THE POWER OF MODULAR TREE BASED AMR

RESOLVING HANGING NODES AND
CUTTING HOLES

Johannes Holke, SIAM CSE23 02.03.2023
DLR Institute for Software Technology (SC)

High-performance Computing | Scalable adaptive mesh refinement (AMR)

Knapp, David; Dreyer, Lukas; Elsweijer, Sandro; Unlue, Veli; Burstedde, Carsten;
Markert, Johannes; Lilikakis, loannis; Boeing, Niklas; Becker, Florian; Gassner, Greqgor

DLR

Disclaimer 4#7
DLR

This talk has 99% mesh handling
1% PDEs

Modular tree-based AMR

We have seen a lot of AMR so far,
much was tree-based
using space-filling curves:

NN NEEEE T T I T I T T
m Memory eﬂ:ICIent O %*P*E —‘i' 'T"i‘ i"i‘*i‘m'i"i‘ 'i"i' |i|12|i\|\|i\qii\|i\m|i\|il 'i‘i”i'm‘i"i
. FaSt Caviedes-Voullieme, Gerhard, Sikstel, Muller

» p4est standard: All AMR algorithms in <1 Second

Modular tree-based AMR ‘#7
DLR

Historically these were limited to quads/cubes (with some notable exceptions)

We extend tree-based AMR to all* element shapes.

Modular tree-based AMR 4#7
DLR

High-Level Algos Low-Level Algos

= EERREYE
Element Refine
Element Parent

Mesh Adapt
Mesh Partition
Mesh 2:1 Balance

Call when needed
Mesh lterate —
Mesh Search

Mesh face neighbor

Element Neighbor
Element Shape

Implement these once Implement these for each
« Shape (tri, tet, quad, hex, prism, ...)
« Refinement pattern/SFC (Morton, Peano, ...)

Modular tree-based AMR A#y
DLR

Example: refining the mesh.

if (refine (quad)) {

|nStead Of: Allocate (new quads, 4);

it (refine (element)) {
W d . num children = element->num_children();
e do. Allocate (new elements, num children);

Modular tree-based AMR ‘#7
DLR

Thus, we can take the same algorithms, and operate on any element shape
and also mix element shapes in the same mesh.

All with the performance and scalability of tree-based AMR.

H DLR-AMR /t8code ' Public

t8code (,tetcode®)
DLR

» Parallel management of adaptive meshes and data

= C/C++ and MPI

» Tree-based/semi-structured with space-filling curves

= Vertex, Line, Quad, Tri, Hex, Tet, Prism, Pyramid

= Modularly extandable

» Scales up to 1 mio. MPI ranks (with >90% efficiency),

= >] Trillion elements

= Complex geometries (comparable to unstructured meshes)

= Curved meshes

And now, some cool stuff ‘#7
DLR

We were forced to make the high-level algorithms more flexible and robust
(changing number of children, changing shape of elements, etc.).

This allows us now to implement ,,non-standard” features.

Cutting holes A#y
DLR

« Embedding obstacles in the mesh
« Rectangular domain with single tree
» Coarsening arbitrary data (for visualizing or compressing)

it (refine (element) == -2)
num_children = 8;

Basically we are doing: Allocate (new_elements, num_children);

Cutting holes A#y
DLR

No ,virtual elements” of weight O or similar constructs.
No memory needed for unused elements.

Cutting holes A#y
DLR

Challenge: How to coarsen a mesh with holes?

— New is_incomplete family Check

Cutting holes A#y
DLR

» The mesh with holes is just a normal AMR mesh now
= Can refine/coarsen/load-balance it etc.

= No need to: fill the holes, coarsen, redo the holes

Multi tree, hybrid mesh

Even cooler stuff - subelements A#y
DLR

= One application of subelements is resolving hanging nodes:

This is a tree-based mesh with a space-
filling curve.
We see one single tree.

Subelements ‘#7
DLR

With standard elements

= We could do different refinement patterns, but...
.- L] .- n?

» \We cannot change behavior at will
LA level X element with Index Y allways has to refine the same way"

Subelements #
DLR

With standard elements
= \We must continue refinement

I

Subelements ‘#7
DLR

Idea of Subelements:
» For one level you can do whatever you want

= Before you refine, remove subelements

Subelements

= Subelements have same SFC index as their ,parent” element plus an

additional subelement ID

= Subelements look like elements to the outer world
* They implement a subset of low-level algorithms

= [teration, ghost elements, etc.

Forest

}CU

N SN | AN S U [y N [O J J N R By -

LII_II_II_I

Mesh

/]

i DLR

Subelements — Resolve hanging nodes 4#7
DLR

» 2:1 balance your mesh
» For each element with a hanging face use one of 15 subelement patterns:

Subelements A#y
DLR

We implemented full hanging node resolution for 2D quads with it:

Num. Solution
00e+00 01 02 03 04 05 06 07 08 09 1.0e+00
| | | | |

|

INEEUBEE
EEE TS

3D hexes and other element shapes currently work in progress

Subelements — What next?
DLR

Your imagination is the limit!

= Anisotropic refinement

-1

Donna Calhoun et. Al.

= Uniform subgrids for GPUs

* Boundary layers

= Your iIdeas?

e
—_—
e

—
-

e “‘——-——‘-g——' =
S %ﬂ%’ﬁﬁ%

https://www.comsol.fr/blogs/your-guide-to-meshing-
techniques-for-efficient-cfd-modeling/

=

t8code — www.github.com/dIr-amr/t8code

Holke, Johannes, Burstedde, Carsten, Knapp, David, Dreyer, Lukas,

Elsweijer, Sandro, Uenlue, Veli, Markert, Johannes, Lilikakis, loannis,

Boeing, Niklas, & Becker, Florian. (2023). t8code (v1.1.0). Zenodo. hitps://doi.org/10.5281/zenodo.7681843

Becker, Florian (2021) Removing hanging faces from tree-based adaptive meshes for numerical simulations.
Master‘'s Thesis, Universitat zu Koélin.

Lilikakis, loannis (2022) Algorithms for tree-based adaptive meshes with incomplete trees.
Master‘s Thesis, Universitat zu Koln.

DLR

More on t8code
at
IMR23!

http://www.github.com/dlr-amr/t8code
https://doi.org/10.5281/zenodo.7681843

