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Abstract—Typically a Neural Networks (NN) is trained on data
centers using historic datasets, then a C source file (model as a
char array) of the trained model is generated and flashed on IoT
devices. This standard process impedes the flexibility of billions of
deployed ML-powered devices as they cannot learn unseen/fresh
data patterns (static intelligence) and are impossible to adapt
to dynamic scenarios. Currently, to address this issue, Online
Machine Learning (OL) algorithms are deployed on IoT devices
that provide devices the ability to locally re-train themselves -
continuously updating the last few NN layers using unseen data
patterns encountered after deployment.

In OL, catastrophic forgetting is common when NNs are
trained using non-stationary data distribution. The majority of
recent work in the OL domain embraces the implicit assumption
that the distribution of local training data is balanced. But the
fact is, the sensor data streams in real-world IoT are severely
imbalanced and temporally correlated. This paper introduces
Imbal-OL, a resource-friendly technique that can be used as
an OL plugin to balance the size of classes in a range of data
streams. When Imbal-OL processed stream is used for OL, the
models can adapt faster to changes in the stream while parallelly
preventing catastrophic forgetting. Experimental evaluation of
Imbal-OL using CIFAR datasets over ResNet-18 demonstrates
its ability to deal with imperfect data streams, as it manages
to produce high-quality models even under challenging learning
settings.

Index Terms—IoT Devices, TinyML, Online Learning, Imbal-
anced Data, Class Balancing.

I. INTRODUCTION

The top-quality NN models that solve a range of complex
tasks are typically trained at data centers by performing
multiple passes over labeled historic datasets collected for
decades. The knowledge gathered by ubiquitous devices in IoT
is a vastly different story as, over the service span of devices,
they perceive a data stream of unlabeled, temporally correlated
observations and rarely revisit the same data multiple times
[1]. Learning new knowledge needs to occur in the real world
after deployment, rather than training at the data center then
inference at the edge [2]. So, to enable on-the-fly knowledge
gaining, the trend in IoT is moving towards Online Machine
Learning (OL), where the last few network layers are con-
tinuously re-trained/updated at the edge level. In this context,
non NN based TinyML algorithms also exist for on-device
continual learning after deployment [3, 4]. In OL settings,
NNs perform poorly when fed with streams containing non-
stationary data distribution. Also, when learning to solve a

Fig. 1. Without discarding any data samples from the significantly underrep-
resented deer and bird classes, Imbal-OL balances the remaining classes.

sequence of distinct tasks, NNs learn from the data streams of
the current task but forget previously learned ones [5] - this
phenomenon is catastrophic forgetting.

Two distinct categories exist to overcome catastrophic for-
getting. First is incremental approaches, where the learning
algorithm is given all the data for the current task over which
numerous passes are performed. The next is online approaches,
where the learning algorithm is provided with tiny batches
of data from the stream and cannot revisit batches from the
current or previous tasks. This work focuses on the second
category because the memory constraint nature of IoT edge
devices restricts the accommodation of a large volume of data
samples from the stream in its RAM, over which numerous
passes can be performed. In incremental approaches, there is
an option to store training data in external file systems, then
perform passes. This option can lead to data compromises as
devices can have poor configurations and open design when
built with cost as the driving design tenet.

In OL methods, there exists a gap as the majority of studies
[3, 4, 6] do not consider the data balance both in terms of sizes
of the tasks to learn and the classes contained in each task.
Moreover, the data streams used for training are assumed to
be well-balanced. In contrast, the devices that aim to improve
their intelligence during their service time need to learn from
significantly imbalanced data streams with no boundaries and
task identifiers/allocators. To perform OL in such non-ideal
real-world settings, this paper presents Imbal-OL, an OL
plugin that understands the supplied data stream and balances
the class size before sending it for learning. Imbal-OL does not
require prior knowledge about the incoming stream and its data



distribution. The Imbal-OL design highlight is its practicality
as its implementation spans only a few lines in C++ code,
enabling its deployment on billions of tiny devices in IoT.
When practicing on device OL using Imbal-OL as a plugin, it
aims to not impair the service life of devices by draining their
battery nor causing memory SRAM overflows.

II. IMBAL-OL DESIGN

This section presents Imbal-OL design to enable practicing
OL by using real-world data streams in IoT.

A. Design Setup

In OL, a lengthy data stream is fed to the on-device learning
algorithm. This stream can be modeled as a sequence of
distinct tasks, with each task containing data representing a
set of classes. In IoT, these streams contain non-stationary
data distribution among classes for each task - one of the
bottlenecks during learning. Here, in a time step t, each data
sample is represented by input xt with its label yt. Typically,
in such a learning setup, to ease the learning process, task
identifiers are considered to redirect data to the correct task
both during learning and prediction. But in our setting, to
improve generalization for a range of streams while having
only a minimal prerequisite: we do not use boundaries or
task identifiers to hint after learning a task; do not attempt to
gather prior knowledge (length, no of tasks, class composition,
etc.) of the stream to learn from; the incoming data cannot be
revisited in future time steps.

B. Imbal-OL Core Technique

The Imbal-OL core technique is the primary contribution
of this work. Imbal-OL understands the supplied IoT stream
and decides which data samples need to be used for learning.
Imbal-OL stores an iid data sample from each class to maintain
balance among the samples constituting the various classes.
Thus Imbal-OL preserves the distribution of each class, par-
allelly altering the distribution of the IoT stream to mitigate
class imbalances. The device used for learning with m as its
memory size is considered full when data from the stream
fills the memory unit. In IoT streams, it is common for a
particular class to be the largest by containing the majority of
data samples, making the size of other classes look inferior.
Also, there can exist two or more classes to be the largest when
they roughly contain the same amount of samples. Imbal-OL
sets a class to be full if it is the largest in the current or
previous time step, and the full status is retained also in the
future time steps. Imbal-OL restricts the growth of such full
classes as it increases the imbalance.

Algorithm 1 presents the pseudocode of Imbal-OL. Imbal-
OL operates in two steps. In the first step (Lines 9 to 10), till
the memory gets filled, data from the stream keeps accumulat-
ing in the device memory without any sampling. After filling
the memory, step two (Lines 12 to 24) starts where Imbal-
OL starts checking the labels yi to find if the data belongs
to the largest classes. If so, the data gets discarded. Else it
is stored in the non-largest class to which it belongs. Fig. 1

Algorithm 1 Generalized OL design flow with Imbal-OL as
a plugin to handle imbalanced data streams in IoT.

1: input:
2: f ▷ model or algorithm of choice
3: s, ns ▷ batch size, steps per batch
4: {xi, yi}ni=1 ▷ data stream in real-world IoT
5: ℓ(predictions, true labels) ▷ loss function of choice
6: output: updated model as a result of on-device OL using

Imbal-OL processed data stream
7: Imbal-OL plugin ▷ process stream to make it OL ready
8: for i = 1 to n do ▷ n is stream length
9: if device memory not filled then

10: store xi with yi ▷ store data samples, labels
11: else
12: if c ≡ yi is not a fully filled class then
13: find all data samples of largest classes
14: randomly select data samples from them
15: overwrite selected data sample with xi, yi
16: else
17: mc ← data samples count of class c ≡ yi
18: nclass ← count of class c ≡ yi seen thus far
19: sample u ∼ Uniform (0, 1)
20: if u ≤ mc/nclass then
21: random pick data sample of class c ≡ yi
22: replace it with xi, yi
23: else
24: drop xi, yi ▷ data not used for OL
25: end if
26: end if
27: end if
28: end for
29: online machine learning ▷ OL after balancing classes
30: Xa, ya ← receive balanced batch of size s
31: α← 1/nclass

32: for ns steps do
33: ŷa = f (Xa) ▷ predict outputs
34: L1 = ℓ (ŷa, ya) ▷ compute stream loss
35: Xb, yb ← sampled batch of size s from memory
36: ŷb = f (Xb) ▷ predict outputs
37: L2 = ℓ (ŷb, yb) ▷ compute replay loss
38: L = α× L1 + (1− α)× L2 ▷ compute joint loss
39: update f according to L
40: end for

illustrates the Imbal-OL concept. As shown on the left side of
the figure, the supplied stream can have high imbalances in the
size of its classes. When Imbal-OL is used as an OL plugin,
without getting influenced by the stream distribution, it stores
all data samples of the two smallest classes (deer, bird) and
balances the data representing other larger classes (bike, truck,
dog, boat). The Imbal-OL processed stream that is OL ready
is shown on the right side of the same figure. When such a
balanced subset of the IoT stream is used, the on-device OL
algorithm will consider that data from all shown classes to be
equally difficult, making it equally important to learn.



C. Imbal-OL for Action

This subsection presents a generalized OL design flow with
Imbal-OL - sketched in the same Algorithm 1 in Lines 29
to 40. This process aims to apply to a range of IoT streams,
TinyML algorithms, pre-trained models, and loss functions.
To enable adapting to non-stationary streams while parallelly
preventing catastrophic forgetting, the on-device model up-
dates are guided using a two-element loss. The first-element
L1 is calculated concerning a data batch Xa with labels ya of
size s from Imbal-OL processed stream in the current time-
step. Then the second-element L2 is calculated concerning
Xb with labels yb with same size s. The loss functions
employed here compute the cross-entropy between the on-
device model predictions and true labels from the stream -
users can explore using other types of loss functions. The final
loss is the convex combination of L1 and L2 and given as:
L = α × L1 + (1 − α) × L2. Here, the relative importance
between loss elements L1 and L2 is controlled by α ∈ [0, 1].
Also, α can maintain the balance between quickly learning
from the IoT stream and preserving the learned knowledge.

Prevailing schemes treat loss elements as equally important
or decrease α with the completed tasks count - can lead to
performance drops. In the Imbal-OL design setting, the task
boundaries are not considered (see Subsection II-A). So, to
manage without task information, we set α = 1/nclass, where
nclass is the classes counted in the IoT stream the device
has seen so far. IoT devices have limited storage, so the
batches in previous learning rounds cannot be revisited as they
won’t be stored. But using the currently stored batch from the
stream, the model can be updated multiple times. When the
OL method performs one update per time step, this results
in underfitting. On the far side, when performing ns multiple
updates, the on-device model can adapt or learn faster from
the non-stationary IoT stream, but at the cost of extra strain
on the hardware.

D. Imbal-OL Characteristics

Imbal-OL is designed to show the following characteristics:

Underrepresented Classes. In the input stream containing
nclass classes, if there exists a class containing less than
m/nclass data samples, then Imbal-OL stores all data rep-
resenting this class for learning. This remarkable character
of Imbal-OL guarantees the inclusion of all data samples
from severely underrepresented classes. This character can be
observed in Fig. 1 with the input stream of nclass = 6 and
m = 2100. Here, the classes deer and bird contain samples less
than m/nclass, so Imbal-OL stores the entire data representing
those classes.

Sampling. A subset of data samples from each class stored
in device memory for learning is iid concerning the data
samples from the stream. As it cannot be assumed that the
data samples in each class are presented in an iid fashion in
future time steps, this characteristic of Imbal-OL captures a
representative sample for each class data temporarily stored in
device memory for learning.

Fig. 2. Memory unit size vs accuracy of schemes over CIFAR-10.

Memory Utilization. There can exist cases where the available
device storage cannot get fully used while simultaneously
maintaining the balance among classes - this can be exem-
plified using Fig. 1. For m = 2100, and the smallest class
in the stream contains only 80 data samples, balance can be
achieved by keeping roughly 80 samples in each class. In this
approach, only less than a quarter of the memory will get filled.
To avoid such inefficient utilization of resources, Imbal-OL
fills the entire memory, then balances the classes.

Weighted Replay. The most popular approach to mitigate the
impact due to imbalance is to identify the minority classes over
which oversampling is performed. Imbal-OL replays a data
sample (shown again during learning) based on probability,
which is inversely proportional to the size of classes from the
stream. Thus, Imbal-OL makes data samples from minority
classes have a higher probability for replay than the samples
from larger classes. This is the weighted replay characteristic
of Imbal-OL as it replays samples considering where they
belong to rather than uniform replay where data samples from
all classes have a similar probability for replay.

III. IMBAL-OL EVALUATION

This section evaluates ImbalOL. Initially, the evaluation
setup is explained, followed by experiments and results.

A. Setup

Datasets and IoT Boards. The standard CIFAR-10 and
CIFAR-100 datasets are selected for experiments using Imbal-
OL. Each learning task is assigned with classes from the
dataset in an incremental fashion. i.e., the first task is assigned
with one class and subsequent tasks with more classes. This in-
cremental approach creates distinct talks, inducing complexity
during OL from the stream. Devices in IoT are heterogeneous,
consisting of mid to high-end hardware specifications [7]. To
replicate this scenario, the following IoT development boards
are chosen: Google Coral Dev board, Intel Movidius NCS
accelerated Raspberry Pi 4, and NVIDIA Jetson Nano. The
results reported in this paper are the average values obtained
when running experiments on these 3 boards.

Models. ResNet18 pre-trained on ImageNet is the network
chosen to evaluate Imbal-OL using CIFAR datasets. Following
are the hyperparameters: a learning rate of 0.02 is set as a
result of grid search; the batch size s is set as 8 to reduce



TABLE I
ACCURACY (%) COMPARISON OF MODELS AFTER OL USING CIFAR-10.

Scheme m = 100 m = 500
Uniform Weighted Uniform Weighted

GSS-greedy 63.6 65.2 62.2 66.8
Imbal-OL 69.4 70.7 70.2 72.6

strain and not memory overload the devices; steps per batch
ns is set as 2 as this can let the devices learn faster. The
setup is implemented in TensorFLow since the TFLite version
is well suited for edge GPUs and supports the used hardware
accelerators.

Imbalances Simulation. For each class in the selected
datasets, the retention factor is defined as the percentage of
its data samples from the dataset that will be injected into the
data stream for learning. A vector r is defined, that contains
k retention factors r = (r1, r2, · · · , rk). The retention factors
are distributed to each class randomly, without repeating. r is
started over for classes count larger than k - this is uncommon
as IoT devices are not capable of large class counts. During
evaluation, r is set as (0.01, 0.03, 0.1, 0.3, 1). In this setup, the
imbalance ratio between classes in the stream can range from
1:3 to 1:60. The selection of r decides the level of imbalances.

B. Experiments and Results

Learning on IoT boards is performed using Imbal-OL
processed streams. For performance comparison, in this same
setup, OL is performed also using two following schemes: No-
replay - learning is performed by directly feeding the stream
without any replay; Random-replace - samples data from the
stream with a probability and stores it by randomly replacing
data in the memory. The recent scheme named GSS-greedy
[8] is included for comparison with Imbal-OL. The remainder
of this subsection presents experiments and results in phases:

Memory Unit Size vs Performance. The initial phase of
experiments aims to analyze the impact of memory unit size
m on the performance of models learned on IoT boards using
the CIFAR 10 dataset. m is varied from 50 to 500, and the
results are given in Fig. 2. It can be observed that the models
produced by training using Imbal-OL processed streams have:
higher performance than the baselines; consistent performance
across different m values; higher improvements for smaller
m, making even devices with low memory to produce better
quality models. Across all selected schemes including Imbal-
OL, model accuracy increases with m. So, higher values of m
can be explored when practicing OL on better resource IoT
boards that fall under the edge GPU category.

Uniform vs Weighted Replay. This experimental phase
aims to investigate the benefits of weighted-replay Imbal-
OL characteristic (see subsection II-D). CIFAR-10 is used
for learning, the accuracy metric for evaluation, and m is
considered as 100 and 500. Results are given in Table I,
from which observations can be made. The performance gap
between Imbal-OL and GSS-greedy is higher under uniform
replay. This is because, for GSS-greedy, the on-device learned
model is highly influenced by the imbalances in the stream,

TABLE II
TIME, MEMORY CONSUMED BY SCHEMES TO MAKE STREAMS OL READY.

Scheme Time (sec) Memory (%)
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Random-replace 4.17 4.9 3.7 3.4
GSS-greedy 24.3 23.6 31.8 32.6
Imbal-OL 8.18 9.06 4.6 5.1

causing the model to show top classification performance
only for a few classes. So, it resulted in reduced accuracy
when evaluating the learned model using the balanced test set.
Using weighted replay has higher benefits than uniform replay
because it partially masks the effect of imbalanced streams
by oversampling the minority classes. Results for No-replay
and Random-replace schemes are not presented due to their
inferior performance (see Fig. 2) in comparison with GSS-
greedy and Imbal-OL.
Time and Memory Consumption. Top hardware specifica-
tions cannot be expected from IoT devices. So, this experi-
mental phase aims to investigate the computation efficiency
of Imbal-OL using results given in Table II. Here the time
consumption represents the elapsed time to process the stream
for making it OL ready. Random-replace and Imbal-OL con-
sume roughly the same time. But GSS-greedy consumes a
considerably higher amount as it performs additional computa-
tion to calculate a similarity score for incoming data samples,
making GSS-greedy non-suitable for processing streams on
small CPUs and AIoT boards in IoT. The reported memory
consumption is the space used by the employed processing
scheme, subtracted by space occupied by the data samples
stored in the memory unit m. The memory consumption
of schemes was tracked till task completion, then averaged.
Random-replace requires the least space, and GSS-greedy
consumes the highest as it uses memory to store gradient
vectors in 32-bit floating-point numbers. To speed up the
storage process after sampling data from the stream, Imbal-OL
consumes space to store the memory address of the classes -
this results in using more memory than Random-replace.

C. Results Analysis

As presented above, Imbal-OL produces better accuracy
models because of two reasons. First, the Imbal-OL processed
stream is balanced, so all classes will get replayed roughly
with the same frequency, thus reducing forgetting. When
storing an un-processed stream, underrepresented classes will
exist, which will not be replayed often during learning, leading
to forgetting. This can be indirectly noticed in Table I -
accuracy increases only slightly for Imbal-OL when switched
from uniform to weighted replay because, Imbal-OL processes
the stream, making classes balanced before temporarily storing
till learning. Second, GSS-greedy and other schemes are
biased by the imbalances, and it does not store an adequate
number of data samples from minority classes. So, the model
forgets such classes during evaluation. Since Imbal-OL stores
all data samples from minority classes, forgetting is vastly
reduced - observed in Table I, as models produced by training
using Imbal-OL processed streams show higher accuracy.



IV. RELATED WORK

The relevant research can be categorized into five groups as
presented in this section. The first group covers Regularization
based Approaches where one or more additional loss terms
is applied during learning to remember previously gathered
knowledge. Popular studies that follow this approach are learn-
ing without forgetting [5], synaptic intelligence [9], and elastic
weight consolidation [10]. The second group is Parameter
Isolation based Approaches where forgetting is reduced by
allocating non-overlapping sets of model parameters for each
learning task [11, 12]. Such methods require task identifiers
during training and prediction time, increasing computational
strain and overheads. Replay based Approaches form the third
group. Here, to mitigate catastrophic forgetting, the previously
observed instances from the data stream are replayed during
future learning. This replay can be performed directly by stor-
ing a small subset of data from the stream [13], or indirectly
using generative models [14]. Incremental Approaches forms
the fourth group where the majority of work pertinent to OL
proposes to use task-incremental settings to achieve higher
inference performance while minimizing forgetting [15].

Other OL studies existing in IoT such as Train++ [4],
TinyOL [3], TinyTL [6], Edge2Train [16], ML-MCU [2], have
not explored learning using the challenging imbalanced sensor
data streams. The final Reservoir Sampling group extracts
an iid subset of data received from the stream and selects
which data samples need to be locally stored for learning
[17]. Approaches GSS-IQP and GSSGreedy [8] maximize
the variance of the stored memories concerning the gradient
direction of the generated model updates. Both approaches
achieve higher accuracy than the classic reservoir sampling
[18] when learning moderately imbalanced streams of the
MNIST Digits dataset. The closely related studies [8, 18, 19]
evaluate their schemes on high-performance standard GPU-
based setup (e.g. on NVIDIA TITAN Xp). Orthogonal to such
works, Imbal-OL is designed to be a resource-friendly scheme
to boost the quality of model updates when practicing online
machine learning on tiny ubiquitous devices in IoT.

V. CONCLUSION

This work investigated the catastrophic forgetting issue
when practicing online machine learning on tiny devices using
severely imbalanced data streams. Imbal-OL was proposed as
an OL plugin to process real-world IoT streams before feeding
it to the learner that updates the local on-device model. Also, a
generalized design flow with two-element loss was presented
to show the developers how Imbal-OL can be used in action
during OL. Imbal-OL produced better quality models than the
state-of-the-art as it shows unique characteristics when dealing
with underrepresented classes, performing sampling, utilizing
memory, and replaying data samples when learning.

Future work plans to extend Imbal-OL to be applicable in
federated learning settings where OL needs to be performed
using imbalanced and also incomplete data streams. Also,
similar to the TinyML benchmark [20], we plan to use sophis-

ticated datasets and conduct extensive Imbal-OL evaluation on
the latest pocket-friendly FPGAs, SoCs and AIOT boards.
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