
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2009-03-18 

In vitro and in vivo models of acute alcohol exposure In vitro and in vivo models of acute alcohol exposure 

Angela Dolganiuc 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

Repository Citation Repository Citation 
Dolganiuc A, Szabo G. (2009). In vitro and in vivo models of acute alcohol exposure. Open Access 
Articles. https://doi.org/10.3748/wjg.15.1168. Retrieved from https://escholarship.umassmed.edu/
oapubs/2218 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/56520098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F2218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=escholarship.umassmed.edu%2Foapubs%2F2218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=escholarship.umassmed.edu%2Foapubs%2F2218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3748/wjg.15.1168
https://escholarship.umassmed.edu/oapubs/2218?utm_source=escholarship.umassmed.edu%2Foapubs%2F2218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/oapubs/2218?utm_source=escholarship.umassmed.edu%2Foapubs%2F2218&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


www.wjgnet.com

 TOPIC HIGHLIGHT

In vitro  and in vivo  models of acute alcohol exposure

Angela Dolganiuc, Gyongyi Szabo

Online Submissions: wjg.wjgnet.com                                     World J Gastroenterol  2009 March 14; 15(10): 1168-1177
wjg@wjgnet.com                                                                                               World Journal of Gastroenterology  ISSN 1007-9327
doi:10.3748/wjg.15.1168                                                                                          © 2009 The WJG Press and Baishideng. All rights reserved.

Natalia A Osna, MD, PhD, Series Editor

Angela Dolganiuc, Gyongyi Szabo, Department of Medicine, 
University of Massachusetts Medical School, 364 Plantation 
Street, Worcester, MA 01605-2324, United States
Author contributions: Dolganiuc A and Szabo G performed 
the literature search, analyzed the data and wrote the paper.
Supported by Grants AA016571 (AD) and AA014372 (GS) 
from NIAAAA (in part)
Correspondence to: Angela Dolganiuc, MD, PhD, Department 
of Medicine, University of Massachusetts Medical School, 364 
Plantation Street, Worcester, MA 01605, 
United States. angela.dolganiuc@umassmed.edu
Telephone: +1-508-8565955    Fax: +1-508-8564770
Received: December 17, 2008  Revised: January 5, 2009
Accepted: January 12, 2009
Published online: March 14, 2009

Abstract
Alcohol abuse is a global problem due to the financial 
burden on society and the healthcare system. While 
the harmful health effects of chronic alcohol abuse 
are well established, more recent data suggest 
that acute alcohol consumption also affects human 
wellbeing. Thus, there is a need for research models 
in order to fully understand the effect of acute alcohol 
abuse on different body systems and organs. The 
present manuscript summarizes the interdisciplinary 
advantages and disadvantages of currently available 
human and non-human models of acute alcohol abuse, 
and identifies their suitability for biomedical research.
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INTRODUCTION
Alcohol abuse is widely spread around the globe[1-9]. 

Alcohol is the third leading cause of  preventable death 
in the United States and the third leading cause of  
healthy years lost to death and disability in developed 
nations[9]. Humans use and abuse alcohol acutely or 
chronically, when alcohol consumption is frequent and 
dependence has developed[10]. Although significant 
progress was made in the area of  alcohol research 
during the last decades, the pathogenesis of  alcohol 
use and abuse is not fully understood. Further, most 
research was focused on alcoholism, which is an 
advanced stage of  alcohol abuse, involving chronic 
alcohol consumption, alcohol dependence and severe 
health and social consequences[1-13]. Thus, research 
models are emergent in order to detail what drives 
human desire to consume alcohol, how the body 
responds to alcohol, and most important, what are 
the beneficial and harmful effects of  acute alcohol 
consumption on the human body.

ACUTE ALCOHOL ABUSE (AAA): HOW 
BIG THE PROBLEM REALLY IS?
In the USA, a “drink” is defined as an equivalent of  14 g  
alcohol, which equals roughly 1 shot [1.25 oz of  40% 
(80-proof) liquor], 1 (12 oz) beer (4.2 mL/L, Ethanol ), 
or 1 (4 oz) glass of  wine (12 mL/L, Ethanol)[14]. In other 
countries, the alcohol content of  a serving is measured 
in “units”. One unit (about 25 mL of  a 40% 80-proof  
liquor) contains 7.9 g of  pure ethanol[8,15]. However, in 
many countries the “standard drink” is used to quantify 
alcohol intake. More importantly, the standard drink 
varies significantly from country to country, from 10 mL 
(7.9 g) of  alcohol in the UK to as high as 25 mL (19.75 
g) in Japan[16]. Current use includes at least one drink in 
the past 30 d; binge drinking is defined as five or more 
drinks on the same occasion within 2 h at least once in 
the past 30 d; and heavy use is defined as five or more 
drinks on the same occasion on at least 5 different days 
in the past 30 d[11-13]. The 0.08% blood alcohol level 
(BAL) is the legal limit for most states in the US and it 
is achieved with consumption of  five or more drinks 
for an adult male and four or more drinks for an adult 
female[11-13].

Traditionally medical research focuses on the 
mechanisms of  chronic alcohol abuse; this is due to the 
significant financial burden that society encountered 
primarily from chronic alcohol abusers[1-13]. However, 
more recently acute alcohol abuse has emerged as a 
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social problem[17]. The National Survey on Drug Use 
and Health (NSDUH) estimated that in the USA about 
4.4 million persons had used alcohol for the first time in 
2004, which lead to about 12 000 “new recruits” per day; 
this was significantly greater than in 2002 (3.9 million) 
and 2003 (4.1 million). Most (86.9%) of  the 4.4 million 
recent alcohol initiates were younger than 21 years of  
age at the time of  encounter. More than one fifth (22.%) 
of  people age 12 or older participated in binge drinking 
at least once in the 30 d prior to the survey in 2004[12]. 
Acute alcohol intake in the form of  binge drinking in 
2004 was highest for the 18- to 25-year-old age group 
compared with other age groups, with the peak rate 
occurring at age 21[1,5-7,11-13]. The statistics also show that 
illness and death among young adults primarily result 
from lifestyle choices and behaviors, including excessive 
alcohol use[18,19].

AAA: BIOMEDICAL IMPACT
The known biological effects of  AAA include those 
of  the central nervous system (CNS) and non-CNS 
origin. Alcohol use is characterized by symptoms 
of  CNS intoxication, impaired brain activity, poor 
motor coordination, and behavioral changes[20,21]. 
AAA leads to impaired CNS activity due to alcohol’s 
effect on synthesis[22], release[23] and signaling[23,24] of  
neurotransmitters, including serotonin[25,26], glutamate[27], 
GABA[28], endocannabinoids[29,30] and their receptors. 
AAA causes damage and functional impairment of  the 
gastrointestinal (GI) tract, including luminal GI[31-38], 
liver[39-55], and pancreas[56-62]; it also affects the protein, 
carbohydrate, and fat metabolism[58,63-66]. AAA leads to 
insufficient immune system responses to infections; 
such deficiency was observed both in organ-specific[67-69] 
and systemic infections[70-72]. Acute alcohol intoxication 
impairs the ability of  the host to counteract hemorrhagic 
shock[73],  augments corticosteroid release [74] and 
delays wound healing[75-78], thus contributing to higher 
morbidity and mortality[79] and prolonged recovery from 
trauma[80]. The pathogenesis of  AAA effects on human 
health is not fully understood.

MODELS OF AAA
Research of  acute alcohol consumption/abuse is entirely 

based on models, due to their advantage of  controlled 
settings. Currently there are in vitro and in vivo models 
of  AAA; their characteristics are defined in Table 1. In 
contrast to chronic alcohol abuse, the research of  AAA 
has not benefited from population studies due to recall 
bias[81-84].

One important feature of  AAA models is the 
definition of  biologically meaningful levels of  alcohol, 
either in vitro or in vivo, and their relationship to blood 
alcohol levels (BAL) in humans. This is an important 
requirement of  the research models of  AAA, because 
BAL can be detected as soon as minimal amounts of  
alcohol are ingested[85], however measurable affects of  
alcohol on physiology and/or behavior is established 
at 0.08% or above this level, with individual variations 
depending on the species, metabolic particularities, age, 
gender and genetic background[86-97]. It is also important 
to identify that AAA models differ by their route of  
alcohol delivery to achieve alcohol intoxication, some of  
them being physiological, such as oral administration, 
while others being non-physiological, when ethanol is 
administered by parenteral routes. Nevertheless, current 
research shows that the BAL levels, rather than the 
route of  alcohol administration play a major role in the 
establishment of  the biological effects of  alcohol[97].

Thus, optimal AAA models should fulfill several 
criteria: (1) Define the length of  alcohol exposure. 
In vitro the length of  acute alcohol treatment is variable 
in diverse published experimental settings and range 
from seconds to hours; it is currently accepted that 
treatment with alcohol for up to 24 h is considered 
as an acute setting[98-106]. In vivo the consumption of  
alcohol in one setting implies that the entire dose 
of  alcohol is consumed at once, while a ‘binge’ is 
defined by NIAAA as an excessive pattern of  alcohol 
drinking that produces BAL greater than 0.08% within 
a 2-h period and may, or may not, be associated with 
dependence[11,12,17,18]. Thus any model using consumption 
of  biologically active amounts of  alcohol within 2 h is 
considered an acceptable model of  AAA[81,107-121]. (2) 
Establish an exposure to an accurate concentration 
of  ethanol. For in vitro studies the 10-100 mmol/L 
ethanol range is considered physiological, with 25 
mmol/L ethanol being close to 0.08% BAL achieved 
in vivo after 4-5 drink equivalents[7,11,12,98-106]. For the  
in vivo studies an 0.08% BAL or above this level yields 

AAA model Advantages Disadvantages Area of research
In vitro Low cost

Technically easy to perform 
Large number of experimental groups 
Pure cell populations
Single cell type or multi-cell type co-culture
Strictly controlled settings yielding reproducible results

Limited alcohol metabolism
Limited complexity at cellular and tis-
sue levels
Limited areas of research, not suitable 
for behavioral and social studies.

Behavioral and biomedical 

In vivo Availability of physiological routs of alcohol administration
Complex interactions of all bodily organs and systems, including 
complex metabolism
Controlled settings, caloric and composition controls
Indications to individual and population variability

Ethical concerns
High cost
Limited information about the effect 
on one separate cell population.

All areas of research 
including biomedical, 
behavioral and social.

Table 1  The characteristics of in vitro  and in vivo  models of AAA
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signs of  intoxication and it is employed in the majority 
of  biomedical studies[107-121]. (3) Recruit individuals 
who are currently not and never have been alcohol 
abusers for in vivo studies and employ alcohol-naïve 
primary cells or cell lines for in vitro studies. Alcohol use 
habits of  the study participants are usually determined 
by questionnaires[122]. Among most frequently used 
questionnaires are those that incorporate the AUDIT 
and CAGE tests[123-125]; the study parameters are usually 
permissive for males who had alcohol use of  fewer than 
nine drinks/week, females < 6 drinks/week.

IN VITRO AAA MODEL
The in vitro alcohol treatment model is based on 
supplementation of  culture media with pure alcohol, 
usually 200-proof  ethanol. Currently supplementation 
of  cel l  cul ture with a wide var iety of  a lcohol 
concentrations, ranging from 1 to 500 mmol/L, is 
reported in the bio-medical literature. One of  the 
major concerns with the in vitro alcohol treatment using 
concentrations above 100 mmol/L is the direct cytotoxic 
effect of  alcohol on cells[40,100]. At lower concentrations 
(< 100 mmol/L), alcohol changes the redox status of  
the cells and alters intercellular junctions[33,126], increases 
the membrane fluidity of  cells[127-129] and affects the 
composition of  lipid rafts[106,130,131], all of  which may 
contribute to alcohol-mediated increase in transcellular 
and paracellular permeability[132,133] and thus affect cell 
function[106,130-134]. Alcohol also affects the expression of  
adhesion molecules[135], which may be a concern when 
using adherent cell types due to possible cell detachment. 
Additional concerns arise from the possibility of  
modified ex vivo function of  some primary cells, 
including hepatocytes, stellate cells and their precursors, 
due to limited ex vivo environment compared to in vivo 
conditions[136-138].

From a technical point, the acute alcohol exposure 
of  cells in vitro may be hampered by alcohol evaporation. 
To avoid the fluctuation of  alcohol concentration 
due to evaporation, investigators used settings where 
ethanol was added into the culture media and the cell 
culture plates were maintained for the entire duration of  
stimulation in a microclimate chamber at 37℃ with gas 
mixture and an alcohol atmosphere[139]. For example, if  
the desired alcohol concentration in the cell culture is 
25 mmol/L, a Petri dish with 2 × the alcohol amount 
(50 mmol/L) was placed on the bottom of  the chamber 
to ensure the saturation of  the gas in the chamber); such 
conditions maintain the initial alcohol concentration 
± 15% over a 24 h period[139]. However, depending 
on the scientific question of  the study, the declining 
alcohol levels in vitro may be desired to mimic the 
alcohol elimination in vivo; in these situations the in vitro 
experiments are disadvantaged by the absence/limitation 
of  alcohol metabolism[76,134].

The in vitro AAA model offers the possibility of  
primary in vitro exposure of  alcohol-naive cells to alcohol 
alone or its combinations with diverse pharmacological 
or naturally-derived substances[24,28,31,35,36,42,55,68,71,72,96,103], 

but also the investigation of  the effects of  in vivo 
exposure to alcohol followed by ex vivo exposure to 
other stimulants[110,113,115] or vice versa. One other main 
characteristic of  the in vitro AAA model is its simplicity, 
often considered as an advantage or disadvantage 
depending on the research goal. Most of  the in vitro 
research involves culture of  a single cell type[134,139-142] or 
co-culture of  several cell types[143]; while such an approach 
brings forward the differential effect of  alcohol on pure 
cell populations, and/or their intercellular interaction; 
it lacks the systemic alcohol metabolism and inter-
cellular interactions. More recently significant efforts 
were invested in establishment of  more complex in vitro 
systems, such as culture of  cells in three dimensional 
systems[100], organ slices[144] or organ explants[145]; while 
such systems are informative in the setting of  chronic 
alcohol exposure to date there is no report of  their use 
as an AAA model.

IN VIVO AAA MODELS
The in vivo models of  AAA are more informative 
compared to the in vitr o  model due to complex 
phys io logica l  impact  of  a lcohol  on a l l  bodi ly 
organs and systems, but also due to the availability 
of  systemic alcohol metabolism. Currently there 
are human and non-human models of  AAA, and 
the later include use of  invertebrates [146-147] and 
ver tebrates [21,25,37,44,46,47,53,65,72,86,93,94,98,104,110,111].  The 
invertebrate models (Drosophila melanogaster[146,147], 
Caenorhabditis elegans[105]) and those using lower 
vertebrates (Zebra fish Danio rerio)[98] are invaluable 
for research of  the effect of  alcohol on behavior, 
development and maintenance of  memory, and on basic 
signaling mechanisms. These models offer the advantage 
of  a well-defined genetic background, high-turnover 
rate of  experiments due to short life cycle and relatively 
low-cost; in light of  these advantages they constitute an 
excellent resource for research of  signaling pathways and 
are highly desirable for their drug-screening capacity. On 
the downside, significant differences in the structure and 
function of  organs and systems compared to humans 
limit the informative value of  invertebrate and lower 
vertebrate models of  AAA.

The vertebrate models are preferred to those 
using invertebrates due to closer resemblance of  their 
bodily structure, function, and metabolism to that of  
humans. However, because of  intrinsic differences 
between humans and other vertebrates, no single non-
human model is perfect since none of  the models can 
represent all features of  the complex human trait, such 
as motivation for social occasional or binge alcohol 
consumption, development of  alcohol dependence 
and establishment of  the impact on health. Further, 
the controlled setting of  research models may not 
be completely satisfactory for psychology and social 
research, since they may not fully reproduce the social 
component, the motivation and the spontaneity of  
alcohol abuse. However, research models are invaluable 
for the understanding of  the effects of  alcohol and its 
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mechanisms of  action on hardwired bodily systems, 
including the brain and all other organs and systems.

HUMAN MODELS OF AAA
Human alcohol intake in the experimental setting is 
the best available model of  AAA, because it offers 
the advantage of  the physiological route of  alcohol 
consumption, the possibility to investigate human 
pathobiology and the availability of  relatively large 
amounts of  physiological bodily fluids for research. The 
disadvantages of  human models of  AAA include ethical 
concerns related to potential harmful health effects due 
to excessive or repeated intoxication, and the theoretical 
possibility of  development of  dependence or tolerance 
even after a one-time drinking session. Published 
models of  human AAA are based on consumption of  
alcoholic beverages containing either distilled ethanol 
or wine; these models are physiological, as they involve 
alcohol drinking, and achieve a biologically meaningful 
BAL[87,92,107,110-113,115]. The majority of  the reported in vivo 
models of  human AAA strictly control for the amount 
of  alcohol based on the constant volume of  alcohol 
per kg body weight, includes placebo-treated age and 
gender matched controls. However, most of  these 
studies design the consumption of  the alcohol beverage 
during a 2 h period of  time[92,107,110-113], which based on 
recent NIAAA and NSDUH classification qualifies as 
binge drinking[11-13,17]. Thus the major disadvantage of  
the human models of  AAA is that they (1) do not clearly 
distinguish between one-time and the binge alcohol 
consumption pattern, and, (2) for ethical reasons, do not 
allow longer binge sessions which are often observed 
in real-life and account for the majority of  the heavy 
alcohol intake in young adults[5,7,11-13,17-19].

To fulfill the requirement for an AAA model, the 
human studies usually include nonalcoholic individuals, 
who did not drink any alcohol at least 24 h prior to 
the study. Depending on the study design, some AAA 
human models require that the study participants did 
not take any medication, while others accept individuals 
taking moderate doses of  anti-hypertensive medication 
and oral contraceptives[107,110]. The study participants are 
usually required to abstain from food for at least 6 h 
before alcohol consumption and are allowed free access 
to water and a light meal before or shortly after the 
study[107]. The human model of  AAA is currently used 
for research in physiology[86,92,111,122], hematology[107,128] 
and immunology[110,113,115].

CONSUMPTION OF DISTILLED ETHANOL 
MODEL
In this model the study individuals drink distilled 
alcohol (usually 80-proof  vodka) in amounts of  about 
0.5-0.6 g/kg body weight, which is an equivalent of  
about 2 mL vodka/kg body weight in a standardized 
total volume of  liquid (300-450 mL of  water or orange 
juice)[92,107,110-113].

CONSUMPTION OF NON-DISTILLED 
ETHANOL MODEL
In this model the study individuals drink wine to an 
equivalent of  a pre-determined amount of  ethanol/kg 
BW (for example, Fehr et al[107] reported use of  4.36 mL 
of  red wine/kg of  body weight as an equivalent of  0.5 
g ethanol/kg BW to lead to a peak BAL of  about 15 
mmol/L in the first 2 h), while the control individuals 
are exposed to the same volume of  fluid by mouth 
(usually water) per individual in a randomized way. 
The major disadvantage of  this model is the use of  
controlled volumes of  liquids that are not matched by 
calorie intake or by composition, which is technically 
challenging to achieve due to restricted availability of  
equivalent alcohol-free compounds. To bypass the bias 
concern some studies employ a cross-over approach, 
where each subject serves as its own control and repeats 
the study at least 2 wk after the first experiment with 
either alcohol or placebo consumption according to the 
cross-over design[107].

NON-HUMAN AAA MODELS
Among non-human vertebrates commonly involved 
in alcohol research are primates [90,91,148], pigs [104,120], 
dogs[114,121], mice[70,72,74,86,89,96,109,118,119,141], rats[88,94,108,149,150] 
and rabbits[132]. The rodent AAA models (mice and 
rats) are used most frequently due to their relatively 
well-defined genetic background and the availability of  
diverse genetic traits, including those coding for high 
or low alcohol consumption[88,89,96,109]. Most non-human 
AAA models currently in use[93,95] examine relative oral 
self-administration from a bottle containing alcohol 
versus one[86,94,108] or multiple bottles[119] containing 
water (preference drinking) or administration of  alcohol 
against the will, either by physiological (by mouth using 
gavage)[54,71,72] or by non-physiological (parenteral)[67,68] 
routes. Voluntary consumption of  alcohol may be an 
optimal animal model of  AAA, due to physiological 
route and pattern of  alcohol consumption. However, 
in the self-administration models it is not clear when 
or if  the animals drink to pharmacologically significant 
levels because the drinking is episodic and often 
occurs over a 24-h period. Nevertheless, these models 
are invaluable for research of  neurobiology of  acute 
intoxication with alcohol and for establishment of  
mechanisms of  addiction. The AAA models using 
administration of  alcohol against-the-will bypass all 
the above-mentioned inconveniences of  AAA models 
using voluntary consumption. Alcohol administered 
either by physiological (by mouth using gavage) or by 
non-physiological (parenteral) routes yields comparable 
physiological effects on the central nervous system and 
on organs/systems that are not affected directly by the 
route of  alcohol administration, such as muscle and 
brain[97]. However, administration of  alcohol per os 
is more physiological compared to administration via 
parenteral routes, yields meaningful levels of  BAL and 
shows signs of  acute alcohol intoxication[54,71,72,132,149]. 
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Among disadvantages of  administration of  alcohol 
per os are technical challenges, time consumption 
and high cost of  the procedures. In contrast, alcohol 
administration by parenteral routes is relatively easy to 
perform technically and offers controlled settings (time, 
amount); on the downside, they may be less suitable for 
research of  the effects of  alcohol on organs/systems 
that are affected directly by the routes of  alcohol 
administration. In this context, administration of  
alcohol by intraperitoneal route may be less suitable for 
research using peritoneal macrophages, or even liver 
and intestines, compared to other administration routs, 
such as intravenous or enteral. Further, some parenteral 
methods of  alcohol administration are preferred over 
others, owing to differences in the level of  technical 
difficulty of  the procedure and the effect of  alcohol on 
different cell types. For example, alcohol administration 
by intravenous route is known to affect the erythrocytes 
when present in high concentrations[128]. Thus alcohol 
administration by intravenous route is currently 

limited to creating an acute alcohol exposure during 
treatment of  alcohol withdrawal symptoms[151], while 
administration by intraperitoneal injections is widely 
preferred in research settings.

S im i l a r  t o  human  AAA mode l s ,  t h e  non -
human i n  v i v o  mode ls  employ  e i ther  d i s t i l l ed 
alcohol[53,67-72,74,89,90,96,109,116,119,121,132,135,141,152] or alcohol-
containing beverages, such as wine[152,153] and beer[46]; the 
control groups are usually treated with alcohol-free caloric 
and composition equivalents. The vertebrate AAA models 
are widely used in research of  biomedical effects of  AAA, 
including brain[23-30,116], gastrointestinal [38-44,46-48,64-66,154], 
vascular[73,153], muscle[97] and immune[68-72,74] systems.

THE PARTICULARITIES OF AAA 
MODELS FOR RESEARCH IN 
GASTROENTEROLOGY
In contrast to the abundance of  the literature about the 

GI segment Effect of acute alcohol exposure

Oral cavity Unknown
Esophagus Low concentrations of alcohol (up to 5%) cause alterations in ion transports and affect the barrier function

Concentrations of alcohol of 10% and above cause injury of mucosa
Co-carcinogenic potency
Motor dysfunction: decrease in lower esophageal sphincter pressure and amplitude

Stomach Motor dysfunction: Inhibition of gastric emptying
Mucosal damage, impaired barrier function, increased epithelial permeability
Pro-inflammatory reaction: decreased gastric blood flow, vascular damage, polymorphonuclear neutrophils (PMN) dependent- and 
independent-mucosal damage
Aggravation of H pylori infection

Intestine Disruption of barrier function
Epithelial apoptosis
Enhanced bioavailability of some alcohol-soluble drugs and impaired absorption of key nutrients
Increased paracellular intestinal permeability to toxins

Liver Hepatocytes: 
   Amplification of Fas-mediated hepatocyte death
   Generation of oxidative stress
   Hepatic mitochondrial dysfunction
   Increased free iron levels
   Imbalanced fatty acid metabolism
   Inhibition of IFN-α-induced antiviral response towards hepatotropic viruses including hepatitis C virus favors hepatitis C virus repli
   con expression
   Induced histone H3 acetylation leading to increased gene expression in the liver 
   Limited hepatic protein synthesis
   Arrest of liver regeneration early after partial hepatectomy and suppression of hepatic stimulator substance (HSS) activity by induc
   tion of liver cell cycle arrest
Kupffer cells:
   Suppressed LPS-mediated priming for enhanced CC-chemokine release in vitro; up-regulated expression of CC-chemokine mRNA; 
   primed the KC for enhanced RANTES release 
   Desensitized HIV-1 gp120-induced CC-chemokine production 
   Downregulates HIV-1 glycoprotein 120-induced KC and RANTES production 
   Regulates production of reactive oxygen species 
   Modulate the tolerance to LPS
Stellate cells: 
   Imbalanced redox potential owed to increased generation of reactive oxygen species upon GSH depletion 

Pancreas Stimulates islet blood flow, amplifies insulin secretion, induces hypoglycemia
Lower baseline amylase output of acinar pancreatic cells, with the difference being significantly exacerbated by cerulein stimulation
Interference with release of oxidized proteins in acinar cells 
Predisposes the pancreas to postprandial cholinergic stimulation that triggers cellular events leading to pancreatic inflammation
Impaired apical exocytosis and redirected exocytosis to less efficient basolateral plasma membrane sites
Augments elevated-[Ca2+]-induced trypsin activation in pancreatic acinar zymogen granules, leading to premature activation of trypsin 
and tissue damage.

Table 2  The effect of acute alcohol abuse on GI system
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effects of  chronic alcohol abuse on the gastrointestinal 
system, research of  the effects of  acute alcohol abuse 
on the gastrointestinal (GI) tract is limited to certain cell 
types, as outlined in Table 2.

Currently the state of  scientific knowledge suggests 
a tight interplay between organs and systems. The GI 
system is dependent on blood circulation and systemic 
availability of  metabolites, is closely governed by both 
the central and the autonomous nervous system[155,156] 
and contains a hallmark of  resident and recruited 
immune cells[157,158]. Thus, it is conceivable that the 
direct effects of  alcohol on either of  these systems will 
indirectly affect the function of  the gastrointestinal 
system; this area is currently largely unexplored.

From a technical point, the GI research may 
take advantage of  both in vitr o and in vivo AAA 
models; however some in vivo models, such as those 
using parenteral administration of  alcohol by the 
intraperitoneal route, may be less suitable due to the non-
physiological direct contact between high concentrations 
of  alcohol and GI tissues.

Alcohol use/abuse is associated with acute life-
threatening conditions, including acute alcoholic 
hepatitis[45] or acute pancreatitis[159]. The majority of  
these patients report acute alcohol abuse, which is often 
overlapping with withdrawal from or even discontinued 
chronic alcohol abuse, or it follows an episode of  binge 
drinking[45,159]. As such, it is difficult to associate these 
diseases with the single-occasion AAA, yet they do not 
fit into the classic chronic alcohol abuse picture. This 
category of  alcohol abuse, defined as “acute-on-chronic”,  
is in need of  modeling for GI research.

In prospective, we currently lack in-depth knowledge 
in regards to the effects of  acute alcohol abuse on 
different segments of  the luminal GI tract, on liver 
functions, and on pancreas, including its endocrine and 
exocrine functions. Further, we do not know if  acute 
alcohol consumption affects the GI stem cells and/or is 
involved in development of  GI-derived tumors.
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