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ABSTRACT 

We evaliwte a new approach to facc recognition ming a varicty 
of surfacc representations of three-dimcnrional facial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstnictnire. 
Applying principal comlmncnt analysis ( ITA),  we show that 

high levels of rccugnition accuracy can tx achieved on a large 
database of 3D face modcls, captured umdcr conditions that 

present typical ditticullios to more conventional two- 
dimcnsioil;il approiiches. Applying a range of image procasing 
tccluiqnes wc identify the most effective sorf>cc representation 
for use in such application artils as security, surveillance, data 

compression and archive searching. 

1. LNTRODUCTION 

Despitc significant advances i i  face recognition tecluiology~ i t  
ha.. yct to achievc the levels of acciimcy required for many 

commercial and industrid applications, mainly due to the 
inaccuracies caised hy the environmental circimistances imder 
which iniages are captured. Variation in lighting, facial 

expression and orientation all significantly increase m o r  ra ts ,  
making it necessary to maintain colisistent condhons betwecm 
q " y  and gallcry images far the syslnn to function adequately. 

However, this approach eliminates some of the key advantages 
ott'rred by face recognition: a passive biomelric in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsense that 

it does not require subject co-operation. 

The use of 3D face models is motivated by a number of 
factors. Firstly, by relying purely on geometric shape, rather 

than colour and texture information, we render the system 

invariant to lighting conditions. Secondly, the ability to rotate a 
facial ' slmcture in threedimensional space, allowing for 
compensation of variations in pose, aids those methods requiring 

alignment prior to recognition. Finally, additional 
discriminating information is captured, when compared with 2D 
systems. As an example, eye separation can be recovered from 
both sets of data, hut nose depth can only easily be recovered 

from three-dimensional data. We do recognise, however, that 

two-dimensional colour-texture information provides a rich 
source of discriminatory information, which is forfeit if ke- 
dimensional data alone is used. Therefore, the focus of this 
paper is to determine the ahility of threedimensional data alone 
to form the basis of a face recognition system, as compared to 
2D systems. Additional research can then identify methods of 

reintroducing nomialised two-dimensional texture data in onler 
to reduce error rates further. 

We investigate the use of facial surface data, taken from 3D 
face models, as a substitute for the more familiar two- 

dimensional Images. We take a well-known method of face 
recognition, namely the eigenface approach described by Turk 

0-7803-8551-3/04/$20.00 02004 IEEE 

aid Paitland [ I ]  and adapt it for use on three-dimcnsionarl data. 
Testing a raige of surlice representations and distance metrics, 
we identify the most effective nicthods of recognising faces 

using tluce-dimensional surface structum. 
In order to tcrt this method of face recognition, we reqiiirc a 

large database of3D face models. Howcvcr, until recuitly, 3D 
caphire metliods have b w i  slow and cum~rsome, requiring the 
subject to remain perfectly still. For these IC:BS~IIS, three- 
dimensional tiice recognition has remained relatively 
iuiesplored, when compared to the wmltli of research focusing 
on t\!zo-dunensional face recogiiition Although some 

uivestigatioiis have eqxrimented with 3D data [2, 3, 41; they 
have had to rely on niiall tcst sets of 3D lice niodels or used 
generic fiicc models to ndiance h\~o-dimciisional imigcs prior to 

recognition 15, 6, 71. However. this research denionstrates that 

thc use of threc-dunensiond infonnation has the potential to 
improve face rccognition \vel1 beyond the current state of the art. 
With the emergence of new 3D caphire equipment, the 
population of a large 3D face database has now haconic viable 
aid being u n d ~ ~ e n  at Tlic Universi?y of York as part of a 
project facilitating research into three-duiiaisional face 
recognition technology [SI. 

2. RELATED WORK 

In this section, we discuss prcvious research exploring the 

possibilities otkred hy three-dimensional geometric structilre to 
perform face recognition. To dzte, the majority of r e a r c h  has 
focused on two-dimensional images, although some have 

attempted to use a-priori knowledge of facial structure to 
enhance these existing twodimensional approaches. For 
example, Zhao and Chellappa [SI use a generic 3D face niodel to 

normalise facial orientation and lighting direction in two- 

dimensional images. Using estimations of light s o m e  direction 
and pox, the 3D face model is aligned with the two-dimensional 

face image and used to project a prototype image of the frontal 
pose equivalent, prior to recognition hy linear d i s c r i " t  

analysis. Recognition accuracy on the test set is increased from 
approximately 81% (correct match within rank of25) to 100%. 
Similar results are witnessed in the Face Recognition Vendor 

Test 191, showing that pose correction using Romdhani, Blanz 
and Velter's 31) morphable model techque [6] reduces error 
rates when applied to the FERET database. 

Blanz, Roindhani and Vetter [7] take a comparable 

approach, using a 3D morphahle face model to aid in 

identification of 2D face images. Beginning with an initial 
estimate of lighting direction and face shape, Romdhani et al 
iteratively alter shape and texture parameters of the morphahle 
face model, minimising difference to the two-dimensional 
image. These parameters are then taken as features for 
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identification, resulting in 82.6% correct idnitilications on a test 

set of68 people. 

Althoigh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthese methods sliow that biowledge of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUuee- 
diieiisional face shape can aid nomialisntion for two- 
dinciisioiial face recognition systnns, none of the methods 

mentioned w far ise actual geometric structure to perform 
recognition. Whereas Beiunier and Achcroy [2] make duect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse 
of such ii&nnatioi& testing various methods of niatchiiig 3D 
face niodels, although few were successful. Curvahue analysis 

proved ineffective, and feature extraction was not robust enough 

to provide accuratc recognition. However, Beuniier aiid 

AcIi~zoy \ w e  able to achieve reasonable m o r  rates using 
cmvatiue values of vertical surface prolila. Verification tests zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cmicd out on a database of30 people produced epwl error rates 

@ER) behrren 7.25% and 9.0% on the automatically aligned 

surlices and between 6.25% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.5% whai inaiiiwl aligiuncnt 

was used. 

Heslier et a1 [lO] kke a similar approach to our hse method, 

using PCA of range images and euclidean distaiicc to per th i  
recognition. Match&ig 37 range images produces a correct 

identitication rete of Y4X, when tniiung is performed on thc 

gallen set. I-louever, it is not demonstrated how successful the 

system is when Uie traiiiing arid test set are disjoin1 and no otlicr 

surface representations are tested. 

Chua et 01 [4] take ii different approach applying noii-rigid 

siufacc rccogiution Icch~iiqirs to the face structure. An attempt 
is made to ideiitify and extmct rigid areas of facial surfaces, 

creating a system invariant to 11 expression llie 

charactcaistic used to identify these rigid areas aiid ultimately 

distinguish between faces is the point signature, which describes 

depth values siirroiuiduig local regions of specific points on the 

facial surface. The similarity of two face models is computed by 

identifying and comparing a set of unique point signatures for 

each face. Identification tests show that the probe image is 

identilied correctly for all people when applied to a test set of30 

depth maps of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 different people. 
Another method, proposed by Gordon [3], incorporates 

feature localisation. Using both depth and curvature information 

extracted from three-dimensional face models, Gordon identifies 

a number of facial features, iicluding head width nose 
dmiensions and cumahires, distance between the eyes and eye 

width. These features are evaluated using fisher's linear 
discriminant, determining the discriminating ability of each 

individual feature. Findings show head width and nose location 

are particularly iniponiant features for recognition, whereas eye 
widths and nose cwatures are less useful. Recognition is 

performed by means of a simple euclidean distance measure in 

feature space. Several combinations of features are tested using 

a database of 24 facial surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtaken from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 dityerent people, 

producing results ranging from 70.8% to 100% correct matches. 

3. THE 3D FACE DATABASE 

As mentioned previously, there is little three-dimensional face 

data publicly available at preseut and nothing towards the 

magnitude of data required for developmelit and testing of three- 
dunensioilal face recognition system. Therefore, we introduce 

a new database of 3D face models, collected at The University 

of York, as part of an ongoing project to provide a publicly 

available 3D Face Database of over 5000 models [SI. The 3D 

Figure 1. Face models taken from tlie UOY 3D face datahase 

models are generated using a 3D camera, which operates on the 
bmis of stereo disparity o fa  high-density projected light patterti. 

For the purpose of these expenmaits, u'e will Ix using a subset 

of tlie 3D face database; acquired during preliminary data 

acquisitioii sessions. This sct con o f  330 models taken from 

100 pkople under the ten conditions shown in figure 1 

Doring capture no effolt was made to control lighting 

conditions. I n  order to generate face models at varioiis h a d  
oricnhtioiis, subjects wcrc i iskd to tiice relkrciice points 

pitioiied roughly 45" above and below the canera, but no 
effort was made to enforce a precise aiiglc of orientation. 

3D face models iire orientated to face directly fonwds  using 

our orientation rioniialisation algoritlmi (not described here) 

More  beiig converted into depth nmps. The &abase is then 
separated into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo disjoint scts: the training sct consisting of40 

depth iiiaps (type I ,  figure I )  and a tcst set ofthc remaining 2W 
depth maps. Both sets contain subjects of various race, age aid 
gender and nobody is present in both the training and test scts. 

4. SURFACE REPRESENTATIONS 

In previons work we have shown that the use of image 

processing techniques can significantly reduce error rates of 

two-dimensional racc recognition methods [I  1,  121, by removing 

unwanted effects caused by environmental capture conditions. 

Much of this aiviroiuncntal influence is not present in the 3D 
face niodels, but prc-processing may still aid rccognition by 

nuking distinguishing features more explicit. We test a n u m k  
of surface representations, which may affect recognition error 

rates, derived by pre-processing of depth maps, prior to both 

training and test procedures, as described in table 1. 

5. DEFINING SURFACE SPACE 

We defie  surface space by application of PCA to the training 

set of facial surfaces, t a k i g  a similar approach to that described 
by Turk and Peiitland [ I ]  and U& in previous investigations 

[ I  1, 121. Consider OUT training set of facial surfaces, stored as 

orientation normalised 60x105 depth maps, represented as 
vectors of length 6300. We begin by reducing dimensionality to 
a practical value, while mavimising the spread of facial surfaces 

within the subspace, by application of PCA to the training set of 

M (40) depth maps {rl, rr ... rM). computing the covariance 

.-e 

Where On is the difference of the irrh depth map from the 

average v. Eigenvectors and eigenvalues of the covariance 
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matrix are calculatd using standxd linear methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe 
resultant eignivectors describe a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of axes withbi Uie depth 

map space, along which most variance occurs and the 
corresponding eigeuvalnes represent lhc degree of Uiis variance 
along each a i s .  The M eigmvectors are sorted in order of 

descaiding cigenvalues and the M (40) greatest eigenvectors 
cbosai to repreent surface space. We term each eigenvector an 
eigensurtfce, displayed as range iniages in figure 2. 

6. VERlFICATlON OF FACIAL SURFACES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Oncc surface space has k e n  defined, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw e  prqject any face into 
suuhce s p ~ e  by a simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmatrix multiplication, using tlie 
eigeiivcctors calcuhted from covariance matrix C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= r r ; ( ~ - y ~ ) f b r k = l  ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&I '  

Where l ik is thc hT/i eigenvector and wk is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbh weight in tlie 
vectorC= [ m , , ~ ~ ,  ...wkrl. ~ ~ c v c c t o r ~ i s t a k e i i a s t ~ i c  ,face- 

key' representing a person's facial stnslure in surface space and 
comparcd bv ci tha euclidean or cosine distmicc nietrics. 

& 
ll".~i~bll ~~*,,<,,<,'..,,> = llQ<, - Qnll L- = ' - 

In addition, we can also divide each face-key by its rcspctivc 

eigenvalues, prior to distance calculation, renioving any inhcrcnt 

dimensional bias and introducing hvo supplementmy metrics, 
Uie Madialanobis distance and weighted cosine distance. An 
acceptance (facial surfaces match) or rejclion (siutices do not 
match) is determined by applying a Uueshold to the celculated 

distance. In order to evaluate the effectiveness of the lice 
recognition methods, we compare each ofthe 290 surfaces in the 
test set with every other surface (41,905 vcrificatiun operations). 

False acceptance rates (FAR) and false rejection rates (FRR) are 
calculated as the prrcnitage of incorrect acceptances and 
rejections a A a  applying a threshold. Vaqing the threshold 
produces a series of FAR, FRR pairs, which plotted on a graph 
prodntics an error rate curve (figure 3), from which the EER 
(where FAR equals FRR) is taken as a single comparative value. 

7. RESULTS 

Results are presented as m r  rate curves aid bar charts of EERs 
(figure 3). The results clemly show that dividing by eigenvalues 
to normalise vector dimensions prior to distance calculations, 

significantly decreases error rates for both euclidean and cosine 
distance, with the Mahahobis metric providing the lowest EER 

for the depth map system. The EERs produced show that 

surface gradient representations provide the most distinguishmg 
informatlo& with horizontal derivatives giving the lowest EERs 
of all, using the weighted cosine distance metric. In fact, the 
weighted cosine distance retums the lowest EER for the majority 
of surface representations. escepting a few particular cases. 

However, the most effective surface representation seems to be 
dependent on the distance metric used for comparison. 

8. CONCLUSlON 

We have shown that a well-known tw+dimensional face 

recognition method can be adapted for use on three-dimensional 

Face models. Tests have been canid  out on a large database of 

three-dimensional facial surhces, caphued under conditiolis that 
present typical ditliculties whcii performing recognition. The 
m o r  rates produced from the three-dimensional bnseline system 
(19.1% EER using euclidean distance) are notably lower that 
thou: gathered in similar exlxriments using two-dimensional 

images (25.5% EER) [12]. Although a more direct coinparison 
is required, using a common 2D/3D test database, in order to 

draw m y  quanlitive conclusions, initial results suggest that 
tlucedimmsional face recognition has distinct advantages over 
conv~lltional two-dunnisional approaches. 

Exprimenting with a iiumkr of surtice rrpraentatious, we 
have discovered that facial sluface gradient is more effective Tor 

recognition than depth and curvature represcntations. In 
particular, horizontal gradients produce the lowest enor rates, 

seeming to indicate that horizontal derivatives provide more 
diszNiiinatory infonilation tlim vertical. Another advantage is 
Ihat gndicnts are lkely to be more robust to inaccuracies in thc 
aliginnent procedure, a5 the dmivativa will be invariant to 

tnuislations along the Z-axis. 
Curvature rq~rcsentati~ins do not seem lo coiit.iiii as nmcli 

discluiiinatory infonuation as other surfgice reprcjaitations. We 
find Uiis suryrisuig, a s  second derivatives sla~uld zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe less 

tiracks of orieiitatioit a~id translation along the 
Z-axis. However, this could be a rcllection of inaduliwte 3D 
model resolution and high noise content. 

Testuig four distance metrics has showi that the choice of 

nicthod for fnce-key coiiiparisoiis has a colisiderable alkct on 
resulting error rates. llie euclidean aid cosine measures seem 
tailored to specific surface representations. suggesting that some 

create a surface space ui which between-class deviation is 

predominaiitly angular, whereas olhm produce more radial 
deviation. It is also evident that dividing wch face-key by 
respective eigenvalues, normalising dimensional distribution, 
usually improves results for both euclidean and cosine distaiices. 

This indicates that the distribution along one surface space 

diniension is not necessarily proportional to its discriminating 
ability and that face-keys become more discriminative when all 
dimensions are weighted evenly. However, this is not the case 

for some suIface representations with higher EERs, suggesting 

that these representations incorporate only a few dominant 
useful components, which become maslied when .weighted 

evenly with the majority of less discriminatory components. 
Error rates of the optimum 3D eigensurface system (12.7% 

EER) are substantially lower than the best two-dimensional 

systems (20.4% EER and 17.8% EER) teste3 under similar 
circumstances in our previous investigations [ I  I, 121. Although 

we recognise the differences between these experiments (most 
notably the lack of a common 3DRD test set), the results do 
show that geometric face slncture is useful for recognition when 

used independently from colour and texture and capable of 

achieving high levels of accuracy. Given that the data caphue 

method produces models invariant to lighling conditions and 
provides the ability to recognise faces regardless of pose, makes 

this system particularly attractive for use in security and 
surveillance applications. However, more testing is required to 

identify the limitations of the eigensurface method, although one 

obvious issue is the system's reliance on accurate orientation 

normalisation. A better approach would ke to genmte a surface 
representation that was invariant to orientation. 

. .  
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Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAError rate ciiwes for the base line depth map system (left) and EEKs of all 3D face recognition systems using a variety of 

surface representations and distance metrics (right) 

11. REFERENCES 

I .  M. Turk, A. Pentland, “Face Recognition Using Eigenfaces” 
Proc. IEEE Conf. on Computer Vision and Pattem 

Recognition,pp. 586-591 (1991) 
2. C. Beunier, M. Acheroy, “Automatic 3D Face 
Auflientication” Image and Vision Computing, vol. 18, no. 4, 
pp. 315-321 (2000) 
3. G. Gordon, ‘%ace Recognition’Based on Depth and 

Cwature Features” Proc. IEEE Computer Society Conf. on 

Computer Vision and Pattem Recognition, pp. 108-1 10 (1992) 
4. C. Chua, F. Han, T. Ho, “3D Human Face Recognition 
Using Point Signature’’ Proc. 4th IEEE Int. Conf on 
Automatic Face and Gesture Recognition, pp. 233-238 (2000) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  W. Zhao, K. Chellappa, “3D Model Enhanced Face 

Recognition” Proc. Int. Conf on Image Processing (2000) 

6. S. Romdhani, V. Blanz, T. Vetter, “Face Identification by 
Fitting a 3D Morphahle Model using Linear Shape and 
Texture Error Functions” The European Cod. on Computer 

Vision (2002) 
7. V. Blanz. S. Romdhani, T. Vetter. “Face Identification 

across Differ& Poses and Illuminations with a 3D Morphahle 
Model“ Proc. of the 5” IEEE Conf. on AFGR (2002) 
8: “The UOY 3D Face Database” \I,ww.cs.vor~.ilc.tIM-lornh 
9. P. Phillips, P. Grother, R. Micheals, D. Blackhum, E. 
Tabassi, J. Bone, “FRVT 2002: Overvinv and S m a r y ”  
httdlwwv frvt.ore5~KVl2002ld~~i~n~ls.hlm, (2003) 

10. C. Hesher, A. Srivastava, G. Erlehacher, ‘?Principal 

Coniwnmt Analysis of Range Images for Facial Recognition” 

F&CISST (2002) 

1 I .  T. Haeltine, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Pem. J. Austin, ‘Evaluation of image me- _ .  
processing techniques for eigenface-bawd face recognition” 
Proc. 2nd Int. Conf. on Image and Graphics, SPIE vol. 4875 

12. T. Heseltine, N. Pears, J. Austin, ‘%ace Recognition: A 

Comparison of Appearance-based Approaches” Proc. 7th Int. 

Conf. on Digital Image Computing Techniques and 
Applications, vol. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApp 59-69 (2003) 

pp. 6n-6x5 (2002) 

1424 


