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Abstract 

Recent studies suggest adipose tissue plays a critical role in regulating whole body 

energy homeostasis in both animals and humans. In particular, activating brown adipose 

tissue (BAT) activity is now appreciated as a potential therapeutic strategy against 

obesity and metabolic disease.   However, the signaling circuits that coordinate nutrient 

uptake and BAT function are poorly understood.  Here, I investigated the role of the 

nutrient-sensing mTOR signaling pathway in BAT by conditionally deleting Rictor, 

which encodes an essential component of mTOR Complex 2 (mTORC2) either in brown 

adipocyte precursors or mature brown adipocytes.  In general, inhibiting BAT mTORC2 

reduces glucose uptake and de novo lipogenesis pathways while increases lipid uptake 

and oxidation pathways indicating a switch in fuel utilization.  Moreover, several key 

thermogenic factors (Ucp1, Pgc1α, and Irf4) are elevated in Rictor-deficient BAT, 

resulting in enhanced thermogenesis.  Accordingly, mice with mTORC2 loss in BAT are 

protected from HFD-induced obesity and metabolic disease at thermoneutrality.  In vitro 

culture experiments further suggest that mTORC2 cell-autonomously regulates the BAT 

thermogenic program, especially Ucp1 expression, which depends on FoxO1 activity.  

Mechanistically, mTORC2 appears to inhibit FoxO1 by facilitating its lysine-acetylation 

but not through the canonical AKT-mediated phosphorylation pathway.  Finally, I also 

provide evidence that β-adrenergic signaling which normally triggers thermogenesis also 

induces FoxO1 deacetylation in BAT.  Based on these data, I propose a model in which 

mTORC2 functions in BAT as a critical signaling hub for coordinating nutrient uptake, 

fuel utilization, and thermogenic gene expression.  These data provide a foundation for 
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future studies into the mTORC2-FoxO1 signaling axis in different metabolic tissues and 

physiological conditions. 
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The Obesity Pandemic Is a Global Health Issue 

Treating obesity and obesity-related disease are among the greatest health challenges 

around the world.  It is not only a huge threat to human health and but also a burden for 

society and health care.  Obesity is now viewed as a chronic disease and its comorbidities 

often includes coronary heart disease, high blood pressure, type II diabetes and certain 

types of cancer (Bornfeldt and Tabas, 2011).  Excessive weight gain is mainly caused by 

long-term intake of excess energy and to a lesser extent by reduced physical activity.  

However, treatment or interventions that can reverse the obese state are limited and often 

lack long-term efficacy.  One possible therapeutic strategy is to induce “negative energy 

balance”, which can be achieved by decreasing energy intake and/or increasing energy 

expenditure.  Accordingly, efforts focused on understanding molecular, biochemical and 

physiological mechanisms of whole body energy homeostasis have been made, which 

could ultimately lead to novel and effective therapies. 

 

A Trio of Fat: White, Brown and Beige/Brite Adipocytes  

Adipose tissue plays essential roles in maintaining whole body metabolic homeostasis, 

and its dysfunction contributes to the development and the progression of metabolic 

disease. There are two major classes of adipose tissue: white adipose tissue (WAT) and 

brown adipose tissue (BAT) (Figure 1.1).  Most body fat mass is composed of white 

adipose tissue, which serves as the primary energy storage site in the body to 

accommodate excess nutrients and energy.  WAT was long considered as metabolically 

inert, and its function was merely to release the stored energy during food deprivation.  
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On the contrary, it is now widely recognized that WAT has important endocrine functions 

linked to glucose and lipid homeostasis through release of adipokines (e.g., leptin and 

adiponectin) or non-peptide metabolites to communicate locally or with distant organs.  

For example, glucose intake in WAT drives activation of the de novo lipogenesis (DNL) 

pathway to produce palmitate, which is further modified by elongases and desaturases to 

generate diverse lipids.  Some of lipid species, like C16:1n7-palmitoleate (Cao et al., 

2008), when released to the circulation via lipolysis can stimulate insulin action on other 

tissues, such as liver and muscle.  Moreover, carbohydrate-responsive element-binding 

protein β isoform (ChREBPβ) drives DNL gene expression in response to glucose flux 

(Herman et al., 2012). The abundance of Chrebpβ in human adipose tissue positively 

correlates with whole body insulin sensitivity (Eissing et al., 2013; Kursawe et al., 2013), 

supporting a role of adipose tissue in regulating systemic glucose homeostasis.  In 

addition, WAT has a tremendous capacity to expand its mass by either increasing cell 

size (i.e., hypertrophy) or recruiting new adipocytes (i.e., hyperplasia) in overfeeding or 

sedentary lifestyles.  This plasticity provides protection for other tissues from ectopic 

lipid accumulation and lipotoxicity.  However, in obese or diabetic conditions, white 

adipocyte hypertrophy could lead to a vicious cycle with metabolic dysregulation, altered 

adipokine profiles, and chronic inflammation, which conversely drives the pathogenesis 

of metabolic disease.   
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Figure 1.1  Major adipose tissue depots in mice 

There are several discrete depots of Brown adipose tissue (BAT) which consists of brown 
adipocytes, including interscapular BAT (iBAT), subscapular BAT (sBAT), and cervical 
BAT (cBAT).  According to their anatomical locations, white adipose tissue (WAT) can 
classified as subcutaneous fat or visceral fat.  Anterior subcutaneous WAT (asWAT) and 
posterior subcutaneous WAT (psWAT or ingWAT) contain both white and brite 
adipocytes.  Peri-gonadal WAT (pgWAT) is a major depot of visceral fat and it mostly 
consists of white adipocytes. 
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In contrast, BAT is able to dissipate energy into the form of heat through the 

process called non-shivering thermogenesis (Cannon and Nedergaard, 2011), which 

contributes to thermoregulation.  Brown adipocytes contain many features that 

distinguish them from white adipose adipocytes, including multilocular lipid droplets, 

more abundant mitochondria with a high amount of uncoupler protein 1 (UCP1).  

UCP1,which belongs to the family of mitochondrial anion carrier protiens, embeds in the 

inner membrane of mitochondria.  Biophysical studies showed UCP1 is normally kept 

inactive owing to the presence of purine nucleotides (ATP or GDP) (Nicholls, 2006).  In 

general, cold exposure potently stimulates BAT thermogenesis through the sympathetic 

nerve system (SNS) (Figure 1.2).  Catecholamines, particularly norepinephrine, released 

from sympathetic neurons activate the β3-adrenergic receptor (β-AR) signaling cascades 

of brown adipocytes, including cyclic AMP production and protein kinase A (PKA) 

activation.  The β-AR-induced PKA signaling subsequently activates p38-MAPK 

(mitogen-activated protein kinases) and transcription factors that are required for the 

induction of thermogenic gene program, including Ucp1 and Peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (Pgc1α).  Simultaneously, the PKA 

signaling also triggers lipolysis that breaks down intracellular triglycerides to liberate free 

fatty acids (FAs), which serve not only as the fuel for thermogenesis but also as allosteric 

activators for UCP1 activity (Fedorenko et al., 2012).  The activated UCP1 facilitates 

proton movement across the mitochondrial inner membrane, thereby dissipating chemical 

energy generated by mitochondrial respiration in the form of heat.  In rodents, it is 

estimated that fully-activated BAT could increase whole body energy expenditure by up 
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to ~60% over basal metabolic rate (Foster and Frydman, 1978).  Thus, harnessing the 

potential of UCP1-mediated thermogenesis has become an attractive strategy that could 

enhance energy expenditure in humans to fight against obesity and its comorbidities. 

 

Figure 1.2  A schematic representation of BAT activation   

BAT is highly innervated by the sympathetic neuron system (SNS).  Upon cold 

exposure, the hypothalamus intergates sensory signals and activates SNS.  

Norepinepherin and ATP, which is then converted into adenosine, released from 

sympathetic neuron terminals stimulates the β3-adrenergic receptor and the 

adenosine receptor 2A.  Both receptors subsequently activates adenylyl cyclase 

(AC), which produces cAMP.  PKA is then activated by increased levels of cAMP and 

plays dual roles in BAT thermogenesis: (1) promotes lipolysis through activating 

hormone-sensitive lipase (HSL); (2) activates the p38-MAPK signaling and 

transcription factors involved in Ucp1 expression.  In chronic BAT activation, the 

intracellular triglyceride (TG) is restored via fatty acids uptake which depends on 
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lipoprotein lipase (LPL) activtiy and CD36 (FA transporter) and via glucose uptake 

through the de novo lipogenesis pathway. 

 

 

More recent studies have discovered a different class of thermogenic adipocytes 

called beige adipocytes or brite (brown-in-white) adipocytes (Cousin et al., 1992; Young 

et al., 1984).  Unlike brown adipocytes, beige/brite adipocytes develop postnatally and 

express low basal levels of UCP1.  These cells are normally interspersed within white 

adipose tissue and are characteristically indistinguishable from white adipocytes.  Their 

development and activity are induced in response to various physiological conditions and 

environmental cues, including chronic cold stress, exercise, cytokines (e.g., FGF-21) and 

several insulin-sensitizing reagents (Inagaki et al., 2016).  This recruitment process is 

usually termed “browning” of white adipose tissue, which mainly happens in 

subcutaneous WAT (sWAT) in rodents.  Interestingly, trauma and some disease states, 

such as severe burns and cancer cachexia, also induce browning of WAT by increasing 

serum levels of cytokines and catecholamines (Petruzzelli et al., 2014; Sidossis et al., 

2015; Tsoli et al., 2012).  However, the functional significance and physiological 

relevance of beige/brite adipocytes in different physiologic states are still under 

investigation. 
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Human BAT and Its Physiological Relevance 

Evolutionarily, brown fat thermogenesis is conserved in small mammals and hibernating 

animals to fight hypothermia.  In humans, brown fat exists in the interscapular region of 

infants and shares molecular features and characteristics with brown adipocytes in 

rodents (Lidell et al., 2013).  Until recently it was widely assumed that adult humans lack 

significant brown fat deposits. This view changed in early 2000 when radiologists 

reported the existence of brown fat in human adults by using the 18F-fluoro-2-deoxy-D-

glucose (18F-FDG) positron emission tomography (Hany et al., 2002).  Several landmark 

papers later confirmed some adult human fat exhibits BAT characteristics (Cypess et al., 

2009; Lichtenbelt et al., 2009; Saito et al., 2009; Virtanen et al., 2009), thereby inspiring 

the idea that activating thermogenic fat in humans could be a strategy to fight obesity. 

The fact that brown fat activity is negatively associated with BMI (Cypess et al., 2009; 

Lichtenbelt et al., 2009) further supports the notion.  Moreover, administration of a β3-

adrenergic agonist to humans significantly increases resting metabolic rate by 13% 

(Cypess et al., 2015). Recently, several studies reported that adult human BAT depots are 

mainly composed of beige/brite adipocytes (Sharp et al., 2012; Shinoda et al., 2015; Wu 

et al., 2012). However, other groups also found classical brown adipocytes in the deep 

cervical region (Cypess et al., 2013; Jespersen et al., 2013; Xue et al., 2015).  Thus the 

prevalence of classic brown or brite/beige fat in human is currently under debate.  

Importantly, because people typically live in thermoneutral conditions, the distinction 

between ‘brown’ and ‘brite’ may be difficult to make. Thus, understanding both brown 
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and beige/brite adipocyte biology in mice is of equal interest at present. 

 

Brown Fat Fuel Utilization and Thermogenesis 

Active brown fat imports glucose and fatty acids (FAs) from circulation to sustain the 

metabolic demand of thermogenesis. This high metabolic rate provides the basis for using 

BAT as a therapeutic target to treat diabetes, hyperdyslipidemia, cardiovascular disease 

and other metabolic syndromes.  During cold exposure, genes involved in glucose 

metabolism, de novo lipogenesis, lipid uptake and FA oxidation are accordantly 

upregulated in BAT as part of cold adaption (Yu et al., 2002).  However, exactly how 

anabolic and catabolic pathways, especially lipogenesis and lipid oxidation, are tightly 

regulated by different physiological states remains to be elucidated.  As mentioned above, 

fatty acids are the primary fuel source for BAT thermogenesis.  When BAT is activated, 

intracellular triglycerides (TGs) are preferentially utilized via lipolysis.  Concurrently, 

cold exposure drastically increases clearance of plasma triglyceride-rich lipoproteins, 

which is dependent on LPL activity and CD36 (FA transporter) (Bartelt et al., 2011).  

After being internalized, FAs are further re-esterified for oxidation or for the synthesis of 

TGs.  Numerous studies employing genome-wide gene expression profiles have revealed 

that genes involved in handling glucose metabolism are extensively upregulated in cold-

activated BAT (Hao et al., 2015).  First, glucose transporters, Glut1 and Glut4, are highly 

induced after cold exposure (Bartelt et al., 2011), while β3-adrenergic signaling also 

stimulates their translocation to the plasma membrane (Shimizu et al., 1998).  Second, 

although glycolysis is highly upregulated, glucose oxidation by mitochondria is restricted 
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because of increased levels of Pdk2 and Pdk4. Third, glucose flux is directed to the 

pentose phosphate pathway, which provides reducing equivalents (NAPDH) for de novo 

fatty acid synthesis.  Fourth, glycerol synthesis from glucose is also elevated to facilitate 

de novo lipid synthesis and FA re-esterification.  Thus, it is clear that glucose is not 

primarily used as fuel source in thermogenesis but rather replenishes ATP demand and 

supports lipogenesis.  In fact, it is estimated in one study that intracellular TG pools could 

contribute up to 80% of respiration in acute or chronic cold conditions (Labbe et al., 

2015).  Nonetheless, the signaling circuits and molecular mechanisms that orchestrate 

these metabolic pathways during BAT activation are not entirely understood. 

 

mTOR Signaling: a Master Regulator of Cell Metabolism 

The mechanistic target of rapamycin (mTOR) kinase is a master regulator of growth that 

functions in two distinct complexes called mTORC1 (defined by the Raptor subunit) and 

mTORC2 (defined by the Rictor subunit) (Figure 1.3).  Given the importance of the 

mTOR signaling pathway in cellular metabolism and growth, it was not clear whether the 

two mTOR complexes have distinct roles in controlling tissue development in vivo.  

mTORC1 integrates systemic growth factor signaling and local nutrient availability to 

coordinate activity of a multitude of anabolic processes, including proteins, nucleotides 

and lipid biosynthesis (Figure 1.3).  In general, growth factors activate mTORC1 through 

a well-characterized signaling cascade, including PI3K and AKT, to inhibits the 

TSC1/TSC2 complex (Manning et al., 2002).  TSC complex negatively regulates 

mTORC1 via inhibiting its activator, Rheb-GTPase (Castro et al., 2003; Inoki et al., 
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2003a; Tee et al., 2003; Zhang et al., 2003).  Also, inhibitory signals such as energy 

deprivation can activate TSC complex through the AMP-activated protein kinase (AMPK) 

to suppress mTORC1 activity (Inoki et al., 2003b; Shaw et al., 2004).  On the other hand, 

mTORC1 is also sensitive to certain amino acids through TSC complex-independent 

pathways [reviewed in (Efeyan et al., 2015)].  The best-known function of mTORC1 in 

controlling growth is to directly phosphorylate two regulators of protein translation, p70-

S6 kinase1 (S6K1) and 4E binding protein 1 (4E-BP1).  mTORC1-dependent 

phosphorylation of S6K at T389 activates its kinase activity toward several substrates 

involved in mRNA maturation and protein translation.  Recently, several new substrates 

of mTORC1 have been identified and characterized.  For example, mTORC1 also 

negatively regulates autophagy through the direct phosphorylation of Unc-51-like kinase 

(ULK1) (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009).  Lipin1, which 

regulates lipid metabolism through SREBP1, is also directly phosphorylated by mTORC1 

(Peterson et al., 2011).  In addition, mTORC1 also controls the growth factor receptor-

bound protein 10 (Grb10) as a part of a negative feedback loop towards insulin receptor 

signaling (Hsu et al., 2011; Yu et al., 2011). 
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Figure 1.3  The mTOR Signaling Pathway   
mTOR kinase exists in two distinct complexes: mTORC1 and mTORC2.  Each of these 
complexes shares some common components but also contains unique proteins.  
Growth factor signaling activates mTORC2 which then phosphorylates it substrates, 
including AKT, SGK, and PKC.  AKT promotes mTORC1 activation via inhibiting the 
TSC1/2 complex, which is a negative regulator of mTORC1.  In addition, energy-
sensing AMPK signaling also negatively regulates mTORC1.  There are also other 
signals that can affect mTORC1 signaling, such intracellular amino acid levels. 
Several mTORC1 substrates have been discovered, including S6K, 4EBP-1, ULK, 
Lipin1, and Grb10. 
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Although much is known about the inputs, outputs, and regulatory features of 

mTORC1, mTORC2 regulation and function remains more enigmatic (Figure 1.4).  The 

best-described biochemical function of mTORC2 is to phosphorylate the hydrophobic 

motif (HM) of AKT (S473 in AKT1) and the related SGK (S422 in SGK1) kinases 

(Garcia-Martinez and Alessi, 2008; Sarbassov et al., 2005).  AKT has many effectors 

including GSK3β, FoxO1/3, and mTORC1 (through TSC2 and PRAS40), and most 

models indicate mTORC2 is an essential upstream regulator of pan-AKT activity 

(Laplante and Sabatini, 2012).  However, Rictor-deficient mouse embryo fibroblasts 

(MEF), which lack mTORC2, have seemingly normal GSK3β phosphorylation, 

mTORC1 activity, and only partially decreased FoxO1/3 phosphorylation (Guertin et al., 

2006; Jacinto et al., 2006; Shiota et al., 2006).  It was later elegantly shown in vitro that 

AKT-S473 phosphorylation (i.e. the mTORC2 site) is only partially required for the 

PDK1-regulated AKT-T308 phosphorylation site (Najafov et al., 2012), which is thought 

to be essential for AKT activation (Figure 1.4).  Therefore, the requirement of mTORC2 

activity for AKT functions in vivo remains elusive.   

Mice lacking Rictor die around embryonic day 10.5 (E10.5) (Guertin et al., 2006; 

Jacinto et al., 2006; Shiota et al., 2006); therefore, mTORC2 function in vivo is mostly 

investigated by using conditional knockout models (Cre-LoxP recombination).  In 

adipose tissue, two studies using aP2 (adipocyte protein 2 or called Fabp4) -cre to delete 

Rictor reported no effect on individual adipocyte size or overall adipose tissue mass 

(Cybulski et al., 2009; Kumar et al., 2010).  One of the studies finds aP2-cre;Rictor mice 

eventually develop mild glucose intolerance and ectopic lipid deposition, although a 
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mechanism was not elucidated (Kumar et al., 2010).  However, the specificity of aP2-cre 

to target adipocytes has recently been questioned (Lee et al., 2013; Mullican et al., 2013; 

Wang et al., 2013); therefore, the exact function of mTORC2 in adipose tissue remains 

unclear.  Deleting Rictor in skeletal muscle with Hsa (human α-skeletal actin)-cre or Mck 

(muscle creatine kinase)-cre also has no effect on muscle fiber size or overall muscle 

mass and only minor effects on insulin-mediated glucose metabolism (Bentzinger et al., 

2008; Kumar et al., 2008).  These relatively mild phenotypes are somewhat surprising 

considering the importance of AKT signaling in metabolism; however, in both cases 

(adipose tissue and muscle), the Cre drivers are only active in mature tissues.  On the 

contrary, the in vivo role of mTORC2 in regulating tissue-specific precursor cells is 

almost unknown. 
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Figure 1.4 Overview of the mTOR2 Signaling Pathway  

Schematic showing the key signaling molecules in the mTOR signaling pathway.  In 

this work, the in vivo role of mTORC2 will be extensively examined by multiple 

approaches.  The mechanisms underlying mTORC2-mediated metabolism changes 

will also be discussed. 
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Downstream of the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway 

(Figure 1.4), Forkhead box O (FoxO) family transcription factors (FoxO1, FoxO3, and 

FoxO4) regulate multiple target genes involved in various cellular processes, including 

apoptosis, stress resistance, proliferation and metabolism.  Growth factors and other 

hormones negatively regulate FoxO activity through inhibitory phosphorylation mediated 

by AKT.  This phosphorylation recruits 14-3-3 protein binding and prevents its nuclear 

localization, thus inhibiting FoxO transcriptional activity.  While it is generally accepted 

that FoxO activity is predominantly controlled by the PI3K-AKT signaling, FoxO is also 

modulated by other kinases, including p38-MAPK, extracellular signal–regulated kinases 

(ERKs) and c-Jun N-terminal kinases (JNKs), and by various post-translational 

modifications, such as acetylation and methylation.  In skeletal muscle, FoxO proteins are 

characterized to drive muscle atrophy through upregulating genes involved in proteolysis 

and lysosomal autophagy pathways (Mammucari et al., 2007; Zhao et al., 2007).  On the 

other hand, FoxO1 was shown to negatively regulate adipocyte differentiation (i.e. 

precursor cells develop into lipid-enriched mature adipocytes) by interfering with 

peroxisome proliferator-activated receptor gamma (PPARγ).  Accumulating evidence has 

suggested that FoxO proteins are an important downstream mediator of mTORC2 

function (Guertin et al., 2006; Hagiwara et al., 2012; Masui et al., 2013).  However, the 

mechanisms by which mTORC2 controls FoxOs in vivo remain largely elusive. 

In this dissertation, one major goal is to elucidate the role of mTORC2 in 

metabolic tissues, especially adipose tissue and skeletal muscle.  I first hypothesized that 

mTORC2 could have a role in tissue stem/precursor cells to control development and 
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growth.  In Chapter II, the study (Hung et al., 2014) was designed to test this hypothesis 

by using a model with mTORC2 specifically eliminated in mesenchymal Myf5 (myogenic 

factor 5)+ precursors, which give rise to muscle, brown adipose and some white 

adipocytes.  To our surprise, mTORC2 activity seems to be dispensable for muscle 

development and regeneration.  However, I discovered that mTORC2 promotes adipocyte 

differentiation in vitro and adipose tissue growth in vivo.  Regardless of some caveats, 

there is evidence showing that mTORC2 plays a critical role in regulating lipid 

metabolism and mitochondria activity in brown adipose tissue (BAT).  In particular, 

mTORC2-deficient BAT displays an enhancement in thermogenic function. 

The insulin/growth factor signaling pathway activates the mTOR complexes 

which promote anabolic pathways, including lipid biosynthesis, in adipocytes.  In 

contrast, epinephrine or norepinephrine normally stimulates catabolic processes, such as 

lipid breakdown and oxidation.  While the insulin and catecholamine-induced signaling 

pathways seem to regulate opposing functions, crosstalk and feedback regulation between 

these two pathways have been discovered (Figure 1.5).  Based on the findings in Chapter 

II, I further hypothesized that mTORC2 could be a key regulator in controlling BAT 

metabolism and thermogenesis downstream of insulin and catecholamine-induced 

signaling.  This was further tested in a second study presented in Chapter III by using 

brown fat-specific Cre drivers (Cre recombinase regulated by the promoter of Ucp1 gene) 

to activate gene deletion in mature brown adipocytes.  To summarize, I find that the 

mTORC2 signaling is critical in modulating BAT thermogenic program by regulating 

FoxO1.  Interestingly, this branch of mTORC2 signaling works through AKT-
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independent mechanisms that involve the regulation of FoxO1 acetylation levels.  

Importantly, mice with BAT-specific mTORC2 inhibition are more resistant to diet-

induced obesity at thermoneutral conditions, presumably due to increased brown fat 

activity.  Collectively, the specific role of mTORC2 in BAT have been thoroughly 

examined by a series of in vivo and in vitro models in this work, which could provide 

some advances in understanding brown fat biology for future studies. 

 

Figure 1.5  Crosstalk between the Insulin Signaling Pathway and the β-

Adrenergic Signaling Pathway  

In brown adipocytes, insulin signaling and norepinephrine-stimulated β-adrenergic 

signaling have opposing or synergic effects on each other.  Insulin signaling 

promotes glucose uptake and de novo lipogenesis through AKT activity, which also 

negatively regulates intracellular cAMP levels through PDE3b (Phosphodiesterase 

3b) activity.  On the other hand, β-adrenergic signaling stimulates lipolysis via 



19 
 

cAMP-dependent PKA pathway.  PKA can inhibit insulin receptor activation through 

Rho/ROCK. 
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CHAPTER II:  

Rictor/mTORC2 Loss in the Myf5 Lineage Reprograms Brown Fat 

Metabolism and Protects Mice against Obesity and Metabolic Disease 
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Summary 

The in vivo functions of mechanistic target of rapamycin complex 2 (mTORC2) and the 

signaling mechanisms that control brown adipose tissue (BAT) fuel utilization and 

activity are not well understood. Here, by conditionally deleting Rictor in the Myf5 

lineage, we provide in vivo evidence that mTORC2 is dispensable for skeletal muscle 

development and regeneration but essential for BAT growth. Furthermore, deleting 

Rictor in Myf5 precursors shifts BAT metabolism to a more oxidative and less lipogenic 

state and protects mice from obesity and metabolic disease at thermoneutrality. We 

additionally find that Rictor is required for brown adipocyte differentiation in vitro and 

that the mechanism specifically requires AKT1 hydrophobic motif phosphorylation but is 

independent of pan-AKT signaling and is rescued with BMP7. Our findings provide 

insights into the signaling circuitry that regulates brown adipocytes and could have 

important implications for developing therapies aimed at increasing energy expenditure 

as a means to combat human obesity. 

 

Introduction 

Adipose tissue is essential for many biological processes, and its dysfunction, for 

example in obesity, is associated with a growing spectrum of human diseases. Thus, 

understanding the developmental and metabolic regulation of adipose tissue has broad 

clinical implications. There are two main classifications of adipose tissue: white adipose 

tissue (WAT) and brown adipose tissue (BAT). WAT is the major energy storage site in 
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the body and has critical endocrine functions (Gesta et al., 2007), whereas BAT dissipates 

energy as heat in a process called nonshivering thermogenesis (Cannon and Nedergaard, 

2004).  BAT is particularly important in small rodents and newborn humans to defend 

against cold exposure, and its functional relevance in adult humans was only recently 

appreciated (Cannon and Nedergaard, 2010; Tseng et al., 2010). Brown adipocytes are 

thermogenic because they express uncoupling protein 1 (UCP1), which embeds in the 

inner mitochondrial membrane and produces heat by uncoupling oxidative metabolism 

from ATP production. The energy expending properties of brown adipocytes coupled 

with the observation that human BAT amount inversely correlates with body fat mass is 

garnering interest in developing strategies to increase brown adipocyte number and/or 

activity to treat obesity. However, the mechanisms, and in particular the signaling 

circuitry, by which BAT regulates its energy supply are poorly understood (Townsend 

and Tseng, 2014). With the obesity pandemic seemingly out of control, and with a 

desperate need for novel therapeutics, the importance of elucidating mechanisms 

controlling adipocyte growth and function cannot be overstated. 

Studying the in vivo mechanisms of adipose tissue growth has been challenging 

because adipocyte origins are poorly understood, and consequently few tools are 

available for genetically targeting adipocyte precursors in vivo (e.g., by Cre-Lox). 

Lineage tracing studies indicate early mesenchymal precursor cells expressing Myf5 give 

rise to myocytes, brown adipocytes, and a subset of white adipocytes (Sanchez-

Gurmaches and Guertin, 2014b; Sanchez-Gurmaches et al., 2012; Seale et al., 2008), and 

several recent studies have used the Myf5-Cre knockin allele (Tallquist et al., 2000) to 
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study BAT development (Harms et al., 2014; Ohno et al., 2013; Sanchez-Gurmaches et 

al., 2012; Schulz et al., 2013).  Thus, the multi-fate potential of Myf5 precursors provides 

an opportunity to use genetics to distinguish between signaling mechanisms that are 

required in vivo for the growth of myocytes versus adipocytes. 

Here, we take advantage of the fact that Myf5-Cre expresses in precursors of 

muscle and brown adipocytes to investigate the role of Rictor (i.e., mTORC2) and for 

comparison Raptor (i.e., mTORC1) in muscle and BAT growth.  We report that Raptor is 

essential in the Myf5 lineage for myogenesis, establishing BAT precursors, and viability. 

In contrast, Rictor is dispensable for myogenesis and viability but essential for normal 

BAT growth.  Moreover, Rictor-deficient BAT is more metabolically active, having 

elevated mitochondrial activity and decreased lipogenesis.  Importantly, deleting Rictor 

in the Myf5 lineage also augments diet-induced thermogenesis, which protects mice from 

an obesogenic diet at thermoneutrality.  We additionally find that Myf5-lineage white 

adipocytes require Rictor for normal growth in vivo, suggesting a broader role for 

mTORC2 in adipose tissue development.  Finally, we show that Rictor is also required in 

vitro for brown adipocyte differentiation, but not for pan-AKT activity, and that this 

differentiation defect is rescued with BMP7.  Collectively, our results provide insight into 

the regulation of brown adipocytes and implicate Rictor/mTORC2 as a critical signaling 

node that balances oxidative and lipogenic metabolic states. 
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Results 

Rictor Is Dispensable in the Myf5 Lineage during Embryogenesis 

We investigated the role of mTORC1 versus mTORC2 in vivo in fat versus muscle 

development by generating Myf5-Cre;Raptorfl/fl (RaptorMyf5cKO) and Myf5-Cre;Rictorfl/fl 

(RictorMyf5cKO) conditional knockout (KO) mice.  The RictorMyf5cKO mice are born at the 

expected Mendelian ratio and show no obvious motor or behavioral defects (data not 

shown).  In contrast, RaptorMyf5cKO mice die perinatally. E16.5 RaptorMyf5cKO embryos are 

smaller due to a muscle development defect that is not apparent in control or RictorMyf5cKO 

embryos (Figure 2.1A-D). Transverse sections through the head and neck of RictorMyf5cKO 

embryos reveal an underdeveloped tongue and the absence of the masseter, sternohyoid, 

hyglossus, supraspinatus, prevertebral, and trapezius muscles, the later deficiency 

resulting in hindneck body-wall fragility during specimen preparation (Figure 2.1A-D). 

Thus, Raptor is essential in the Myf5 lineage for viability and muscle development, 

whereas Rictor is dispensable for both. 

 

To confirm that Rictor is dispensable for myogenesis, we purified satellite cells 

(which express Myf5) from RictorMyf5cKO skeletal muscles, confirmed they are deleted for 

Rictor (Figure 2.1E), and show they differentiate ex vivo into myosin heavy chain-

positive multinucleate myofibers (Figure 2.1F and 2.1G). Moreover, deleting Raptor in 

satellite cells in vivo with Pax7-CreER blocks skeletal muscle repair, whereas deleting 

Rictor by the same approach does not prevent muscle regeneration following acute injury 
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(Figure 2.1H and 2.1I). Thus, Rictor is also dispensable for satellite cell differentiation ex 

vivo and for adult myogenesis induced by injury. 

WATs develop postpartum in mice, but early brown adipocyte precursor cells 

(bAPCs) are detectable in E16.5 embryos by hematoxylin and eosin (H&E) staining. 

Qualitatively similar pools of cervical, interscapular, and subscapular bAPCs are 

detectable in control and RictorMyf5cKO E16.5 embryos (Figure 2.1A-D). In contrast, 

interscapular and subscapular bAPCs are absent in E16.5 RaptorMyf5cKO embryos (Figures 

2.1A-D). Notably, a diminished pool of cervical bAPCs is detectable in the RaptorMyf5cKO 

embryos consistent with our lineage tracing data showing that only about half of the 

cervical brown adipocytes arise from Myf5-Cre-expressing precursors (Figure 2.1D) 

(Sanchez-Gurmaches and Guertin, 2014). Thus, Raptor, but not Rictor, is also essential in 

the Myf5 lineage for establishing bAPCs during embryogenesis. 

 

Brown and White Adipose Tissue Growth Requires Rictor 

Although RictorMyf5cKO mice show no obvious embryonic phenotypes, they tend to weigh 

less (not significantly) than controls at postnatal day 1 (P1) (Figure 2.1J), which reaches 

significance from 6 to 15 weeks of life (Figure 2.2A). Individual tissue analysis indicates 

that the weight difference results from decreased adipose tissue mass. For example, the 

interscapular BAT (iBAT) in P1 RictorMyf5cKO neonates weighs about 30% less than 

normal (Figure 2.1K), and during the first weeks of life, the mutant BAT grows but to a 

much smaller size, resulting in mutant iBAT and subscapular BAT (sBAT) depots at 6 
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weeks that weigh about 50% less than controls and are darker (Figure 2.2B). Adipocytes 

in the retroperitoneal and anterior subcutaneous WAT depots (rWAT and asWAT, 

respectively) are also derived largely from Myf5-Cre-expressing precursors ( Sanchez-

Gurmaches and Guertin, 2014 and Sanchez-Gurmaches et al., 2012), and both of these 

depots also decrease in mass by approximately 50% in the RictorMyf5cKO mice (Figure 

2.2C). In contrast, the posterior subcutaneous and perigonadal WAT depots (psWAT and 

pgWAT, respectively), which are composed of Myf5-negative lineage adipocytes, do not 

differ in weight (Figure 2.2C). Skeletal muscles (e.g., triceps, quadriceps, and 

gastrocnemius) and all other lean tissues examined except the kidneys (which are slightly 

larger) are of normal size in the KO (Figure 2.2D). Western analysis for Rictor protein 

confirms Rictor deletion and reduced AKT-S473 phosphorylation in iBAT and muscle 

and, to a lesser extent, in rWAT and asWAT, but not in psWAT, pgWAT, or liver (Figure 

2.2E). 

From 6 weeks to 6 months, the mutant iBAT and sBAT show no additional 

growth increase, whereas asWAT and rWAT grow to about half (asWAT) or one-third 

(rWAT) the size of their anatomically matched control tissues (Figure 2.2F). In contrast, 

RictorMyf5cKO psWAT, pgWAT, muscles, and liver grow to their normal size in the same 

time frame (Figure 2.2F). Thus, RictorMyf5cKO mice can grow small BAT tissues in the 

first weeks of life; however, as RictorMyf5cKO mice age, the iBAT and sBAT maintain their 

weight, whereas asWAT and rWAT grow at a reduced rate. Collectively, these results 

indicate Rictor is essential in the Myf5 lineage for adipose tissue growth, but not for 

skeletal muscle growth. 
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Figure 2.1  Rictor Is Dispensable in the Myf5 Lineage during Embryogenesis 

(A) Transverse sections of E16.5 embryos.  Tongue (1), masseter (2), sternohyoid 

and hyoglossus (3), supraspinatus (4), prevertebral (5), and trapezius muscles (7), 

and cervical BAT (7), interscapular BAT (8), and subscapular BAT precursors (9) are 

indicated.  Bracket marks region of hind neck fragility.  (B) Enlarged image of 

supraspinatus muscle (arrowhead).  Ossifying cartilage of the scapula marked with 

(*).  (C) Enlarged image of prevertebral muscles of the neck (arrowhead).  Carotid 

artery marked with (*).  (D) Enlarged image of trapezius muscle (closed arrowhead) 

and cervical BAT precursors (open arrowhead).  (E) Western blots of satellite cell 

lysates from control (CT) and RictorMyf5cKO conditional knockout (cKO) mice.  

Phospho-S473 AKT antibody was used here.  (F) Differentiated satellite cells stained 

with myosin heavy chain antibody.  (G) Quantification of nuclei number in 

individual differentiated satellite cells.  (H) H&E images of tibialis anterior (TA) 

muscle 1 day after PBS or cardiotoxin injection in control mice (see also 

supplementary methods).  (I) Mice deleted for Raptor or Rictor specifically in 

satellite cells with Pax7-CreER were subjected to an acute cardiotoxin injury assay.  

Mice also carried the Rosa26-LacZ reporter to follow the deleted cells.  H&E images 

and corresponding images for LacZ staining of TA muscle 10 days after cardiotoxin 

injection.  Regenerated muscle cells in the control and Rictor KO are indicated by the 

centrally localized nuclei in H&E stained sections.  No regenerated cells are 

detectable in the Raptor KO.  (J-K) Total body weight (J) and average iBAT weight 

(K) at postnatal day 1 (n=6; bars represent mean ± SEM; t-test; ***p<0.001). 
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Figure 2.2 Postnatal Brown and White Adipose Tissue Growth Requires Rictor 

(A) Growth curves (n = 13; bars represent mean ± SEM; t test; ∗p < 0.05, ∗∗p < 0.01, 

∗∗∗p < 0.001).  (B) BAT mass at 6 weeks (left) (n = 19–21; mean ± SEM; t test; ∗∗∗p < 

0.001) and representative image (right).  (C) Mass of WATs at 6 weeks (n = 14–16; 

mean ± SEM; t test; ∗∗p < 0.01, ∗∗∗p < 0.001) (left) and representative image of 

control and mutant rWAT (6 weeks) (right).  (D) Lean tissue mass at 6 weeks (n = 

15–19; mean ± SEM; t test; ∗∗∗p < 0.001).  (E) Westerns of tissue lysates (6 weeks).  

(F) Average tissue mass (mg) at 6 weeks and 6 months (n = 14–21 for 6 weeks; n = 7 

for 6 months; mean ± SEM; t test; ∗∗∗p < 0.001). 

 

Brown Adipocytes Lacking Rictor Are Smaller 

To better define the BAT growth defect, we histologically examined iBAT in control and 

RictorMyf5cKO mice. At E18.5, there is no qualitative difference between control and 

RictorMyf5cKO bAPCs pools (Figure 2.3A).  In P1 neonates, however, lipids begin 

accumulating in control BAT, but not in the RictorMyf5cKO BAT (Figure 2.3A).  From P1 

to 6 months, lipid droplets grow in size in control BAT but remain small in the 

RictorMyf5cKO BAT (Figure 2.3A), resulting in smaller cells measured by the increase in 

nuclei per mm2 (Figure 2.4A).  Total genomic DNA content is also lower in the 

RictorMyf5cKO BAT, indicating additional hypoplasia (Figure 2.4B).  In contrast, 

RictorMyf5cKO skeletal muscle fibers appear histologically identical to control fibers 
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(Figure 2.4C). 

 

Myf5-Lineage White Adipocytes Lacking Rictor Are Also Small and Multilocular 

Compared to controls, many adipocytes in the RictorMyf5cKO rWAT and asWAT are also 

smaller and multilocular (Figure 2.3B), but the pattern is heterogeneous in that several 

large unilocular white adipocytes are also detectable.  The psWAT and pgWAT 

adipocytes appear unchanged in the KO (Figure 2.4C).  The adipocyte precursor pools in 

rWAT and asWAT are a mix of Myf5-Cre-lineage-positive and negative precursors 

(Sanchez-Gurmaches et al., 2012).  Therefore, we reasoned that the size heterogeneity in 

RictorMyf5cKO rWAT and asWAT could reflect a mosaic of Myf5-lineage-negative (i.e., 

undeleted) and Myf5-lineage-positive (i.e., Rictor KO) cells. To test this, we incorporated 

the Rosa26-mTmG reporter (Muzumdar et al., 2007) into control and RictorMyf5cKO mice 

to irreversibly label Cre-expressing cells and their lineages with membrane-targeted 

enhanced GFP (mGFP); all other (Creneg) cells and their descendants are labeled with 

membrane-targeted tdTomato fluorescent protein (mTFP). The result is unequivocal; only 

the small adipocytes are mGFP+ in RictorMyf5cKO rWAT and asWAT, whereas all the 

large unilocular adipocytes are mTFP+ (Figure 2.3C).  As expected, in both the control 

and RictorMyf5cKO mice, the iBAT adipocytes are mGFP+ and the psWAT and pgWAT 

adipocytes are mTFP+ (Figure 2.4D).  We also detect a slight increase in UCP1 staining 

in the RictorMyf5cKO adipocytes, suggesting the cells might have brown-adipocyte-like 

characteristics (Figure 2.4E) (not shown).  These data confirm that the heterogeneous 
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small-cell phenotype results from cell-autonomous Rictor deletion in the Myf5-lineage 

white adipocytes. 
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Figure 2.3 Brown and White Adipocytes Lacking Rictor Are Smaller and 

Multilocular   

(A) H&E stains of interscapular BAT (6 weeks).  (B) H&E stains of retroperitoneal 

and anterior subcutaneous WAT.  (C) Representative images of mTFP- and mGFP-

labeled adipocytes. Enlarged images indicated by white box. 
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Figure 2.4  Small Adipocytes in asWAT of Rictor
Myf5cKO are UCP1+  

(A) Nuclei density per mm2 of iBAT (6-wks) (n=4; bars represent mean ± SEM; t-

test; ***p<0.001).  (B) Qunatification of genomic DNA from iBAT (6-wks) (n=8; bars 

represent mean ± SEM; t-test; *p<0.05). (C) H&E stains (40x) of the quadricep (Quad) 

muscle and posterior subcutaneous (psWAT) and perigonadal (pgWAT) white 

adipose tissue (6-wks).  (D) Representative images of mTFP and mGFP labeled iBAT, 

psWAT and pgWAT adipocytes.  Note adipocytes are homogenously mGFP+ and 

smaller in the iBAT consistent with homogeneous Rictor loss in this tissue.  (E) 

Top—UCP1 immunohistochemistry stains of iBAT and CL-316243 treated psWAT 

(20x).  Botton—asWAT (20x and 40x) from control and RictorMyf5cKO mice.   
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Lipogenesis Is Decreased in Rictor-Deficient BAT 

We hypothesized that the paucity of lipid and marked color difference between control 

and RictorMyf5cKO BAT indicates a shift from a lipogenic to oxidative state.  To test this, 

we first examined AKT signaling in BAT, which positively regulates lipogenesis. In vivo 

AKT-T308 phosphorylation is intact in both fasted/refed and insulin-stimulated 

RictorMyf5cKO BAT despite ablation of pAKT S473 and pAKT T450 (which is also 

mTORC2 dependent) (Figures 2.5A and 2.6A), consistent with the ability of T-loop 

(T308) and hydrophobic motif (S473) phosphorylation to be regulated independently 

(Pearce et al., 2010).  Surprisingly, phosphorylation of the AKT substrates FoxO1/3, 

GSK3β, TSC2, PRAS40, and AS160 is normal in RictorMyf5cKO BAT (Figure 2.5A), 

indicating Rictor is not essential in BAT for pan-AKT signaling. Rictor loss in BAT also 

does not affect phosphorylation of the SGK substrate NDRG1 (Figure 2.5A), indicating 

mTORC2 is not essential for SGK signaling to NDRG1 in BAT or that a compensatory 

pathway exists. 

Next, we examined whether deleting Rictor in the Myf5 lineage affects BAT 

differentiation markers.  In P1 neonates, Prdm16, C/ebpα, and C/ebpβ expression do not 

differ between controls and KOs, whereas Pparγ and Ucp1 levels slightly decrease 

(Figure 2.5B), indicating a possible delay in BAT maturation in the KOs. However, by 6 

weeks, Pparγ, Prdm16, and C/ebpα express at control levels, whereas C/ebpβ, Ucp1, and 

Dio2 express at significantly higher-than-control levels (Figure 2.5B).  The mature 

adipocyte markers Cidea and aP2 are unchanged between control and KO both at P1 and 

6 weeks (Figure 2.5B).  Consistent with the gene expression data, PPARγ, UCP1, and 
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insulin receptor beta (IRβ) proteins also express at near-control levels in RictorMyf5cKO 

BAT (Figure 2.5A).  Thus, terminal differentiation per se (i.e., PPARγ, UCP1, and IRβ 

induction) occurs in vivo in RictorMyf5cKO brown adipocytes. 

Next, we examined lipogenesis genes. In P1 RictorMyf5cKO BAT, acetyl-coA 

carboxylase (Acc), fatty acid synthase (Fasn), and fatty acid elongase 6 (Elovl6) decrease 

expression by 40%, 40%, and 25%, respectively (Figure 2.5C).  By 6 weeks, expression 

of ATP citrate lyase (Acly) in addition to Acc, Fasn, and Elovl6 is reduced by 90%, 75%, 

80%, and 40%, respectively ( Figure 2.5C), which we confirmed by western blot for 

ACLY and ACC (Figure 2.5A).  In addition, stearoyl-CoA desaturase (Scd1) decreases 

expression by 45% in 6-week RictorMyf5cKO BAT (Figure 2.5C).  The SREBP1c and 

ChREBP transcription factors regulate lipogenesis gene expression (Czech et al., 2013; 

Filhoulaud et al., 2013).  In both P1 and 6-week RictorMyf5cKO BAT, the mRNA 

expression of SREBP1c (Srebf1c), which is induced by insulin, and ChREBP (α and β 

isoforms), which is induced by glucose, is similar (Figure 2.5D).  However, there is a 

marked decrease in the amount nuclear SREBP1c (nSREBP1c), the transcriptionally 

active SREBP1c cleavage product, in Rictor-deficient BAT (Figure 2.5A) consistent with 

the decrease in lipogenic gene expression.  The levels of insig1, another nSREBP1c 

target gene and negative regulator of SREBP1c processing, also decreases (Figure 2.5C). 

The mRNA expression of SREBP2 (which regulates cholesterol biosynthesis) slightly 

decreases in RictorMyf5cKO BAT at 6 weeks, but the SREBP2 target genes HMG-CoA 

synthase (Hmg-cs) and HMG-CoA reductase (Hmg-cr) express at similar levels in control 

and KO BAT ( Figure 2.5D), and nuclear SREBP2 (nSREBP2) accumulates possibly to 
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higher levels in the KO BAT (Figure 2.5A).  We find no difference in AMPK or 

hormone-sensitive lipase phosphorylation between control and RictorMyf5cKO BAT 

(Figures 2.5A and 2.6A).  Together, these results indicate that despite having seemingly 

normal AKT signaling, de novo lipogenesis is reduced in RictorMyf5cKO BAT. 
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Figure 2.5. Rictor-Deficient Brown Adipocytes Have a Lipid Metabolism Defect 

(A) Western blots total and phosphoproteins using 6-week iBAT lysates. Mice were 

fasted overnight and refed for 45 min prior to preparing lysates.  (B–D) qRT-PCR of 

the indicated genes in P1 (n = 6) and 6-week (n = 8) iBAT (mean ± SEM; t test; ∗p < 

0.05,∗∗p < 0.01) 
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Figure 2.6 Insulin-stimulated Signaling in BAT   

(A) Western blots of the indicated total and phospho-proteins using lystates 

prepared from the iBAT of 8-week-old mice.  Overnight fasted mice were i.p. 

injected with PBS or 150U/Kg insulin and tissues were collected 15 minutes post 

injection. 
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Mitochondrial Activity Is Elevated in Rictor-Deficient BAT 

To further examine the metabolic state of RictorMyf5cKO BAT, we examined mitochondrial 

activity.  In P1 neonate RictorMyf5cKO BAT, Pgc1a expresses normally, whereas 

expression of mitochondrial transcription factor A (Tfam), which regulates mtDNA 

replication, and carnitine palmitoyltransferase 1B (Cpt1b), which encodes the rate-

limiting enzyme in β-oxidation, slightly decreases (Figure 2.7A).  In contrast, Pgc1α, 

Tfam, and Cpt1b in addition to Ucp1 express at higher levels in the BAT of 6-week-old 

RictorMyf5cKO mice (Figures 2.7A and 2.5B), suggesting BAT mitochondrial activity 

progressively increases or is maintained at a higher level in RictorMyf5cKO mice as they age. 

To explore this in more detail, we used quantitative RT-PCR (qRT-PCR) arrays to 

broadly measure mitochondrial gene expression in the 6-week-old BAT.  Using arrays for 

functional genes involved in mitochondrial molecular transport and biogenesis, we detect 

increases in several genes indicative of increased mitochondrial activity (Figure 2.7B). 

Furthermore, the mitochondrial citrate and malate transporters Slc25a1 and Slc25a10 

respectively—both of which function in fatty acid biosynthesis, the former also being an 

SREBP1c target gene (Infantino et al., 2007; Mizuarai et al., 2005)—significantly 

decrease expression in the mutant BAT.  Using mitochondrial energy metabolism gene 

arrays, we found 58 additional genes involved in respiration (OXPHOS) are elevated in 

RictorMyf5cKO BAT (Figure 2.8A), suggesting an increase in mitochondrial mass, which 

we confirmed by Cox IV immunofluorescence (Figure 2.7C).  Transmission electron 

microscopy (TEM) reveals individual mitochondria in the mutant BAT are larger and 

have more disorganized cristae (Figure 2.7D).  To directly confirm elevated 
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mitochondrial activity, we measured BAT oxygen consumption rate (OCR) in a Seahorse 

Flux Analyzer and determined that basal and pyruvate-stimulated OCRs are elevated by 

around 18% in RictorMyf5cKO BAT (Figure 2.7E).  We did not detect a significant increase 

in overall oxygen consumption when RictorMyf5cKO mice were placed in metabolic cages 

at 22°C, except when normalized for body weight (Figure 2.8B). Notably, however, mice 

are under thermal stress at this temperature, which can mask effects on BAT activity 

(Feldmann et al., 2009). 

Interestingly, we also detect an approximate 2-fold increase in basal glucose 

uptake in RictorMyf5cKO BAT measured by 18FDG positron emission tomography 

computed tomography scanning (Figure 2.8C) and an increase in lipoprotein lipase (Lpl) 

expression (Figure 2.5C), suggesting that RictorMyf5cKO BAT may consume more nutrients 

than age-matched control BAT.  Small-metabolite profiling reveals that RictorMyf5cKO 

BAT also has elevated levels of inosine monophosphate (IMP) (Figure 2.8D), a 

deamination product of AMP, the accumulation of which suggests increased uncoupling 

(Balcke et al., 2011b).  In an acute cold challenge, Rictor-deficient BAT also induces 

Ucp1 expression significantly more than control BAT and the mutants have no difficulty 

maintaining body temperature, although body temperature regulation in an acute cold 

challenge is largely a function of muscle (Figure 2.7F).  Finally, we see no compensatory 

“browning” in the psWAT as would be expected if RictorMyf5cKO BAT were dysfunctional 

(Figures 2.4C and 2.4D) (Schulz et al., 2013). These results are consistent with Rictor 

loss in BAT shifting metabolism to a more oxidative and less lipogenic state. 
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Figure 2.7 Mitochondrial Activity Is Elevated in Rictor-Deficient BAT   

(A) qRT-PCR of mitochondrial genes in P1 (n = 6) and 6-week iBAT (n = 8) (mean ± 

SEM; t test; ∗p < 0.05,∗∗p < 0.01)  (B) Differentially expressed genes using 

mitochondrial qRT-PCR arrays (n = 4; t test; p < 0.05)  (C) 

Representative immunofluorescence  

images of Cox IV staining in 6-week iBAT (n = 3).  (D) Representative TEM images of 

6-week iBAT (left) and mitochondria size (right) (n = 3; mean ± SEM; t test; ∗∗∗p < 

0.001) (E) Oxygen consumption of iBAT using a Seahorse Flux Analyzer (12 weeks, 

n = 5; normalized to DNA content; mean ± SEM; t test; ∗p < 0.05) (F) qRT-PCR 

of Ucp1 mRNA in iBAT with or without cold exposure (left) (n = 3 for 22°C; n = 4 for 

4°C; mean ± SEM; two-way ANOVA; ∗∗∗p < 0.001) and rectal temperature in acute 

cold challenge (right) (n = 4; mean ± SEM; t test; no significant difference). 
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Figure 2.8 Mitochondria RT-PCR Array, Metabolic Cage Analysis and 

Metabolite Profiling    

(A) Clustering heat map for mitochondrial genes involved in energy metabolism 

qRT-PCR array (n=4).  (B) Metabolic cage analysis of 6wk-old mice under normal 

housing temperature (22°C): Top Left—whole body oxygen consumption; Top 

right—whole body oxygen consumption normalized to body weight; Botton—food 

intake, physical activity, respiratory exchange ratio (RER) and energy expenditure. 

(n=6)  (C) Glucose uptake by 18FDG PET-CT (n=5; bars represent mean ± SEM; t-test; 

*p<0.05).  (D) Metabolite profiling was performed on 6-week control and 

RictorMyf5cKO iBAT.  Note the high levels of IMP, a deamination product of AMP.   AMP 

is formed by the adenylate kinase reaction, which produces ATP (2ADP = AMP + 

ATP).   During metabolic stress or following treatment with chemical uncouplers, 

AMP is deaminated to IMP to ensure ongoing adenylate kinase activity and ATP 

production in order to maintain energy balance (Balcke et al., 2011a). 
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Brown Preadipocytes Require Rictor to Differentiate In Vitro 

To examine if brown adipocyte differentiation also requires Rictor in vitro, we generated 

brown adipocyte precursor cells (bAPCs) harboring an inducible KO system (i.e., 

RictoriKO) in which Rictor deletion is triggered by 4-hydroxytamoxifen (4-OHT) (Figure 

2.9A).  Compared to isogenic controls, inducibly deleting Rictor rapidly and robustly 

depletes Rictor protein and AKT-S473 phosphorylation and, consistent with our in vivo 

data, leaves AKT-T308 phosphorylation intact (Figure 2.9B).  Also consistent with the in 

vivo results, both basal and insulin-stimulated phosphorylation of FoxO1/3, GSK3β, 

TSC2, and PRAS40 are normal in RictoriKO bAPCs (Figure 2.10A).  S6K1 

phosphorylation is also unaffected (Figure 2.10A).  Contrary to the in vivo results, acute 

Rictor loss in vitro decreases NDRG1 phosphorylation (Figure 2.10A).  This indicates 

Rictor is required in cultured bAPCs for SGK activity to NDRG1, but not for pan-AKT 

or mTORC1 activity. 

To our surprise, RictoriKO bAPCs are completely incapable of synthesizing lipid 

droplets when induced to differentiate (Figure 2.10B).  This is surprising, because 

RictoriKO cells maintain normal levels of pAKT-T308, pGSK3β-S9, and pS6K1-T389 

(i.e., PDK1, AKT, and mTORC1 activity, respectively) throughout the differentiation 

protocol (Figure 2.10C).  The differentiation block occurs early as RictoriKO bAPCs fail 

to induce C/ebpα, Pparγ, Prdm16, Pgc1α, Srebf1c, Ucp1, and Glut4 ( Figures 2.10D and 

2.9C).  The expression of C/ebpδ and C/ebpβ on the other hand is induced normally and 

slightly higher (respectively) in the RictoriKO bAPCs at differentiation day 6 (Figure 

2.10D).  Consistent with the gene expression data, PPARγ, IRβ, UCP1, nSREBP1c, ACC, 
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and ACLY levels fail to increase during differentiation in RictoriKO bAPCs (Figure 

2.10E).  Notably, 4-OHT or CreER activation alone (i.e., in the absence of Rictor floxed 

alleles) has no effect on differentiation (not shown).  Moreover, bAPCs prepared from P1 

RictorMyf5cKO neonates also fail to differentiate, indicating that the ex vivo differentiation 

block is not unique to using the inducible KO system (Figure 2.9D).  Importantly, 

expressing recombinant PPARγ in RictoriKO bAPCs rescues IRβ, UCP1, and nSREBP1c 

expression (Figure 2.10F) and lipid droplet production (Figure 2.10G), indicating Rictor 

promotes differentiation at least in part by facilitating PPARγ induction. 

Insulin receptor substrate 1 (Irs1) and Irs3 KO bAPCs also fail to induce PPARγ 

ex vivo (Fasshauer et al., 2001).  It was later shown that Irs1/3 KO bAPCs are unable to 

differentiate because they express high levels of Pref-1, Wnt10a, and Necdin, which 

encode adipogenesis inhibitors (Tseng et al., 2005).  In contrast, Rictor-deficient bAPCs 

express normal levels of Pref-1, Wnt10a, and Necdin in culture, and during 

differentiation, Necdin and Pref-1 increase, but only late in the differentiation protocol 

(Figure 2.9C). Thus, the mechanism by which deleting Rictor inhibits brown adipocyte 

differentiation differs from that of deleting Irs1/3. 
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Figure 2.9 In Vitro Brown Adipocyte Differentiation  (A) Inducible knockout 

differentiation protocol for comparing RictoriKO to isogenic control cells.  Brown 

adipocyte precursors (bAPCs) were split from the same original dish into two 

dishes, one of which received vehicle (EtOH), the other 4-hydroxy-tamoxifem (4-

OHT).  After 3 days of treatment to induce deletion, cells were passed one time and 

then differentiated according to a standard 10-day brown adipocyte induction 

protocol (described in Experimental Procedures).  (B) Western immunoblots 

showing time course following induced Rictor deletion in bAPCs with 4-OHT 

compared to vehicle (EtOH) treated isogenic controls.  (C) qRT-PCR of mRNA levels 

for the indicated differentiation-related genes (n=3; bars represent mean ± SEM; t-

test; *p<0.05, ***p<0.001).  (D) Left—Oil Red O staining of control and RictorMyf5cKO 

bAPCs after differentiation. Right—Western immunoblots showing indicated 

differentiation markers. 
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Figure 2.10.  Rictor Is Required for Brown Adipocyte Differentiation In Vitro 

(A) Western immunoblots using control and RictoriKO brown preadipocyte lysates. 

Cells were serum deprived 3 hr then stimulated with 0, 5, 25, 120, or 600 nM insulin 

for 15 min prior to lysis.  (B) Oil red O staining after differentiation.  (C) Western 

immunoblots using lysates from the indicated days of differentiation.  (D) qRT-PCR 

for differentiation-related genes (n = 3; mean ± SEM; t test; ∗p < 0.05, ∗∗∗p < 0.001).  

(E) Same as (C).  (F) Western immunoblots of cell lysates collected at day 10 of 

differentiation. M, mock; V, empty vector; γ2, recombinant PPARγ2. The γ1 and γ2 

isoforms are indicated.  (G) Oil red O staining of cells in (F). 
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AKT1 Functions Downstream of Rictor in Brown Adipocyte Differentiation 

To further explore the mechanism by which Rictor regulates differentiation, we next 

asked whether an AKT or SGK pathway is required downstream of Rictor.  To this end, 

we generated RictoriKO bAPCs that express hemagglutinin (HA)-SGK1, HA-AKT1, and 

HA-AKT2 or their phosphomimetic counterparts HA-SGK-S422D, HA-AKT1-S473D, 

and HA-AKT2-S474D in which a phosphomimetic residue was placed at the mTORC2 

hydrophobic motif site, confirmed they were functional (Figure 2.11A), and asked 

whether any of these constructs rescue differentiation. Only HA-AKT1-S473D efficiently 

rescues lipid biosynthesis (Figure 2.12A).  HA-AKT1-S473D-expressing RictoriKO 

bAPCs also induce PPARγ and restore IRβ, UCP1, nSREBP1c, ACLY, and ACC 

expression (Figure 2.12B).  Thus, Rictor promotes differentiation as part of mTORC2 

through an AKT pathway. 

Our rescue experiments point to AKT1 as the isoform driving bAPC 

differentiation in vitro.  Consistently, AKT1 is highly expressed in undifferentiated 

precursors and decreases expression during differentiation, whereas AKT2 expression 

increases during differentiation (Figure 2.11B).  To further examine the role of AKT1 

and AKT2 in bAPC differentiation, we generated bAPC lines that specifically lack either 

Akt1 or Akt2 and determined their in vitro differentiation capacity.  Consistent with 

AKT1, but not AKT2, being required for differentiation, Akt1-deficient bAPCs cannot 

efficiently synthesize lipid droplets (Figure 2.12C) or upregulate PPARγ, IRβ, or UCP1 

when induced to differentiate (Figure 2.12D).  In contrast, Akt2-deficient bAPCs induce 

PPARγ, IRβ, and UCP1 normally (Figures 2.12C and 2.12D), indicating that AKT1 is 
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indeed the isoform required downstream of Rictor/mTORC2 for brown adipocyte 

differentiation.  Interestingly, we noticed in our in vitro differentiation assays that 

although the Akt2-deficient cells differentiate, they fail to induce nSREBP1c, that ACLY 

and ACC express at low levels, and that lipid droplet content is reduced (Figures 2.12C 

and 2.12D).  This suggests that although AKT2 is not essential for differentiation, it is 

important downstream of Rictor/mTORC2 for lipid metabolism.  Indeed, when we 

immunoprecipitate AKT1 or AKT2 from undifferentiated bAPCs, most of the AKT 

phosphorylation is on AKT1, while in vivo the bulk of AKT phosphorylation shifts to 

AKT2 (Figures 2.11C and 2.11D).  Thus, although the inability of RictoriKO bAPCs to 

differentiate in culture reflects an AKT1 deficiency, the in vivo metabolic phenotype 

appears to reflect an AKT2 deficiency. 

 

BMP7 Rescues Brown Adipocyte Differentiation in the Absence of Rictor 

In vitro RictoriKO bAPCs cannot differentiate (i.e., induce PPARγ and UCP1), but in vivo, 

PPARγ and UCP1-positive Rictor-deficient BAT develops.  One possible explanation for 

this paradox is that in vivo there are developmental signals present that are missing from 

the artificial in vitro differentiation assay.   The signals that drive brown adipocyte 

differentiation in vivo are poorly understood.  One proposed inducer of brown adipocyte 

differentiation is the transforming growth factor-β superfamily member BMP7 (Schulz et 

al., 2013; Tseng et al., 2008).  When given to control or RictoriKO bAPCs, BMP7 does not 

induce AKT phosphorylation (Figure 2.11E).  However, when supplemented into the 
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differentiation cocktail, BMP7 restores to RictoriKO bAPCs their ability to synthesize lipid 

droplets (Figure 2.12E) and express PPARγ, IRβ, UCP1, and to a lesser extent 

nSREBP1c, ACLY, and ACC (Figure 2.12F).  This is consistent with the in vitro 

differentiation assay lacking signaling molecules present in vivo and suggests BMP7 and 

mTORC2-AKT1 signaling converge during brown adipocyte differentiation.  A model 

depicting the role mTORC2-AKT signaling in vitro in brown adipocyte differentiation is 

shown in Figure 2.12G. 
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Figure 2.11 Differential Requirements for AKT Signaling In vitro and In vivo  

(A) Western immunoblots of undifferentiated control and RictoriKO bAPCs stably 

expressing the indicated recombinant constructs.  Cells were treated with fresh 

culture media before harvesting.  (B) Western immunoblots of AKT1 and AKT2 

protein expression at the indicated days during differentiation of wild type bAPCs.  

(C) Western immunoblots of lysates generated from AKT isoform-specific 

immunoprecipitation experiments using control or RictoriKO undifferentiated bAPCs.  

Immunoblots of the whole cell lystates (WCL) are shown to the left.  (D) Western 

immunoblots of lysates generated from AKT isoform-specific immunoprecipitation 

experiments using iBAT dissected from 6-week-old control and RictorMyf5cKO mice. 

(E) Western immunoblots of lysates prepared from undifferentiated control and 

RictoriKO cells.  Cells were serum deprived for 3 hours, then stimulated with FBS or 

BMP7 (3.2nM) for 15 minutes. 
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Figure 2.12 Recombinant AKT1-S473D or BMP7 Supplementation Rescue 

Differentiation in the Absence of Rictor   

(A) Oil red O staining of differentiated control (vehicle) and RictoriKO cells (4-OHT) 

cells stably expressing the indicated constructs.  (B) Western immunoblots 

corresponding to (A).  (C) Oil red O staining of differentiated Akt1 and Akt2 

conditional knockout and control bAPCs.  (D) Western immunoblots corresponding 

to (C).  (E) Oil red O staining of differentiated control and RictoriKO cells in the 

presence or absence of BMP7 (3.2 nM added day 1 during differentiation).  (F) 

Western immunoblots of corresponding to (E).  (G) Model summarizing the role of 

mTORC2 in vitro in brown adipocyte differentiation. 
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Rictor
Myf5cKO Mice Are Less Susceptible to Obesity and Metabolic Disease at 

Thermoneutrality 

The higher metabolic activity of Rictor-deficient BAT led us to wonder whether 

RictorMyf5cKO mice are resistant to obesity.  Chronic consumption of a high-fat diet (HFD) 

triggers a phenomenon in mice called diet-induced thermogenesis, which requires UCP1 

and counteracts obesity (Cannon and Nedergaard, 2010; Feldmann et al., 2009).  Because 

BAT activity is masked by chronic thermal stress at 22°C, we conducted the following 

studies at thermoneutrality (30°C for mice), which exempts mice from thermal stress 

(Feldmann et al., 2009).  When eating a normal chow diet, control and RictorMyf5cKO mice 

gain equal weight (Figure 2.13A) and consume the same total energy (Figure 2.13B) over 

12 weeks.  In contrast, when eating an HFD, control mice gain 14.67 ± 1.05 g whereas 

RictorMyf5cKO mice gain 10.57 ± 1.18 g (Figure 2.13A), despite both groups consuming the 

same energy (Figure 2.13B).  Thus, controls gain 64% more weight when eating an HFD 

versus chow compared to RictorMyf5cKO mice.  This suggests RictorMyf5cKO mice living at 

thermoneutrality and eating an HFD are less metabolically efficient than controls, which 

is indeed the case (Figure 2.13C). 

The resistance to weight gain in the HFD-fed RictorMyf5cKO cohort is partly due to 

reduced growth of adipose tissue.  For example, the pgWAT gains significantly less mass 

in the HFD-fed RictorMyf5cKO cohort than in HFD-fed controls (Figure 2.13D).  Liver and 

heart also grow larger in controls eating HFD compared to chow, whereas liver and heart 

grow to the same mass in the RictorMyf5cKO cohorts regardless of diet (Figures 2.13D and 

2.14A).  Diet has no effect on other lean tissues in either the controls or RictorMyf5cKO 
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cohorts (Figures 2.13D and 2.14A).  That pgWAT grows less in HFD-fed RictorMyf5cKO 

mice compared to HFD-fed controls indicates systemic protection against obesity is 

occurring because Myf5-Cre does not target pgWAT ( Figures 2.2F and 2.4C).  The 

reduction in pgWAT mass is due in part to smaller adipocyte size (Figure 2.13E); the 

livers of RictorMyf5cKO mice also resist hepatic steatosis (Figure 2.13E), and the HFD-fed 

RictorMyf5cKO mice perform better in a glucose tolerance test (Figure 2.14B). 

In chow-fed cohorts, histology reveals that control BAT adopts a more “white 

adipocyte-like” appearance (Figure 2.13E).  In contrast, the BAT in chow-fed 

RictorMyf5cKO mice resists the whitening effects of living at thermoneutrality and 

maintains a more “brown-adipocyte-like” appearance (Figure 2.13E).  The resistance of 

RictorMyf5cKO BAT to whitening is reflected in the gene expression signature; for example, 

when normalized to BAT gene expression at 22°C, the shift to thermoneutrality decreases 

the expression of BAT-selective genes (Prdm16, Sgk2, cideb, and cyp2b10) and increases 

the expression of WAT-selective genes (Dpt1, Retn, Trim14, and Nnmt) (Harms et al., 

2014) to a greater extent in control BAT than in RictorMyf5cKO BAT, which maintains a 

more BAT-like identity (Figure 2.14C). 

In HFD-fed cohorts, histology reveals a large number of multilocular adipocytes 

in control BAT (Figure 2.13F) that are not apparent in chow-fed controls (Figure 2.13E), 

suggesting diet-induced thermogenesis.  This is reflected in the gene expression data as 

Prdm16 increases in control BAT in HFD-fed mice compared to chow-fed mice (Figure 

2.13G), whereas the WAT-specific genes Retn, Trim14, and Nnmt decrease (Figure 

2.13G).  Histology also reveals that RictorMyf5cKO BAT is even more “brown-like” in the 
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HFD-fed cohort, exhibiting a uniform abundance of small lipid droplets (Figure 2.13F) 

and a stronger BAT gene signature (i.e., elevated Prdm16, Sgk2, Cideb, and Cyp2b10 and 

decreased Dpt1, Retn, Trim14, and Nnmt) (Figure 2.13G).  Consistently, BAT functional 

genes (Ucp1, Pgc1α, Cpt1β, and Dio2) are induced to a greater extent in HFD-fed 

RictorMyf5cKO mice (Figure 2.13H), which also maintain low Acly, Acc, and Fasn 

expression (Figure 2.14D).  Importantly, UCP1 protein levels are higher in the BAT of 

RictorMyf5cKO mice eating an HFD (Figure 2.13I).  Notably, after 20 weeks of eating an 

HFD, the control BAT reverts to a more white-adipocyte-like histology; however, BAT 

character is preserved in RictorMyf5cKO mice (Figure 2.14E).  Collectively, these results 

suggest that inhibiting mTORC2 in BAT increases diet-induced thermogenesis and, 

consequently, RictorMyf5cKO mice living without thermal stress and consuming an 

obesogenic diet are less susceptible to developing obesity and metabolic disease. 
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Figure 2.13  RictorMyf5cKO Mice Exempt from Thermal Stress and Consuming a 

High-Fat Diet Are Resistant to Obesity and Metabolic Disease   

(A) Weight gain of control and RictorMyf5cKO mice during 12-weeks of normal 

chow (chow) or high-fat diet (HFD) (n = 8 control and n = 12 for KO in chow; n = 10 

for both genotypes on an HFD; mean ± SEM; t test; ∗p < 0.05). Control mice initially 

weighed 21.63 ± 0.812 g in the chow group and 21.24 ± 0.621 in the HFD group. The 

RictorMyf5cKO mice initially weighed 19.42 ± 0.305 g in the chow group and 19.32 

± 0.348 in the HFD group.  (B) Total energy intake (MJ) during the feeding regimen 

in (A). Control mice consumed 3.75 ± 0.56 g of chow and 2.81 ± 0.12 g of HFD; 

RictorMyf5cKO mice consumed 3.85 ± 0.24 g of chow and 2.95 ± 0.35 g of HFD.  (C) 

Metabolic efficiency determined as the amount of body weight increase (g) per MJ 

food consumed (n = 8 control and n = 12 KO on chow; n = 10 for both genotypes on 

HFD; mean ± SEM; two-way ANOVA; ∗p < 0.05, ∗∗∗p < 0.001).  (D) Mass (mg) of the 

indicated tissues collected from control and KO mice after 12 weeks on chow or an 

HFD (n = 8 control and n = 12 KO on chow; n = 10 for both genotypes on HFD; mean 

± SEM; two-way ANOVA; ∗p < 0.05, ∗∗∗p < 0.001).  (E and F) H&E staining of iBAT 

and pgWAT and oil red O staining of livers after 12 weeks of eating chow (E) or and 

HFD (F).  (G) qRT-PCR of the indicated brown and white fat genes in iBAT from 

chow- or HFD-mice (n = 8 control and n = 12 KO on chow; n = 10 for both genotypes 

on HFD; mean ± SEM; two-way ANOVA; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; # 

indicates significant difference over the control chow group).  (H) qRT-PCR of the 
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indicated metabolic genes in iBAT from chow- or HFD-mice (n = 8 control and n = 12 

KO in chow; n = 10 for both genotypes in HFD; mean ± SEM; two-way ANOVA; ∗p < 

0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; # indicates a significant difference over the control 

chow group).  (I) Western immunoblots of iBAT lysates. 
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Figure 2.14   RictorMyf5cKO Mice Exempt from Thermal Stress and Consuming a 

High-Fat Diet Are Resistant to Obesity and Metabolic Disease    

(A) Mass (mg) of the indicated tissues collected from control and RictorMyf5cKO mice 

living at thermoneutrality (30°C) following 12-weeks of eating chow or HFD.  (n=8 

for control and n=12 for KO in chow; n=10 for both genotypes in HFD; bars 

represent mean ± SEM; two-way ANOVA; *p<0.05, ***p<0.001)   (B) Glucose 

tolerance test of control and RictorMyf5cKO mice on chow (top) or HFD (bottom) living 

at thermoneutrality.  The test was performed during the 11th week of the 12-week 

experiment. (C) qRT-PCR of the indicated brown and white fat genes in iBAT from 

control and RictorMyf5cKO mice eating chow diet and living at thermoneutrality (n=8 

for control and n=12 for KO in chow; bars represent mean ± SEM; two-way ANOVA; 

*p<0.05, **p<0.01, ***p<0.001).  The expression level of each gene is normalized to 

the corresponding gene level in iBAT from age-matched control mice eating chow 

but living at the standard housing temperature (22°C).  (D) qRT-PCR of the 

indicated lipogenesis genes in iBAT from chow or HFD mice (n=8 for control and 

n=12 for KO in chow; n=10 for both genotypes in HFD; bars represent mean ± SEM; 

two-way ANOVA; *p<0.05, **p<0.01, ***p<0.001; # indicates significant difference 

over the control chow group). (E) Representative H&E images (n=4) of control and 

KO mice fed with HFD at thermoneutrality for 20 weeks.   
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Discussion 

Transcriptional regulation of BAT development has been extensively described 

(Kajimura et al., 2010), whereas less is known about the signaling mechanisms that 

regulate BAT. The control of brown fat fuel utilization is also incompletely understood 

(Townsend and Tseng, 2014).  Previous studies reported that conditionally deleting 

Rictor in WAT and BAT or skeletal muscle has no effect on WAT or BAT mass or 

individual adipocyte or myocyte size (Bentzinger et al., 2008; Cybulski et al., 2009; 

Kumar et al., 2008; Kumar et al., 2010).  However, these studies used Cre drivers that 

reportedly delete Rictor in mature cells, which led us to hypothesize that Rictor/mTORC2 

may be more important for BAT/WAT and/or muscle development. By conditionally 

deleting Rictor in Myf5 precursors, we discovered that Rictor is not essential in vivo for 

muscle development or regeneration.  In contrast, Myf5-lineage brown and white 

adipocytes lacking Rictor are reduced in size.  Furthermore, Rictor-deficient BAT 

undergoes a metabolic shift to a more oxidative and less lipogenic metabolic despite 

having seemingly normal pan-AKT signaling.  Importantly, at thermoneutrality, this 

protects mice against an obesogenic diet.  These findings implicate Rictor/mTORC2 as 

an essential signaling node in BAT that regulates the balance between fatty acid 

oxidation and storage. These findings could have important implications for 

understanding the signaling mechanisms that regulate fuel usage and metabolic activity in 

human BAT. 
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We also report that in vitro brown adipocyte differentiation requires 

Rictor/mTORC2.  Mechanistically, Rictor/mTORC2 promotes Pparγ induction through 

AKT1 independently of pan-AKT signaling and mTORC1 activity.  In vivo, however, 

brown adipocytes differentiate in RictorMyf5cKO mice despite lacking Rictor expression. 

We hypothesize that this paradox indicates that the artificial in vitro culture conditions 

lack important signals present in vivo that overcome this deficiency.  Supporting this 

notion, supplementing the differentiation assay with BMP7, a proposed in vivo inducer of 

brown adipocyte differentiation and thermogenesis (Schulz and Tseng, 2013; Tseng et al., 

2008), rescues differentiation in the absence of Rictor.  Notably, we do detect low Pparγ 

expression in RictorMyf5cKO P1 BAT, which may reflect the role of Rictor/mTORC2 in 

early brown adipocyte differentiation and explain the mutant BAT hypoplasia. Exactly 

how Rictor/mTORC2 and BMP7 signaling might converge on PPARγ is not yet clear.  

We also show that during brown adipocyte differentiation, the major AKT isoform 

switches from AKT1 to AKT2; thus, although Rictor/mTORC2 may regulate 

differentiation through an AKT1 pathway that can be bypassed in vivo, its role in BAT 

metabolism is likely mediated through an AKT2 pathway that cannot be compensated for.  

Consistent with this idea, whole-body Akt2 KO mice among many other phenotypes have 

smaller BATs (Cho et al., 2001; Garofalo et al., 2003). 

Why does deleting Rictor in BAT cause a metabolic shift?  One possibility is that 

forkhead box O (FOXO) transcription factors are more active in Rictor-deficient brown 

adipocytes.  FOXOs are regulated by multiple signals and function as cellular 

homeostasis regulators under stressful conditions (Eijkelenboom and Burgering, 2013).  
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FoxO1 and FoxO3 are AKT substrates that are partially dephosphorylated in some 

Rictor-deficient cells (Guertin et al., 2009; Guertin et al., 2006; Hagiwara et al., 2012; 

Jacinto et al., 2006; Yuan et al., 2012). When dephosphorylated, FoxO1/3 translocate to 

the nucleus, where they affect metabolism, survival, and cell-cycle genes and the activity 

of transcriptional regulators (including PPARγ and C/EBPα) (Eijkelenboom and 

Burgering, 2013).  However, FoxO1/3 phosphorylation is not affected in Rictor-deficient 

BAT; thus, if the metabolic shift is driven by FoxO1/3, it may be through an alternative 

mechanism such as acetylation (Banks et al., 2011; Masui et al., 2013).  Another 

possibility is that FoxC2 mediates the metabolic shift (Cederberg et al., 2001; Yao et al., 

2013); however, we do not observe any change in FoxC2 expression in Rictor-deficient 

preadipocytes (not shown), nor do we see effects on the FoxC2 targets C/ebpβ or Wnt10b 

during differentiation (Gerin et al., 2009).  The shift could also be mediated through 

unidentified AKT substrates that uniquely require hydrophobic motif phosphorylation. 

This is an important ongoing area of investigation. 

 

Consistent with the Myf5 lineage giving rise to a subset of white adipocytes, we 

also uncovered an essential role for Rictor/mTORC2 in white adipocyte growth in vivo.  

This confirms our previous discovery that some white adipocytes arise from Myf5-Cre 

expressing precursors (Sanchez-Gurmaches and Guertin, 2014b; Sanchez-Gurmaches et 

al., 2012).  However, because in the RictorMyf5cKO mice the Rictor-deficient white 

adipocytes are interspersed heterogeneously with nondeleted adipocytes within the same 

depot, we could not perform the appropriate whole-tissue biochemical studies using 
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Rictor-deficient WAT.  We did, however, determine that RictoriKO white adipocyte 

precursors purified from the stromal vascular fraction of psWAT (which are not Myf5-

lineage derived) are also defective at differentiating in vitro (not shown), indicating 

Rictor also has a cell-autonomous role in white adipocyte differentiation that is not 

dependent upon being Myf5-lineage derived. To determine the in vivo relevance of these 

findings, we will need to identify Cre drivers that express uniformly and specifically in 

white adipocyte precursors; however, the origins of adipocytes are just beginning to be 

revealed, and appropriate tools are not yet available for this line of investigation. 

Is Rictor/mTORC2 a master regulator of lipid metabolism? Recent studies of liver 

collectively report that deleting hepatic Rictor results in a complex phenotype including 

increased gluconeogenesis, decreased glycolysis, and impaired lipogenesis (Hagiwara et 

al., 2012; Lamming et al., 2012; Yuan et al., 2012).  Two studies find that hepatic Rictor 

loss also decreases SREBP1c activity; however, one study suggests AKT2 mediates this 

function (Hagiwara et al., 2012), whereas the other proposes an AKT-independent 

pathway (Yuan et al., 2012).  These two studies are also inconsistent with respect to how 

Rictor loss affects AKT signaling, and thus the role of hepatic Rictor/mTORC2 is 

currently controversial.  Nevertheless, the glucose uptake and glycolysis defect is 

reportedly independent of the lipogenesis defect, because restoring glucose flux in Rictor-

KO hepatocytes did not rescue lipogenesis (Hagiwara et al., 2012).  This study also 

reports that fatty acid oxidation genes are elevated in Rictor-deficient hepatocytes 

(Hagiwara et al., 2012).  Thus, Rictor/mTORC2 may have a broad role in establishing a 

prolipogenic metabolic state.  Going forward, it is important to determine if 
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Rictor/mTORC2 regulates de novo lipogenesis and β-oxidation by a common or 

coordinate set of mechanisms or whether one metabolic deficiency is indirectly driving 

the other.  Notably, we detect a decrease in lipogenesis gene expression in P1 BAT 

lacking Rictor, but the increase in fatty acid oxidation gene expression we first detect in 

6-week mutant BAT. Thus, mitochondrial activity may progressively increase in the 

Rictor-deficient BAT and be secondary to a lipogenesis defect.  Regardless, our findings 

support the idea that targeting lipogenesis and/or β-oxidation pathways in adipocytes 

could be one approach to treating obesity and diabetes. 

One prediction is that increasing BAT energy expenditure could have antiobesity 

therapeutic potential (Tseng et al., 2010).  To achieve this goal, a deeper understanding of 

how BAT utilizes fuel is required  (Townsend and Tseng, 2014).  An important finding in 

our study is that RictorMyf5cKO mice living at thermoneutrality, when challenged with an 

obesogenic diet, induce higher levels of UCP1 and are more resistant to developing 

obesity and metabolic disease compared to HFD-fed controls.  This suggests that 

inhibiting mTORC2 in BAT augments diet-induced thermogenesis (Cannon and 

Nedergaard, 2010; Feldmann et al., 2009), although we cannot yet rule out that Rictor 

loss in other Myf5-lineage tissues might also contribute to this phenotype.  It is currently 

being debated whether humans have classic brown adipocytes or a potential third class of 

adipocyte called a brite/beige adipocyte (Nedergaard and Cannon, 2013).  Recent work 

indicates that in the neck, deep fat is similar to rodent BAT and expresses high levels of 

UCP1, whereas more superficial fat expresses lower UCP1 levels and has more 

brite/beige characteristics (Cypess et al., 2013).  Notably, humans typically adjust 
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temperature to be around thermoneutrality (Cannon and Nedergaard, 2010), and the BAT 

of mice living at thermoneutrality appears more “white-fat like,” or perhaps more 

“brite/beige-fat” like (Figure 2.13).  Thus, it seems likely that humans possess classic 

brown fat and that studies of brown fat in mice will provide important insights into 

human BAT regulation.  Continued elucidation of mTORC2 pathways in BAT 

bioenergetics could therefore lead to novel antiobesity therapies that target cellular 

energy expenditure. 
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CHAPTER III:  

the Role of mTORC2 Signaling in Mature Brown Adipocytes 
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Introduction 

By studying in vivo functions of mTORC2 in Myf5+ precursors, I previously described 

that mTORC2 plays a critical role in adipose tissue growth and metabolism.  In particular, 

mTORC2 deficiency shifts BAT metabolism towards a more oxidative and less lipogenic 

state by enhancing mitochondrial OXPHOS genes and thermogenic program.  These 

results are quite surprising since those phenotypes were not reported in previous studies 

for the role of mTORC2 in adipose tissue using aP2 (adipocyte protein 2)-Cre (Cybulski et 

al., 2009; Kumar et al., 2010).  The reason causing these discrepancies is not entirely 

clear, but the genetic tools used are very different.  The Cre recombinase driven by the 

promoter of Myf5 expresses in mesenchymal precursors, which give rise to myocytes, 

brown adipocytes and a subset of white adipocytes (Sanchez-Gurmaches and Guertin, 

2014b), while the transgenic Cre controlled by the aP2 promoter is presumably active 

only when adipocytes (includes brown and white adipocytes) become mature.  However, 

it was recently shown that aP2-Cre also induces gene recombination in other cell types, 

including endothelial cells and heart (Lee et al., 2013).  Thus, both systems are not 

perfect for genetic studies in mature brown adipose tissue due to concerns on tissue 

specificity and development.  To circumvent these caveats, I utilized two different 

strategies in this chapter, namely Ucp1-Cre and Ucp1-CreER, to specifically examine the 

role of mTORC2 in mature brown adipose tissue.  Here, I demonstrated that transgenic 

Ucp1-Cre activity is mostly restricted to classical brown adipocytes, which helped clarify 

physiological consequences of gene disruption in a cell- and tissue-autonomous manner.  

Moreover, the tamoxifen-controlled CreER system allows temporal control of gene 
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targeting at the adult stage to avoid potential developmental issues.  By using these 

strategies, I find here that mTORC2 has critical roles in both regulating fuel utilization 

and the thermogenic program in BAT.  Specifically, I provide evidence supporting a 

model that mTORC2 has a dual role in controlling metabolic processes: it promotes 

glucose flux and lipid biosynthesis but negatively regulates lipid uptake and oxidation.  

Importantly, inhibiting mTORC2 in BAT enhances the thermogenic program even in the 

absence of thermal stress which profoundly protects mice against obesity and its 

associated metabolic syndromes, such as nonalcoholic fatty liver disease (NAFLD).  

Collectively, the results provide new insights into the role of mTORC2 in regulating BAT 

fuel utilization and thermogenesis. 

 

Results 

mTORC2 in BAT Controls Fuel Utilization 

To gain insights into the role of mTORC2 in mature brown adipose tissue, I generated 

congenital BAT Rictor knockout mice by combining the ucp1-cre driver with floxed 

rictor alleles (Ucp1-Cre;Rictorfl/fl).  The RictorUcp1-cKO mice are born at expected ratios 

and grow normally under standard vivarium conditions (normal chow diet; 22°C) (Figure 

3.1A).  Gross tissue mass of all classical BATs, like interscapular BAT (iBAT), 

subscapular BAT (sBAT) and cervical BAT (cBAT) are reduced ~50% in RictorUcp1-cKO 

mice compared to BATs in control mice (Figure 3.1B).  The reduction in tissue mass is, 

at least partially, due to a reduction in lipid storage as shown by histological analysis 
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(Figure 3.1C).  Except for a modest decrease in liver and anterior subcutaneous WAT 

(asWAT) mass, all other tissues are of normal size (Figure 3.1D and 3.1E).  As expected, 

Rictor protein levels are decreased in iBAT, and the lack of mTORC2 signaling in 

Rictor-deficient BATs is confirmed by the reduction in both AKT S473 and T450 

phosphorylation (Figure 3.1F).  In contrast, there is no decrease in either Rictor protein or 

AKT phosphorylation in posterior subcutaneous WAT (psWAT), perigonadal WAT 

(pgWAT) and liver (Figure 3.1G).  Thus, under standard conditions (mild cold stress at 

22°C) Ucp1-Cre mostly restricts Rictor deletion to classic brown adipocytes where the 

mTORC2 signaling is required to maintain intracellular lipid stores. 

Importantly, the paucity of lipid storage is almost identical to the previous 

findings in RictorMyf5cKO mice, suggesting mTORC2 signaling is directly involved in 

regulating the homeostasis of lipid metabolism.  Hence, I thought to examine how 

molecular markers and pathways affected by mTORC2 inhibition in mature brown 

adipocytes by quantitative real-time PCR (qRT-PCR).  First, adipocyte markers (C/ebpα, 

C/ebpβ, Pparγ1/2, Fabp4 and Adipoq) (Figure 3.1H) and BAT identity genes (Ucp1, 

Elovl3, Dio2, Prdm16 and Pgc1α) (Figure 3.1I) express normally in RictorUcp1-cKO BAT, 

indicating BAT development is not affected by mTORC2 loss.  Interestingly, interferon 

regulatory factor 4 (Irf4) is highly induced in Rictor-deficient BAT (Figure 3.1I).  Irf4 is 

a newly identified activator of BAT thermogenic program, which cooperates with PGC1α 

to regulate Ucp1 expression (Kong et al., 2014).  However, higher Irf4 levels are not 

paralleled by a higher Ucp1 mRNA expression, although UCP1 protein levels are slightly 
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elevated in Rictor-deficient BAT (Figure 3.1F and 3.1J).  The discrepancy in Ucp1 

expression between the result here and the previous Myf5 model is needed to be clarified. 

On the other hand, an elevation in lipolysis (i.e. the breakdown of triglycerides) 

activity could also result in a decrease of lipid content in adipocytes.  Adipose 

triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), two essential lipases 

mediating lipolysis, express at similar mRNA and protein levels in both control and 

Rictor-deficient BAT.  Also, the phosphorylation levels of two regulatory sites on HSL 

(S565 site by AMPK; S660 site by PKA) are also not perturbed by mTORC2 inhibition, 

suggesting lipolysis is not a primary cause for the reduction in lipid stores.  Our lab has 

previously shown that mTORC2 signaling promotes lipid biosynthetic pathways in brown 

(Hung et al., 2014) and white adipose tissue (Tang et al., 2016).  Consistent with this 

notion, the mRNA (Figure 3.2A) and protein (Figure 3.1F) levels of Acly, Acc, and Fasn 

are decreased in the BAT of RictorUcp1-cKO mice.  Importantly, Chrebpβ, which encodes a 

transcriptional activator for DNL genes (Herman et al., 2012), but not Srebf1c, is severely 

reduced in mRNA levels (Figure 3.2A).  The expression of Agpat1 and Agpat2, which 

function in de novo phospholipid and triacylglycerol biosynthesis, are also modestly 

reduced (Figure 3.2B).  Therefore, the reduction in lipid production pathways could 

partially explain the low lipid content observed in Rictor-deficient BAT.  These results 

from BAT-specific knockout mice corroborate with the previous findings in RictorMyf5cKO 

mice and suggest that mTORC2 signaling intrinsically (or cell-autonomously) regulates 

the expression of de novo lipogenesis pathway.   
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When BAT is activated, intracellular lipid storage is rapidly mobilized to provide 

fatty acids as a major fuel source for thermogenesis.  Meanwhile, large amount of glucose 

and lipids are withdrawn from the circulation into BAT, where they are further processed 

to replenish the lipid storage.  The high glucose flux and high lipid oxidation are 

hallmarks of BAT metabolism during thermogenesis.  However, it is still not entirely 

clear about the signaling pathways coordinating glucose and fatty acid utilization.  Our 

previous report (Tang et al., 2016) has made a connection between the mTORC2 

signaling and glucose uptake in white adipocytes.  Given the DNL pathway is 

compromised in KO BAT, I thus hypothesized that glucose uptake could be affected by 

mTORC2 loss.  As expected, BAT incorporates a much higher amount of glucose than 

pgWAT, but it is surprising that mTORC2 deficiency does not impair basal glucose 

uptake (i.e. without stimulation) in BAT (Figure 3.2C).  To further examine the role of 

mTORC2 in glucose uptake, I thus utilized the culture system mentioned previously to 

measure glucose consumption of brown adipocytes under different stimuli.  Likewise, 

basal glucose uptake in cultured brown adipocytes is also not altered by mTORC2 

inhibition.  However, Rictor-deficient adipocytes show mild reductions in glucose uptake 

in response to acute (15mins) insulin treatment and prolonged (2hrs) CL-316,243, a β-

adrenergic agonist, stimulation (~30% and ~25%, respectively) (Figure 3.2D).  Notably, 

acute CL-316,243 treatment does not stimulate glucose uptake in brown adipocytes.  The 

difference in kinetics indicates that distinct regulatory mechanisms may exist between 

insulin- and CL-316,243-stimulated glucose incorporation.  These data also support a few 
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other studies showing that mTORC2 is required for the β-adrenergic receptor (β-AR)–

dependent glucose uptake (Albert et al., 2016; Sato et al., 2014).    

In addition to glucose, circulating fatty acids and triglycerides can also be taken 

up by brown adipose tissue at very high rates.  As shown in Figure 3.2E, Rictor-deficient 

BAT demonstrates a ~64% higher uptake of free fatty acids than the uptake of control 

BAT.  In accordance, lipoprotein lyase (Lpl), which encodes an enzyme hydrolyzing 

triglycerides in lipoproteins, and several PPARα-target genes, which are involved in 

mitochondrial or peroxisomal lipid oxidation pathways, are upregulated in knockout BAT 

(Figure 3.2F).  Overall, the inhibition of mTORC2 reprograms BAT metabolism, thus 

favoring lipid utilization and oxidation over glucose-mediated lipogenesis. 
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Figure 3.1 mTORC2 Deficiency in Mature Brown Adipocytes Reduces Tissue 

size and Lipid stores   

(A) Body weight of 14wks mice (male, n=11) (B) Brown adipose tissue mass (14wks, 

male, n=11) (C) Top: Gross appearance of iBAT; Bottom: representative H&E 

staining sections (14wks, male, the scale bar represents 100μm) (D) White adipose 

tissue mass (14wks, male, n=11) (E) Liver and other lean tissue mass (14wks, male, 

n=11) (F) Western blots for interscapular BAT lysates (overnight fasting with 1h 

refeeding) (G) Western blots for psWAT, pgWAT and liver (overnight fasting with 

1h refeeding). (H) qRT-PCR of adipocyte differentiation markers (I) qRT-PCR of 

thermogenesis-related genes (14wks, male, n=8) (J) Densitometric analysis of UCP1 

expression levels (n=4) (K) qRT-PCR of Atgl and Hsl (14wks, male, n=8) (Bars 

represent mean ± SEM; t-test; *p<0.05, **p<0.01, ***p<0.001) 
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Figure 3.2 Rictor-deficient brown fat displays a metabolic shift from 

lipogenesis to lipid oxidation  

(A) qRT-PCR of de novo lipogenesis genes (14wks, male, n=8) (B) qRT-PCR of 

phospholipid and triglyceride synthesis genes (14wks, male, n=8) (C) In vivo assay 

for 3H-2-deoxy-glucose uptake (10wks, male, n=6) (D) In vitro assay for 3H-2-deoxy-

glucose uptake, differentiated brown adipocytes at day 11 (n=3) (E) In vivo assay 

for 14C-bromo-palmitate uptake (10wks, male, n=6) (F) qRT-PCR of lipid uptake and 

oxidation genes (14wks, male, n=8) (Bars represent mean ± SEM; t-test; *p<0.05, 

**p<0.01, ***p<0.001) 
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BAT Rictor KO Mice Are Cold Tolerant 

UCP1-mediated “non-shivering” thermogenesis which maintains the homeostasis of body 

temperature during cold exposure is accompanied by elevated glucose and lipid 

consumption.  Since mTORC2 deficiency changes fuel utilization, it is obligatory to 

determine whether RictorUcp1-cKO mice can maintain euthermia under acute and chronic 

cold conditions.  When mice were acutely challenged with an extreme cold (6°C) 

condition, both control and RictorUcp1-cKO mice drop their body temperature similarly in 

the first three hours; however, the KO mice maintain their body temperature at slightly 

higher levels at the end of the experiment (Figure 3.3A).  By contrast, the fasted mice 

exhibit much rapid rates of decrease in body temperature than the mice supplied with 

food (Figure 3.3B).  Under this condition, the body temperature of RictorUcp1-cKO mice is 

trending towards lower levels after 5 hours in cold (Figure 3.3B), which could be due to 

the limited lipid storage in KO BAT.  However, mice living at a chronic cold condition 

(6°C for two weeks) exhibit no difference in body temperature between two groups 

(Figure 3.3C), suggesting that the disruption of mTORC2 in BAT does not impede the 

ability of mice to defend body temperature under cold stresses.  In addition, the BAT 

thermogenesis can be directly measured by the heat released from brown fat.  An infrared 

thermo-imager was used to detect skin surface temperature of mice.  As shown in Figure 

3.3E, higher maximal and average temperatures of the interscapular region are recorded 

in the cold-adapted RictorUcp1-cKO mice compared to controls, indicating high heat 

production from Rictor-deficient brown fat.  In contrast, there is no difference in heat 

output and rectal temperature between two groups at room temperature (Figure 3.3D).  In 
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agreement with high heat production, key regulators of thermogenesis (Prdm16, Pgc1α 

and Irf4) are significantly upregulated in Rictor-deficient BAT compared to control in 

chronic cold conditions (Figure 3.3 G).  

It is known that the processes in lipid turnover (lipid biosynthesis and 

mobilization) are highly induced in activated BAT (Townsend and Tseng, 2014).  

Consistent with this notion, there is 1.5 to 2 fold induction of DNL genes (Chrebpβ, Acly, 

Acc and Fasn) in wildtype cold-adapted BAT compared to the ones at 22°C (Figure 

3.3H).  Interestingly, despite lower in overall levels, DNL genes are also highly induced 

(3 to 6 fold changes compared to 22°C) (Figure 3.3H) in the BAT of RictorUcp1-cKO mice 

after cold acclimation.  Examined by hematoxylin and eosin (H&E) stain, both control 

and RictorUcp1-cKO BATs exhibit similar morphology with brown adipocytes containing 

lipid droplets that are small, but uniform, in size (Figure 3.3F) after two-week habitation 

at 6°C.  These data indicate that additional signals/mechanisms exist to compensate the 

requirement of mTORC2 signaling for glucose metabolism and lipid synthesis when 

BAT is chronically stimulated.  Also, glycerol kinase (Gyk) (Figure 3.3I) and lipid 

oxidation pathways (Lpl, Cpt1a, Acot4, Acot5 and Ehhadh) are also upregulated in 

RictorUcp1-cKO BAT to greater extents (Figure 3.3J), supporting augmented lipid usage in 

KO BAT.  In conclusion, Rictor-deficient BAT is fully functional in thermogenesis when 

nutrient supply is sufficient; given it has defects in lipogenesis. 
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Figure 3.3 RictorUcp1-cKO mice are  cold tolerant with enhanced heat production 

(A) Rectal temperature for ad libitum mice are exposed to cold  (10wks, male, n=9-

10) (B) Rectal temperature for fasted mice are exposed to cold  (10wks, male, n=9-

10) (C) Rectal temperature for resting mice housed at 22°C and 6°C (10wks, male, 

n=11 at 22°C n=5-6 at 6°C) (D) Infrared thermography of skin surface temperature 

(22°C, n=8-9)  (E) Infrared thermography of skin surface temperature (6°C, n=4) (F) 

Representative H&E staining sections for iBAT from 2-week adapted mice (14wks, 

male, n=8) (G) qRT-PCR of thermogenic genes (14wks, male, n=8) (H) qRT-PCR of 

lipogenesis genes (14wks, male, n=8)  (I) qRT-PCR of triglyceride synthesis genes 

(14wks, male, n=8) (J) qRT-PCR of lipid uptake and oxidation genes (14wks, male, 

n=8) (All genes are present as relative levels to the ones in room temperature 

control BAT; Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, ***p<0.001) 
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Enhanced Browning in Beige/Brite Adipocytes of Rictor
Ucp1-cKO Mice 

In contrast to classical brown adipocytes, beige or brite adipocytes express very low 

levels of Ucp1 when mice are housed at room temperature; however, the formation of 

beige/brite adipocytes and their Ucp1 expression can be drastically induced by chronic 

cold stimulation.  Since mTORC2 loss enhances BAT thermogenesis upon cold exposure, 

I would like to further investigate whether mTORC2 play a similar role in beige/brite 

adipocytes.  To visualize and quantify the abundance of beige/brite adipocytes, I crossed 

Ucp1-Cre control mice or Ucp1-Cre;Rictorfl/fl mice with the Rosa26-mTmG mice 

(Muzumdar et al., 2007), which carry a dual color reporter allele that consists of member-

targeting fluorescent reporters.  All Cre-positive cells and their descendants are 

irreversibly labeled with membrane-targeted GFP (mGFP), whereas all Cre-negative cells 

express membrane-targeted Tomato (mTFP).  As expected, at 22°C, the presence of GFP-

labelled (green) adipocytes is mostly restricted to classical brown fat depots (iBAT, 

sBAT, and rBAT (renal BAT)), while adipocytes in white fat depots (pgWAT and rWAT) 

are exclusively marked by mTFP (red) (Figure 3.4A).  Interestingly, chronic cold 

exposure increases the percentage of mGFP+ cells in rBAT, but not, in the other depots 

(Figure 3.4A).  Again, the mTmG labeling results in agreement with the loss of Rictor 

protein detected by western blots (Figure 3.1F&G) demonstrated the tissue-specificity of 

Ucp1-Cre transgene. 

On the other hand, small proportions of mGFP+ cells can be spotted in psWAT 

even at 22°C (Figure 3.5A).  By contrast, numerous clusters of mGFP+ adipocytes, 

presumed beige/brite adipocytes, emerge in psWAT after chronic cold exposure (Figure 
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3.5A).  The percentage of mGFP+ adipocytes within the cluster/patch rises from 14% at 

22°C to 47% at 6°C in control mice, and the percentage goes from 5% to 56.7% in 

RictorUcp1-cKO mice (Figure 3.5B and 3.5C).  Thus the abundance of beige/brite 

adipocytes is quantitatively similar between wildtype and RictorUcp1-cKO mice.  Notably, 

those mGFP+ cells in RictorUcp1-cKO mice are smaller than the neighboring mTFP+ cells 

(Figure 3.5B), which is similar to Rictor knockout phenotypes in BAT.  Histological 

analysis also reveals the formation of multilocular brown-like adipocytes in psWAT after 

cold acclimation (Figure 3.5D), and psWAT from RictorUcp1-cKO mice exhibits a profound 

“browning” morphology compared to control.  Accordingly, thermogenic program genes 

(Ucp1, Pgc1α and Dio2) are upregulated in control psWAT and to greater extents in 

tissues from Ucp1-Cre;Rictor mice (Figure 3.5E).  Conversely, there is no difference in 

differentiation or lineage markers (Cd137, Pparγ1, Pparγ2, Prdm16 and Zfp423) among 

different groups (Figure 3.5E).  The enhanced browning phenotype in inguinal WAT 

(psWAT) argues that the signaling cascades elicited by mTORC2 have a similar role in 

both brown and beige adipocytes for regulating the thermogenic program.  
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Figure 3.4 Lineage-tracing by Ucp1-Cre-mTmG reporter  

(A) Representative confocal microscopy images of mTFP- and mGFP-labelled 

adipocytes in the indicated fat depots.  (Top panels: mice housed at room 

temperature, Bottom panels: mice housed at 6°C for 2 weeks, the scale bar 

represents 50μm) 
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Figure 3.5 Enhanced browning in psWAT of  RictorUcp1-cKO mice 

(A) Confocal microscopy images of psWAT showing GFP+ patches (the scale bar 

represents 50μm) (B)Representative confocal microscopy images of mTFP- and 

mGFP-labelled adipocytes in psWAT.  (Top panels: mice housed at room 

temperature, Bottom panels: mice housed at 6°C for 2 weeks, the scale bar 

represents 50μm) (C) Quantification of mGFP+ versus mTFP+ cells in the GFP+ 

clusters (D) Represntative H&E stains for psWAT from room temperature or cold-

adapted mice (E)qRT-PCR of thermogenic and differentiation/lineage markers 

(14wks, male, n=8) (Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, 

***p<0.001) 
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BAT Rictor KO Mice Are Resistant to Obesity at Thermoneutrality 

Small rodents, like mice, housed at standard vivarium conditions (room temperature, 

21~22°C) are, in fact, under a chronic thermal stress (i.e. the animals are compelled to 

increase their metabolic rates to maintain euthermia) (Cannon and Nedergaard, 2011).  

By contrast, living at 22°C is considered as a thermoneutral condition for most people 

because we wear clothing.  To rule out cold stress as the driving factor accounting for 

brown fat phenotypes, I next investigated the role of mTORC2 in BAT by housing mice 

at thermoneutrality (30°C for mice), which is more close to the physiological conditions 

of humans.  Six-week-old young mice were acclimated to a thermoneutral room for eight 

weeks and fed with standard chow diet.  Strikingly, wildtype brown adipocytes 

completely lose their brown adipocyte morphology as each of them contains a large 

unilocular lipid droplet similar to white adipocytes (Figure 3.6A).  This phenomenon has 

been described as “whitening” and it is accompanied by diminished brown fat marker 

genes and increased white marker genes (Harms et al., 2014).  By contrast, Rictor-

deficient brown adipocytes are resistant to the whitening effect of thermoneutrality, as 

evidenced by multilocular morphology and by better preserved brown characteristics in 

gene expression (Ucp1, Elovl3, Prdm16, Irf4, Cideb and Sgk2) (Figure 3.6B and 3.6C).  

Of note, white selective markers (Dpt and Retn) and DNL pathway genes (Srebf1c, 

Chrebpβ, Acly, Acc and Fasn) express at lower levels in Rictor-deficient BAT.  These 

data again suggest that mTORC2 activity normally suppresses the thermogenic program, 

and importantly this phenotype is not dependent on cold stimulation. 
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Evidence from both rodent and human studies have clearly demonstrated that 

brown adipose tissue significantly contributes to whole body energy expenditure and thus 

enhancing brown fat activity could have protective effects against obesity and diabetes 

(Bartelt and Heeren, 2014).  To further examine the responses of mice to obesogenic diet, 

mice were given with a 45% high-fat diet (HFD) for 16 weeks in thermoneutral 

conditions.  As the end of diet-experiment, RictorUcp1-cKO mice gain significantly less 

body weight (Figure 3.6 E and 3.6F), while the food consumption is not different 

between two groups (Figure 3.6 G).  Importantly, RictorUcp1-cKO mice also show 

protection from increased adiposity (asWAT, rWAT and pgWAT) and hepatomegaly, 

which are caused by excess lipid deposition in these tissues (Figure 3.6 H).  Therefore, 

RictorUcp1-cKO mice are resistant to HFD-induced obesity at thermoneutrality. 

 

Inducible Deletion of Rictor in BAT Augments Diet-induced Thermogenesis 

Unlike white adipose tissue which mostly forms postnatally, mouse BAT is fully mature 

and functional at birth allowing newborns to adapt to the cold environment.  Because the 

expression of Ucp1 is initiated in utero between embryonic day (E) 18.5 and E19.5, the 

deletion of Rictor gene by Ucp1-Cre mediated recombination is expected to occur around 

this period.  Therefore, it was difficult to rule out the possibility that beneficial effects 

elicited by congenital Rictor knockout are secondary to developmental defects.  On the 

other hand, pharmacological agents for acute inhibition of mTORC2 signaling in BAT 

are highly desirable to investigate the therapeutic application of mTORC2 inhibition.  

Unfortunately, such inhibitors that specifically and potently inactivate mTORC2 are yet 
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to be discovered.  To overcome these issues, I further generated an inducible knockout 

model for Rictor deletion by crossing Rictor floxed mice with Ucp1-CreERT2 transgenic 

mice.  The CreER recombinase consists of Cre protein fused to the hormone-binding 

domain of estrogen receptor.  The recombinase remains inactive until it binds to estrogen 

receptor ligands, like tamoxifen (TAM), thus allowing a temporal control of gene 

deletion.  Rictor protein can be rapidly eliminated in BAT after six-day tamoxifen 

treatment (data not shown) and remains at low levels for at least ten weeks post injection 

(Figure 3.8D).  Again, inhibition of mTORC2 activity is confirmed by reduction in 

phosphorylation of AKT-T450 (Figure 3.8D).  Then I designed an experiment to test 

whether induced Rictor deletion in BAT of middle-aged mice (20 weeks old) could still 

provide beneficial effects on HFD (Figure 3.7A).  After TAM treatment, control (Cre-

negative mice) and inducible BAT-KO (RictorUcp1-iKO) mice were first transferred to a 

thermoneutral room for one-week adaptation and then the mice were fed either with chow 

diet or 45% HFD for nine weeks.   Remarkably, in HFD-fed cohorts, RictorUcp1-iKO mice 

exhibit a less increase in body weight than control mice do (Figure 3.7B and 3.7C).  After 

HFD feeding, the average body weight of control mice is 44.4 ± 1.4g, whereas that of 

RictorUcp1-iKO mice is only 38.0 ± 1.2g (Figure 3.7B).  Importantly, the difference in body 

weight is not due to changes in food consumption (Figure 3.7D), but it is mainly due to 

reduction in adipose tissue mass, especially in pgWAT (Figure 3.7E).  Interestingly, 

while gross liver weight is only modestly changed, livers from RictorUcp1-iKO mice are 

protected from lipid deposition (liver steatosis) caused by HFD feeding (Figure 3.7G).  

Importantly, mice with HFD-feeding usually develop progressive glucose intolerance and 
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insulin resistance.  In accordance with the protection from obesity, RictorUcp1-iKO mice 

conserve efficient glucose clearance (glucose tolerance test) on HFD than control mice 

(Figure 3.7H and 3.7I); however, I did not observe any difference in insulin sensitivity 

(Figure 3.7J and 3.7K).  In addition, all metabolic parameters tested here are similar 

between the chow cohorts.  Altogether, these results suggest that mTORC2 inhibition in 

BAT demonstrates similar favorable effects on whole body metabolism regardless of 

mouse age. 

It has been described that the energy expenditure of BAT can be stimulated when 

mice fed with high-calorie diet, which is called diet-induced thermogenesis (DIT).  

However, the molecular basis of DIT in BAT has not been fully characterized.  I next 

investigated whether brown fat activity changes in response to different diets.  In the 

chow-diet cohorts, histology reveals a higher percentage of multilocular adipocytes in 

Rictor-deficient BAT, whereas adipocytes in control BAT mostly consist of unilocular 

and “white adipocyte-like” cells.  Interestingly, HFD treatment is able to reverse the 

whitening effect of warm environment, as judged from increased abundance of 

multilocular cells in control BAT (Figure 3.8A).   In contrast, Rictor-deficient BAT 

exhibits a stronger response to HFD (Figure 3.8A).  This morphological browning is also 

paralleled by the UCP1 protein levels (Figure 3.8B) with highest UCP1 expression in 

Rictor-deficient BAT from the HFD cohorts.  Consistently, a panel of thermogenic genes 

(Ucp1, Pgc1α, Irf4, Cidea, Dio2 and Elovl3) are either significantly or trending towards 

higher levels in Rictor-deficient BAT (Figure 3.8C and 3.8D).  These results strongly 

agree with our previous findings in the RictorMyf5cKO model, suggesting that inhibition of 
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mTORC2 signaling enhances diet-induced thermogenesis in BAT.  Moreover, Rictor-

ablated BAT also has higher expression of Lpl and Cpt1b (Figure 3.8D), which might 

correlate with increased lipid usage under these conditions.  Thus, I examined serum 

levels of nutrients in both chow-fed and HFD-fed groups.  While serum levels of glucose 

and cholesterol significantly increase in the HFD cohorts of both genotypes, RictorUcp1-iKO 

mice are able to maintain lower levels of triglycerides (TAG) and free fatty acids (FFA) 

on HFD compared to control mice (Figure 3.8E).  These data collectively suggest that 

Rictor-deficient BAT protects mice from HFD-induced lipotoxicity and obesity at 

thermoneutrality possibly due to augmented diet-induced thermogenesis. 
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Figure 3.6 RictorUcp1-cKO BAT is resistant to the “whitening” effect 

(A) Represntative H&E stains for iBAT (14wks, male, n=8, the scale bar represents 

100μm) (B-D) qRT-PCR of thermogenic, BAT-selective, WAT-selective and lipogenic 

genes (14wks, male, n=8) (E) Growth curves for HFD-fed mice at thermoneutrality 

(10-26 weeks, male, n=8-9) (F) Net weight gain from initial body weight (26 weeks, 

male, n=8-9)  (G) Food consumption during HFD (n=4-5) (H) Tissue mass of HFD-
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fed mice (26 weeks, male, n=8-9)  (Bars represent mean ± SEM; t-test; *p<0.05, 

**p<0.01, ***p<0.001) 
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Figure 3.7 Mice with Rictor inducible knockout in BAT are less susceptible to 
obesity and metabolic disease 
(A) Diagram for the HFD experiment (B) Growth curve for chow-fed and HFD-fed 
cohorts (male, n=13-18) (C) Net weight gain from initial body weight (male, n=13-
18) (D) Food consumption during HFD (n=3-4)  (E) Tissue mass for iBAT and liver 
(male, n=13-18)  (F) Tissue mass for white fat depots (male, n=13-18) (G) 
Represntative H&E stains for pgWAT and liver (the scale bar represents 100μm ) 
(H&I) Glucose tolerance test for (H) chow-fed cohorts (n=7-9) and (I) HFD-fed 
cohorts (n=7-8) (J&K) Insulin tolerance test for (J) chow-fed cohorts (n=7-9) and (K) 
HFD-fed cohorts (n=7-8) (Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, 
***p<0.001) 
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Figure 3.8 Inducible Rictor KO BAT shows enhanced diet-induced 

thermogenesis 

(A) Represntative H&E stains for iBAT (the scale bar represents 100μm) (B) 

Western blots for iBAT from chow-fed and HFD-fed mice (C) (D) qRT-PCR of 

thermogenic genes (male, n=8) (E) Serum chemistry for glucose, cholesterol, 

triacylglycerides and free fatty acids  (Bars represent mean ± SEM; t-test; *p<0.05, 

**p<0.01, ***p<0.001) 

 

 

Discussion 

It is widely appreciated that activating brown adipose tissue could be a potential 

therapeutic strategy to combat obesity and type II diabetes.  When BAT thermogenesis is 

fully activated, high amounts of glucose and fatty acids are taken up by brown adipose 

tissue to fulfill its metabolic and energetic demands during uncoupled respiration.  The 

tremendous oxidative capacity is not only a hallmark of BAT metabolism but also 

provides the basis for developing novel therapies to treat metabolic disease in humans.  

Therefore, understanding molecular events and signaling pathways that govern fuel 

utilization and thermogenesis is unequivocally important.  Glucose uptake measurement 

has been used as a marker for brown fat activity, especially the 18F-FDG-PET/CT scan 

for measuring human BAT.  However, the role of glucose and glucose-driven lipogenesis 

in thermogenesis has not been conclusively illustrated.  By contrast, many regulatory 

molecules or metabolic enzymes involved in lipolysis and lipid oxidation are shown to be 
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essential for the activation of UCP1-mediated thermogenesis (Ahmadian et al., 2011; Lee 

et al., 2016; Lee et al., 2015).  It is estimated that intracellular TAG pools contribute to up 

to ~84% and ~74% respiration during acute and chronic cold exposure, respectively 

(Labbe et al., 2015).  Here, by using novel genetic models, I demonstrate the critical role 

of mTORC2 in regulating BAT metabolism and thermogenesis.  Specifically, inactivation 

of mTORC2 in BAT enhances fatty acid utilization and oxidation but reduces glucose 

uptake and de novo lipogenesis.  Importantly, the defects in glucose metabolism do not 

impede BAT thermogenesis upon cold exposure.  Instead, loss of mTORC2 augments 

BAT thermogenic responses to counteract deleterious consequences of HFD-feeding at 

thermoneutrality, thus protecting mice from developing obesity and metabolic disease.  

Given humans prefer to live in a thermoneutral environment, the results shown here 

might be highly relevant and applicable to human BAT studies.  
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CHAPTER IV:  

mTORC2 Signaling Suppresses Ucp1 expression through promoting 

FoxO1 acetylation 
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Introdcuation 

In previous chapters, the in vivo models of mTORC2-ablation in BAT demonstrated a 

remarkable enhancement in BAT metabolism and activity, which protects mice from 

HFD-induced obesity and metabolic disease.  However, the mechanism by which 

mTORC2 regulate BAT thermogenic program is remain elusive.  Recent studies 

suggested FoxO1 is a critical mediator of mTORC2 signaling, which regulates FoxO1 

through AKT-dependent (Yuan et al., 2012) and AKT-independent mechanisms (Masui 

et al., 2013).  Interestingly, one study showed that FoxO1 can bind and activate Ucp1 

promoter, thus increasing Ucp1 expression (Ortega-Molina et al., 2012).  Therefore, I 

would like to specifically examine whether mTORC2 could regulate Ucp1 expression 

through modulating FoxO1 activity.  I report here that mTORC2 functions through 

FoxO1 activity to negatively regulate BAT thermogenic program.  Mechanistically, 

mTORC2 inhibition reduces the acetylation levels of on FoxO1 without affecting 

canonical AKT-mediated phosphorylation.  Intriguingly, FoxO1 deacetylation can be also 

induced by β-adrenergic signaling, suggesting such regulatory mechanism could be 

involved in normal BAT activation.   Last, both pharmacological and genetic approaches 

further confirm that FoxO1 activity is essential for the induction of thermogenic program 

genes, such as Ucp1, Pgc1α and Irf4, in cultured brown adipocytes.  In addition, I also 

provide evidence showing that mTORC2 signaling could also play a suppressive role in 

the PKA-mediated signaling.  Collectively, these findings suggest that mTORC2 
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signaling regulate Ucp1 and the BAT thermogenic program in part through modulating 

FoxO1 activity. 

 

Results 

mTORC2 Cell-autonomously Regulates Ucp1 Expression  

It is well-recognized that insulin signaling can antagonize β-adrenergic signaling in 

certain metabolic processes, and vice versa.  For example, insulin has an inhibitory effect 

on catecholamine-induced lipolysis in part through diminishing cAMP levels.  However, 

it is unclear whether insulin signaling also exerts an adverse effect on Ucp1 induction by 

β3-adrenergic signaling.  According to the results shown in previous sections, mTORC2 

inhibition appears to augment the gene expression of thermogenic program in both brown 

adipocytes and brite/beige adipocytes.  Given that mTORC2 is one of the key mediators 

downstream of the insulin receptor signaling, I thus hypothesized that mTORC2 could 

negatively regulate Ucp1 expression through cell-autonomous mechanisms.  To test this 

hypothesis, I took advantage of the inducible cell line system (Ubc-CreERT2;Rictorfl/fl 

brown preadipocytes).  As shown in Chapter II, mTORC2 activity is required for brown 

adipocyte differentiation in culture.  Herein I took a different strategy by inducing Rictor 

deletion after PPARγ induction (Figure 4.1A) to avoid interference with differentiation.  

Indeed, when 4-hydroxytamoxifen (4-OHT) is given at Day 6 to induce Rictor deletion, 

the blockage of mTORC2 signaling does not impede PPARγ expression (Figure 4.1 B).  

CL-316,243 (a β3-adrenergic agonist) and forskolin (an activator of cAMP production) 
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can potently upregulate thermogenic genes, such as Ucp1, in mature brown adipocytes.  

Consistent with the in vivo data, loss of mTORC2 activity potentiates UCP1 induction by 

CL-316,243 and forskolin (Figure 4.1B).  Notably, these changes can be at least partially 

explained by increased Ucp1 transcription levels (Figure 4.1C).  Thus, these data support 

the hypothesis that mTORC2 cell-autonomously regulates Ucp1 expression in response to 

β3-adrenergic signaling stimuli. 

To further gain insights into the mechanisms implicated here, I then compared the 

signaling responses of control and Rictor-deficient cells to insulin and CL-316,243 

stimulation.  Control and Rictor-deficient cells have similar responses to insulin 

stimulation, as judged by the activation of AKT downstream effectors (phosphorylation 

of AS160 and S6K) (Figure 4.1D).  Interestingly, CL-316,243 treatment modestly 

activates mTORC1 signaling (p-S6K-T389) but does not stimulate mTORC2 signaling 

(p-AKT-S473).  CL-316,243 stimulation leads to activation of PKA and its downstream 

effectors, including HSL and p38-MAPK (mitogen-activated protein kinase).  Both 

control and Rictor knockout cells display similar responses to CL-316,243 in as judged 

from the phosphorylation of PKA substrates, while HSL-S660, a PKA phosphorylation 

site, remains a higher level after 30 mins.  Moreover, Rictor-deficient adipocytes have 

higher p38-MAPK (T180) phosphorylation across all the conditions tested, indicating 

enhanced p38-MAPK activity in KO cells.  It is noteworthy that p38-MAPK signaling 

plays an important role in Ucp1 transcription in response to β3-adrenergic stimulation 

(Collins et al., 2010).  In contrast, mTORC2 inhibition does not alter the phosphorylation 

of ERK1/2 after insulin or CL-316,243 treatment (Figure 4.1D), suggesting mTORC2 
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specifically regulates p38-MAPK activity.  Intriguingly, there is one proposed 

mechanism by which mTORC2 negatively regulate p38-MAPK activity through 

stabilizing a phosphatase, DUSP10 (dual specificity phosphatase 10), which normally 

dephosphorylates and shuts down p38-MAPK (Benavides-Serrato et al., 2014).  However, 

whether this is the case here still needs to be clarified.   

Given AKT and mTORC1 function downstream of mTORC2 in response to 

growth factor stimulation, it is possible that AKT or mTORC1 mediate the Ucp1 

regulation by mTORC2.  As shown in Figure 4.1D, the inhibition of mTORC2 signaling 

partially affects AKT (p-AKT-T308), but not mTORC1 (p-S6K-T389), activation.  To 

find out which signaling molecules are involved in Ucp1 regulation, I additionally 

employed inducible Akt1/2 DKO and Raptor KO brown preadipocyte lines (Figure 4.2A).  

Noticeably, deletion of Akt1 and Akt2 blocks brown adipocyte differentiation with low 

PPARγ expression and absence of mature markers, like UCP1 and lipogenic enzymes 

(ACLY, ACC, and FASN) (Figure 4.2A and 4.2B).  On the contrary, inducible deletion 

of Raptor does not affect differentiation per se, but it interferes with Ucp1 mRNA 

expression upon CL-316,243 stimulation (Figure 4.2A and 4.2B), indicating that 

mTORC1 activity is required for Ucp1 maximal induction.  This finding is quite 

interesting and in line with a recent study (Liu et al., 2016) which reported that 

adipocytes lacking mTORC1 are refractory to β-AR-dependent Ucp1 induction.  Thus, 

mTORC2 regulates Ucp1 expression possibly through AKT/mTORC1-independent 

mechanisms.  
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Figure 4.1 mTORC2 inhibition potentiates UCP1 induction by β3-adrenergic 

signals 

(A) Experiment scheme for in vitro differentiation : 4-OHT was added at Day6 to 

induce gene deletion, CL-316,243 or forskolin was added at Day 11 for 8 hrs (B) 

Western blots for CL-316,243 and forskolin-stimulated UCP1 induction in Ubc-

CreER;Rictor cells (C) qPCR for CL-316,243 and forskolin -stimulated UCP1 

induction in Ubc-CreER;Rictor cells (D) Western blots for cellular signaling (cells are 

serum-deprived for 4h, then stimulated with 150nM insulin for 15mins, 1μM CL-

316,243 for 15 and 30 mins and FBS for 1hr)  
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Figure 4.2 mTORC2 regulates UCP1 induction independently of AKT/mTORC1 

signaling 

(A) Western blots for CL-316,243 (0.1μM, 8h) stimulated UCP1 induction (B) qRT-

PCR for Ucp1 expression (cells harvested 8h after CL-316,243 treatment, n=2)  (Bars 

represent mean ± SEM; t-test; *p<0.05, **p<0.01, ***p<0.001) 
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mTORC2 Suppresses Ucp1 Expression through FoxO1 Activtiy 

FoxO1 has been characterized as a critical downstream mediator of mTORC2 

functions through AKT-dependent (Hagiwara et al., 2012) or AKT-independent (Masui et 

al., 2013) pathways.  As shown in Figure 3.8C (Chapter III), I observed several FoxO 

target genes [Ucp1(Ortega-Molina et al., 2012), Pgc1α (Daitoku et al., 2003), Irf4 

(Eguchi et al., 2011), Bnip3 (Mammucari et al., 2007) and Sod2 (Kops et al., 2002)] 

upregulated in mTORC2-deficient BAT.  Hence, I tested the hypothesis that FoxO1 

conveys mTORC2 signaling in Ucp1 regulation by using pharmacological and genetic 

approaches.  AS1842856 is a cell-permeable inhibitor that directly binds to the active 

form (unphosphorylated) of FoxO1 and thus blocks its transcription activity (Nagashima 

et al., 2010), and it has high selectivity and high binding affinity (IC50=33nM) to FoxO1 

over other FoxO proteins.  In Figure 4.3A, AS1842856 at 1μM effectively reduces UCP1 

induction by CL-316,243 in mTORC2 deficient brown adipocytes but minimally affects 

UCP1 levels in control cells, even though, at higher doses, the inhibitor exerts the same 

efficacies in both control and KO cells.  Paralleled results are also obtained in Ucp1 

mRNA levels (Figure 4.3B).  Of note, the inhibitor also partially suppresses Pgc1α and 

Pdk4, which have been implicated as FoxO1 target genes, but not Pparγ.  Similarly, the 

FoxO1 inhibitor also blocks UCP1 induction by forskolin stimulation (Figure 4.3C).   

To avoid off-target effects of the inhibitor, I next designed specific guide RNA 

sequences to target endogenous Foxo1 alleles using a lentiviral CRISPR/Cas9 system 

(Sanjana et al., 2014; Shalem et al., 2014).  After stable selection, CRISPR-mediated 

recombination efficiently eliminates FoxO1 expression in wild-type brown preadipocytes 
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(not shown) and it does not affect differentiation (Figure 4.4A), suggest FoxO1 is 

dispensable for differentiation.  In contrast, FoxO1 deficiency blocks UCP1-induction by 

the β-AR signaling (Figure 4.4A).  Remarkably, in addition to Ucp1 levels, FoxO1 

depletion also abolishes the transcription of Pgc1α, Atgl,and Pdk4 induced by CL-

316,243 in both control and Rictor-deficient cells without affecting Pparγ2 expression 

(Figure 4.4B). 

In line with the CRISPR-mediated knockdown, brown preadipocytes with Foxo1 

deletion driven by Adipoq-Cre also differentiate normally (e.g. equal PPARγ expression 

to tcontrol), but these knockout cells are completely refractory to the β-AR signaling 

(CL-316,243 and isoproterenol), PPARγ-agonist (rosiglitazone) and cAMP stimulation 

(Forskolin) towards activating BAT-enriched genes (Ucp1, Pdk4, and Atgl) expression 

(Figure 4.5B).  Of note, although the expression of Pgc1α and Irf4 is still controlled by 

FoxO1, they do not increase in response to stimuli in these cell lines.  In summary, both 

in vivo and in vitro data collectively suggest that mTORC2 negatively regulates Ucp1 and 

possibly several other genes (Pgc1a, Pdk4, Atgl, Irf4…etc.) through modulating FoxO1 

activity. 
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Figure 4.3 Inhibition of FoxO1 blocks UCP1 induction by β3-adrenergic 

signaling  

(A) Western blots for the effects of a FoxO1 inhibitor, AS1842856, on UCP1 

induction (B) qRT-PCR for Ucp1, Pgc1α, Pdk4 and Pparγ2 expression (cells harvested 

8h after drug treatment, n=2) (C) Western blots for the effects of the FoxO1 

inhibitor on forskolin-stimulated UCP1 expression  (Bars represent mean ± SEM; t-

test; *p<0.05, **p<0.01, ***p<0.001) 

 

 



114 
 

 

 

 

  



115 
 

Figure 4.4 FoxO1 is required for UCP1 induction by β3-adrenergic signaling  

(A) Western blots for the effects of CRISPR-mediated Foxo1 knockout on UCP1 

induction by CL-316,243 (B) Corresponding qRT-PCR for the experiment in (A) 

(cells harvested 8h after CL-316,243 treatment, n=2) (cells harvested 8h after drug 

treatment, n=2) (Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, ***p<0.001) 
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Figure 4.5 FoxO1 is essential for the expression of BAT-enriched genes  

(A) Western blots for the effects of conventional Foxo1 knockout on UCP1 induction 

(B) Corresponding qRT-PCR for the experiment in (A) (cells harvested 8h after drug 

treatment, n=2) (Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, ***p<0.001) 
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mTORC2 Regulates FoxO1 Activity by Affecting Its Acetylation 

FoxO transcription factors, in general, are regulated by various post-translational 

modifications, including phosphorylation, acetylation, glycosylation and ubiquitination 

[reviewed in (Daitoku et al., 2011; Huang and Tindall, 2011; Klotz et al., 2015; Wang et 

al., 2014)].  Insulin signaling inhibits FoxO through AKT-mediated phosphorylation at 

T24, S256 and S319, which promotes it nuclear exclusion and subsequent ubiquitination-

mediated degradation.  In contrast, the acetylation status of FoxO affects its 

transcriptional activity.  The effects of FoxO acetylation on target genes appear to be 

context-dependent; however, many studies demonstrated that acetylation of FoxO1 

compromises its DNA-binding ability (Daitoku et al., 2004; Kitamura et al., 2005; Masui 

et al., 2013; Matsuzaki et al., 2005).  Thus I further examined whether mTORC2 controls 

FoxO1 acetylation and phosphorylation states in vivo.  Remarkably, acetylation levels are 

much reduced in Rictor-deficient brown fat, whereas two AKT phosphorylation sites 

(T24 and S256) are not affected by mTORC2 inhibition (Figure 4.6A).  Together with 

FoxO1, phosphorylation of other AKT substrates, such as AS160 and PRAS40, are all 

preserved even when mTORC2 activity is compromised, suggesting classical AKT 

pathways are rather normal.  The changes in FoxO1 acetylation prompted me to search 

protein deacetylases that are controlled by mTORC2 signaling.  A recent study argued 

that mTORC2 inhibits class IIa HDACs (HDAC4, 5, 7 and 9) through direct 

phosphorylation and thus prevents FoxO1 deacetylation (Masui et al., 2013).  

Interestingly, by screening small molecule inhibitors of HDACs, I found both pan-HDAC 

inhibitors (Sodium butyrate,Trichostatin A and SAHA) and a specific HDAC4/5 inhibitor 
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(LMK-235) can block CL-316,243 induced UCP1 expression in vitro (Figure 4.6C and 

4.6D).  However, in contradictory to that report, I observed no difference in these 

inhibitory phosphorylation sites on HDAC4, 5, 7 in the cell culture system and mouse 

tissues analyzed here (Figure 4.1C; Figure 4.6A and 4.6B).  Therefore, our results do not 

support the notion that class IIa HDACs mediate mTORC2 signaling towards FoxO1 

regulation.  On the other hand, sirtuin family proteins have been implicated in FoxO1 

regulation (Jing et al., 2007; Wang and Tong, 2009).  It is interesting that a pan-sirtuin 

inhibitor (Nicotinamide), but not the Sirt1 inhibitor (EX-527), can suppress UCP1 

induction (Figure 4.6C), suggesting that sirtuin family deacetylases could be involved 

(e.g. Sirt2 and Sirt3).  Nonetheless, the exact mechanism underlying how mTORC2 

regulates FoxO1 acetylation state still requires further investigation. 
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Figure 4.6 FoxO1 is hypo-acetylated in Rictor-deficient BAT  

(A) Western blots for iBAT lysates from control and RictorUcp1-cKO mice (mice were 

fasted overnight, refed 1hr before dissection) (B) Western blots for iBAT lysates 

from control and RictorUcp1-iKO mice (mice were fasted overnight, refed 1hr before 

dissection) (C) Western blots for cell lysates from wild-type brown adipocytes 

(10mM Nicotinamide, 1mg/ml Sodium butyrate, 0.1~10μM Ex-527, 0.05~5μM 

Trichostatin A) (D) Western blots for cell lysates from wild-type brown adipocytes 

(0.1, 1 μM SAHA; 0.1, 1 μM LMK-235) 

 

FoxO1 Acetylation Can Be Triggered by β3-Adrenergic Activation 

Since I provide extra data to support that FoxO1 could be a critical transcription 

regulator of the thermogenic program, it becomes important to know whether FoxO1 can 

be activated by β-AR signaling in vivo.  To this end, thermoneutral animals were injected 

with β3-adregneric receptor ligand, CL-316,243, for three days to activate BAT 

thermogenesis.  CL-316,243 treatment completely reverses the whitening effect of 

thermoneutrality on control BAT but to a greater extent on Rictor-deficient BAT (Figure 

4.7B).  As expected, UCP1 protein levels are greatly induced after β-AR stimulation 

(Figure 4.7A), indicative of BAT activation.  Remarkably, FoxO1 acetylation is 

dramatically reduced in CL-316,243-activated BAT compared to saline-treated ones, 

while neither phosphorylation sites (T24 and S256) on FoxO1 nor global lysine 

acetylation are affected by CL-316,243 (Figure 4.7A).  Comparable changes in UCP1 
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expression and FoxO1 acetylation also occur in Rictor-deficient BAT.  It is noteworthy 

that the basal (saline) levels of FoxO1 acetylation in Rictor knockout BAT are already 

lower than control, which may explain higher Ucp1 levels in KO BAT in the basal state 

(saline) (Figure 4.7A).  Finally, the lower basal levels of FoxO1 acetylation in Rictor KO 

BAT inversely correlates with a greater response of thermogenic genes induction (Pgc1α, 

Irf4 and Elovl3) towards an acute CL-316,243 treatment (6 hours) (Figure 4.7C).   These 

results together suggest that loss of mTORC2 signaling increases the sensitivity of brown 

adipocytes to β3-adrenergic signaling, which is in line with the cell culture results.   

Finally, I would like to determine whether FoxO1 acetylation is also regulated in 

vitro.  Consistent with the findings in BAT, nuclear FoxO1 of Rictor-deficient cells 

displays lower acetylation levels in a FBS-stimulated condition (Figure 4.8A).  More 

importantly, CL-316,243 treatment drastically induces FoxO1 deacetylation within a few 

hours, while it does not affect FoxO1 phosphorylation (Figure 4.8B, 4.8D, and 4.8E).  

Again, FoxO1 acetylation levels in Rictor knockout cells are already lower in the basal 

(unstimulated) state than control and only display a modest decrease in response to β3-

adrenergic activation.  The fact that β3-adrenergic signals can induce FoxO1 

deacetylation is coincident with the previous finding that β-AR signaling induces PGC1α 

deacetylation through PKA-mediated Sirt1 activation (Gerhart-Hines et al., 2011).  In 

addition, PPARγ was also reported to be a Sirt1 substrate, and the Sirt1-mediated 

deacetylation promotes the association of PPARγ and Prdm16, which results in an 

enhancement of the thermogenic program in white adipocytes (Qiang et al., 2012).  

Interestingly, I also find that the acetylation level of PPARγ is lower in Rictor knockout 
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adipocytes compared to control adipocytes at the basal levels, and CL-316,243 treatment 

also triggers PPARγ deacetylation in control cells, but not in Rictor-deficient cells 

(Figure 4.8F).  Altogether, there is an emerging scenario that the β-adrenergic signaling 

concurrently activates key regulators of thermogenesis, including FoxO1, PGC1α and 

PPARγ, through Sirt1-mediated deacetylation in adipocytes.  However, whether 

mTORC2 exploits the same sirtuin-dependent mechanism or even mTORC2 directly 

mediates β-AR signaling to regulate these factors requires further elaborate examination.     
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Figure 4.7 β3-adrenergic signaling triggers deacetylation of FoxO1 in vivo 

(A) Western blots for iBAT lysates from control and RictorUcp1-cKO mice (mice were 

fasted overnight, refed 1hr before dissection) (B) Western blots for iBAT lysates 

from control and RictorUcp1-iKO mice (mice were fasted overnight, refed 1hr before 

dissection)  (C) Western blots for iBAT lysates from mice treated with PBS or CL-

316,243 for three days (D) qRT-PCR for iBAT samples from mice treated with PBS 

or CL-316,243 for 6hrs (n=6, Bars represent mean ± SEM; t-test; *p<0.05, **p<0.01, 

***p<0.001) 



124 
 

 

  



125 
 

Figure 4.8 FoxO1 acetylation state in response to different treatments  

(A) Western blots for cell fractionation experiment  (feeding and fasting induced 

FoxO1 acetylation changes in the nuclear fraction and the cytoplasmic ftaction) (B) 

Western blots for differentiated brown adipocytes treated with CL-316,243 for 1,2,4, 

and 6hrs.  (C) (D) (E) Quantification of band density in (B) (F) Western blots for 

lysates with PPARγ immunoprecipitation and then probed with pan-acetylation 

antibody. 
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Discussion 

Here, I find that mTORC2 controls BAT thermogenic program through regulating 

FoxO1 activity.  Most importantly, this regulation seems to be independent of classical 

AKT-mediated phosphorylation.  As mentioned before, FoxO1 activity is modulated by a 

variety of post-translational modifications, including phosphorylation and acetylation.  

AKT-mediated phosphorylation sites on FoxO1 are largely intact when Rictor is deleted 

in vitro and in vivo. However, other stress kinases, like AMPK, JNK, and MAPK, are 

also known to regulate FoxO1 at different sites (Asada et al., 2007; Yun et al., 2014), 

which also need to be characterized in the future.  Interestingly, I observed that p38-

MAPK is more active in Rictor KO brown adipocytes than that in control cells in vitro.  

Since p38-MAPK is reported to phosphorylate FoxO1 and promote its activity, I could 

not entirely exclude the possibility that mTORC2 exploits other AKT-independent 

mechanisms that affect FoxO1 phosphorylation and activity.  Conversely, FoxO1 is 

clearly hypo-acetylated in Rictor-deficient BAT.  Therefore, modulating FoxO1 

acetylation state could be a likely mechanism that allows mTORC2 to fine-tune FoxO1 

activity.  A recent study suggests that mTORC2 negatively regulates class IIa HDACs by 

direct phosphorylation in glioblastoma cells, which, in turn, regulate FoxO1 acetylation 

(Masui et al., 2013).  However, in contrast to this study, I did not find evidence 

supporting that mTORC2 controls class IIa HDACs activity through phosphorylation in 

the cell culture system and mouse tissues analyzed here.  Instead, it is equally possible 

that mTORC2 directly or indirectly regulates sirtuins activity.  Since sirtuin activity can 

be triggered by low energy state and high cellular NAD+ (nicotinamide adenine 
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dinucleotide) levels, it would be necessary to determine whether mTORC2 inhibiton 

could affect the NAD+/NADH ratio or related signaling pathways (e.g. AMPK signaling) 

in the future.  Alternatively, removing individual lysine deacetylases by CRISPR or 

RNAi would be another approach to determine whether mTORC2 controls FoxO1 

acetylation through a specific deacetylase.   

In addition, I also discovered the β-adrenergic agonist (CL-316,243) treatment 

robustly triggers deacetylation of FoxO1 in BAT without affecting FoxO1 

phosphorylation.  Consistently, CL-316,243-induced FoxO1 deacetylation can also be 

observed in the culture system.  Since it has been reported that PKA signaling can 

directly activate Sirt1 via phosphorylation (Gerhart-Hines et al., 2011), it is likely that the 

β-AR induced deacetylation of FoxO1 could be also mediated by Sirt1 or other sirtuin 

family members.  Nevertheless, these findings provide some clues leading to a novel 

mechanism by which FoxO1 is regulated upon cold exposure to activate Ucp1 expression.  

Again, it is necessary to determine whether mTORC2 mediates or exploits this regulatory 

mechanism towards controlling FoxO1. 

 

 

 

  



128 
 

CHAPTER V:  

Significance and concluding remarks 
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The physiological function of FoxO1 in adipose tissue 

The physiological role of FoxO1 in brown or white adipose tissue remains enigmatic 

because contradictory results have been reported in the literature.  In an earlier study, 

Nakae and colleagues (Nakae et al., 2008) first reported the ectopic expression of a 

dominant-negative FoxO1 in adipose tissue enhances browning and Ucp1 expression.  By 

contrast, two independent groups showed Pten overexpression increases energy 

expenditure through hyperactivation of FoxO1 in BAT (Garcia-Cao et al., 2012; Ortega-

Molina et al., 2012).  Interestingly, Nakae (Nakae et al., 2012) later identified a novel 

repressor of FoxO1, called FoxO corepressor (FCoR), whose overexpression reduces 

Ucp1 and Pgc1α expression by interrupting Sirt1-mediated FoxO1 deacetylation.  

Conversely, FCoR depletion in adipose tissue enhances oxygen consumption and lipid 

usage, which is presumably caused by FoxO1 activation.  Other studies also suggest 

FoxO1 regulates lipolysis in fat tissues through promoting the transcription of Atgl and 

lysosomal lipase (Lipa), implying that FoxO1 is involved in lipid mobilization 

(Chakrabarti et al., 2011; Chakrabarti and Kandror, 2009; Lettieri Barbato et al., 2013).  

Furthermore, FoxO1 is also shown to positively regulate Irf4 expression in the adipose 

tissue (Eguchi et al., 2011), and IRF4 was discovered to enhance BAT thermogenesis 

through interacting and collaborating with PGC1α (Kong et al., 2014).  In line with the 

literature, I demonstrate here that FoxO1 is required for the expression of several genes 

involved in thermogenesis (Ucp1, Pdk4, Irf4 and Cidea) and lipolysis (Atgl) in cultured 

brown adipocytes (Figure 3.11C and 3.11D).  Collectively, FoxO1 appears to play a pivot 

role in adipose tissue by coupling intracellular fatty acid availability and thermogenesis 
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together in fat tissues.  This mechanism is crucial for brown adipose tissue since lipolysis 

(i.e. releasing free fatty acids) is prerequisite for thermogenic function (Ahmadian et al., 

2011; Lee et al., 2016; Lee et al., 2015).  Nonetheless, how the mTORC2-FoxO1 axis 

integrates different physiological signals in adipose tissue remains elusive.   

 

How does mTORC2 integrate signals in different physiological states? 

Based on the results in this dissertation, I conclude that mTORC2 seems to serve as a 

pivotal signaling switch between energy storage and expenditure states by regulating two 

important functions—lipid biosynthesis and thermogenesis—in brown adipose tissue.  

First, mTORC2 promotes de novo lipogenesis by facilitating glucose uptake and 

utilization through AKT-mediated pathways, which is essential for adipocyte 

differentiation and growth.  Second, mTORC2 suppresses BAT thermogenic program via 

regulating FoxO1 activity through a novel mechanism that involves modulating lysine 

acetylation status of FoxO1.  Although the detailed mechanism by which mTORC2 

regulate FoxO1 acetylation is not completely understood, β3-adrenergic receptor 

activation also triggers FoxO1 deacetylation, suggesting the mTORC2-mediated 

signaling and the β-AR signaling might converge on FoxO1 regulation (Figure 5.1).  

Thus, elucidating how mTORC2 reacts and integrates various signals (especially insulin 

versus norepinephrine) in different physiological states could be one of the future 

directions. 
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Figure 5.1 mTORC2 Helps Maintain a Balance between Energy Expenditure 
and Energy Storage  
According to the literature and our findings, mTORC2 serves as an important 
regulator of BAT energy homeostasis downstream of both insulin and 
norepinephrine signaling.  When activated by these two signals, mTORC2 facilitates 
glucose uptake and subsequent lipogenesis.  Conversely, mTORC2 also has a novel 
function in suppressing the PKA signaling and FoxO1 activity, which are required for 
BAT thermogenesis.  

 

  



132 
 

As discussed in Chapter I, BAT metabolism and activity are regulated by insulin 

and adrenergic receptor signaling pathways, and cross-talk between these two systems 

could ultimately lead to opposing or synergic effects on different cellular processes.  For 

example, FoxO1 is typically inhibited by insulin signaling, but the mechanism I 

elucidated here by which the β3-adrenergic signaling modulates FoxO1 acetylation states 

might provide a novel mechanism that counteracts inhibitory phosphorylation by insulin.  

Indeed, most of the acetylation sites on FoxO1 surround a conserved AKT serine 

phosphorylation site (S256 in human FoxO1a) localized to a region containing the 

nuclear localization signal motif (Obsil and Obsilova, 2008).  This may imply a 

regulatory link between acetylation modification and the phosphorylation-mediated 

nuclear/cytoplasmic shuttle mechanism.  On the other hand, acetylation states of FoxO1 

can also be modulated by cellular Redox states.  Sirt1 is known to be activated by 

oxidative stress and thus catalyzes FoxO3a deacetylation (Brunet et al., 2004).  As a 

result, deacetylated FoxO3a turns on the expression of genes encoding antioxidant 

enzymes such as SOD2.  Also, UCP1 and other uncoupling proteins (UCP2 and UCP3) 

have been ascribed for the role in defending against oxidative stress (Mailloux and 

Harper, 2011; Mailloux et al., 2011).  Importantly, a substantial amount of reactive 

oxygen species (ROS) can be generated by high mitochondrial respiration in BAT.  

Therefore, the original role of FoxO1 on Ucp1 expression could be an evolutionally 

conserved function, as part of a cellular defense system to neutralize oxidative stress.  To 

test this hypothesis, a genetic model with BAT-specific FoxO1 ablation would be crucial 

to reveal specific functions of FoxO1 in follow-up studies. 
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From an energetics perspective, cells or tissues receive hormonal signals which 

reflect systemic energy status to adjust cellular metabolic processes.  In a fed state, 

insulin and growth factors promote anabolic pathways, such as lipogenesis and 

glycogenosis, which lead to energy conservation or growth.  Conversely, in an energy-

deprived state, serum catecholamines are elevated and stimulate the PKA signaling 

pathway, which usually activates catabolic pathways, such as lipid oxidation.  These 

mechanisms are conserved in many tissues and cell types during the fasting-feeding cycle.  

However, a complex interplay between the insulin and β-adrenergic receptor signaling is 

found in brown adipose tissue, and the findings here might be useful to understand some 

of these interactions (Figure 5.1).  Besides activating the canonical PKA pathways, 

catecholamine-induced cAMP production has been shown to activates PI3K through 

Epac1 (exchange factor directly activated by cAMP 1) in many cell types.  A recent study 

suggested mTORC2 is involved in the Epac1-mediated glucose uptake, which is induced 

by β-adrenergic receptor activation.  Consistent with this notion, I also observed that 

mTORC2 inhibition partially reduces CL-316,243-induced glucose uptake.  This 

connection may explain how β-adrenergic signaling can trigger both catabolic and 

anabolic processes simultaneously during thermogenic metabolism in BAT.  Nonetheless, 

I also notice that mTORC2 has a suppressive role on p38-MAPK signaling (or even 

upstream PKA signaling) in conjunction with inhibitory regulation on FoxO1.  While the 

existence of these feedback mechanisms is seemingly paradoxical, mTORC2 could 

function as a circuit breaker to prevent “overheating” and nutrient depletion.  Indeed, in 

mTORC2-deficient BAT, there are enhancements in UCP1 expression and lipid oxidation 
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with a severe reduction in lipogenic functions, collectively causing BAT in an 

unbalanced state (i.e., loss of metabolic flexibility) marked with deprivation of 

intracellular lipid store (Figure 5.2). 

 
Figure 5.2 mTORC2 Deficiency Causes an Unbalanced State of BAT metabolism 

When mTORC2 is ablated, BAT metabolism is shifted from glycolysis and lipogenesis 
towards lipid oxidation and thermogenesis.  Although lipogenesis is not essential for 
the activation of thermogenesis, but it is important for the replenishment of 
intracellular TG pools.  Therefore, mTORC2-deficient BAT could lose the metabolic 
flexibility to adapt extreme conditions, such as acute cold challenge. 
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Interestingly,  the BAT phenotypes caused by mTORC2 inhibition are highly 

paralleled by some aspects of Sirt1 hyperactivation BAT.  Sirtuins are NAD+ dependent 

metabolic/energy sensors, and they can be activated at low energy states such as fasting 

or calorie restricted conditions.  Administration of Sirt1 activator or Sirt1 transgenic 

expression stimulates energy expenditure and lipid oxidation pathways in BAT (Boutant 

et al., 2015; Canto et al., 2012; Feige et al., 2008; Xu et al., 2016).  Importantly, Sirt1 

activation also enhances transcriptional induction of Ucp1 to β-adrenergic stimulation.  In 

these studies, FoxO1 hypo-acetylation was commonly observed in Sirt1-activated cells or 

tissues; however, no functional assays were done to address the role of FoxO1 in Sirt1-

mediated phenotypes.  Although a direct connection between mTORC2 and Sirt1 has not 

been reported, I purpose a more rigorous examination regarding any function link 

between the two molecules.  In addition, other Sirt1 substrates, such as PGC1α and 

PPARγ, should also be examed in Rictor-deficient BAT.  Furthermore, several key 

transcription factors that drive lipogenesis have been described to be regulated by 

acetylation modification (Wang et al., 2015).  For example, Sirt1 can directly deacetylate 

SREBP and diminish its activity during fasting, resulting in down-regulation of 

lipogenesis (Walker et al., 2010). We do not know whether mTORC2 also regulates these 

lipogenic factors in a similar fashion, but it is possible that mTORC2 function as a part of 

signaling circuits that coordinatingly control key transcriptional factors to facilitate a 

tight regulation of both gene expression and metabolism in response to nutrient and 

energy fluctuations. 
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The functional uniqueness of brown adipose tissue  

For the majority of organisms, their body temperatures and metabolic rates are greatly 

impacted by the ambient temperature; most animals are thus ectotherms.  Conversely, 

birds and mammals have the endogenous capacity to maintain their thermal balance and 

core temperatures through insulation layers and thermogenic organs; therefore, they are 

endothermic organisms.  The mechanisms of thermogenesis have been extensively 

documented in mammals compared to very few studies in birds (Cannon and Nedergaard, 

2011).  When exposed to the cold environment, the mammals tend to shiver initially to 

increase heat production; however, shivering can not endure for an extended period.  It 

was then realized that, after prolonged cold exposure, these animals ceased to shake but, 

paradoxically, still retained high metabolic rates and normothermia.  This high energy 

expenditure is due to the recruitment of tissues capable of non-shivering thermogenesis, 

and brown adipose tissue is the primary organ for this function.   

 Brown adipose tissue has been evolved relatively late in the evolutionary history, 

and it is almost exclusively found in the mammals.  BAT metabolism can be rapidly 

activated whenever the animals are in need of extra heat production, like neonates after 

birth or during arousal from hibernation.  The functional uniqueness of BAT comes from 

the existence of UCP1 protein, which is not present or expresses at very low levels in 

other non-adipose tissues.  Ucp1 is the first member of uncoupler protein (UCP) family 

identified in Mammals.  There are four homologs identified later: UCP2 is ubiquitously 

expressed, UCP3 exists only in skeletal muscle and the heart, UCP4 and UCP5 (or brain 

mitochondrial carrier protein-1, BMCP-1) are principally expressed in the brain.  
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However, all these UCP-like proteins (UCP2-5) are thought to be physiologically 

irrelevant to the thermogenesis function because of their low abundance in mitochondrial 

membrane and lacking the same biochemical properties of UCP1(Nedergaard and 

Cannon, 2010).   

Interestingly, some earlier reports suggested the expression of Ucp1 in non-

adipocytes tissues (Cannon and Nedergaard, 2004).  For example, there are studies 

showing that chronic treatment of β3-AR agonists leads to UCP1 expression in skeletal 

muscle.  However, this UCP1 expression was later proved to originate in the brown 

adipocytes interspersed between muscle bundles, but not in the myocytes (Almind et al., 

2007).  Brown fat and skeletal muscle share a similar developmental origin (i.e. arise 

from precursor pools residing in the dermomyotome) [reviewed in (Sanchez-Gurmaches 

and Guertin, 2014a)].  But why is Ucp1 exclusively expressed in brown adipocytes?  

During brown fat development, several fate-determination factors drive activation of 

brown adipocyte commitment genes but induce stable silencing of the myogenic gene 

program.  It is now becoming clear that the fate determination process is tightly 

associated with epigenetic changes such as DNA methylation, histone modifications, and 

chromatin remodeling, thus allowing lineage-specific gene expression.   One of these 

fate-determining factors in BAT development is a histone methyltransferase, EHMT1, 

which is a crucial enzymatic part of the PRDM16 complex.  Disruption of Ehmt1 gene 

blocks brown adipocyte differentiation and induce expression of muscle-specific genes, 

including myogenin (Inagaki et al., 2016).  This may explain why the signaling molecules 

discussed in this dissertation, such as PGC1α, FoxO1, and p38-MAPK, are ubiquitously 
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expressed in a wide range of cell types but rather engage in Ucp1 expression specifically 

in brown adipocytes or brown-like adipocytes.  

 

The physiological significance of diet-induced thermogenesis 

Compared to cold-induced thermogenesis (CIT), dietary effects on activating 

thermogenesis has been a matter of debate.  The contribution of BAT in “diet-induced 

thermogenesis (DIT)” was first introduced by a fundamental study (Rothwell and Stock, 

1979).  The initial observations were that the responses of BAT to dietary stimuli 

declining with ages and becoming undetectable when BAT is maximally stimulated by 

the cold.  More recently, Kozak dismissed this phenomenon as a myth (Kozak, 2010); 

however, it was further proved by an elegant experimental design with Ucp1-ablated 

mice (Feldmann et al., 2009).  The transgenic mice that lack UCP1-mediated 

thermogenesis exhibited higher weight gain in response to HFD feeding at 

thermoneutrality.  Such phenotype was otherwise masked at room temperature due to 

elevated basal metabolism stimulated by cold stress.  Consistent with this notion, our 

Ucp1-Cre driven Rictor knockout mice demonstrate elevated expression of thermogenic 

program genes, and they are less vulnerable to HFD-induced obesity at 30°C.  

Nonetheless, the molecular mechanisms behind DIT and which dietary components can 

induce this effect are still unknown.  These are intriguing questions to be followed in the 

future, especially regarding how dietary components might directly modulate mTORC2 

signaling. 
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 Although current evidence supports the presence of diet-induced thermogenesis, 

the evolutionary significance of this regulatory mechanism remains mysterious.  At first 

glance, the existence of such mechanism seems to be irrational; why would the animals 

develop an energy-wasting measure following food intake?  One possible explanation is 

that DIT is evolved mainly to deal with nutrient-deficient or unbalanced diets (Stock, 

1999).  Some early rodent studies suggested low protein content in foods may be a key 

factor to trigger thermogenesis, which implies the role of DIT in the regulation of energy 

balance could be secondary to its original role in the quality control of nutrient supply.  

However, up to date, meticulously designed experiments to test this hypothesis have not 

yet been conducted.  

 

An alternative view of mTORC2-deficient phenotypes 

The deficiency in mTORC2 signaling appears to have great impacts on BAT metabolism.  

In particular, the paucity of lipid storage is evident and consistent with my previous 

results from the Myf5-Cre model.  It is now becoming clear that altered glucose 

metabolism is one of the key features upon mTORC2 loss.  A handful of studies (Albert 

et al., 2016; Olsen et al., 2014) pointed towards that mTORC2 activity is directly 

involved in glucose uptake in adipocytes.  However, the fact that the expression of the 

DNL genes is substantially reduced (Figure 3.2A) while basal glucose uptake is not 

affected by mTORC2 inhibition (Figure 3.2C), which indicates mTORC2 may have a 

primary role in regulating glucose catabolic pathways (e.g. glycolysis and glucose 
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oxidation) rather than directly regulating the glucose uptake process.   For example, Hall 

and colleagues found mTORC2 regulates glucose metabolism via phosphorylating 

mitochondrial HK-II (Betz et al., 2013).  On the other hand, a recent study (Chen et al., 

2016) argued that a direct link between mTORC2 and ACLY (ATP-citrate lyase) in 

acetyl-CoA production.  In this study, they characterized ACLY S455 site as an 

mTORC2 substrate in HER2/PIK3CA breast cancer cells and acetyl-CoA production is 

reduced when mTORC2 is absent.  This phosphorylation site has been proved to be 

critical for ACLY activity (Lee et al., 2014).  Consistent with this finding, I also observed 

that ACLY S455 phosphorylation is diminished when mTORC2 is lost in brown 

adipocytes [unpublished data].  Thus, it is possible that the activation of mTORC2 

signaling is required for adequate acetyl-CoA biosynthesis in brown adipose tissue.  

Acetyl-CoA is a central metabolite of intermediary metabolism.  It is not only the 

breakdown product of glucose and fatty acids but also serves as precursors for many 

biochemical reactions.  Besides its metabolic functions, accumulating literature has 

focused on the role of acetyl-CoA metabolism and cellular signaling [reviewed in 

(Choudhary et al., 2014; Gut and Verdin, 2013)].  Specifically, it has been shown that 

ACLY activity positively correlates with global histone acetylation state (Wellen et al., 

2009).  In addition, acetylation levels of non-histone proteins (including transcription 

factors and metabolic enzymes) have also been shown to be regulated by 

compartmentalization of acetyl-CoA production.  Therefore, mTORC2 could function as 

a critical signaling hub that coordinates cellular metabolism and gene expression through 

regulating acetylation states of histone and non-histone proteins (Figure 5.3).  In this 
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model, mTORC2 regulates multiple metabolic processes to optimize cellular lipid 

biosynthesis: (1) suppressing fatty acid oxidation and thermogenesis via inhibiting FoxO1; 

(2) promoting glucose uptake and acetyl-CoA production, which is not only a precursor 

metabolite for de novo lipid synthesis but also an acetyl group donor for protein 

acetylation. 

 

 
Figure 5.3 Model summarizing the role of mTORC2 in brown adipose tissue 
When activated, mTORC2 promotes de novo lipogenesis by facilitating glucose 
uptake and glycolysis (via AKT activity), leading to activation of ChREBP and 
SREBP1c.  Conversely, mTORC2 signaling suppresses FoxO1 activity through 
phosphorylation and acetylation to inhibit transcription of lipid oxidation genes and 
thermogenic genes.  Importantly, mTORC2 could regulate acetylation of FoxO1 
through negatively regulating deacetylases (i.e., Sirtuins or HDACs) and/or through 
regulating acetyl-CoA production.  Of note, ChREBP (Bricambert et al., 2010) and 
SREBP1 (Walker et al., 2010) are also known to be regulated by acetylation. 
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Conclusion and future directions 

In this dissertation, I have unraveled the complex role of mTORC2 in controlling 

metabolism in brown adipose tissue.  mTORC2 inhibition causes remarkable alternations 

in BAT metabolism which is shifted from glycolytic pathways towards oxidative 

metabolism and thermogenesis.  Importantly, the mice with mTORC2-ablated BAT are 

protection from obesity and its associated adverse effects.  However, as mentioned above, 

targeting mTORC2 might not be the best strategy in developing treatments for obesity 

because it also seems to lock BAT metabolism into a state with less metabolic flexibility.  

Given these caveats, understanding the wiring and the interplay between signaling 

circuits and metabolic networks is crucial and could also be valuable even beyond the 

topic discussed in this dissertation.  It has been long understood that obesity is intimately 

associated with the development of type II diabetes and cardiovascular disease.  There is 

also growing evidence connecting obesity and the incidence of particular cancers.   

Moreover, many cancer cells also utilize and adapt aberrant metabolic pathways, which 

gives them growth and survival advantages.  For example, elevated de novo lipogenesis 

and upregulated lipogenic enzymes (e.g. ACC and FASN) are frequently observed in 

several cancer types including breast, prostate and liver cancers.  Given there is a critical 

role of mTORC2 in regulating glucose metabolism and lipogenesis in adipocytes, it is 

highly anticipated that mTORC2 might have a similar role in some of those cancer cells.  

Therefore, developing therapeutic strategies that specifically obstruct mTORC2 signaling 

or its downstream effectors might be a potential direction to attack the Achilles’ heel of 

these diseases. 
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Materials and Methods 

Antibodies and reagents 

Rictor (Cat# 2140), mTOR (2983), pan-AKT (9272), GSK3β (9315), ACC (3676), 

ACLY (4332), NDRG1 (9408) and β-actin (4970), Insulin receptor β (3025) and anti-

HA-tag (2367) HDAC4 (7628), HDAC5 (20458), p38MAPK (8690), Erk1/2 (4695), HSL 

(4107), Sirt1 (9475), Sirt3 (5490), and α-tubulin antibodies were purchased from Cell 

Signaling Technologies.  SREBP1 (sc-366), p70 S6K (sc-9027), UCP1 antibody (sc-

6528), and HRP-conjugated secondary antibodies were from Santa Cruz biotechnology. 

UCP1 antibody (sc-6528) is from Abcam. All phosphorylation-specific antibodies: S473-

AKT (4058), T308-AKT (4056), T24-FoxO1 (9464), S9-GSK3β (9323), T1462-TSC2 

(3617), T389-S6K (9234), p-HDAC4/5/7 (3443&3424) , p-p38MAPK (4511) , p-Erk1/2 

(4376), p-S660-HSL (4126) and p-S565-HSL (4137) were from Cell Signaling 

Technologies.  4-hydroxy-tamoxifen (4-OHT) was from Toronto Research Chemicals.  

Indomethacin, dexamethasone, 3-isobutyl-1-methylxanthine (IBMX) and all other 

reagents were from Sigma-Aldrich. AS1842856 is from Calbiochem.  HDAC and Sirtuin 

inhibitors are Selleckchem.   

 

Plasmids 

Full length AKT1 cDNA obtained by PCR amplification from pcDNA3-myr-HA-AKT1 

(addgene #9008) was subcloned into the pCMV-HA vector.  Full length AKT2 cDNA 

obtained by PCR amplification from pBabe-myr-HA-AKT2 (addgene #9018) was 
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subcloned into the pCMV-HA vector.  SGK1 cDNA (Thermo Scientific #MHS6278-

202755905) was PCR amplified to obtain a truncated SGK sequence (SGK-delta-60N, N-

terminal 1-60 amino acids deletion).  Phosphomimetic constructs with indicated mutation 

were done by QuikChange Site-Directed Mutagenesis kit (Stratagene) with appropriate 

primers.  All cDNA constructs were also transferred into pBabe-puro retroviral vector for 

stable expression. 

 

Mice 

Rictor floxed (Rictorfl/fl) mice (Shiota et al., 2006) or Raptorfl/fl mice (Peterson et al., 

2011) were crossed with Myf5-Cre (JAX #007893)(Tallquist et al., 2000), Ubc-CreERT2 

(JAX #007001)(Ruzankina et al., 2007) and Pax7-CreERT2 (JAX #012476)(Lepper et al., 

2009), to make conditional or inducible knockout mice.  Akt1 and Akt2 floxed mice 

(provided by Morris Birnbaum) were also crossed with Myf5-Cre.  Rosa26-mTmG (JAX 

#007676) and Rosa26–LSL-LacZ (JAX #003474) were also obtained from Jackson 

laboratory.  In chapter III, Rictor floxed (Rictorfl/fl)  mice (Shiota et al., 2006) were 

crossed with different Cre-driver mice including Ucp1-Cre mice (The Jackson 

Laboratory),  Ucp1-CreERT2 (a gift from Dr. Wolfrum. Rosenwald et al., 2013) and 

Adiponectin-Cre (The Jackson Laboratory) to make conditional or inducible knockout 

mice.  For reporter mice, Rosa26-mT-LSL-mG was obtained from Jackson laboratory.  

FoxO1 floxed mice are from The Jackson Laboratory. Male 129/C57B6 mice were used 

for all studies.   Mice were kept on a daily 12 h light/dark cycle and fed a normal chow 

diet (Prolab® Isopro® RMH 3000) from LabDiet ad libitum at 22°C (except 
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thermoneutrality studies).  All animal experiments were approved by the University of 

Massachusetts Medical school animal care and use committee. 

 

Embryo analysis 

Timed matings were performed and embryos were dissected at the indicated days. 

Embryos were fixed overnight in paraformaldehyde, paraffin embedded, and processed 

for histological analysis according to conventional methods.   

 

Satellite cells isolation and in vitro differentiation 

Adult muscle satellite cells were isolated according to (Sherwood et al., 2004). Limb 

muscle including triceps surae (TS), tibialis anterior (TA), quadriceps and triceps were 

dissected and minced from 6 to 8-wks mice.  Isolated interstitial and myofiber-associated 

cells were passed through 70μm nylon mesh and centrifuged at 1200 rpm.  Red blood 

cells were removed from preparations by incubation with RBC lysis buffer (0.15 M 

ammonium chloride, 0.01 M potassium bicarbonate) on ice for 3 minutes.  Antibody 

staining was performed for 20 min on ice in Hank’s balanced salt solution supplemented 

with 2% FCS and 2 mM EDTA.  After staining cells were filtered through a 35-µm cell-

strainer capped tube to ensure single cell suspension.  Sorting was performed 

immediately after filtration using a FACS Aria II cell sorter equipped with FASCDiva 

software.  Cells were initially selected by size and shape and only live (PI-, calcein blue+) 

singlets were gated for further analysis of surface markers.  Finally an enriched pool of 

cells (Sca-1-, Mac1-, Ter119-, CD45-, CXCR4+ and β1 intergrin+) were purified and re-
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sorted with the same scheme described above to ensure the purity.  Double sorted satellite 

cells were plated at 4x103 cells/well in collagen/laminin coated 96-well plates.  Cells 

were maintained in growth media (20% horse serum in F10 media, Invitrogen) and feed 

with 5ng bovine FGF daily for 5 days.  For inducing muscle fiber formation, cells were 

first transferred into matrigel (BD Biosence)-coated chamber slides and grown in growth 

media with bFGF.  2~3 days later, cells were exposed to differentiation media (2% horse 

serum in F10 without bFGF).  After 2 to 4 days myofiber can be observed and fixed with 

4% paraformaldehyde.  Myosin heavy chains and DAPI staining were performed as 

described in immunofluorescence section. 

 

Muscle regeneration after cardiotoxin injury 

To induce Rictor deletion in vivo, Pax7-CreERT2 mice were i.p. injected with 200μg/g of 

tamoxifen (dissolved in ethanol first then diluted in corn oil to 10mg/mL) for consecutive 

4 days. One day later the mice were anesthetized with 12mg/kg xylazine and 60mg/kg 

ketamine and 30μL cardiotoxin (10μmol/L from Naja nigricollis, Calbiochem) was 

directly injected into tibialis anterior muscle.  30μL PBS was given in contralateral TA 

muscle as control. 1 day and 10 days post injury, TA muscle was removed and muscle 

regeneration was examined by H&E staining and LacZ staining. 

 

LacZ staining 

Adipose tissue depots were fixed in 2% paraformaldehyde, 0.2% glutaraldehyde in PBS 

for 30 min at room temperature. The tissues were then washed 3 times for 15 min in wash 
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buffer (PBS carrying 2 mM MgCl2 and 0.02% Igepal® CA-630). Staining was perform 

in wash buffer containing X-gal (1mg/mL), potassium ferricyanide (5 mM) and 

potassium ferrocyanide (5 mM) at room temperature for at least 16 h. Next, tissues were 

further fixed in fixing solution for at least 12 h at room temperature, transferred to 

ethanol for dehydratation, then sectioned at 5 µm thicknesses. Sections were counter-

stained with nuclear fast red dehydrated and mounted using CitosealTM 60 (Thermo 

Scientific). Lean tissues were snap frozen in isopentane-liquid nitrogen in OCT. Sections 

(10 µm) were stained overnight (X-gal (1mg/mL), potassium ferricyanide (5 mM) and 

potassium ferrocyanide (5 mM), MgCl2 (2 mM) in PBS at 37°C and counter-stained with 

nuclear fast red, dehydrated and mounted. 

 

Tissue harvest and histology 

Adipose tissue depots notations are described in (Walden et al., 2011).  Each tissue was 

carefully dissected to avoid contamination from surrounding tissue. Samples for RNA 

were first immersed in RNAlater (Invitrogen) and stored at -80°C; otherwise, they were 

frozen down immediately in liquid nitrogen.  For histology, tissue pieces were fixed by 

10% formalin.  Embedding, sectioning and Hematoxylin & Eosin (HE) staining was done 

by the UMass Morphology Core. 

 

Immunohistochemistry 

Adipose tissue sections were subjected to UCP1 IHC according to (Cohen et al., 2014).  

Briefly, fat sections were hydrated and antigen retrieval was done by incubating the 
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sections in citrate buffer at 90-95°C water for 20 min. After blocking, primary antibody 

(anti-Ucp1 antibody, Abcam #ab10983) was applied overnight at 4°C. Next day, 

SuperPicture 3rd Gen IHC Detection Kit (Novex) was used for detection. 

 

Whole-mount confocal microscopy 

Indicated brown and white adipose tissues were dissected from 6 week-old mice and 

were mounted with Fluoromount-G (Southern Biotech) as described in (Berry and 

Rodeheffer, 2013).  Mounted samples were imaged on a LSM 5 Pascal (Zeiss) point 

scanner confocal system.  40x objective was used with oil immersion.  Background 

fluorescence was offset by using wild-type tissues (no mT/mG allele).  GFP was excited 

at 488 nm and detected from 515 to 565 nm and iBAT form Myf5-cre;Rosa26mT/mG 

mice was used as positive control for GFP signal.  TdTomato was excited at 543 nm and 

detected from 575 to 640 nm and pgWAT from mT/mG mice (without Cre-driver) was 

used as positive control for TdTomato.  

 

Nuclei number and cell size quantification 

ImageJ was used to quantify nuclei number in iBAT and cell size (diameter) in rWAT 

and asWAT.  For each individual sample, 4 to 6 images were taken and analyzed.  Nuclei 

density was presented as nuclei number per mm2. 
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Genomic DNA quantification 

Total genomic DNA was extracted and purified by using DNeasy Blood & Tissue kit 

(Qiagen) according to manufacturer’s instruction.  Isolated genomic DNA was quantified 

by NanoDrop 2000 (Thermo Scientific) spectrophotometer.   

 

Immunofluorescence 

Frozen section of interscapular brown adipose tissues were thawed and then fixed with 

methanol for 15 min at room temperature.  The fixed sections were washed with 1mL 

PBS twice and then were permeabilized and blocked with PBSAT buffer (PBS with 1% 

BSA and 0.5% Triton X-100) for 15 min twice.  Primary antibody against mitochondria 

Cox IV (1:100 dilution, CST #4850) was added to sections for overnight incubation. 

Slides were washed three times with 1mL PBSAT and incubated with secondary antibody 

conjugated with Alexa-568 or Alexa-647 (1:1000 dilution, Invitrogen) for 4 hours.  

Intensive wash was applied to remove unstained antibodies.  DAPI was used to stain 

nuclei for 5 min and washed away by PBS immediately.  The slides were embedded with 

5μL mounting media (Prolong Gold, Invitrogen).  

 

Glucose uptake by 18F-FDG PET-CT   

6-week old mice (n=5 per each genotype) were i.p. injected with 18F-FDG, 364-483 uCi 

in100 ul saline, and 30 min later the PET imaging was performed in anesthetized animals 

(1.2-2% isoflurane carried in oxygen) immobilized on a Minerve bed (Bioscan). 
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Immediately after PET acquisition, each mouse was transferred to the NanoSPECT/CT 

(Bioscan), for the CT acquisition. The PET images were reconstructed without photon 

attenuation correction using the PETView program (Philips) with the fully 3D iterative 

reconstruction algorithm, giving a pixel size of 1 mm. The CT acquisition was performed 

at standard frame resolution, 45 kVp tube voltage and 500 ms of exposure time. The CT 

reconstruction was accomplished using In-VivoScope 1.37 software (Bioscan). The PET 

image DICOM files were transferred to the NanoSPECT/CT reconstruction workstation 

to provide the PET/CT fusion images. Volume-of-Interest (VOI) analysis of the PET 

acquisitions was accomplished with the InVivo- Scope 1.37 software.   

 

Transmission electron microscopy  

iBATs (n=3 for each group) were dissected from 5 week-old mice and subjected to 

electron microscopy study done by Core Electron Microscopy Facility, UMass medical 

school. 

 

Metabolite profiling 

See in the published paper (Hung et al., 2014). 

 

Cold challenge 

Randomly-fed Mice were transferred into a 4°C cold room with or without food (as 

indicated in the text) in the cage.  Rectal temperature was measured by rectal probe 
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(RET-3, ThermoWorks) hourly for 6 or 7 hours.  Mice were sacrificed and tissues were 

collected at the end of experiment.  For chronic cold acclimation, mice were moved into 

an environment-controlled chamber with temperature set at 6°C for 2 weeks. Food and 

water were freely accessible. 

 

Cell culture and retrovirus production  

All cells were cultured in DMEM (Invitrogen) supplemented with 10% FBS and 

penicillin/streptomycin at a 37°C.  Primary brown preadipocytes (bBPAs) were isolated 

from P1 neonates of Ubc-creERT2;Rictorfl/fl mice, Myf5-cre;Rictorfl/fl, Myf5-cre;Akt1fl/fl, 

Myf5-cre;Akt2fl/fl mice, Ubc-CreERT2; Akt1fl/fl; Akt2fl/fl mice, Ubc-CreERT2; Raptorfl/fl mice 

and control littermates according to (Fasshauer et al., 2001) and were immortalized with 

pBabe-SV40 Large T antigen and selected by puromycin or zeocin resistance.   For 

recombinant AKT and SGK construct expression, retroviruses were made by 

cotransfecting pBabe-puro plasmid harboring different Akt or Sgk cDNAs with pCL-

Ampho in HEK-293T cells.  24h and 48h after transfection the viral supernatant was 

harvested and applied to MEFs for 12h.  Cells stably expressing each construct were 

obtained after puromycin selection. 

For Ucp1 induction experiment, cells were differentiated as described previously (Hung 

et al., 2014) and were treated with Ethanol or 4-OHT to induce gene deletion at Day 6.  

At Day 11, cells were incubated with fresh medium with CL-316,243 or forskolin for 

8hrs. FoxO1 inhibitor (AS1842856) was given 30mins prior to CL-316,243 or forskolin 
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stimulation.  

 

Differentiation 

To generate RictoriKO cells ubc-creERT2;Rictorfl/fl  bAPCs were treated with two doses 

of 1μM 4-OHT for 3 days. For brown preadipocyte differentiation, BPAs were seeded at 

4x104 cells/ml and allowed to proliferate to confluence over 3 days in differentiation 

media (20nM insulin, 1nM T3).  On the 4th day, cells were induced to differentiate by 

adding induction media (20nM insulin, 1nM T3, 0.125mM indomethacin, 2μg/mL 

dexamethasone and 0.5mM 3-isobutyl-1-methylxanthine (IBMX)) for 2 days; the 

medium was then changed every two days with fresh differentiation media until day 10.  

Differentiated bAPCs were fixed with PBS-buffered formalin and stained with Oil-Red-O 

dye.  

 

CRISPR-mediated knockout  

For CRISPR knockdown, guide RNAs for FoxO1 knockout were designed by 

CHOPCHOP (https://chopchop.rc.fas.harvard.edu/).  PAM motif  and enzyme site 

sequences were added according to the protocol (Sanjana et al., 2014; Shalem et al., 

2014).  DNA oligos for each sgRNA were cloned into lentiCRISPRv2 vector. 

The sgRNA sequences are:  

sgFoxO1#1: 5’-GGCCGAAGCGCCCCAGGTGG-3’;  

sgFoxO1#2: 5’-GAGCAACCTGAGCCTGCTGG-3’;  

sgFoxO1#3: 5’- TGCGACAGCGGCCCGGTCGG-3’;  
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sgFoxO1#4: 5’-GGCCGAAGCGCCCCAGGTGG-3’.  

 

Western blots 

Cells were lysed in a buffer containing 50mM Hepes, pH 7.4, 40mM NaCl, 2mM EDTA, 

1.5mM NaVO4, 50mM NaF, 10mM sodium pyrophosphate, 10mM sodium β-

glycerophosphate and 1% Triton X-100 typically 1 hour after the cells were replenished 

with fresh culture medium.  Tissues were homogenized using a TissueLyser (Qiagen) in 

the same lysis buffer but additionally supplemented with 0.1% SDS, 1% sodium 

deoxycholate.  An equal amount of total protein was loaded into acrylamide/bis-

acrylamide gels and transferred to PVDF membranes for detection with the indicated 

antibodies.  Briefly, membranes were incubated with primary antibodies in 5% 

milk/PBST or 5% BSA/PBST overnight.  HRP-conjugated secondary antibodies were 

given for 1h.  Western blots were developed by enhanced chemiluminescence 

(PerkinElmer) and detected by X-ray films. 

 

Immunoprecipitation 

AKT1-specific antibody (CST# 2967) and AKT2-specific antibody-conjugated beads 

(CST#4090) were used to purify each isoform.  500ug Cell lysates or tissue lysates were 

incubated with 1ul of antibodies at 4°C overnight.  For AKT1 purification, protein-

antibody complex was precipitated by 2 hrs incubation with protein G sepharose beads 

(Invitrogen).  Samples were then boiled in 2x SDS sample buffer. 
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Ex vivo oxygen consumption 

Freshly isolated brown adipose tissues were rinsed with KHB buffer (111nM NaCl, 

4.7mM KCl, 2mM MgSO4, 1.2mM Na2HPO4, 0.5mM carnitine and 2.5mM glucose) 

and then cut into small pieces (5~10mg).  After 5 times of washing with KHB buffer, 

each piece was placed into the center of one single well in a XF24 islet capture 

microplate (Seahorse Bioscience #101122-100) and covered by a provided screen.  450ul 

KHB buffer was loaded in each well and tissue metabolic rates were measured following 

program: 3 cycles for basal oxygen consumption rate (OCR) (2 min mix, 2 min wait, and 

3 min measure), then injection of 50ul 100mM pyruvate, then followed by 3 cycles for 

pyruvate-stimulated OCR (3 min mix, 3 min wait, and 2 min measure).  Each OCR value 

was obtained from five different pieces of a tissue and from 3 repeated measurements. 

The final OCR values were the average of five independent experiments and normalized 

to genomic DNA content. 

Gene expression analysis 

Total RNA was isolated from cells or tissues using Qiazol (Invitrogen) and an RNeasy kit 

(Invitrogen).  Equal amounts of RNA were retro-transcribed to cDNA using a High 

capacity cDNA reverse transcription kit (#4368813, Applied Biosystems).  Quantitative 

RT-PCR was performed in 10µL reactions using a StepOnePlus real-time PCR machine 

from Applied Biosystems using SYBR Green PCR master mix (#4309156, Applied 

Biosystems) according to manufacturer instructions.  Standard and melting curves were 

run in every plate for every gene to ensure efficiency and specificity of the reaction. Tbp 

expression was used as a normalization gene in all conventional RT-PCR experiments.  
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Primer information is listed in the table below.  Quantitative RT-PCR arrays for 

mitochondria (PAMM-087) and mitochondria energy metabolism (PAMM-008) were 

purchased from Qiagen.  Interscapular brown fat pads were removed from 6-wks mice ad 

libitum and Rictor protein deletion in Myf5-re;Rictorfl/fl samples was confirmed by 

western blots before analyzing expression.  Data analysis was performed on web-based 

software provided by the manufacturer. 

 

In vivo glucose and free fatty acid uptake 

14C-bromopalmitate ([1-14C]-2-bromopalmitic acid) and 3H-deoxyglucose ([1,2-

3H(N)]-Deoxy-D-glucose) were used to respectively evaluate NEFA and glucose uptake 

in BAT, eWAT and iWAT, as previously described (Ferre, 1985; Menard, 2009; Menard, 

2010). Both radioactive tracers (Moravek Biochemicals, Inc. Brea, CA, USA) were 

dissolved in normal saline supplemented with 4% bovine serum albumin (BSA).  

Following a 6hr fasting, mice received an intraperitoneal bolus of 10 µCi of each tracer in 

a total volume of 150 µl. Two hours following the injection, mice were euthanized with 

an overdose of anesthetic and tissues were collected, weighed and homogenized.   

Specific fractional uptakes of 14C-bromopalmitate and 3H-deoxyglucose were 

determined using a scintillation counter (liquid scintillation analyzer Tri-Carb 2900TR, 

PerkinElmer, Montreal, QC, Canada), as previously described (Ci, 2006; Monge-

Roffarello, 2014). Uptake data were expressed as the percentage of injected dose of [14C] 

and [3H] per milligram of tissues. 
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Infrared thermography  

An Infrared camera (T1020, FLiR system) was mounted on a tripod to keep the same 

height.  Mice were anesthetized with a short isoflurane intake and place on top of a 

laboratory paper sheet with the doral side facing up.  Duplicate thermoimages were taken 

for each mouse and were analyzed in the provided software (FLIR tool).  Region-of-

interest (ROI) circle (35 unit in diameter) was overlaid mouse interscapular region to 

obtain maximal, mininal, average temperature.  In addition, tail temperature was also 

analyzed. 

 

Thermoneutrality and high-fat diet feeding 

6-week-old Ucp1-Cre;Rictorfl/fl male mice were transferred to 30C.  At 10 weeks of age, 

mice were fed a chow diet (Prolab Isopro RMH3000, LabDiet) or a high-fat diet (45% 

calories from fat; ResearchDiet # D12451). Body weight and food intake were accessed 

weekly for 16 weeks. Glucose tolerance tests were performed at the 15th week. 

Overnight fasted animals were subjected to GTT by intraperitoneally injecting glucose at 

2 g/kg of body weight, and blood glucose levels were measured with a commercially 

available glucose meter.  For Ucp1-CreER;Rictorfl/fl mice, 20 week-old mice were first 

with Tamoxifen (TAM) (100mg/kg per day) for 6 days.  After TAM treatment, mice were 

transferred into a thermoneutral room for one-week adapation.  45% HFD feeding started 

when mice were at 22 week-old, and the body weight gain and the food intake of mice 
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were monitored weekly for a 9-week experiment.  ITT & GTT were accessed before 

scarifying the mice.   

Statistics 

Unless otherwise stated, the results are described as mean ± SEM. Two-way ANOVA 

was performed where indicated. For most experiments, the Student’s t test was used to 

determine statistical significance (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001). 

Table 6.1 Primer sequences for quantitative RT-PCR analysis 

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

Tbp GAAGCTGCGGTACAATTCCAG CCCCTTGTACCCTTCACCAAT 

Prdm16 GACATTCCAATCCCACCAGA CACCTCTGTATCCGTCAGCA 

Ppargc1α CCCTGCCATTGTTAAGACC TGCTGCTGTTCCTGTTTTC 

Pparγ TCAGCTCTGTGGACCTCTCC ACCCTTGCATCCTTCACAAG 

C/ebpα CAAGCCCAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC 

C/ebpβ TCGGGACTTGATGCAATCC AAACATCAACAACCCCGC 

C/ebpδ GCTTTGTGGTTGCTGTTGAA ATCGACTTCAGCGCCTACA 

Ucp1 CTGCCAGGACAGTACCCAAG TCAGCTGTTCAAAGCACACA 

DiO2 TGCGCTGTGTCTGGAACAG CTGGAATTGGGAGCATCTTCA 

Lpl GGCCAGATTCATCAACTGGAT GCTCCAAGGCTGTACCCTAAG 

aP2 GATGCCTTTGTGGGAACCT CTGTCGTCTGCGGTGATTT 

Cidea ATCACAACTGGCCTGGTTACG TACTACCCGGTGTCCATTTCT 

Dpt CTGCCGCTATAGCAAGAGGT TGGCTTGGGTACTCTGTTGTC 

Srebf1a TAGTCCGAAGCCGGGTGGGCGCCGG GATGTCGTTCAAAACCGCTGTGTGTC 

Srebf1c AAGCAAATCACTGAAGGACCTGG AAAGACAAGCTACTCTGGGAG 

Srebf2 GGATCCTCCCAAAGAAGGAG TTCCTCAGAACGCCAGACTT 

Chrebp CACTCAGGGAATACACGCCTAC ATCTTGGTCTTAGGGTCTTCAGG 

Chrebpα CGACACTCACCCACCTCTTC TTGTTCAGCCGGATCTTGTC 

Chrebpβ TCTGCAGATCGCGTGGAG CTTGTCCCGGCATAGCAAC 

Acly CTCACACGGAAGCTCCATAA ACGCCCTCATAGACACCATC 

Acc GGAGATGTACGCTGACCGAGAA ACCCGACGCATGGTTTTCA 
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Fasn GCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTT 

Elvol6 TCAGCAAAGCACCCGAAC AGCGACCATGTCTTTGTAGGAG 

Scd1 CCCTGCGGATCTTCCTTATC TGTGTTTCTGAGAACTTGTGGTG 

Insig1 TGTGGTTCTCCCAGGTGACT TAGCCACCATCTTCTCCTCC 

Insig2 TGAAGCAGACCAATGTTTCAA GGTGAACTGGGGGTCTCC 

Tfam GTCCATAGGCACCGTATTGC CCCATGCTGGAAAAACACTT 

Cpt1b GGGCACCTCTGGGAGTTTGT TTGGCTCACCCACACAGTGT 

Necdin CACTTCCTCTGCTGGTCTCC ATCGCTGTCCTGCATCTCAC 

Pref1 AGTACGAATGCTCCTGCACAC CTGGCCCTCATCATCCAC 

Wnt10a CACCCGGCCATACTTCCT CACTTACGCCGCATGTTCT 
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