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Regulation of ct6B1 Integrin Laminin Receptor Function 
by the Cytoplasmic Domain of the ct6 Subunit 
Leslie M. Shaw and Arthur M. Mercurio 
Program in Cell and Developmental Biology and Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02115 

Abstract. The tx6~l integrin is expressed on the mac- 
rophage surface in an inactive state and requires cellu- 
lar activation with PMA or cytokines to function as a 
laminin receptor (Shaw, L. M., J. M. Messier, and 
A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). 
In the present study, the role of the ix6 subunit cyto- 
plasmic domain in ot6/51 integrin activation was exam- 
ined. The use of P388D1 cells, an ct6-integrin deficient 
macrophage cell line, facilitated this analysis because 
expression of either the ot6A or ot6B subunit cDNAs 
restores their activation responsive laminin adhesion 
(Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. 
Biol. Chem. 268:11401-11408). A truncated cz6 cDNA, 
ot6-ACYT, was constructed in which the human cyto- 
plasmic domain sequence was deleted after the 
GFFKR pentapeptide. Expression of this cDNA in 
P388D1 cells resulted in the surface expression of a 
chimeric o~6-ACYT/31 integrin that was unable to 
mediate laminin adhesion or increase this adhesion in 
response to PMA under normal conditions, i.e., in 
medium that contained physiological concentrations of 
Ca ++ and Mg ++. The a6A-ACYT transfectants adhered 
to laminin, however, when Ca÷+/Mg ÷÷ was replaced 
with 150 #M Mn ÷÷. We also assessed the role of 

serine phosphorylation in the regulation of o~6A~l 
integrin function by site-directed mutagenesis of the 
two serine residues present in the ot6A cytoplasmic 
domain because this domain is phosphorylated on ser- 
ine residues in response to stimuli that activate the 
laminin receptor function of ot6A/~l. Point mutations 
were introduced in the ot6A cDNA that changed either 
serine residue #1064 (M1) or serine residue #1071 
(M2) to alanine residues. In addition, a double mutant 
(M3) was constructed in which both serine residues 
were changed to alanine residues. P388D1 transfectants 
which expressed these serine mutations adhered to 
laminin in response to PMA to the same extent as 
cells transfected with wild-type ot6A cDNA. These 
findings provide evidence for a novel mode of integrin 
regulation that is distinct from that reported for other 
regulated integrins (O'Toole, T. E., D. Mandelman, J. 
Forsyth, S. J. Shattil, E. E Plow, and M. H. Gins- 
berg. 1991. Science (Wash. DC). 254:845-847. Hibbs, 
M. L., H. Xu, S. A. Stacker, and T. A. Springer. 
1991. Science (Wash. DC). 251:1611-1613), and they 
demonstrate that serine phosphorylation of the ot6A 
cytoplasmic domain is not involved in this regulation. 

T 
HE rapid activation of integrin function by signal 
transduction pathways constitutes an important reg- 
ulatory mechanism for cell-cell and cell-matrix inter- 

actions (for review see Ginsberg et al., 1992; Hynes, 1992). 
This hypothesis is substantiated by the finding that several 
integrins are expressed on the cell surface in an inactive state 
and require cellular activation with a variety of agonists to 
acquire the capability to mediate adhesion to their appropri- 
ate ligands (e.g., Duet al., 1991; Dustin and Springer, 1991; 
Shaw et al., 1990). This process has been termed "inside- 
out" integrin signaling, and the integrins that are the targets 
of signaling pathways are often referred to as "activation- 
dependent" integrins (Ginsberg et al., 1992; Hynes, 1992). 

Address all correspondence to Arthur M. Mercurio, Laboratory of Cancer 
Biology, Deaconess Hospital, Harvard Medical School, 50 Binney Street, 
Boston, MA 02115. 

Examples of such activation-dependent integrins include the 
leukocyte specific/52 integrins (Dustin and Springer, 1991; 
Hermanowski-Vosatka et al., 1992), the aIIbl$3 platelet inte- 
grin (Duet al., 1991), and the tx6B1 integrin on macrophages 
(Shaw et al., 1990, 1993) and T-cells (Shimizu et al., 1990). 
It is clear that kinase activation is a critical component of 
inside-out integrin signaling (Shaw et al., 1990; Dustin and 
Springer, 1991; Shattil and Brugge, 1991). G proteins (Shat- 
til et al., 1992) and the production of specific lipids 
(Hermanowski-Vosatlo et al., 1992) have also been impli- 
cated in this process. Although the details of these signaling 
pathways have not been elucidated, it appears that they may 
induce a conformational change in the integrin extraceliular 
domain which facilitates ligand binding (Du et al., 1991; 
Neugebauer and Reichardt, 1991; Diamond and Springer, 
1993). 

The cytoplasmic domains of the activatio'n-dependent inte- 
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grins are likely targets of intracellular signaling pathways. 
For example, the cytoplasmic domains of the/Y2 (Chatila et 
al., 1989), 83 (Hillery et al., 1991), and ~6 (Shaw et al., 
1990; Hogervorst et al., 1993) integrin subunits are phos- 
phorylated on serine residues in response to the appropriate 
agonists. Such information, although suggestive, is correla- 
tive and it does not confirm a role for the cytoplasmic domain 
in integrin regulation. For this reason, mutagenesis of the cy- 
toplasmic domains of ctL82 and allb83 integrins has been 
used to examine their role in inside-out signaling. From 
these studies, it appears that the 82 cytoplasmic domain of 
the oiL82 integrin is critical for its regulation because dele- 
tion of the 82 cytoplasmic domain, but not the oiL cytoplas- 
mic domain, resulted in an inactive receptor that could no 
longer respond to PMA activation (Hibbs et al., 1991a). 
Site-directed mutagenesis of the serine residue in the 82 
subunit that is phosphorylated in response to PMA did not 
alter the activation of the o~L82 receptor, indicating that 
phosphorylation may not be an important mechanism for ac- 
tivation of receptor function (Hibbs et al., 1991b). In con- 
trast to the results obtained with ~L82, it was observed for 
odlb83 that deletion of the cdlb cytoplasmic domain, but not 
the 83 cytoplasmic domain, created a constitutively active 
receptor that did not require cellular activation of its ligand- 
binding function (O'Toole et al., 1991). The existing data, 
therefore, indicate distinct modes of regulation for c~L82 and 
otfib83 because each of these integrins differ not only in 
which subunit cytoplasmic domain is critical for activation 
of function, but also in how the specific cytoplasmic domain 
influences receptor regulation. 

We have reported that the o~681 integrin requires inside- 
out signaling to function as a macrophage laminin receptor 
(Shaw et al., 1990). This activation-dependent function 
correlates with the association of this integrin with the actin 
cytoskeleton and serine phosphorylation of the or6 subunit 
(Shaw et al., 1990). Based on these findings and the dis- 
parate results obtained with the otL82 (Hibbs et al., 1991a,b) 
and cdlb83 integrins (O"l'oole et al., 1991), we thought it was 
important to investigate the role of the or6 subunit cytoplas- 
mic domain in the regulation of ot681 function. This analysis 
was facilitated by our recent finding that the activation 
responsive adhesion of the o~681 integrin is maintained when 
the o~6 subunit is expressed by cDNA transfection in 
P388Dt cells, an o~6-deficient macrophage cell line (Shaw 
et al., 1993). In this report, we provide evidence for a mech- 
anism of integrin regulation that is distinct from o~L82 and 
o~IIbB3 because deletion of the , 6  cytoplasmic domain abol- 
ished laminin adhesion under physiological conditions as 
well as in response to PMA. We also observed that site- 
directed mutagenesis of the two serine residues in the ~6 cy- 
toplasmic domain did not inhibit cell attachment to laminin. 

Materials and Methods 

Cells 
The P388D1 mouse macrophage cell line was obtained from the American 
Type Tissue Collection (Rockville, MD). Cells were maintained in RPMI 
containing 15% certified FBS (GIBCO BRL, Gaithersburg, MD). Thio- 
glycollate-elicited (TG) 1 macrophages were obtained from C57BL/6J mice 

1. Abbreviations used in this paper: EHS, Englebreth-Holm-Swarm; TG, 
thioglycollate-elicited. 

(Jackson ImmunoResearch Labs., Inc., West Grove, PA) as described previ- 
ously (Shaw et al., 1990). 

Adhesion Assays 
Adhesion assays were performed as described previously (Shaw and Mer- 
curio, 1989; Shaw et al., 1990). Briefly, multiwell tissue culture plates 
(11.3-mm diam) were coated overnight at 40C with 0.2 ml of PBS containing 
either 20 #g/mi of murine Englebreth-Holm-Swarm (EHS) laminin or 20 
ttg/mi human fibronectin (Boehrinser Mannheim Corp., Indianapolis, IN). 
Laminin was purified from the EHS sarcoma as described (Kleinman et al., 
1982). The wells were then washed with PBS and 1-2 × 105 ceils in 
RPMI-H (GIBCO BRL) or Puck's Saline A (Sigma Chem. Co., St. Louis, 
MO) were added per well. Divalent cations were included in the Puck's Sa- 
line A at the concentrations indicated in the individual figure legends. PMA 
(50 ng/ml) was added to some of the wells and the cells were incubated at 
37°C for 30 rain to 1 h. The wells were washed three times with RPMI-H 
at 37°C, fixed for 15 rain with methanol, and stained with a 0.2% solution 
of crystal violet in 2% ethanol. The crystal violet stain was solubilized with 
a 1% solution of SDS and adhesion was quantitated by measuring the absor- 
bance at 600 nm. 

To examine inhibition of laminin adhesion, cells were preincubated in 
suspension for 30 min at 4°C with 2137, a mAb specific for the human c~6 
subunit (Shaw et al., 1993), and routine IgG Fc fragment (20 tzg/ml; Jack- 
son ImmunoResearch Labs., Inc.). Subsequently, the cells were assayed as 
described above for laminin adhesion. 

Surface Labeling 
Cells were washed twice with PBS containing 1 mM each of CaCI2 and 
MgCI2. After washing, the macrophages were resuspended in the same 
buffer at a concentration of 5 x 106 cells/ml. NHS-LC-biotin (Pierce, 
RockviUe, IL) was resuspended in DMSO and added to the ceils at a con- 
centration of 0.1 mg/ml. Ceils were incubated in the presence of biotin for 
15 rain at 40C at which time the ceils were spun down, resuspended in fresh 
biotin, and incubated for another 15 rain at 4°C. Subsequently, the cells 
were washed several times with PBS containing 50 mM NI-hCI to remove 
unincorporated biotin. 

Cell Extraction and Immunoprecipitation 
Surface biotinylated cells were solubilized at 4°C for 15 min in a 50 mM 
Tris buffer, pH 7.5, containing 0.15 M NaCI, 1% Triton-X-100, 1 mM each 
of CaCI2 and MgC12, and 2 mM PMSE Nuclei were removed by centrifu- 
gation at 12,000 g for 10 min. Aliquots of labeled cell extracts were in- 
cubated overnight at 4°C with ~6 specific antibodies. Immune complexes 
were recovered with protein G agarose (Pharmacia LKB Biotechnology, 
Piscataway, NJ). The agarose beads were added for 1 h at 4"C with constant 
agitation. The beads were washed two times with a 50 mM Tris buffer, pH 
7.5, containing 0.1% Tween 20 and 0.15 M NaC1, two times with the same 
buffer containing 0.5 M NaC1, and one time with 0.05 M Tris, pH 6.8. 
Laemmii sample buffer was added to the samples which were then in- 
cubated at 100°C for 5 rnin. Surface biofinylated immunoprecipitates were 
resolved by SDS-PAGE (12%) and transferred to nitrocellulose filters. The 
filters were blocked for 30 min using a 50 mM Tris buffer, pH 7.5, contain- 
ing 0.1% Tween-20, 0.5 M NaC1, and 5% (wt/vol) Carnation dry milk. The 
filters were incubated for 1 h in the same buffer containing streptavidin con- 
jugated to horseradish peroxidase (3/~g/ml; Pierce). After three ten-minute 
washes in blocking buffer lacking dry milk, protein was detected by en- 
hanced chemiluminescence (Amersham Corp., Arlington Heights, IL). 

Unlabeled cells were solubilized as described above and cell extracts 
were immunoprecipitated with the c~6 specific mAb, 2B7. Immunoprecipi- 
tates were resolved by SDS-PAGE (10%) and transferred to nitrocellulose 
filters. The filters were blocked for 30 min using a 50 mM Tris buffer, pH 
7.5, containing 0.05% Tween-20, 0.15 M NaC1, and 5% (wt/vol) Carnation 
dry milk. The filters were then incubated for 2 h in the same buffer without 
milk containing a 1:100 dilution of a polyclonal Ab for/~1 (Marcantonio and 
Hyues, 1988). After washing, the filters were incubated with a goat 
anti-rabbit IgG conjugated to horseradish peroxidase (0.2 #g/ml; Kir- 
kegaard and Perry). Protein was detected by enhanced chemiluminescence 
(Amersham Corp.). 

Site-directed Mutagenesis 
The human c~6A eDNA was cloned by PCR and subcloned into the eukary- 
otic expression vector pRc/CMV as described previously (Shaw et al., 
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1993). Unless otherwise noted, all enzymes were purchased from New 
England Biolabs (Beverly, MA). The ~6 cytoplasmic truncation was gen- 
erated by introducing a stop codon (bold face) into an oligonucleotide primer 
for PCR. This primer, 5'-AGCAGAAGCTTTCATCTCTTGAAGAAA-3' 
corresponds to nucleotides 3278 to 3266 (Tamura et al., 1990). A Hind III 
recognition sequence (underlined) was added to the 5' end of this primer 
to facilitate cloning. A second primer, 5'-CAATTACAGCTAAAGC-3', 
which corresponds to nucleotides 2497-2512 was used as the upstream 
primer for this PCR reaction (Tamura et al., 1990). The resulting PCR frag- 
ment was subcloned into pCRII using the TA cloning system (Invitrogen). 
An XbaI-HindlII fragment was removed by digestion and inserted into the 
ot6A eDNA in pRc/CMV after removal of the corresponding wild-type 
XbaI-HindIII fragment. 

Site-directed mutagenesis of the c~6A cytoplasmic domain was carded 
out by overlap extension. Individual serine 1064 to alanine 1064 and serine 
1071 to alanlne 1071 mutations in the ottA cDNA were generated by using 
pairs of complementary mutagenic oligonucleotide primers (5'-TGCTCA- 
GCCAGCTGATAAAGA-Y and 5'-GAGGCTTACTGCTGAIGCATA-3', re- 
spectively) representing nuclcotides 3326-3346 and 3347-3367 (Tamura et 
al., 1990). The underlined letters identify the nucleotide changes that were 
introduced. The outer set of primers were 5"CAATTACAGCTAAAGC-3' 
and 5'-AGTI"TGGGTACTGTGAAGCT-Y which correspond to nucleotides 
2497-2512 and 3592-3573, respectively. Two segments (2497-3346 and 
3326-3592 and 2497-3367 and 3347-3592) were generated in separate 
reactions, each containing one set of outer and inner mutagenic primers and 
0.1 #g plasmid containing the ot6A cDNA. For overlap extension by PCR, 
amplified products from the first round of PCR were purified from an 
agarose gel and mixed in a subsequent PCR reaction containing additional 
outer primer pairs. The resulting PCR generated recombinant products 
were purified from an agarose gel and digested with XbaI and HindUl. This 
XhaI-HindIII fragment was purified from an agarose gel and sub-cloned 
into the ct6A cDNA as described above for the cytoplasmic deletion. The 
double serine mutant was generated by overlap extension using one of the 
single serine mutant cDNAs as the starting template. All of the PCR reac- 
tions were performed using the following conditions: 1 cycle of 94°C for 
4 rain; 35 cycles of 94°C for 1 min and 50°C for 1.5 min; and 1 cycle of 
50°C for 7 rain. The nucleotide sequences of the XbaI-HindIII PCR prod- 
ucts for the cytoplasmic deletion mutant and the serine mutants were 
confirmed by dideoxy sequencing. 

cDNA Transfections 
The pRc/CMV vector containing the human c~6A and mutant c~6A subunits, 
and the vector alone were transfected into the P388D1 cell line with 
lipofectin (GIBCO BRL). Neomycin resistant clones were isolated by selec- 
tive growth in medium containing G418 (0.4 mg/ml; GIBCO BRL). The 
stable transfectants were pooled and the population of cells that express the 
human c~6 subunit on the cell surface was isolated by FACS. A human ct6 
integrin specific mAb, 2B7, was used for this sorting and for subsequent 
analysis of the transfectants (Shaw et al., 1993). The sorting was repeated 
sequentially for each transfectant to isolate a homogeneous population of 
cells expressing the transfected c~6 subunits. 

Flow Cytometry 

Transfected P388DI cells were washed twice with PBS containing 0.1% 
BSA (PBS/BSA). Aliquots of cells (3-5 × 105) were incubated for 30 rain 
at 4°C with PBS/BSA containing murine IgG Fc fragment (6/~g/ml; Jackson 
ImmunoResearch Labs, Inc.). The rnAb 2137 was added at a concentration 
of 2 t~g,/ml and the cells were incubated for an additional hour at 4°C. The 
cells were washed three times with PBS/BSA, and then incubated with goat 
F(ab')2 anti-mouse IgG coupled to fluorescein (Tago, Inc., Burlingame, 
CA) for 1 h at 4°C. After washing three times with PBS/BSA, the cells were 
resuspended in PBS and analyzed using a FACScan (Becton Dickinson Im- 
munocytometry Sys., Mountain View, CA). 

Results 

Construction of ix6 Cytoplasmic Domain Mutants 

Previously, we reported that expression of the ct6A integrin 
cDNA in P388D~ cells restores their ability to adhere to 
laminin (Shaw et al., 1993). This adhesion is mediated by 
the transfected integrin because it is inhibited by an c~6 
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Figure 1. mAb inhibition of atA-P388D~ adhesion to laminin (A) 
and fibronectin (B). Tissue culture wells were coated with either 
EHS laminin (20 #g/ml) or human fibronectin (20 #g/ml). Trans- 
fected cells (1.5 x 1@) were resuspended in RPMI containing 1% 
FCS and preincubated with the 2137 mAb and murine IgG Fc frag- 
ment (20 #g/ml) for 30 min at 4°C. The cells were then added to 
the protein coated wells. PMA (50 ng/ml) was added to some of 
the wells. After 1 h at 37°C, non-adherent cells were removed by 
washing and adherent cells were fixed, stained, and quantitated as 
described in Materials and Methods. The data shown are the mean 
values (+SD) from a representative experiment done in triplicate. 
(Solid bars) control transfectants; (hatched bars) PMA-stimulated 
transfectants. In these assays, ~80% of the cttA-P388DI transfec- 
tants added adhere to laminin. 

specific mAb (Fig. 1). The experimental approach taken in 
this study was to mutate the cytoplasmic domain sequence 
of ottA and to express the mutated cDNA in P388D~ cells, 
an o~6-deficient macrophage cell line. Initially, we deleted the 
cytoplasmic domain by introducing a stop codon in the ot6A 
cDNA after the sequence that encodes the GFFKR pen- 
tapeptide. This sequence is conserved in both the ot6A and 
o~6B subunits (Tamura et al., 1990; Hogervorst et al., 1991), 
as well as in all other integrin ot subunits (Hemler, 1990). 
The deletion was made after this pentapeptide to facilitate 
expression of the truncated subunit because very low levels 
of t~IIb/33 expression were observed when this sequence was 
included in a deletion of the ulIb subunit cytoplasmic do- 
main (O'Toole et al., 1991). The or6 insertional mutation 
resulted in a cDNA, termed a6-ACYT, that lacked any o~6A 
or o~6B specific cytoplasmic domain sequences (Fig. 2). 

We also assessed the role of serine phosphorylation in the 
regulation of a6Al31 integrin function by site-directed muta- 
genesis of the two serine residues present in the ot6A cyto- 
plasmic domain. Point mutations were introduced in the ct6A 
cDNA that changed either serine residue #1064 (M1) or ser- 
ine residue #1071 (M2) to alanine residues (Fig. 2). In addi- 
tion, a double mutant (M3) was constructed in which both 
serine residues were changed to alanine residues (Fig. 2). 

The mutant t~6 cDNAs were subcloned into the eukaryotic 
expression vector pRc/CMV and transfected into P388D~ 
cells. After selective growth in medium containing G418, the 
population of ceils that expressed the human-mouse chi- 
meric c~6fll integrin was isolated by sequential cycles of 
FACS using 2B7, a mAb that is specific for the human or6 
integrin subunit (Shaw et al., 1993). 

Analysis of the t~6 Cytoplasmic Deletion Subunit 
Populations of P388D1 cells were obtained that expressed 
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Figure 2. Construction of integrin cytoplasmic domain mutations. 
The complete amino acid sequence of the human c~6A cytoplasmic 
domain is shown (see Tamura et al., 1990; Hogevorst et al., 1991; 
Shaw et al., 1993 for details). The three possible serine to alanine 
mutations that were constructed are indicated by solid arrows. The 
cytoplasmic domain was deleted after the GFFKR pentapeptide 
(residue #1044) to create the a6-ACYT mutant subunit. 

levels of surface ot6-ACYT comparable to those obtained af- 
ter transfection of the wild-type ct6A cDNA (Fig. 3). To 
confirm that the cytoplasmic domain of the c~6-ACYT 
subunit was deleted, the transfected cells were surface la- 
beled by biotinylation and detergent extracts were immuno- 
precipitated with the 2B7 mAb (Fig. 4). As expected from 
the cDNA sequence, the light chain of the a6-ACYT subunit 
migrates slightly faster (~3 kD) than the light chain of the 
wild-type o~6A subunit on reducing gels because it is missing 
29 amino acids of its cytoplasmic domain (Fig. 4 A). The 
light Chain of the et6A subunit appears as a doublet as previ- 
ously reported (Hogerv0rst et al., 1993). A shorter exposure 
of the same blot reveals that the/31 subunit coimmunopre- 
cipitates with both the o~6A and ot6-ACYT subunits (Fig. 
4 B). The identity of the/31 subunit was confirmed by immu- 
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Figure 3. Surface expression Of the human a6A and c~6-ACYT inte- 
grins in P388D~ transfectants. Populations of transfected P388D~ 
cells expressing either the c~6A or c~6-ACYT cDNAs were isolated 
by sequential FACS using 2B7, a mAb specific for the human a6 
integrin subunit (Shaw et al., 1993), and then analyzed by flow 
cytometry. (.4) Secondary Ab alone; (B) Wild-type a6A; (C) u6- 
ACYT; (D) Overlay of ~6A (solid line) and a6-ACYT (dotted line) 
FACScans. 

noblotting the 2B7 immunoprecipitates with a polyclonal an- 
tisera specific for the/31 cytoplasmic domain (Marcantonio 
and Hynes, 1988). This antisera recognized the/31 subunit 
in 2B7 immunoprecipitates from both the wild-type ot6A and 
the tx6-ACYT transfectants (Fig. 4 C). 

The c~6A and c~6-ACYT integrin transfectants were exam- 
ined for their ability to adhere to a laminin substratum. As 
shown in Fig. 5, the o~6A transfectants exhibited a low level 
of laminin adhesion that was significantly increased in re- 
sponse to PMA stimulation. However, the oe6-ACYT trans- 
fectants did not adhere to laminin, even after stimulation 
with PMA (Fig. 5). The slight increase in absorbance ob- 
served for the a6-ACYT cells after PMA stimulation is equal 
to that observed for cells transfected with vector alone (neo) 
and is not significant. Moreover, this result does not reflect 
a non-specific adhesion defect because these cells adhered 
normally to a fibronectin substratum (Fig. 5). The inability 
of the ct6-ACYT eDNA to restore the ability of P388DI 
macrophages to adhere to laminin demonstrates that se- 
quences within the or6 cytoplasmic domain are critical for 
the ix6/31 integrin to function as a laminin receptor. 

Mouse macrophages do not adhere to laminin in normal 
cell culture medium that contains physiological concentra- 
tions of Ca ++ and Mg ++, unless activated by PMA or 
cytokines (Mercurio and Shaw, 1988; Shaw and Mercurio, 
1989). Based on several reports which indicate that divalent 
cations can influence integrin ligand binding (Sonnenberg et 
al., 1988; Kirchhofer et al., 1991; Dransfield et al., 1992), 
we examined the possibility that altering the cation composi- 
tion of the medium would promote macrophage adhesion to 
laminin in the absence of PMA activation. We found that TG- 
elicited macrophages adhered to laminin without PMA acti- 
vation if Ca ++ and Mg ++ were replaced with 150 pM Mn++ 
in the culture medium (Fig. 6 A). In contrast, macrophage 
adhesion to both fibronectin and tissue culture plastic was 
not dependent on the presence of specific divalent cations 
(data not shown). These observations suggest that at least 
two distinct mechanisms will promote macrophage adhesion 
to laminin: inside-out signaling through integrin cytoplas- 
mic domains and divalent cation interactions with extracellu- 
lar domains. 

The divalent cation data prompted us to examine whether 
extracellular Mn ÷÷ could promote laminin adhesion of the 
tx6-ACYT transfectants. For the wild-type ct6A transfec- 
tants, the presence of 150 /~M Mn ÷÷, in the absence of 
Ca++/Mg++, resulted in a level of laminin adhesion that was 
equivalent to that observed after PMA activation (Fig. 6 B). 
Interestingly, the ot6-ACYT transfectants also adhered to 
laminin in the presence of Mn++ to the same extent as the 
wild-type transfectants and this adhesion was not influenced 
by PMA activation (Fig. 6 B). P388D~ cells transfected 
with the pRc/CMV plasmid alone did not adhere to laminin 
under any of the conditions tested (Fig. 6 B). Taken together 
with the results shown in Fig. 5, these data indicate that the 
t~6 cytoplasmic domain is essential for physiological regula- 
tion of o~6/31 laminin receptor function. However, the diva- 
lent cation data provide evidence that the extracellular do- 
main of tx6/31 can be regulated independently of the u6 
cytoplasmic domain. 

Analysis o f  the ~6A Serine Mutants 

Populations of P388Dt cells were obtained that expressed 
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Figure 4. Surface expression 
of the human/mouse e6A/31 
and (~6-ACYT/31 integrin 
chimeras in P388D, cells. 
The transfected cells shown in 
Fig. 2 were surface labeled 
with biotin, and aliquots of 
detergent extracts from equal 
numbers of cells were immu- 
noprecipitated with the 2B7 
mAb. Immunoprecipitates 
were resolved by 12% SDS- 
PAGE under reducing condi- 
tions and transferred to 
nitrocellulose filters. Proteins 
were visualized with strep- 
tavidin conjugated to horse- 
radish peroxidase and en- 
hanced chemiluminescence. 
(A) The migration positions of 
the light chains of the wild- 
type c~6A and e6-ACYT 
subunits are shown in the right 
margin. Both are doublets. 
The light chain of the oe6- 

ACYT subunit migrates faster than the wild-type o~6A light chain due to the deletion of ,~, 3kD. The extra bands between 97 and 45 kD 
result from non-specific binding to protein G-sepharose (data not shown). (Arrowhead) The light chain of the 2B7 mAb. (B) Shorter ex- 
posure of the blot shown in A. The (~6 and/31 subunits are resolved in this exposure and are indicated in the right margin. (C) Unlabeled 
cell extracts were immunoprecipitated with the 2B7 mAb, resolved by 10% SDS-PAGE under reducing conditions, transferred to nitro- 
cellulose filters, and blotted with a polyclonal antisera specific for the/31 subunit. 
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Figure 5. Adhesive properties of P388Dt cells transfected with the 
c(6A and c~6-ACYT cDNAs. Transfected cells were enriched for 
ot6A/31 and c~6-ACYT/31 integrin surface expression by FACS using 
2B7, and then assayed for their ability to adhere to laminin and 
fibronectin substrata. Tissue culture wells were coated with either 
EHS laminin (20 #g/ml) or human fibronectin (20 #g/ml). Trans- 
fected cells (1.5 x 105) were resuspended in RPMI and added to 
the protein coated wells. PMA (50 ng/ml) was added to some of 
the wells. After 1 h at 37°C, non-adherent cells were removed by 
washing, and adherent cells were fixed, stained, and quantitated as 
described in Materials and Methods. The data shown are the mean 
values (+SD) from a representative experiment done in triplicate. 
(Solid bars) control transfectants; (hatched bars) PMA-stimulated 
transfectants; (Neo) P388D, cells transfected with the vector 
alone. 

levels of the c~6A serine mutant subunits on the cell surface 
comparable to those obtained after transfection of the wild- 
type ot6A cDNA (Fig. 7). To examine the importance of ser- 
ine phosphorylation in adhesion to laminin, the sorted ~6A, 
c~6A-M1, cz6A-M2, and c~6A-M3 integrin transfectants were 
examined for their ability to adhere to a laminin substratum. 
As shown in Fig. 8, the serine mutant transfectants exhibited 
some constitutive adhesion to laminin. Most importantly, all 
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Figure 6. Divalent cation modulation of laminin adhesion. Cells 
were resuspended in Puck's Saline A containing either 1.8 mM 
Ca ++ and 0.8 mM Mg ++ or 150 #M Mn +÷, and added to laminin- 
coated wells at a concentration of 1.5 x 105 cells per well. PMA 
(50 ng/ml) was added to some of the wells and the multiwell plates 
were incubated for 1 h at 37°C. Non-adherent cells were removed 
by washing with Puck's Saline A and the adherent cells were fixed, 
stained, and quantitated as described in Materials and Methods. 
The data shown are the mean values (+SD) from a representative 
experiment done in triplicate. (A) TG-elicited macrophages; (B) 
Human ot6A, c~6-ACYT, and Neo P388D1 transfectants. 
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Figure 8. Adhesive properties of P388D~ cells transfected with the 
~6A serine mutant subunit cDNAs. Transfected cells were enriched 
for ~6A, ~x6A-M1, a6A-M2, and c~6A-M3 integrin surface expres- 
sion by FACS as described in Fig. 7, and then assayed for their abil- 
it), to adhere to laminin. Transfected cells (t.5 x 105) were 
resuspended in RPMI and added to the laminin coated wells. PMA 
(50 ng/ml) was added to some of the wells. After 1 h at 37°C, non- 
adherent cells were removed by washing and adherent cells were 
fixed, stained, and quantitated as described in Materials and 
Methods. The data shown are the mean values (+SEM) from five 
experiments, each done in triplicate. (Solid bars) control transfec- 
tants; (hatched bars) PMA-stimulated transfectants. 

of the transfectants increased their adhesion to laminin in re- 
sponse to PMA activation. The levels of laminin adhesion 
observed for the serine mutants were comparable to those 
observed for the wild-type c~6A transfectants. This result 
provides evidence that serine phosphorylation is not essen- 
tial for the ability of c~6131 to mediate laminin adhesion. 

Discus s ion  

Integrin cytoplasmic domains can regulate the ligand- 
binding function of their extracellular domains (for review 
see Ginsberg et al., 1992; Hynes, 1992). However, the 
mechanisms involved in this regulation, are not well under- 
stood and, in fact, may differ for individual integrins. In the 
present study, the role of the o~6 integrin cytoplasmic domain 
in the laminin receptor function of the ~x6/31 integrin was ex- 
amined. The use of P388Dx cells, an cx6-integrin deficient 
cell line, facilitated this analysis because, as we have shown 
previously, expression of either the c~6A or cx6B cDNAs re- 
stores their activation responsive laminin adhesion (Shaw et 
al., 1993). Deletion of the a6 cytoplasmic domain resulted 
in the surface expression of a truncated cx6fll integrin that 

Figure 7. Surface expression of the ~x6A serine mutants in P388D~ 
cells• Populations of transfected P388D~ cells expressing either: 
(A) the wild-type c~6A; (B) c~6A-M1; (C) ~6A-M2; or (D) c~6A-M3 
cDNAs were isolated by sequential FACS using the 2137 mAb, and 
then analyzed by flow cytometry using 2137 as shown in this figure• 
(Solid line) Secondary mAb alone; (Dotted line) 2B7 mAb. 
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was unable to mediate laminin adhesion under normal condi- 
tions, i.e., in medium that contained physiological concen- 
trations of Ca ++ and Mg ÷÷, even after activation with PMA. 
This finding provides evidence for a novel mode of integrin 
regulation that is distinct from that reported for other regu- 
lated integrins such as otlIb~3 (O'Toole et al., 1991) and 
ctL~2 (Hibbs et al., 1991a). Because the ot6A cytoplasmic 
domain is phosphorylated on serine residues in response to 
stimuli that activate the laminin receptor function of ot6A/31 
(Shaw et al., 1990; Hogervorst et al., 1993), we also exam- 
ined the role of the two serine residues in this cytoplasmic 
domain by site-directed mutagenesis and subsequent expres- 
sion in P388D~ cells. The results obtained indicate that ser- 
ine phosphorylation is not essential for adhesion to laminin. 

Previous studies have focused on the role of integrin 
subunit cytoplasmic domains in the regulated function of the 
t~IIb/~3 and c~L/32 integrins. Deletion of the otlIb cytoplasmic 
domain resulted in the generation of a constitutively active 
t~IIb/~3 receptor (O'Toole et al., 1991), but deletion of the 
o~L cytoplasmic domain had no effect on o~L/32 receptor 
function (Hibbs et al., 1991a). In contrast, deletion of the/~3 
cytoplasmic domain had no effect on ctlIb/~3 receptor func- 
tion (O'Toole et al., 1991), but deletion of the/~2 cytoplasmic 
domain generated an inactive ctL~2 receptor (Hibbs et al., 
1991a). It has also recently been shown that deletion of the 
od and or5 cytoplasmic domains did not affect the ability of 
these mutant od/~l or ot5/31 receptors to mediate adhesion 
to their respective ligands (Briesewitz et al., 1993; Bauer et 
al., 1993). Our finding that deletion of the ~6 cytoplasmic 
domain resulted in the abolition of c~6/31 receptor function 
and activation implies a mechanism of integrin regulation 
that is distinct from that of alIb/~3, ctL/32, otl~l, and ot5/31 
because each of the et subunit cytoplasmic domains contrib- 
utes differently to the function of these integrin receptors. 
Similarities exist, however, between the or6 and/~2 subunits 
because their deletion abolishes PMA-dependent receptor 
activation (cf Fig. 4 and Hibbs et al., 1991a). In addition, 
COS cells expressing the otL/~2 integrin that contained a 
deleted /~2 cytoplasmic domain were induced to mediate 
adhesion to ICAM-1 by a mAb, NKI-L16, that stimulates 
aL/32 function in the absence of PMA stimulation (Hibbs et 
al., 1991a). This result is similar to our finding that 
P388D, cells expressing the truncated ~6-ACYT/5'I integrin 
adhered to laminin if Ca ÷÷ and Mg ÷÷ in the culture medium 
were replaced with Mn ÷÷. Thus, although physiological 
regulation of ot6/31 function probably occurs through signal- 
ing pathways that affect the o~6 cytoplasmic domain, it is pos- 
sible to induce receptor function by modulating the extracel- 
lular domain with divalent cations. 

A key question that arises from this study is how the t~6 
cytoplasmic domain regulates the function of the o~6/~1 inte- 
grin. Because the a6 cytoplasmic domain is required for 
receptor activation, it can be proposed that this domain as- 
sociates with a "positive regulator" upon cell activation that 
alters the function of the receptor, either through changes in 
extracellular ligand binding affinity (Ginsberg et al., 1992) 
or avidity (Danilov and Juliano, 1989). The use ofmAbs that 
recognize only "activated" forms of the receptors provide evi- 
dence that, in many cases, a conformational change in the 
integrin heterodimer occurs after activation (Dransfield and 
Hogg, 1989; O'Toole et al., 1991; Diamond and Springer, 
1993). In fact, Sims et al. (1991) were able to directly dem- 

onstrate a change in conformation of the otlIbB3 integrin het- 
erodimer upon activation using resonance energy transfer. 
mAbs that promote adhesion have also been described and 
these antibodies are presumed to induce a conformational 
change in the integrin heterodimers that increases their 
ligand-binding affinities (O~oole et al., 1990; van Kooyk et 
al., 1991; Neugebauer and Reichardt, 1991; Faull et al., 
1993; Arroyo et al., 1993). Although these activating mAbs 
are presumed to mimic the effects of physiological activation 
on receptor function, this important point has not been 
clearly demonstrated. Changes in conformation could also 
facilitate clustering of receptors (Detmers et al., 1987) or 
their association with heterologous proteins (Brown et al., 
1990; Shaw et al., 1990) that would increase the avidity of 
integrins for their ligands. Changes in affinity and avidity are 
not mutually exclusive and may work in concert to facilitate 
integrin-mediated adhesion. In the case of ot6B1, physiologi- 
cal activation could increase the affinity of this integrin for 
laminin and it could also promote the linkage of the or6 cyto- 
plasmic domain with the cytoskeleton. This latter possibility 
is supported by our previous finding that the activation- 
dependent adhesion of macrophages to laminin involves the 
association of the c~6/31 integrin with the actin cytoskeleton 
(Shaw et al., 1990). 

Although there have been no reports of cytoskeletal pro- 
teins binding directly to ct subunit cytoplasmic domains, the 
data presented in this paper, as well as other recent studies 
(Chan et al., 1992; Tawil et al., 1993; Ylanne et al., 1993; 
Briesewitz et al., 1993) suggest this possibility. Chan et al. 
(1992) constructed chimeric integrin subunits that consisted 
of the extracellular and transmembrane domains of the or2 
subunit and the cytoplasmic domains of either the or2, o~4, 
or or5 subunits. When transfected into a rhabdomyosarcoma 
cell line, RD, the wild-type c~2 subunit and the ct2/ct5 chi- 
mera promoted contraction of collagen gels, while the ot2/a4 
chimera promoted cell migration on a laminin substratum. 
However, adhesion to either substratum was not altered. 
Contraction and motility require markedly different cyto- 
skeletal rearrangements, and these results suggest that each 
ot subunit cytoplasmic domain may interact with unique 
cytoskeletal components. In addition, ct subunit cytoplasmic 
domains have been implicated in the preferential association 
of laminin receptor integrins with either focal contacts or 
podosomes (Tawil et al., 1993). The et subunits may also 
play a role in regulating the recruitment of integrin receptors 
to focal contacts (Briesewitz et al., 1993; Ylanne et al., 
1993). Comparison of these studies on c~ subunit cytoplas- 
mic domains with the data on B1 integrin cytoplasmic do- 
mains suggests that the ~ cytoplasmic domain provides a 
critical linkage with the cytoskeleton that is essential for 
integrin-mediated adhesion (Solowska et al., 1989; Hayashi 
et al., 1990; Marcantonio et al., 1990; Reszka et al., 1992). 
The ot subunit cytoplasmic domains may interact with a 
different cluster of cytoplasmic/cytoskeletal proteins that 
modulate specific aspects of integrin function subsequent to 
adhesion (e.g., the ability to promote cell migration or con- 
traction). In addition, the results obtained in our study sug- 
gest that some o~ subunit cytoplasmic domains may have im- 
portant regulatory functions as targets of intracellular 
signaling pathways. Identification of proteins that interact 
with the a6 cytoplasmic domain upon cell activation should 
provide considerable insight into the nature of o~ subunit 
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function. Such information would also be useful in address- 
ing the unresolved issue of how cytoplasmic domains regu- 
late the extracellular function of integrin receptors. 

Although the otrA cytoplasmic domain is phosphorylated 
on serine residues in response to PMA and cytokine stimula- 
tion, the results obtained in this study demonstrate clearly 
that this phosphorylation is not required for o~6A/~l depen- 
dent laminin adhesion. In addition, it has been reported re- 
cently that the u6B integrin is not phosphorylated in re- 
sponse to PMA stimulation (Hogervorst et al., 1993), even 
though et6B/~l can function as an activation-dependent lami- 
nin receptor (Shaw et al., 1993). Taken together, the conclu- 
sion can be drawn that serine phosphorylation is not essential 
for the ability of either ot6A/31 or o~6B/31 to function as a 
laminin receptor. This conclusion is in agreement with 
related studies that have been done on ctLff2 (Hibbs et al., 
1991b). However, it would be premature to exclude any role 
for phosphorylation in ot6A/~l function at this point. 
Specifically, the possibility that phosphorylation is required 
for events that occur subsequent to attachment such as acti- 
vation of cell motility or other such processes merits investi- 
gation. As discussed above, the contribution of a subunit cy- 
toplasmic domains in "outside-in" signaling functions of 
integrin receptors has been demonstrated (Chan et ai., 1992; 
Tawil et al., 1993). In this direction, determining the distinct 
functions mediated by c~6A~1 and ct6BBI would be fruitful 
because ot6BB1 is not phosphorylated (Hogervorst et ai., 
1993). 
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