Sets Definable Over Finite Fields: Their Zeta-Functions

Catarina I. Kiefe
University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/qhs_pp
Part of the Biostatistics Commons, Epidemiology Commons, Health Services Research Commons, and the Set Theory Commons

Repository Citation

Kiefe CI. (1976). Sets Definable Over Finite Fields: Their Zeta-Functions. Population and Quantitative Health Sciences Publications. Retrieved from https://escholarship.umassmed.edu/qhs_pp/6

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Population and Quantitative Health Sciences Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Sets Definable Over Finite Fields: Their Zeta-Functions
Author(s): Catarina Kiefe
Source: Transactions of the American Mathematical Society, Vol. 223 (Oct., 1976), pp. 45-59 Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1997516
Accessed: 21/04/2010 13:43

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

SETS DEFINABLE OVER FINITE FIELDS: THEIR ZETA-FUNCTIONS

BY
CATARINA KIEFE(${ }^{\mathbf{1}}$)

Abstract

Sets definable over finite fields are introduced. The rationality of the logarithmic derivative of their zeta-function is established, an application of purely algebraic content is given. The ingredients used are a result of Dwork on algebraic varieties over finite fields and model-theoretic tools.

1. Introduction. In [6] Dwork proved the rationality of the zeta-function of a variety over a finite field. The main result of this paper is to extend this as far as possible to sets definable over finite fields. In this case, the zeta-function need no longer be rational, as illustrated by the set defined over the finite field with p elements (p odd prime) by the formula

$$
\exists x\left(x^{2}-y=0\right)
$$

However, the logarithmic derivative of the zeta-function, i.e., the Poincaré series, turns out always rational.

The result is found using model-theoretic tools: an extension by definitions of the theory of finite fields in ordinary field language in given: this extension is shown to admit elimination of quantifiers (by virtue of a generalization of the Shoenfield Quantifier Elimination Theorem [8]), this yields a characterization of sets definable over finite fields, and the Poincaré series for these can now be proved to be rational by some computations; although the zeta-function need not be rational, from the computation one can conclude that it can always be expressed as the radical of a rational function.

Unexplained notation follows Shoenfield [7] and Bell and Slomson [4].
2. A semantic characterization of elimination of quantifiers. Let τ be a similarity type, L_{τ} the first-order language of type τ; let Λ be a theory in language L_{τ}.

[^0]Definition 1. We say that Λ satisfies the isomorphism condition if for every two models A and A^{\prime} of Λ and every isomorphism θ of substructures of A and A^{\prime}, there is an extension of θ which is an isomorphism of a submodel of A and a submodel of A^{\prime}.

Definition 2. We say that Λ satisfies the submodel condition if for every model B of Λ, every submodel A of B, and every closed simply existential formula φ of $L_{\tau, A}$, we have

$$
A \vDash \varphi \Longleftrightarrow B \vDash \varphi
$$

The following theorem is well known [8, p. 85]:
Quantifier Elimination Theorem. If Λ satisfies the isomorphism condition and the submodel condition, then Λ admits elimination of quantifiers.

The Quantifier Elimination Theorem gives a sufficient condition for a theory to admit elimination of quantifiers. However, this condition is not necessary, as is established by the following counterexample, due to Allan Adler.

Counterexample. Let Γ denote the "theory of independent events", described as follows:

LANGUAGE OF Γ : no constant symbols no function symbols a countable set $\left\{\rho_{n} \mid n \in \omega\right\}$ of unary predicate symbols.
Axioms of Γ : for every ordered pair (S, T) of finite subsets of ω such that $S \cap T$ is empty we have an axiom

$$
\left.A_{(S, T)}:(\exists x)\left(\bigwedge_{n \in S} \rho_{n}(x) \wedge \bigwedge_{n \in T}\right\urcorner \rho_{n}(x)\right)
$$

Γ admits elimination of quantifiers as can be proved by applying Lemma 3 in [8, p. 83]. To establish the counterexample one shows that Γ does not satisfy the isomorphism condition: indeed, we define two subsets M, N of $[0,1]$ as follows:

First, we define sequences $\left\{M_{n}\right\}_{n \in \omega},\left\{N_{n}\right\}_{n \in \omega}$ by $M_{0}=N_{0}=\{0\}$, if $M_{0}, \ldots, M_{n}, N_{0}, \ldots, N_{n}$ are known, choose $\xi_{1}, \ldots, \xi_{2 n+1}, \eta_{1}, \ldots, \eta_{2 n+1}$ in $[0,1]$ such that all are irrational,

$$
\xi_{j}, \eta_{j} \in\left[(j-1) / 2^{n+1}, j / 2^{n+1}\right] \quad\left(j=1, \ldots, 2^{n+1}\right)
$$

all are distinct, and none are contained in M_{n} or N_{n}. We put $M_{n+1}=M_{n} \cup$ $\left\{\xi_{1}, \ldots, \xi_{2^{n+1}}\right\}, N_{n+1}=N_{n} \cup\left\{\eta_{1}, \ldots, \eta_{2^{n+1}}\right\}$.

We now define $M=\bigcup_{n \in \omega} M_{n}, N=\bigcup_{n \in \omega} N_{n}$.
We make M, N models of Γ by interpreting $\rho_{n}(x)$ to mean that the nth
binary digit of x is 1 . The axioms then simply require that M and N should each have nonempty intersection with each dyadic interval $\left[j / 2^{n},(j+1) / 2^{n}\right]$, and are satisfied by construction.
$M_{0}=N_{0}=\{0\}$ are isomorphic substructures of M and N. However, any isomorphism of submodels of M and N must take an irrational number into itself. Since $M \cap N=\{0\}$, the isomorphism condition fails.

The Quantifier Elimination Theorem is now going to be extended to a necessary and sufficient condition, therewith yielding a semantic characterization of the elimination of quantifiers. We need

Definition 3. We say that Λ satisfies the weak isomorphism condition if for every two models A and A^{\prime} of Λ and every isomorphism θ of a substructure of A and a substructure of A^{\prime}, there is an elementary extension $A^{\prime \prime}$ of A^{\prime} and an extension of θ which is an isomorphism of a submodel of A and a submodel of $A^{\prime \prime}$.

We then have
Theorem 1. Λ admits elimination of quantifiers if and only if Λ is model-complete and Λ satisfies the weak isomorphism condition. (${ }^{(2)}$

Proof. $\Leftarrow:$ The techniques used in [8] to prove the Quantifier Elimination Theorem can easily be adapted to prove that quantifiers can be eliminated even with these weaker hypotheses. (${ }^{2}$)
\Rightarrow : Model-completeness follows trivially.
3. A language in which the theory of finite fields admits elimination of quantifiers. We now describe a language and theory of finite fields in this language which admits elimination of quantifiers:

LANGUAGE: function symbols: + (addition)

- (multiplication)
- (subtraction)
constant symbols: 1 (unity) 0 (additive identity)
predicate symbols: = (equality).
This language is the ordinary field language; henceforth, we denote it L_{τ}. Now, we introduce for every positive integer n an $n+1$-ary predicate symbol: $\varphi_{n} . L_{\tau^{\prime}}$ denotes the language obtained by adjoining the predicate symbols $\left\{\varphi_{n} \mid n \in \mathbf{Z}_{>0}\right\}$ to L_{τ}.

[^1]
We now denote

Σ-the theory of finite fields in L_{τ} (i.e., the set of sentences of L_{τ} satisfied by all finite fields)
π-the theory of pseudo-finite fields in L_{τ} (i.e., the set of sentences of L_{τ} satisfied by all the infinite models of Σ).
In [2, p. 255, Theorem 5], a recursive axiomatization for π can be found.
Naturally, $\Sigma \subseteq \pi$, i.e., $F \vDash \pi \Rightarrow F \vDash \Sigma$.
Now, we let π^{\prime} and Σ^{\prime} be the theories in the language $L_{\tau^{\prime}}$ obtained by taking for axioms respectively
$\pi \cup\left\{\forall x_{0} \cdots \forall x_{n}\left(\varphi_{n}\left(x_{0}, \ldots, x_{n}\right) \leftrightarrow \exists y\left(x_{n} y^{n}+\cdots+x_{0}=0\right)\right) \mid n \in \mathbf{Z}_{>0}\right\}$
and

$$
\begin{aligned}
\Sigma \cup\left\{\forall x_{0} \cdots \forall x_{0}\right. & \left(\left(\neg \exists y_{1} \cdots \exists y_{n}\left(\bigwedge_{\substack{i, j=1 \\
i \neq j}}^{n} y_{i} \neq y_{j} \wedge \forall y\left(\bigvee_{i=1}^{n} y=y_{i}\right)\right)\right)\right. \\
& \left.\rightarrow\left(\varphi_{n}\left(x_{0}, \ldots, x_{n}\right) \leftrightarrow \exists y\left(x_{n} y^{n}+\cdots+x_{0}=0\right)\right)\right) \\
& \wedge\left(\exists y_{1} \cdots \exists y_{n}\left(\bigwedge_{\substack{i, j=1 \\
i \neq j}}^{n} y_{i} \neq y_{j} \wedge \forall y\left(\bigvee_{i=1}^{n} y=y_{i}\right)\right)\right. \\
& \left.\left.\left.\rightarrow\left(\varphi_{n}\left(x_{0}, \ldots, x_{n}\right) \leftrightarrow \forall y\left(y=0 \vee \bigvee_{i=1}^{n-1} y=x_{0}^{i}\right)\right)\right)\right) \mid n \in \mathrm{Z}_{>0}\right\}
\end{aligned}
$$

Remarks. (a) Σ^{\prime} is an extension by definitions of Σ; given $F \vDash \Sigma, F$ becomes a model of Σ^{\prime} in a canonical way:

Case 1. F is infinite-then we define the $n+1$-ary relation φ_{n}^{F} by

$$
\left(a_{0}, \ldots, a_{n}\right) \in \varphi_{n}^{F} \Longleftrightarrow \text { the polynomial } a_{n} y^{n}+\cdots+a_{0} \text { has a root in } F
$$

Case 2. F is finite with k elements-then φ_{n}^{F} is defined as before if $n \neq k$, and φ_{k}^{F} is defined by
$\left(a_{0}, \ldots, a_{k}\right) \in \varphi_{k}^{F} \Longleftrightarrow a_{0}$ is a generator of $F^{*} \quad$ (multiplicative subgroup of F).
(b) $F \vDash \pi^{\prime} \Longleftrightarrow F \mid=\Sigma^{\prime}$ and F is infinite,
(c) $F \vDash \Sigma^{\prime} \Rightarrow\left(F\right.$ finite with k elements $\left.\Longleftrightarrow(0,0, \ldots, 0,1) \notin \varphi_{k}^{F}\right)$.

Lemma 1. π^{\prime} admits elimination of quantifiers $\Longleftrightarrow \Sigma^{\prime}$ admits elimination of quantifiers.

PRoof. \Leftarrow : obvious, since $\Sigma^{\prime} \subset \pi^{\prime}$.
\Rightarrow : by Theorem 1, it suffices to show that
(i) π^{\prime} model-complete $\Rightarrow \Sigma^{\prime}$ model-complete, and
(ii) π^{\prime} satisfies weak isomorphism condition $\Rightarrow \Sigma^{\prime}$ satisfies weak isomorphism condition.
(i) Let $F_{j} \vDash \Sigma^{\prime} \quad(j=1,2)$ and $F_{1} \subseteq F_{2}$.

If F_{1} is infinite, $F_{j} \vDash \pi^{\prime} \quad(j=1,2)$ and $F_{1} \leqslant F_{2}$ follows from hypothesis. If F_{1} is finite with k elements,

$$
\begin{aligned}
& (1,0, \ldots, 0,1) \notin \varphi_{k}^{F_{1}}=\varphi_{k}^{F_{2}} \cap F_{1}^{k} \\
& \quad \Rightarrow(1,0, \ldots, 0,1) \notin \varphi_{k}^{F_{2}} \Rightarrow F_{2} \text { finite } k \text { elements } \Rightarrow F_{1}=F_{2}
\end{aligned}
$$

(ii) Let $F_{j}=\Sigma^{\prime}(j=1,2)$ and θ an isomorphism of nonempty-substructures:

If both F_{1} and F_{2} are infinite, $F_{j}=\pi^{\prime}$, and θ can be extended by hypothesis.

If F_{1} is finite with k elements, $(1,0, \ldots, 0,1) \notin \varphi_{k}^{F_{1}} \Rightarrow(1, \ldots, 0,1) \notin$ $\varphi_{k}^{F}{ }^{2}$ (because θ is an isomorphism) $\Rightarrow F_{2}$ is finite with k elements. Hence θ is an isomorphism of two subrings of two fields with k elements, the subrings containing the prime fields; so, obviously, θ can be extended to the fields with k elements.

If F_{2} is finite with k elements a similar reasoning holds.
Theorem 2. π^{\prime} admits elimination of quantifiers.
Proof. By Theorem 1, this proof is immediately reduced to the proof of the following two lemmas:

Lemma 2. π^{\prime} is model-complete.
Lemma 3. π^{\prime} satisfies the weak isomorphism condition.
For the proofs of Lemmas 2 and 3 we need
Lemma 4. Let $F_{i}=\pi^{\prime}(i=1,2)$, and assume that F_{1} is a subfield of F_{2}; then $F_{1} \subseteq F_{2}$ (i.e., for all $\left.n \in Z_{>0}, \varphi_{n}^{F_{1}}=\varphi_{n}^{F_{2}} \cap F_{1}^{n+1}\right) \Leftrightarrow F_{1}$ is relatively algebraically closed in F_{2}.

We also use
Lemma 5. Let Λ be a theory without finite models in a language of cardinality \aleph_{0}. Then: Λ model-complete \Longleftrightarrow for any model $A \vDash \Lambda$ of cardinality \aleph_{0},

Proof. \Rightarrow : obvious, from one of the current definitions of model-completeness.
\Leftrightarrow : let $B_{1}, B_{2}=\Lambda, B_{1} \subseteq B_{2}$.
By Robinson's test for model-completeness; it suffices to show that if φ is a primitive sentence in the language of B_{1} and $B_{2} \vDash \varphi$, then $B_{1} \vDash \varphi$. Indeed: in φ occur only a finite set S of contants designating elements of $\left|B_{1}\right|$. By Skolem-Loewenheim, we can extend S to a model $B_{3} \vDash \Lambda$ such that $S \subseteq\left|B_{3}\right|$ and $B_{3} \leqslant B_{1} \subseteq B_{2}$ and card $\left|B_{3}\right|=\aleph_{0}$. By hypothesis, Diag $B_{3} \cup \Lambda$ is com. plete. But

$$
\begin{aligned}
& B_{2} \vDash \operatorname{Diag} B_{3} \cup \Lambda, \text { and } \\
& B_{2} \vDash \varphi, \text { so } \\
& \text { Diag } B_{3} \cup \Lambda \vDash \varphi, \text { hence } B_{3} \vDash \varphi \\
& \text { and } B_{3} \leqslant B_{1} \Rightarrow B_{1} \vDash \varphi . \quad \text { Q.E.D. }
\end{aligned}
$$

Proof of Lemma 2. Since π^{\prime} has no finite models, by Lemma 5, to prove that π^{\prime} is model-complete it suffices to show that $F \vDash \pi^{\prime}$ and card $F=\aleph_{0} \Rightarrow$ $\pi^{\prime} \cup$ Diag F complete: Let $F_{1}, F_{2}=\pi^{\prime} \cup \operatorname{Diag} F$; we want to show that

$$
F_{1} \equiv F_{2} \quad\left(\text { in language } L_{\tau^{\prime \prime}} \text { of } \pi^{\prime} \cup \operatorname{Diag} F\right)
$$

We may assume that $F \subseteq F_{i} \quad(i=1,2)$, and by Loewenheim-Skolem, we may assume card $F_{i}=\aleph_{0} \quad(i=1,2)$.

Now let D be a nonprincipal ultrafilter on the set of positive integers I; let

$$
\epsilon_{i}=F_{i}^{I} / D \quad(i=1,2)
$$

since ϵ_{i} is pseudo-finite, ϵ_{i} is hyper-finite; (cf. definition in [2, p. 246]) so we have $F \subseteq F_{i} \leqslant \epsilon_{i}$, with ϵ_{i} hyper-finite; by Lemma $4, F$ is relatively algebraically closed in $\epsilon_{i}(i=1,2)$; and also card $\epsilon_{1}=$ card $\epsilon_{2}>$ card F. Hence, by [2, p. 247, Theorem 1], ϵ_{1} and ϵ_{2} are isomorphic as fields over \mathcal{F}; but this implies that they are isomorphic as structures of type $\tau^{\prime \prime}$, since the $\varphi_{n}^{\epsilon_{i}}$ relations are "algebraic", i.e., preserved under field-isomorphisms. Hence

$$
\begin{aligned}
& F_{1} \leqslant \epsilon_{1} \simeq \epsilon_{2} \geqslant F_{2}, \quad \text { so } \\
& F_{1} \equiv F_{2} . \quad \text { Q.E.D. }
\end{aligned}
$$

Proof of Lemma 3. Let $\epsilon_{i} \vDash \pi^{\prime}(i=1,2), D_{i} \subseteq \epsilon_{i}$ and $\theta: D_{1} \rightarrow D_{2}$ be an isomorphism (of structures of type τ^{\prime}).
D_{i} is a substructure of ϵ_{i}, hence an integral domain. Let F_{i} be the quotient field of $D_{i}: F_{i} \subseteq \epsilon_{i}$, and certainly θ extends to a field-isomorphism $\theta: F_{1} \rightarrow F_{2}$. θ is also an isomorphism of structures of type τ^{\prime}, as can be easily checked; so θ
has the following property:

$$
\begin{aligned}
& a_{n} x^{n}+\cdots+a_{0} \in F_{1}[x] \text { has a zero in } \epsilon_{1} \\
& \Longleftrightarrow \theta\left(a_{n}\right) x^{n}+\cdots+\theta\left(a_{0}\right) \in F_{2}[x] \text { has a zero in } \epsilon_{2} .
\end{aligned}
$$

Now let \tilde{F}_{i}^{r} be the relative algebraic closure of F_{i} in ϵ_{i}. Of course, we again have that

$$
\begin{aligned}
& a_{n} x^{n}+\cdots+a_{0} \in F_{1}[x] \text { has a zero in } \tilde{F}_{1}^{r} \\
& \Longleftrightarrow \theta\left(a_{n}\right) x^{n}+\cdots+\theta\left(a_{0}\right) \in F_{2}[x] \text { has a zero in } \tilde{F}_{2}^{r}
\end{aligned}
$$

Hence by [1, p. 172, Lemma 5], we can extend θ to a field-isomorphism θ : $\widetilde{F}_{1}^{r} \rightarrow \widetilde{F}_{2}^{r} . \theta$ is still an isomorphism of structures of type τ^{\prime} because now

$$
\begin{aligned}
& \left(a_{0}, \ldots, a_{n}\right) \in \varphi_{n} \tilde{F}_{1}^{r}=\varphi_{n}^{\epsilon_{1}} \cap \tilde{\mathcal{F}}_{1}^{r}{ }^{n+1} \Longleftrightarrow a_{n} x^{n}+\cdots+a_{0} \\
& \text { has a zero in } \epsilon_{1} \Longleftrightarrow a_{n} x^{n}+\cdots+a_{0} \text { has a zero in } \tilde{F}_{1}^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow \theta\left(a_{n}\right) x^{n}+\cdots+\theta\left(a_{0}\right) \text { has a zero in } \tilde{F}_{2}^{r} \\
& \Longleftrightarrow \theta\left(a_{n}\right) x^{n}+\cdots+\theta\left(a_{0}\right) \text { has a zero in } \epsilon_{2} \\
& \Longleftrightarrow\left(\theta\left(a_{0}\right), \ldots,\left(a_{n}\right)\right) \in \varphi_{n}^{\epsilon} \cap F_{2}^{r^{n+1}}=\varphi_{n} F_{1}^{r}
\end{aligned}
$$

Let $\alpha=\operatorname{card} \epsilon_{2}$. By upward Loewenheim-Skolem, let H_{2}^{\prime} be such that $\epsilon_{2} \leqslant H_{2}^{\prime}$ and card $H_{2}^{\prime}=\alpha^{+}$. Now, let H_{2} be such that $\epsilon_{2} \leqslant H_{2}^{\prime} \leqslant H_{2}$, card H_{2} $=2^{\alpha}$ and H_{2} is α^{+}-saturated [4, Theorem 11.1.7].

Then we have that $\epsilon_{2} \leqslant H_{2}, H_{2}$ is hyper-finite, card $H_{2}=2^{\alpha}$ and \tilde{F}_{2}^{r} is relatively algebraically closed in H_{2} (because $\epsilon_{2} \leqslant H_{2}$).

Let $\beta=\operatorname{card} \widetilde{F}_{1}^{r}=\operatorname{card} \widetilde{F}_{2}^{r} \leqslant \alpha<2^{\alpha}$; by downward Loewenheim-Skolem, let H_{1} be such that $\tilde{F}_{1}^{r} \subseteq H_{1} \leqslant \epsilon_{1}$ and card $H_{1}=\beta$. Then we know that H_{1} is quasi-finite (because $H_{1} \leqslant \epsilon_{1} \Rightarrow H_{1} \vDash \pi^{\prime}$), card $H_{1}<$ card H_{2}, and \tilde{F}_{1}^{r} is relatively algebraically closed in H_{1}. So by [2, Lemma 2] we can extend θ to a field-monomorphism $\theta: H_{1} \rightarrow H_{2}$ such that $\theta\left(H_{1}\right)$ is relatively algebraically closed in H_{2}.

If we take $\varphi_{n}^{\theta\left(H_{1}\right)}$ to be defined on $\theta\left(H_{1}\right)$ through θ, we get, since H_{1} = π^{\prime}, that $\theta\left(H_{1}\right) \vDash \pi^{\prime}$. But now $H_{2}, \theta\left(H_{1}\right) l=\pi^{\prime}, \theta\left(H_{1}\right)$ is a subfield of H_{2}, and is relatively algebraically closed in H_{2}. Then Lemma 4 applies to show that $\theta\left(H_{1}\right)$ $\subseteq H_{2}$, i.e., with $\varphi_{n}^{\theta\left(H_{1}\right)}$ defined as above, $\theta\left(H_{1}\right)$ is a submodel of H_{2}. Hence we have proved the weak isomorphism condition. Q.E.D.
4. Sets definable over a finite field: the rationality of their Poincare series. In this section, we shall use the following

Notation. L_{τ}-ordinary field language, as described in §3.
$L_{\tau^{\prime}}$-ordinary field language with all the $n+1$-ary predicate symbols φ_{n} adjoined ($n \in \mathbf{Z}_{>0}$).
Σ-theory of finite fields in L_{τ}.
Σ^{\prime}-theory of finite fields with defining axioms for φ_{n} adjoined (as in $\S 3$).
k-finite field of cardinality q.
$L_{\tau, k}-L_{\tau}$ with q new constant symbol adjoined.
k_{s}-unique extension of k of degree s.
\widetilde{k}-algebraic closure of k.
Definition 4. Let $U=\left\{U_{s}\right\}_{s \in Z_{>0}}$ with $U_{s} \subset k_{s}^{r}, \forall s \in Z_{>0}$; then U is called a definable r-set over $k \Longleftrightarrow$ there exists a formula φ in $L_{\tau, k}$ with r free variables such that

$$
U_{s}=\left\{\left(a_{1}, \ldots, a_{r}\right) \in k_{s}^{r}\left|k_{s}\right|=\varphi\left[a_{1}, \ldots, a_{r}\right]\right\}, \quad \forall s \in \mathbf{Z}_{>0}
$$

We then say that U is defined by φ.
REmARK. If U is definable over k, the formula defining U is not unique: in fact, every formula representing the same element in the r th Lindenbaum algebra of Σ will also define U.

Definition 5. Say U is a definable r-set, defined by φ. We have $U_{s}=$ $\left\{\left(a_{1}, \ldots, a_{r}\right) \in k_{s}^{r} \mid k_{s}=\varphi\left[a_{1}, \ldots, a_{r}\right]\right\}$; the zeta-function of U is defined to be the formal power series in t

$$
\zeta_{U}(t)=\exp \sum_{s=1}^{\infty} \frac{N_{s}(U)}{s} t^{s}
$$

where $N_{s}(U)=\# U_{s}=$ cardinality of U_{s}. Following terminology used in [5, p. 47] we let the Poincaré series of U be defined by

$$
\pi_{U}(t)=t \frac{d}{d t} \log \zeta_{U}(t)=\sum_{s=1}^{\infty} N_{s}(U) t^{s}
$$

The main result of this section is
Theorem 3. The Poincaré series of a definable set is rational. (3)
Definition 6. A definable r-set V over k will be called a variety over k if it can be defined by a formula of type

$$
\begin{gathered}
\bigwedge_{i=1}^{n} p_{i}\left(x_{1}, \ldots, x_{r}\right)=0, \text { with } \\
p_{i}\left(x_{1}, \ldots, x_{r}\right) \in k\left[x_{1}, \ldots, x_{r}\right] \quad(i=1, \ldots, n)
\end{gathered}
$$

Definition 7. A definable r-set will be called primitive if it can be defined by a formula of type

[^2]$$
\bigwedge_{i=1}^{n} p_{i}\left(x_{1}, \ldots, x_{r}\right)=0 \wedge \bigwedge_{i=1}^{m} q_{i}\left(x_{1}, \ldots, x_{r}\right) \neq 0
$$
with $p_{i}(\bar{x}), q_{j}(\bar{x}) \in k[\bar{x}],(i=1, \ldots, n ; j=1, \ldots, m)$.
Definition 8. A definable set will be called constructible if it can be defined by a formula which is quantifier free in $L_{\tau, k}$.

Definition 9. Let $U=\left\{U_{s}\right\}_{s \in Z_{>0}}$ and $V=\left\{V_{s}\right\}_{s \in Z_{>0}}$ be definable r-sets. We define the union, intersection and difference of U and V "pointwise", i.e., by

$$
\begin{gathered}
(U \cup V)_{s}=U_{s} \cup V_{s}, \quad(U \cap V)_{s}=U_{s} \cap V_{s} \\
(U-V)_{s}=U_{s}-V_{s}, \quad \forall s \in Z_{>0}
\end{gathered}
$$

Lemma 6. If U is a constructible set, then $\zeta_{U}(t)$ is a rational function. Hence, so is $\pi_{U}(t)$.

Proof. Dwork [6] showed that $\zeta_{V-W}(t)$ is rational, for V, W varieties.
Any primitive set P_{n} is a difference of varieties: in fact, if P is defined by $\bigwedge_{i=1}^{n} p_{i}(\bar{x})=0 \wedge \bigwedge_{j=1}^{m} q_{j}(\bar{x}) \neq 0$, we have that

$$
\Sigma \vdash\left(\bigwedge_{i=1}^{n} p_{i}(\bar{x}) \wedge \bigwedge_{j=1}^{m} q_{j}(\bar{x}) \neq 0\right) \leftrightarrow\left(\bigwedge_{i=1}^{n} p_{i}(x)=0 \wedge \prod_{j=1}^{m} q_{j} \neq 0\right)
$$

So if V is defined by $\bigwedge_{i=1}^{n} p_{i}(\bar{x})=0$ and W is defined by $\left(\prod_{j=1}^{m} q_{j}(\bar{x})\right)=0$, then $P=V-W$. So the Lemma holds for primitive sets.

Now observe that the intersection of primitive sets is primitive; on the other hand, any constructible set is the union of primitive sets, i.e., if U is constructible, there exist primitive sets P_{1}, \ldots, P_{n} such that $U=\bigcup_{i=1}^{n} P_{i}$ and so $U_{s}=$ $\bigcup_{i=1}^{n}\left(P_{i}\right)_{s} ;$ it is easily verified that

$$
\begin{gathered}
\#\left(\bigcup_{i=1}^{n}\left(P_{i}\right)_{s}\right)=\sum_{\phi \neq B \subseteq\{1, \ldots, n\}}(-1)^{\# B+1} \#\left(\bigcap_{i \in B}\left(P_{i}\right)_{s}\right), \text { i.e., } \\
N_{s}(U)=\sum_{\phi \neq B \subseteq\{1, \ldots, n\}}(-1)^{\# B+1} N_{s}\left(\bigcap_{i \in B} P_{i}\right)=\sum_{\phi \neq B \subseteq\{1, \ldots, n\}}(-1)^{\# B+1} N_{s}\left(P_{B}\right),
\end{gathered}
$$

where $P_{B}=\bigcap_{i \in B} P_{i}$, for all $B \subseteq\{1, \ldots, n\}$. But P_{B} is a primitive set, hence $\zeta_{P_{B}}(t)$ is rational, so

$$
\zeta_{U}(t)=\prod_{\phi \neq B \subseteq\{1, \ldots, n\}} \zeta_{P_{B}}(t)^{(-1)^{\# B+1}}
$$

is rational. Q.E.D.
We shall now reduce the proof of Theorem 3 to

Lemma 8. Let $U \subseteq k^{r}$ be definable, defined by an atomic formula in $L_{\tau^{\prime}, k}$ of type

$$
\varphi_{n}\left(p_{0}\left(x_{1}, \ldots, x_{r}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{r}\right)\right)
$$

with $p_{i}\left(x_{1}, \ldots, x_{r}\right) \in k\left[x_{1}, \ldots, x_{r}\right] \quad(i=1, \ldots, n)$ (obviously, we mean that U is defined by a formula of $L_{\tau, k}$ equivalent to $\varphi_{n}\left(p_{0}(\bar{x}), \ldots, p_{n}(\bar{x})\right)$; then $\pi_{U}(t)$ is rational.

Before we prove Lemma 8, we shall reduce the proof of Theorem 3 to it, i.e., show that Theorem 3 follows from Lemmas 7 and 8.

Let U be a definable set; it has been proved in $\S 3$ that Σ^{\prime} admits elimination of quantifiers, hence we may assume U defined by a quantifier-free formula φ in the language $L_{\tau^{\prime}, k}$, i.e., U is the union of sets defined by formulae of type

$$
\bigwedge_{i=1}^{\mu} p_{i}(\bar{x})=0 \wedge \bigwedge_{j=1}^{\nu} \varphi_{n_{j}}\left(p_{n_{j}, 0}(\bar{x}), \ldots, p_{n_{j}, n_{j}}(\bar{x})\right) \wedge \bigwedge_{k=1}^{\xi} q_{k}(\bar{x})
$$

(*)

$$
\neq 0 \wedge \bigwedge_{m=1}^{n} \neg \varphi_{n_{m}}\left(p_{n_{m}, 0}(\bar{x}), \ldots, p_{n_{m}, n_{m}}(\bar{x})\right)
$$

Again, since intersections of sets defined by formulae of type (*) are again defined by formulae of type (*), it will suffice to prove that the ζ-functions of sets defined by formulae of type $(*)$ have the required property.

We are now reduced to sets U defined by formulae of type (*). To proceed, we start by freeing ourselves from the restrictions imposed by the defining axiom for φ_{m} in case we are interpreting this relation in a field with m elements.

Lemma 9. Let U be defined by a formula φ of type (*). Let ψ^{\prime} be obtained from U by replacing each occurrence of $\varphi_{m}\left(p_{m, 0}(\bar{x}), \ldots, p_{m, m}(\bar{x})\right)$ by $\exists z\left(p_{m, 0}(\bar{x})+\cdots+p_{m, m}(\bar{x}) z^{m}=0\right)$. Let U^{\prime} be the set defined by φ^{\prime}. Then, if $\pi_{U^{\prime}}(t)$ is rational, so is $\pi_{U}(t)$.

Proof. Let

$$
\begin{aligned}
& A=\left\{m \in \mathbf{Z}_{>0} \mid \varphi_{m} \text { occurs in } \varphi \text { and } m=q^{s}, \text { for some } s \in \mathbf{Z}_{>0}\right\}, \\
& B=\left\{s \in \mathbf{Z}_{>0} \mid q^{s}=m, \text { for some } m \in A\right\} .
\end{aligned}
$$

If $B=\varnothing, \nabla s \in Z_{>0}, U_{s}=U_{s}^{\prime}$ hence $N_{s}(U)=N_{s}\left(U^{\prime}\right)$ and the result is obvious. But if $B \neq \varnothing$, it certainly is finite. Also, $\forall s \in Z_{>0}, s \notin B \Rightarrow N_{s}(U)=N_{s}\left(U^{\prime}\right)$. Hence $\pi_{U}(t)=\Sigma_{s=1}^{\infty} N_{s}(U) t^{s}=\Sigma_{s=1}^{\infty} N_{s}\left(U^{\prime}\right) t^{s}-\Sigma_{s \in B} N_{s}\left(U^{\prime}\right) t^{s}+$ $\Sigma_{s \in B} N_{s}(U) t^{s}$. From the finiteness of B and the rationality of $\Sigma_{s=1}^{\infty} N_{s}\left(U^{\prime}\right) t^{s}$
we immediately conclude the rationality of $\pi_{U}(t)$. Q.E.D.
So in everything that follows we may replace $\varphi_{m}\left(p_{m, 0}, \ldots, p_{m, m}\right)$ by $\exists z\left(p_{m, 0}+\cdots+p_{m, m} z^{m}=0\right)$.

As before, in formulae of type (*) we may assume $\xi \leqslant 1$ by replacing $\bigwedge_{k=1}^{\xi} q_{k}(\bar{x}) \neq 0$ by $\Pi_{k=1}^{\xi} q_{k}(\bar{x}) \neq 0$; similarly. We may assume $\eta \leqslant 1$; indeed:

$$
\begin{aligned}
\Sigma \vdash & \bigwedge_{m=1}^{n} \neg \exists z\left(p_{n_{m}, 0}(\bar{x})+\cdots+p_{n_{m}, n_{m}}(\bar{x}) z^{n_{m}}=0\right) \\
& \leftrightarrow \neg \exists z\left(\prod_{m=1}^{n}\left(p_{n_{m}, 0}(\bar{x})+\cdots+p_{n_{m}, n_{m}}(\bar{x}) z^{n_{m}}\right)=0 .\right.
\end{aligned}
$$

Furthermore, we can always assume $\xi=0$:

$$
\begin{aligned}
& \Sigma \vdash q(\bar{x}) \neq 0 \wedge \neg \varphi_{n}\left(p_{0}(\bar{x}), \ldots, p_{n}(\bar{x})\right) \Longleftrightarrow q(\bar{x}) \\
& \neq 0 \wedge \text { ᄀ } \exists z\left(p_{0}(\bar{x})+\cdots+p_{n}(\bar{x}) z^{n}=0\right), \\
& \Sigma \vdash q(\bar{x}) \neq 0 \wedge \text { ᄀヨ } z\left(p_{0}(\bar{x})+\cdots+p_{n}(\bar{x}) z^{n}=0\right) \\
& \Longleftrightarrow \text { ㄱ } z\left(q(\bar{x})\left(p_{n}(\bar{x}) z^{n}+\cdots+p_{0}(\bar{x})\right)\right), \\
& \Sigma \vdash \text { ㄱ } z\left(q(\bar{x})\left(p_{n}(\bar{x}) z^{n}+\cdots+p_{0}(\bar{x})\right)=0\right) \\
& \Leftrightarrow \neg \varphi_{n}\left(q(\bar{x}), \ldots, q(\bar{x}) p_{n}(\bar{x})\right) .
\end{aligned}
$$

Should $\eta=0$, we can always introduce the conjunct $7 \varphi_{1}$ (1.0). So, we may assume $\xi=0, \eta \leqslant 1$. We are now reduced to showing our result for sets defined by formulae of type

$$
\begin{equation*}
\bigwedge_{i=1}^{\mu} p_{i}(\bar{x})=0 \wedge \bigwedge_{j=\mu+1}^{\nu} \varphi_{n_{j}}\left(p_{n_{j}, 0}(\bar{x}), \ldots, p_{n_{j}, n_{j}}(\bar{x})\right) \tag{**}
\end{equation*}
$$

Indeed, if we get it for this case, then if we consider the set U defined by $\wedge_{i=1}^{\mu} p_{i}(\bar{x})=0 \wedge \wedge_{j=1}^{\nu} \varphi_{n_{j}}(\cdots) \wedge \neg \varphi_{n}(\cdots)$, we observe that $U=V-$ W, where V is defined by a formula of type $(* *)$ and W by $\varphi_{n}(\cdots)$, so $N_{s}(U)$ $=N_{s}(V)-N_{s}(V \cap W)$, where $V \cap W$ is again defined by a formula of type (**).

Now to prove the result for a set U defined by (**), it will suffice to establish the following:

Claim. Let V_{i} be defined by $p_{i}(\bar{x})=0(i=1, \ldots, \mu)$ and by $\varphi_{n_{i}}\left(p_{n_{i}, 0}(\bar{x}), \ldots, p_{n_{i}, n_{i}}(\bar{x})\right)$ for $i=\mu+1, \ldots, \nu$. Then for all $B \subseteq\{1, \ldots$, $\nu\}, V_{B}=\bigcup_{i \in B} V_{i}$ is a set such that $d / d t \log \zeta_{V_{B}}(t)$ is rational.

Suppose we have proved the Claim: then

$$
\begin{aligned}
N_{s}(U)=\#\left(\bigcap_{i=1}^{\nu}\left(V_{i}\right)_{s}\right) & =\sum_{B \subseteq\{1, \ldots, \nu\}}(-1)^{\# B} \#\left(V_{B}\right)_{s} \\
& =\sum_{B \subseteq\{1, \ldots, \nu\}}(-1)^{\# B} N_{s}\left(V_{B}\right) .
\end{aligned}
$$

Now to prove the Claim:
Let

$$
\begin{aligned}
& B_{1}=B \cap\{1, \ldots, \mu\}, \\
& B_{2}=B \cap \sum_{\{\mu+1, \ldots, \nu\}} V_{B}=\bigcup_{i \in B_{1}} V_{i} \cup \bigcup_{i \in B_{2}} V_{i}
\end{aligned}
$$

but $\bigcup_{i \in B_{1}} V_{i}$ can be defined by $\Pi_{i \in B_{1}} p_{i}(\bar{x})=0$, and $\bigcup_{j \in B_{2}} V_{j}$ can be defined by

$$
\exists z\left(\prod_{j \in B_{2}}\left(p_{n_{j}, n_{j}} z^{n_{j}}+\cdots+p_{n_{j}, 0}\right)=0\right),
$$

i.e., by $\varphi_{n}\left(q_{0}(\bar{x}), \ldots, q_{n}(\bar{x})\right)$, where $n=\Sigma_{j \in B_{2}} n_{j}$ and the $q_{i}(\bar{x})$ are adequately computed.

Hence V_{B} is defined by

$$
\begin{gathered}
\prod_{i \in B_{1}} p_{i}(\bar{x})=0 \vee \varphi_{n}\left(q_{0}(\bar{x}), \ldots, q_{n}(\bar{x})\right), \text { hence by } \\
\exists z\left(\pi p_{i}(\bar{x}) q_{n}(\bar{x}) z^{n}+\cdots+\pi p_{i}(\bar{x}) q_{0}(\bar{x})=0\right) \text {, hence by } \\
\varphi_{n}\left(\pi p_{i}(\bar{x}) q_{0}(\bar{x}), \ldots, \pi p_{i}(\bar{x}) q_{n}(\bar{x})\right),
\end{gathered}
$$

and the proof of Theorem 3 is actually reduced to Lemma 8.
Proof of Lemma 8. Let U be defined by

$$
\varphi_{n}\left(p_{0}\left(x_{1}, \ldots, x_{r}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{r}\right)\right)
$$

by Lemma 9 we may assume $n>q$:

$$
\begin{aligned}
& U_{s}=\left\{\left(a_{1}, \ldots, a_{r}\right) \in k_{s}^{r} \mid \text { there exists } b \in k_{s}\right. \\
& \left.\qquad \text { such that } p_{n}(\bar{a}) b^{n}+\cdots+p_{0}(\bar{a})=0\right\} .
\end{aligned}
$$

Let $f\left(x_{1}, \ldots, x_{r}, z\right)=p_{0}\left(x_{1}, \ldots, x_{r}\right)+\cdots+p_{n}\left(x_{1}, \ldots, x_{r}\right) z^{n} \in$ $k\left[x_{1}, \ldots, x_{r}, z\right]$. Let V be the variety in k^{r+1} defined by $f(\bar{x}, z)=0$:

$$
V_{s}=\left\{(\bar{a}, b) \in k_{s}^{r+1} \mid f(\bar{a}, b)=0\right\} .
$$

Let

$$
\begin{gathered}
V_{s, i}=\left\{(\bar{a}, b) \in k_{s}^{r+1} \mid p_{n}(\bar{a}) z^{n}+\cdots+p_{0}(\bar{a}) \text { has } i\right. \text { distinct } \\
\text { roots in } \left.k_{s} \text { and } b \text { is one of them }\right\} \\
(i=1, \ldots, n) ; \text { obviously, we have } V_{s}=\bigcup_{i=1}^{n} V_{s, i} \text { and we observe that } \\
N_{s}(U)=\# U_{s}=\sum_{i=1}^{n} \frac{\# V_{s, i}}{i} .
\end{gathered}
$$

Now let H_{i} be the constructible $r+i$ set defined by

$$
f\left(\bar{x}, z_{1}\right)=0 \wedge \cdots \wedge f\left(\bar{x}, z_{i}\right)=0 \wedge \bigwedge_{\substack{k, m=1 \\ k \neq m}}^{i} z_{k}-z_{m} \neq 0
$$

By Lemma 6, $\zeta_{H_{i}}(t)$ is rational. We also have $\left(H_{i}\right)_{s}=\left\{(\bar{a}, \bar{b}) \in k_{s}^{r+i} \mid f\left(\bar{a}, b_{k}\right)\right.$ $=0$ for $k=1, \ldots, i$ and $b_{k} \neq b_{m}$ if $\left.k \neq m\right\}$. Our aim is to compute $\# V_{s, i}$ from $N_{s}\left(H_{j}\right)$. For this purpose, let

$$
\begin{aligned}
& E_{s, i}=\left\{(\bar{a}, b) \in\left(H_{i}\right)_{s} \mid f(\bar{a}, z) \text { has exactly } i \text { distinct roots in } k_{s}\right\} \\
& F_{s, i}=\left\{(\bar{a}, b) \in\left(H_{i}\right)_{s} \mid f(\bar{a}, z) \text { has }>i \text { distinct roots in } k_{s}\right\}
\end{aligned}
$$

Of course, $\left(H_{i}\right)_{s}=E_{s, i} \stackrel{\circ}{\cup} F_{s, i}$ and also
$\#\left\{\bar{a} \in k_{s}^{r} \mid f(\bar{a}, z)\right.$ has exactly i roots in $\left.k_{s}\right\}=\frac{1}{i!} \cdot \# E_{s, i}=\frac{\# V_{s, i}}{i}$,
hence $\# V_{s, i}=\# E_{s, i} /(i-1)$!, and if we can compute $\# E_{s, i}=N_{s}\left(H_{i}\right)-\# F_{s, i}$ adequately, we are through.

Indeed, consider the map

$$
\begin{gathered}
\pi_{i}: \bigcup_{k=i+1}^{n} E_{s, k} \rightarrow F_{s, i} \\
\left(\bar{a}, b_{1}, \ldots, b_{i}, \ldots, b_{k}\right) \rightarrow\left(\bar{a}, b_{1}, \ldots, b_{i}\right) .
\end{gathered}
$$

π_{i} is certainly surjective and also

$$
k \neq k^{\prime} \Rightarrow \pi_{i}\left(E_{s, k}\right) \cap \pi_{i}\left(E_{s, k^{\prime}}\right)=\varnothing
$$

(indeed: $\left(\bar{a}, b_{1}, \ldots, b_{i}\right) \in \pi_{i}\left(E_{s, k}\right) \Rightarrow f(\bar{a}, z)$ has exactly k roots). So

$$
\begin{aligned}
F_{s, i} & =\bigcup_{k=i+1}^{n} \pi_{i}\left(E_{s, k}\right), \text { hence } \\
\# F_{s, i} & =\sum_{k=i+1}^{n} \# \pi_{i}\left(E_{s, k}\right)
\end{aligned}
$$

But for $k=i+1, \ldots, n, \# E_{s, k} /(k-i)!=\# \pi_{i}\left(E_{s, k}\right)$; hence $\# E_{s, i}=N_{s}\left(H_{i}\right)-$
$\# F_{s, i}=N_{s}\left(H_{i}\right)-\Sigma_{j=i+1}^{n} \# E_{s, j} /(j-i)$! but we also know that $\# E_{s, n}=N_{s}\left(H_{n}\right)$ (from the definitions) and so we get

$$
\begin{aligned}
& \# V_{s, n}=\frac{1}{(n-1)!} N_{s}\left(H_{n}\right) \\
& \# V_{s, i}=\frac{1}{(i-1)!} \# E_{s, i}=\frac{1}{(i-1)!}\left(N_{s}\left(H_{i}\right)-\sum_{j=i+1}^{n}(j-1)!\# V_{s, j}\right) \\
& \quad(i=1, \ldots, n-1)
\end{aligned}
$$

This certainly determines each $\# V_{s, i}$ as a linear combination of the $N_{s}\left(H_{j}\right)$ ($j=1, \ldots, n$) with rational coefficients (independent of s); hence

$$
N_{s}(U)=\sum_{i=1}^{n} \frac{\# V_{s, i}}{i}
$$

is given by a linear combination of the $N_{s}\left(H_{j}\right)$ with rational coefficients, independent of s; hence the rationality of $\Sigma N_{s}(U) t^{s}$ follows from the rationality of $\Sigma N_{s}\left(H_{j}\right) t^{s}$. Q.E.D.

Remark. The proof yields that $\pi_{U}(t)$ is rational for any definable set U. Certainly, $\zeta_{U}(t)$ may not be rational. However, this proof also shows that $\zeta_{U}(t)$ is always algebraic, indeed, it can always be written as the radical of a rational function.
5. Application. Let us consider the following:

Definition 10. Let $\theta: \widetilde{k}^{r} \longrightarrow \widetilde{k}^{t}$ be a function; suppose we can find a t-tuple of polynomials $f_{1}, \ldots, f_{t} \in k\left[x_{1}, \ldots, x_{r}\right]$ such that for all (a_{1}, \ldots, $\left.a_{r}\right) \in \tilde{k}^{r}, \theta\left(a_{1}, \ldots, a_{r}\right)=\left(f_{1}\left(a_{1}, \ldots, a_{r}\right), \ldots, f_{t}\left(a_{1}, \ldots, a_{r}\right)\right)$; then θ is called an r-t-morphism over k, and the t-tuple $\left(f_{1}, \ldots, f_{t}\right)$ is said to define θ.

We can state the following
Lemma 10. If U is a definable r-set over k, and θ is an r - t-morphism over k, then $\theta(U)$ is a definable t-set over k.

Proof. Say U is defined by the formula $\varphi\left(x_{1}, \ldots, x_{r}\right)$ of $L_{\tau, k}$ and θ by the t-tuple $\left(f_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, f_{t}\left(x_{1}, \ldots, x_{r}\right)\right)$. Then it is trivial to check that $\theta(U)$ can be defined by the formula $\Psi\left(y_{1}, \ldots, y_{t}\right)$ given by

$$
\begin{aligned}
\exists x_{1} \cdots \exists x_{r}\left(y_{1}\right. & =f_{1}\left(x_{1}, \ldots, x_{r}\right) \wedge \cdots \wedge y_{t} \\
& \left.=f_{t}\left(x_{1}, \ldots, x_{r}\right) \wedge \varphi\left(x_{1}, \ldots, x_{r}\right)\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

In particular, we get the following generalization of Dwork's result:
The logarithmic derivative of the zeta-function of the image of a variety by a morphism is rational.

REFERENCES

\rightarrow James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161-183. MR 35 \#126.
2. $\rightarrow \rightarrow$, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239-271. MR 37 \#5187.
\rightarrow James Ax and S. Kochen, Diophantine problems over local fields. III. Decidable fields, Ann. of Math. (2) 83 (1966), 437-456. MR 34 \#1 262.
4. J. L. Bell and A. B. Slomson, Models and ultraproducts. An introduction, NorthHolland, Amsterdam, 1969. MR 42 \#4381.
5. Z. I. Borevič and I. R. Šafarevič, Number theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 \#1080; 33 \#4001.
6. B. M. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631-648. MR 25 \#3914.
7. G. E. Sacks, Saturated model theory, Math. Lecture Notes, Benjamin, New York, 1972.
8. J. R. Shoenfield, Mathematical logic, Addison-Wesley, Reading, Mass., 1967. MR 37 \#1 224.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

[^0]: Received by the editors
 AMS (MOS) subject classifications (1970). Primary 02H15, 12C99, 12L99.
 Key words and phrases. Finite and pseudo-finite fields, varieties, definable sets, zetafunction, elimination of quantifiers.
 ${ }^{(1)}$ The results presented in this paper are part of the author's doctoral dissertation, written at the State University of New York at Stony Brook, under the supervision of James Ax; the author wishes to thank Professor Ax for encouragement and advice.

[^1]: ${ }^{(2)}$ Conversely, the necessity of these hypotheses follows easily by, e.g., an application of Frayne's Lemma [4, p. 161].

 It has been brought to my attention that Theorem 13.1 of [7, p. 63] yields a characterization of elimination of quantifiers very close to this one. However, the one presented here appears to be somewhat more convenient for the purpose of this paper.

[^2]: (3) As usual, a formal power series is called rational when it is the quotient of two polynomials.

