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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 223, 1976

SETS DEFINABLE OVER FINITE FIELDS:
THEIR ZETA-FUNCTIONS
BY

CATARINA KIEFE(1)

ABSTRACT. Sets definable over finite fields are introduced. The ration-
ality of the logarithmic derivative of their zeta-function is established, an appli-
cation of purely algebraic content is given. The ingredients used are a result
of Dwork on algebraic varieties over finite fields and model-theoretic tools.

1. Introduction. In [6] Dwork proved the rationality of the zeta-function
of a variety over a finite field. The main result of this paper is to extend this as
far as possible to sets definable over finite fields. In this case, the zeta-function
need no longer be rational, as illustrated by the set defined over the finite field
with p elements (p odd prime) by the formula

Ix(x% -y =0).
However, the logarithmic derivative of the zeta-function, i.e., the Poincaré€ series,
turns out always rational.

The result is found using model-theoretic tools: an extension by definitions
of the theory of finite fields in ordinary field language in given: this extension is
shown to admit elimination of quantifiers (by virtue of a generalization of the
Shoenfield Quantifier Elimination Theorem [8]), this yields a characterization of
sets definable over finite fields, and the Poincaré series for these can now be proved
to be rational by some computations; although the zeta-function need not be
rational, from the computation one can conclude that it can always be expressed
as the radical of a rational function.

Unexplained notation follows Shoenfield [7] and Bell and Slomson [4].

2. A semantic characterization of elimination of quantifiers. Let 7 be a
similarity type, L, the first-order language of type 7; let A be a theory in lan-
guage L. .

Received by the editors

AMS (MOS) subject classifications (1970). Primary 02H15, 12C99, 12L99.

Key words and phrases. Finite and pseudo-finite fields, varieties, definable sets, zeta-
function, elimination of quantifiers.

(1) The results presented in this paper are part of the author’s doctoral dissertation,
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46 CATARINA KIEFE

DEFINITION 1. We say that A satisfies the isomorphism condition if for
every two models 4 and A’ of A and every isomorphism 6 of substructures of A
and A', there is an extension of  which is an isomorphism of a submodel of 4
and a submodel of 4'.

DEFINITION 2. We say that A satisfies the submodel condition if for every
model B of A, every submodel 4 of B, and every closed simply existential formu-
la ¢ of L_,‘A , we have

AEFEy¢=BFy.

The following theorem is well known [8, p. 85]:

QUANTIFIER ELIMINATION THEOREM. If A satisfies the isomorphism con-
dition and the submodel condition, then A admits elimination of quantifiers.

The Quantifier Elimination Theorem gives a sufficient condition for a theo-
ry to admit elimination of quantifiers. However, this condition is not necessary,
as is established by the following counterexample, due to Allan Adler.

CouNTEREXAMPLE. Let I' denote the “theory of independent events”,
described as follows:

LANGUAGE OF I  no constant symbols

no function symbols
a countable set { p,|n € w} of unary predicate symbols.

AxioMs oF I': for every ordered pair (S, T') of finite subsets of w such

that § N T is empty we have an axiom

A(S,T): (3X) ( /\ pn(x) A /\ 1 pn(x)> ‘
nes n€T

I" admits elimination of quantifiers as can be proved by applying Lemma 3 in
[8, p. 83]. To establish the counterexample one shows that I' does not satisfy
the isomorphism condition: indeed, we define two subsets M, N of [0, 1] as
follows:

First, we define sequences { M, },c,, (N, }, e, by My = Ny ={0},if
My,...,M,,Ngy,...,N, are known, choose &,, ... ,zznﬂ,nl, . ”72n+1

in [0, 1] such that all are irrational,

g €16 - DML (=1, 20,
all are distinct, and none are contained in M, or N,. We putM, , =M, U
{&,... ’Ezn+l}’Nn+l =N, U{n,... ,172,,+1}-

We now define M = U, M, N =U, ey, N,
We make M, N models of I" by interpreting p,(x) to mean that the nth
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binary digit of x is 1. The axioms then simply require that M and N should each
have nonempty intersection with each dyadic interval [j/2", (j + 1)/2"], and are
satisfied by construction.

M, = N, = {0} are isomorphic substructures of M and N. However, any
isomorphism of submodels of M and N must take an irrational number into itself.
Since M N N = {0}, the isomorphism condition fails.

The Quantifier Elimination Theorem is now going to be extended to a
necessary and sufficient condition, therewith yielding a semantic characterization
of the elimination of quantifiers. We need

DEFINITION 3. We say that A satisfies the weak isomorphism condition if
for every two models A and A’ of A and every isomorphism 6 of a substructure
of A and a substructure of A’, there is an elementary extension A” of A’ and an
extension of @ which is an isomorphism of a submodel of A and a submodel of
A"

We then have

THEOREM 1. A admits elimination of quantifiers if and only if A is
model-complete and A satisfies the weak isomorphism condition.(2)

ProoF. <: The techniques used in [8] to prove the Quantifier Elimina-
tion Theorem can easily be adapted to prove that quantifiers can be eliminated
even with these weaker hypotheses. (2)

=: Model-completeness follows trivially.

3. A language in which the theory of finite fields admits elimination of
quantifiers. We now describe a language and theory of finite fields in this lan-
guage which admits elimination of quantifiers:

LANGUAGE: function symbols: + (addition)

+ (multiplication)

— (subtraction)
constant symbols: 1 (unity)

0 (additive identity)
predicate symbols: = (equality).

This language is the ordinary field language; henceforth, we denote it L.
Now, we introduce for every positive integer n an n + 1-ary predicate symbol:
¢,. L, denotes the language obtained by adjoining the predicate symbols
{ppln€Z Y toL,.

(2) Conversely, the necessity of these hypotheses follows easily by, e.g., an application
of Frayne’s Lemma ([4,p. 161].

It has been brought to my attention that Theorem 13.1 of [7, p. 63] vyields a charac-
terization of elimination of quantifiers very close to this one. However, the one presented
here appears to be somewhat more convenient for the purpose of this paper.
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We now denote

Z—the theory of finite fields in L_ (i.e., the set of sentences of L_
satisfied by all finite fields)

m—the theory of pseudo-finite fields in L (i.e., the set of sentences
of L_ satisfied by all the infinite models of Z).

In [2, p. 255, Theorem 5], a recursive axiomatization for 7 can be found.

Naturally, £ C n,ie., Fi=n=F = Z.

Now, we let 7’ and ' be the theories in the language L. obtained by tak-
ing for axioms respectively

TU{VXxg *** Vx,(0,(x05 s %) <> J¥(x, )" + 2+« +x, =0)InEZ, )}

and

zu {on A A7) ((‘Hy, 3y,.<‘(n\l Yi#Y; /\‘v’y<_vl y=y,))
,j= i=
i#j

—-’('pn(x()" .. axn)‘_-)ay(xnyn L R +x°=0))>

A (33*, 3y,,< A i #y; /\Vy<v y=y,->>
i,j=1 i=1
i#j
- (so,.(xo, ceesXp) Vy<y =0V :\_/l y =x{,>>>> n G.Z>o}
=1

REMARKS. (2) Z'is an extension by definitions of Z; given F = Z, F
becomes a model of £’ in a canonical way:
Case 1. F is infinite—then we define the n + l-ary relation ¢} by

@y, --.,a,) € «p,f <= the polynomial a, y™ + * ** + a4 has a root in F.

Case 2. F is finite with k elements—then [ is defined as before if n # k,
and o] is defined by

@g,-..,a)€ &p,f += g, is a generator of F# (multiplicative subgroup of F).

(®) F =7 < F = Z' and F is infinite,
(c) Fi==' = (F finite with k elements <= (0,0,...,0,1) ¢ &p;).

LEMMA 1. @' admits elimination of quantifiers <= X' admits elimination
of quantifiers.
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PROOF. < : obvious, since ' C «'.
= : by Theorem 1, it suffices to show that

(i) 7' model-complete = =’ model-complete, and

(i) =’ satisfies weak isomorphism condition = Z' satisfies weak isomor-
phism condition.

(@) LetF; =2 (j=1,2)and F, CF,.

If F, is infinite, F, ;=" (j =1, 2) and F, < F, follows from hypothesis.

If F, is finite with k elements,

(1,0,...,0,1) & oft =¢;2 NF%

= (1,0,...,0,1)¢pf2 = F, finite k elements = F, = F,.

(ii) Let Fi i=2' (j=1,2)and 6 an isomorphism of nonempty-sub-
structures:

If both F, and F, are infinite, Fi |= 7', and @ can be extended by hypoth-
esis.

If F, is finite with k elements, (1,0, ...,0,1) ¢t = (1,...,0,1) &
&p,fz (because 6 is an isomorphism) = F, is finite with k elements. Hence 0 is an
isomorphism of two subrings of two fields with k elements, the subrings contain-

ing the prime fields; so, obviously, 8 can be extended to the fields with & ele-
ments.

If F, is finite with k elements a similar reasoning holds.

THEOREM 2. 7' admits elimination of quantifiers.

ProoFr. By Theorem 1, this proof is immediately reduced to the proof of
the following two lemmas:

LEMMA 2. ' is model-complete.
LEMMA 3. 7' satisfies the weak isomorphism condition.
For the proofs of Lemmas 2 and 3 we need

LEMMA 4. Let F; = w (i =1,2), and assume that F, is a subfield of F,;
then Fy CF, (e, foralln €Zy o, oft = ¢f2 nFI*1) == F, is relatively
algebraically closed in F,.

We also use

LEMMA 5. Let A be a theory without finite models in a language of car-

dinality Ro. Then: A model-complete <= for any model A = A of cardinality
No,

A U Diagram of A is complete.
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PrROOF. =: obvious, from one of the current definitions of model-com-
pleteness.

«: let B, B, = A, B, CB,.

By Robinson’s test for model-completeness; it suffices to show that if ¢ is
a primitive sentence in the language of B, and B, k= ¢, then B, = y. Indeed:
in ¢ occur only a finite set S of contants designating elements of |B,|. By
Skolem-Loewenheim, we can extend S to a model B = A such that S C |B,|
and B; < B, C B, and card| B;| = N,. By hypothesis, Diag B; U A is com-
plete. But

B, =Diag B; UA, and

B, =y, so
Diag B UA =9, hence By I=¢

and B;<B, =B, =¢. QED.

PROOF OF LEMMA 2. Since 7' has no finite models, by Lemma 5, to prove
that ' is model-complete it suffices to show that F .= 7' and card F = No =
7' U Diag F complete: Let F,, F, =" U Diag F; we want to show that

F,=F, (inlanguage L » of «' U Diag F).

We may assume that FC F; (i = 1, 2), and by Loewenheim-Skolem, we may
assume card F; =8, (i =1,2).
Now let D be a nonprincipal ultrafilter on the set of positive integers I; let

g=Fip (i=1,2),

since €; is pseudo-finite, €; is hyper-finite; (cf. definition in [2, p. 246]) so we
have F C F; < ¢;, with ¢; hyper-finite; by Lemma 4, F is relatively algebraically
closed in €; (i = 1, 2); and also card €, = card €, > card F. Hence, by [2, p.
247, Theorem 1], €, and €, are isomorphic as fields over F; but this implies that
they are isomorphic as structures of type 7", since the (pff relations are “algebraic”,
i.e., preserved under field-isomorphisms. Hence

Fi<e€¢ =€ 2F,, so
F,=F,. QED.

PROOF OF LEMMA 3. Let g =7 (i=1,2),0;C ¢ and 6: D, — D, be
an isomorphism (of structures of type 7").

D; is a substructure of €;, hence an integral domain. Let F; be the quotient
field of 0;: F; C ¢;, and certainly 6 extends to a field-isomorphism 6: F,—F,.
6 is also an isomorphism of structures of type 7', as can be easily checked; so 6
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has the following property:
a,x" ++++ +ay € F,[x] hasa zeroin ¢,

<= 0(a,)x" + +++ +0(ay) € F,[x] has a zero in ¢,.

Now let ?Q be the relative algebraic closure of F, in €. Of course, we
again have that
a,x" + <<+ +ay, €F,[x] hasazeromF'
= 0(@,)x" + -+ +0@y) € F, [x] has a zero in F’

Hence by [1, p. 172, Lemma 5], we can extend 6 to a ﬁeld-xsomorphxsm 0:
Fl' — F’ 0 is still an isomorphism of structures of type 7’ because now

€
@os- -+ ) Evu Fr =0t 0 FY' e g xm 4 vt da
hasazeroinel<==anx"+°°-+aohasazeroinF§
<= 0(a,)x™ + +++ + 0(a,) has a zero in F}

<= 0(a,)x" + - +0(a;) hasa zeroin ¢,
+1
= (0@, - -» @) EGZNFL = ¢,F}.

Let a = card €,. By upward Loewenheim-Skolem, let {{, be such that

< H; and card H'2 =a*. Now,let {, be such that e, <H,< H,, card ff,
= 2°‘ and H, is o™ -saturated [4, Theorem 11.1.7].

Then we have that €, < H,, H{, is hyper-finite, card H, = 2* and F’ is
relatively algebraically closed in H, (because €, < H,).

Let 8 = card ?’; = card ?; < a < 2% by downward Loewenheim-Skolem,
let , be such that F; C H, < e, and card H, = B. Then we know that H, is
quasi-finite (because H, <€, =, =), card H; <card H,, and ?’1 is rela-
tively algebraically closed in H,. So by [2, Lemma 2] we can extend 6 to a
field-monomorphism 8: H, — H, such that (H,) is relatively algebraically
closed in H,.

If we take cp:(ul) to be defined on (H,) through 6, we get, since , I=
', that 6(H,) = n'. But now H,, 0(H,) = 7', 6(H,) is a subfield of H,, and is
relatively algebralcally closed in H,. Then Lemma 4 applies to show that 6(H,)
c Hz’ ie., with tpn( 1 defined as above, 8(H,) is a submodel of H Hence we
have proved the weak isomorphism condition. Q.E.D.

4. Sets definable over a finite field: the rationality of their Poincaré series.
In this section, we shall use the following

NoTATION. L, —ordinary field language, as described in §3.

L,—ordinary field language with all the n + 1-ary predicate symbols y,
adjoined (n € Z, ).
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Z-theory of finite fields in L_.

Z'—theory of finite fields with defining axioms for ¢, adjoined (as in §3).

k—finite field of cardinality q.

L, x—L, with q new constant symbol adjoined.

k,—unique extension of k of degree s.

%—-algebraic closure of k.

DEFINITION 4. Let U = {Us}sEZ>o with U C kL, Vs € Z, ; then U is
called a definable r-set over k <= there exists a formula ¢ in L, , with 7 free
variables such that

U ={(@,...,a)€Ekik, =pla,,...,al}, VsEZ,.

We then say that U is defined by .

REMARK. If U is definable over k, the formula defining U is not unique:
in fact, every formula representing the same element in the rth Lindenbaum alge-
bra of Z will also define U.

DEFINITION 5. Say U is a definable r-set, defined by ¢. We have U =
{(@y,...,a)Ekik, =9la,,...,al]};the zeta-function of U is defined to
be the formal power series in ¢

o N (U
y() = exp 2 2
=

s

t5,

where N(U) = #U; = cardinality of U;. Following terminology used in
[5, p. 47] we let the Poincaré series of U be defined by

d oo
() =t 7 log §, () =3 N,(U)¢t".
s=1

The main result of this section is
THEOREM 3. The Poincaré series of a definable set is rational. (3)

DEFINITION 6. A definable rset ¥ over k will be called a variety over k if
it can be defined by a formula of type

n
A p(xy,...,x,)=0, with
i=1

pixys ... X)Ek[x, ..., x,] i=1,...,n).

DEFINITION 7. A definable r-set will be called primitive if it can be de-
fined by a formula of type

(3) As usual, a formal power series is called rational when it is the quotient of two
polynomials.
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n m
1/\ iy x)=0AA q;(x;,...,x)#0
=1 i=1

with p,(X), qj(f)Ek[J?], i=1,...,mj=1,...,m).

DEFINITION 8. A definable set will be called constructible if it can be de-
fined by a formula which is quantifier free in L, ;.

DEFINITION 9. Let U={ Us}s€Z>° and V ={ V.,}N,Ez>0 be definable
r-sets. We define the union, intersection and difference of U and V “pointwise”,
ie., by

Quv)y=U,uVv, UNV)=UnNV,

U-V)=U-~-V, VSEZLy,

LEMMA 6. If U is a constructible set, then §;(t) is a rational function.
Hence, so is my(2).

ProoF. Dwork [6] showed that {._,(¢) is rational, for V, W varieties.
Any primitive set P, is a difference of varieties: in fact, if P is defined by
N, pi(¥) =0 AAT, q{(x)+# 0, we have that

El—(/\ p;(x) A 7\ ‘Ij(f)*o)*—’(/n\ pix)=0A]I q].#O).
i=1 =1 i=1 =1

So if Vis defined by A, p,(X) = 0 and W is defined by (II;"= 1 9% »=0,
then P =V — W. So the Lemma holds for primitive sets.

Now observe that the intersection of primitive sets is primitive; on the other
hand, any constructible set is the union of primitive sets, i.e., if U is constructible,
there exist primitive sets Py, ..., P, such that U= J}., P; and so Uy =

=1 (P)); it is easily verified that

#( U (P,)s> = X (-1FBn #(ﬂ (Pi)s), ie.,
i=1 I

¢#BC {1,...n} €B

NUy= X (—1)#B+‘Ns( np,.)= X (~DFEHINGEy),

¢ +BC{1,....n} i€B ¢ #BC{1,...,n}

where Py = ﬂ,.EB P, forall BC{1,...,n}. But Py isa primitive set, hence
¢ PB(t) is rational, so
#B+1
o= I e -0
$#Bc{1,...n}
is rational. Q.E.D.
We shall now reduce the proof of Theorem 3 to
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LeEMMA 8. Let U C k" be definable, defined by an atomic formula in
L, of type

‘pn(po(xla LI axr)a ce. ,pn(xla oo axr)),

withp(xy, ...,x,)Ek[x;,...,x,] (@=1,...,n) (obviously, we mean
that U is defined by a formula of L, , equivalent to ¢,(Po(X); - - . , P,(X));
then m(?) is rational.

Before we prove Lemma 8, we shall reduce the proof of Theorem 3 to it,
i.e., show that Theorem 3 follows from Lemmas 7 and 8.

Let U be a definable set; it has been proved in §3 that T’ admits
elimination of quantifiers, hence we may assume U defined by a quantifier-free

formula ¢ in the language LTr, x> €., U is the union of sets defined by formulae
of type

u v £
A pE)=0A A ‘Pn].(Pn.,o(f), ce s PN AN q,(X)

j=1 1

O] "
0N A 10y (P o) Py (F

m=1
Again, since intersections of sets defined by formulae of type (*) are again de-
fined by formulae of type (*), it will suffice to prove that the {-functions of sets
defined by formulae of type () have the required property.
We are now reduced to sets U defined by formulae of type (*). To pro-
ceed, we start by freeing ourselves from the restrictions imposed by the defining
axiom for ¢, in case we are interpreting this relation in a field with m elements.

LEMMA 9. Let U be defined by a formula ¢ of type (*). Let Y’ be ob-
tained from U by replacing each occurrence of ¢, (P 0(X); - « - s P, m (X)) by
12(p,, o(X) +++* + Dy p(X)2™ = 0). Let U’ be the set defined by ¢'.
Then, if n(t) is rational, so is w(t).

PrROOF. Let

A={m€E€Z,,ly, occursin g and m = q°, for some sEZ}>
B={s€Z,,lq°=m,for some m € A}.

IfB=@, vs€E€Z,,, U, = U;hence N(U) = Ny(U") and the result is obvious.
But if B # &, it certainly is finite. Also,VsE€Z,,s EB=N(U)= N (U").
Hence my(t) = 20, N(U)t* = T2, Ny(U')S — Bep N(UYF +

Z,ep N,(U)°. From the finiteness of B and the rationality of ZZ; N (U "es
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we immediately conclude the rationality of m,(£). Q.E.D.

So in everything that follows we may replace ¢, (Pp, o5 - - - s Py, im) bY
1z(p ot + pm’mz"’ = 0).

As before, in formulae of type (*) we may assume £ < 1 by replacing
AE_ q,(X)#0by I, q,(X)# O; similarly. We may assume 7 < 1; indeed:

n

—_ —\ DN
z l—m=1 T 32(pnm’o(x)+ cee +pnm,nm(x)z m = ()

n
- =\ D _
<-—>‘|32<mr£l (an,o(x) + + pnm’nm(x)z m> = 0.

Furthermore, we can always assume & = O:
ZEqE) #0AT ¢,((X), - - -, P, (X)) = a(¥)
#0 A1 3z(py(X) + =+ + +p,(X)2" =0),
Zhq@@)#FO0ATI2(p(X) + -+ +p,(%)2" =0)
= 132(q(X)(p,(¥)z" + =+ + py(X))),
ZFT32(9(X) (P, ()" + + - +po(X)) = 0)

=79,(q(X), . . . , a(x)p, (X))
Should n = 0, we can always introduce the conjunct 71 ¢,(1.0). So, we may

assume £ = 0, 7 < 1. We are now reduced to showing our result for sets defined
by formulae of type

(+%) /\ p;(x)=0 A A 00 (P 0(X)s - - s Py n (3)):

=1 j=ut+1

Indeed, if we get it for this case, then if we consider the set U defined by
N pF)=0AAL, wn] *)A T ¢, (), we observe that U = V —
W, where V is defined by a formula of type (**) and W by ¢,(*** ), so Ny(U)
=Ny(V) - Ny(V N W), where V' N W is again defined by a formula of type (**).

Now to prove the result for a set U defined by (*#), it will suffice to
establish the following:

Claim. Let V; be defined by p;(X)=0 (i=1,...,p)and by

(p,, 0(X), .. <Py, n(x))forz—y+ 1,...,v. Thenforal BC{1,...,

v} Vg =Uep V;is a set such that d/dt log § - (¢) is rational.

Suppose we have proved the Claim: then
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NU) = #< fv1 (V,~)s> = X (1B Iy,
i=1

Bc{1,...,v}

= X (-1D)*BNW.

Bc{1,....0}

Now to prove the Claim:
Let

B, =BN{1,...,u},

B=Bn X Va=U YU U
{u+1,...} i€B, i€B,

but U,.,EBl V; can be defined by e p;(¥) = 0, and Uja_;,2 V; can be de-
fined by
3 z( IT Pupn, 27+ 40, 0) = o>,

jEB,

ie., by 9,(qo(X), . .., q,(X)), where n = Eiesz n; and the gq,(x) are adequate-
ly computed.
Hence V is defined by

II 2:(®)=0Ve,(qo(X),...,q,(X)), hence by
i€B,

3z(mp(x)q,(X)z" + «++ + 7p(X)qy(X) = 0), hence by

¢n("pi(f)40(f)a ceey ﬂpi(f)qn(J_C)),

and the proof of Theorem 3 is actually reduced to Lemma 8.
ProoF OF LEMMA 8. Let U be defined by

G (Po(Xys o v a5 X)), e o TS )
by Lemma 9 we may assume n > q:
U,={(@,,...,a)Ek;| there exists b € k;
such that p, (27)b" + «++ + py(a) = 0}.

Let f(xy, ... X,,2)=polxy, ... x)+ 2 +p,(x;,...,x,)" €
k[x,,...,x,,2z]. Let V be the variety in k"*! defined by f(X, z) = 0:

V,={(@@ b) €K If(g b) =0}

Let
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Vi ={(@ b) EK;Fp,(@)z" + + -+ + p,o(@) has i distinct
roots in kg and b is one of them}

o
@=1,...,n); obviously, we have ¥V, = UL, Vs ; and we observe that

Now let H; be the constructible r + i set defined by

f(%z)=0A---Af(x%z)=0A ;\ z, — z,, 0.

k,m=1

k#m
By Lemma 6, §H (#) is rational. We also have (H,), ={(@ b) € k’“lf(a bk)
=0fork=1, ,iand b, # b, if k ¥ m}. Our aim is to compute #V

from Ny(H)). For this purpose, let
Eg; ={(g, b) € (H,)5| f(@, 2) has exactly i distinct roots in k}»
Fg; ={(a, b) € (H,),| f(@, z) has > i distinct roots in k}.

o
Of course, (H;); = E;; U F ; and also
#VS,,

s, i i ’

#{ @ € k71 f(a, z) has exactly i roots in K} =

hence #V ; = #E ;/ (i — 1)!, and if we can compute #E_; = N(H;) — #F;
adequately, we are through.
Indeed, consider the map

n
m: U E x> Fgp
k=i+1

(@ by vsbjpenesb) =@ by,. .. b).

m; is certainly surjective and also

k#K =By ) N By ) =B

(indeed: (& b, ..., b;) € m(E; ;) = f(a, 2) has exactly k roots). So

n
F;= U m(E,), hence
k=i+1

#Fg ;= Z #m,;(E )-

k=i+1
Butfork=i+1,...,n, #E ,/(k - i) = #m,(E; ,); hence #E ; = N(H;) —
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#Fg ;= N(H) — 2, | #E ;/(j — 1)! but we also know that #E; , = Ny(H,)
(from the definitions) and so we get

BV, , = V(i)

_1
(n-1)
1 1

=——#E ;= ——(N,H) - - DUV
o =G e (i——l)!(NS(H') ,.:El(’ " # s,:)

G=1,...,n-1).

This certainly determines each #V ; as a linear combination of the NS(H,-)
(i =1,...,n) with rational coefficients (independent of s); hence

i #Vs,i
NS(U) = 21 5
‘=

is given by a linear combination of the N(H;) with rational coefficients, indepen-
dent of s; hence the rationality of TN (U)¢* follows from the rationality of
ZNS(H,.)t’. Q.ED.

REMARK. The proof yields that m,(¢) is rational for any definable set U.
Certainly, {;;(f) may not be rational. However, this proof also shows that §;,(¢)
is always algebraic, indeed, it can always be written as the radical of a rational
function.

5. Application. Let us consider the following:

DEFINITION 10. Let 0: k" — %7 be a function; suppose we can find a
t-tupli of polynomials f,, . .., f, €k[x,,...,x,] such that forall (a,, ...,
a)EK", 0(ay,...,a)=(fia,,...,q),...,f@,,...,q));then 0 is
called an r — t-morphism over k, and the t-tuple (f, ..., f;) is said to define 0.

We can state the following

LeMMA 10. If U is a definable r-set over k, and 0 is an r — t-morphism
over k, then 8(U) is a definable t-set over k.

PRoOF. Say U is defined by the formula (x,, ..., x,) of L, , and § by
the #-tuple (f;(xy, ..., X,), ..., f,(x;,...,x,)). Then it is trivial to check
that 6(U) can be defined by the formula ¥(y,, ..., y,) given by

Ix; 2o Ax,(yy =f00, - x )N e Ay,

=fixys o) ANolxy, ..., x,)). QED.

In particular, we get the following generalization of Dwork’s result:
The logarithmic derivative of the zeta-function of the image of a variety by
a morphism is rational.
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