious units of HIV-1 and SIV were used for parallel infections of macaque
PBMC. All experiments were performed in triplicate. A. Infection of activated PBMC from 23 rhesus macaques, including 19 G/G, 1 T/T and 3 G/T
individuals, with VSV-pseudotyped HIV-1. B. Same as in A, but using VSV-pseudotyped SIVmac239. C. Single cycle HIV and SIV infection of BLCL
derived from a rhesus macaque homozygous for the TRIM5-CypA allele, in the absence and presence of cyclosporine A. D. Single cycle infectivity on
immortalized BLCL lines from seven pig-tailed macaques. The BLCL line from each individual animal was tested in triplicate with each of the two
viruses. Bars indicate mean infectivity +/2SEM for all seven cell lines.
doi:10.1371/journal.ppat.1000003.g002

TRIM5-CypA in Old World Monkeys
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species, genomic DNA and cellular RNA samples were extracted

from lymphocytes taken from 12 individual sooty mangabeys. RT-

PCR failed to detect TRIM5-CypA transcripts in any of the 12

cellular RNA samples, and the inserted CypA pseudogene was not

detectable by PCR in any of the 12 corresponding genomic DNA

samples. Finally, a PCR product stretching from the end of TRIM5

exon 6 to the beginning of exon 8, including all of intron 6, was

amplified from each of the 12 sooty mangabey genomic DNA

samples, cloned, and multiple clones per individual were sequenced.

None of the clones contained the G-to-T substitution in the 39ss at

the end of TRIM5 intron-6. Likewise, the T-substitution in the

intron-6 39ss was not found in the human SNP database (dbSNP),

and neither the substitution nor the CypA insertion were found in

the current releases of the human or chimpanzee reference genome

assemblies.

Discussion

The TRIMs constitute a large protein family, with more than

70 known members among mammalian species [29,30]. Among

these, several are known or suspected to be involved in defending

the cell against viral infection [22,30], including TRIM5 [1],

TRIM19, TRIM25 [31] and TRIM28 [32]. All TRIMs share a

conserved arrangement of three domains, a RING domain, one or

two B-boxes, and a coiled-coil, which constitute the canonical

tripartite-motif for which the family is named. However, the

Figure 3. A TRIM5-CypA transcript of macaques is generated by alternative splicing. A. Messenger RNA sequence spanning the junction
between the TRIM5 exon-6 and CypA sequences. B. Predicted amino-acid sequence of rhesus TRIM5-CypA aligned with pig-tailed macaque TRIM5-
CypA and owl monkey TRIMCyp. Residues that differ from rhesus TRIM5-CypA are highlighted in blue. The region encoded by exon-7 is boxed in red;
as the result of alternative splicing, this sequence is present in owl monkey TRIMCyp, but is missing from old world monkey TRIM5-CypA. C. Cartoon
depicting predicted protein sequences of the old world monkey TRIM5-CypA protein (top), the owl monkey TRIM-Cyp protein (middle) and wild type
primate TRIM5a (bottom).
doi:10.1371/journal.ppat.1000003.g003

TRIM5-CypA in Old World Monkeys
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additional domains C-terminal to the TRIM motif can vary

considerably, and TRIMs encoding at least 9 distinct, unrelated C-

terminal protein domains have been described [29,30]. Here, we

described the de novo acquisition of an alternative C-terminal

domain. In this case, retrotranspositional insertion of a CypA

pseudogene into the 39 UTR of TRIM5 resulted in the formation

of a new exon, with alternative splicing from 59 splice donor sites

in TRIM5 to the inserted CypA sequence resulting in the formation

of TRIM5-CypA chimeric transcripts. A single point mutation in a

highly conserved 39ss dinucleotide (AG to AT) within the TRIM5

gene affects proper splicing of a-isoform transcripts ([25] and

Figure S2), and may therefore represent an adaptation that

facilitates alternative expression of the TRIM5-CypA isoform.

Neither the substitution nor the CypA insert were detected in

genomic DNA from sooty mangabeys (Cercocebus atys), a sister

group to the Asian macaques. Multiple lines of evidence place the

date of the most recent common ancestor of the two lineages at

,10 million years ago, whereas the split between rhesus macaques

and pig-tailed macaques is thought to have occurred ,5 million

years ago, providing upper and lower estimates for the age of the

TRIM5-CypA variant [27,28]. Alternatively, the TRIM5-CypA

variant may be much older, but is either a minor allele in sooty

mangabeys, or was lost from that lineage. Further screening

of African primate species for the 3ss G-to-T mutation and the

CypA insertion may help to date more precisely the origins of

TRIM5-CypA.

Expression of TRIM5-CypA as the result of splicing from

TRIM5 to the downstream CypA must also depend on cis-acting

splice signals. The alternative 39ss AG dinucleotide used for

generation of chimeric TRIM5-CypA transcripts was present

within the inserted CypA sequence, and the insertion itself occurred

immediately downstream of a pyrimidine-rich tract (Figure 4).

Thus, insertion resulted in the juxtaposition of two critical

elements (a polypyrimidine tract followed by an AG dinucleotide)

that are likely to facilitate formation of the TRIM5-CypA

transcripts by alternative splicing [33]. Additionally, a single G-

to-T substitution in the 39splice acceptor upstream of TRIM5

exon-7 (AG to AU in the unprocessed RNA), which we always

found linked to the CypA insertion, may represent a further

adaptation to favor expression of TRIM5-CypA isoforms by

preventing or reducing expression of the TRIM5a and TRIM5d
splice-isoforms. However, from the present data, it is not possible

to determine whether the G/T substitution in the intron-6 39ss

occurred after insertion of the CypA pseudogene, or whether it was

already present at the time of insertion.

The predicted proteins encoded by the TRIM5-CypA chimeric

transcripts of Asian macaques and South American owl monkeys

are remarkably similar (Figure 3). However, unlike owl monkey

TRIMCyp, macaque TRIM5-CypA did not block infection by

HIV-1. There are multiple nonsynonymous differences between

the two proteins, including differences in both the TRIM5 and

CypA related domains. In addition, relative to owl monkey

TRIMCyp, the macaque variants are missing 9 amino acids

corresponding to exon-7 of TRIM5 and perhaps these residues are

critical for function of the chimeric protein. It has previously been

shown that artificial fusions between CypA and the RBCC domain

of rhesus TRIM5a can restrict HIV-1 [15,34]. Therefore, the

functional differences between owl monkey TRIMCyp and

macaque TRIM5-CypA (as measured against HIV-1) may instead

be due either to differences in the CypA domains, the missing

sequences corresponding to exon-7 [35], or both. Some or all of

the amino-acid differences, as well as the observed differential

restriction of HIV-1, may reflect differences between the natural

agents of selection encountered by owl monkey TRIMCyp and

macaque TRIM5-CypA during the evolution of each lineage.

What those agents were, or if they still exist, is not known and may

be impossible to determine. While it would be difficult to prove

that the TRIM5-CypA fusions at one time provided (or continue

to provide) a selective advantage in nature, the chance appearance

of such similar sequences twice during primate evolution, the

persistence and ultimate fixation in one genus (Aotus) and high

frequency in another (Macaca)([18,36] and this study), the known

or suspected effects of cellular CypA on lentiviral replication

[17,21,24,37–39], together with the demonstrable antiviral activity

of owl monkey TRIMCyp and various recombinant TRIM5-

CypA proteins [9,10,14,15,34,40], are compelling arguments that

TRIM5-CypA fusions were selected in the face of retroviral

pathogens related to modern primate lentiviruses.

New genes are thought to arise in many cases through domain

shuffling, as the result of processes such as retrotransposition,

segmental duplication, and transcription-induced chimerism (TIC),

and several well-characterized examples of each have been reported

(reviewed in [41]). Macaque TRIM5-CypA, the consequence of a

retrotransposition event coupled to TIC, can now be added to this

list. Given that the TRIM protein family is large (.70 known

members) with loci spread across multiple chromosomes, and given

that individual TRIM genes differ primarily in the nature of their C-

terminal domains, it may be that the capture of novel C-terminal

domains by alternative splicing has occurred multiple times during

the diversification of the TRIM family.

Figure 4. 59 junction of the inserted CypA pseudogene. The first 56 nucleotides of the insertion are underlined. The first nucleotide of the
inserted sequence is indicated with an arrow, and occurs just after nucleotide position 671,500 of rhesus macaque chromosome 14 (accession #
NW_001100384, based on M. mulatta reference assembly Mmu1 01212), in or near the 39UTR of TRIM5. The 39ss AG dinucleotide and the first
methionine codon in the CypA pseudogene are in boldface. Splicing from the end of TRIM5 exon-6 occurs 35 bases upstream of the AUG, but
maintains a continuous open reading frame.
doi:10.1371/journal.ppat.1000003.g004
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Materials and Methods

Nucleic acid isolation
Genomic DNA was isolated from cell lines or lymphocytes

(56106 cells/sample) using the QIAmp DNA Kit (QIAGEN, Inc.)

according to the manufacturer’s protocol and subsequently used

for an allelic discrimination assay or cloned directly into the

TOPO TA vector for automated sequence analysis (Retrogen,

Inc.). Total RNA was isolated from PBMC or BLCL using the

Rneasy Mini Kit; (QIAGEN, Inc.).

PCR and RT-PCR
For rapid genotyping of samples relative to the G/T

polymorphism at the intron-6/exon-7 border, genomic DNA

samples isolated from rhesus macaque, pig-tail macaque and sooty

mangabey cells served as templates for PCR amplification using

primers T5a782F (59-CATGACCTTGAAGAAGCC-39) and

T5a1087R (59-GCTTCCCTGATGTGATAC-39). The resultant

900 bp fragment encompassing all of exon 7 through part of exon

8 of TRIM5 was then digested with the NsiI restriction

endonuclease (New England Biolabs). Digestion products were

resolved by electrophoresis in a 1.4% agarose gel and visualized

with ethidium bromide staining.

To identify the CypA insertion, genomic DNA samples were used

as templates for PCR amplification using T5a782F forward primer

located in exon 6 of TRIM5 and a reverse primer corresponding to

the 39end of the CypA open reading frame (59-CGCTCGAGCA-

CAAGTCAAACTTATTCG-39). Full-length TRIM5-CypA cDNA

clones were generated by RT-PCR using primers T5aNotIF (59-

GCGGCCGCATGGCTTCTGGAATC-39) and CypAR-2 (59-

CGCTCGAGCACAAGTCAAACTTATTCG-39) and the Super-

Script One-Step Kit (Invitrogen). To confirm the presence/absence

of the CypA insertion, samples were also screened using the

T5a782F forward primer and reverse primer (39TRIMCyp-2 59-

CAAAATCCTCTCTTCTAGC-39) corresponding to a target

located 39 base pairs downstream of the insertion site. For

sequencing, PCR and RT-PCR products were cloned directly into

the TOPO TA vector (Invitrogen) and used for sequence analysis.

Isolation and culture of peripheral blood monocytes
PBMC were isolated from fresh heparinized blood by density

centrifugation over LSM medium (ICN Biomedicals). Cells were

treated with 2 ug/ml phytohemagglutinin (PHA, Sigma) for 2–3

days, washed and maintained in RPMI/20% FBS containing 10%

interleukin-2 (Hemangen Diagnostics, Inc.).

B-lymphocyte immortalization
Autologous B-lymphoblastoid cell lines (BLCL) were established

as previously described [42]. Briefly, B cells were transformed by

incubating freshly isolated PBMC with supernatant from the S594

herpesvirus papio producer cell line and propagated in RPMI/

20% FBS supplemented with 1 mg/ml cyclosporine A (CsA) and

4 mM AZT. Once established, lines were expanded and aliquoted

in the absence of CsA and AZT.

Single-cycle infectivity assays
Recombinant retroviruses carrying a transducible GFP marker

were produced as described [7]. Briefly, HEK293T/17 cells were

transfected with appropriate plasmids using the Transfectin Lipid

Reagent (BioRad). 72 hours post-transfection, cell-free superna-

tant was collected and viral titer determined by infection of CRFK

cells and subsequent enumeration of GFP+ cells by FACS.

Recombinant HIV-1 viruses were produced by cotransfection with

pNL43DenvFL, pVSV-G (Clontech) and pLenti-GFP. SIVmac

recombinant viruses were produced by cotransfection with

pHDM.G, pFSDPRDINEGFP, and pGPFusion as described in

[43]. Plasmids for production of SIVmac recombinant viruses

were a gift of David Evans (NEPRC/Harvard Medical School,

Southborough). Production of N-tropic MLV (MLV-N) or B-

tropic MLV (MLV-B) was carried out by transfection with pCIGN

or pCIGB (gift of Jonathan Stoye; MRC, London), along with

pVSV-G and pLXIN-EGFP.

For single cycle infectivity assays, 26105 PBMC or immortal-

ized B-lymphocytes were infected with VSV-pseudotyped virions

of HIV-1, SIVmac, MLV-N, or MLV-B. 72 hours post-infection

cells were washed, fixed in 3% paraformaldehyde/PBS and

expression of EGFP examined by fluorescence-activated cell

sorting (FACS). In some experiments, 1 mM or 10 mM cyclospor-

ine A (Sigma) was added to the culture media prior to infection.

All FACS experiments were performed on a LSRII flow cytometer

(Becton Dickinson) using a 530/30 filter. Data were analyzed

using the FlowJo software package (Tree Star, Inc.).

Accession numbers
Sequences of the two rhesus macaque TRIM5-CypA chimeras

were submitted to GenBank (accession numbers EU359036-

EU359037) as Macaca mulatta clones mmTRIM5-CypA_V1 and

mmTRIM5-CypA_V2.
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Figure S1. Titer of VSV-pseudotyped HIV-1 and SIV stock-

s. Please see Text S1 for supporting figure legends.

Found at: doi:10.1371/journal.ppat.1000003.s001 (0.12 MB TIF)

Figure S2. Point mutation in a 39 splice site results in

formation of aberrant transcripts.

Found at: doi:10.1371/journal.ppat.1000003.s002 (0.44 MB TIF)

Figure S3. PCR screen for CypA insertion.

Found at: doi:10.1371/journal.ppat.1000003.s003 (1.37 MB TIF)

Text S1. Supporting figure legends.

Found at: doi:10.1371/journal.ppat.1000003.s004 (0.08 MB

DOC)
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