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Disclaimer 4#7
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This talk has 99% mesh handling
1% PDEs




Modular tree-based AMR

We have seen a lot of AMR so far,
much was tree-based
using space-filling curves:
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» p4est standard: All AMR algorithms in <1 Second




Modular tree-based AMR ‘#7
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Historically these were limited to quads/cubes (with some notable exceptions)

We extend tree-based AMR to all* element shapes.




Modular tree-based AMR 4#7
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High-Level Algos Low-Level Algos

= EERREYE
Element Refine
Element Parent

Mesh Adapt
Mesh Partition
Mesh 2:1 Balance

Call when needed
Mesh lterate —
Mesh Search

Mesh face neighbor

Element Neighbor
Element Shape

Implement these once Implement these for each
« Shape (tri, tet, quad, hex, prism, ...)
« Refinement pattern/SFC (Morton, Peano, ...)




Modular tree-based AMR A#y
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Example: refining the mesh.

if (refine (quad)) {

|nStead Of: Allocate (new quads, 4);

it (refine (element)) {
W d . num children = element->num_children();
e do. Allocate (new elements, num children);




Modular tree-based AMR ‘#7
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Thus, we can take the same algorithms, and operate on any element shape
and also mix element shapes in the same mesh.

All with the performance and scalability of tree-based AMR.




H DLR-AMR /t8code ' Public

t8code (,tetcode®)
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» Parallel management of adaptive meshes and data

= C/C++ and MPI

» Tree-based/semi-structured with space-filling curves

= Vertex, Line, Quad, Tri, Hex, Tet, Prism, Pyramid

= Modularly extandable

» Scales up to 1 mio. MPI ranks (with >90% efficiency),

= >] Trillion elements

= Complex geometries (comparable to unstructured meshes)

= Curved meshes




And now, some cool stuff ‘#7
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We were forced to make the high-level algorithms more flexible and robust
(changing number of children, changing shape of elements, etc.).

This allows us now to implement ,,non-standard” features.




Cutting holes A#y
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« Embedding obstacles in the mesh
« Rectangular domain with single tree
» Coarsening arbitrary data (for visualizing or compressing)

it (refine (element) == -2)
num_children = 8;

Basically we are doing: Allocate (new_elements, num_children);




Cutting holes A#y
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No ,virtual elements” of weight O or similar constructs.
No memory needed for unused elements.




Cutting holes A#y
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Challenge: How to coarsen a mesh with holes?

— New is_incomplete family Check




Cutting holes A#y
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» The mesh with holes is just a normal AMR mesh now
= Can refine/coarsen/load-balance it etc.

= No need to: fill the holes, coarsen, redo the holes

Multi tree, hybrid mesh




Even cooler stuff - subelements A#y
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= One application of subelements is resolving hanging nodes:

This is a tree-based mesh with a space-
filling curve.
We see one single tree.




Subelements ‘#7
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With standard elements

= We could do different refinement patterns, but...
.- L] .- n?

» \We cannot change behavior at will
LA level X element with Index Y allways has to refine the same way"




Subelements #
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With standard elements
= \We must continue refinement

I




Subelements ‘#7
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Idea of Subelements:
» For one level you can do whatever you want

= Before you refine, remove subelements




Subelements

= Subelements have same SFC index as their ,parent” element plus an

additional subelement ID

= Subelements look like elements to the outer world
* They implement a subset of low-level algorithms

= [teration, ghost elements, etc.
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Subelements — Resolve hanging nodes 4#7
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» 2:1 balance your mesh
» For each element with a hanging face use one of 15 subelement patterns:




Subelements A#y
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We implemented full hanging node resolution for 2D quads with it:

Num. Solution
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3D hexes and other element shapes currently work in progress




Subelements — What next?
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Your imagination is the limit!

= Anisotropic refinement
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Donna Calhoun et. Al.

= Uniform subgrids for GPUs

* Boundary layers

= Your iIdeas?
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https://www.comsol.fr/blogs/your-guide-to-meshing-
techniques-for-efficient-cfd-modeling/
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t8code — www.github.com/dIr-amr/t8code
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More on t8code
at
IMR23!



http://www.github.com/dlr-amr/t8code
https://doi.org/10.5281/zenodo.7681843

