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Mini-Symposium

Epigenetics in the Nervous System
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Eric J. Nestler,4 Schahram Akbarian,1 and Andrea C. Beckel-Mitchener7
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It is becoming increasingly clear that epigenetic modifications are critical factors in the regulation of gene expression. With regard to the
nervous system, epigenetic alterations play a role in a diverse set of processes and have been implicated in a variety of disorders. Gaining
a more complete understanding of the essential components and underlying mechanisms involved in epigenetic regulation could lead to
novel treatments for a number of neurological and psychiatric conditions.

Key words: epigenetics; chromatin; DNA methylation; histone; transcription; gene

Broadly defined, epigenetics is a type of molecular and cellular
“memory” that results in stable changes in gene expression with-
out alterations to the DNA sequence itself. It has long been ap-
preciated that transcription is not occurring on naked DNA, but
rather in the context of chromatin which requires the orches-
trated effort of not only transcription factors, but also the protein
complexes that modify chromatin structure. Currently, com-
monly studied epigenetic “marks” include DNA methylation and
histone modifications, which can include methylation, acetyla-
tion, ubiquitination, and phosphorylation, as well as others.
Methylation status on any given segment of DNA appears to be
controlled in large part by DNA methyltransferases (Ooi and
Bestor, 2008). A host of enzymes appear to regulate histone mod-
ifications including histone acetyltransferases (HATs) and his-
tone deacetylases (HDACs) as well as methyl-transferases and
demethylases (Bhaumik et al., 2007). These epigenetic marks re-
sult in alterations to the protein and/or DNA components that
make up chromatin structure such that the transcriptional po-
tential of a gene or set of genes near a specific locus is changed.
Figure 1 provides an overview of chromatin structure and de-

scribes two widely studied epigenetic marks. It is becoming in-
creasingly clear that changes in the chromatin architecture are
important factors in gene regulation and understanding these
molecular processes and their functional outcomes may give new
insight into normal neural function and disease. With regard to
brain processes, epigenetic alterations are present and appear to
be playing a role in a diverse set of functions including learning
and memory processes, drug addiction, neurodegeneration, and
circadian rhythms. Epigenetic mechanisms have been implicated
in specific human disorders including Fragile X syndrome, Rett
syndrome, Huntington’s disease, schizophrenia, and bipolar dis-
order. Understanding the molecular components and environ-
mental conditions that cause or result in epigenetic changes may
provide unique opportunities to develop novel interventions and
therapies to treat a variety of neurological and psychiatric
conditions.

The role of chromatin-modifying enzymes in learning and
memory processes
The role of transcription in long-lasting forms of synaptic plas-
ticity and memory has been actively investigated since initial ex-
periments showing that transcription is required for long-term
memory in goldfish nearly 40 years ago (Agranoff et al., 1967).
Recently, it has been reported that epigenetic alterations are in-
volved and, more specifically, it has been demonstrated that the
regulation of histone acetylation by HDACs and HATs is pivotal
for the transcriptional regulation required for synaptic plasticity
and memory processes (for review, see Barrett and Wood, 2008).

To examine the role of HAT activity in synaptic plasticity and
memory, genetically modified Cbp [cyclicAMP responsive
element-binding (CREB) protein] mutant mice were used. CBP
has HAT activity and is also well known as a coactivator recruited
by CREB via the interaction between the Ser-133 phosphorylated
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kinase-inducible domain of CREB and the CBP KIX domain (a
large, multihelical region that plays an essential role in binding)
(Chrivia et al., 1993; Parker et al., 1996). Cbp mutant mice exhib-
ited significant impairments in long-lasting forms of hippocam-
pal late long-term potentiation (LTP) and long-term memory
(Wood et al., 2005, 2006). In particular, it was found that CBP is
required for long-term memory for contextual fear and novel
object recognition (NOR). These results demonstrate that CBP
and histone acetylation are necessary for transcription-
dependent forms of synaptic plasticity and long-term memory.

In opposition to HAT activity, HDACs remove acetyl groups
and in general are associated with transcriptional repression. Be-
cause impairments in CBP activity resulted in memory deficits, it
was hypothesized that HDAC inhibition would result in memory
enhancements. Indeed, inhibiting HDAC activity with Trichos-
tatin A (TSA) facilitates synaptic plasticity, transforming a tran-
sient, transcription-independent form of LTP, into a long-lasting
robust form of transcription-dependent LTP (Vecsey et al.,
2007). Inhibiting HDAC activity in the hippocampus with TSA
led to significant enhancements in long-term memory for con-
textual fear (Vecsey et al., 2007). Furthermore, using genetically
modified Creb and Cbp mutant mice, HDAC inhibition facili-
tated synaptic plasticity was found to be dependent on CREB and
CBP activity. These findings demonstrate that HDACs may po-
tentially function as memory suppressor genes (Abel et al., 1998)
and that HDAC inhibition may provide a viable therapeutic strat-
egy. Indeed, HDAC inhibitors (HDACi) are not only currently
available as a cancer therapy but are in clinical trials for several
neurological disorders.

Interestingly, every genetically modified Cbp mutant mouse

characterized thus far exhibits impaired long-term memory for
NOR (Bourtchouladze et al., 2003; Alarcón et al., 2004; Korzus et
al., 2004; Wood et al., 2006; Oliveira et al., 2007). These results
suggest that long-term memory for NOR is especially sensitive to
alterations in CBP activity and levels of histone acetylation. Thus,
the question of whether inducing a histone hyperacetylated state,
via HDAC inhibition, would enhance long-term memory for
NOR was examined. Initial findings show that HDAC inhibition
enhances long-term memory for NOR and that enhanced mem-
ory following inhibition is persistent across long time intervals.
This is particularly interesting because one alluring aspect of ex-
amining the role of chromatin modifications in modulating tran-
scription required for long-term memory processes is that these
modifications may provide potentially stable epigenetic marks in
the service of activating and/or maintaining transcriptional pro-
files underlying specific cellular states. Together, these findings
suggest that HATs (i.e., CBP) and HDACs are pivotal for regulat-
ing chromatin-modification mechanisms required for synaptic
plasticity and memory processes.

Linking epigenetic gene regulation to fear memory formation
Regulation of the brain-derived neurotrophic factor (bdnf) gene
is another fascinating example of how epigenetic modifications
control gene expression with measurable changes in electrophys-
iology and behavior. Investigations into the role of BDNF in the
adult CNS have identified this protein as a major regulator of
synaptic plasticity and memory formation (for review, see Bram-
ham and Messaoudi, 2005). There are multiple bdnf mRNA tran-
scripts that are all translated into the same BDNF protein. The
bdnf gene consists of nine 5� noncoding exons each linked to

Figure 1. Schematic representation of epigenetic marks. A, DNA is condensed within the nucleus through interactions with histones, and this DNA–protein complex is referred to as chromatin.
Two copies each of the histones H2A, H2B, H3, and H4 assemble to form a histone octamer, around which 146 bp of genomic double-stranded DNA are wrapped. B, The N-terminal tail of a histone
contains many sites for epigenetic marking via histone acetylation, methylation, and phosphorylation. For example, acetylation of H3, shown as the addition of green circles to the tails, results in a
relaxed chromatin state that promotes gene transcription, whereas methylation (shown via red circles) can either promote or repress gene transcription. C, Methylation of DNA is another method
of epigenetic marking of the genome, where a methyl group (shown as red diamonds) is transferred to cytosines in genomic regions in and around gene promoters that are rich in cytosine-guanine
nucleotides (CpG islands). While the addition of methyl groups at gene promoters is generally linked to transcriptional repression, it is noteworthy that more distal and intragenic portions of many
actively transcribed genes are methylated.
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individual promoter regions and a 3� coding exon (IX), which
codes for the BDNF preprotein amino acid sequence (Liu et al.,
2006; Aid et al., 2007). The activity of specific promoter regions
within the bdnf gene dictates the spatial and temporal expression
of specific bdnf transcript isoforms (Nanda and Mack, 1998). In
addition, neuronal activity has been demonstrated to elicit pro-
moter site-specific transcription initiation from a subset of bdnf
promoters in hippocampus (Metsis et al., 1993; Lauterborn et al.,
1996; Huang et al., 2002; Rattiner et al., 2004; Tsankova et al.,
2004, 2006). However, the significance of this differential regula-
tion of bdnf promoters in the adult brain is not completely clear.
The literature suggests that 5� untranslated regions (5�UTRs) as-
sociated with the transcriptional start site of specific genes can
control the efficiency of translation of the encoded protein
(Gromeier et al., 1999; Jopling and Willis, 2001; Pal et al., 2003;
Aranda-Abreu et al., 2005). In addition, 5� UTRs have been
shown to direct the subsequent trafficking and targeting of tran-
scripts to specific cellular compartments of the neuron (Blichen-
berg et al., 1999). Thus, the unique promoter regions and each
noncoding exon are important regulatory sites that may serve to
direct differential expression and localization of bdnf exon-
specific transcripts.

Initial investigations into the transcriptional mechanisms un-
derlying differential regulation of bdnf transcripts in the brain
have focused on the role of transcription factors, such as CREB
and nuclear factor-�B (NF-�B), binding to bdnf promoter re-
gions to initiate recruitment and activation of several coactivators
of transcription (Shieh and Ghosh, 1999; Lubin et al., 2007).
However, recent reports have highlighted another level of tran-
scriptional regulation of genes in the adult nervous system in-
volving alterations in chromatin structure. With regard to bdnf
expression, Bredy et al. (2007) suggest that histone modifications
around specific bdnf promoters is clearly correlated with memory
formation. They demonstrate that extinction of conditioned fear
in mice is associated with an increase in histone H4 acetylation
around the promoter of bdnf exon IV, as well as increases in bdnf
exons I and IV mRNA in prefrontal cortex. Furthermore, several
studies support DNA methylation as a provocative epigenetic
mechanism for ongoing regulation of bdnf transcription to me-
diate neuronal functions (Martinowich et al., 2003; Levenson et
al., 2006; Brown et al., 2008; Nelson et al., 2008). For example, a
recent study examined the intriguing possibility that the adult
nervous system may have co-opted DNA methylation as an epi-
genetic mechanism to mediate bdnf gene expression in neuronal
cells during memory formation. Specifically, the study investi-
gated whether DNA methylation regulates bdnf exon-specific
transcription within hippocampus in a mammalian contextual
conditioned fear memory model. Using direct molecular tech-
niques, they report that differential bdnf DNA methylation at
specific promoter and exonic regions is dynamically regulated in
the adult hippocampus through NMDA receptor activation dur-
ing consolidation of fear memories (Lubin et al., 2008). Together,
these studies present a clearer understanding of the epigenetic
regulation of the bdnf gene in several behaviors and highlight a
new activity-dependent transcriptional mechanism for gene ex-
pression changes in the adult brain that will have to be incorpo-
rated in future molecular studies.

Methyl-cytosine binding protein 2 and its potential role in
autism-spectrum disorder and Rett syndrome
It is becoming increasingly clear that epigenetic regulation may
be a key component of certain disease processes. To date, one of
the best studied disorders that involves epigenetic mechanisms is

Rett syndrome, an X-linked neurodevelopmental disorder char-
acterized by severe motor and cognitive impairment as well as
autistic symptoms. The syndrome affects females primarily, with
early postnatal lethality in males (Amir et al., 1999; Weaving et al.,
2005; Chahrour and Zoghbi, 2007). Rett syndrome is caused by
mutation in the methyl-cytosine binding protein 2 (MeCP2)
gene. MeCP2 is predicted to bind to methylated CpG DNA se-
quences in specific promoters, which in vitro studies have shown
promotes transcriptional silencing at those loci (Jones et al., 1998;
Nan et al., 1998; Weaving et al., 2005; Akbarian et al., 2006;
Chahrour and Zoghbi, 2007), but transcriptional profiling stud-
ies in MeCP2 mutant brain suggest a more complex effect on gene
expression (Chahrour et al., 2008). Furthermore, in the first
large-scale mapping study, Yasui et al. (2007) found that neuro-
nal MeCP2 binding sites on 26.3 Mb of target imprinted and
nonimprinted loci revealed that 59% of MeCP2 binding sites are
outside of genes, and only 5.9% are in CpG islands. Furthermore,
integrated genome-wide promoter analysis of MeCP2 binding,
CpG methylation, and gene expression revealed that 66% of
MeCP2-bound promoters are actively expressed and, surpris-
ingly, only 6% are highly methylated. JUNB, an immediate early
gene relevant to the pathogenesis of Rett syndrome, is one exam-
ple of a highly active gene whose expression is modulated by distal
and proximal binding to a partially methylated promoter (Yasui
et al., 2007). Therefore, these results support a predominant role
for MeCP2 as a long-range epigenetic modulator rather than a
proximal silencer of gene expression.

The results are significant and represent advances in the au-
tism and Rett syndrome fields in that they demonstrate that
MeCP2 modulates the expression level of many genes and does
not act exclusively as a transcriptional silencer as has been hy-
pothesized. Furthermore, the results support the concept that
epigenetic regulation is complex, and only with continued effort
testing existing and forming novel hypotheses will answers be-
come known.

Epigenetic mechanisms in drug addiction
A frontier of epigenomics where the impact is just beginning to be
realized is in the pathogenesis and persistence of psychiatric dis-
orders such as drug addiction. People who repeatedly use drugs of
abuse often transition to an addicted state characterized by com-
pulsive drug seeking and taking despite severe adverse conse-
quences. While the precise mechanisms underlying this transi-
tion remain unclear, changes in gene expression in brain reward
regions such as the nucleus accumbens (NAc) are thought to
contribute to this process. Indeed, some of these gene expression
changes (mediated, for example, by the transcription factors,
�FosB or CREB) have been directly shown to alter an animal’s
motivation to self-administer cocaine or other drugs of abuse
(Hyman et al., 2006). However, the mechanisms by which
chronic drug exposure converges on the genome to alter the ac-
tivity of specific genes have remained largely unknown. Recent
evidence suggests that drug-induced modifications to chromatin
structure may contribute to these long-lasting changes in gene
expression and ultimately to addictive behaviors.

One of the best studied drug-induced changes in chromatin
structure is histone acetylation, which is considered a marker of
actively transcribed genes (Fig. 1). Together, several studies have
implicated histone acetylation in behavioral responses to cocaine
(Kumar et al., 2005; Levine et al., 2005; Renthal et al., 2007, 2008;
Freeman et al., 2008) and suggest a role in modulating the sa-
liency of drug experiences. However, these studies, for the most
part, investigated the promoters of genes already known to be
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regulated by drugs of abuse. To gain insight into novel cocaine-
induced transcriptional regulation, an unbiased, genome-wide
approach coupling chromatin immunoprecipitation with pro-
moter microarrays (ChIP– chip) was used.

Since increases in histone acetylation can both mark actively
transcribed genes as well as genes which appear to be primed for
later induction (Tsankova et al., 2007; Renthal and Nestler,
2008), ChIP– chip provides exciting new information about tran-
scriptional regulation in response to drugs of abuse beyond that
obtained from analyses of steady-state mRNA levels. One new
mechanistic insight is that the majority of cocaine-induced his-
tone hyperacetylation occurs on either histone H3 or H4 but only
rarely on both histones at the same gene. The mechanisms which
determine whether a gene is hyperacetylated at H3 or H4 remain
unclear, but these new data suggest that, after chronic cocaine,
there may be two distinct signaling pathways that converge on
either H3 or H4 to activate gene expression.

In addition to providing novel insight into basic transcrip-
tional mechanisms co-opted by cocaine, these data describe sev-
eral new signaling pathways that are regulated by cocaine. One
example is a family of protein deacetylases, the sirtuins (for re-
view, see Michan and Sinclair, 2007), where it has been found that
the promoters of both SIRT1 and SIRT2 are significantly hyper-
acetylated at histone H3 after chronic cocaine, which is associated
with significant upregulation of both genes (W. Renthal, personal
communication). This upregulation appears to be physiologi-
cally relevant, as pharmacological and genetic manipulation of
SIRT1 and SIRT2 activity in the NAc potently regulates cocaine
reward and self-administration behavior.

These data provide a wealth of new information about how
chronic cocaine exposure alters chromatin structure throughout
the genome in the NAc and, most importantly, establish a proof
of principle that novel signaling molecules involved in addiction-
related behaviors can be identified by studying genome-wide
changes in histone acetylation.

Histone modifications and neuropsychiatric disease
Given the data emerging from epigenomic studies using genetic,
cellular, and behavioral measures and in light of the role of epigenet-
ics in disease processes, developing novel therapeutics that can ame-
liorate neurological and neuropsychiatric symptoms would be
highly desirable. It is currently recognized that drugs acting as
HDACi that presumably promote transcription of specific genes,
elicit changes in animal behavior, which is often accompanied by a
neurotrophic and/or neuroprotective mechanism. HDACi have
shown therapeutic efficacy in many rodent models of neurodegen-
erative diseases, including Huntington’s and other triplet repeat dis-
orders, and also Parkinson’s disease; it is now recognized that
HDACi are broadly neuroprotective, preventing or delaying neuro-
nal dysfunction and death in vitro and in vivo (Qi et al., 2004;
Minamiyama et al., 2004; Camelo et al., 2005; Faraco et al., 2006;
Petri et al., 2006; Avila et al., 2007; H. J. Kim et al., 2007; Fischer et al.,
2007; Langley et al., 2008). These findings are very promising from a
treatment-development perspective, and the underlying molecular
mechanisms are thought to involve transcriptional regulation be-
cause histone acetylation is typically enriched in euchromatin at sites
of active gene promoters.

From a genome-wide perspective, other types of histone modifi-
cations show a distribution that is highly complementary to most
(histone) acetylation marks. For example, the di- and tri-methylated
forms of histone H3-lysine 9 are typically enriched in heterochroma-
tin and, when present at the sites of promoters, these marks are
typically involved in transcriptional repression and silencing

(Nakayama et al., 2001; Peters et al., 2002; Rice et al., 2003; Guenatri
et al., 2004; Appanah et al., 2007; Barski et al., 2007). These mecha-
nisms likely contribute to the neurobiology of disease. For example,
dysregulation of H3-methyl-lysine 9 was reported in postmortem
brain studies of subjects diagnosed with Huntington’s disease (Ryu
et al., 2006) or Friedreich’s Ataxia (Al-Mahdawi et al., 2008), both of
which are triplet repeat disorders.

If the upregulation of histone acetylation generally seems to be
beneficial for neuronal functions and behaviors, then what phe-
notype would be expected in genetically engineered animals with
neuron-specific elevations of repressive chromatin marks such as
H3-tri(di-)-methyl-lysine 9? This was examined using transgenic
mice overexpressing the H3K9-specific histone methyl-
transferase, SET domain bifurcated 1 (Setdb1) (Schultz et al.,
2002), also known as Erg-associated protein with SET domain
(Yang et al., 2002). When expression in adult brain is upregulated
(via transgenes expressed under control of neuron-specific pro-
moters), levels of trimethylated H3 lysine 9 in heterochromatin
surrounding pericentromeric repeat DNA became significantly
elevated. Preliminary results from ongoing studies indicated that
gross neurological function in these mice, as evaluated by rotarod
and locomotor assays, body weight, and breeding behaviors were
either normal or showed only subtle changes. However, prelim-
inary findings suggest that Setdb1-overexpressing mice outper-
form their wild-type littermates in the Morris Water Maze and
the Object Recognition tests, which are thought to relate to
hippocampus- and cortex-related memory functions (Y. Jiang
and S. Akbarian, personal communication). These findings were
unexpected and suggest that therapeutic benefits in preclinical
models of memory disorders are not limited to HDAC-mediated
histone acetylation, but the mechanisms by which Setdb1-
mediated H3-lysine 9 methylation alters neuronal function and
behavior remain to be explored.

The Setdb1 histone methyltransferase is not the only histone
modifying enzyme that emerges as an important regulator of neuro-
nal chromatin in postnatal and mature brain. For example, hip-
pocampal synaptic plasticity is altered in mice heterozygous for a
truncated, lacZ knock-in allele of Mll1, the founding member of the
mixed-lineage leukemia family of histone methyltransferases and es-
sential component of a trithorax chromatin remodeling complex
involved in the methylation of the H3-lysine 4 residue (S. Y. Kim et
al., 2007). Interestingly, Mll1-mediated H3-lysine 4 methylation
might be involved in the molecular pathology of prefrontal dysfunc-
tion of schizophrenia and is upregulated at a subset of GABAergic
gene promoters in mice treated with the atypical antipsychotic, clo-
zapine (Huang et al., 2007). The potential importance of the fine-
tuning of the H3 methylation marks in brain chromatin is further
underscored by the discovery that one of the X-linked mental retar-
dation and autism genes, Jumonji AT-rich interactive domain 1C
(also termed SMCX), which encodes a histone demethylase that uses
H3-tri-methyl-lysine 9 as a docking site for the subsequent demeth-
ylation of H3-lysine 4 (Iwase et al., 2007; Adegbola et al., 2008).
Therefore, it will be exciting to examine the dynamic interplay of
multiple histone lysine methylation marks in the context of neuro-
psychiatric disorders, including autism, schizophrenia, and some
cases of depression, that are thought to involve defects in orderly
brain development and maturation.

Histone deacetylase inhibitors as broadly effective
neuroprotective agents
In vitro models of neuronal death have allowed for the dissection
of some of the molecular players and pathways involved HDAC
inhibition mediated neuroprotection. For example, one of the many
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gene expression changes following HDAC inhibition is an upregu-
lation of the cyclin-dependent kinase inhibitor p21cip1/waf1/sdi1 (p21)
(Langley et al., 2008). p21 was independently identified by mul-
tiple laboratories based on its interaction with cyclin-dependent
kinase (cip1), its role as a p53-inducible protein that can inhibit
proliferation (waf1), and its expression in senescent cells (sdi1).
Despite knock-out studies suggesting that p21 is not essential for
development (Nakayama and Nakayama, 1998), p21 appears to
play an essential role in cellular protection in response to a range
of stresses (Besson et al., 2008). Investigations into the role p21
plays downstream of HDAC inhibition have revealed that trans-
genic overexpression of p21 in neurons can mimic the protective
effects of HDAC inhibition against both oxidative stress-induced
and DNA damage-induced death (Langley et al., 2008). Despite
this, p21-deletion studies show that p21 is not strictly necessary
for HDAC inhibitor mediated protection against oxidative stress
and is only necessary for a portion of HDAC inhibitor mediated
protection against DNA damage (Langley et al., 2008). Consider-
ing the number of putatively protective genes and pathways in-
duced by HDAC inhibition [for example, p21 (Langley et al.,
2008), gelsolin (Meisel et al., 2006), HSP70 (Ren et al., 2004), and
peroxiredoxin-1 (Hoshino et al., 2005)], these findings are not
surprising. Indeed, it is likely that the ability of HDAC inhibition
to induce a number, or “cassette,” of protective genes and path-
ways is in part responsible for the broad neuroprotection ob-
served in vivo.

Though some traction has been gained with regard to under-
standing HDAC inhibitor-mediated neuroprotection, a number
of critical questions still remain to be resolved including the roles
of individual HDAC isoforms as well as which HDACs are bona
fide targets for neuroprotection. Another question is whether or
not epigenetic modulation of histones per se is even required for
neuroprotection. Indeed, despite being called “histone deacety-
lases,” nonhistone proteins are also substrates for the activities of
some HDACs. Some of these include transcription factors, e.g.,
p53, Sp1, GATA-2, and NF-�B; cytoskeletal proteins, e.g., tubu-
lin; molecular chaperones, e.g., HSP90; and nuclear import fac-
tors (Glozak et al., 2005). However, unlike histone modification,
the roles these acetylated/deacetylated proteins play in neuropro-
tection are largely unknown.

Discussion
Epigenetics is a relatively new frontier in neuroscience, especially
with regard to regulation of gene expression in the brain. There is
still much to learn about how changes in chromatin architecture
affect transcriptional regulation and what genes are targeted for
regulation. Important questions remain with regard to how en-
vironmental conditions impact the epigenome of an organism as
well as questions addressing developmental and aging effects.
Another intriguing concept is how epigenetic alterations can be
modulated to induce long-lasting behavioral changes due to their
potential stability; this opens up interesting opportunities re-
garding intervention therapies. In addition, although progress is
being made (Jiang et al., 2008), the field needs to address some
important methodological issues because most chromatin and
DNA methylation assays lack single cell resolution. These and
other technologic improvements should provide unique oppor-
tunities to study epigenetic changes in postmitotic neurons
across the full life span of the animal, or in humans (Siegmund et
al., 2007). Clearly, one should expect that epigenetics-focused
research will provide fertile ground for understanding aspects of
brain function and behavior, as well as potentially presenting

opportunities to develop novel therapies for a wide range of neu-
rological and psychiatric diseases.
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