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Abstract
Due to the steep rise in grid-connected solar Photovoltaic (PV) capacity and the intermittent nature of solar generation, 
accurate forecasts are becoming ever more essential for the secure and economic day-ahead scheduling of PV systems. The 
inherent uncertainty in Numerical Weather Prediction (NWP) forecasts and the limited availability of measured datasets for 
PV system modeling impacts the achievable day-ahead solar PV power forecast accuracy in regions like India. In this study, 
an operational day-ahead PV power forecast model chain is developed for a 250 MWp solar PV park located in Southern 
India using NWP-predicted Global Horizontal Irradiance (GHI) from the European Centre of Medium Range Weather 
Forecasts (ECMWF) and National Centre for Medium Range Weather Forecasting (NCMRWF) models. The performance 
of the Lorenz polynomial and a Neural Network (NN)-based bias correction method are benchmarked on a sliding window 
basis against ground-measured GHI for ten months. The usefulness of GHI transposition, even with uncertain monthly tilt 
values, is analyzed by comparing the Global Tilted Irradiance (GTI) and GHI forecasts with measured GTI for four months. 
A simple technique for back-calculating the virtual DC power is developed using the available aggregated AC power meas-
urements and the inverter efficiency curve from a nearby plant with a similar rated inverter capacity. The AC power forecasts 
are validated against aggregated AC power measurements for six months. The ECMWF derived forecast outperforms the 
reference convex combination of climatology and persistence. The linear combination of ECMWF and NCMRWF derived 
AC forecasts showed the best result.

Keywords  Numerical Weather Prediction · PV power forecast · Model chain · Combination of AC power forecasts · 
Availability of limited design parameters · Indian meteorological conditions

Introduction

The intermittent nature of solar resource poses a challenge 
in producing reliable generation forecasts for grid-connected 
solar Photovoltaic (PV) systems. As the initial bid or 
generation schedule needs to be provided on a day-ahead 
basis, accurate day-ahead predictions are essential for the 
financial security of PV plant owners. Grid operators of 
power systems with a high penetration of solar PV require 
these forecasts to ensure the maintenance of load-generation 
balance. Due to the ever-increasing emphasis on climate 
targets, as seen recently at the COP26, renewable electricity 
capacity is expected to surpass 4800 GW by 2026 [1]. 
According to the International Energy Agency (IEA), Solar 
PV is alone expected to account for half of all renewable 
power expansion worldwide from 2021 to 2026. India 
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has the highest growth rate in renewable power capacity 
relative to the existing capacity [1]. As of August 2022, the 
nationwide installed capacity of grid-connected solar PV is 
63 GW [2]. In a recent update to its Nationally Determined 
Contribution (NDC), the Indian Government has decided 
to reduce the emissions intensity of its GDP by 45% till 
2030 [3]. Solar PV is expected to play a leading role in 
achieving its ambitious target. However, the data availability 
from these PV systems is often restricted to measurements 
of irradiance, module temperature, and inverter AC power 
output. To cope with the increasing demand for accurate 
solar PV forecasts, our forecast model chain is developed 
and benchmarked for Indian meteorological conditions with 
a limited availability of measured datasets from the site.

Solar irradiance forecasts from Numerical Weather 
Prediction (NWP) model produce accurate and reliable 
results for day-ahead and multiday-ahead forecast horizons 
[4–6]. In the subsequent steps, forecasted irradiance is 

converted into the PV power output using statistical, 
physical, or a combination of both models. Statistical and 
machine learning models are trained with past irradiance 
measurements, module and meteorological parameters, and 
the final PV power output to derive a direct relationship 
between them. The accuracy of such models depends on 
the available length of historical training data [7–10]. 
Alternatively, physical models are used for the transposition 
of Global Horizontal Irradiance (GHI) to Global Tilted 
Irradiance (GTI), modeling the DC power output as a 
function of GTI and PV module temperature, or modeling 
the inverter DC to AC power conversion efficiency in a 
stepwise manner [11, 12], as shown in Fig. 1. A hybrid 
combination of the physical and machine learning-based 
methods can also serve specific purposes, such as the 
removal of data points with curtailment before model 
training [13].

Fig. 1   Schematic of the forecasting model chain from NWP input (top) to final combined power forecast (bottom)



International Journal of Energy and Environmental Engineering	

1 3

The NWP model output GHI needs to be temporally 
interpolated to match the time resolution of the generation 
schedule mandated by regulations [14, 15]. An initial bias 
correction of the NWP modeled GHI is useful for the 
removal of systematic deviations and improves the accuracy 
of the predicted GHI. Various bias correction techniques 
using ground measurements are found in the literature, 
including polynomial functions [14, 16, 17], Kalman 
Filtering [18, 19], and Neural Networks (NN) [20–22]. 
Methods for bias correction of NWP solar irradiance output 
using geostationary satellite data images are also reported 
[23]. Diffuse fraction and diffuse sky models transform 
forecasted GHI into GTI [24]. The diffuse fraction model 
splits the GHI into its beam and diffuse components [25–27]. 
This is usually achieved in the simplest case by modeling the 
diffuse fraction (ratio of the diffused irradiance to the global 
irradiance) as a function of the clearness index (ratio of the 
global irradiance to the top of the atmosphere irradiance). 
Advanced methods can use multiple astronomical and 
meteorological parameters as predictors [29–31]. GTI 
incident on the module and the cell temperature influence 
efficiency and, consequently, the DC power output. PV 
module efficiency can be modeled using detailed diode 
equivalent circuits [32, 33] or as empirical functions of 
incident irradiance and cell temperature [12, 34–37]. An 
increase in operating cell temperature beyond 25 °C has a 
negative impact on the electrical efficiency of PV modules, 
and the losses can be significant for regions like India 
[38–40]. Detailed inverter efficiency curves at different 
voltage levels can be obtained from the manufacturer’s 
data sheet [41]. The conversion efficiency of the module 
DC power output into AC power by the inverter can also be 
modeled in multiple ways: constant efficiency, polynomial 
efficiency curve, and voltage-dependent polynomial 
efficiency curves [42–46].

In this study, an operational day-ahead PV power 
forecast model is developed using a combination of the 
NWP datasets from the European Centre of Medium Range 
Weather Forecasts (ECMWF) and the National Centre for 
Medium Range Weather Forecasting (NCMRWF) models. 
Its components are benchmarked for a 250 MWp solar PV 
plant located in Southern India. In [47], the authors proposed 
using the Lorenz polynomial bias correction function as a 
reference for benchmarking newer methods. In [48], the 
authors validated the improvement in accuracy due to 
NN-based bias correction against ground-measured data 
from four stations located on the La Réunion Island. In [22], 
the authors developed an optimally configured NN-based 
corrective algorithm for NWP output GHI and validated it 
against ground measurements from two sites in southern 
Portugal. However, a benchmark of the NN-based technique 
against the Lorenz polynomial method is not shown. In this 
work, the accuracy of the two bias correction techniques is 

intercompared for ten months. [7] suggested that assuming 
a tilt value could be better than using the GHI directly in the 
case of irradiance transposition with an unknown module 
tilt. However, the validation of forecasted GTI obtained from 
an assumed tilt against ground measurements is lacking. 
Especially for situations where the module tilt is changed 
manually on a seasonal basis, with every readjustment cycle 
lasting multiple days, as in the case of the PV plant analyzed 
in this work. The utility of using even approximate module 
tilt values for irradiance transposition is shown in this study. 
In [7], the author studied the power output simulation of 
16 PV plants for five data availability scenarios but did not 
consider the case in which the AC power output dataset is 
available while DC power is not. In the current analysis, 
DC power is back-calculated from the AC power due to 
the lack of the inverter DC side measurements. However, 
this situation is encountered quite frequently in India; 
therefore, the current work provides a practical solution for 
such cases. In [48], the authors implemented and tested a 
site-specific bias correction technique for NWP-based AC 
power forecasts across 23 PV sites in Finland. However, 
the method uses NWP forecast data from a single model 
and does not combine multiple NWP model outputs. In 
[49], the authors generated solar power forecasts from two 
different parameterizations of the same Weather Research 
and Forecasting (WRF) model and subsequently performed 
a linear combination of the two power forecasts. However, 
they did not use a reliable standard of reference, such as, the 
convex combination of persistence and climatology [50, 51], 
for analyzing the utility of the forecasts.

This study has the following specific objectives: -

•	 Benchmarking the performances of the Lorenz polyno-
mial and Neural Network (NN)-based bias correction 
methods on a sliding window basis.

•	 Validation of the benefit of using a GHI transposition 
model even with uncertain or approximate PV module 
tilt information.

•	 Estimating DC power from aggregated AC power meter 
readings.

•	 Development of an operational physical model chain for 
solar PV power forecast.

•	 Analyzing the utility of AC power forecasts derived from 
ECMWF and NCMRWF against the reference convex 
combination of persistence and climatology.

•	 Linear combination of the two AC power forecasts and 
validation of the improvement against the convex com-
bination of persistence and climatology.
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Data and methods

The forecast model chain is a collection of individual models 
that convert the GHI output from the NWP dataset into GTI 
at the PV module tilt and then finally into the plant AC 
power output by modeling each stage of energy conversion 
in the PV plant. A conceptual schematic of the model chain 
is shown in Fig. 1.

Numerical weather prediction data

NWP datasets from ECMWF and the NCMRWF are used 
in this work. The ECMWF High Resolution Forecast 
(HRES) model runs twice daily at 00 and 12 UTC, and 

produces three hourly predictions up to three days ahead 
at a spatial resolution of 0.25˚ × 0.25˚. NCMRWF provides 
global, regional, deterministic and ensemble predictions. 
The deterministic global model is run twice daily at 00 
and 12 UTC, and provides hourly forecast up to nine days 
ahead with a spatial resolution of 0.25° × 0.25°. Each global 
model’s 00 UTC run output is used for generating solar 
power forecasts in this analysis.

Solar radiation resource assessment network data

Quality controlled ground-measured irradiance data from 
the nearest Solar Radiation Resource Assessment (SRRA) 
station at Kadiri is also used in training the bias correction 

Fig. 2   Location of the power 
plant (Google earth image)

Table 1   Averaged tilt of the 5 
individual blocks on a seasonal 
basis

Month Number 1 2 3 4 5 6 7 8 9 10 11 12

Module Tilt 27° 27° 9° 4° 4° 4° 4° 4° 6° 14° 23° 26°
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model. SRRA is a network of long-term solar radiation 
monitoring stations spread across 115 locations over India. 
These stations are equipped for sampling GHI, Diffuse 
Horizontal Irradiance (DHI), Direct Normal Irradiance 
(DNI), ambient temperature, humidity, wind speed, wind 
direction, rain accumulation and barometric pressure every 
second before averaging them over every one minute and 
recording them [52].

Power plant data

The test site shown in Fig. 2 consists of five 50 MWp blocks 
of solar PV plants co-located within the same Solar Park, 
with each block having a different module type, size and 
manufacturer. The module tilt angle of each block varies 
independently on a seasonal basis. An average monthly 
module tilt schedule for all blocks combined has been prepared 
(see Table 1) from the approximate tilt change schedule 
obtained from site survey. Dynamic datasets from the power 
plant include time series measurements of GHI, GTI, PV 
module temperature and the aggregated AC power output of 
the park at an interval of 15 min. DC measurements from the 
inverter are not available. The irradiance measurements are 
quality controlled using the same checks as used for the SRRA 
stations [53]. These include the missing value test, tracking 
error test, minimum diffuse radiation test, coherence test, clear-
sky test, maximum physical limit test and minimum physical 
limit test. The power measurements are quality-controlled 
using stuck value check, non-zero nighttime value check, 
maximum possible ramp check and physical limit check.

Interpolation of numerical weather prediction data

The raw GHI predictions from NWP data are available only for 
a pre-defined number of grid points. The average of the pre-
dicted GHI at the four grid points closest to the center coordi-
nate of the plant is computed. The average GHI can be subse-
quently interpolated to 15 min from its original hourly or three 
hourly resolution by using the clear sky index interpolation 
method [14, 15]. Furthermore, in [54] it is shown that using 
a more intricate clear sky model does not necessarily imply 
better forecasts. The computationally simple model proposed 
in [55] is used in this analysis to compute clear sky indices  
k
orig res
t   from the NWP output GHI dataset at the original tem-

poral resolution, as shown in Eq. 1. Clear sky indices k15 min
t

 
in 15 min temporal resolution is derived by assuming that the 
original clear sky indices remain constant within each hourly 
or three hourly period depending on the actual time resolution 
of the NWP output. The 15-min resolution GHI dataset can be 
estimated, as shown in Eq. 2.

Bias correction of irradiance data from numerical 
weather prediction model

NWP models have a coarse resolution spanning a large area 
(grid cell), and a systematic bias in the prediction may be 
observed when compared with site-specific ground measure-
ments of GHI. The mathematical expression for bias is shown 
in Eq. 3. This is influenced by the local conditions at the site.

Lorenz polynomial method

In this method, the bias in NWP output GHI for a given 
location is modeled as a bi-variate fourth order polynomial 
function of the cosine of the solar zenith angle  cos

(

�z
)

 
and the clear sky index k∗

t
[15, 56] ⁠, as shown in Eq. 4. k∗

t
 is 

defined as the ratio of the actual GHI to the GHI expected 
under clear sky conditions (Eq. 5).

The coefficients a1 to a8 are obtained by curve fitting 
Eq. 4 with a historical dataset for which the bias in the 
NWP output GHI is already known. Equation  4 with 
known coefficients is then used for estimating and remov-
ing the bias from actual operational forecasts.

Feedforward neural network

Feedforward NNs are the simplest networks in which 
the information can move in only one direction-from the 
input layer to hidden layers and finally to the output layer. 
There is no loop or cycle transporting information in the 
backward direction. The NN architecture implemented in 
[20] is used here. It comprises of one input layer with two 
input nodes, one hidden layer with four hidden nodes and 
the final output layer with one node. A tangent hyperbolic 
activation function is used in the hidden nodes. The two 
inputs to the model are-(a) cos

(

�z
)

  and (b) k∗
t
 . The inputs 

(1)k
orig res
t =

GHI
orig res

NWP

GHI
orig res

clear sky

(2)GHI15 min
NWP

= k15 min
t

⋅ GHI15 min
clear sky

(3)bias = GHINWP − GHImeas

(4)
bias =a0 ⋅

(

cos �z
)4

+ a1 ⋅ k
∗4
t

+ a2 ⋅
(

cos �z
)3

+ a3 ⋅ k
∗3
t

+ a4 ⋅
(

cos �z
)2

+ a5 ⋅ k
∗2
t

+ a6 ⋅
(

cos �z
)

+ a7 ⋅ k
∗
t
+ a8

(5)k∗
t
=

GHI

GHIclear sky
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are kept identical to that in the Lorenz polynomial method 
(Sect. 3.2.1.) to benchmark the methods based on equal 
information. The model’s output is the bias in NWP output 
GHI, as shown in Eq. 1. The weights and offsets of the NN 
model are tuned by training on a historical dataset. In the 
final step, cos

(

�z
)

 and forecasted k∗
t
   are fed into the model 

to estimate and remove the bias from the operational 
forecasts.

Irradiance transposition

Diffuse fraction model is used to split the GHI into its 
direct and diffuse irradiance components. The GHI and 
its two components are fed into a transposition model to 
produce the three components of irradiance on a tilted 
plane, namely, beam irradiance at tilt, diffused irradiance 
at tilt and ground reflected irradiance at tilt.

Diffuse fraction model

Betcke, 2018 validated seven diffuse fraction models with two 
years of GHI and DHI measurements from 33 SRRA stations 
across India. The result of this analysis is presented in Appen-
dix A (Table 3). It can be seen that the model described in 
[25] estimates the diffused irradiance at the horizontal plane 
from GHI with the highest accuracy in terms of the normal-
ized Root Mean Square Error (nRMSE). The nRMSE metric is 
used as the reference since the deviation of power production 
from forecast at each timestamp leads to additional costs or 
penalties in grid management. Therefore, the focus on average 
nRMSE rather than the average R2 is more appropriate here, 
and the Chandrasekaran model is used in this analysis. For 
clearness index 

(

kt
)

 less than 0.24, the diffuse fraction 
(

kd
)

 
decreases linearly with kt (Eq. 6). In the kt range of 0.24 to 
0.8, kd decreases as a fourth order polynomial function of kt 
(Eq. 7). For kt values beyond 0.8, kd is assumed to be constant 
at 0.197 (Eq. 8). The coefficients of Eqs. 6, 7, and 8 are valid 
for all seasons.

Diffuse Sky model

Betcke, 2018 validated three commonly used diffuse sky mod-
els with two years ground-measured datasets of GHI and GTI 

(6)kd = 1.0086 − 0.178kt, ∀kt ≤ 0.24

(7)
k
d
= 0.9686 + 0.1325k

t
+ 1.4183k

2

t
− 10.1860k

3

t

+ 8.3733k
4

t
, ∀k

t
∈ (0.24, 0.8]

(8)kd = 0.197, ∀kt > 0.8

from two AMS stations of the SRRA network (Table 4). The 
Klucher model outperformed the other models in terms of 
nRMSE. The first term of Eq. 9  (IH−ID)⋅cos�

sin �
 describes the 

transposition of the beam irradiance. The second term 
ID ⋅

(

1+cos �

2

)

 represents the transposition of diffused irradi-

ance while considering horizon 
(

1 + F ⋅ sin3
�

2

)

 and circum-
solar 

(

1 + F ⋅ cos2 � sin3 (90 − �)
)

 brightening. The third term 
models the ground-reflected irradiance on a tilted plane. Under 
overcast conditions, the adjustment factor F (Eq. 10) tends to 
0, and the model reduces to the isotropic model proposed by 
[57]. Under a clear sky, the model reduces to the anisotropic 
model developed by [58].

where IT total irradiance incident on a surface tilted toward 
the equator at an angle � , IH total irradiance received on a 
horizontal surface, ID diffused irradiance received on a hori-
zontal surface, � solar elevation angle, � angle between the 
sun direction and the normal direction of the tilted surface, 
� ground reflectance or albedo.

Photovoltaic module output model

In this analysis, the models proposed in [34, 36] are tested 
as they do not require module voltage and current measure-
ments. In either case, the efficiency and the relative effi-
ciency (Eq. 11) are modeled as functions of incident irradi-
ance and module temperature.

where �MPP maximum power point efficiency of the PV mod-
ule, �rel relative efficiency of the PV module, �STC efficiency 
of the PV module under standard test conditions (STC) of 
1000 W/m2 irradiance and 25 °C module temperature, PMPP 
module power output at the MPP, PSTC module DC power 
output at STC, G irradiance incident on the module surface.

Existing methods for estimating PV module or cell tem-
perature incorporate weather and PV system parameters into 
their models [39]. In [40], the authors used ambient tempera-
ture, incident irradiance, overall thermal loss coefficient of 
the module, transmittance of the module cover, absorptance 
of PV layer, nominal operating cell temperature (NOCT) and 
nominal terrestrial environment (NTE) condition parameters 
to estimate the operating cell temperature. [59] estimated 

(9)

IT =

(

IH − ID
)

. cos�
sin �

+ ID.
(1 + cos �

2

)

.
(

1 + F. sin3 �
2

)

.
(

1 + F. cos2 � sin3 (90 − �)
)

+ IH.�.
(1 − cos �

2

)

(10)F = 1 −
(

ID∕IH
)2

(11)�rel =
�MPP

�STC
=

PMPP∕G
PSTC

/

1000
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the module temperature as a function of incident irradiance, 
ambient temperature and wind speed. [60] proposed a simple 
linear expression for estimating cell temperature as a func-
tion of the ambient temperature and the incident irradiance. 
The Ross model, described in Sect. "PV module temperature 
model", is used for module temperature estimation as the 
input parameter requirement matches the data availability.

Huld model

The relative efficiency of the PV module is modeled as a 
second order polynomial function of the normalized module 
temperature T ′ and the natural logarithm of the normalized 
incident irradiance lnG′ , as shown in Eq. 12. By combin-
ing Eqs. 11 and 12, the DC power output at the MPP can be 
modeled directly as a function of T ′ and lnG′ (Eq. 13).

where G′ incident irradiance normalized by 1000 W/m2, 
T ′ normalized module temperature 

(

Tmod − 25 ◦C
)

 , P DC 
power output at the MPP under actual operating conditions, 
k1 to k6 coefficients.

The coefficients k1 to k6 can be computed by curve fitting 
Eq. 13 with a historic dataset of DC power, incident irradi-
ance (GTI) and module temperature measurements. There-
after, Eq. 13 with known coefficient values can be used to 
estimate the module DC power output at any given value of 
irradiance G and module temperature T.

Beyer model

The MPP efficiency of a PV module with an operating tem-
perature of 25 °C is represented as a function of incident 
irradiance G, as shown in Eq. 14 [34]. The MPP efficiency 
at any operating temperature T is estimated using Eq. 15. 
Based on Eqs. 11 and 15, the MPP DC power output can 
be expressed as shown in Eq. 16. Thus, the four coefficients 
of the model can be estimated by curve fitting Eq. 16 with 
historical measurements of DC power, incident irradiance 
(GTI) and module temperature measurements.

(12)

�rel
(

G′,T ′) = 1 + k1 ⋅ lnG′ + k2 ⋅
[

lnG′]2 + T ′

⋅
(

k3 + k4 ⋅
[

lnG′] + k5 ⋅
[

lnG′]2
)

+ k6 ⋅ T ′2

(13)

P
(

G′,T ′) = G′ ⋅ PSTC

(

1 + k1 ⋅ lnG′ + k2 ⋅
[

lnG′]2 + T ′

⋅
(

k3 + k4 ⋅
[

lnG′] + k5 ⋅
[

lnG′]2
)

+ k6 ⋅ T ′2
)

(14)�MPP(G, 25
◦C) = a1 + a2 ⋅ G + a3 ⋅ lnG

where �MPP(G,T) MPP efficiency at irradiance G and module 
temperature T, a1, a2, a3 = Irradiance coefficients, a = Tem-
perature Coefficient.

PV module temperature model

The Ross model expresses the operating cell temperature Tc 
as the sum of the ambient temperature Ta and the product of 
the incident irradiance G with the proportionality factor k 
(Eq. 17). The proportionality factor k is known as the Ross 
parameter, and its values found in the literature lie in the 
range of 0.02–0.06 °C m2 W−1 [39]. The k value of a PV 
plant depends on the module and installation type. The low-
est values correspond to cases where the modules are well-
ventilated, while the highest values correspond to situations 
with limited ventilation possibilities. The cooling effect of 
wind is not considered here.

where Tc Operating cell temperature of the module, Ta Ambi-
ent temperature, k Ross parameters.

Module temperature forecasts Tc are obtained by inserting 
the ambient temperature and GTI predictions based on NWP 
forecasts into Eq. 17.

DC power to AC power conversion

During the conversion of DC power to AC power at the 
inverter, a portion of the power is lost. The inverter effi-
ciency (or loss) can vary as a function of the inverter output 
AC power, DC side voltage and the output power factor, 
if applicable [45]. The models presented in [42] and [44] 
express the inverter efficiency as a function of the inverter 
‘s AC power output and the DC side voltage. [46] expresses 
the inverter efficiency as a function of the input DC power. 
As the model does not require DC voltage measurements, it 
is selected in this study.

Schmidt and Sauer model

In [46], the authors modeled the inverter loss as a quadratic 
polynomial function of the inverter AC power output, as 
shown in Eq. 19. The inverter loss ploss is defined as the 
difference between DC power and AC power measurements 
(Eq. 18). The three coefficients pself , vloss and rloss represent 

(15)�MPP(G,T) = �MPP(G, 25
◦C) ⋅

[

1 + �(T − 25 ◦C)
]

(16)

⇒ �MPP(G,T) =
(

a1 + a2 ⋅ G + a3 ⋅ lnG
)

⋅

[

1 + �(T − 25 ◦C)
]

P(G,T) =
G�

⋅ PSTC

�STC
⋅

(

a1 + a2 ⋅ G + a3 ⋅ lnG
)

⋅

[

1 + �(T − 25 ◦C)
]

(17)Tc = Ta + k ⋅ G
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distinct physical losses in the inverter and can be com-
puted by curve fitting Eq. 19 with measured datasets of DC 
power pin and AC power pout . The inverter’s efficiency at a 
given DC power input pin can then be estimated, as shown 
in Eq. 20. The final AC power output pout is derived from 
Eq. 21.

where ploss DC to AC power conversion loss in inverter per 
unit rated capacity, pin DC power input to the inverter per 
unit rated capacity, pout AC power output from the inverter 
per unit rated capacity, pself self-consumption of the inverter 
per unit rated capacity, vloss Loss due to voltage drop across 
the semi-conductor per unit rated capacity, rloss Ohmic loss 
per unit rated capacity, � Inverter efficiency.

Combination of AC power forecasts

The two different AC power forecasts obtained using the 
ECMWF and NCMRWF output GHI are further combined 
in this study to improve the accuracy of the final forecast. 
The combined AC power forecast Pcomb

AC
 is modeled as a lin-

ear function of the NCMRWF-based AC power forecast and 
ECMWF-based AC power forecast, as shown in Eq. 22. The 
coefficients a1 and a2 are computed by curve fitting Eq. 22 
with datasets of PNCMRWF

AC
 , PECMWF

AC
 and measured AC power 

in place of Pcomb
AC

.

Evaluation of forecast accuracy

System deviation or bias in irradiance forecast is represented 
in Eq. 23 with the normalized mean bias error (nMBE). The 
power forecasts are validated using the normalized root mean 
square error (nRMSE) metric shown in Eq. 24.

(18)ploss = pin − pout

(19)ploss = pself + vloss ⋅ pout + rloss ⋅
(

pout
)2

(20)

� = −
1 + vloss

2 ⋅ rloss ⋅ pin
+

√

√

√

√

(

1 + vloss

2 ⋅ rloss ⋅ pin

)2

+
pin − pself

rloss ⋅
(

pin
)2

(21)� =
pout

pin

(22)Pcomb
AC

= a1 ⋅ P
NCMRWF
AC

+ a2 ⋅ P
ECMWF
AC

(23)nMBE =

1

N

∑N

n=1

�

GHIpred − GHImeas

�

�

∑N

n=1
GHImeas

N

� × 100

Results and discussions

Interpolation

The two GHI forecasts for the plant are obtained by pre-
processing the two NWP outputs to site-level spatial 
resolution and 15 min temporal resolution, as described in 
Sect. "Interpolation of numerical weather prediction data". 
Figure 3 shows the ECMWF forecast in its original three 
hourly resolution and after it is interpolated to the 15 min 
resolution. Similarly, the NWP output GHI from NCMRWF 
is also interpolated to 15  min from its original hourly 
resolution. The interpolated ECMWF-based GHI prediction 
exhibits an average bias of + 0.46% (over-estimation) against 
GHI measured at the PV plant over the validation period 
from 17.12.2018 to 23.10.2019. The interpolated GHI from 
NCMRWF shows a bias of + 1.71% (over-estimation). In 
[4], the nMBE in the forecast for single sites across North 
America and Europe over individual days ranged from − 1% 
to + 10%. In [61], the authors validated the GHI forecasts 
from multiple NWP models against ground measurements 
from stations in Southern Germany, Switzerland, Austria 
and Southern Spain for one year. They calculated the average 
bias to be between − 2.9% and + 5.9% across the sites.

Bias correction

Two bias correction techniques—(i) polynomial function 
and (ii) NN-based bias correction methods, are validated on 

(24)nRMSE =

�

1

N

∑N

n=1

�

GHIpred − GHImeas

�2

�

∑N

n=1
GHImeas

N

� × 100

Fig. 3   Interpolation of hourly GHI to 15-min resolution
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a sliding window basis against the ground-measured GHI 
from the PV plant for the period 17th December 2018 to 
23rd October 2019. Ground measured GHI datasets from 
both the PV plant and the nearest SRRA station is used for 
training the two bias correction algorithms. The sliding 
window is varied from 15 to 40 days in 5-day steps to 
determine the optimum number of training days for the bias 
correction algorithms. The variation in bias with the change 
in the number of days of training in the sliding window 
is shown in Figs. 4 and 5 for ECMWF and NCMRWF, 
respectively. To select a bias correction technique for the 
model chain, the maximum reduction in bias with the 
minimum number of training days is used as a criterion. 
The Lorenz polynomial method reduces the bias in ECMWF 
predicted GHI to − 0.001% with 25 days of training. The 
bias in NCMRWF predicted GHI is reduced to − 0.08% with 
20 days of training. After the NN-based correction, the bias 
lies between 0 and − 0.2% and − 1 and − 2% for ECMWF 
and NCMRWF respectively. Consequently, the Lorenz 
polynomial method is used for bias correction in the model 
chain. With the NN method, a negative bias is observed for 
all sets of training days. In [61], the authors performed bias 
correction of ECMWF predicted GHI for a period of one 
year. The corrected GHI predictions showed an average bias 
of − 0.2% against ground measurements from 87 stations 
distributed across north-eastern Germany.

Tilt conversion

The diffuse fraction model by Chandrasekaran and Kumar” 
and the diffuse sky model by “Klucher” are combined in the 
forecasting chain for the conversion from GHI to GTI due to 
their suitability for Indian solar climatology (see Sect. "Irra-
diance transposition"). The PV module tilt varies seasonally 
at each of the five blocks. Furthermore, each block follows 

its own independent tilt variation schedule, and the entire 
manual tilt change procedure requires multiple days in each 
case. During the tilt changing, the PV modules in each block 
can have two different types of tilt values. Approximate 
information on tilt variation schedule was obtained from a 
site survey.

Two forecasted GTI datasets are obtained by transposing 
the bias-corrected GHI forecasts from the ECMWF and 
NCMRWF using the tilt angles from Table 1. The forecasted 
GTI and forecasted GHI for the period 6th February 2019 
to 6th June 2019 are plotted against the measured GTI t 
from a block, as shown in Figs. 6 and 7. It can be seen that 

Fig. 4   The variation of normalized bias in ECMWF output GHI with 
the increasing number of training days for the two bias correction 
methods

Fig. 5   The variation of normalized bias in NCMRWF output 
GHI with the increasing number of training days for the two bias 
correction methods

Fig. 6   Comparison of bias corrected ECMWF output GHI and its 
transposition against measured GTI
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the forecasted GTI obtained by transposing GHI shows 
a better correlation to the measured GTI at uncertain tilt 
angles than the forecasted GHI. The benefit of the irradiance 
transposition model can be particularly observed in high-
irradiance situations. [7] tested the performance of PV 
power output modeling under different scenarios—where 
the module tilt information is available and where it is 
not. By analyzing the accuracy of simulated power against 
measurements, it was observed that assuming a value of tilt 
could be better than using the GHI directly in the case of 
irradiance transposition with an unknown module tilt. It 
was also found beneficial to reduce the module tilt by 5° to 
10° from its actual value. However, analyzing the final AC 
power accuracy has caveats as this also incorporates errors 
due to inaccuracies in PV module and inverter performance 
modeling. It can be observed from Figs. 6 and 7 that the 
highest utility of GHI transposition over using raw GHI is 
observed during periods of high irradiance, i.e., clear sky 
period. The benefit of using even approximate module tilt 
values for irradiance transposition is shown here. Especially 
for situations where the module tilt is changed manually 
on a seasonal basis, with every readjustment cycle lasting 
multiple days.

DC power model

Virtual DC power data

Due to the complete lack of DC measurements and block-
wise AC power output data from the PV park, a synthetic 
or virtual DC power dataset is back-calculated from the 
aggregated AC power output of the entire PV park. The 
inverter efficiency curve from a nearby PV plant with a 
similar rated capacity is derived and used for this purpose, 
as shown in Fig. 8. The inverter efficiency curve is obtained 
by training the voltage-independent Schmidt and Sauer 
model with actual DC and AC power output measurements 
from the nearby site. This efficiency curve is used to produce 
an aggregated virtual DC power dataset from the available 
aggregated AC power dataset of the PV park under analysis. 
[62] showed that the efficiency curves of grid-connected 
inverters vary depending on the optimization approach used. 
A low self-consumption strategy leads to high efficiency at 
small partial loads while compromising the performance 
at the higher end of the curve. A small input power level 
strategy leads to a good performance at the higher end of 
the curve but reduces the efficiency at small partial loads.

PV model coefficients

The coefficients of the Huld and Beyer models are obtained 
by curve fitting Eqs. 13 and 16 with Virtual DC power data, 

Fig. 7   Comparison of bias corrected NCMRWF output GHI and its 
transposition against measured GTI

Fig. 8   Inverter efficiency curve estimated from a nearby PV site using 
Schmidt and Sauer model
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GTI measurement and module temperature measurement 
for the period 7th November 2018 to 15th April 2019. The 
Beyer model additionally requires the PV module efficiency 
at �STC (Eq. 16). An efficiency of 15% is assumed here as the 
PV modules are predominantly polycrystalline with a minor 
share of monocrystalline and thin film modules.

AC power predictions

The AC power predictions are calculated from the ECMWF 
and NCMRWF predicted GHI with the entire forecast 
model chain (see Fig. 1) for the validation period of 16th 
April 2019 to 23rd October 2019. The Ross parameter k 
in Eq. 17 is set to 0.03 °C m2 W−1 based on a pre-study. 
With two NWP models and two GTI to DC conversion 
models, four forecasted AC power datasets are obtained. 
The error observed for these four datasets of AC power 
forecasts is shown in Table 2. No significant difference 
could be observed between the performances of Huld 
and Beyer models. However, as the Huld model performs 
marginally better, it is used in the final forecast model 
chain. Forecasts derived from the ECMWF and NCMRWF 
datasets outperform climatology and persistence, as shown 

Table 2   nRMSE of AC power forecasts

NWP data Huld model (%) Beyer model (%)

ECMWF 11.01 11.03
NCMRWF 12.72 12.76

Fig. 9   Comparison of the AC power forecasts obtained from 
ECMWF and NCMRWF with persistence, climatology and the 
convex combination of persistence and climatology

Fig. 10   AC power forecast 
derived from the ECMWF data
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in Fig. 9. However, the NCMRWF derived forecast shows 
higher rRMSE than the convex combination of climatology 
and persistence (as defined in [50] and [51]). Figures 10 
and 11 also show that NCMRWF derived forecasts show 
lower correlation than ECMWF. [11] evaluated the 
accuracy of their forecasting model chain against PV power 
measurements from China for eight exemplary days and 
found the nRMSE to vary between 8 and 19%. [49] found 
that the nRMSE of their model chain varied from 8.21% at 
1 h ahead to 13.84% at 48 h ahead on an average for one year 
of PV power measurements from a site in Hungary.

Combination of power forecasts based on the two 
NWP sources

For the final combined AC power prediction, the coefficients 
of the combination equation are trained on 15 days sliding 
window basis. The accuracy of the combined AC power 
forecast is validated for the period 1st May 2019 to 23rd 
October 2019. Although the NCMRWF derived forecast 
shows higher rRMSE than the convex combination of 
climatology and persistence, the final combination of 

ECMWF and NCMRWF derived forecasts shows the best 
performance, as shown in Fig. 12. From Figs. 10, 11, 12 and 
13, it can be observed that there is always an underestimation 
of AC power for periods of higher generation that 

Fig. 11   AC power forecast 
derived from the NCMRWF 
data

Fig. 12   Comparison of the AC power forecasts obtained from 
ECMWF and NCMRWF with persistence, climatology and the 
convex combination of persistence and climatology
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correspond to high solar elevation angles. For the periods 
of lower generation, an overestimation in the forecast can 
be observed. [49] showed that combination of AC power 
forecasts leads to a considerable improvement in accuracy 
at all times of the day except the early morning.

Conclusion

In this study, an NWP-based day ahead solar PV power 
forecast model chain has been developed, and each of its 
model component benchmarked against measurements from 
a 250 MWp PV park located in Southern India. Without 
any post-processing, the GHI output from both the ECMWF 
and NCMRWF models overestimated the GHI compared to 
the ground measurements. The Lorenz polynomial method 
outperformed the one hidden layer with four nodes NN 
architecture based bias correction method with both the 
NWP datasets for the PV Park site. The NN-based method 
also showed a consistent under-estimation of GHI with both 
the NWP data-sets. [7] opined that an assumed tilt angle 

may be better than using the GHI directly in  situations 
with an unknown tilt angle. The usefulness of irradiance 
transposition even in situations with uncertain seasonal tilt 
information was established by the fact that the forecasted 
GTI dataset showed a better correlation with the measured 
GTI at uncertain tilt than the forecasted GHI with measured 
GTI. [7] did not analyze the scenario in which the AC power 
output dataset is available while the DC power is not. In 
this study, it was possible to back-calculate an aggregated 
virtual DC power dataset from the available aggregated 
AC power measurements by using a voltage-independent 
inverter efficiency curve derived from another nearby PV 
site with a similar PV capacity rating. This virtual DC 
power dataset was used in training the Beyer and Huld 
PV efficiency models. The Huld model performed only 
marginally better than the Beyer model and was therefore 
used in the final forecast model chain.. The ECMWF and 
NCMRWF derived forecasts outperformed both climatology 
and persistence. However, the NCMRWF derived forecast 
showed higher error than the convex combination of 
climatology and persistence. Nevertheless, the linear 

Fig. 13   Combination of the AC 
power forecasts derived from 
ECMWF and NCMRWF
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combination of the AC power forecasts derived from the 
ECMWF and NCMRWF datasets showed the best accuracy 
and outperformed the convex combination of climatology 
and persistence. This possibly points to the fact that the 
underlying atmospheric effects are modeled differently in 
the two NWP models, and a combination of both therefore 
leads to more information about the atmospheric condition. 
However, the global NWP models are inherently limited by 
their low resolution (25 km) and assume the same cloud 
situation or irradiance over a large area. To summarize, we 
demonstrated that it is possible to produce reliable day-
ahead PV power forecasts, derived from numerical weather 
data, for the Indian subcontinent even in situations where 
the PV tilt information and the inverter DC measurements 
are lacking. Furthermore, we compared our result against a 
standard reference—the convex combination of persistence 
and climatology. Each individual step of the forecast model 
chain has been optimized to provide a benchmark of the 
expected day-ahead solar PV power forecast accuracy. As 
the deviation of the actual power feed-in from the forecast 
is penalized beyond a deviation threshold, the accuracy 
metrics provide solar PV plant operators information about 

the financial risks involved. Furthermore, as the global NWP 
model grid size is large (25 kms) and as there are other large 
solar PV parks located in the surrounding, this also gives the 
grid operators an idea about the expected deviation of GW 
scale solar PV feed-in from its day-ahead schedule. This will 
allow them to procure the necessary reserves in advance. 
The limitations in this study include:

(i)	 Interpolation from 3 h or 1 h to 15 min assuming a con-
stant clear sky index. This is not a realistic assumption, 
but could be improved by using a machine learning 
based classification.

(ii)	 The model chain assumes a constant tilt for the entire 
PV park, which is not true. Although assuming a single 
tilt provides better results than using GHI directly, this 
could be further improved upon

(iii)	 Although there are different kinds of PV modules 
connected to multiple inverters, in this study all the 
PV modules together and the inverters were lumped 
together. All properties were calculated at the aggregate 
level, which is not realistic. A more detailed representa-
tion of the PV park could be developed.

Table 3   rRMSE, rMBE, |rMBE| and correlation coefficient of the diffuse fraction models averaged over all stations (Betcke, 2018)

Model < rRMSE > (%) < rMBE > (%) <|rMBE|> (%) < r2 >

Orgill and Hollands 25.0 7.5 8.0 0.833
Erbs 25.0 2.6 6.1 0.781
Chandrasekaran and Kumar 23.9 3.6 5.9 0.842
Reindl 1 25.9 2.9 5.8 0.869
Reindl 2 28.4 4.6 6.1 0.769
Suehrcke and McCormick, built-in clear sky model 50.3 35.1 35.1 0.746
Suehrcke and McCormick, Ineichen clear sky model, Remund turbidity 38.5 23.4 23.4 0.781
Skartveit et al., without variability, built in clear sky model 25.3 3.1 8.6 0.884
Skartveit et al., with variability, built in clear sky model 25.9 9.7 9.8 0.885
Skartveit et al., without variability, Ineichen sky model, Remund turbidity 27.4 − 6.1 7.6 0.857
Skartveit et al., with variability, Ineichen sky model, Remund turbidity 24.8 0.4 5.1 0.874

Table 4   Results of the analysis of the tilt conversion models (Betcke, 2018)

Station Gandhinagar Gurgaon

latitude/tilt (°) 23.2 28.4
Data completeness (%) 86 83
Tilt factor from measurement (%) 105.4 102.7
Diffuse fraction from measurement (%) 51 50
rRMSE/rMBE isotropic (%) 15.7/− 1.4 24.9/2.9
rRMSE/rMBE Klucher (%) 11.9/1.4 19.1/6.4
rRMSE/rMBE Perez I (%) 13.0/1.3 20.4/7.6
rRMSE/rMBE Perez II (%) 12.8/0.9 20.1/7.3
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(iv)	 Global NWP models with a low spatial resolution 
(25 kms × 25 kms) were used in this study, whereas 
the solar PV park has a dimension of 3 kms × 3 kms. 
Regional models with higher spatial resolution will be 
tested in the future.

(v)	 The combined AC forecast over-estimated the power 
production during periods with lower generation. 
This may be due to the inappropriate modeling of the 
atmospheric turbidity and scattering at low solar eleva-
tion angles. Clear sky models that incorporate near 
real time aerosol information could be explored for 
this purpose. At higher generation levels, the forecasts 
under-estimate the AC power. Further analysis is nec-
essary to determine whether this under-estimation is 
due to the inability of NWP models to resolve clouds 
at the coarse resolution and the consequent averaging 
effect.

Appendix

Tables 3, 4.
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