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Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol
polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand
binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes
trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report
two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant.
One of the flaps in each of these structures exhibits an unusual “intermediate” conformation. Analysis of the
flap-intermediate and flap-closed crystal structures reveals that the intermonomer flap movements may be
asynchronous and that the flap which wraps over the P3 to P1 (P3-P1) residues of the substrate might close
first. This is consistent with our hypothesis that the P3-P1 region is crucial for substrate recognition. The
intermediate conformation is conserved in both the wild-type and drug-resistant variants. The structural
differences between the variants are evident only when the flaps are closed. Thus, a plausible structural model
for the adaptability of HIV-1 protease to recognize substrates in the presence of drug-resistant mutations has

been proposed.

Maturation of human immunodeficiency virus type 1
(HIV-1) is achieved by the proteolytic processing of Gag and
Gag-Pol sites at at least 10 nonhomologous substrate sites by a
viral protease (4, 14, 36). This processing leads to the release of
viral enzymes and structural proteins. In the absence of this
proteolysis, immature noninfectious virions are produced (7).
For this reason, HIV-1 protease is a prime target for antiviral
therapy (48, 54).

The three-dimensional structure of this 22-kDa dimeric pro-
tease comprises a terminal region, an active site, and a core
domain (29, 53). The active site residues are located at the
dimer interface, with one catalytic aspartate (Asp25/25') do-
nated by each monomer (53, 54). The substrates bind the active
site in an extended conformation forming mainly backbone
hydrogen bonds (39, 51). On the opposite side of Asp25, two
B-hairpins, known as the flaps, one from each monomer, wrap
around the substrates. In addition to its interactions with the
substrates, the flap tips (Ile50-Gly51) also participate in inter-
molecular interactions. As a common feature of aspartyl pro-
teases for ligand binding to occur, several structural rearrange-
ments must take place (13, 15, 24, 28, 45). The flaps open to
allow substrate binding, and upon substrate recognition, they
must close to attain the canonical “closed” conformation of
HIV-1 protease. Whether the flap movements are synchro-
nized between the monomers, as HIV-1 protease is ho-
modimeric, or whether they move in an asynchronous fashion,
as found in molecular dynamics simulations (22, 37, 45), is still
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to be verified structurally. The opening and the closing of the
flaps are not likely random events but involve a few or several
discrete structural intermediates. Nuclear magnetic resonance
(NMR) experiments proposed that an ensemble of flap con-
formations are possible between open and closed stages of the
flaps (12, 16). Whether other regions of the protease also move
in concert with the flaps is not known. However, trapping any
of these intermediates in a crystal is a challenge.

Our crystallographic investigations of wild-type (WT) and
drug-resistant variants of HIV-1 protease complexed with sev-
eral of its substrates have revealed a conserved shape we de-
fined as the “substrate envelope,” which we hypothesize is
crucial for substrate specificity (39-42). Further studies pro-
vided structural insights into why a prime drug-resistant mutation,
V82A (5, 8, 10, 31, 46), has less effect on substrate binding than on
inhibitor binding as Val82 interacts more closely with the drugs
than with natural substrates (41). The nucleocapsid-pl (NC-p1)
substrate, however, coevolves (AlaP2Val) in a correlated manner
with the V82A mutation (3, 6, 9, 23, 56). Processing of the NC-p1
substrate is the slowest and rate-determining cleavage step in the
maturation of Gag (38, 50, 55). Unlike in other substrate-V82A
protease complexes, PheP1’ forms hydrophobic interactions with
Val82, which are lost in the V82A complex (40). The AlaP2 in
WT NC-pl does not fill the S2 pocket, which is then compensated
for by the ValP2 in the AP2V mutant (40). Thus, the AP2V
coevolution in NC-p1 is structurally correlated by an interdepen-
dency between the P1’ and P2 substrate sites.

Here we report two new crystal structures of inactive D25N
variants of HIV-1 protease bound to two variants of peptides
corresponding to the NC-pl cleavage site. Unlike the com-
plexes of NC-p1 which were used to explain the coevolution of
this substrate (40), these new structures exhibit a novel flap

8002 ‘v 1snbny uo HOS @3N SSYIN 40 AINN e Bio°wse’IAl wouy pspeojumoq


http://jvi.asm.org

3608 PRABU-JEYABALAN ET AL. J. VIROL.
TABLE 1. Crystallographic statistics of the two flap-intermediate NC-p1 complexes
Structure®
Parameter
WINCPlwr-1ne (W"™NCplwr) APZYNCPLygon-ine (*"*YNCplysoa)
Substrate sequence RQAN*FLGKIN (ERQAN*FLGKI) RQVN*FLGKIN (RQVN*FLGKIN)
Data collection
Resolution (A) 1.85 (2.1) 1.44 (2.0)
Space_group P2,2,2, (P2,2,2)) P2,2,2, (P2,2,2))
a(A) 51.0 (51.1) 51.1 (50.8)
b (A) 57.4 (57.7) 57.6 (57.3)
c(A) 61.3 (61.5) 61.6 (60.9)
VA 4 4) 4 4)
Total no. of reflections 51,411 (38,149) 274,555 (80,252)
No. of unique reflections 14,812 (10,450) 33,155 (12,492)
Rierge (%) 5.6 9.2) 4.7 (7.5)
Completeness (%) 92.7 (94.1) 100 (99.7)
1o, 8.5 (4.5) 10.4 (9.0)
Crystallographic refinement
R value (%) 19.5 (20.6) 18.7 (19.5)
Ry (%) 243 (23.3) 21.4 (23.1)
Sigma cutoff None (None) None (None)
RMSD in: .
Bond lengths (A) 0.005 (0.004) 0.007 (0.005)
Bond angles (°) 1.0 (1.5) 1.3 (1.3)
PDB code 1FNS (1TSU) 1FENT (1TSQ)

“ Statistics for the corresponding previously determined flap-closed complexes (40) are presented within parentheses.

conformation: One of the flaps remains in the canonical “flap-
closed” geometry, while the other flap exhibits an unusual
intermediate conformation. This is the first instance in which
an asymmetric conformation of the flap is observed in HIV-1
protease. Detailed structural analyses provide a plausible
structural model for how drug-resistant mutants continue to
recognize substrates.

MATERIALS AND METHODS

Peptide acquisition. Two decameric peptides representing the P4-to-P6’ (P4-
P6) region of the WT and AP2V variants of NC-p1 were purchased from 21st
Century Biochemicals, Marlboro, Mass. (see Table 1 for sequence).

Nomenclature. To avoid confusion, the various crystal structures discussed
here will use the following nomenclature: PS¢ Variansybstrate ,roease variant)-
For instance, WT D25N protease bound to WT NC-p1 with flaps in canonical
and flap-intermediate conformations will be denoted by WTNCplyy and
WINCp1wr.ine» TESpectively.

Protein purification and crystallization. Mutagenesis, protein purification,
and crystallization screens were carried out exactly as performed earlier (40).

Data collection. Data for WTNCplyr.p, were collected at the in-house
Raxis IV image plate mounted on a Rigaku X-ray generator, and data for
AP2VNCplygoa.ne Were obtained from a synchrotron beam line at Advanced
Light Source (ALS), Lawrence-Berkeley Laboratory, Berkeley, Calif. The WT
and AP2V complexes diffracted to respective resolutions of 1.85 and 1.44 A. Raw
data were indexed using Denzo and scaled using ScalePack (30, 35), and the
complete data collection statistics are listed in Table 1.

Structure solution and crystallographic refinement. The programs within the
CCP4i interface (4a) were used throughout the crystallographic operations. The
molecular replacement program AMoRe (34) was used to solve the structures
using those reflections within the resolution range 12 to 3.5 A. A WT HIV-1
protease complexed with the inhibitor TMC114 (Protein Data Bank [PDB] code

1T3R) (19) was used as the starting model. The phases were improved by
building solvent molecules using ARP/WARP (32), and interactive model build-
ing was carried out using the graphics program O (17). Clear electron density for
a different conformation was observed for the flap which interacts with the
P1'-P6’ side of the substrate (Ile47'-Ile54"). Conjugate gradient refinement using
Refmac5 (33) was performed by incorporating Schomaker and Trueblood tensor
formulation of TLS (translation, libration, and screw rotation) parameters (21,
44b, 49). The interactive model building and crystallographic refinement were
carried out iteratively until R and Ry, converged. The final refinement statistics
are presented in Table 1. The crystal coordinates have been deposited in the
Protein Data Bank, and their accession codes are also listed in Table 1.
Structure analysis. (i) Structural superimpositions. All of the complexes used
in this analysis were superimposed on the WT D25N complex of capsid-p2
peptide (PDB code 1F7A) (39). CA-p2yw was chosen in order to preserve
consistency with all of our previous analyses. The terminal region (Pro1-Pro9 and
Arg87-Phe99) from both monomers was used in this operation, and the super-
imposition was carried out such that the peptide orientation was preserved.
(ii)Double-difference plots. Distances between all the C, atoms within each
dimer were computed ("D;;, where D is the double difference and i and j are
residue numbers). This was repeated for each of the “n” structures. Double
differences (D) were generated as a (i X j) matrix by computing the difference of
the differences between the two dimers (D = "D;; — "'D;). The (i X j) matrix was

if
then displayed as a contour diagram using GnuPlot (52).

RESULTS

Overall structure of protease. Crystal structures of WT and
V82A variants of an inactive D25N HIV-1 protease enzyme
were determined by cocrystallizing them with WT and AP2V
variants of NC-pl substrate peptide, respectively. The corre-
sponding resolutions are 1.85 and 1.44 A. The three-dimen-
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YINCp1

WTint

"INCPyy

FIG. 1. (a and b) Crystal structures of WTNCplyr.n and VI'NCply (40). Monomers are distinguished in cyan and magenta, while the
substrate is shown in green. This color scheme will be followed in most of the subsequent figures. (c) Stick representation of the flaps illustrating
the conservation of direction of the Ile50 C = O group in the flap-intermediate arrangement. (d) Flap closure leads to the breakdown of dyad
symmetry between the Ile50 C = O groups facilitating a conserved Ile50 N...O Gly51’ hydrogen bond. The direction of the C = O group is
indicated by arrows. This figure and Fig. 3a and b and 5a and b were generated using Molscript (20).

sional arrangements of the terminal region forming the dimer
interface, the active site region, and the core region, which is
an extension of the active site, are all preserved as in other
HIV-1 protease structures. The flap of the monomer which
interacts with the P1’-P6’ side of the substrate (monomer B)
exhibits a different geometry with the tip of the flap displaced
by 4 A. The flap of the monomer which interacts with the
N-terminal side of the substrate (monomer A), on the other
hand, adopts the usual flap geometry (Fig. 1). Other structures
with semiopen flap conformation are symmetric (25, 44, 47);
therefore, the two NC-pl flap-intermediate structures repre-
sent a novel flap arrangement.

The method used to obtain the crystals of these flap-inter-
mediate complexes is almost identical to the one followed in
determining the corresponding flap-closed structures (40); in
fact, the crystals were formed in the same crystallization tray.
This conformation must represent an energetically stable form
of the enzyme that can nucleate crystals similarly to the closed
conformation. The exact reasons for this are unknown. Per-
haps because NC-pl is a poorer substrate (38, 50, 55), the
binding of it is less strong, thus allowing for the possibility of
more flap conformations to be accessed.

The root mean square deviations (RMSDs) for structural
superposition were computed for all of the C, atoms. The
RMSD between WINCply . in and *P2YNCplygoa e is 0.22
A, and the RMSD for WTNCplyr and “P2YNCply g4 is 0.53
A. Thus, the structural agreement between the flap-interme-
diate complexes is better than it is between the flap-closed
structures. The structural differences between the two flap-
intermediate complexes were visualized by generating dou-
ble-difference plots (Fig. 2a). Absence of significant peaks in

the plot indicates that the structures of the two flap-inter-
mediate complexes are similar. However, the WTNCply
and *"?YNCplyg,, complexes exhibit several relative shifts
over 0.5A (Fig. 2b). A comparison between WTNCp1y .1, and
WINCplyr also revealed several differences (Fig. 2c), with the
flap of monomer B exhibiting the largest difference. The peaks
(marked Al and A2 in Fig. 2c¢) indicate the structural changes by
the P1 loop (Gly78-Asn83) which pack closer to each other in the
WTINCplyrpy Structure than in the corresponding final struc-
tures. The distance between the C_ atoms of Pro81 and Pro81’
is 1 A shorter in WTNCplyr o than in WINCply (Fig. 2¢),
which is also the case in comparing “P?YNCplygsa e and
APZVNCply g4 (Fig. 2¢). The peaks (marked B1 and B2 in Fig.
2¢) indicate a shortening of distance between the closed flap
(of monomer A) and the P1 loops in WNCplyn (peaks
marked B1 and B2 in Fig. 2c). Thus, the P1 loops are closest
to AsnP1 and PheP1’ prior to complete closure of the flaps.
As the flaps engage the substrates, the P1 loops relax open
and move to their final position. The movements of P1 loops
may hence be anticorrelated such that they contact the P1
and P1’ residues of the substrate and relax open as the flaps
close down.

Crystal packing. Crystals for all four NC-p1 complexes grew
in a P2,2,2, space group with similar unit cells (Table 1) and
with one HIV-1 protease dimer in each asymmetric unit. The
region around the flaps is not influenced by crystal packing in
any of the complexes (Fig. 3). In fact, the residues in symmetry-
related molecules, within 5A of the flaps, do not change con-
formation between the complexes (Fig. 3c). There is enough
space within the crystal lattice for either of the flaps to open.
However, only the flap of monomer B adopts a flap-interme-
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FIG. 2. Double-difference plots for (a) W'NCply.qm versus “P2YNCplygoane (b) VINCplyr versus AP2YNCplygoa, (€) VINCPlywr.ine
versus WTNCplyr, and (d) AP?YNCplygoa_ine versus *F2YNCplyg, . Panels were generated using GnuPlot (52). (e) Structural superposition of the
P1 loops and the flaps for the four NC-p1 complexes: The movements of P1 loops are inversely correlated with respect to the flap movements as
illustrated by the arrows. The color coding is as follows: red, W TNCply; green, VINCplyring; orange, “F2YNCplygaa; cyan, 2F2YNCplygoa ine-
This panel and Fig. 3c, 4, and 5c and d were generated using MidasPlus (11).

diate conformation. These observations imply the following: Flap conformation. Both of these complexes exhibit unam-
the flap-intermediate geometry is not a crystallographic arti- biguous electron density for the intermediate flap conforma-
fact; the flap interacting with P3-P1 residues may engage first; tion (Fig. 3d). A comparison of the backbone (¢, ¢) angles
and the change in flap geometry could indeed be a discrete with corresponding NC-pl complexes exhibiting flap-closed
structural intermediate during substrate binding. arrangements reveals that the flap region of monomer B, en-
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FIG. 3. Crystal packing diagrams of (a) W"NCplyr.pn and (b) W'NCply with the first and second symmetry operators of P2,2,2,. The third
symmetry is omitted as it does not form crystal contacts with the flaps. The boxed region with the arrow highlights the flap region, expanded in panel c.
The color scheme is the same as Fig. 1, with the symmetry molecules in blue and the substrates in green. (c) Superimposed stereo diagram of the crystal
packing of the flap region in Y "NCplyr.q,, (shown in cyan, magenta, blue, and purple) and “V"NCply,r (shown in white and gray). The displacement
of the flap of monomer B in WNCplyr.p, is indicated by an arrow. (d) 2Fo-Fc electron density for the flaps and its surrounding region. The map was
generated at a 1o contour level, and for clarity, symmetry operator 2 has been omitted. The figure was generated using CHAIN (44a).

compassing Met46'-1le54’, confers a sharp alteration in con- asymmetry between the flaps within the dimer; however, the
formation (Ile47’, A ~12° and Ay ~20°; Gly48', Ad ~60° and carbonyl oxygens of Ile50 point toward each other in both
Ay ~140°% Phe53’, Ap ~25° and Ay ~180°; Ile54’, Ab ~40° monomers (Y5, ~50° and ¢5," ~50°) (Fig. 1c). In the flap-
and Ay ~20°) (Fig. la and c). Thus, there is a structural closed structure, the carbonyl oxygens of Ile50 and Ile50" are
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GlyP GlyP3
Y LeuP2’ y

PheP1

AsnP1

(GInP3) (GInP3)

FIG. 4. Stereo diagram of superposition of substrate peptides from
the four NC-p1 complexes. The substrate residues modeled as alanines
due to lack of electron density are labeled within parentheses. See Fig.
2e for the color scheme.

asymmetric ({is, ~50° and ¢5," ~138°) (Fig. 1d), thereby fa-
cilitating a highly conserved intermolecular hydrogen bonding
pattern Ile50 O. . .N Gly51’ (or Ile50’ O. . .N Gly51) (Fig. 1d).
The carbonyl oxygens pointing to each other in the flap-inter-
mediate complex are the same as with the flap tip geometry
observed in ligand-free flap-open structures (47), implying that
the (&, ¥) angles of the flap tips may be conserved between the
monomers until complete flap closure is achieved.

Peptide conformation. The three-dimensional structure of the
substrate peptides from both the flap-intermediate complexes is
similar to the substrate structures in the flap-closed counterparts
(Fig. 4). The substrates superimpose with RMSDs of 0.7 and 0.4

J. VIROL.

A for the entire backbone and a-carbons, respectively. The only
significant difference is the variability in orientation of the car-
bonyl oxygen of AsnP1 ([AYp]max = 92% [Adp; Tmax = 70°). As
observed in the flap-closed NC-p1 complexes, however, the side
chains of GInP3 and ArgP4 are disordered. The peptide bond
between AsnP1-PheP1’ in “P2YNCplygoa 1o €xhibits multiple
conformations. Nevertheless, large structural alterations in the
protease flap have not led to major changes in the peptide geom-
etry, suggesting that the positioning of the substrates in a cleav-
able geometry may precede complete flap closure.
Substrate-protease hydrogen bonds. The substrate-protease
hydrogen bonds are shown in Table 2. There are 11 substrate-
protease hydrogen bonds in WTNCply.i, and there are 13
and 15 substrate-protease hydrogen bonds for the two sub-
strate peptide conformations in “**YNCplygo_n- In both of
the complexes, AsnP1 ND2 makes a hydrogen bond to Gly27
O (Fig. 5a). This hydrogen bond, which is also found in
APZVNCplygaa (Fig. 5b), is a unique interaction of the NC-p1
substrate in which the side chain of a P1 residue forms a direct
hydrogen bond. The flap residue Gly48 forms backbone hy-
drogen bonds with the P4-P1 side of the substrate, while Gly48’
does not form hydrogen bonds with the P1’-P6’ side due to the
flap movement (Fig. 5a). Despite flap movement, however, the
P1’-P6’ side forms conserved hydrogen bonds with Gly27" O
and Asp29’ N. The substrate-protease hydrogen bonds in the
flap-intermediate complexes were compared with those in the
corresponding flap-closed complexes (Fig. 5b). Ten hydrogen
bonds are conserved between W NCply, - and “F2YNCplygoa,
which include the 4 formed by the flap residue Gly48/Gly48’
(Table 2). Of these 10 conserved hydrogen bonds, 7 and 8 are

TABLE 2. Substrate-protease hydrogen bonds*

Substrate Protease

Bonding result for:”

WINCPlwr-ne WINCplyr APZYNCplyson-ine AP2YNCplygoa

P4 N Asp29 OD2 2.9
P4 N Asp30 OD2 3.3 2.9
P4 0O Asp30 OD2 3.0
P4 O Gly48 N 3.2 2.7 3.0
P3N Asp29 OD2 3.0 3.5 3.2 33
P3O Asp29 N 29 3.6 3.0 2.8
P2 N Gly48 O 2.9 3.2 2.8 2.8
P1N Gly27 O 3.2 3.2 3.2@3.1) 2.8
P1 ND2 Gly27 O 34 3.3 3.5
P1 O Asn25’ ND2 (3.1)
P10 Asn25 OD1 (3.1)
P1 O Asn25 ND2 (3.2)
P10 Asn25’ OD1 3.3)
P10 Asn25’ ND2 33 3.2 2.8 2.5
P2’ N Gly27' O 3.1 3.2 3.0 3.1 2.9
P2’ O Asp29’ N 3.0 3.1 3.0 (3.0) 2.9
P3’' N Gly48' O 3.1 2.8
P3' O Gly48' N 3.1 2.8
P3’ O Arg8 NH2 34
P3" O Asp29’ OD2 32

33

3.5
P4’ N Asp29’ OD2 3.6 3.0

“ Donor-acceptor distances within 3.6 A were treated as hydrogen bonds if the angles of N-H...O and C-O...0 interactions were greater than 120° and greater than

90°, respectively.

® Hydrogen bonding distances for a second conformation of the peptide in “P>YNCplygoa.1n are presented within parentheses. Hydrogen bonds conserved in all

substrate-protease complexes (42) are highlighted in bold.
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(b)

Mag"

M46

APZVNCP1V82A

FIG. 5. Illustration of the substrate-protease hydrogen bonds in (a) “*2YNCplygsa.in and (b) “F2YNCplysg, 4. Monomers are distinguished in
cyan and magenta, while the substrate is shown in green. Oxygens and nitrogens are illustrated as red and blue balls, respectively, and water
molecules are shown as orange hard spheres. Hydrogen bonds and water bridges are shown by dotted lines. The VDW interaction between Ala82
and the substrates in panels ¢ (“**YNCplygoa1m) and d (*F2YNCplys,,) is illustrated as viewed down the molecular dyad axis. The protease and
substrate models are shown in gray and black, respectively. VDW surfaces are shown for the side chain atoms of Ala82, AsnP1, and PheP1'.

present in WINCplyrm and “F2YNCplygon e Tespectively,
with comparable hydrogen bonding distances. Barring hydrogen
bonds by Gly48', the alteration in flap geometry has less influence
on substrate-protease hydrogen bonds.

Water-mediated substrate-protease bridges. The active site
waters which are conserved among other HIV-1 protease-sub-
strate complexes (2, 26, 46) are also present in the NC-pl
flap-intermediate complexes (labeled W1 to W5 in Fig. 5a and
b). The water site W1, which coordinates I1e50/50" N and P2 O
and P1’ O in a tetrahedral geometry in most flap-closed struc-
tures, is also observed in the flap-intermediate structures, de-
spite changes in the flap conformation. This water is stabilized
by another water, W7, which mimics the position of 1le50" N in
the flap-intermediate conformation and bridges W1 with the
new Ile50" N, thereby preserving the geometry (Fig. 5a). Two
waters, W6 and W8, have unique geometries in all of the
NC-pl complexes. W6 bridges AsnP1 ND2 with Gly27 O, while
W8 mediates GlyP3’ O to Gly48' N in the flap-intermediate
complexes and P4’ O to Gly48' N in the flap-closed complexes.
Thus, the water bridging network between the flap-intermedi-

ate and the flap-closed structures, for the most part, is also
preserved.

van der Waals interactions. The side chain to side chain van
der Waals (VDW) contacts between the substrate peptide and
protease for all four NC-pl complexes are summarized in
Table 3. In both WT complexes, AlaP2, the AP2V substrate
mutation site, makes a lone VDW interaction. The valine mu-
tation in the V82A-AP2V complexes enables ValP2 to form
five and nine contacts, all hydrophobic, in “**YNCplyga.int
and “P2YNCplyg, 4, respectively. The major contributor to the
loss of four VDW contacts in “F2YNCplygoa i is the alter-
ation of the flap in monomer B, suggesting complete flap
closure will stabilize the P2 residue. In the flap-intermediate
complexes, the residues involved in VDW interactions with
LeuP2’, Ala28’ and Val32’, are conserved; however, upon flap
closure, Ile50 and Ile47’ also contact LeuP2’ (Table 3). The
structures of GlyP3’ and its VDW contacts (with Arg8 and
Asp29") are highly conserved among the four NC-p1 complexes.

The numbers of VDW contacts made by AsnP1 are similar
between the two flap-intermediate structures, while they are
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TABLE 3. Summary of side-chain-related substrate-protease van der Waals interactions”
Result for
Type of side chain contact
WTNCP1WT—Im WTNCple APZVNcplvszArlm APZVNCP1V82A
(ArgP4)”
Protease residues 147, D30 D29, D30 D29, D30
Total contacts 4 2 2
Hydrophobic contacts 0 3 0 0
(GInP3)”
Protease residues D29, R8’ D29, R8’ D29, RS’
Total contacts 2 2 2
Hydrophobic contacts 0 0 0 0
AlaP2/ValP2
Protease residues A28 A28 A28, V32 A28, V32, 147
147 184, 150’
Total contacts 1 1 5 9
Hydrophobic contacts 1 1 5 9
AspP1
Protease residues 1.23, G49, N25' 123, N25' L23, G49, N25' 123, G49, N25'
P81’, V82', 184’ P81’, V82', 184’ P81’, 184’ P81, 184’
Total contacts 10 11 9 7
Hydrophobic contacts 3 3 2 1
Contacts by P1 loop 7 9 6 4
PheP1’
Protease residues N25, P81, V82 R8, N25, P81 N25, P81, A82 N25, P81, 184
184, L.23', G27' V82,184, L.23' 184, L.23’ L23', G49’
Total contacts 15 13 11 9
Hydrophobic contacts 13 10 10 8
Contacts by P1 loop 10 8 8 5
Contacts by Val82/Ala82 5 5 4 0
LeuP2’
Protease residues A28', D30', V32’ 150, A28', V32’ A28', V32’ 150, A28', V32’
147, 184’ 147
Total contacts 6 9 4 9
Hydrophobic contacts 5 9 4 9
GlyP3’
Protease residues RS, D29’ RS, D29’ R8, D29’ RS, D29’
Total contacts 3 3 3 2
Hydrophobic contacts 1 1 1 0

“ A distance criterion of 4.2 A was used to compute the VDW contacts.
> Modeled as alanines due to lack of electron density.

significantly different between the two flap-closed complexes
(Table 3). Presumably, the V82A mutation is responsible for
most of the loss in VDW contacts in “F2YNCply g, (total
contacts, 7; 4 by the P1 loop) compared to WTNCply (total
contacts, 11; 7 by the P1 loop). However, in “F*?YNCplygsaines
the P1 loop shifts toward the center of the dimer packing
against AsnP1 (total contacts, nine; six by the P1 loop), regain-
ing some additional VDW interactions.

The most significant changes in VDW interactions are ex-
hibited by PheP1’. In both WT complexes, Val82 forms five
VDW interactions which are lost in “F?YNCp1lyg4,, due to the
V82A mutation. In “P2YNCplygoain however, Ala82 CB
participates in four VDW interactions (Table 3 and Fig. 5c¢). As
in “P?YNCplygoa e the P1 loop forms more contacts with
PheP1’ in W'NCplyypqn (10 contacts) than in WTNCply,r (8
contacts). The participation of Ala82 in substrate-protease
VDW interaction prior to complete flap closure suggests two
interrelated scenarios. (i) Residue 82 forms VDW contacts

with the substrate prior to flap closure regardless of amino acid
type (Fig. 5c). (ii) Upon flap closure, residue 82, a member of
the P1 loop, moves away from the active site (Fig. 5d), thus
altering substrate-protease VDW interactions.

DISCUSSION

The results of the two flap-intermediate NC-p1 complexes
emphasize two aspects of substrate recognition by HIV-1 pro-
tease. (i) The flap interacting with the P4-P1 side of the sub-
strate closes first, thereby reiterating our hypothesis that P3-P1
residues are crucial for substrate recognition. (ii) The P1 loops
move toward the P1 and P1’ residues of the substrates prior to
flap closure, and upon flap closure the P1 loops relax open
toward their final position. In addition, the flap-intermediate
structures presented here are very similar in structure (Fig. 2a),
suggesting that these structures are not a random conforma-
tion but represent a highly conserved discrete structural inter-
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mediate. This is consistent with results obtained from NMR
studies (12, 16), and therefore a discrete structural intermedi-
ate in substrate recognition by HIV-1 protease has been
trapped.

Both of the flaps in the dimer could potentially assume an
intermediate geometry within this crystal form; however, only
the flap interacting with the P4-P1 side of the substrate adopts
a closed conformation, implying that the P3-P1 region of the
substrate may be crucial for specificity (1, 27, 42). The crystal
structure of HIV-1 protease product complex retains only the
P5-P1 side (Ac-Ser-Leu-Asn-Phe/) of the substrate Ac-Ser-
Leu-Asn-Phe*Phe-Leu-Glu-Lys (PDB code 1YTH) (43). This
product complex further supports our claim that the P3-P1 side
of the substrate is bound more stably.

The analysis of VDW interactions elucidates the intricate
involvement of P1 loop in substrate binding prior to and after
flap closure in substrate recognition. While the flaps are in
transition, the P1 loops act as guides by supplying the necessary
packing interaction to the substrate, especially to P1 and P1'.
Ala82 contacts PheP1’ in the flap-intermediate conformation
(Fig. 5c), while in the flap-closed structures, it moves away,
resulting in loss of VDW contacts (Fig. 5d), which implies that
during initial stages of substrate recognition, the P1 and P1’
sites make more VDW contacts than when the flaps are en-
gaged. The P2 and P2’ residues, however, require complete
flap closure for optimal binding. This is consistent with why
coevolution should take place at the P2 site in the NC-pl
substrate in response to the V82A protease mutation.

The inward movement of the P1 loop when the flaps adopt
an intermediate conformation could be general for all WT and
V82A variants of HIV-1 protease. We have also observed this
flap-intermediate conformation in the crystal structure of a
multidrug-resistant HIV protease variant (L10I/G48V/I54V/
L63P/V82A) complexed with nelfinavir (NFV) (unpublished
data). This NFV complex also crystallized in the same space
group as the NC-pl structures with similar unit cell dimen-
sions. The conformation of the flaps and the P1 loops of this
NFV complex is the same as that of the NC-p1 flap-interme-
diate structures. More importantly, the positioning of the in-
hibitor NFV tilts by ~15° about the molecular dyad compared
to NFV in the wild-type complex, presumably in a nonoptimal
conformation (18). In contrast, the substrates in the flap-inter-
mediate complexes form a stable geometry which is ready for
cleavage even in the intermediate state (Fig. 4).

In light of the data presented, we postulate a structural
mechanism for substrate recognition that occurs regardless of
the presence or absence of drug-resistant mutations. Prior to
flap closure, the substrate is already bound in an extended
form and the substrate-protease VDW interactions are pre-
served in both the WT and drug-resistant protease variants.
When the flaps close, the mutation sites move to their final
positions, thereby impacting the efficient binding of inhibi-
tors but not the binding of substrates. These flap-interme-
diate structures thus open a new dimension into the molec-
ular knowledge of the adaptability of drug-resistant protease
mutants.
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