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Functional Genomics of the �-Cell: Short-Chain 3-
Hydroxyacyl-Coenzyme A Dehydrogenase Regulates
Insulin Secretion Independent of K� Currents

Olga T. Hardy, Hans E. Hohmeier, Thomas C. Becker, Elisabetta Manduchi, Nicolai M. Doliba,
Rana K. Gupta, Peter White, Christian J. Stoeckert, Jr., Franz M. Matschinsky,
Christopher B. Newgard, and Klaus H. Kaestner

Departments of Genetics (O.T.H., R.K.G., P.W., K.H.K.) and Biochemistry and Biophysics (N.M.D.,
F.M.M.), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Sarah W.
Stedman Nutrition and Metabolism Center and Departments of Pharmacology and Cancer Biology
and Medicine (H.E.H., T.C.B., C.B.N.), Duke University Medical Center, Durham, North Carolina
27704; and Computational Biology and Informatics Laboratory (E.M., C.J.S.), University of
Pennsylvania, Philadelphia, Pennsylvania 19104

Recent advances in functional genomics afford the
opportunity to interrogate the expression profiles of
thousands of genes simultaneously and examine the
function of these genes in a high-throughput manner.
In this study, we describe a rational and efficient
approach to identifying novel regulators of insulin
secretion by the pancreatic �-cell. Computational
analysis of expression profiles of several mouse and
cellular models of impaired insulin secretion identi-
fied 373 candidate genes involved in regulation of
insulin secretion. Using RNA interference, we as-
sessed the requirements of 10 of these candidates
and identified four genes (40%) as being essential for
normal insulin secretion. Among the genes identified
was Hadhsc, which encodes short-chain 3-hy-

droxyacyl-coenzyme A dehydrogenase (SCHAD), an
enzyme of mitochondrial �-oxidation of fatty acids
whose mutation results in congenital hyperinsulin-
ism. RNA interference-mediated gene suppression
of Hadhsc in insulinoma cells and primary rodent
islets revealed enhanced basal but normal glucose-
stimulated insulin secretion. This increase in basal
insulin secretion was not attenuated by the opening
of the KATP channel with diazoxide, suggesting that
SCHAD regulates insulin secretion through a KATP

channel-independent mechanism. Our results sug-
gest a molecular explanation for the hyperinsulin-
emia hypoglycemic seen in patients with SCHAD
deficiency. (Molecular Endocrinology 21: 765–773,
2007)

NUTRIENT SENSING COUPLED to regulated insu-
lin release is required for the pancreatic �-cell to

maintain glucose homeostasis. In the fed state, when
glucose levels are elevated, insulin secretion is in-
creased to stimulate glucose utilization in muscle,
liver, and adipose tissue. During fasting, when glucose
levels are low, insulin secretion is down-regulated,
thus helping to maintain a minimal level of glucose in
the bloodstream. �-Cell dysfunction resulting in dys-
regulated insulin secretion can have severe conse-
quences and lead to chronic diseases such as diabe-

tes mellitus, characterized by insulin deficiency, or
congenital hyperinsulinism, which is due to inappro-
priate insulin release.

The major pathway of insulin secretion is triggered
by glucose uptake into the �-cell, where it is then
phosphorylated by glucokinase and further metabo-
lized to ATP. The subsequent increase in the cytoplas-
mic ATP/ADP ratio closes the ATP-sensitive potas-
sium channel (KATP channel), leading to depolarization
of the plasma membrane and opening of voltage-sen-
sitive Ca�� channels. Finally, the resulting rise in in-
tracellular Ca�� activates exocytosis of insulin secre-
tory granules (1). This KATP-dependent pathway is the
best characterized mechanism leading to insulin se-
cretion; however, studies of KATP channel-deficient
mice reveal the presence of KATP-independent path-
ways to insulin secretion (2). Although the importance
of KATP-dependent and KATP-independent pathways
to insulin secretion is certain, their relative contribu-
tions are not clearly defined. The precise mechanisms
governing these pathways to insulin secretion remain
unknown. Identification of additional components of
the insulin secretory apparatus may lead to the devel-
opment of novel therapeutic regimens for the treat-
ment of diabetes mellitus.
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siHadhsc, adenovirus expressing siRNA against Hadhsc; Ad-
siScramble, adenovirus expressing a scramble sequence;
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driven Cre-recombinase; pfu, plaque-forming units; RAD,
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RNA; siRNA, small interfering RNA.
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In this study, we describe a rational and efficient
functional genomics approach to identifying novel reg-
ulators of insulin secretion. We began by determining
the expression profiles of multiple paradigms of ab-
normal insulin secretion, including several mouse
models of impaired �-cell function, as well as cell
culture models of robust or impaired glucose-stimu-
lated insulin release. Computational analysis of these
expression profiles identified genes likely to play an
important role in insulin secretion. The functional rel-
evance to �-cell function of 10 potential targets iden-
tified in this manner were evaluated using RNA inter-
ference (RNAi), and several were found to be required
for normal insulin secretion. Most notably, the gene
encoding short-chain 3-hydroxyacyl-coenzyme A de-
hydrogenase (SCHAD) was shown to play a crucial
role in a KATP channel-independent mechanism of in-
sulin secretion, explaining the molecular mechanisms
of how deficiency for this gene causes congenital hy-
perinsulinism in humans.

RESULTS

Combining RNAi with Transcriptional Profiling
Identifies Novel Regulators of Insulin Secretion

Large-scale functional genomic approaches have
been used successfully to identify novel regulators of
multiple biological processes in lower eukaryotic or-
ganisms such as Caenorhabditis elegans and Dro-
sophila melanogaster (3–7). In many of these studies,
high-throughput screens using large libraries of dou-
ble-stranded small interfering RNAs (siRNAs) have fa-
cilitated the identification of genes involved in regula-
tory pathways. One limitation to such an approach in
higher organisms is that the increased complexity of
physiological processes makes identifying essential
regulators less likely, thus making these functional
genomic approaches less efficient.

To find essential regulators of insulin secretion, we
first identified genes whose expression is altered in
models of impaired or enhanced insulin release, thus
increasing the likelihood that a given target plays an
important role in insulin secretion. Among the systems

used are three unique mouse models in which inacti-
vation of Foxa1, Foxa2, or Hnf-4� results in signifi-
cantly impaired glucose-stimulated insulin release
from isolated islets (8–15). In addition, we compared
INS1-derived cell lines with robust glucose-stimulated
insulin secretion (lines 832/13 and 833/15) vs. INS1-
derived cells with weak glucose-stimulated insulin se-
cretion (lines 832/1 and 832/2) (16, 17). Finally, we
examined the expression profiles of 832/13 cells cul-
tured in the presence or absence of a 0.5-mM oleate:
palmitate/albumin, using RPMI 1640 medium that also
contains a relatively high glucose concentration (11
mM) to simulate glucolipotoxicity encountered in type
2 diabetes, as we have previously demonstrated that
culture of 832/13 cells in the presence of elevated fatty
acids and glucose for 48 h causes a striking impair-
ment in glucose-stimulated insulin secretion (Table 1)
(18). Through computational analysis of the differ-
entially expressed genes in these five models (see
Materials and Methods, Fig. 1), we derived a para-
digm list of 373 candidate genes that may play a role
in regulating insulin secretion (supplemental Table 1,
published as supplemental data on The Endocrine
Society’s Journals Online web site at http://mend.
endojournals.org).

To assess the potential contribution of these genes
to �-cell function, we employed RNAi for loss of func-
tion analysis in insulinoma cells (Table 2, supplemental
Table 2). Of 373 genes in our paradigm list, we focused
on 59 that changed greater than 1.2-fold in at least two
of the paradigms. Of these 59, only 29 corresponded
to identifiable genes with characterized reference se-
quences. For 21 of these genes, siRNA duplexes were
commercially available, and we chose 10 at random
for further evaluation. Transfection of 832/13 cells with
siRNAs against individual genes led to a minimal re-
duction of expression of 43%, with several genes in-
hibited by more than 70% (Fig. 2A). Strikingly, glu-
cose-stimulated insulin secretion was affected in four
out of 10 genes analyzed (40%), confirming the utility
of the functional genomics approach in narrowing the
field of targets to be screened (Fig. 2B). Down-regu-
lation of reticulon 4, argininosuccinate synthetase 1,
and baculoviral inhibitors of apoptosis (IAP) repeat-
containing 5 resulted in a striking decrease in glucose-

Table 1. Models of Impaired �-Cell Function

Models Description Refs.

Foxa1�/� Hypoglycemic, impaired glucagon, and insulin
secretion

Kaestner et al. (11); Shih et al. (13);
Vatamaniuk et al. (15)

Foxa2 loxP/loxP, InsCre Hyperinsulinemic hypoglycemia, abnormal
insulin secretion, reduced expression of KATP

channel

Sund et al. (14); Lantz et al. (9)

Hnf-4� loxP/loxP, InsCre Impaired glucose tolerance due to abnormal
glucose-stimulated insulin secretion by �-cell

Gupta et al. (8); Miura et al. (12)

INS1 model 1 Glucose-responsive vs. glucose unresponsive
INS1 subclones

Chen et al. (16); Hohmeier et al. (17)

INS1 model 2: lipotoxicity Time course of lipid-induced �-cell toxicity Boucher et al. (18)
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stimulated insulin secretion. Conversely, reducing the
expression of Hadhsc encoding SCHAD caused a
marked increase in basal insulin secretion. Together,
these results confirm that the functional genomics ap-
proach described here provides a rational and efficient
method for identifying novel regulators of insulin
secretion.

SCHAD Regulates Basal Insulin Secretion
Independent of KATP Channels

Among the genes validated from the paradigm list is
Hadhsc, encoding SCHAD, the mitochondrial en-
zyme that catalyzes the conversion of 3-hydroxya-

cyl-coenzyme A to 3-ketoacyl-coenzyme A, the pen-
ultimate reaction in the �-oxidation of fatty acids
(19). Notably, patients with mutations in HADHSC
leading to functional SCHAD deficiency develop
congenital hyperinsulinism (19–22). However, it re-
mains unclear whether hypersulinism in these pa-
tients is to due to a primary defect in �-cell function
or is a secondary consequence of SCHAD defi-
ciency in other tissues. In addition, there is much
controversy regarding whether or not reduced �-ox-
idation of fatty acids regulates insulin secretion
through KATP dependent or independent pathways.
Thus, we sought to investigate the role of Hadhsc in
insulin secretion in further detail.

Fig. 1. Combining Expression Profiling with RNAi
Gene expression profiling was performed on isolated islets of three mouse models of perturbed �-cell function (Foxa1�/�,

Foxa2loxP/loxP, InsCre; Hnf-4�loxP/loxP, InsCre) (8, 11, 14), compared in each case to littermate controls. Expression profiles were
also determined for INS1-derived cell lines with robust glucose-stimulated insulin secretion (cell lines 832/13 and 833/15) vs.
INS1-derived cells with weak glucose-stimulated insulin secretion (lines 832/1 and 832/2) (16, 17), as well as for 832/13 cells
cultured in the presence or absence of a 0.5 mM oleate:palmitate/albumin. Computational analysis of all expression profiles led
to a paradigm list of 373 possible regulators of insulin secretion. The full list is published as supplemental Table 1 at
http://mend.endojournals.org.

Table 2. Expression Changes of Candidate Genes in Various Paradigms

Gene name Locus
symbol Foxa1�/� Foxa2loxP/loxP,

InsCre
HNF-4�loxP/loxP,

InsCre
INS1

model 1
INS1

model 2

Chromogranin B Chgb �N.C. 3.2 2.1 2.1 1.3
Transforming growth factor � Tgra 1.2 �N.C. 7.8 �N.C. 1.2
Sulfotransferase family 1D Sult1d1 1.8 �N.C. �3.7 �N.C. �N.C.
L-3-hydroxyacyl-coenzyme A

dehydrogenase, short chain
Hadhsc �1.3 �2.8 �N.C. �N.C. �N.C.

Pyruvate kinase, muscle Pkm2 �1.2 1.2 �N.C. �N.C. �N.C.
Aromatic L-amino acid decarboxylase Aadc �N.C. �2.1 �2.5 �N.C. �N.C.
Baculoviral IAP repeat-containing 5 Birc5 �1.6 �1.2 �N.C. �N.C. �N.C.
Argininosuccinate synthetase 1 Ass1 1.3 1.3 �N.C. �N.C. �N.C.
FK506 binding protein 11 Fkbp11 �N.C. �N.C. 1.4 �N.C. 1.2
Reticulon 4 Rtn4 �1.2 �1.7 �1.2 �3.8 N.C.

Fold changes listed above are relative to littermate control groups used for each individual experiment. N.C., No significant
difference compared with controls.

Hardy et al. • Functional Genomics of the �-Cell Mol Endocrinol, March 2007, 21(3):765–773 767



Although nucleofection of RNAi oligonucleotides al-
lows for rapid screening of multiple candidate genes in
insulinoma cell lines, we have not found this method to
be efficient for gene transfer into primary pancreatic
islets. For further analysis of Hadhsc function in �-cell,
we employed adenoviral-mediated gene transduction
in primary islets in addition to insulinoma cells (23, 24).
We constructed a recombinant adenovirus containing
a short hairpin RNA (shRNA) sequence specific to this
gene [adenovirus expressing siRNA against Hadhsc
(Ad-siHadhsc)]. To test the ability of Ad-siHadhsc to
suppress Hadhsc expression, we assayed Hadhsc
mRNA levels in INS1 cells after transduction with vary-
ing multiplicities of infection of Ad-siHadhsc for 24 or
48 h. Treatment of 832/13 cells with Ad-siHadhsc
caused decreases in Hadhsc transcript levels in as
little as 24 h after transduction, with maximal suppres-

sion (86%) at 48 h (Fig. 3A). Increasing the multiplicity
of infection had no further effect on the efficiency of
the shRNA approach (Fig. 3A).

Next we measured glucose-stimulated insulin se-
cretion in insulinoma cells with reduced levels of
Hadhsc. We used Ad-siHadhsc at a dose of 100
plaque-forming units (pfu) per cell for 48 h to suppress
Hadhsc mRNA levels by 83% in 832/13 cells. Sup-
pression of Hadhsc expression caused a significant
increase in basal insulin secretion compared with un-
treated cells and cells transduced with an adenovirus
expressing a scramble sequence (Ad-siScramble) (Fig.

Fig. 2. Validation of Functional Genomics Approach
A, Real-time PCR analysis of mRNA levels after RNAi-

mediated gene suppression of 10 candidate regulators of
insulin secretion. B, Of 10 candidate genes chosen, down-
regulation of four genes (40%) results in dysregulated insulin
release. Suppression of SCHAD expression increases basal
insulin release at 3 mM glucose, whereas reduction in argini-
nosuccinate synthetase 1 (Ass1), baculoviral IAP repeat con-
taining 5 (Birc5), and reticulon 4 (Rtn4) results in attenuated
glucose-stimulated insulin secretion. Bars represent mean �
SEM of three to 11 independent assays. *, P � 0.05; **, P �
0.01 by Student’s t test.

Fig. 3. SCHAD Is Required for KATP-Independent Basal In-
sulin Secretion

A, Real-time PCR analysis of Hadhsc mRNA levels in
832/13 cells after Ad-siHadhsc with varying time exposure
and multiplicity of infection. B, Transduction of nonspecific
shRNA (Ad-siScramble) had no significant effect on basal or
glucose-stimulated insulin secretion from 832/13 cells,
whereas transduction of Ad-siHadhsc significantly increased
basal but not glucose-stimulated insulin secretion (Note:
INS1 832/13 cells saturate at 8 mM glucose). C, Whereas
glucose-stimulated insulin secretion is blunted as expected
by diazoxide (dz), the increased basal rate of insulin secretion
caused by suppression of Hadhsc expression is maintained
in the presence of the drug, indicating that the increased
basal insulin from SCHAD-deficient �-cells is not dependent
on KATP-dependent pathway activation. Data represent the
mean � SEM for three independent assays. *, P � 0.05; **, P �
0.01 by Student’s t test.
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3B). To determine if this increase in basal insulin se-
cretion is mediated through a KATP channel-depen-
dent mechanism, we performed glucose-stimulated
insulin secretion assays in the presence of diazoxide,
which functions to keep KATP channels open, thus
suppressing the KATP-dependent pathway to insulin
release. Treatment of the cells with diazoxide did not
alter the enhanced basal insulin secretion caused by
suppression of Hadhsc, although the same dose of
diazoxide completely abrogated glucose-stimulated
insulin secretion in Ad-siScramble-treated cells (Fig.
3C). Together these results indicate that SCHAD func-
tions directly in �-cells to regulate a KATP-independent
pathway to insulin secretion.

SCHAD Is Required for Basal Insulin Secretion in
Primary Mouse Islets

Next, we examined the impact of SCHAD deficiency
on basal insulin secretion in primary islets because
insulinoma cells do not always replicate all aspects of
normal �-cell biology. To test the efficiency of recom-
binant adenovirus to transduce islets, we assayed
green fluorescent protein (GFP) expression in islets
after transduction with an adenovirus expressing GFP
(Ad-GFP). Treatment of mouse islets with Ad-GFP at a
viral dose of 1.3 x 106 pfu per islet for 24 h followed by
culture for 2 more days resulted in efficient GFP ex-
pression within the islets. In addition, when we treated
islets with Ad-siHadhsc, Hadhsc transcript levels were
reduced by 80% 4 d after transduction (Fig. 4A), con-
sistent with our experiences in other studies (24, 25)
employing adenovirus vectors for knock-down of gene
expression in primary rodent islets.

Insulin secretion from isolated islets was determined
at 3 or 16.7 mM glucose in a 2-h static incubation
assay. Adenovirus-mediated silencing of Hadhsc in-
creased basal insulin secretion in islets, confirming our
findings in insulinoma cells; however, there was no
difference in glucose-stimulated insulin secretion (Fig.
4B). Thus, we conclude that Hadhsc has a primary
function in pancreatic islets for the regulation of basal
insulin secretion.

DISCUSSION

Although there has been substantial progress in un-
derstanding �-cell biology and the contributions made
by �-cell dysfunction to the development of diabetes,
treatment options remain less than optimal. Thus, it is
important to search for genes that regulate �-cell func-
tion, growth, and survival. Such genes could be tar-
gets for development of more effective drugs for the
treatment of diabetes. Previous large-scale screens to
identify regulators of signaling cascades and physio-
logical processes have used large siRNA libraries con-
taining over 20,000 siRNA duplexes. Although these
studies have identified hundreds of regulators, these

approaches have a relatively low success rate, with as
little as 2% of the siRNAs producing a measurable
phenotype (3, 7).

In this study, we describe a rational and efficient
approach to identifying regulators of insulin secretion.
By combining computational analysis with expression
profiling, we have derived a list of potential new target
genes that affect the function of the �-cell. Screening
of 10 of these candidate genes identified four targets
(40%) that are involved in regulating insulin secretion.
Blindly screening genes without using the guidance of
the expression data would have likely required an or-
der of magnitude more genes to reach the same num-
ber of positive results. In addition, the paradigm gene
list of 373 genes provides a valuable resource to be
exploited by �-cell researchers in the future.

Among the genes identified as essential regulators
of glucose-stimulated insulin release are Argininosuc-

Fig. 4. Glucose-Stimulated Insulin Secretion from Mouse Is-
lets

A, Transduction of isolated mouse islets with Ad-siHadhsc
results in reduced Hadhsc mRNA levels, whereas Ad-siS-
cramble has no significant effect. B, Insulin secretion from
isolated islets cultured in either 3 mM or 16.7 mM glucose for
2 h. Adenovirus-mediated silencing of Hadhsc increases
basal insulin secretion from mouse islets treated with 3 mM

glucose, but does not effect the response to high glucose.
Data for secretion assay represent the mean � SEM for six-
teen independent experiments with data normalized to total
insulin content. *, P � 0.05 by Student’s t test.
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cinate synthetase 1, Baculoviral IAP repeat containing
5, and Reticulon 4. Argininosuucinate synthetase cat-
alyzes the synthesis of argininosuccinate, the imme-
diate precursor of arginine, from citrulline and aspar-
tate. First identified in the liver, argininosuucinate
synthetase is now recognized as a ubiquitous enzyme
in mammalian tissues whose regulation is dependent
on arginine utilization in the tissue of interest (26).
Previous studies have shown that L-arginine stimu-
lates insulin release from pancreatic �-cells. One hy-
pothesis is that the L-arginine potentiation of glucose-
induced insulin secretion is mediated by L-arginine-
derived nitrogen oxides (27), whereas another group
proposes that it occurs via membrane depolarization,
which stimulates insulin secretion through protein ki-
nase A- and C-sensitive mechanisms (28). In this
study, down-regulation of argininosuccinate syn-
thetase expression by RNAi results in reduced insulin
secretion, indicating that argininosuccinate syn-
thetase is a potential activator of insulin secretion.

Baculoviral IAP repeat containing 5 (survivin) is a
member of the mammalian IAP family, along with
baculoviral IAP repeat-containing 4, which encodes
negative regulatory proteins that prevent apoptotic
cell death. Previous studies have shown that overex-
pression of baculoviral IAP repeat-containing 4 in
�-cell lines and human islets enhances �-cell survival,
possibly by inhibiting TNF-related apoptosis-inducing
ligand mediated pathways (29–31). In this study,
down-regulation of baculoviral IAP repeat containing 5
expression by RNAi results in reduced basal and glu-
cose-stimulated insulin release. Further studies are
needed to determine how proteins in the IAP family
regulate insulin secretion.

Likewise, very little is known about the function of
reticulons in insulin secretion. In neuroendocrine cells,
reticulons are localized primarily to the endoplasmic
reticulum and can immunoprecipitate with soluble N-
ethylmaledimide-sensitive factor attachment protein
receptors, which are essential for secretory granule
release from �-cells (32). Therefore, it is tempting to
speculate that reticulon 4 functions to control the
priming or release of insulin secretory granules. In-
deed, down-regulation of reticulon 4 results in a dra-
matic reduction of basal and glucose-stimulated insu-
lin secretion. The INS1 cells with reduced reticulon 4
expression described in this study provide novel tools
to examine the exocytotic machinery involved in reg-
ulating insulin secretion.

Most notable among the genes validated from the
paradigm list is Hadhsc. Hadhsc encodes SCHAD, the
mitochondrial enzyme that catalyzes the conversion of
3-hydroxyacyl-coenzyme A to 3-ketoacyl-coenzyme
A, the penultimate reaction in the �-oxidation of fatty
acids. Several cases of hyperinsulinism in children
associated with mutations in HADHSC have been de-
scribed (19–22). However, until now it has remained
unclear whether hyperinsulinism in these patients is
due directly to the loss of SCHAD in pancreatic
�-cells, or occurs secondary to the metabolic stress

initiated by altered lipid metabolism in other tissues.
Our in vitro model of reduced SCHAD expression
demonstrates for the first time that SCHAD is required
directly in �-cells for the regulation of basal insulin
release.

There is much speculation regarding the mechanism
of increased insulin release from SCHAD-deficient
�-cells. Molven et al. (22) proposed that the L-form of
3-hydroxybutyryl-carnitine that accumulates in these
patients may interfere with potassium channel function
or with the ATP-independent and lipid-sensitive mech-
anism of insulin secretion. We observed that increased
basal insulin secretion from cells with suppressed
SCHAD expression is sustained in the presence of
diazoxide, supporting a potassium channel-indepen-
dent pathway, thus making it unlikely that human
SCHAD deficiency manifests in impaired regulation of
insulin secretion via effects on KATP channels. Clayton
et al. (19) suggested that the accumulation of short-
chain acyl-coenzyme A esters in the mitochondrion
causes insulin secretion by inhibition of carnitine
palmitoyltransferase I. Fatty acids are also known to
increase insulin secretion by stimulation of G-protein-
coupled receptors and by activation of L-type Ca2�

channels (21, 33, 34). Future studies with this model of
SCHAD deficiency will be used to identify mechanisms
by which fatty acid and fatty acid metabolites modu-
late insulin release.

In summary, by combining expression profiling with
RNAi, we provide a rational and efficient approach to
identifying novel regulators of insulin secretion by the
�-cell. This functional genomics approach can be ap-
plied to other mammalian systems and may someday
lead to the development of novel therapeutic regimens
for the treatment of diseases such as diabetes
mellitus.

MATERIALS AND METHODS

Expression Profiling

Gene expression profiling was performed on multiple two-state
models of islet function/dysfunction. This included a compari-
son of gene expression in isolated islets of three mouse models
of perturbed �-cell function [Foxa1�/�, Foxa2loxP/loxP, insulin
promoter-driven Cre-recombinase (InsCre); Hnf-4�loxP/loxP, Ins-
Cre] (8, 11, 14), compared in each case to littermate controls.
We also included a comparison of INS1-derived cell lines with
robust glucose-stimulated insulin secretion (lines 832/13 and
833/15) vs. INS1-derived cells with weak glucose-stimulated
insulin secretion (lines 832/1 and 832/2) (16, 17). Finally, we
cultured a robustly glucose-responsive INS1-derived cell line
(832/13) in the presence or absence of a 0.5 mM oleate:
palmitate/albumin, using RPMI medium that also contains a
relatively high glucose concentration (11 mM) to simulate con-
ditions encountered in type 2 diabetes. Boucher et al. (18) have
previously demonstrated that culture of 832/13 cells in the pres-
ence of elevated fatty acids and glucose for 48 h causes a
striking impairment in glucose-stimulated insulin secretion.
Replicate RNA samples (three to five per condition) were col-
lected from all of these two state models and used for microar-
ray analysis on PancChip cDNA microarrays (version 4.0 for the
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Foxa2loxP/loxP InsCre study, and version 5.0 for the others) (35).
Over 100 two-channel hybridization assays for the five indepen-
dent paradigms were performed, collecting more than 10 million
data points. All studies, including Minimum Information about a
Microarray Experiment (MIAME)-compliant (www.mged.org)
detailed biomaterial and protocol annotation and raw and pro-
cessed data, have been deposited into the RNA Abundance
Database (RAD) (36) and are available for querying and down-
loading at http://www.cbil.upenn.edu/RAD. Further information
on the PancChip array is available at http://www.cbil.u-
penn.edu/EPConDB/ Chips/pancChip.shtml.

All arrays were scanned using an Agilent DNA Microarray
Scanner Model No. G2565BA (Agilent Technologies, Wil-
mington, DE), and the images were quantified using GenePix
Pro, version 5 (Molecular Devices). Scanning and quantifica-
tion parameters used for each assay are available at the RAD
website described above. The GenePix foreground mean
intensities were used for each spot and each channel. No
background subtraction was performed because these meth-
ods add to data variability and lead to the occurrence of
negative values (37). For each assay performed, Cy3 an-
chors, blanks, yeast and dilution controls, and Stratagene
PCR controls were removed from the analyses (thus, the total
number of spots analyzed was 11,400 for PancChip 4.0 and
13,008 for PancChip 5.0 experiments). For each assay, M
values were computed for each spot considered, where the
M value for two conditions, C1 and C2, is defined as
log2(C1)�log2(C2). The M values were normalized on each
assay with the print-tip loess approach (38) using the imple-
mentation provided by the R (http://cran.r-project.org) mar-
rayNorm package from Bioconductor (http://www.biocon-
ductor.org), with default parameter settings (R version 1.8.1,
marrayNorm version 1.1.6). After normalization, the M values
for each available pair of dye-swaps were combined
[(M1�M2)/2].

For each of the five paradigms described above, differen-
tially expressed transcripts between the conditions of interest
were identified using a combination of approaches. For the
three mouse models of impaired �-cell function, the condi-
tions of interest were mutant vs. littermate controls. For each
model we ranked all spots according to LOD scores (39) and
performed statistical analysis of microarrays [SAM, version
2.0 (http://www-stat.stanford.edu/�tibs/SAM)]. The same
tools were used for the comparison of the robustly vs. poorly
glucose responsive INS1-derived cell lines. Finally, for the
study of lipid-induced impairment of glucose-stimulated in-
sulin secretion, we analyzed a time course of exposure to
oleate/palmitate (0, 12, 24, and 48 h), which required a dif-
ferent computational approach. First, we compared treated
to untreated cells at each time point separately in a pair-wise
(by biological sample) mode. Secondly, we compared all of
the treated vs. all of the control assays using SAM with an
unpaired block design with three blocks, one per time point.

Computational Analysis of Expression Profiles

After analyzing each study individually, the results were com-
bined to generate a master list of candidate targets to be
considered for further validation. This paradigm list was com-
piled using multiple criteria. First, we computed a “top” list
(based on LOD scores) for each study, after removing spots
with PCR failure flags and spots flagged by GenePix in
greater than 40% of the arrays. The number of “top” spots for
each paradigm was established according to a suitable
weight given to each of the five studies and to each of the
comparisons within such studies. The weight of each para-
digm took into account the number of replicates available in
that study and the number of differentially expressed genes
identified by the SAM analyses. The union of these lists
yielded 373 distinct transcripts, which were annotated ac-
cording to their additional lines of evidence for differential
expression coming from the SAM analyses. The complete

paradigm list is available at http://mend.endojournals.org/
(supplemental Table 1).

Gene Silencing in Insulinoma Cells with siRNA
Duplexes

The rat insulinoma line 832/13 was cultured as described
(17). Transfection of siRNA duplexes (Ambion, Austin, TX)
(supplemental Table 2) was performed using the Amaxa
nucleofection system (Amaxa, Gaithersburg, MD) as de-
scribed (42). Briefly, 2 �g of siRNA duplexes was transfected
into 1.5 � 106 832/13 cells using program no. T-27 of the
nucleofector device. After 48 h, cell RNA was extracted for
quantitative RT-PCR analysis. Primers used for analysis of
gene expression are available upon request.

Construction of an Adenoviral Vector Producing a
shRNA against Hadhsc

Two shRNA adenoviruses were constructed to target rat
Hadhsc and mouse Hadhsc mRNAs. The 5� end of the target
corresponds to rat Hadhsc (accession no. NM_057186) nucle-
otides 840–858 (AGT TCA TCT TAG ACG GGT G) and mouse
Hadhsc (accession no. NM_008212) nucleotides 401–419 (GAA
CGA GCT GTT CCA GAG G). Ad-GFP and Ad-siScramble (GAG
ACC CTA TCC GTG ATT A) were used as controls (23). Sense
and antisense oligonucleotides were designed and synthesized
as described (40). Oligonucleotides were annealed in STE buffer
(10 mmol/liter Tris, 1 mmol/liter EDTA, 50 mmol/liter NaCl, pH
8.0) and ligated into BglII and HindIII-linearized pSUPER (Oligo-
Engine, Seattle, WA). The shRNA expression cassette was ex-
cised from the pSUPER-based plasmid using EcoRI-HindIII and
ligated into EcoRI-HindIII linearized adenoviral shuttle vector
EH006 (23). Adenoviruses were created by homologous recom-
bination as previously described (23). Titers of tertiary viral ly-
sates were 2.0 � 108 � 1.7 � 1012 pfu/ml. For adenoviral
transduction, cells were cultured in six-well plates at 60,000
cells/cm2 and the following day transduced with Ad-siHadhsc
or Ad-siScramble at a viral dose of 100 pfu per cell for 24 h. Virus
was removed, fresh medium was added, and cells were cul-
tured for an additional 24 h. Hadhsc transcript levels were
assayed by real-time PCR analysis with the following primers:
(5�-CGTGCCTGGGAACATTTGTA-3� and 5�-AAGATGG-
GCCAAGAACCAAG-3�).

Glucose-Stimulated Insulin Secretion in Insulinoma
Cells

Insulin secretion was assayed in HEPES balanced salt solu-
tion (HBSS) (114 mmol/liter NaCl, 4.7 mmol/liter KCl, 1.2
mmol/liter KH2PO4, 1.16 mmol/liter MgSO4, 20 mmol/liter
HEPES, 2.5 mmol/liter CaCl2, 25.5 mmol/liter NaHCO3, and
0.2% BSA, pH 7.2). Cells were washed in 1 ml HBSS with 3
mmol/liter glucose followed by a 2-hr preincubation in 2 ml of
the same buffer. Insulin secretion was then measured by
static incubation for a 2-h period in 1 ml HBSS containing
various glucose concentrations. For studies of KATP channel-
independent insulin secretion, assays were performed in the
presence of 250 �M diazoxide. Insulin levels were determined
by ELISA using Crystal Chem Ultra Sensitive Rat Insulin
ELISA Kit (Crystal Chem Inc., Downers Grove, IL).

Gene Silencing in Mouse Islets of Langerhans

Under a protocol approved by the University of Pennsylvania
Institutional Animal Care and Use Committee (IACUC), pan-
creatic islets of Langerhans were isolated from 6-wk-old
female CD1 mice using standard collagenase digestion fol-
lowed by purification through a Ficoll gradient (41). RPMI
culture medium was supplemented with penicillin, strepto-
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mycin, 10% fetal bovine serum, and 8 mM glucose. Islets in
aliquots of 150 per well of a 12-well plate in 800 �l medium
were transduced with Ad-siHadhsc or Ad-siScramble for 24 h
at a dose of 2.6 � 106 pfu per islet. After transduction, islets
were cultured for 4 d before measurement of Hadhsc tran-
script levels as described above with the following primers
(5�-AATGCCACCACCAGACAAGA and 5�-CGGTGTTTTG-
ATGACCTCCA).

Glucose-Stimulated Insulin Secretion in Mouse Islets

Four days after viral treatment, glucose-stimulated insulin
secretion was assessed. Insulin secretion was assayed in
HBSS (114 mmol/liter NaCl, 4.7 mmol/liter KCl, 1.2 mmol/liter
KH2PO4, 1.16 mmol/liter MgSO4, 20 mmol/liter HEPES, 2.5
mmol/liter CaCl2, 25.5 mmol/liter NaHCO3, and 1% BSA, pH
7.4). Islets were pre-incubated for 1 h in 1 ml HBSS with 2.8
mmol/liter glucose. Insulin secretion was then measured by
static incubation for a 2-h period in 0.5 ml HBSS containing
various glucose concentrations. Insulin levels were deter-
mined by ELISA.
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