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1 Abstract 

 

Cancer cells arise by acquiring genetic and epigenetic alterations. The transformation of healthy cells 

towards a cancerous state is a multi-step process in which several driver mutations that increase cellular 

fitness are selected for over time. Due to this evolutionary process cancer cells are genomically and 

phenotypically heterogeneous. This clonal evolution and the resulting intratumoral heterogeneity (ITH) 

have been recognized as major contributors to the stagnating success in the “war” against cancer. In 

order to better explore clonal evolution and ITH, two complementary approaches were established that 

allow to track and quantify the subclonal composition within hematopoietic neoplasms. 

Establishment of an optimized, highly sensitive and cost-efficient single-molecule Molecular Inversion 

Probes (smMIPs) panel allowed targeted sequencing of hundreds of human gDNA samples within a first 

cohort study. This panel allows to detect residual leukemic cells as well as expanded hematopoietic 

clones. The latter are indicative of clonal hematopoiesis which represents the onset of clonal evolution 

and often precedes the acquisition of hematopoietic neoplasms such as Acute Myeloid Leukemia 

(AML). The established assay showed robust performance and high concordance in comparison to a 

commercial targeted sequencing panel, while drastically reducing the costs for library preparations and 

represents a useful tool for future studies of clonal evolution in the context of clonal hematopoiesis and 

AML.  

As a second approach, cellular barcoding assays were established to enable direct investigation of ITH 

within a mouse model for AML patient-derived xenografts (Pdx). Advanced cloning strategies enabled 

the construction of millions of different barcodes that are used to uniquely tag leukemic cells by 

lentiviral transduction, allowing to directly identify changes in cell compositions of leukemic 

populations. Within the first experimental setups the established barcoding constructs allowed to 

quantify the bottleneck upon engraftment of cells within the mouse model, to determine the frequency 

of Leukemia Initiating Cells (LICs) with fewer mice than traditional limiting-dilution transplantation 

assays (LDTAs) and provided direct prove for the presence of subclones with increased resistance 

towards in vivo chemotherapeutic treatment. Additionally, cellular barcodes enabled identification of 

isolates derived from single-cells, thereby allowing to isolate and further characterize genetically and 

phenotypically distinct subclones from Pdx samples of a single AML patient. 

Both established assays demonstrated their usefulness within first pilot experiments and represent 

powerful tools to further study clonal evolution and heterogeneity associated with AML. 
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2 Introduction 

 

2.1 Cancer – An evolutionary disease of the genome 

 

Cancer is one of the major causes for premature death with about 19 million new cases and almost 10 

million caused deaths in 2020 [1]. Although more than 270 types of cancer can be distinguished based 

on the affected tissues and other characteristics [2], its general emergence can be simplified to 

acquisition of genomic mutations, which ultimately result in cells with limitless potential to replicate. 

Additionally, among other general features, cancers are able to evade cell death and responses of the 

immune system and to invade tissues leading to impairment of normal tissue functions [3, 4]. Somatic 

driver mutations that confer these phenotypes are randomly gained throughout cell divisions in parallel 

to neutral passenger mutations that do not cause any advantage for the cell [5]. 

The development of cancer can therefore be seen as an evolutionary process in which those randomly 

acquired somatic mutations which increase the cellular fitness relative to competing cells are selected 

for [6, 7]. Upon gain of a first driver mutation, different fractions of the transformed tumor population 

may acquire additional functionally advantageous mutations, leading to the presence of subclones which 

may differ genotypically as well as phenotypically among each other (Figure 1). Therefore acquired 

driver mutations not only differ between patients, but often also among different subclones within a 

single cancer, which is known as Intratumoral Heterogeneity (ITH) [8-11].  

 

Figure 1: Concept of cancer evolution. Random mutations are acquired over time. Occurrence of a first driver mutation 
transforms the healthy clonal lineage into a tumor ancestor cell. More driver mutations may be acquired over time in fractions 
of the cancerous cells, leading to emergence of different subclonal lineages with different genotypic and phenotypic properties. 
Modified from Lin et al.[12] (CC BY 4.0)  
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ITH represents a major issue for the successful treatment of cancer as previously established subclonal 

lineages resistant to chemotherapy may be selected for by standard therapies, in turn leading to a relapse 

consisting of therapy resistant cells after seemingly successful initial treatment [13-15]. 

Therefore, investigating the emergence and characterization of adverse subclones within cancerous 

populations has become an important part in order to elucidate more details about cancer evolution and 

to further improve existing therapeutic approaches as well as to develop new ones [15]. 

 

2.2 Clonal hematopoiesis – a “not-yet-disease” state preceding AML 

 

The progression from a normal, healthy cell towards a cancerous state usually happens gradually by 

acquisition of multiple mutations that progressively disequilibrate the normal cellular state. In the case 

of blood cancers hematopoietic stem or progenitor cells may first acquire somatic mutations that only 

confer a slight proliferative advantage over the rest of the cell population. Subsequently the fraction of 

blood cells derived from the mutated stem cell slowly expands over time making its acquired mutations 

detectable via sequencing of gDNA derived from peripheral blood [16, 17]. This condition was termed 

clonal hematopoiesis, derived from the observed clonally expanded hematopoietic lineage.  

Clonal hematopoiesis itself does not represent a disease, but  has been shown to be associated with a 

tenfold increase in the risk of developing blood cancer [18] as well as a two to four times increased risk 

for atherosclerotic cardiovascular diseases [19]. Due to these associated risks without the imperative 

advancement to diseased states, the presence of mutations associated with hematological neoplasia at a 

variant allele frequency of at least 2% in absence of any evidence of a hematological neoplasm has been 

termed Clonal Hematopoiesis of Indeterminate Potential (CHIP) [20]. 
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Figure 2: Clonal hematopoiesis as a precursor of hematopoietic neoplasms such as Acute Myeloid Leukemia (AML). 
Acquisition of a somatic mutation that confers slight proliferative advantage within a hematopoietic stem cell (HSC) leads to 
a clonal expansion of cells derived from this HSC – known as clonal hematopoiesis. Acquisition of further driver mutations 
can subsequently cause development of hematopoietic neoplasms such as Acute Myeloid Leukemia (AML). In many cases of 
AML clonal hematopoiesis precedes the actual disease and can therefore be seen as the start of the clonal evolution ultimately 
leading to leukemia. 

 

While many individuals with detectable CH do not progress to further disease patterns it has been shown 

that leukemic mutations can precede the onset of acute myeloid leukemia (AML) years before diagnosis 

(Figure 2). Additionally over 80% of mutations detected in CHIP are related to leukemia- and 

lymphoma-associated genes [21]. Hence, these expanded HSCs can eventually gain further driver 

mutations that may ultimately lead to development of AML or other hematopoietic disorders, such as 

myelodysplastic syndrome [22-24]. Clonal hematopoiesis can consequently be seen as part of the clonal 

evolution within the hematopoietic system that precedes the initial diagnosis of AML. Therefore tools 

are necessary to enable investigation of these early stage processes before manifestation and diagnosis 

of AML in order to fully characterize clonal evolution from healthy towards leukemic cells. 

 

2.3 Acute myeloid leukemia (AML) as framework to study intratumoral heterogeneity 

and clonal evolution 

 

Acute myeloid leukemia (AML) is a subtype of hematopoietic cancers and represents the most common 

acute leukemia in adults. Over 20,000 new cases of AML are estimated within the USA for 2021 [25] 

with a median age of 68 years at diagnosis [26]. 
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AML specifically affects the myeloid cell lineages within the hematopoietic system. Acquired mutations 

in either hematopoietic stem cells (HSCs) or myeloid progenitor cells result in the inability to further 

differentiate into functional cell types (Figure 3). Ultimately, the accumulation of immature myeloid 

blasts within the bone marrow leads to leukocytosis and bone marrow failure as well as anemia, 

thrombocytopenia and leukocytosis due to the decrease in matured functional cells like erythrocytes and 

thrombocytes [27].  

 

Figure 3: Basic hierarchy of hematopoietic cell types. Hematopoietic cells can differentiate into lymphoid or myeloid stem / 
progenitor cells, which furhter differentiate into functional cell subtypes within their lineage. In case of myeloid leukemias, 
acquired mutations lead to an  inability to further differentiate within the myeloid stem cell compartment, resulting in 
accumulation of immature myeloid blasts and a decrease in terminally differentiated functional myeloid cells. 

 

Although the median number of detected driver mutations within clinically reported AML cases is only 

at 4 with a maximum of ten driver mutations [28] about half of all AML cases show intratumoral 

heterogeneity, i.e. the presence of different leukemic subclones. These subclones have been shown to 

not only differ genetically but also phenotypically and functionally, e.g. in their differentiation potential 

[29]. As some of subclones, like those carrying an internal tandem duplication in the FLT3 tyrosine 

kinase (FLT3-ITD), are associated with adverse outcome [30, 31], targeted therapies have been 

developed to directly target these adverse subclones [32] in addition to the standard chemotherapy that 

usually involves treatment using Cytarabine (Ara-C). Despite increased efforts to enhance AML 

therapies only one third of patients will survive five or more years after diagnosis due to relapses after 

initial treatment [33]. Therefore further research is needed to deepen the understanding of clonal 

evolution leading to AML in order to exploit more possibilities for its treatment and prevention. 
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2.4 Tracking of clonal evolution within patient samples by targeted re-genotyping of 

driver mutations 

 

Identification of subclones within cancer samples is mostly based on the detection of genetic alterations 

that are present at different frequencies within the sample. Detected somatic mutations can subsequently 

be used to distinguish between different subclones. Many studies investigating subclonal architectures 

rely on whole exome sequencing (WES) or whole genome sequencing (WGS) to maximize the number 

of variants that can be used to distinguish subclones from one another [34-36]. Besides the associated 

high sequencing costs, these approaches are limited in their sensitivity and therefore often 

complemented by additional targeted deep-sequencing to reliably detect low frequency variants [37-40]. 

Combining a priori knowledge about known driver genes allows to restrict the sequencing to recurrently 

mutated genes, thereby decreasing associated sequencing costs and enabling higher coverage of disease-

specific genomic variants known to functionally influence the cells’ properties [41]. 

For the purpose of investigating the clonal evolution already before diagnosis of AML, a cost-efficient 

and sensitive method for targeted sequencing of human gDNA samples will be established. This method 

should allow the cost-efficient detection of variants down to low variant allele frequencies of 1-2% 

within recurrently mutated CHIP and AML driver genes to enable sequencing of larger cohorts, thereby 

allowing further insights into ITH and clonal evolution before and after diagnosis of AML. 

 

2.4.1 Error-corrected sequencing enables reliable detection of subclonal, low-frequency genetic 

variants 

 

Variants at low variant allele frequencies need to be reliably detected in order to identify minor 

subclones within cancer samples. However due to the reported typical error rate of around 1% [42] 

precise detection of variants below or close to 1% allele frequency remains challenging even at very 

high sequencing depths. 

In the past years, several methods have been developed to increase the precision of next generation 

sequencing [43-46]. Nearly all of these approaches share the same basic idea of molecularly tagging 

target molecules. These molecular tags, usually called Unique Molecular Identifiers (UMIs) consist of 

random nucleotide sequences that are attached to the library fragments before amplification. Afterwards, 

the library fragments are amplified by PCR and sequenced. Hence all library fragments derived from 

the same original molecule, e.g. genomic DNA fragment, will carry the same UMI. Likewise, those 
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fragments derived from different template molecules will also differ in their UMI sequence. Upon 

analysis, the UMIs allow to determine which sequencing reads were derived from which initial template 

molecule. Consequently, this approach allows to remove any frequency biases introduced by PCR 

amplification of the sequencing library.  

 

Figure 4: Utilization of Unique Molecular Identifiers (UMIs) can significantly decrease the number of false-positive variant 
calls in sequencing data. Library fragments derived from the same template molecule are tagged with the same UMI sequence 
(depicted in cyan and blue). During PCR amplification and sequencing stochastic errors can give rise to different variants 
present within the sequencing reads that cannot be distinguished from real variants (depicted in red). By generation of a 
consensus sequence per UMI, stochastic errors introduced by technical noise can be efficiently eliminated, thereby increasing 
precision of variant calling especially at low variant allele frequencies. 

 

Additionally, when sequenced deep enough, every UMI will be sequenced with multiple sequencing 

reads enabling additional error-correction. The reads obtained per UMI can be subsequently used to 

assemble a UMI-consensus read (Figure 4) for example using a ‘majority vote’ method. If variants are 

only present in one or few reads carrying the same UMI, they are likely derived from technical artefacts 

such as PCR errors and will not be included in the consensus sequence. Only variants observed within 

the majority of sequencing reads belonging to the respective UMI will be kept. Hence, precision of 

sequencing is significantly increased resulting in approximately 20-fold lower error rates [46]. 

 

2.4.2 Target enrichment strategies for targeted sequencing 

 

As high sequencing depth is necessary to robustly detect low frequency variants, a strategy for target 

enrichment is needed in order to reduce the sequencing to the target areas of interest. Here, two general 

approaches can be distinguished. 

The first approach is direct PCR amplification of the genomic regions of interest. PCR reactions 

generally allow for highly specific amplification of genomic target areas, but is limited in terms of 
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multiplexing primers targeting different loci. Due to interactions between primer pairs off-target 

amplification as well as increased formation of primer-dimers often reduce the overall efficiency in 

multiplex PCRs [47], thereby limiting the number of loci that can be efficiently targeted within one 

reaction. As sequencing length is restricted to about 300 nucleotides on most Illumina sequencers [48], 

amplicons need to be small in order to be completely sequence. Consequently, multiple PCR reactions 

would be necessary in order to efficiently larger sets of genomic loci. This, in turn, increases the amount 

of template gDNA needed as well as costs for setting up the enzymatic reactions. Although modified 

approaches that allow to amplify hundreds of amplicons at once are commercially available, they are 

not easily customizable and require specialized equipment and primer libraries [49].  

The second basic approach is enrichment of target fragments by hybridization-capture reactions. Here, 

most commonly, the gDNA is physically or enzymatically fragmented. The resulting DNA fragments 

are subsequently hybridized to oligonucleotide probes complementary to the genomic regions of 

interest. As the probes are biotinylated they can be used for affinity purification of hybridized DNA 

fragments using Streptavidin beads. The retained fragments are subsequently enriched for the genomic 

regions of interest. Although enrichment is less strong compared to targeted PCRs, the size of genomic 

regions that can be targeted within one reaction is usually not a limiting factor [50, 51]. 

For the planned targeted sequencing approach an intermediate size for target regions of several kilobases 

will be necessary in order to sequence the most important, highly recurrent known driver genes involved 

in clonal hematopoiesis as well as AML. Additionally, a strong target enrichment is desirable in order 

to maximize cost-efficiency for sequencing.  

 

2.4.3 Single molecule Molecular Inversion Probes provide a highly sensitive and flexible 

approach for targeted re-genotyping 

 

An attractive method for targeted re-genotyping that combines the advantages of both general 

enrichment strategies described above are Molecular Inversion Probes (MIPs). Molecular Inversion 

Probes are similar to Padlock Probes that were already described about 30 years ago [52] and were 

further refined to make use of massively parallel sequencing technologies as well as UMIs for enhanced 

precision in genotyping, since called single-molecule Molecular Inversion Probes (smMIPs) [53].  

The principle of smMIPs represents a mixture of hybridization and PCR approaches for target 

enrichment. Molecular Inversion Probes are phosphorylated DNA oligonucleotides with a length of 

about 80 nucleotides. The ends of the probes are used to hybridize the probe to the target region of the 
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template DNA, hence called hybridization arms, and are connected via a backbone sequence that is 

constant for all probes (Figure 5). After successful hybridization, a polymerase can fill the gap between 

the hybridization sites by extending the double-stranded hybridization site of the extension-arm, thereby 

copying the sequence from the DNA template. A ligase subsequently joins the ends of the gap-fill 

sequence and the phosphorylated ligation-arm to produce a circularized DNA fragment. Afterwards, 

exonucleases are used to digest the linear gDNA template as well as probes that were not hybridized 

and circularized. Due to the absence of complex template DNA the remaining circular probes can be 

utilized within a highly specific PCR. Here, primers which introduce Illumina sequencing adapters 

anneal within the constant probe-backbone sequence in order to create the final sequencing library. 

 

Figure 5: Overview over smMIP (single-molecule Molecular Inversion Probes) reactions. 1) Target-specific hybridization 
arms (blue), which are connected by constant backbone sequence (black), of the phosphorylated oligonucleotide-probe anneal 
to the complementary target region on the denatured template DNA. For error-correction the probes carry UMI sequences 
(red). 2) A polymerase is used to copy the sequence in the gap between the hybridization arms from the template DNA. 3) A 
thermostable Ligase circularizes the probe, including the captured sequence, by ligation. 4) Exonucleases are used to digest 
any remaining linear DNA, i.e. probes without successful target-capture and template DNA. 4) PCR amplification of probes 
carrying the captured target sequences using Illumina adapter primers creates the final amplicon sequencing library. 

 

The smMIP hybridization arms have similar function as primers in targeted PCRs. However, in contrast 

to PCR both arms anneal to the same DNA strand, thereby enabling strand-specific targeting of DNA 

loci. Additionally, the hybridization arms are connected via the probe-backbone which decreases the 

likelihood of off-target hybridizations, as both annealing sequences need to be in close proximity within 

the target DNA. Previous studies have shown multiplexing of thousands of probes within one smMIP 

capture reaction, enabling highly flexible target sizes up to whole exomes [54-56].  
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Furthermore, published cost calculations demonstrate the high cost-efficiency of the approach, resulting 

in total costs for library preparation and sequencing below 15 USD [57]. Moreover, hybridization, gap-

fill reaction, circularization of probes and digestion of linear DNA can be carried out in a single reaction, 

which minimizes hands-on times for library preparation and thus facilitates processing of up to tens of 

thousands of samples for large cohort studies [55, 58, 59].  

Therefore single-molecule Molecular Inversion Probes represent an optimal approach for highly 

sensitive and cost-efficient high-throughput targeted re-genotyping. smMIPs will consequently be used 

to establish a new assay allowing the detection of low-frequency variants associated with clonal 

hematopoiesis and AML for further investigation of clonal evolution. 

 

2.5 A mouse model system allows for genetic-engineering of patient-derived xenograft 

samples 

 

Although analyses of subclonal compositions within patient samples can provide deeper insights into 

clonal evolution further experiments to phenotypically characterize subclones, e.g. their response 

towards newly developed drugs, are difficult to perform due to ethical restrictions. Several AML cell 

lines exist that enable in vitro experiments and allow for further characterization of the disease [60, 61]. 

However, many cancer cell lines fail to reflect the genomic and phenotypic heterogeneity observed 

within patients, as some subclones may be eradicated due to failure to survive within the artificial  cell 

culture system whereas others may adapt to the altered environment, e.g. by changes in their gene 

expressions [62]. Although the use of patient-derived cells allows to closer recapitulate the situation 

within patients, most cells are hardly proliferating in in vitro cultures and can be cultured only for limited 

time [63]. Mouse models have proven to be valuable tool in order to allow for cultivation of patient-

derived cancer cells while avoiding irreversible phenotypic changes and a loss of heterogeneity [64, 65]. 

Specifically, the use of NSG (NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ) mice allowed to establish a mouse 

model system for patient-derived AML cells at the Helmholtz Zentrum München [66].  
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Figure 6: Mouse model for the generation of AML Pdx lines. Using the established model system leukemic cells from AML 
patients can be transplanted into immunodeficient mice. After initial expansion, the leukemic cells are lentivirally transduced 
to integrate marker genes which enable cell enrichment by FACS or MACS as well as in vivo bioluminescence measurements 

to non-invasively determine the leukemic burden within mice. The resulting transgenic patient-derived xenograft AML cells (t-
PDX AML cells) preserve heterogeneity observed within the patient sample while allowing for efficient cultivation and further 
in vivo characterization. 

 

After injection of leukemic cells into the blood-stream of these immunocompromised mice, the cells can 

home within the bone marrow, which provides a more natural environment and enables the cells to 

proliferate. After expansion of cells, the leukemic population can be re-isolated from bone marrow of 

the animal and subsequent cell sorting based on human cell surface markers (Figure 6). The isolated 

leukemic cells can be genetically engineered by lentiviral transduction, e.g. enabling expression of 

fluorescent proteins or additional surface markers. After an additional in vivo expansion, the transgenic 

patient derived xenograft (t-PDX) AML cells can be easily re-isolated by FACS or MACS enrichment 

and used for further experiments. Additionally, transgenic expression of luciferase within AML Pdx 

cells allows to determine the leukemic burden within experimental mice via in vivo bioluminescence 

imaging. Bleeding the mice in order to determine the fraction of human leukemic cells within peripheral 

blood can consequently be avoided. 

This mouse model system enables long-term cultivation of patient-derived AML samples, which closely 

resemble the original disease within patients by retaining their subclonal heterogeneity [66]. Moreover, 

the possibility to genetically engineer Pdx samples via lentiviral transductions enables a multitude of 

experimental approaches to investigate the intratumoral heterogeneity which is usually lost when 

utilizing in vitro cultivations.  

In order to expand the mouse model’s ability to analyze the behavior of different subclones within AML 

Pdx cell populations a suitable method will be established that allows to distinguish between cells and 

enables to detect phenotypic differences among them. 
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2.6 Cellular barcoding as a tool to enable direct tracking of cell populations on a single 

cell level 

 

One key methodology to analyze the composition of heterogeneous cell populations is called ‘cellular 

barcoding’, also known as “genetic barcoding’. The general principle is based on integration of artificial 

genetic markers into the cells’ genomes, which will consequently also be inherited by their offsprings. 

Every cell receives a unique artificial gDNA tag that allows to easily distinguish between cells and their 

descendants within cell populations. Hence, this barcode significantly simplifies differentiation between 

similar cells that otherwise could not be easily distinguished genotypically and phenotypically (Figure 

7). As the cellular barcode is inherited by all offspring cells, barcodes of cells that show increased fitness 

under the given environmental conditions will increase in their relative frequency within the barcoded 

cell population over time. Consequently, cellular barcodes allow for direct identification and observation 

of clonal heterogeneity within cell populations, making it a powerful tool for the study of heterogeneous 

cell populations. 

 

Figure 7: General approach of the cellular barcoding technique. A cell population is labelled with cellular barcodes via 
lentiviral transduction, integrating a unique artificial sequence tag into their genomes. Hence, all cells as well as their offspring 
can be distinguished based on their cellular barcodes. Cells can be exposed to selective pressures, e.g. toxins, to elucidate 

whether cells within the population show differences in cellular fitness. The cellular composition of the population can be 
determined by amplification of barcodes from isolated gDNA via PCR and subsequent sequencing. 

 

The first application of cellular barcoding 30 years ago [67] used a library of 100 different DNA 

fragments to create a retroviral pool used to transduce cerebral cortical progenitor cells within early 

developing rat brains in order to track localization patterns of their progeny neurons. PCR amplification 

of barcodes from genomic DNA (gDNA) and restriction digest of the obtained amplicons was used to 

identify each of the barcodes representing the clonal compositions within different regions of the cortex. 

The observation that some barcodes could be observed in different functional areas of the cerebral cortex 
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demonstrated that specification of cortical areas occurs after neurogenesis without restrictions of cell 

intermixing during embryonic development. 

With the emergence of next generation sequencing, allowing to easily sequence millions of different 

DNA sequences at once the genetic tags used for labelling the cells evolved into shorter barcode-like 

sequences by utilizing degenerate nucleotide positions for oligonucleotide synthesis [68]. Since then, 

cellular barcoding has been successfully used for research in many different contexts, especially for 

investigating differentiation patterns and heterogeneity within hematopoiesis [69, 70] as well as clonal 

dynamics in various cancers [71-74], including leukemias [75-79]. 

To allow direct investigation of intratumoral heterogeneity within Pdx AML samples the cellular 

barcoding technique will be established for use within the mouse model system at the Helmholtz 

Zentrum München.  
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3 Materials and methods 

3.1 Materials  

3.1.1 Enzymes 

 

Table 1: Enzymes used in experimental procedures 

Enzyme Manufacturer Cat.No. 

Actinase E  Sigma-Aldrich P5147-100MG 

Ampligase Biozym 114100 

AvrII New England BioLabs R0174L 

DreamTaq Polymerase Thermo Fisher Scientific EP702 

Exonuclease I New England BioLabs M0293L 

Exonuclease III New England BioLabs M0206L 

Hemo KlenTaq Polymerase New England BioLabs M0332L 

KpnI-HF New England BioLabs R3142L 

NheI-HF New England BioLabs R3131L 

Phusion II HotStart Polymerase Thermo Fisher Scientific F549L 

Q5 Hot Start Polymerase New England BioLabs M0493L 

rSAP New England BioLabs M0371S 

SpeI-HF New England BioLabs R3133L 

T4 DNA Ligase New England BioLabs M0202L 

T4 DNA Ligase New England BioLabs M0202M 

T4 Polynucleotide Kinase New England Biolabs M0201S 

 

3.1.2 Buffers, Chemicals & Media 

Table 2: Buffers and chemicals used in experimental procedures 

Buffer/Reagent Manufacturer Cat.No. 

Ampligase buffer Biozym 115005 

ATP New England Biolabs P0756S 

Buffer EB Qiagen 19086 

CutSmart New England Biolabs B7204S 

dNTPs New England Biolabs N0446S 

DreamTaq Green Buffer Thermo Fisher Scientific B71 

EDTA, 0.5M Sigma-Aldrich E7889-100ML 

GeneRuler 100 bp 
DNA ladder 

Thermo Fisher Scientific SM0242 

GeneRuler 100 bp Plus 
DNA ladder 

Thermo Fisher Scientific SM0322 

Igepal CA630 Sigma-Aldrich I8896-50ML 

NEBuffer 1 New England Biolabs B7001S 

NEBuffer 3.1 New England Biolabs B7003S 

NEBstable/NEB10beta 
Outgrowth Medium 

New England Biolabs B9035S 
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(Table 2 continued) 

Buffer/Reagent Manufacturer Cat.No. 

PEG-8000 Sigma-Aldrich 89510-1KG-F 

Phusion High-Fidelity buffer Thermo Fisher Scientific F518L 

Q5 HotStart buffer New England Biolabs B9027S 

Sera-Mag SpeedBeads Sigma-Aldrich GE65152105050250 

Sodium Azide (NaN3) Sigma-Aldrich S2002-100G 

Sodium Chloride (NaCl), 5M Sigma-Aldrich S5150-1L 

Tris-HCl, pH 8.0, 1M Sigma-Aldrich T2694-100ML 

UltraPure Water Thermo Fisher Scientific 10977035 
 

3.1.3 Commercial Kits 

 

Table 3: Commercial kits utilized within experimental procedures 

Kit Application Manufacturer Cat.No. 

DNeasy Blood& Tissue Kit gDNA extraction Qiagen 69504 

QIAamp DNA Micro Kit gDNA extraction Qiagen 56304 

Quant-iT PicoGreen dsDNA Assay  Quantification of DNA ThermoFisher Scientific P7589 

PureYield Plasmid Midiprep System Isolation of plasmid DNA Promega A2495 
 

3.1.4 Oligonucleotides 

 

Table 4: Sequences of utilized oligonucleotide in 5’-3’ orientations. ‘/Phos-/’ indicates a 5’-phosphorylation of the respective 

oligonucleotides. Illumina adapter primers (‘[*]’) carry different eight nucleotides long index sequences denoted as 
‘XXXXXXXX’. The respective index sequences are listed in Supplemental Tables 2 & 3. Sequences of smMIP oligonucleotide 
probes are listed separately in Supplemental Table 1. 

Name Sequence Manufacturer Purity Usage 

DNABC_NT_screen_fwd AGTGAACGGATCTCGACGGT 
Integrated 

DNA 
Technologies 

Desalted 
Screening plasmid 

for presence of DNA 
barcode insert 

DNABC_NT_screen_rev CCTTCTCTAGGCACCCGTTC 
Integrated 

DNA 
Technologies 

Desalted 
Screening plasmid 

for presence of DNA 
barcode insert 

ExBC_AmpSeq_fwd CTGGTACCTTTAAGACCAATGACT 
Integrated 

DNA 
Technologies 

Desalted 

Screening plasmid 
for presence of 

expressed barcode 
insert 

ExBC_AmpSeq_HP_fwd 

GGACACTCTTTCCCTACACGACGC 
TCTTCCGATCTNNNNNNNNNNNN 
ATGGGAAAGAGTGTCCCTGGTACC 

TTTAAGACCAATGACT 

Sigma Aldrich HPLC 

amplification of 
expressed barcodes 

from plasmid or 
lentiviral inserts 
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(Table 4 continued) 

Name Sequence Manufacturer Purity Usage 

ExBC_AmpSeq_HP_rev 
GTGACTGGAGTTCAGACGTGTGCT 
CTTCCGATCTGCTTAAGCAGTGGG 

TTCCCT 
Sigma Aldrich HPLC 

amplification of 
expressed barcodes 

from plasmid or 
lentiviral inserts 

ExBC_AmpSeq_rev GCTTAAGCAGTGGGTTCCCT 
Integrated 

DNA 
Technologies 

Desalted 

Screening plasmid 
for presence of 

expressed barcode 
insert 

ExprBC_1st 

/Phos-
CTTTAAGACCAATGACTTACAAGG 
CNNNNTTNNNAANNNTTAGCTGT 

AGATG 

Sigma Aldrich HPLC 
1st strand of 

expressed barcode 
insert 

ExprBC_2nd 

/Phos-
CTAGCATCTACAGCTAANNNTTNN 
NAANNNNGCCTTGTAAGTCATTGG 

TCTTAAAGGTAC 

Sigma Aldrich HPLC 
2nd strand of 

expressed barcode 
insert 

HP_N7 adapters 
[*] 

CAAGCAGAAGACGGCATACGAGA 
T[XXXXXXXX]GTGACTGGAGTTCA 

GACGTGTGCTCTTCCGATCT 
Sigma Aldrich HPLC 

Illumina P7 adapters 
for barcode libraries 

NT+RS P7 xGen adapters 
[*] 

CAAGCAGAAGACGGCATACGAGA 
T[XXXXXXXX]GTCTCGTGGGCTCG 

GAGATGTGTATAAGAGACAG 
Sigma Aldrich Cartridge 

Illumina P7 adapters 
for smMIP libraries 

TruSeq P5 xGen adapters 
[*] 

AATGATACGGCGACCACCGAGATC 
TACAC[XXXXXXXX]ACACTCTTTCC 

CTACACGACGCTCTTCCGATCT 
Sigma Aldrich Cartridge 

Illumina P5 adapters 
for smMIP & 

barcode libraries 

 

3.1.5 Bacterial strains 

 

Table 5: Bacterial E.coli strains used for transformation and propagation of plasmids during experimental procedures. 

Strain Genotype Manufacturer Cat.No. 

NEB 10-beta  
Electrocompetent E. coli 

Δ(ara-leu) 7697 araD139  fhuA 
ΔlacX74 galK16 galE15 

e14-  Φ80dlacZΔM15  recA1 relA1 
endA1 nupG  rpsL (StrR) rph spoT1 

Δ(mrr-hsdRMS-mcrBC)  

New 
England  
Biolabs 

C3020K 

NEB Stable 
Competent E. coli 
(High Efficiency) 

F' proA+B+ lacIq ∆(lacZ)M15 zzf::Tn10 
(TetR)/ ∆(ara-leu) 7697 araD139 fhuA 

∆lacX74 galK16 galE15 
e14-  Φ80dlacZ∆M15 recA1 relA1 
endA1 nupG rpsL (StrR) rph spoT1 

∆(mrr-hsdRMS-mcrBC) 

New 
England 
Biolabs 

C3040I 
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3.1.6 Scientific instruments 

Table 6: Scientific instruments utilized throughout experimental procedures. 

Type Instrument name Manufacturer 

Centrifuge Centrifuge 4K15 Sigma Aldrich 

Centrifuge Centrifuge 5424 VWR Peqlab 

Capillary gel-electrophoresis Bioanalyzer 2100 Agilent Scientific Instruments 

Electroporator ECM 600 Genetronics, BTX 

Incubator Innova 42 New Brunswick 

Mini centrifuge SPROUT Biozym 

PCR workstation PCR Workstation Pro  VWR Peqlab 

Plate-Centrifuge PerfectSpin P VWR Peqlab 

Platereader POLARstar OPTIMA BMG Labtech 

Platereader Infinite 200 PRO Tecan 

Spectrophotometer ND-1000 NanoDrop Technologies 

Thermocycler SimpliAmp Thermal Cycler Eppendorf 

Thermocycler 
peqSTAR 96 Universal 

Gradient 
VWR Peqlab 

Vortexer Vortex-Genie 2 Scientific Industries SI 

Waterbath MB-5 Julabo 
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3.2 Methods 

 

3.2.1 Preparation of homemade SPRI beads for purification of DNA 

 

For cleanup of DNA, e.g. PCR-fragments, homemade SPRI beads were prepared according to Rohland 

& Reich, 2012 [80]. 

Table 7: Composition of the PEG solution used for preparation of homemade SPRI beads containing 22% PEG. 

Ingredient Quantity 

5 M NaCl 10 ml 

1 M Tris-HCl, pH 8.0 500 µl 

0.5 M EDTA 100µl 

PEG 8000 11 g 

10 % Igepal CA630 50 µl 

10 % Sodium Azide 250 µl 

UltraPure Water ad 49 ml 
 

A PEG solution according to Table 7 was prepared and incubated at 40°C until all PEG was dissolved. 

1 ml of Sera-Mag Speed Beads (Thermo Fisher Scientific) was transferred to a 1.5 ml Eppendorf cup 

and put onto a magnet rack. After separation of beads from the solution, supernatant was removed. The 

pellet was washed two times by resuspension in 1x TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). 

The pellet was eluted using 0.9 ml 1x TE buffer, resulting in a final volume of 1ml eluate. The resulting 

bead supsension was added to the PEG solution and vigourously mixed by vortexing. The final bead 

solution was stored at 4°C until usage. 

 

3.2.2 DNA purification using homemade SPRI beads 

 

Before usage of the homemade SPRI beads, the suspension was equilibrated at room temperature and 

vortexed until magnetic particles were fully resuspended. For purification of DNA derived from PCR 

or enzymatic reactions the respective samples were mixed with the SPRI beads suspension in a volume 

ratio of 0.8:1 to 1.8:1 beads to reaction volume, depending on the desired size-cutoff for short DNA 

fragments. The solution was mixed by pipetting and incubated for 5 minutes at room temperature. The 

sample vessel was transferred to a magnetic stand and incubated for 2 to 5 minutes until the solution 

was clear. The supernatant was discarded and the pellet of SPRI beads was washed by addition of 200 

µl 80% ethanol. If the initial volume exceeded 200 µl ethanol volume was increased to the initial sample 
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volume in order to wash the whole pellet. The ethanol was discarded and the wash step was repeated. 

SPRI bead pellets were allowed to dry for 2 to 5 minutes until the surface of the pellet was dried. The 

sample was put off of the magnetic stand, resuspended in 10 to 25 µl of ddH2O or buffer EB for elution 

and incubated for 5 to 10 minutes for elution. After SPRI beads had been completely separated, the 

sample was put back on a magnetic stand and the supernatant containing the clean DNA was transferred 

to a new vessel. 

 

 

3.2.3 Design of a single-molecule molecular inversion probes panel 

 

For the design of smMIPs the software MIPgen [81] was used. Initial parameters used (Table 8) 

comprised a target capture size of 120 nucleotides in order to produce only one amplicon size after PCR 

amplification at library preparations, hence allowing to easily identify off-target hybridizations with 

differing capture lengths.  

 

Table 8: Parameters used for the MIPgen software to design the initial set of potential smMIP probe candidates. 

Parameter Value Description 

min_capture_size 120 Minimum length of target sequence per probe 

max_capture_size 120 Maximum length of target sequence per probe 

tag_sizes 5,5 Include 5 random nucleotides on each hybridization arm 

double_tile_strands_separately on Create overlapping probes on (+)-strand and (-)-strand 

score_method svr Predict probe performance based on support vector 

regression 

 

As some target regions could not be covered using this parameter set, MIPgen was run again using a 

relaxed target size of 110 – 130 nucleotides. The resulting pool of potential probes covered both strands 

of the target regions. In order to reduce the initial costs for the panel, the probe pool was reduced to 

cover only one strand per position, with neighboring probes being located on alternating strands, thereby 

avoiding sterical hindrance of probes at hybridization sites (Figure 22 A). Probes for the final panel were 

picked based on MIPgen’s predicted performance score and the prerequisite to have a small overlap 
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with their neighboring probes. For smMIPs having known SNPs within their hybridization arms, two 

probes were included in the final set – with and without the known polymorphism – in order to provide 

robust performance. 

Additionally to targeting-arms and UMIs the MIP-probes comprise a fixed backbone sequence used for 

annealing the primers in subsequent PCR amplifications after target capturing. However, the backbone 

sequence does not contain any of Illumina’s standard read-start priming sequences, making it necessary 

to use custom read-start primers when sequencing smMIP amplicons. Therefore, the original smMIP-

backbone sequence was re-designed and replaced by 

‘AGATCGGAAGAGCGTGTGTATAAGAGACAG’ to allow for Illumina sequencing utilizing 

standard read-start primers. The initial pool of 303 oligonucleotide probes was ordered at SigmaAldrich 

at a synthesis scale of 25 nmole with subsequent reverse-phase chromatography cleaning (‘cartridge 

purification’). A list of all probes contained within the final panel after rebalancing (see 4.2.2 and 4.2.3) 

is included in Supplemental Table 1. 

 

 

3.2.4 Pooling and phosphorylation of smMIP probes 

 

The initial pool of smMIP probes was pooled at equimolar ratios. Phosphorylation was carried out in 

50 µl reactions of 1x T4 DNA Ligase Buffer, 12 units T4 Polynucleotide Kinase and 25 picomole of the 

pooled smMIP probes. After incubation at 37°C for 2.5 hours in a thermocycler the reaction was heat-

inactivated at 65°C for 25 minutes. The probe pool was subsequently diluted to a 10x working-

concentration of 503 pM per smMIP using buffer EB and split up into single-use aliquots in order to 

avoid freeze-thaw cycles that potentially could impair the phosphorylation of the probes. 

For refinement of the smMIP panel via re-balancing the probes were subset according to the planned 

relative concentrations within the final pool, phosphorylated in independent reactions and pooled 

together afterwards. 

 

3.2.5 Preparation of smMIP sequencing libraries 

 

In order to minimize the risk of cross-contaminations all reactions were set up within a PCR workstation, 

which was decontaminated using DNA-Away and UV-light before and after each usage. 
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gDNA samples were first diluted to a concentration of 8 ng/µl in order to normalize the input for 

hybridizations to 100 ng genomic DNA within 12.5 µl. Samples that already had concentrations slightly 

below a concentration 8 ng/µl were used undiluted. 

Hybridizations and target captures were carried out in 25 µl reactions with 1x Ampligase buffer, 1 unit 

Ampligase, 0.32 µl Hemo KlenTaq Polymerase, 320 nM dNTPs, 100 ng gDNA template and 5 µl of the 

100 pM smMIP pool, corresponding to a ratio of 1000 molecules of each smMIP probe per haploid 

genome within the reaction. Reactions were subsequently cycled within a thermocycler with an initial 

denaturation of 95 °C for 10 minutes, followed by 60 °C for 18 hours for hybridization and gap-filling 

and subsequent storing at 8°C. 

After Hybridization and Gap-Fill reactions finished, an exonuclease treatment was performed in order 

to digest non-circularized probes as well as the gDNA template. 2 µl of an exonuclease mix, consisting 

of 10 units Exonuclease I and 50 units Exonuclease III in 1x NEBuffer 1 were added to each reaction, 

keeping the reactions on the cooled block of the thermocycler. After mixing, the reaction were incubated 

for 1 hour at 37 °C, followed by heat-inactivation at 80 °C for 25 minutes and subsequent storage at 

8°C. 

In order to utilize as much hybridization products as possible, two PCR amplification reactions per 

hybridization reaction were set up for library construction. Each PCR reaction consisted of 1x 

Q5 reaction buffer, 1 unit Q5 HotStart High-Fidelity DNA Polymerase, 200 µM dNTPs, 1 % DMSO, 

250 nM of both P5- and P7-adapter primers (‘NT+RS P7 xGen adapter’ & ‘TruSeq P5 xGen adapter’, 

see Table 4) and 12.5 µl of the exonuclease-treated hybridization reaction in a total volume of 50 µl. 

PCR reaction were cycled using 95 °C for 2 minutes for initial denaturation and 25 amplification cycles 

consisting of 95 °C for 15 sec, 47.5 °C for 30 sec and 72 °C for 30 sec. Following a final elongation for 

2 minutes at 72 °C, samples were stored at 8 °C. 

PCR products derived from the same hybridization reactions were pooled and purified twice using 

homemade SPRI beads at a volume ratio of samples to beads of 0.8:1. The second clean-up was 

necessary to further minimize unwanted by-products derived from amplification of smMIPs that were 

circularized without capturing a target, thereby producing amplicons of similar size.  

Samples were quantified using Quant-iT PicoGreen dsDNA Assay (ThermoFisher) picoGreen and 

subsequently pooled in equimolar ratios. The final library pools were additionally quantified using a 

High Sensitivity DNA Chip on an Agilent Bioanalyzer. 

For each sample within the final cohort sequencing study smMIP libraries were prepared in two 

technical replicates thereby by utilizing a total of 200 ng gDNA per individual, in order to increase the 

unique coverage across target areas.  
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Initial smMIP libraries for balancing of the probe pool were either sequenced on an Illumina MiSeq 

(dual-indexed 150B paired-end) or on an Illumina Hiseq1500 (dual-indexed 100b paired-end).  

The first five library batches of the cohort study were sequenced on an Illumina HiSeq 1500 at the 

GeneCenter (Ludwig-Maximilians University Munich) within a dual-indexed 100B paired-end 

sequencing run. Due to discontinued support of the HiSeq 1500, batch six as well as batch seven, which 

contained additional quality controls, were sequenced on a NextSeq 1000 using the same sequencing 

setup. 

 

3.2.6 Balancing of smMIPs to improve uniformity of coverage across target areas 

 

Initially, all probes were pooled at equimolar ratios in order to test their performance based on 

hybridization efficiencies. Library preparations were carried out using genomic DNA isolated from 

cultured B-Lymphocyte cells of the GM18505 cell line [82] via the DNeasy Blood&Tissue Kit (Qiagen) 

according to the manufacturer’s protocol. NGS data was analyzed using the MIPgen analysis tools [81] 

to determine the number of UMIs detected per smMIP probe and their relative performance within the 

probe pool. All probes having more than 2.5-fold fewer detected UMIs than the median across the panel 

were defined as bad performers. Subsequently a new probe pool was created, including a 25-fold or 50-

fold increase of relative concentration within the pool for these bad performers. Library preparations, 

sequencing and analysis were repeated using the rebalanced probe pool. A subset of probes did not 

benefit from higher concentrations and still showed bad hybridization efficiencies as indicated by a low 

number of detected UMIs. Therefore, 47 probes were ordered to replace these bad performing probes. 

Additionally, all probes targeting the CEBPA gene were excluded due to bad performance and increased 

tendency towards self-circularization.  

The set of smMIPs included in the final panel, as well as their relative concentrations within the pool 

are shown in Supplemental Table 1. 

 

3.2.7 Design of Illumina sequencing adapters for smMIP libraries 

 

As only a few million reads per smMIP sequencing library are necessary to achieve sufficient coverage 

across the panel, many samples can be multiplexed on one lane. Therefore enough adapter-primers 

carrying different sequencing indices to discriminate the individual samples need to be available. For 

this purpose, new adapters compatible with the re-designed smMIP backbone were ordered. 192 P5-
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adapters were utilized, using the standard TruSeq-P5-adapter sequence 

(AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCG

ATCT) but with indices derived from xGen Dual Index UMI Adapters (Integrated DNA Technologies) 

[83, 84], as the original set of TruSeq indices comprised only 8 sequences. The index sequences were 

further filtered based on published recommendations for Illumina Index Design [85]. Index sequences 

starting with “AC” and indices containing homopolymers of three or more nucleotides were excluded. 

All remaining adapter sequences were checked for their Gibson free energy using Quickfold [86] 

(http://www.unafold.org/Dinamelt/applications/quickfold.php). Adapters showing additional secondary 

structures due to their index sequence were excluded from further processing. The remaining index 

sequences were filtered for a minimum hamming distances of 3 among all indices and the first 192 

adapters remaining were used as final set of adapters. 

Another set of 96 P7-adapters was ordered based on the sequence of Nextera-P7-adapters, additionally 

including the mosaic sequence that would normally introduced by the Transposase in Nextera workflow 

library preparations (CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGGAGATGTGTA 

TAAGAGACAG). As the mosaic sequence contains the priming site for Illumina’s read start primers, 

this sequence is necessary to enable processing of prepared libraries on Illumina sequencers using 

standard workflows and primers. Again, indices were derived from xGen Dual Index UMI Adapters, as 

the original set of 29 indices provided by Illumina was too small to multiplex enough samples. Selection 

of most suitable index sequences was carried out as for P5 adapters, except for skipping the initial 

filtering for indices starting with ‘AC’.  

All oligonucleotides were ordered at Sigma Aldrich in batches of 96 oligonucleotides at 50 nmole 

synthesis scale, purified using reverse-phase cartridge purification. 

 

3.2.8 Setup of a custom analysis pipeline for smMIPs sequencing data 

 

In order to process hundreds of samples an automated analysis pipeline was set up. First, samples get 

demultiplexed based on their sample indices using deML [87] version 1.13 and output files are named 

in a standardized way.  

Afterwards, hundreds of samples can be submitted for processing using a single Bash script that utilizes 

the SLURM workload manager in order to optimize the resource management of the server, thereby 

minimizing the hands-on time necessary for processing of the sequencing data. 
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In this workflow, it is assumed that for every biological sample two technical replicates of the smMIP 

libraries were prepared. First, UMIs are extracted using fastp (version 0.20) by cutting the first five 

nucleotides of all reads and moving them to the respective header in the fastq file. This is carried out for 

both technical library replicates (see 3.2.5) of the sample. The resulting fastq files are modified to extend 

the UMI by ‘GC’ or ‘AT’ using ‘sed’. Afterwards fastq files of both technical replicates can be merged 

without the risk of UMI collisions. Additionally, artificial UMI elongation preserves the information 

from which technical replicate a specific read was derived and can potentially be utilized for downstream 

analysis. 

Hybridization arm sequences are trimmed using using cutadapt [88] (version 3.6.8) in linked adapters 

trimming mode with the following additional parameters: -e 0, -O 16 ,--no-indels, --discard-untrimmed, 

--pair-adapters –g [R1-smMIP_arms.txt] –G [R2- smMIP_arms.txt]. Linked adapter trimming mode 

requires matches for both hybridization arms derived from one smMIP to be detected within a read-pair 

in order to trim the sequences. All reads having no valid pair of arm-sequences detected are discarded. 

Reads are mapped via BWA-MEM (version 0.7.17) to the human genome version hg19 using standard 

settings. Resulting SAM files are converted to sorted and indexed BAM files using samtools (version 

1.8). Sample names are added to the BAM’s SM fields via Picard AddorReplaceReadGroup. Base 

recalibration is calculated using GATK BaseRecalibrator (GATK version 4.1.6.0), utilizing SNP 

information from dbSNP [89] (build 138) and ExAC non-TCGA sites (release r0.3.1), as well as InDel 

information from ‘Mills and 1000Genomes Gold Standard InDels’. Additionally 

‘NotDuplicateReadFilter’ is disabled in order to utilize and retain all reads. The calculated recalibration 

table is applied using GATK ApplyBQSR.  

Variant calling is subsequently carried out using Mutect2 in single-sample mode with the following 

parameters  in order to increase sensitivity and obtain a list of all variants possibly present within the 

sample: “--interval-padding 10, --max-reads-per-alignment-start 0, --disable-read-filter 

NotDuplicateReadFilter, --f1r2-max-depth 500000, --minimum-allele-fraction 0.002, --genotype-

germline-sites true, --mitochondria-mode true, --force-active true”. Calling of variants is subset to the 

regions of interest by using a bed file containing the panel’s target coordinates in order to reduce 

processing time. The resulting variants are filtered using GATK FilterMutectCalls with “--disable-read-

filter NotDuplicateReadFilter” and “--mitochondria-mode true”.  

Variants are filtered for allele frequencies above 0.2% and rows containing multiallelic sites are split 

and, if necessary, re-normalized using bcftools (version 1.8). The resulting variants are annotated with 

ANNOVAR [90] using the following databases: refGene [91], exac03, avsnp147, dbnsfp30a, 

clinvar_20190305, gnomad211_genome, cosmic91_coding.  
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For the generation of a position-specific error rate the mapped and base-recalibrated bam file (see above) 

gets de-duplicated based on UMI information using gencore [92] with the following parameters: “--

supporting_reads 2, --ratio_threshold 0.51, --umi_diff_threshold 0”. Samtools (version 1.8) is used to 

sort the resulting bam file and subsequently produce pile-ups using the following parameters: “-d 0 -B 

-Q 0”. Error rates per positions are finally calculated by counting the number of matches and mismatches 

at each position within all sequenced samples. Positions that showed more than 5% mismatches within 

an individual sample were excluded for the calculation of the overall error rate, as they likely represent 

true somatic variants rather than background errors. 

In order to utilize the UMI information within the data, the final set of variants obtained from Mutect2 

was used as input for umivariants[93]. Here, UMI consensus sequences were determined in “majority” 

mode and UMIs observed with only one sequencing reads are ignored. The annotated Mutect2 variant 

set was merged with umivariants’ output table in order to create the final raw set of variants for each 

sample. 

 

3.2.9 Filtering of raw variant call sets derived from smMIPs 

 

In order to exclude SNPs, potential artifacts and irrelevant variants preliminary filtering criteria were 

established based on the data collected from the cohort sequencing study: Synonymous and intronic 

variants were excluded from further analysis. Remaining variants need to be supported by at least 3 

UMIs, as determined using umivariants. To further reduce technical noise, all variants below 0.5% 

variant allele frequency were also excluded. Furthermore, all variants that are not associated to leukemia 

were filtered for a Benjamini-Hochberg adjusted p-value smaller than 0.005. To further reduce technical 

noise, variants that are covered on both DNA strands were excluded, if variant allele frequencies differed 

more than five-fold between the strands.  

All variants above 80% were excluded as likely representing homozygous SNPs. Variants having no 

association to leukemia and more than 0.01 frequency within ExAC being detected with more than 40% 

VAF were filtered as potential SNPs. Similarly all variants with more than 30% variant allele frequency 

having a frequency of at least 0.01 within the gnomAD database were filtered as potential SNPs. 

Variants tagged with “strand_bias” by Mutect2, were also flagged as potential artefacts within the set 

of filtered variants. 

A set of 7 loci comprising 13 nucleotides had to be excluded from variants calls (Table 9). These loci 

showed recurring artefacts that were not excluded by the previous filtering, resulting in repeated 

artefactual low-frequency variants. 
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Table 9: Genomic (hg19) positions of artefact loci that were excluded from the final analyses. High recurrence of variants at 
these positions indicated artefacts not removed by filtration using the position-specific error rates. 

Chromosome Position 
#variants 

after 
filtering 

median VAFs [%]  
(min - max)  

chr2 25467481-25467484 22 0.63 (0.50 - 3.52) 

chr4 106162600 10 0.58 (0.50 - 1.57) 

chr4 106164949 21 1.42 (0.83 - 3.90) 

chr4 106196299-106196302 210 0.97 (0.50 - 5.88) 

chr17 7577042 22 0.80 (0.52 - 1.65) 

chr20 31022677 7 1.06 (0.63 - 1.38) 

chr20 31022794 8 0.95 (0.51 - 2.55) 
 

For comparison of re-sequenced patients (see 4.2.5.3) a strict filtering was chosen in order to focus on 

high confidence variants. All variants were additionally filtered for variant allele frequencies being 

greater than 1% and having reported a STRANDQ value greater than 70 by Mutect2. In order to verify 

absence or presence of variants missing within the variant call sets Integrated Genomics Viewer [94] 

(IGV, version 2.3.46) was used to examine the BAM files of raw and de-duplicated reads. 

 

3.2.10 Cloning of the expressed barcode plasmid pool 

 

The expressed barcode plasmid library was based on a pCDH-derived vector backbone. In short, the 

GLuc coding sequence in pCDH-EF1α-GLuc-T2A-NGFR (Addgene #104832) [95] was replaced by a 

gBlock encoding for H2Kk using the restriction enzymes EcoRI and BamHI. The NheI restriction 

enzyme site was destroyed by site-directed mutagenesis. Additionally, a small PCR fragment was cloned 

into the vector by using KpnI and PciI restriction enzymes, in order to introduce an additional AvrII 

restriction site next to the KpnI site. The preparation of the resulting pCDH-EF1α-H2Kk-T2A-NGFR 

vector was carried out by Christina Zeller at the Helmholtz. 

The vector was subsequently digested in multiple parallel reactions each containing 1.5 µg vector 5 units 

AvrII and 10 units KpnI in 1x CutSmart buffer. Reactions were incubated for four to six hours at 37°C. 

The linearized backbone was purified using a SPRI bead clean-up at a ratio of 1:1. 

The expressed barcode insert was prepared by annealing two complementary HPLC purified, 

phosphorylated oligonucleotides (ExprBC_1st and ExprBC_2nd, Sigma Aldrich, Table 4) in a 20 µl 

reaction, containing 0.5x NEBuffer 3.1 and 10 µl of each 10 µM oligonucleotide, in a PCR cycler by 

heating the reactions to 90 °C and decreasing the temperature by 0.1 °C every 10 seconds for 700 times, 
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followed by cooling to 8 °C. The annealed double-stranded insert includes sticky-ends to allow direct 

usage in downstream ligations without the need of an additional enzymatic digest. 

For cloning the barcode insert into the vector a cut-ligation was performed overnight in order to 

maximize yields and minimize the amount of re-circularized vector not carrying a barcode insert. Seven 

20 µl reactions containing 1.5 mM ATP, 250 fmol of the double-stranded barcode insert, 120 ng of pre-

digested vector backbone, 2.5 units AvrII, 10 units NheI-HF  and 400 units T4 Ligase (400 U/µl) in 1x 

CutSmart buffer were set up. The reactions were incubated in a PCR cycler using the following program: 

55 cycles consisting of 5 minutes at 37 °C and 5 minutes at 20 °C, followed by 30 minutes at 37 °C, 20 

minutes at 80 °C and a final storage at 8 °C.  

The reactions were pooled and 5 µl were used to transform each of 16 transformation reactions using 

chemically competent NEB stable cells according to the manufacturer’s protocol. After 1 hour of 

outgrowth 1% of four of the 16 transformations were used for plating as a proxy to determine overall 

transformation efficiencies by colony counts. Four Midi cultures (90 ml LB medium with 100 mg/ml 

Ampicillin) were inoculated with 4 transformation reactions each and incubated overnight at 37°C and 

220rpm.  Liquid cultures were pelleted by centrifugation at 4000 xg for 10 minutes at 8 °C. Plasmid 

isolations were carried out using the PureYield Midi Prep Kit (Promega) according to manufacturer’s 

protocol. Finally, the four plasmid preparations were pooled in equimolar ratios to create the final 

plasmid pool for the expressed barcode. 

 

3.2.11 Cloning of the high-complexity DNA barcode plasmid pool 

 

The initial preparation of the pCDH-EF1α-GLuc-T2A-mtagBFP was carried out by Christina Zeller 

from the Helmhotz Center Munich by PCR-amplifying the coding sequence of mtagBFP and introducing 

EcoRI and SalI restriction sites via primer-overhangs. Subsequently, the PCR product was cloned into 

the pCDH-EF1α-GLuc-T2A-copGFP plasmid [96] using EcoRI and SalI, thereby replacing the copGFP 

with mtagBFP. Lastly, the NheI restriction site was destroyed by site-directed mutagenesis. The 

resulting vector was used for cloning the DNA Barcode plasmid pool. 

The vector pCDH-EF1α-GLuc-T2A-mtagBFP vector was digested and dephosphorylated in multiple 

50 µl reactions each containing 20 units SpeI-HF, 2 units rSAP and 1.1 µg of the prepared vector in 1x 

CutSmart buffer. Reactions were incubated at 37 °C for three hours and subsequently heat-inactivated 

at 80 °C for 20 minutes. Reactions were pooled and purified using the SV Gel and PCR Purification Kit 

(Promega) according to the manufacturer’s protocol. 
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Insertion of the barcode insert into the vector backbone was carried out using a cycling restriction and 

ligation (‘Cut-Ligation’) approach in order to maximize the yield of correct ligation products. For this, 

reactions were set up containing 1x CutSmart buffer, 1.5 mM ATP, 10 units SpeI-HF, 10 units NheI-

HF, 2,000 units T4 DNA Ligase, 120 ng of pre-digested vector backbone and 2 µl of the 1:10 diluted 

barcode annealing reaction, corresponding to 250 fmol insert, in a total volume of 20 µl per reaction. 

Reactions were transferred to a thermocycler and cycled 55 times with 5 minutes at 37 °C and 5 minutes 

at 20 °C, followed by a final heat-inactivation at 80 °C for 20 minutes and subsequent sample storage at 

8°C. In order to reduce unwanted ligation products, containing either no or multiple barcode inserts, 

10µl of an ‘After-Cut’ mixture consisting of 10 units NheI-HF and 10 units SpeI-HF in 1x CutSmart 

buffer were added per reaction and samples were further incubated for 2 hours at 37 °C with subsequent 

heat-inactivation for 20 minutes at 80 °C. 

Reactions were pooled and purified using homemade SPRI beads at a sample to beads ratio of 1:1 and 

the clean product was quantified via picoGreen according to the manufacturer’s protocol. The resulting 

vector was transformed via electroporation using NEB10beta cells taking special care to optimize 

conditions in order to achieve high transformation efficiencies. Hence, electroporation cuvettes as well 

as 0.5 ml Eppendorf cups and the cloned vector were cooled on ice. Additionally, 1 ml aliquots of 

NEB10stable/NEB10beta Outgrowth Medium in 2 ml low-bind Eppendorf cups were pre-warmed in a 

ThermoMixer at 37 °C. NEB10beta cells were thawed on ice and aliquoted á 25 µl into the pre-chilled 

0.5 ml cups. 2 µl of the pre-cooled vector, corresponding to about 150 ng of plasmid, were added to 

each aliquot of competent cells and gently stirred using the pipet tip. The mixture was quickly transferred 

to the electroporation cuvette, taking care not to introduce bubbles. Immediately after electroporation at 

2.1 kV with 48 Ohm, resulting in an effective pulse of 2.16 kV for 2.5 ms, 1 ml of the pre-warmed 

outgrowth medium was added and the cuvette was inverted six times. As much as possible of the 

suspension was transferred back into the pre-warmed 2 ml cup and immediately put into an incubator at 

37 °C and 250 rpm. Cups were incubated horizontally in order to increase the air-medium boundary. 

After 1 hour of incubation, 0.025% of the transformation reactions were plated on LB-Agar plates 

containing 100 ng/ml Carbenicillin. Midi cultures containing 100 ml LB supplemented with 100 ng/ml 

Carbenicillin were each inoculated with the rest of two transformation reactions. Midi cultures were 

incubated overnight for 16 hours and 250 rpm at room temperature. Cultures were harvested by 

centrifugation at 4000 rcf for 30 min at 8 °C. The resulting cell pellets were used for the purification of 

the plasmids utilizing the PureYield Midi Prep Kit (Promega) according to manufacturer’s protocol. The 

final Plasmid pool was created by pooling the plasmid preparations considering the complexities of the 

included transformation reactions as estimated by their colony counts in order to achieve a uniform 

frequency distribution of the barcodes within the pool. 
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3.2.12 Colony PCR to screen for the presence of the expressed barcode 

 

To determine the fraction of plasmid not carrying the barcode insert, colony PCRs were performed. 20µl 

PCR reactions were set up utilizing 0.5 units DreamTaq polymerase, 200µM dNTPs, 300nM of the 

forward and reverse primers ExBC_screen2_fwd and ExBC_screen2_rev (Table 4) in 1x DreamTaq 

Green buffer. Additionally 1.5 mM magnesium chloride were added to enhance lysis of bacteria. 

Colonies were picked from agar plates using 10 µl pipette tips and added to the reaction by stirring the 

tip in the reaction and pipetting up and down five times. Reactions containing 400 pg of the pCDH-

EF1α-H2Kk-T2A-NGFR vector either with or without a barcode insert were used as positive and 

negative controls for later size comparisons of amplicon bands. 

The reactions were cycled in a thermocyler with a prolonged initial denaturation of 3 minutes at 95°C 

to increase lysis of bacteria. Subsequently, 35 cycles with 94°C for 30 s, 53°C for 30 sec and 72°C for 

1 minute were carried out, followed by a final elongation at 72°C for 1 minute. 

5 µl of the samples were loaded onto a 2.5% agarose gel and electrophoresis was carried out for 50 

minutes at 90V. 

 

3.2.13 Colony PCR to screen for the presence of the high-complexity DNA barcode 

 

As for the expressed barcode cloning the fraction of plasmid not carrying the barcode insert were 

determined by colony PCRs. 20µl PCR reactions were set up utilizing 0.5 units DreamTaq polymerase, 

200 µM dNTPs, 300 nM of the forward and reverse primers DNABC_NT_screen_fwd and 

DNABC_NT_screen_rev in 1x DreamTaq Green buffer. Additionally 1.5mM magnesium chloride were 

added to enhance lysis of bacteria. Colonies were picked from agar plates using 10µl pipette tips and 

added to the reaction by stirring the tip in the reaction and pipetting up and down five times. Reactions 

containing 200 pg pCDH-EF1a-mtagBFP without a barcode insert were used as controls for later size 

comparisons of amplicon bands. 

Reaction were incubated in a thermocycler with an initial denaturation of 3 minutes at 95 °C and 30 

cycles with 94 °C for 30 sec, 53 °C for 30 sec and 72 °C for 1 minute, followed by a final elongation at 

72 °C for 1 minute. 10 µl of the reactions were loaded on a 1.5% agarose gel and bands were separated 

for 90 minutes at 90V.  
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3.2.14 Amplicon library preparation for high-complexity DNA barcodes 

 

In order to determine barcode frequencies as accurate as possible, a PCR strategy including the use of 

UMIs was utilized for the amplification of barcodes from plasmid or genomic DNA of barcoded 

samples. Therefore, the SiMSen-Seq [97] workflow was adapted for the purpose of amplifying barcodes 

from genomic DNA, even when very few barcodes are present within the reaction.  

For every sample, SiMSen-Seq libraries were prepared in technical triplicates, unless stated otherwise. 

Generally 5 µl of isolated genomic DNA were used as template for the first PCR, including 0.1 units 

Phusion HotStart II Polymerase, 200 µM dNTPs and 40 nM of both primers, HP-DNABC_amp_fwd 

and HP-DNABC_amp_rev2, in 1x Phusion HF buffer in a volume of 10 µl. Reactions are incubated in 

a thermocycler at 98 °C for 30 sec, followed by 3-6 cycles with 98 °C for 10 sec, 62 °C for 6 min, 72 °C 

for 45 sec. The number of cycles necessary for sufficient amplification was adjusted based on the on-

target input amount within the reactions. The reactions are inactivated by addition of 20 µl Actinase E 

in 1x TE buffer (45 ng/µl). For efficient protease treatment samples are further incubated at 65°C for 

15 min, followed by heat-inactivation at 95 °C for 15 min and subsequent storage at 4 °C. 

For each reaction of the first PCR two downstream PCR reactions were set up in order to maximize the 

utilized amount of products. Each second PCR consisted of 200 µM dNTPS, 400 nM of HP_N7 adapter 

and TruSeq P5 xGen adapter primers and 10µl of the previous PCR reaction in 1x Q5 HotStart buffer 

in a final volume of 40µl. Samples were incubated in a thermocycler at 98 °C for 3 minutes for initial 

denaturation and 3 – 6  cycles consisting of denaturation at 98 °C for 10 sec and annealing and elongation 

at 80 °C for 1 sex, 72 °C for 30 sec, 76 °C for 30 sec. Ramping rates between annealing and elongation 

temperatures were set to 0.2 °C/sec to resolve hairpin-structures and allow for efficient amplification. 

After amplification the samples were purified using homemade SPRI beads with a ratio of 0.8:1. PCR 

reactions derived from the same technical replicate were pooled at the elution step using 20µl buffer 

EB. 

DNA-Barcode sequencing libraries were sequenced at LAFUGA with 150 cycles single-end and dual-

index reads utilizing an Illumina HiSeq 1500. 

 

3.2.15 Amplicon library preparation for expressed barcodes 

 

Similarly as for high-complexity DNA barcodes, expressed barcodes were amplified using an adapted 

SiMSen-Seq protocol as described in 3.2.14 with the following alterations. For the first PCR primers 
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ExBC_AmpSeq_HP_fwd and ExBC_AmpSeq_HP_rev were utilized with an annealing temperature of 

58 °C for 3 – 9 cycles. The number of cycles was dependent on the gDNA input amount to ensure 

sufficient amplification for all samples. 

Expressed barcodes libraries were sequenced using a 100-nt single-end dual-indexed layout. 

 

3.2.16 Analysis of sequencing data from high-complexity DNA barcode libraries 

  

Sequencing data was demultiplexed using deML [87], allowing for no mismatch within the index reads. 

Barcodes were extracted from the demultiplexed samples using bartender_extractor [98], by defining 

the barcode pattern (‘-p GATGG[4]ACT[2]CGA[2]CTT[2]CGA[2]CTT[2]GGA[2]CTA[2]ACT[2] 

CGA[3]CCACA’). UMIs were extracted as the first 12 sequenced nucleotides within the reads (‘-u 0,12’) 

and barcodes had to match the non-variable nucleotides without mismatches (‘-m 0’) with an average 

Q-Score equal to or greater than 30 (‘-q ?’). Clustering of barcodes was performed using 

bartender_single [98], binning barcodes within a hamming distance of 4 or 5 (‘-d 4’ or ‘-d 5’), depending 

on the number of barcodes expected within the sample, without utilizing a read-ratio threshold (‘-z -1’). 

The resultant lists of barcode clusters and their respective UMI counts were further analyzed using 

R [99] and the packages tidyverse [100], ggplot2 [101], upsetR [102] and fishplot [103]. 

 

3.2.16.1 Analysis of barcoding data for determination of the bottleneck  

 

To provide a conservative estimation of engrafted cell numbers a hamming distance of 5 was used for 

clustering of detected barcodes. Additionally, barcode clusters detected with only one UMI were 

discarded as they are likely representing technical noise. Furthermore, all barcodes that were only 

detected in one of the three technical replicates per sample were also discarded to further reduce potential 

false-positive barcode calls. As only one orientation of the DNA barcode was detectable using the 

established amplification setup, the resulting number of detected barcodes was multiplied by two in 

order to provide an estimate for the total number of engrafted cells per mouse. 

Gini indices providing a quantification of the inequality of detected barcode frequencies were calculated 

using the ineq R package. 
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3.2.16.2 Analysis of barcoding data for the in vivo treatment experiment 

 

Barcodes were extracted from raw sequencing data as described in 3.2.15. In order to exclude cross-

contaminations between samples, detected UMIs per barcode within each technical replicate were 

filtered for detection with at least two UMIs before clustering. The resulting list of barcodes was used 

for clustering as described above (3.2.15) utilizing a hamming distance threshold of 4. Relative 

frequencies of barcodes per sample were calculated based on the average fraction of UMIs detected 

within each replicate. 

For illustration of barcode data within the pseudo-fishplot the fishplot package for R [103] was utilized. 

For each experimental group, frequencies of detected barcodes were averaged across all mice. 

Additionally, all barcodes present with less than 0.005% frequency were excluded from the initial input 

sample. Sporadic barcodes at very low frequencies that were not detected in intermediate stages (start 

and/or control groups) but at the final stage (therapy group) were manually set to fractions of 0.0001% 

to allow for visualization. Additionally, barcodes were ordered based on their frequency within the initial 

input sample before plotting. 

DEBRA [104] was used to determine statistically significant differences of barcode frequencies between 

groups. As use of technical replicates is not directly supported, UMI counts of clustered barcodes per 

sample were averaged across technical triplicates and rounded to integers. Differential barcode 

representation analysis was carried out using the implemented DESeq2 Wald-test method (‘method = 

"DESeq2(Wald)"’) comparing either mice of the start group to mice of the control group or mice of the 

control group to mice of the therapy group. For plotting of significantly differentially represented 

barcodes a false-discovery rate threshold of 0.05 was used.  

 

3.2.17 Analysis of sequencing data from expressed barcode libraries 

 

Sequencing data was demultiplexed using deML [87], allowing for no mismatch within the index reads. 

Barcodes and UMIs were extracted from raw fastq files using the bartender [98] extractor, by utlizing 

the barcode pattern for the short barcode (‘-p AAGGC[4]TT[3]AA[3]TTAGC’) and defining the first 12 

nucleotides of the reads as UMI (‘-u 0,12’). Barcodes had to match all fixed bases within the barcode 

pattern (‘-m 0’) and needed an average Q-Score of 30 (‘-q ?’). 
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Due to the high number of barcodes present within the plasmid pool and Nalm6 control samples, no 

barcode clustering was carried out in order to avoid overclustering, whereby real barcode would end up 

in one cluster. 

 

3.2.17.1 Analysis of expressed barcodes from barcoded Pdx samples 

  

Barcodes were extracted from raw sequencing data and clustered using bartender as described above. 

Additionally, barcodes were clustered using starcode [105] (version 1.1) with different hamming 

distance thresholds of 1 (‘--dist 1’) up to 3 (‘--dist 3’)  and a fixed ratio-threshold of 5 (‘-r 5’). Multiple 

cases in which barcodes present at very high frequency seemingly contaminated one or more other 

samples at very low frequencies were observed. Subsequently, barcode cross-contaminations were 

identified based on the normalized UMI counts of the respective barcodes within all samples and 

discarded in all samples in which the normalized UMI counts were less than 20% compared to the 

highest count observed in all samples. All data were manually analyzed for cluster compositions to 

exclude possible binning of true barcodes.  

 

3.2.18 Transduction of Pdx cells using the lentiviral barcode pools 

 

Production of lentiviral particles, as well as lentiviral transduction of Pdx and related work with NSG 

mice cells were carried out by Christina Zeller (Helmholtz Zentrum München) in the laboratory of Prof. 

Dr. Irmela Jeremias. All workflows described hereafter are derived from Christina Zeller’s doctoral 

thesis [106] in order to provide a comprehensive overview of the methods used to apply the genetic 

barcoding system generated and used within this work. 

 

3.2.18.1 Production of lentiviral particles 

 

Lentiviral particles were generated transfecting HEK-293T cells at 50 – 80 % confluency using pMD2.G 

pMD2.G (1.25 µg/ml final concentration), pMDLg/pRRE (5 µg/ml final concentration), pRSV-Rev (2.5 

µg/ml final concentration) and transfer vector (250 ng/ml final concentration). Plasmid DNA was mixed 

in DMEM with 2.4% turbofect and incubated for 20 min at RT. The DNA-turbofect mix was added 

dropwise to the HEK-293T cell after changing their medium. After three days the supernatant was 

withdrawn, centrifuged (400 xg, 5 min, RT) and filtered (0.45 µm). The virus was concentrated by 
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ultrafiltrating the supernatant using an Amicon-Ultra 15 ml centrifugal filter unit and centrifugation 

(2,000 xg, 30-40 min, RT). Concentrated virus was used directly for determination of virus titer or 

lentiviral transduction. Alternatively, virus was frozen as aliquots at −80◦C. 

 

3.2.18.2 Lentiviral transduction 

 

Between 2 x 106 and 107 PDX AML cells in 1 ml of the appropriate medium were incubated with third 

generation lentivirus(es) together with 8 µg/ml polybrene. After one day cells were washed three times 

with PBS (400 xg, 5 min, RT) and either resuspended in phosphate buffered saline (PBS) for the 

injection into mice or cultured for 4 - 6 days in PDX AML cell medium for subsequent fluorescence-

activated cell sorting (FACS) enrichment. 

 

3.2.18.3 Engraftment and expansion of primary patients’ and Pdx cells 

 

To engraft leukemic cells from AML patients, up to 107 peripheral blood (pB) or bone marrow (BM) 

cells in 100 µl sterile filtered PBS were injected intravenously into 6 - 15 weeks old NSG mice. For 

expansion freshly isolated or thawed PDX AML cells were injected. After transplantation of cells Baytril 

(2.5%) was added to the drinking water of animals for 7 days to prevent infections. 

Engraftment was monitored every 2 - 3 weeks by flow cytometry measurement of human leukemic cells 

in murine pB or bioluminescence in vivo imaging. Mice were sacrificed (i) at defined time points, (ii) at 

signs of advanced leukemia (more than 50% leukemic cells within murine pB), or (iii) at first clinical 

signs of disease (rough fur, hunchback, and/or reduced motility). If leukemia became not apparent, mice 

were killed 52 weeks after transplantation by latest. 

 

3.2.18.4 Isolation of Pdx cells from the murine bone marrow 

 

To isolate PDX AML cells from the murine BM, femur, tibiae, hips, spine and sternum were extracted 

and crushed using mortar and pestle. Cells were resuspended in PBS, filtered (70 µm cells strainer) and 

washed in PBS (400 xg, 5 min, RT). Cells were re-suspended in PBS or the required buffer, stained 1:10 

with trypan blue and 10 µl were used for determination of cell numbers using a Neubauer counting 

chamber. 
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3.2.18.5 In vivo treatment of mice engrafted with Pdx AML cells 

 

To assess in vivo response of PDX AML samples to treatment, NSG mice were transplanted with 

samples expressing eFFly luciferase treated systemically with 50 mg/kg cytarabine (Ara-C), dissolved 

in 50% Sodium-(S)-lactate solution, intraperitoneally 4 days per week (day 2 - 5) for 3 consecutive 

weeks starting at a leukemic burden of a total flux of 2.1 ∗ 109 – 1.1 ∗ 1010 photons/sec. Animal were 

monitored every one to two weeks using BLI and sacrificed 3 days after stop of therapy. 

 

3.2.18.6 Limiting Dilution Transplantation Assay 

 

To determine the stem cell, or leukemia initiating cell (LIC), frequency in PDX AML samples, limiting 

dilution transplantation assays (LDTAs) were performed. Here fresh or frozen cells were counted with 

trypan blue and suspended in PBS. Cells were diluted and injected into groups of mice. Engraftment and 

disease progression was monitored by flow cytometric analysis of murine peripheral blood or BLI. Mice 

were sacrificed and PDX AML cells isolated from the BM or spleen of engrafted animals. Stem cell 

frequencies were determined by Poisson distribution using the ELDA software [107] 

(http://bioinf.wehi.edu.au/software/elda/). 

 

3.2.18.7 FACS staining 

 

To analyze expression of huCD33 or transgenes such as H2Kk or NGFR in FACS, cell lines or PDX 

AML cells, fresh or thawed, were stained with an appropriate antibody. 5 x 105 cells were pelleted 

(400 xg, 5 min, RT) and resuspended in 40 - 100 µl PBE buffer. 5 µl of huCD33-PE antibody, 

2 µl H2Kk-APC antibody or 2 µl of CD271(NGFR)-FITC/PerCP-Cy5.5 antibody was added and 

incubated for 30 min at RT, 10 min at 4°C or 20 min at 4°C, respectively. Cells were washed with PBE 

(400 xg, 5 min, RT) and resuspended in an appropriate amount of PBE or PBS for FACS analysis 

sorting. 
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3.2.18.8 Enrichment of Pdx Cells by magnetic cell separation 

 

To enrich human PDX AML cells from murine BM cells negative selection by magnetic cell separation 

(MACS) was performed using a cocktail of monoclonal antibodies against murine epitopes bound to 

magnetic beads. After isolation from murine BM or thawing, cells were suspended in 3 ml PBS + 

0.5% BSA and incubated with 100 µ l - 400 µ l mouse cell depletion cocktail for 15 min at 4°C. 

10 ml PBS + 0.5% BSA was added and the solution loaded to a LS column in a magnet prepared by 

rinsing with PBS + 0.5% BSA. After washing the column twice with PBS + 0.5% BSA, the flow-through 

was collected, centrifuged (400 xg, 5 min, RT) and resuspended in a required buffer or medium for 

further applications. 

 
 

3.2.18.9 Enrichment of Pdx cells and cell lines by Fluorescence-Activated Cell Sorting 

 

In order to enrich PDX AML cells or AL cell lines carrying one or more transgenes such as H2Kk, 

NGFR or a fluorochrome (mtagBFP, eGFP, mCherry and/or iRFP720), FACS was performed using a 

cell sorter BD FACS AriaIII (BD Bioscience, Heidelberg, Germany). When H2Kk or NGFR was sorted, 

cells were antibody stained. PDX AML cells suspended in PBS at a concentration of around 107 cells/ml 

were sorted, gating on leukocytes and subsequently on transgene carrying cells, into a FACS tube 

containing appropriate medium. 

 
 

3.2.19 Preparation of illustrations 

 

Figures 2, 4-9, 16, 18, 22, 25 and 31A were created with BioRender.com. 

Figure 3 was adapted from the “Blood Cancers” template, from BioRender.com (2022). Retrieved from 

https://app.biorender.com/biorender-templates 
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4 Results 

 

4.1 Establishment of cellular barcoding pools to enable tracking of individual cells 

within cell populations 

  

The AML Pdx mouse model allows to engraft AML patient samples into immunocompromised mice 

while conserving their subclonal heterogeneity, thereby closer resembling the actual disease observed 

in patients compared to established cell lines. AML Pdx cells can be genetically modified via lentiviral 

transductions thereby making new methodological approaches accessible to patient derived samples.  

In order to enable distinction of single cells within a population of leukemic cells, the cellular barcoding 

technique will be established for use within this Pdx model. Cellular barcodes are unique artificial DNA 

sequences, lentivirally integrated into the cells’ genomes in order to easily distinguish cells and their 

offspring from one another. This approach enables to directly measure the heterogeneity of leukemic 

populations over time and under selective pressure, e.g. in vivo chemotherapeutic treatment, thereby 

enabling direct investigation of subclonal heterogeneity. 

 

4.1.1 Design and cloning of barcode libraries and a UMI-tagged PCR read-out 

 

To enable cellular barcoding of AML cells two different constructs were chosen to be prepared. For 

clonal tracking of bigger cell populations the first construct was planned to contain at least 5 million 

different barcodes in order to reduce the chance of barcode re-usage, i.e. two cells receiving the same 

barcode. A high-complexity barcode design derived from Thielecke et al. [108] was placed upstream of 

the marker’s promoter within the lentiviral insert vector (Figure 8B). This design is composed of two 

variable nucleotide positions alternating with three fixed nucleotides, thereby preventing longer 

homopolymer stretches as well as extreme GC-contents, which both can interfere with efficient PCR 

amplification and sequencing. 

The cloned barcode insert additionally comprised primer annealing sites next to the barcode sequence 

that were originally designed for amplification of a 1.5 kb fragment of the Phytochrom Interacting Factor 

3 (PIF3) from Arabidopsis thaliana. These primer annealing sequences, corresponding to the 

At1g09530.1f349r20 primer pair of the AtRTPrimer database [109] were chosen to ensure specific 

amplification within PCR reactions containing mammal genomic background. 
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These constant sequences at the fragment ends enable correct positioning of the complementary single-

stranded DNA-oligonucleotides when annealing the single-stranded oligonucleotides, which is 

necessary for the generation of sticky-ends.  

 

Additionally, a second barcode construct, which contains a shorter barcode within the 3’-UTR of the 

lentiviral marker gene was designed and cloned. Due to its positioning the barcode is transcribed 

together with the marker gene, thereby enabling read-out within bulk and single-cell 3’-RNAseq 

libraries in addition to targeted PCR amplification from gDNA (Figure 8A). In order to avoid side-

effects like accelerated degradation of mRNAs this barcode was kept as short as possible. 

 

Figure 8: Schematic structure of lentiviral inserts and barcode sequences. (A) The lentiviral insert of the short, expressed 
barcode encodes for the two surface marker genes H2Kk and NGFR, which are linked by a T2A signal and under the control 
of EF1alpha promoter. The expressed barcode is placed within the 3’-UTR of the marker transcript, thereby potentially 
enabling direct read-out using 3’-(sc)RNAseq and consists of ten variable nucleotide positions (B) The lentiviral insert for the 
high complexity DNA barcode. The EF1alpha promoter controls expression of mtagBFP which used as marker to identify 
successfully barcoded cells. The high-complexity barcode is located upstream of the promoter and comprises 23 variable 
nucleotide positions. 

 

For the insertion of the barcodes into the prepared vector backbones, a cycling restriction and ligation 

approach was chosen. This ‘Cut-Ligation’ comprised 55 cycles of restriction and ligation for 5 minutes 

each at 37°C and 20°C, respectively, followed by a final digestion step  at 37°C for 60 minutes after 

addition of fresh enzymes. Compatible sticky-ends on insert and vector fragments, allow to selectively 

digest unwanted ligation products between two vector fragments or two insert fragments, while upon 

correct ligation of insert and vector fragments restriction sites are destroyed (Figure 9). Compared to 

classical restriction and ligation reactions carried out separately this setup maximizes the yield of correct 

ligation products while minimizing unwanted by-products like re-circularized vector-backbone 
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Figure 9: Overview of the cloning strategy for construction of barcode plasmid libraries. (A) The barcode insert is created by 
annealing of complementary oligonucleotides containing the degenerate barcode as well as constant regions on both ends that 
create sticky overhangs upon successful annealing. The vector backbone is digested using restriction enzymes that create 
single-stranded overhangs that are compatible to those created for the insert but differ in flanking nucleotides. (B) Correct 
ligation of insert and vector fragment destroys the restriction sites. Upon ligation of two vector or two insert fragments, intact 
restriction sites are produced which can subsequently be cut again. (C) Due to the use of compatible sticky-ends produced by 

restriction enzymes that differ between the insert and vector backbone, a cycling reaction of alternating restriction digests and 
ligations (‘Cut-Ligation’) can be used to maximize the efficiency of the cloning reaction. 

In order to allow for efficient and precise read-out of barcode frequencies within barcoded cell 

populations via PCR, a molecularly-barcoded PCR strategy, SiMSen-seq [97], was established for both 

constructs. Here, a first PCR using primers that target the barcodes within the lentiviral inserts is 

performed with very few cycles. These primers additionally carry twelve degenerate bases, also called 

UMIs (Unique Molecular Identifiers), which uniquely tag every amplified barcode with a different 

unique sequence. To prevent mispriming, the UMIs are located within a hairpin loop that is formed by 

the primer at annealing temperatures and only opened at higher elongation temperatures, thereby 

increasing the specificity of the assay. A second round of PCR is subsequently used to generate sufficient 

amounts of amplicon and to introduce Illumina adapters necessary for sequencing. The use of UMIs 

allows to quantify the frequencies of distinct barcodes within the template more precisely, especially if 

only few barcodes are contained within a sample and thus many PCR cycles are needed to generate 

sufficient amounts of amplicon.  
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4.1.2 Quality control experiments for the validation of the barcode libraries’ complexities 

 

In order to assess the suitability of the created barcoding plasmid pools for use in real experiments 

different quality controls were performed. The most important property of the plasmids pools is their 

overall complexity given by the number of barcodes included in the pools, as it limits the number of 

cells that can be uniquely labelled and distinguished. In order to minimize the risk of labelling two 

distinct cells with the same barcode, the pools complexity should exceed the number of barcoded cells 

about 100-fold [110]. 

The cloned barcoding construct are ‘undefined’ libraries, as the exact number and sequences of barcodes 

within the final pools are unknown. To ensure unique labelling in experimental settings, the libraries’ 

complexity was estimated using two approaches. First, the number of total colonies for each plasmid 

pool was estimated by counting the plated fractions of each transformation used to create the pool. All 

plasmid preparations were pooled based on the number of distinct barcodes expected to be contained 

within them in order to generate a plasmid library with evenly distributed barcodes. As a second readout 

the final barcode plasmid pools were used to create NGS libraries in order to directly measure their 

complexities. 

After assuring sufficient complexity within the plasmid pools, lentiviral particle pools were created by 

Christina Zeller. Special care was taken to preserve a maximum complexity by scaling up production of 

lentiviral particles into many replicates produced in parallel. In order to assess the minimal complexity 

of these lentiviral pools, samples of Nalm6 cells were transduced in multiple replicates and harvested 2 

days after transduction. gDNA was prepared from the resulting samples and used for the preparation of 

NGS libraries. 

 

4.1.2.1 The DNA barcode plasmid pool contains about ten million unique barcodes 

 

To estimate the overall complexity of the cloned DNA-Barcode plasmid pool, two complementary 

approaches were chosen. As a first estimate, the overall number of colony forming units achieved by 

the electroporations was estimated by counting the colonies on agar plates. In total, 16 electroporation 

reactions were carried out to transform the cloned plasmid into NEB10beta. For 12 of these reactions, 

0.025% of the total volume were plated on agar plates in order to determine the overall number of 

transformants (Table 10).  
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Table 10: Estimation of the plasmid pool complexity by colony forming units (CFUs) obtained from transformation reactions. 
For 12 of 16 transformations 0.025% of the reactions were plated on agar plates in order to estimate the total number of 
transformants. To account for 1-2 potential cell divisions within the one hour of outgrowth before plating, total CFUs were 

divided by two or four.  The resulting estimates represent the maximum and minimum number of total transformants expected 
to be present within the transformation reactions. 

Transformation 
Colony 
count Total CFUs 

Maximum total 
transformants 

Minimum total 
transformants 

Sample 1 520 2,080,000 1,040,000 520,000 

Sample 2 227 908,000 454,000 227,000 

Sample 3 1,404 5,616,000 2,808,000 1,404,000 

Sample 4 2,155 8,620,000 4,310,000 2,155,000 

Sample 5 1,022 4,088,000 2,044,000 1,022,000 

Sample 6 2,120 8,480,000 4,240,000 2,120,000 

Sample 7 686 2,744,000 1,372,000 686,000 

Sample 8 814 3,256,000 1,628,000 814,000 

Sample 9 400 1,600,000 800,000 400,000 

Sample 10 1,771 7,084,000 3,542,000 1,771,000 

Sample 11 1,578 6,312,000 3,156,000 1,578,000 

Sample 12 1,425 5,700,000 2,850,000 1,425,000 

∑ 14,122 56,488,000 28,244,000 14,122,000 
 

Platings were carried out following a one hour incubation after the electroporation to allow for recovery 

of bacteria and expression of antibiotic resistance markers. As the generation time of E. coli is expected 

to be about 20 minutes in exponential growth phase [111] and the transformation procedure is expected 

to result in a prolonged lag-phase one to two cell divisions are expected within the initial outgrowth 

incubation. In order to estimate the number of different barcodes within the transformation reactions, 

the calculated number of total colony-forming units was divided by two or four to estimate the expected 

maximum and minimum number of total transformants. 

Overall, more than 14,000 colonies were counted on the agar plates of the 12 tested transformation 

reactions and hence over 56 million colony forming units (CFUs) are expected to be contained within 

the respective transformations. When considering two cell divisions within the outgrowth phase, the 

minimum number of total transformants was estimated to be above 14 million for the 12 tested 

transformation reactions. Assuming the same mean transformation efficiency for all of the 16 

transformations carried out, the total number of barcodes is expected to contain a minimum of 18.8 and 

a maximum of 37.7 million barcodes.  

To ensure that most of the plasmids correctly carry the barcode insert, a screening PCR was performed 

using the E.coli colonies obtained from plating of the transformation reactions (Supplemental Figure 1). 

98% of the screened colonies (89/91 successful PCRs) showed correct integration of the barcode insert 

into the vector, indicating that the fraction of plasmids without barcodes was successfully minimized by 

the cloning strategy. 
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In order to balance the frequencies of barcodes within the final plasmid pool, the prepared plasmid 

isolations were pooled based on their estimated complexity obtained by colony counts. Complexity of 

transformations for which no colony counts were obtained were assumed to be equal to the average 

complexity observed over all counted platings.  

As a second independent read-out to assess the minimum number of barcodes contained within the final 

DNA-barcode plasmid pool, NGS libraries were prepared in technical triplicates using 1 ng of plasmid 

DNA as template and sequenced on an Illumina HiSeq 1500 with 48 – 65 million reads per replicate.  

Notably, the barcode was cloned undirectionally, enabling the barcode insert to integrate in one of both 

directions into the vector. As one of the PCR primers for amplification of the barcodes needed to anneal 

outside of the insert in order to generate an amplicon of sufficient size, only half of the barcodes within 

the pool can be amplified and sequenced using the given library preparation workflows.  

All barcode sequences detected within the sequencing data were binned by a hamming distance of four 

in order to reduce artefactual barcode calls arising from PCR and sequencing errors. The distance 

threshold was empirically determined by binning the detected barcodes by hamming distances of 1 to 6. 

(Figure 10). 

 

Figure 10: Number of barcodes detected within the technical triplicates of the sequenced high-complexity barcode plasmid 
pool after clustering of barcode sequences using different hamming distances. The number of barcodes is relatively stable 
between hamming distances 1 to 4, indicating that most amplicons only carried one sequencing error. With hamming distances 
of 5 or greater, barcode cluster counts significantly decrease due to real barcode sequences present in the library being binned 
together. 

Most barcode artefacts were already removed by binning of barcodes using a hamming distance of one 

with only minor differences up to a distance of four. At hamming distances of five and six the number 

of total barcodes significantly dropped, suggesting that true barcodes not derived from sequencing and 

PCR errors are being binned together. Consequently, a hamming distance of four was used for clustering 

of barcodes within the sequencing data in order to minimize false-positive barcode calls. 
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Figure 11: Number of unique and shared barcodes across technical replicates of the DNABC plasmid pool after binning of 
barcodes using a hamming distance of 4. About three million barcodes unique to each library replicate were detected. 130,000 
– 160, 000 barcodes were shared between any two replicates. 

After binning of barcode sequences using the established hamming distance threshold of 4, over 3 

million barcode clusters were detected within each technical replicate, summing up to a total of over 9.6 

million unique barcodes (Figure 11). Furthermore, for each technical replicate the fraction of barcodes 

detected within other replicates was consistently below 10% indicating that the plasmid pool has not 

been sequenced to saturation and is likely to contain even more barcodes. 

Comparing the number of barcodes derived from plating of transformations and sequencing results of 

the plasmid pool shows that both estimates agree well. Estimations from colony counts suggested a 

complexity of about 19 to 39 million barcodes. As only half of the barcodes, having the correct 

orientation, can be read out using the established PCR workflow, 9.5 to 19.5 million barcodes were 

expected to be detectable. A total of 9.6 million unique barcodes detected via NGS agrees with this first 

estimation. As indicated by the relatively small overlaps between technical replicates, the plasmid pool 

was not sequenced to saturation and likely contains even more barcodes.  

Taken together, the workflow for the generation of the barcode plasmid pool demonstrated very high 

efficiency, enabling the generation of about 10 million unique barcode plasmids. 
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4.1.2.2 The DNA barcode lentiviral pool exhibits sufficiently high complexity for use in AML Pdx 

experiments 

 

A high complexity barcode plasmid pool containing about 10 million barcodes has been created. To 

apply these barcodes for labelling of cells, lentivirus particles need to be produced using this plasmid 

pool. The lentiviral pool can then be used to transduce cells and thereby label them with the barcodes. 

Production of lentiviral particles was carried out by Christina Zeller, whereby lentiviruses were 

produced in multiple parallel cultures in order to retain as much complexity within the barcodes as 

possible.  

To estimate whether enough barcodes are left within the lentiviral barcode pool, Nalm6 cells were 

transduced in five replicates with the lentiviral high-complexity DNA barcode pool. Two days after 

transduction, cells were washed and used for preparation of gDNA. The resultant gDNA was used to 

create sequencing libraries in technical triplicates from all five transduction reactions.  

 

Figure 12: Number of detected barcodes unique to and shared between biological replicates of Nalm6 cells transduced with 
the lentiviral DNABC pool. More than 100,000 barcodes were detected within each biological replicate. Overlaps between the 
detected barcodes of two samples were generally very small, ranging from 176 to 251 barcodes. Only 1-2 barcodes were shared 
between any three replicates and none were shared between 4 or all replicates. 

 

Library preparation from isolated gDNA of transduced cells was carried out in technical triplicates and 

worked as expected without detectable off-target amplifications. The sequencing results showed 
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100,000 to 120,000 barcodes being detected within each lentiviral transduction after binning of barcode 

sequences using a hamming distance of four (Figure 12).  Only 176 to 254 barcodes were shared between 

any two samples. These minimal overlaps between the transduced replicates as well as the high number 

of over 100,000 barcodes being unique to every samples indicate that the virus production carried out 

by Christina Zeller could preserve the plasmid pools complexity.  

As experiments involving the AML Pdx mouse model are limited to transplantation of a maximum of 

one to five million cells to prevent thrombosis and AML Pdx  lines usually show LIC frequencies of 

about one in 300 to 5000 cells [112], the number of leukemic stem cells is expected to be well below 

20,000 cells even in extreme experimental setups. Hence, the lentiviral barcode pool is sufficiently 

complex to minimize the risk of labelling two different cells with the same barcode and enables accurate 

quantification of cell numbers. 

In summary, the pool of lentiviral particles created from the high-complexity DNA-Barcode plasmid-

pool demonstrated sufficiently high complexity for accurate counting of barcoded cells within the 

proposed AML Pdx model system. 

 

 

4.1.2.3 The expressed barcode plasmid pool contains well over 500,000 barcodes 

 

As for the high-complexity barcode library, two independent measures – colony counts of 

transformation reactions as well as sequencing of the plasmid pool – were used to estimate the number 

of barcodes contained within the plasmid pool.  

A total of 23 transformation reactions were used to transform the cloned plasmid pool into E.coli. In 

contrast to the high-complexity barcode pool, heat-shock transformations instead of electroporations 

were utilized. 1% from eight of the 23 transformation reactions were used for plating to estimate the 

number of total CFUs (Table 11). Over 900,000 CFUs were present within all eight analyzed 

transformation reactions. Considering one to two cell divisions within the one hour of outgrowth before 

plating of the cells, about 230,000 to 460,000 transformants are expected to be contained within these 

transformations. Assuming similar efficiencies for all transformation reactions, 670,000 to 1.3 million 

total transformants are expected to be present within the complete pool 23 transformations. 
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Table 11: Estimation of the complexity of the expressed barcode plasmid pool by colony forming units (CFUs). For 8 of 23 
transformation reactions 1% of the total reaction volume was used for plating and subsequent colony counting in order to 
estimate the total number of transformants. To account for 1-2 potential cell divisions within the one hour of outgrowth before 

plating, total CFUs were divided by two or four in order to estimate the maximum and minimum number of total transformants 
expected to be present within the transformations.  

Sample 
Colony 
count 

Total CFUs 
Maximum total 
transformants 

Minimum total 
transformants 

Transformation 1 985 98,500 49,250 24,625 

Transformation 2 572 57,200 28,600 14,300 

Transformation 3 1,021 102,100 51,050 25,525 

Transformation 4 1,295 129,500 64,750 32,375 

Transformation 5 1,527 152,700 76,350 38,175 

Transformation 6 1,608 160,800 80,400 40,200 

Transformation 7 1,021 102,100 51,050 25,525 

Transformation 8 1,295 129,500 64,750 32,375 

∑ 9,324 932,400 466,200 233,100 
 

Additionally, the fraction of plasmids not carrying a barcode insert was estimated by screening some of 

the counted colonies via colony PCR. This fraction should generally be smaller than 5% in order to 

allow for quantitative tracking of cells [113]. Here, only 2 of 62 (3%) successful PCRs indicated a 

missing barcode insert making the plasmid preparations suitable for precise barcoding experiments 

(Supplemental Figure 3). As the expected complexity was high enough and the fraction of plasmids not 

carrying barcodes was below 5%, all plasmid preparations were pooled in equimolar ratios to create the 

final plasmid pool for the low-complexity barcode. 

For a second independent readout to estimate the overall number of barcodes contained within the 

expressed barcode plasmid pool, NGS libraries with 50 pg plasmid as template were prepared in five 

technical replicates.  
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Figure 13: Number of detected barcodes unique to and shared between technical replicates of NGS libraries from the expressed 
barcode plasmid pool. About 300,000 to 350,000 barcodes were detected within library replicates with 50,000 to 60,000 
barcodes being unique to each replicate. As the total number of detected barcodes is already close to the maximal theoretical 
complexity, the high fractions of shared barcodes between the samples are expected. 

Every technical replicate showed 300,000 – 350,000 different barcodes with a total of 782,406 unique 

barcodes being detected across all five replicates (Figure 13). This is already relatively close to the 

theoretical maximum of 410 or about 1.05 million barcodes. Therefore binning of barcodes by their 

hamming distance to correct for sequencing errors cannot be applied here, as the average distances 

across the detected barcode sequences are too small and many real barcodes would be binned together. 

However, the number of detected barcodes is in good agreement with the number of expected barcodes 

determined by CFUs of the transformation reaction (Table 11).  

Additionally the expressed barcodes will only be used in small scale experiments, where a maximum of 

few hundreds barcoded cells are expected. Consequently, even if 50% of the barcodes detected within 

the plasmid pool are derived from technical errors, the pool’s complexity would still be sufficiently high 

to enable unique labelling of small cell populations.  

Although about 300,000 barcodes are detected in individual replicates, only 50,000 to 60,000 of these 

are not shared with any other replicate. These relatively big overlaps between the replicates are expected 

due to the limited maximal complexity of about one million barcodes and the high number of barcodes 

detected within each replicate, which already represent about one third of the maximum possible 

complexity of the barcode.  Hence, the high fractions of barcodes shared between the biological 
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replicates are not derived from bottlenecks within the cloning procedures, but from the overall limited 

complexity of the utilized short expressed barcode sequence. 

Taken together, the workflow for the creation of the expressed barcode plasmid pool yielded a high 

overall complexity that comprised over 70% of the maximum theoretic complexity. 

 

4.1.2.4 The expressed barcode lentiviral pool exhibits sufficient complexity for use in small-scale AML 

Pdx experiments 

Generation of the pool of lentiviral particles from the lentiviral vector poses another experimental 

bottleneck that may significantly reduce the total complexity of barcodes present. Therefore, as for the 

high-complexity barcode pool, generation of lentiviral particles was scaled up and carried out in many 

parallel reactions by Christina Zeller. The produced expressed barcode virus was used to transduce a 

population of Nalm6 cells in three biological replicates. Subsequently, cells were harvested and gDNA 

was prepared. For each of the three samples NGS libraries were prepared in technical triplicates.  

Over 7,000 barcodes could be detected in samples 2 and 3, whereas only half were present within 

sample 1 (Figure 14). This decreased complexity in sample 1 indicates problems at the lentiviral 

transduction step. A lower multiplicity of infection likely resulted in fewer cells being barcoded and 

hence fewer barcodes being detected. 

 

Figure 14: Number of detected barcodes unique to and shared between biological replicates of Nalm6 cells transduced with 
the lentiviral expressed barcode pool. The complexity of the lentiviral is sufficient for uniquely barcoding hundreds of cells. 
Minimal overlaps were detected between the different transductions. Significantly decreased barcode counts in ‘transduction 1’ 
might indicate problems at the lentiviral transduction step for this sample. 
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34 to 70 barcodes were shared among any two samples whereas two barcodes were detected in all three 

samples. However, these barcodes were prominent in one sample and were typically only detected in 

one technical replicate of the other samples. Therefore the observed overlaps may rather be caused by 

slight cross-contaminations that occurred during library preparations. Additionally, these overlaps are 

sufficiently small to enable unique labelling of a few hundred cells with no or only minimal barcode re-

usage, thereby enabling highly accurate quantification of small barcoded populations. 

Taken together, the final pool of lentiviral particles created from the expressed barcode plasmid pool 

showed sufficient complexity for the planned experimental setups in which not more than a few hundred 

barcoded cells are expected. 

 

4.1.3 Barcoding enables quantification of the bottleneck in serial passaging of AML Pdx 

samples 

 

An important consideration when using Pdx lines in animal models is whether the heterogeneity 

contained within the Pdx line is retained upon serial transplantation. If too few cells engraft upon re-

transplantation, small subclones may be irreversibly lost in later passages. Therefore as a first use-case 

the new DNA barcode system was used to determine the number of cells engrafting when transplanting 

cell numbers routinely used in the AML Pdx model established at the Jeremias lab (Helmholtz Zentrum 

München).  

To assess the number of leukemic cells engrafting and expanding within the utilized mouse model when 

transplanting cell numbers typically used for passaging of these Pdx lines, cells from the established 

AML491 Pdx line were transduced using the DNA-Barcode lentiviral pool. 550,000 cells were 

transplanted into each of six recipient mice. Mice were sacrificed after developing full-blown 57 days 

post injection. The gDNA of the re-isolated Pdx cells was used for preparation of barcode libraries in 

technical triplicates and sequenced on a HiSeq.  

The obtained sequencing data indicated a strong skewing of frequencies among detected barcodes. 30 

to 37% of the detected barcodes made up 99% of the barcoded cell populations. (Figure 15A, red lines) 

Although most of the technical noise from library preparations and sequencing should have been 

removed by clustering of barcodes based on their sequence similarity, it cannot be excluded that the 

barcodes showing very low frequencies are derived from technical artifacts [108, 114]. 



 

50 

 

Therefore barcodes were additionally filtered for being detected in two of three technical sequencing 

library replicates, in order to provide a more conservative estimate for the number of cells engrafted per 

mouse. 

 

Figure 15: Skewing of barcode frequencies and number of engrafted barcodes for quantification of the passaging bottleneck. 

In the AML-491 Pdx line. (A) Cumulative fractions of barcodes sorted by decreasing abundance before (red) and after (green) 
filtering for barcodes present in at least two of three technical replicates per sample. Barcodes frequencies are significantly 
skewed, as indicated by Gini indices of 0.79 – 0.85 after filtering, suggesting subclonal heterogeneity in the utilized AML-491 
Pdx line. (B) After application of additional filtering, a median of 214 barcodes is estimated to have engrafted per mouse. 

By applying this additional filtering, 35 – 43% of the lowest frequency barcodes within each mouse 

were additionally discarded, resulting in 51 – 54% of barcodes making up of 99% of the barcoded cell 

population (Figure 15A, green lines). Nevertheless, the remaining barcodes still showed a high degree 

of skewing in their relative frequencies with Gini indices ranging from 0.79 to 0.85. Hence, this skewing 

likely reflects the sample’s subclonal heterogeneity, with barcodes representing slowly growing 

subclones being significantly underrepresented after in vivo expansion, especially at the very late time 

point of full blown leukemia analyzed in this experiment. 

The filtered barcode data was used to determine the number of cells engrafting in the recipient mice. 

Overall a median of 214 engrafted cells were present across analyzed mice (Figure 15B).  

Hence, on average only one 0.04% of the 550,000 injected cells are still present at the final stage of full 

blown leukemia. This represents the overall bottleneck for serial transplantation and outgrowth to the 

final stage using this particular AML-491 Pdx line. Due to the additional filtering applied here, the 

determined bottleneck size is a conservative estimate and should rather be interpreted as a lower 

boundary. Assuming that all cells or subclones within the sample have the same likelihood to engraft, a 

specific clone would need to be present at 0.47% (i.e. a fraction of 1/213), to enable engraftment. 
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However, in order to estimate suitability of transplanted cell numbers for maintaining the Pdx line’s 

heterogeneity, sampling effects need to be considered. According estimates based on the Poisson 

distribution, five cells of one subclone need to be sampled on average in order to reach a 99% probability 

to sample at least one cell of this subclone (Formula 1). 

𝑃(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
 

𝐹𝑜𝑟 𝜆 = 5:  𝑃(𝑋 ≥ 1) = 1 − 𝑃(𝑋 = 0) = 1 −
50𝑒−5

0!
= 1 − 𝑒−5 = 1 − 0.0067 = 0.9933 

Formula 1: Poisson likelihoods. In order to ensure that at least one cell of a specific clone is transplanted with 99% probability, 
the average number of cells sampled from this clone needs to be at about 5. Λ = mean of distribution, here: average number 
of cells sampled; k = number of cells sampled.  

 

When assuming that all cells within this Pdx line have the same probability to engraft and proliferate 

equally fast, the tested transplantation setup allows to re-engraft subclones with as low as 2.3% 

frequency with over 99% probability. Consequently, no substantial loss of heterogeneity is expected to 

occur for this Pdx line. 

In summary, cellular barcoding successfully allowed to comprehensively test the experimental scheme 

for serial passaging of the well-established AML-491 Pdx line. Using previously established techniques 

at the collaborators’ laboratory this read-out would only have been possible indirectly, by serially 

passaging of cells across multiple generations in parallel to screening for the presence of known 

subclonal mutations via targeted next-generation sequencing. 

 

4.1.4 Cellular barcoding allows to estimate LIC frequencies in leukemic Pdx samples with 

fewer mice than traditional limiting dilution transplantation assays 

 

One important key characteristic of leukemic Pdx lines is the frequency of leukemic stem cells, also 

called leukemia initiating cells (LICs), present within the sample. These cells have self-renewal 

capacities theoretically allowing a single engrafting cell to cause a fully developing AML disease within 

recipient mice [115]. This key characteristic is usually determined by using limiting dilution 

transplantation assays (LDTAs) [116-119] in which different low cell numbers are each transplanted 

into multiple mice. Observations of un-/successful engraftments are then used to estimate the frequency 

of LICs.  
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As a proof-of-principle application for the low-complexity expressed barcode, an experimental setup to 

replace the classical limiting dilution transplantation assay for determination of LIC frequencies within 

Pdx lines was tested. Here, instead of the binary read-out of whether cells do or do not engraft at certain 

transplanted cell numbers the cellular barcodes enable quantification of how many different cells 

engrafted. Therefore, the total number of mice needed can be significantly reduced when using higher 

cell numbers for transplantations to ensure engraftment within every experimental mouse, 

 

Figure 16: Experimental setup for estimation of LIC frequencies and isolation of single-cell derived subclones using the low-

complexity barcode. Donor cells are transduced using the low-complexity barcode and different numbers of barcoded cells are 
transplanted into multiple recipient mice. Leukemic cells are re-isolated after outgrowth and a fraction of cells is used for 
barcode library preparation in order to determine the number of engrafted barcodes. 

Hence, the lentiviral pool was used to barcode two Pdx samples, AML-491 and AML-661 in order to 

determine their LIC frequencies. The transduced Pdx cells were transplanted into multiple recipient mice 

at different cell numbers (Figure 16). Here, relatively low amounts of cells were chosen to enable 

determination of the LIC frequency using cellular barcodes as well as the routinely used read-out of un-

/successful engraftment. Barcoded cells of successfully engrafted transplantations were re-isolated and 

used for preparation of barcode sequencing libraries in technical triplicates. 

A total of 33 mice were utilized to determine the LIC frequency of the AML-491 line of which 26 mice 

showed successful engraftment (Table 12), whereas 16 out of 19 mice were positive for the AML-661 

Pdx line.  

In order to assess the LIC frequency using cellular barcodes, sequencing libraries were prepared in 

technical triplicates for 18 mice engrafted with AML-491 and 12 mice showing engraftment with the 

AML-661 line. The number of barcodes detected per sample were used for a linear regression through 

the origin in order to determine the samples’ LIC frequencies (Figure 17), showing a good agreement 

between the number of cells injected and the number of barcodes detected within the sample. 
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Figure 17: Relationship between injected cells and detected barcodes for the Pdx lines AML-491(A) and AML-661 (B). Linear 
regression through (0,0). Slopes of the regression lines represent the LIC frequency of the respective sample. Grey areas 
represent 95% confidence intervals. For better discrimination points were slightly jittered. Red boxes mark samples for which 
only one barcode was detected.  

Linear regression indicates a LIC frequency of 1:1,620 for the AML-491 line (Figure 17A). Previously 

published data for the AML-491 line estimated a LIC frequency of 1:1,799 (95% CI: 1:945 – 1:3,426) 

[112]. Although samples within this study were derived from different passage numbers, the determined 

LIC frequencies agree very well. 

The engraftment rates observed at the different cell doses of each Pdx line (Table 12) within this 

experiment were used by Christina Zeller (Helmholtz Zentrum München) to estimate the respective LIC 

frequencies using the ELDA software [107]. 

Table 12: Recipient mice of the two Pdx lines AML-491 and AML-661 transplanted with different cell numbers. Using the 
number of non-/engrafted mice at each cell number, LIC frequencies were determined by Christina Zeller using the ELDA 
software[107] 

Pdx line 
cells 

injected 
engrafted / total 

mice 
Mean LIC frequency  

(95% CI) 

AML-491 

33,000 1 / 3 

1:5,810 
(1:3,328 - 1:10,143) 

32,000 1 / 1 

21,400 1 / 1 

16,500 1 / 1 

11,000 8 / 9 

3,300 8 / 9 

1,100 6 / 9 

AML-661 

10,000 1 / 1 

1:525 
(1:237 - 1:1,161) 

3,000 4 / 5 

1,000 5 / 5 

300 2 / 4 

100 4 / 4 
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In contrast to the published data and the barcoding read-out from this experiment, the AML-491 line 

was estimated to have a LIC frequency of about 1:5810 (95% confidence interval: 1:3,328 – 1:10,143) 

by using the modelling approach based on observed engraftment rates. 

This discrepancy is clearly caused by experimental outliers at the highest cell dose of 33,000 injected 

cells at which only one of three mice showed positive engraftment. As lower cell doses consistently 

showed significantly higher engraftment rates the observed drop-outs at the highest dose are clearly 

caused by additional technical noise, e.g. at injection of cells. When not considering the highest cell 

dose, the estimated LIC frequency increases more than 2-fold to a mean of 1:2,145 (95% CI: 1:1,182 – 

1:3,895) and generally agrees with the quantification derived by the barcoding approach. 

The LIC frequency within the AML-661 Pdx line is significantly higher, as it represents a sample of the 

same patient but derived from the second relapse, which was clinically more aggressive. The barcoding 

read-out for the AML-661 Pdx line determined a LIC frequency of 1:190 (Figure 17B), whereas the 

binary read-out of engraftment rates modeled an estimated LIC frequency of 1:525 (95% CI: 1:237 - 

1:1,161). Although this discrepancy is smaller than previously observed for AML-491, the barcoding 

results again suggest a higher LIC frequency. A possible explanation is the reduced number of mice 

(n=19) utilized for the AML-661 line compared to the AML-491 line (n=33), which decreases the 

precision of the classical LIC frequency estimation by engraftment rates [107]. To allow for a more 

accurate estimation using this approach, additional mice receiving lower cell numbers would have been 

necessary in order to increase confidence of engraftment rates at low cell numbers. 

However, as this experiment was designed to enable comparison of both readouts, engraftment rates and 

the number of barcoded cells within engrafted samples, a compromise had to be made in order to reduce 

the number of mice within the experiment. While transplantation of low cell numbers close to the 

samples’ LIC frequencies are most informative when estimations rely on engraftment rates, the barcode 

approach profits from higher cell numbers due to the decreased technical noise, e.g. from serially 

diluting the cell population. Generally, the estimation of LIC frequencies by determining the number of 

engrafted barcoded cells should be rated as more precise due to the increased robustness of the 

quantitative data compared to the binary read-out of engraftment rates. 

In summary, it could be shown that cellular barcoding allows to replace the classical limiting-dilution 

transplantation assay using a similar experimental setup. The barcode read-out enables acquisition of 

more detailed information per mouse, by providing a quantification of the number of cells engrafted. In 

combination with higher cell doses to minimize the fraction of mice showing no engraftment, cellular 
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barcoding can contribute to the reduction of experimental mice needed to assess LIC frequencies in Pdx 

models.  

 

4.1.5 Cellular barcoding enables identification of isolates derived from a single leukemia 

initiating cell 

 

Prior data from targeted sequencing indicated that the Pdx lines utilized for determination of LIC 

frequencies, AML-491 and AML-661, contain multiple genetically different subclones [106, 112]  

Furthermore, both Pdx lines are derived from the first and second relapse of the same patient and hence 

represent the same leukemia case at different stages of the disease. Therefore, samples from the barcoded 

LDTA experiment (4.1.4) that only had one barcode detected potentially represent cell populations of 

distinct subclones from different stages of the disease from a single individual. Consequently, these 

isoltes enable further phenotypic characterizations of these isolated subclones. Viable cells from all 

samples generated within the barcoded LDTA experiment were frozen. 13 samples that showed presence 

of a single barcode were further passaged in new recipient mice. Unfortunately, one of the samples failed 

to re-engraft within the mouse model. In order to verify that the remaining 12 isolates were indeed 

derived from single cells, all samples were analyzed for their barcode composition within later passages. 

No additional barcodes could be detected, indicating the successful isolation of single-cell derived 

subclones in eight cases for the AML-491 and four cases for the AML-661 Pdx line. 

Christina Zeller (Helmholtz Zentrum München) further investigated the isolated subclones in order to 

analyze the intratumoral heterogeneity within this AML case. Based on known mutations in driver genes 

as well as exome sequencing, the isolated populations were identified to represent four genetically 

distinct subclones.  For further experiments all samples were lentivirally marked with a unique 

combination of fluorphores, allowing to engraft multiple subclones within one mouse and analyze 

composition of mixed populations via flow-cytometry. In vivo experiments could identify significant 

differences in LIC frequencies as well as growth behavior and resistance towards chemotherapeutic 

treatment between subclones. Furthermore, information from phenotypic characterization of treatment 

resistance in combination with proteomics and transcriptomics data defined a score comprising 16 genes, 

which could be successfully used to predict outcome in data of a large independent AML patient cohort. 

This emphasizes that the characteristics observed within subclones of a single AML case can indeed be 

used to study general features of the disease. 

Results of this study have been recently published as “Adverse stem cell clones within a single patient’s 

tumor predict clinical outcome in AML patients” in the Journal of Hematology & Oncology [120]. 
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4.1.6 In vivo treatment of barcoded AML Pdx samples 

 

In many cases cellular genetic barcoding is used to analyze differential representations of cells within 

populations that underwent different experimental conditions, i.e. selective environmental pressures. In 

order to show, that the established high-complexity barcode system is capable of detecting such changes 

a new experimental setup was designed. As the established barcoding system will in the future mainly 

be used within patient-derived xenograft models of human AML cells this experiment relies on the well-

established AML491 Pdx line.  

The AML491 Pdx line is known to consist of multiple genetically different subclones and is sensitive 

towards in vivo therapy using Cytarabine (Ara-C) [106, 112]. Hence, it is well suited to analyze the 

effects of cancer treatment on the composition of a heterogeneous population of leukemic cells. In order 

to increase the chance of observing subclones that differentially respond towards chemotherapeutic 

treatment a low passage number of the AML491 Pdx line was chosen for barcoding.  

 

Figure 18: Experimental overview of the in vivo treatment experiment. Cells from an early passage of Pdx line AML491 were 
expanded within a donor mouse and transduced in vitro using the high-complexity barcoding virus. 500,000 cells were injected 
into each of 13 primary recipient mice in order to amplify the barcoded cells. After 47-49 days cells were harvested, 
subsequently mixed and 5 million cells were injected into each of 15 secondary recipient mice. The start group (n=5) was 
sacrificed and bone marrow cells isolated 21 days after transplantation of cells into secondary recipients. The remaining mice 
were treated for three weeks with four treatments with either PBS (Control Group) or 50 mg/kg Ara-C (Therapy Group). 

To allow for a direct comparison between cells that receive chemotherapeutic treatment and the controls 

that grow without additional selective pressure within the mouse model, an additional round of cell 

amplification was included in the experiment (Figure 18). After lentiviral barcoding of the initial cell 

population, successfully transduced cells were transplanted into primary recipient mice to allow the 

barcoded cells to expand. This expansion enables the use of more biological replicates, i.e. experimental 

mice, in the subsequent experiment by increasing the number of available cells. Additionally, due to cell 

divisions every barcode will be represented by multiple cells, thereby potentially allowing the 

observation of the same barcodes within all secondary recipients and enabling direct comparison of 

barcoded cell populations within different mice. 
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Here, 82M cells were obtained from 13 primary recipient mice. Cells were mixed and 5 million cells 

were transplanted into each of 15 secondary recipient mice. Three groups of five secondary recipient 

mice were harvested at the time point of therapy start (d21, Start group) as well as after receiving three 

blocks of either Ara-C treatment (d41, Therapy group) or PBS as negative control (d42, Control group).  

Due to severe weight loss one mouse of the therapy group had to be taken down before administration 

of the second therapeutic block. Data from this mouse were therefore excluded from analysis, reducing 

the number of biological replicates in the therapy group to four. 

For each remaining mouse gDNA was isolated from bone marrow cells and barcode sequencing libraries 

were prepared in technical triplicates. 

 

 

4.1.6.1 Amplification mice enable passaging of barcoded cells into multiple secondary recipient mice 

sharing the most common barcodes 

 

The first important aspect of this experiment relates to the use of primary recipients to amplify barcoded 

cell populations in order to enable engraftment in multiple secondary recipients and thereby direct 

comparison of barcode frequencies between these mice. 

To facilitate direct comparisons of cell populations between different conditions within an experiment 

barcodes need to be present in multiple mice in order to compare their relative frequencies and thereby 

the relative fitness of the underlying clonal cell population. Here, the initial barcoded cell population 

was further expanded in primary recipient mice in order to expand the cell population and allow for 

engraftment of the most common barcodes within all secondary recipients. 

The generated barcode sequencing data indicated about 800 barcodes within the initial pool of cells after 

in vivo amplification and about 200 to 400 barcodes within each secondary recipient mouse (Figure 19, 

lower left panel). As expected, many barcodes that were only present at low frequencies within the initial 

pool of amplified barcoded cells (‘Pooled input’), did not engraft in any secondary recipient mouse (312 

barcodes) or were exclusive to only one mouse (16-38 barcodes) (Figure 19, orange boxes). 
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Figure 19: Number of detected barcodes within all biological samples. 312 barcodes were unique to the amplified cells from 
primary recipients (Pooled input) and 16-38 barcodes were unique to secondary recipient mice (orange boxes). 91 barcodes 
were detected within all samples (green box). 

 

However, a subset of 91 barcodes was shared across all 14 secondary recipients (Figure 19, green box). 

Including barcodes only missing within one secondary recipient a total of 122 barcodes can be utilized 

to directly compare their frequencies among the experimental groups, which allows to also investigate 

minor subclones that may be present in the sample.  

This emphasizes that the tested experimental setup is suitable to analyze barcoded cell populations in 

replicates within the Pdx model, thereby enabling robust and direct analysis of subclonal responses to 

stimuli like chemotherapeutic treatment. 

 

4.1.6.2 Cellular barcoding allows to identify differential response of leukemic subclones towards in vivo 

chemotherapeutic treatment  

 

During the course of the experiment all mice were monitored for their leukemic burden by 

bioluminescent imaging. Starting from the first treatment, a strong reduction in leukemic burden was 

observed in mice of the therapy-group compared (Figure 20A), as determined by in vivo bioluminescent 

imaging. In contrast, mice within the control group that did not receive chemotherapeutic treatment 

showed continuous expansion of the leukemic cells.  
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In agreement with the reduction in leukemic burden, a steady decrease in the number of detected 

barcodes within the samples from experimental start to end was visible (Figure 20B). 826 barcodes were 

detected within the pooled cells of primary recipient mice (‘input’).  After transplantation of cells into 

secondary recipients, followed by an outgrowth period of 21 days about 430 barcodes, representing half 

of the initial complexity, were still detectable within mice of the start group (‘start’). Samples of the 

control group (‘control’), obtained 41 days after transplantation into secondary recipients, showed a 

further reduction in complexity with an average of 281 barcodes detected per mouse. Barcoded 

populations of the therapy group (‘therapy’) displayed a median of 197 barcodes per mouse, 

representing the overall lowest complexity seen within the experiment. 

 

Figure 20: Tumor growth and complexity across experimental time points of the in vivo treatment experiment. (A) Data from 
bioluminescent imaging indicating the total leukemic burden within secondary recipient mice. Upon Ara-C in vivo treatment 
(indicated by asterisks) tumor burden is significantly decreased within the therapy group in contrast to the control group. (B) 
Number of barcodes detected within each biological sample, or mouse respectively. The number of detected barcodes step-
wise decreases from the initial pool of barcoded cells (input), over the early time point (start group) to the control group and 
finally the treatment group. (C) Pseudo-Fishplot illustration of relative barcode frequencies over time. Each barcode is 
represented by one colored line, with its thickness representing the relative frequency. Barcodes are ordered by their initial 

frequency within the cell pool injected into secondary recipients. Relative barcode frequencies at each time point are averaged 
across biological replicates. Note that Control and Therapy groups were both sampled on the same day (41 dpi) and only 
separated for illustration purposes. 
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As all secondary recipient mice were transplanted using the same expanded population of barcoded 

cells, the most common barcodes are shared between them, enabling direct comparison of the 

composition of the leukemic cell population between the experimental groups (Figure 20C). Comparison 

of the amplified cell population used for transplantation into secondary recipient mice (‘Input’) to the 

data obtained from mice of the start group (‘Start’) shows that all barcodes initially present at high 

frequencies further expand until 21 days after injection. Hence, barcodes initially present at low 

frequencies are further attenuated, resulting in the observed reduction of overall detected barcodes. The 

same reduction in low frequency barcodes, though less drastically, can be observed when comparing the 

time points 21 (‘Start’) and 41 days (‘Control’) after injection of the cells. However, in contrast to the 

early growth phase not all barcodes present at high frequencies at day 21 display further expansion. 

While some barcoded cells continue to grow faster than the average, thereby making up higher fractions 

of the barcoded population (Figure 20C, barcodes in light green, gray and purple), other prominent 

barcodes show constant  (Figure 20C, dark green) or slightly decreased relative frequencies (Figure 20C, 

yellow). At day 41 after injection mice already displayed full blown leukemia within the ‘Start’ group, 

as indicated by the strong bioluminescent signal (Figure 20A). Hence, the slightly changed expansion 

pattern might be the result of elevated selectional pressure due to increased competition among leukemic 

cells. Finally, comparison of the ‘Therapy’ group to the ‘Control’ group, which did not receive 

chemotherapeutic treatment, indicates that some barcodes are differentially represented with some being 

strongly enriched or depleted within the ‘Therapy’ group (Figure 20C, yellow & light green). 

In order to verify the observed differences in the mean relative barcode frequencies between the 

experimental groups DEBRA (DESeq-based Barcode Representation Analysis) was used to test whether 

these changes are statistically significant when accounting for the variance of barcode frequencies 

observed within biological replicates of the same experimental groups. 

Indeed, 39 barcodes were tested to be significantly different (FDR=0.05) between the ‘Control’ and 

‘Therapy’ group (Figure 21). Thus, these barcodes represent at least two distinct subclones that display 

either increased resistance or sensitivity towards chemotherapeutic treatment compared to the average 

barcoded leukemic cell population and subsequently show significant enrichment or depletion when 

comparing barcode frequencies between these groups. These results demonstrate that the established 

barcoding construct allows for direct identification of chemotherapeutic resistance within AML Pdx 

lines. 



 

61 

 

 

Figure 21: Differentially represented barcodes between mice of the Control and Therapy group. Frequencies of 39 barcodes 
showed statistically significant changes between conditions (highlighted in red, FDR 0.05. Barcodes enriched in the treatment 
group (positive log2-Fold-Changes, 17 BCs) represent at least one subclone that displays weaker response towards the 
chemotherapeutic treatment compared to the population mean. On the other hand barcodes significantly represented at lower 
frequencies in the Therapy group (22 BCs) are more sensitive towards treatment compared to the population average of 
barcoded leukemic cells. The observed differences prove the presence subclones that show increased resistance towards in 
vivo treatment in the AML-491 Pdx line. 

 

Similarly, 73 barcodes were identified to be differentially represented (FDR 0.05) when comparing 

barcoded cell populations between the ‘Start’ and ‘Control’ groups (Supplemental Figure 5), indicating 

that subclones also show phenotypic differences in the absence of the selective pressure of in vivo 

chemotherapeutic treatment. 

The observation of differences in the response towards chemotherapeutic treatment between barcoded 

cells, encouraged further characterizations of the subclones derived from this AML patient and led to 

isolation of single-cell derived subclones (as described in 4.1.5). 

Taken together, these results proof that the established barcoding construct and experimental setup are 

capable to directly detect subclonal heterogeneity within AML Pdx lines by measuring differential 

responses of subclones to environmental factors like chemotherapeutic treatments.  

Additionally, the established barcoding pools and workflows were also utilized in further projects at the 

Helmholtz Zentrum München to investigate other AML and ALL Pdx lines and will be continuously be 

used within further experiments in the future. 
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4.2 High sensitivity targeted sequencing for detection of subclonal mutations using 

single-molecule Molecular Inversion Probes (smMIPs) 

 

For the tracing of subclonal evolution in samples of AML patients as well as elderly that may display 

clonal hematopoiesis a sensitive and cost-efficient targeted re-genotyping assay using single-molecule 

Molecular Inversion Probes (smMIPs) will be established. As a first application the assay will be used 

for a first cohort study in order to verify its suitability for sensitive re-genotyping within high-throughput 

studies. 

 

4.2.1 Investigation of residual leukemia and clonal hematopoiesis of indeterminate potential in 

a cohort of AML patients in long-term remission 

 

A cohort of 357 AML patients, who are in remission for more than five years after initial treatment with 

chemotherapy and/or hematopoietic stem cell transplantation (HSCT) was recruited by Dr. Klaus 

Metzeler (Klinikum der Universität München). The collected peripheral blood samples are being 

analyzed for the presence of residual leukemia and clonal hematopoiesis. Additionally, surveys were 

collected by Dr. Luise Hartmann (Klinikum der Universität München) in order to gather additional meta-

data, thereby enabling e.g. to associate the presence of clonal hematopoiesis with the occurrence of 

cardiovascular diseases. 

In order to compare the incidence of detected clonal hematopoiesis to individuals without prior 

hematopoietic diseases a control cohort of 154 age-matched individuals was included in the study. 77 

of these samples are derived from hip surgeries, which were also utilized in another study aiming to 

elucidate the incidence of clonal hematopoiesis in elderly people using the commercial Haloplex panel 

for targeted sequencing. The remaining 82 blood samples are derived from the Covid-19 register of the 

LMU Hospital (“CORKUM”), which were obtained from patients infected with the Sars-CoV-2 virus.  

To estimate the sensitivity of the newly established assay four gDNA dilution series were created using 

gDNA from two patients in order to artificially produce variants down to 0.7% VAF. The commercial 

Haloplex assay represents the current standard methodology for targeted sequencing of AML patient 

samples at the Klinikum der Universität München. Therefore variants calls from 36 samples that had 

been previously analyzed using this Haloplex panel were compared between both methods. As a last 

additional quality control, sequencing libraries for 16 patient samples were prepared twice from 

independent gDNA extractions in order to assess reproducibility of variant calls. 
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Downstream analyses involving the detected variants and incidence of clonal hematopoiesis within the 

AML patients in long-term remission and the control group are carried out by the group of Prof. Dr. 

Klaus Metzeler. Therefore data about detected variants are not further discussed within this work and 

are planned to be published in a separate research article. 

 

4.2.2 Design of an enhanced cost-efficient smMIPs panel compatible with standard sequencing 

primers to target known AML and CHIP driver genes 

 

One drawback of regular smMIP panels is the use of a backbone sequence that is not compatible with 

standard Illumina sequencing primers. This backbone provides a universal sequence to allow for PCR 

amplification of the captured sequences, thereby introducing sample indices and fragment ends needed 

for binding to the flow-cell when using Illumina sequencing. These sequences were designed to enable 

robust PCR amplification, but are not compatible with standard Illumina sequencing primers. Hence, 

Illumina sequencers need to utilize custom primers in order to sequence these libraries, which prohibits 

the sharing of flowcell lanes with unrelated sequencing libraries. As sequencing costs are higher when 

using smaller flowcells or sequencers, such as Illumina NextSeq 500, this increases costs for sequencing 

of larger library pools. 

 

Figure 22: (A) Schematic of the tiling strategy used for selection of probes (black) within the smMIP panel. If suitable probes 
with high predicted performance were available, neighboring probes were chosen to hybridize to opposite strands of the gDNA  
template (green) in order to avoid sterical hindrance. (B) Schematic of the newly designed smMIP backbone. The standard 
backbone was replaced in order to facilitate sequencing without the neccessity for custom sequencing primers. 
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To circumvent this problem the backbone of the smMIPs was re-designed to incorporate sequences 

compatible to Illumina’s standard sequencing primers while not altering the length of 30 nucleotides of 

the backbone (Figure 22B). Consequently, one half of the backbone consists of a sequence used to anneal 

a standard Illumina TruSeq HT P5 adapter. The other half represents the end of Illumina Nextera P7, 

normally introduced by a transposase. The mix of Nextera and TruSeq adapter sequences was chosen in 

order to avoid extensive interactions of primers during amplification.  

TruSeq adapters are typically integrated into library fragments by ligation and tend to produce primer-

dimers when both, P5 and P7, adapters are used in PCR reactions. Nextera adapters on the other hand 

are introduced in two steps into library fragments. The so called ‘mosaic ends’ are introduced by a 

transposase during the tagmentation step of library preparation and subsequently used as primer 

annealing sites for a downstream PCR which introduces the rest of the adapter. Here, the mosaic 

sequence 3’-ends of P5- and P7-sides are identical for the last 19 nucleotides [121], rendering them 

unusable as primer annealing sites in this case. Therefore, a combination of Nextera and TruSeq 

sequences was chosen to enable efficient amplification while keeping the original length of the 

backbone.  

For the amplification of smMIPs after target capturing standard TruSeq P5 adapters can be utilized. 

These primers are unaltered from their original sequences and can be used in other library preparations, 

for example when preparing (sc)RNAseq libraries [122, 123]. The Nextera adapters, however, are 

specific for smMIP library preparations, as they need to include the mosaic-sequence which is not part 

of the standard adapter sequence, as it is usually introduced within a tagmentation reaction.  

Ultimately, using this altered backbone sequencing of smMIP libraries can be carried out using standard 

sequencing primers, thereby enabling sharing of flowcell lanes with any other standard sequencing 

libraries on Illumina sequencers. 

For the design of the smMIP panel, a single-tiling strategy (Figure 22A) was chosen for covering the 

genomic target areas in order to reduce the initial costs for synthesis of the oligonucleotide probes. Here, 

target sequences are generally only captured from one of both strands of gDNA template. Double-tiling, 

in contrast, would cover both strands of the DNA throughout the target regions. Hence, single-tiled 

panels reduce the initial costs by about 50%. 

In order to obtain an optimized single-tiled smMIP panel, probes for target areas were first generated in 

a double-tiled approach and manually reduced to a single-tiled panel. This strategy in most cases allowed 

to choose neighboring probes to hybridize to different strands of the gDNA, thereby avoiding sterical 

hindrance and potentially allowing for higher hybridization efficiencies (Figure 22A). In cases where 
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known SNPs are located within the sequences targeted by the hybridization arms, two probes were 

ordered in order to allow for efficient hybridization in the presence of respective SNP on the template 

gDNA. 

For the specific application of analyzing clonal hematopoiesis as well as residual leukemia a target list 

containing the most common driver genes was created by Dr. Klaus Metzeler (Klinikum der Universität 

München). This list comprises 24 genes known to contain recurrent driver mutations in either AML or 

clonal hematopoiesis (Table 13). Depending on contexts of known driver mutations within these genes, 

either whole exons or only short mutational hot spot regions were included in the targets list. The target 

areas were kept as short as possible in order maximize sequencing depths over the most recurrent driver 

genes.  

Table 13: Gene targets of the smMIP panel. The targets comprise about 16 kb in exons and hotspot regions of 24 genes known 
to be recurrently detected as driver mutations in either acute myeloid leukemia or clonal hematopoiesis. (ITD = Internal 
Tandem Duplication region, TKD = Tyrosine-Kinase Domain). *CEBPA was removed from the targets for the final probe pool 
due to overall poor performance of all probes within this region. 

Gene Targeted Feature 
Target length 

[bp] 

ASXL1 Hotspot 817 

BRAF Hotspot 2 

CALR Exon 9 206 

CBL Hotspot 330 

CEBPA* Exon 1 1,095 

CSFR3 2 Hotspots 168 

DNMT3A Exons 10-26 2,408 

FLT3 
ITD & TKD region, 

N676 Hotspot 
269 

GNB1 Hotspot 2 

IDH1 Hotspot 2 

IDH2 HotSpot 96 

JAK2 Hotspot 2 

KIT Exons 8, 17 274 

KRAS 2 Hotspots 84 

NPM1 Hotspot 15 

NRAS 2 Hotspots 12 

PPM1D Exon 6 566 

PTPN11 2 Hotspots 144 

RUNX1 Exons 4B, 5-9 1,356 

SF3B1 2 Hotspots 35 

SRSF2 Hotspot 26 

TET2  Exons 4A, 4C, 5-11 6,261 

TP53 Exons 1-12 1,524 

U2AF1 2 Hotspots 6 

WT1 Exons 1, 3-9, 10B, 11 1,274 

  16,974 
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MIPgen [81] was used to create a list of candidate probes targeting the defined genomic regions. This 

software includes an empirically derived model based on the performance of 12,000 probes to predict 

the performance of newly designed probes. Prediction is, among other features, based on the GC-content 

of the captured sequence and the probe’s hybridization arms. Additionally, possible off-target 

hybridizations are estimated by determining the number of times the hybridization arms’ sequences can 

be found within the target genome.  

The candidate probes generated, representing a double-tiled panel, were manually reduced to an 

optimized single-tiling subset with minimized sterical hindrance between probes, as described above. 

The resultant smMIP panel comprised a total of 303 probes which were ordered as HPLC-purified 

oligonucleotides. 

 

4.2.3 Balancing of the relative concentrations per probe within the smMIP pool improves 

uniformity of coverage across targets 

 

A crucial factor for good performance of any smMIP panel is the balancing of capture efficiencies 

among the contained probes. If probes show strong differences in their efficiency to capture their target 

sequences, unique coverages and therefore the lower limit for detection of variants may greatly vary 

across the targets. In order to balance the performance across probes, the first hybridizations and 

subsequent library preparations were performed using genomic DNA derived from the GM18505 

lymphocyte cell line [82] as a standardized template.  As part of the 1000 Genomes Project [124] data 

from whole genome sequencing (WGS) and whole exome sequencing (WES), as well as SNP 

annotations derived thereof are available online. 

After sequencing the probe performances were evaluated using MIPgen by looking at the UMIs detected 

for each smMIP. As each UMI corresponds to a unique capture event, the number of detected UMIs 

provides a direct measure for the hybridization efficiencies. Iteratively, based on the relative 

performance concentrations of probes with low capture efficiency were increased within the smMIP 

pool and library preparations were repeated. 

Here, some probes showed either very low hybridization efficiencies or were not detected at all.  

Additionally, all probes targeting the CEBPA gene generally showed bad performance, that could not 

significantly improved by increasing the concentration of the respective probes within the panel. 

Interestingly, these probes also showed an increased tendency towards self-circularization, resulting in 
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library fragments not containing any sequences captured from the gDNA template. These library 

fragments subsequently produced sequencing reads not carrying any genotyping information and hence 

unnecessarily increase sequencing costs. The bad performance of all probes within this target area is 

most probably cause by its high GC content, which generally makes it hard to amplify via PCR [125].  

Therefore all probes targeting CEBPA were completely removed from the probe pool, in order to 

improve the overall efficiency of the panel. 

Furthermore, one probe used to target the NPM1 hotspot locus not only showed very high hybridization 

efficiencies but also contained unexpected homozygous variants within the captured sequence. These 

variants were not present within the SNP data provided by the 1000 Genomes project for this cell line. 

A BLAST search using the captured sequence indicated that this variant was derived from off-target 

hybridization to pseudogenes derived from NPM1. Hence, probes targeting the NPM1 mutational 

hotspot were redesigned to also target small intronic parts which are not present within the sequences of 

the pseudogenes, in order to avoid off-target hybridizations. 

The altered probe pool was again used for preparation of smMIP libraries as before. Comparison of the 

sequencing results from the initial and final smMIP pool showed that hybridization efficiencies were 

significantly more homogenous after rebalancing (Figure 23)  

 

Figure 23: Performance of the initial and final pool of smMIP probes. In order to achieve a more even coverage probes that 
showed low hybridization efficiencies were either repooled or replaced by alternative smMIPs. The lower slope of the final 
pool indicates a more evenly distribution across UMIs detected per probe and hence a more even unique sequencing coverage. 
Most probes that had little to no sequencing coverage within the initial pool were targeting CEBPA and were excluded from 
the final pool as they did not benefit from higher probe concentrations.   

Compared to the initial probe pool the final smMIP pool shows a more uniform coverage across target 

regions, as indicated by a lower slope in Figure 23.  The unique coverage of bad performing probes 

could also be enhanced by rebalancing. Additionally, performance of over-represented probes showing 
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high target capture efficiencies was reduced due to their overall lower relative concentrations within the 

probe pool. The sequences of the resultant final smMIP pool of 326 smMIPs as well as the relative 

concentration of each probe within the pool are listed in Supplemental Table 1. 

Overall, refinement of the smMIP pool during rebalancing experiments allowed to optimize uniformity 

of sequencing depth across the targets, while increasing the number of overall usable reads by excluding 

CEBPA as target, which showed extremely low capture efficiency and yielded artefactual reads without 

genotyping information.  

 

4.2.4 Design of an optimized sequencing setup allowing for robust multiplexing of up to 192 

libraries 

 

One final goal of the established smMIP assay is the ability to sequence large cohorts in a very cost 

efficient way. Generally, sequencing costs decrease when using sequencers with higher output which 

produce more reads per sequencing run. In order to utilize these cost benefits an optimized sequencing 

setup was established aiming to optimize utilization of flowcell lanes. 

As a first indicator for the number of reads necessary to detect most of the UMIs present within the 

smMIP libraries data acquired within the re-balancing experiments were used for downsampling. Raw 

sequencing reads were downsampled and the remaining number of detected UMIs was used to estimate 

the number of reads necessary to detect the majority of UMIs, representing unique capture events (Figure 

24). After a steep increase of detected UMIs the curve’s slope flattens at around one to two million 

reads, indicating that most UMIs contained within the library have been sequenced at this point. 
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Figure 24: Downsampling of sequencing data from the rebalancing experiments indicates that the majority of UMIs, 
representing unique capture events, is already being detected with 1 – 2.5 million NGS reads per library (green box). Black 
dots represent data points obtained from downsampling of sequencing data. 

The steady linear increase in total detected UMIs beyond about 2.5 million sequencing reads is most 

probably caused by sequencing errors which result in generation artefactual new UMIs. Hence, a 

sequencing depth of about one to two million read-pairs seems to be sufficient to detect most of the 

UMIs contained within the smMIP library. 

In cooperation with the GeneCenter Munich, all prepared libraries were planned to be sequenced on a 

HiSeq 1500 system. The sequencer’s output is equivalent to the newer HiSeq 2500 officially resulting 

in about 180 million reads per lane for high-output flowcells and 150 million reads per lane using rapid 

flowcells [126]. Due to optimized loading of flowcells resulting in increased cluster densities while 

retaining good sequencing data quality, sequencing runs at the GeneCenter typically yield over 200 

million reads per lane for high-output flowcells. 

Considering 1 – 2 million reads necessary per library and an effective output of about 200 million reads 

per lane, 96 – 192 libraries need to be multiplexed in order to fully utilize the flowcell lanes.  

However, the use of single indexing or combinatorial dual-indexing for sequencing libraries bears an 

increased risk for sample cross-contamination. At library preparation level, a slight cross-contamination 

of one adapter with another may lead to incorporation of wrong indices into libraries and ultimately 

assignment of sequencing reads to the wrong sample. Additionally, amplification of mixed clusters on 

the flowcell during sequencing can also contribute to a wrong sample assignment [127]. This problem 

is further increased when utilizing newer sequencers, like the NovaSeq 6000 or NextSeq 1000 systems, 

due to the use of patterned flowcells and the new Exclusion-Amplification (ExAmp) chemistry for 

cluster generation. Here, slight amounts of free indexed adapter primer present in the sequencing 

libraries can cause incorporation of these primers into any cluster on the flowcell, as binding of library 
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fragments and cluster amplification can take place simultaneously [128, 129]. In the context of the 

smMIP panel, this could cause a variant present at higher allele frequencies in one individual to also be 

detected at low variant allele frequencies in another individual due to misassigned sequencing reads, 

which has already been reported for cancer exome sequencing studies [130]. 

In nearly all cases this ‘index hopping’ is typically only observed for one of two indices present in dual-

indexed samples. Therefore, one way to efficiently avoid misassignment of sequencing reads is the use 

of a non-redundant dual-indexing setup, in which all libraries sequenced on the same lane of a flowcell 

are tagged with a unique i5 as well as a unique i7 index [85]. In order to avoid problems related to index 

hopping while also minimizing costs for indexed adapter primers, 192 indexed P5 and 96 indexed P7 

adapters were used to enable sequencing of 96-192 libraries on one lane. 

 

Figure 25: Indexing scheme for multiplexing of up to 192 libraries from 96 samples per lane with reduced risk for cross-
contamination between samples. (A) Every sample is prepared in two technical replicates. Both replicates per sample get the 
same i7-index but different i5-indices. Different biological samples are hence differ in i5- as well as i7-indices making cross-

contaminations unlikely. (B) Rotation scheme for indexing of different library batches.  In order to prevent cross-contamination 
of library fragments between library preparation batches, the combinations of i5- and i7-indices are altered by shifting the 
pipetting scheme for one of both adapters. 
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To increase the overall sensitivity, sequencing libraries for every individual are planned to be prepared 

in technical duplicates. Hence, 192 libraries would consist of 96 unique individuals, each of which get 

assigned one P5 adapter index. Additionally, every prepared library is assigned one of 192 indexed P7 

adapters in order to make all libraries distinguishable (Figure 25A).  

Libraries of different individuals can consequently be distinguished by both sample indices, while 

technical replicates per individual have one index in common. Using this strategy 192 libraries can be 

multiplexed on one lane, while misassignment of sequencing reads is expected to be restricted to 

technical replicates of one individual.  

Furthermore, smMIP sequencing libraries are planned to be prepared in batches of 96 samples for bigger 

sample sizes, resulting in 192 libraries per batch which make use of the full set of adapters. In order to 

minimize undetectable cross-contaminations of library fragments between batches the combinations of 

P5 and P7 adapters used are modified for each library preparation batch (Figure 25B).   

In summary, the established sequencing multiplexing scheme allows for a high degree of multiplexing 

with up to 192 samples per lane, while minimizing the risk of cross-contaminations and misassignment 

of sequencing reads to allow for very high precision of variant calls. 

 

4.2.5 Establishment of a custom smMIP analysis pipeline enables analysis of hundreds of 

samples with minimal hands-on time 

 

To complement the high-throughput workflow for the generation of highly sensitive genotyping a 

computational analysis pipeline is needed to homogenously process the sequencing data for hundreds 

of samples. However, besides the analysis pipeline included within the MIPgen software package, no 

software solution existed that would allow to automatically process sequencing data derived from 

smMIP sequencing libraries. Although this would generally be possible using the MIPgen analysis 

pipeline in combination with a pile-up based variant caller, due to software bugs encountered during 

analysis of re-balancing experiments and insufficient flexibility a new processing pipeline was 

developed. 

The new analysis pipeline was planned to be highly flexible, by using and preserving raw reads as well 

as UMI-deduplicated data for every detected variant call. Furthermore, the processing of hundreds of 

samples should be possible with low hands-on time. 
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Figure 26: Overview of the smMIP analysis pipeline. The first part of the analysis pipeline consists of UMI-extraction, trimming 
of hybridization arm sequences from the raw reads, mapping via BWA-MEM, as well as Base Quality Score Recalibration and 
variant calling via Mutect2. Subsequently detected variants are normalized (bcftools) and annotated (ANNOVAR). These 
processes can be started for hundreds of samples in parallel with a single Bash script. A second script is used to generate a 
position specific error rate for all positions within the target areas based on the UMI-deduplicated reads (gencore). 
Additionally, the R package ‘umivariants’ verifies the UMI support for all variants detected within the non-deduplicated set of 

all reads. Finally, filtering of variants based on all acquired information in order to reduce false-positive variant calls is 
carried out in R. 

 

In a first step all sequencing libraries are being demultiplexed using deML [87] and named in a 

systematic way that allows to easily identify technical replicates derived from the same sample. The 

downstream processing of the sequencing data can be started via a bash script for all sequenced samples 

at once (Figure 26). 

 

4.2.5.1 The SLURM workload manager enables batch processing of samples 

 

The SLURM (Simple Linux Utility for Ressource Management) workload manager [131] is a tool that 

enables flexible scheduling of processes on linux servers. Processes can be submitted to the SLURM 

controller and are executed when enough resources are available on the server.  
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Using a bash script for submission of jobs to the SLURM workload manager on the server, the further 

processing of raw sequencing data to the final variant calls can be started using by a single command. 

This script contains all necessary processing steps needed for variant calling within the smMIPs 

sequencing.  Additionally, job-arrays within the SLURM environment are used to allow simultaneous 

submission of hundreds of jobs. Hence, analysis for all acquired sequencing data can be started at once 

with only a predefined number of samples being processed in parallel in order to leave server resources 

for other users. 

 

4.2.5.2 Handling of UMIs in raw sequencing reads 

 

Within the first step of the automated processing pipeline the UMIs present within the first five 

nucleotides within forward and reverse sequencing reads get trimmed and moved to the header-line of 

the respective read within the fastq-file using fastp [132]. As technical duplicates of each biological 

sample are merged afterwards, the UMIs are artificially appended by ‘AT’ or ‘GC’ in order to prevent 

the UMI-collisions between the technical replicates. Additionally, this measure allows to preserve the 

information about which UMI was derived from which replicate and could potentially be further utilized, 

e.g. to prioritize variants detected in both replicates of a sample. 

 

4.2.5.3 Trimming of hybridization arm sequences 

 

After handling of the UMI sequences, sequencing reads derived from technical library duplicates of the 

same biological sample are merged by concatenating the respective fastq files. 

The resulting sequencing reads still carry the hybridization arms used to anneal the probes to their target 

regions during hybridization on both ends of the fragment. These sequences are part of the 

oligonucleotide-probes themselves and therefore cannot contain any genotyping information, even if 

variants would be present in these regions. Sequences from hybridization arms that overlap with the 

capture sequence of a neighboring probe would therefore skew the allele frequency of any variant within 

this overlap. Hence, arm sequences are removed using cutadapt [88] in the linked adapters trimming 

mode. Here, a list of paired ligation- and extension-arm sequences, corresponding to each smMIP 

probes’ arms included in the panel, is used for trimming. Sequences at the beginning of the reads have 

to closely match one of the combinations known to be present within the probe pool for every pair of 

reads in order to get trimmed. All read-pairs that do not match one of these expected combinations are 
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discarded at this step in order to exclude any artefactual or contaminating reads from downstream 

analyses.  

4.2.5.4 Mapping and variant calling based on duplicated sequencing reads 

 

Trimmed read-pairs are subsequently mapped to the reference genome using BWA MEM [133]. For 

downstream processing of mapped reads the Genome Analysis Toolkit (GATK), published and 

maintained by the BROAD institute, is utilized. Before variant calling, the Base Quality Scores of all 

reads are being recalibrated using the GATK BaseRecalibrator. For variant calling GATK Mutect2 was 

chosen as it allows variant calling without a matched normal sample and shows a high sensitivity and 

precision also at low variant allele frequencies. This is achieved by local re-alignment of mapped reads 

and assembly of possible haplotypes instead of only looking for mismatches to the reference sequence 

within the mapped reads, resulting in improved precision especially in difficult regions. All variant calls 

are being generated based on raw reads, without utilization of the UMI information and additionally 

using parameters to increase the sensitivity of variant calling. Thereby a set of all possible variants that 

may be present within the sample is being created. After normalization using bcftools, all variants get 

annotated ANNOVAR [90], adding information about known SNPs, pathogenic variants and 

deleteriousness of mutations.  

 

4.2.5.5 Validation of potential variants based on UMI information 

 

At this point, the created list of variants is based on non-deduplicated sequencing reads, completely 

ignoring the UMI information in order to create a list of possible variants with the highest possible 

sensitivity.  

In order to utilize UMI information for error-correction “umivariants” was utilized. This R package was 

developed by Ilse Valtierra [93] and allows to verify a list of potential variants by building single-

molecule consensus reads. For every potential variant, reads covering the specific genomic position are 

grouped by their UMI and a consensus read is calculated. Thereby the potential variants discovered in 

the raw sequencing data are being re-evaluated based on the UMI consensus reads, which allows to 

reduce the number of false-positive variants originating from errors introduced by sequencing and PCR 

amplification as well as more accurate determination of variant allele frequencies. 
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4.2.5.6 Calculation of position-specific error rates to reduce false positives at very low variant allele 

frequencies 

 

Many false-positive variant calls can be present at very low frequencies within sequencing data due to 

random errors derived for example from PCR. When introduced at the gap-fill reaction or very early 

cycles of PCR these technical artefacts cannot be corrected using the UMIs of the smMIP sequencing 

data. Furthermore, sequence contexts like homopolymer stretches of repetitive elements may lead to 

more error-prone positions within the genomic target regions. 

To reduce the number of false-positive variant calls at very low frequencies, calculation of a position-

specific error rate has been integrated into the pipeline. 

In a separate process the mapped reads are being de-duplicated based on their UMI using the software 

package gencore. Pile-ups based on the de-duplicated reads are generated using samtools to count 

matches and mismatches to the reference at every position. Data from all processed samples is 

subsequently used to create a background-error rate for each position within the genomic targets. In 

order to exclude mismatches derived from real genetic variants from calculations of the error rate, 

positions that show more than 5% mismatches in a given sample are excluded for calculation of the 

overall error rate. The calculated error rates at each covered genomic position as observed within all 

processed samples are summarized in a text-file output. 

 

4.2.5.7 Final processing and filtering of detected variants 

 

The set of detected variants obtained from Mutect2 is merged with the UMI-based evaluation of the 

variant set from umivariants. A text file containing all information of the detected variants and their 

UMI-based evaluation is the final output of the analysis pipeline and can subsequently be imported into 

R for further analysis.  

As a first step for downstream analysis within R, the obtained position-specific error rates are utilized 

to estimate the likelihood of being caused by technical noise for each potential variant. For that a p-

value based on Poisson distribution is calculated using the unique coverage, the number of UMIs 

supporting the variant together with the observed error rate across all samples at this position. The p-

values are subsequently corrected for multiple testing by the Benjamini-Hochberg procedure. Using this 

approach allows to identify and discard low-frequency variants that are likely derived from technical 

artefacts. 
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The resulting final data set can be further filtered based on custom criteria, e.g. in order to discard 

germline mutations and minimize possible false-positive calls. 

 

4.2.6 The established smMIP workflow shows robust performance across a cohort of 561 

individuals and allows for balanced multiplexing of library pools 

 

As a first application for the established smMIP assay a cohort study using samples derived from 386 

AML patients in long-term remission was carried out. 159 samples from age-matched healthy 

individuals were included as controls to which the frequency of detected clonal hematopoiesis as well 

as its mutational spectrum is to be compared. Six samples with known mutations derived from AML 

patients at diagnosis were included as quality controls. For additional quality control library preparations 

for 16 samples of the long-term survivor cohort were repeated in a separate batch to assess 

reproducibility of variant detection. Lastly, four gDNA dilution series with a total of 16 samples were 

prepared to assess sensitivity and precision of the variant frequencies for the assay.  

The gDNA samples of 551 pseudonymized individuals were provided by Klaus Metzeler and Frank 

Ziemann and used for preparation of NGS libraries utilizing the established smMIP assay. Library 

preparations for patient samples and additional quality controls were carried out in technical duplicates, 

resulting in a total of 1102 libraries, which were prepared in seven batches of 150 – 192 libraries.  

Two days were needed to prepare one batch consisting of up to 192 libraries from up to 96 biological 

samples, clearly demonstrating the suitability of the smMIP assay for high-throughput projects. 

Only five drop-out samples for which library preparations failed were observed, corresponding to less 

than 1% of all samples. The most plausible explanation for these drop-outs is inaccurate quantification 

of gDNA concentrations, which resulted in too high dilutions of the gDNAs and hence too few template 

DNA as input for the hybridization reactions. 

Generally, this low dropout rate reflects the robustness of the established workflow for preparation of 

libraries using the new smMIP panel and emphasizes its utility in conducting cohort sequencing studies 

at low prices and short turn-around times. 
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Figure 27: Sequencing reads acquired for samples throughout the sequencing batches of the individual cohort samples. Total 

reads per library within each library pool (A) were well balanced. Batch C1.1 showed an increased spread of sequencing reads 
across libraries which was caused by complications at library DNA quantification before pooling.  (B) Total sequencing reads 
for both technical replicates per sample were above the planned 4 million reads in most cases. 

The total sequencing reads obtained per sequencing library within each sequencing batch (Figure 27A) 

show a very narrow distribution. Overall, the anticipated two million sequencing reads were obtained 

for most of the sequencing libraries. Due to an overall lower yield of sequencing reads for some flowcell 

lanes batches C1.2 and C3.1 include many libraries that got slightly less than 2 million sequencing reads. 

However, as one million reads are still expected to provide sufficient sequencing depth, all sequenced 

samples could be included for downstream analyses. 

The total reads obtained for both technical library replicates per sample (Figure 27B) show that a median 

of about 4.8 million raw sequencing reads down to a minimum of 3 million reads were acquired. Hence, 

all samples within the cohort received sufficient sequencing reads to ensure enough coverage across 

target regions and enable sensitive variant calling. 

In summary, the established workflow showed robust performance for library preparations within the 

first cohort study. Additionally, the library pooling and sequencing layout allowed to relatively uniform 

sequencing depth across all samples and sequencing runs 

 

4.2.6.1 Dilution series indicate high sensitivity of the established smMIP assay down to 0.7% VAF 

 

In order to assess the precision of variant allele frequencies, pairs of patient samples differing in 

heterozygous SNP alleles were chosen to create dilution series as a quality control. By serially diluting 

the gDNA from one patient with gDNA from another patient low frequency variants with expected 

frequencies of 8.3%, 2.8%, 1.4% and 0.7% were created. These variants were used to test the precision 

of obtained VAFs, as well as to ensure sufficient sensitivity for low frequency variants. A total of four 
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dilution series were prepared and used for library preparations. Analysis was carried out using the newly 

established smMIP analysis pipeline.  

All variants investigated in the dilution series were correctly identified by the analysis pipeline, even at 

the highest dilution step with an expected VAF of 0.7%, indicating a high sensitivity of the smMIP 

assay. The determined VAFs at the highest dilution ranged from 0.28 to 1.63% with a median of 0.7% 

(Figure 28A). The unique coverages for the SNPs analyzed at the highest dilution step ranged from 184x 

to 7011x with a median of 1674x. In order to assess whether the deviations between observed and 

expected VAFs are caused by sampling effects and differing sequencing depths across the analyzed 

SNPs, the 95% confidence interval for UMIs carrying the variant given different sequences depths and 

the expected variant allele frequency of 0.7% were calculated according to binomial distribution (Figure 

28B). Most measured VAFs were within the range expected from sampling noise, however three 

measurements fell outside the intervals.  

 

Figure 28: Data for the dilution series experiment used as quality control. (A) VAFs of the variants detected at the highest 
dilution factor. The dashed line indicates the expected VAF of 0.7%. (B) Number of detected UMIs supporting the diluted 
variant in relation to the unique sequencing coverage achieved. The blue area indicates the 95% confidence interval for the 

number of expected UMIs supporting the variant based on sampling effect estimated by the binomial distribution. (C) Expected 
VAF in relation to observed VAF for two exemplary SNPs analyzed within the same samples of one dilution series. Correlation 
of determined VAFs are generally very high throughout all analyzed dilution steps. While linear regressions for most SNPs 
showed the expected slope of one (left panel), some SNPs showed slopes differing from this expectation (right panel). 

In order to further exploit these unexpected deviations in to the expected VAFs, linear regression were 

carried out for each SNP. When comparing the concordance of VAFs between different dilution steps 

per SNP (Figure 28C), linear regressions generally showed precise fits with adjusted R2 values being 

above 0.96 for all 11 analyzed SNPs with a median value 0.995. Interestingly, some of the regressions 
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showed slopes differing from the expectation (Figure 28C right panel). These deviations cannot be 

caused by inaccurate dilutions of the gDNAs, as SNPs within one dilution step are derived from one 

library preparation and hence the same gDNA template. Consequently, the same change to the expected 

slope would be present in all tested SNPs of one dilution series, which is not the case. Only seven of the 

eleven analyzed SNPs accurately resemble dilutions of heterozygous SNPs while regressions for the 

other four SNPs show significant deviations in their slopes.  

All four gDNA samples used for creation of the dilution series were derived from individuals of the 

long-term AML remission cohort. Within three of these samples low frequency variants were detected 

indicating the presence of subclones at frequencies between 1.2 and 4.4%. A loss of heterozygosity 

including the respective SNP positions within these subclones can lead to an increase or decrease in the 

overall variant allele fraction present within the diluted sample, which could explain the observed 

deviations. Another possible explanation for this observation might be related to patients having 

received an allogeneic hematopoietic stem cell transplantation (HSCT). Even years after transplantation, 

residual recipient cells may still contribute to hematopoiesis [134, 135]. If donor and recipient differ in 

some SNPs, this chimeric hematopoiesis can explain the observed differences as the variant allele 

frequencies of specific heterozygous SNPs consequently differs from the expected 50% in the patient 

sample. 

The fact that not all putative SNPs analyzed within the dilution series were initially present at 50% allele 

frequency explains that some of the allele frequencies observed at the highest dilutions steps differed 

from the expectation. 

In summary, the results of the dilution series quality control demonstrate that the established smMIP 

panel is able to reliably detect variants even at very low frequencies of 0.7% allele frequency. 

 

4.2.6.2 Comparison of smMIP variant calls to Haloplex data shows good agreement but difficulties to 

detect larger insertions and deletions 

 

In order to assess the reliability of variant calls using the established smMIP panel and analysis pipeline, 

data for 36 individuals was cross-validated using data obtained from using a commercial sequencing 

panel.  

This subset of samples included in the cohort had already been sequenced by Maja Rothenberg-Thurley 

(Klinikum der Universität München) using a custom commercial Haloplex assay for targeted re-

sequencing. The panel targets over 106 kb in 68 genes recurrently mutated within myeloid 
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neoplasms [28]. To see whether the smMIP panel is able to reliably detect variants previously detected 

using the Haloplex panel, all variants detected in the target regions shared by both assays were 

compared. Variant calls generated using the smMIP assay were provided to Dr. Maja Rothenberg-

Thurley (Klinikum der Universität München) who carried out the comparison in order to adhere to the 

data protection guidelines related to the data acquired during routine diagnostics in the clinics. 

Overall 54 variants were detected within the smMIP data, whereas 49 variants were detected in the 

Haloplex data. 44 of these variants could be detected within the smMIP variants calls as well as in the 

Haloplex data (Figure 29). 

 

Figure 29: Venn-Diagram of variants detected within 36 individuals using the commercial Haloplex sequencing panel and/or 
the newly established smMIP assay.  44 variants were detected by the smMIP panel as well as by the Haloplex panel. Another 

10 variants were only detected by the smMIP assay and five variants detected in the Haloplex data were not included in the 
smMIP variants calls. 

The majority of variants detected by the Haloplex panel were also detected by the established smMIP 

panel (44/49 variants), indicating that the sensitivity of the established assay is comparable to the 

commercial Haloplex panel. However, five variants identified using the Haloplex panel were not present 

within the filtered smMIP variant calls. 

Two of these variants located at the SRSF2 hotspot locus were present within the initial variant calls but 

filtered out in post-processing steps. Hence, these variants were detected but not included in the final 

smMIP variant call set. The SRSF2 hotspot locus is currently hard to genotype using the smMIP assay, 

as probes in this area show low hybridization efficiency. Consequently, low unique coverages only allow 

to call higher frequency variants, as variants need to be supported by at least 3 UMIs using the current 

preliminary filtering strategy. 
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Two other undetected variants represent FLT3-ITDs (internal tandem duplications) in the form of 27 

and 52 nucleotides long insertions. One possible explanation is that the insertions led to reduced 

hybridization efficiency due to the increased target capture size which requires the template gDNA to 

bend stronger. The last variant not detected by the smMIPs comprises a 52 nucleotide deletion within 

the CALR gene at about 30% variant allele frequency. Due to the length and positioning of the deletion 

the DNA sequences used to hybridize both probes that should cover this region is either partially or 

completely missing. Hence, this mutation can technically not be detected using the current set of 

smMIPs. 

All ten variants that were exclusively detected by the smMIPs panel were below the detection minimal 

detection threshold of 1% variant allele frequency used for the Haloplex panel. For five of these variants 

raw Haloplex data were manually checked for the presence of these mutations. In three of five cases raw 

reads carrying the variant previously identified using smMIPs could be observed. Hence, most of the 

variants exclusive to the smMIP variant set are most likely caused by their very low variant allele 

frequencies although it cannot be excluded that some of these mutations could still represent technical 

artefacts.  

In summary, comparison between the smMIP assay and the commercial Haloplex assay indicates good 

agreement of both methods for detected variants down to allele frequencies of about 1%, clearly 

demonstrating the assay’s competitive performance for detection of small subclones by targeted 

sequencing of their driver mutations. 

 

4.2.6.3 Re-sequencing of patient samples hints towards elevated error rates at very low allele 

frequencies below 2% 

 

Another aspect for the reliability of the smMIP assay is the reproducibility of variant detection. For this 

purpose 16 individuals that had already sequenced in prior library batches were again used for library 

preparation within a new batch. In order to have fully independent technical replication new gDNA from 

archived blood samples was prepared by Sebastian Tschuri (Klinikum der Universität München) to serve 

as a template for a new round of library preparations. 
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Figure 30: Variants detected within 16 patient samples that were used twice for independent library preparations and 
sequencing runs 14 variants (58%) were detected in both batches, while 7 variants (29%) were exclusive to the first and 3 
variants (12%) were exclusive to the second batch. 

 

For this analysis only variants above 1% VAF were considered in order to exclude most artefacts 

associated with very low frequency mutations. A total of 24 variants were detected of which 14 

mutations were successfully called in both sequencings (Figure 30). However, seven mutations were 

exclusively detected in the first sequencing and three other mutations remained exclusive to the re-

sequencing libraries.  

Six of these ten variants were detected below 2% allele frequency, represented by three to seven UMIs, 

and located within low-complexity sequence contexts. Hence, they might be representing technical 

artefacts derived from polymerase or sequencing errors not discarded by the current filtering strategy. 

Interestingly, two of these variants were present within the mapped reads of the other batch but not 

within the UMI-deduplicated reads, indicating that these variants are likely derived from technical noise. 

The rest of four mutations observed only in one experimental batch had variant allele frequencies over 

2%. One mutation with 10.4% variant allele frequencies could be detected when looking at the raw and 

de-duplicated mapped reads of the other batch at the same variant allele frequencies. As the unique 

sequencing coverage was well above 1000x the absence of this variant has to be related to Mutect2, used 

to call variants within the established pipeline. The remaining three mutations detected with 2%, 2.5% 

and 3.6% variant allele frequencies in only one of both data sets could also be observed within the raw 

variant call set of the other batch but were only supported by one to two UMIs. For example, the variant 

at 2.4% VAF (DNMT3A, chr2:25463283, A>G) was present in the initial data set with 5 UMIs support 
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at a unique coverage of 199x. However, the unique coverage obtained for the re-sequencing data was at 

107x with only one UMI supporting the variant. Subsequently this variant was discarded from the final 

variant call set by the preliminary established filters, which require support by at least three UMIs to 

exclude noise from technical artefacts. Hence, the inconsistencies in detection of these variants is caused 

by their low frequencies in combination with differences in coverages between the batches and the 

current preliminary thresholds for variants filtering. 

Taken together, variant calls of the experimental replicates showed good agreement. Six mutations 

below 2% frequency could not be detected within data of the other respective batch. All of these variants 

are part of low-complexity regions (e.g. chr2:25471068 CT>C with 1.6% VAF; CCCCGGGCCC-

CT>C-GGTTTTCTTCC) suggesting that they are representing technical artefacts not removed by 

utilizing UMI-consensus reads. However, all mutations above 2% variant allele frequency were detected 

in data of both sequencing batches, although some were not part of the final variant call set due to the 

applied filtering or issues related to variant calling using Mutect2. Additionally, variants below 2% 

frequency may become difficult to detect in regions with low unique coverage as coverage across targets 

can vary between repeated batches of library preparation and sequencing.  

However, the data of the re-sequencing quality controls showed reliable and reproducible detection of 

variants down to 2% allele frequency in areas with sufficient coverage. Using the current sequencing 

depth the established smMIP-panel’s sensitivity for reliable detection of variants is therefore estimated 

to be comparable to the Haloplex assay utilized at the Klinikum der Universität München, for which a 

cutoff of 2% VAF for reliable identification of variants has been reported [28] with the advantage of 

being significantly more cost-efficient. 
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5 Discussion 

 

5.1 The established cellular barcoding approach has proven to be an efficient way to 

directly investigate subclonal heterogeneity within AML Pdx samples 

 

Two different constructs for cellular barcoding have been successfully cloned, quality controlled and 

successfully applied for studying clonal heterogeneity within an AML Pdx mouse model.  

The established workflow allowed to clone high-complexity plasmid pools with over 10 million 

barcodes estimated to be present within the high complexity DNA-barcode plasmid pool and over 

700,000 barcodes within the expressed barcode plasmid pool. Quality controls showed that both pools 

can be utilized to barcode thousands of cells with no or minimal re-usage of barcode tags and therefore 

allow to precisely quantify cell numbers. 

Both construct have been utilized in several pilot experiments, demonstrating the power of the barcoding 

approach to investigate heterogeneous cell populations. Application of the established barcoding pools 

allowed to quantify the bottleneck for serial-transplantation of AML Pdx cells in order to verify that 

subclonal heterogeneity of AML Pdx samples can theoretically be retained over many passages within 

the utilized mouse model. Furthermore barcoding allowed to directly observe differential response of 

subclones towards in vivo chemotherapeutic treatment within multiple biological replicates of the same 

barcoded Pdx line population, thereby robustly proving the presence of resistant subclones that are less 

sensitive to in vivo chemotherapy within this Pdx sample. Moreover, using an experimental setup for 

limited dilution transplantations with barcoded AML Pdx cells showed that cellular barcoding can 

potentially decrease the number of experimental mice necessary to estimate the frequency of leukemia 

initiating cells within these samples. Additionally, barcoding allowed to identify samples derived from 

a single leukemic cell that engrafted in this experiment. These single-cell isolates were determined to 

represent genetically different subclones based on known marker mutations. The single-cell clones were 

further characterized based on their transcriptomes, exomes and proteomes as well as their phenotypes 

in competitive in vivo experiments. Results of these experiments, for which the established cellular 

barcoding constructs provided the groundwork, are published in the Journal of Hematology & Oncology 

[120] (see 7. Publications). 
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5.1.1 Barcoding allows to reduce the number of experimental mice needed for determination of 

LIC frequencies 

 

The use of cellular barcodes in a limiting dilution transplantation assays has shown, that barcodes enable 

a robust read-out for the number of engrafted cells that allows to estimate the LIC frequency more 

precisely than binary read-out of engraftment rates. As the number of engrafted cells can be 

quantitatively assessed the number of cells used for transplantation can be increased, thereby reducing 

the number of mice not showing successful engraftment. This advantage potentially allows to 

significantly reduce the number of mice needed to determine the LIC frequency of AML samples. The 

LIC frequencies obtained via the barcode analysis were comparable to those derived from engraftment 

rates when excluding outliers most probably derived from technical errors. Regulations and laws about 

the protection of experimental vertebrate animals, e.g. ‘EU-Tierschutzrichtlinie’, ‘Tierschutz-

Versuchstierverordnung’ and ‘Tierschutzgesetz’, have implemented the 3R-principles [136] requiring 

to replace animals where they are not necessary, reduce the number of animals utilized and refine 

experimental methods in order to minimize stress. Therefore the usage of cellular barcoding for 

determination of LIC frequencies should be highly recommended for determination of LIC frequencies 

as it allows to reduce the number of mice needed.  

 

5.1.2 Comparison of engrafting cells upon transplantation of low and high number of cells 

 

Compared to the determination of LIC frequencies at extremely low cell numbers the bottleneck 

observed for serial transplantations of Pdx lines at high cell numbers, i.e. the fraction of cells showing 

successful engraftment and proliferation, is significantly more important for utilization of the AML Pdx 

mouse model. Knowledge about this bottleneck is essential in order to estimate whether the subclonal 

heterogeneity of specific Pdx lines can be conserved throughout multiple serial passages at a given cell 

number.  

In a first proof-of-principle experiment, the fraction of engrafting cells with 550,000 cells transplanted 

was estimated to be about 0.04%, corresponding to 1 in 2,500 transplanted cells. In contrast, the LIC 

frequency determined in another experiment utilizing very low cell numbers at limiting dilutions was 

estimated to be 1 in 1620. This fraction of leukemia initiating cells would generally also be expected to 

show successful engraftment upon transplantation. Yet, the fraction of engrafting cells at 550,000 

transplanted cells is significantly lower. 
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The observed difference in engrafting cell fractions could potentially be derived from the additional 

filtering of detected barcodes applied for determining the bottleneck for serial transplantations, for which 

many barcodes at very low frequencies had been detected. It has been shown that barcode read-out via 

PCR can lead to formation of artificial false-positive barcode calls due to PCR errors and PCR-mediated 

recombination [108, 114]. Although most errors introduced by PCR and the sequencing itself are 

supposed to be corrected for by clustering of barcodes based on their hamming, the presence of false-

positive barcode sequences cannot be excluded as the true sequences of barcodes within plasmid and 

lentiviral library are not entirely known. Therefore barcodes that were detected in only one of three 

technical replicates per sample were excluded from further analysis in order to avoid underestimation 

of the passaging bottleneck. Due to the unexpected strong skewing within relative barcode frequencies 

this filtering might have discarded true barcodes present at very low frequencies.  

However, the size of the bottleneck, i.e. the fraction of cells engrafting and proliferating upon 

transplantation of high cell numbers, could differ from the LIC frequency determined when transplanting 

very few cells due to biological reasons. Upon injection of leukemic cells into the bloodstream, cells 

preferentially home within the bone marrow, which provides an optimal microenvironment. Within the 

bone marrow LICs home to so-called ‘niches’ which represent specialized compartments that provide 

optimal microenvironments for long-term maintenance of HSCs. Consequently, LICs directly compete 

with healthy HSCs for niche spaces upon arrival within the bone marrow [137]. Similarly, a higher 

number of transplanted LICs may result in increased competition for optimal niches among these 

leukemic stem cells, resulting in an overall decreased engraftment efficiency.  

Given the current experimental data it cannot be excluded that such additional competition for bone 

marrow niches decreases the engraftment efficiency for transplantation at higher cell numbers. 

Therefore the number of cells engrafting at higher cell numbers which are regularly used for serial 

passaging of Pdx lines, i.e. the ‘passaging bottleneck’, represents an important read-out to determine the 

suitability of the passaging setup to retain the subclonal complexity within Pdx lines.  

To determine whether competitive effects among leukemic cells are causative for the lower fractions of 

cells engrafting after transplantation of high cell numbers compared to very low cell numbers as 

observed in the initial experiments, a new experiment could be carried out. The same barcoded cell 

population would need to be transplanted into several experimental mice at low as well as high cell 

numbers. This approach ensures that differences in relative engraftment efficiencies are not caused by 

differences in fitness of the transplanted Pdx cells that might be caused by utilizing Pdx cells derived 

from different passage numbers or the experimental procedures itself, e.g. thawing of Pdx cells or in 

vitro lentiviral transduction. 
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5.1.3 Limitations of the current barcoding constructs  

  

The newly established barcoding systems demonstrated good performance in multiple proof-of-

principle experiments. However some limitations could still be enhanced. 

The high complexity DNA barcode was cloned undirectionally, but due to initial problems the PCR 

amplification strategy had to be adapted in order to allow for efficient removal of adapter-primer dimers 

that would interfere with sequencing. As both insert orientations are equally likely to happen within the 

ligation reaction, only half of the barcodes within the pool are detectable using the established PCR. 

Thus the current DNA barcode analysis is limited to about half of the barcoded cell population and blind 

to other half. This drawback is less relevant when using expanded cell populations for investigating 

differential responses of barcoded cells by their frequency within the population (see 4.1.6) as all 

experimental mice share the same population of barcoded cells. 

However, when barcodes are used without prior expansion in multiple mice, for example to determine 

the overall number of engrafting cells (see 4.1.3), the read-out becomes less precise. Although the 

number of detected barcodes can be doubled in order to estimate the total number of engrafted cells, the 

fraction of detectable barcodes will be differing between biological replicates due to additional sampling 

variance. As this sampling variance is dependent on the sampling size, i.e. the number of barcoded cells 

injected into recipient mice, the number of estimated barcodes will vary more strongly between 

biological replicates when carrying out experiments with low cell numbers. 

Hence, for experiments comprising transplantation of low numbers of barcoded cells the expressed 

barcode construct is more suitable. For this construct all barcodes are extracted using the established 

PCR amplification strategy. Here, the barcode is positioned within the 3’-UTR of the lentiviral marker 

gene and hence also detectable via 3’-scRNAseq. Therefore, barcode frequencies can be measured 

population wide based on targeted amplification of bulk gDNA thereby providing a measure of fitness, 

e.g. under the influence of chemotherapeutic treatment. Additionally, fractions of the cell population 

can be used for preparation of single-cell RNA sequencing libraries. As the expressed barcodes are part 

of the marker transcripts, they can be directly detected within the reverse-transcribed cDNA. The 

subsequent association of transcriptomic data to cellular fitness of specific clones, as determined by the 

population-wide barcode readout, represents a first step beyond pure observation of subclones towards 

their characterization. In recent publications, this approach enabled further insights into the fate 

determination in hematopoiesis [138] and could furthermore prove distinct transcriptional responses of 

subclones towards chemotherapy in an ALL Pdx model [139]. Although this advantage has not been 

utilized within the first experiments, bulk RNAseq data of the generated single-cell isolates indicated 

that the expressed barcodes can be detected within Prime-seq libraries (data not shown).  
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However, to avoid destabilization of the marker transcript the barcode within the 3’-UTR was kept as 

short as possible, thereby limiting the maximum theoretical complexity of the barcode. Its application 

is therefore limited to lower cell numbers in the range of a few hundred barcoded cells, which is already 

sufficient for many AML Pdx experiments. 

In summary, most experimental setups within the AML Pdx model system are feasible using one of both 

established barcoding constructs. The established barcoding constructs therefore represent a reliable 

foundation for further barcoding experiments in order to elucidate clonal evolution within the AML Pdx 

model used by my collaborators at the group of Prof. Dr. Irmela Jeremias (Helmhotz Zentrum München). 

 

5.1.4 A new high-complexity expressed barcode construct combines advantages of both initial 

constructs 

 

In order to combine the advantages of both barcoding constructs presented herein the established 

workflow for cloning of high-complexity plasmid pools was used to create a third barcoding construct. 

Recent studies have utilized longer expressed barcodes within the 3’-UTR of marker transcripts and did 

not report on decreased expression levels of marker genes due to interference by barcode sequences 

[138-140]. A new construct was therefore designed and cloned that includes a high-complexity 

expressed barcode, thereby combining the benefits of both previous barcoding plasmid pools described 

herein. 

The new construct is based on the pBA439 vector [141] (gift from Jonathan Weissman, Addgene 

plasmid #85967) which provides puromycin resistance as well as the fluorescent TagBFP as marker 

genes. A high-complexity barcode with 22 variable positions was cloned into the 3’-UTR of the marker 

transcript directly upstream of the bovine Growth-Hormone polyadenlyation-signal (bGH-polyA 

signal), thereby potentially optimizing the barcode coverage within 3’-RNAseq libraries (Figure 31 A).  
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Figure 31: A new barcoding construct combines advantages of both previous constructs using a high-complexity expressed 
barcode. (A) Schematic overview of the lentiviral insert. Puromycin resistance and the tagBFP fluorescence marker genes 
allow selection of barcoded cells. The expressed barcode containing 22 variable nucleotide positions is located in the 3’UTR 
of the marker transcript directly upstream of the bovine growth-hormone poly-adenylation signalling sequence (bGH-polyA). 
(B) Sequencing of the cloned plasmid pool in five technical replicates indicated a complexity of at least 15 million different 

barcodes, with 2.1 to 2.8 million barcodes being unique within each replicate. Only overlaps between any two replicates are 
shown, ranging from 175 – 270,000 barcodes. 

The maximum complexity of over 17.5 trillion barcodes (422 possible barcode variants) ensures a high 

hamming distance between the barcodes. Thus clustering of detected barcodes by sequence similarity 

can be used to reduce false-positive barcode sequences introduced by PCR and sequencing errors even 

at high numbers of barcoded cells, consequently increasing precision for determining absolute counts of 

barcodes. Colony counts from plating of the transformation reactions (data not shown) and sequencing 

of the plasmid pool (Figure 31B) suggest a minimum complexity of about 15 million barcodes.  

Cloning of the barcode insert into the vector was carried out directionally, utilizing two pairs of 

restriction enzymes that generate compatible sticky-ends. Therefore all barcodes within the pool can be 

detected by standard PCR even if one primer is located outside the barcode insert, which enables 

detection and analysis of the whole population of barcoded cells. Additionally, suitable primer pairs that 

allow for efficient amplification of barcodes without off-target amplification in human and murine 

gDNA background have also been established. 

In summary, the new high-complexity expressed barcode plasmid pool combines advantages of both 

previous barcode constructs making it a universal tool for future barcoding experiments.  
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5.1.5 Further advances in methodological approaches enable genotyping and isolation of 

barcoded clones 

 

Expressed barcodes enable the association of transcriptomes and cellular fitness and provide a first step 

towards further characterization of subclones in barcoding experiments. Additionally, most known 

driver mutations are located in exonic regions of genes thereby affecting the respective protein’s 

function. Hence, most driver mutations are present within the full-length cDNA prepared in most bulk 

and single-cell RNA sequencing library preparation workflows and potentially allow genotyping of the 

cells to associate the transcriptome to a given subclone.  

However, most RNAseq methods rely on sequencing of only the 3’-ends of transcripts in order to 

provide a cost efficient way for measuring transcript levels [123, 142-145]. The detection of coding 

mutations is therefore mostly limited to variants located at the 3’-end of the transcript, which 

significantly limits the number of mutations that can be detected using conventional 3’-RNAseq 

methods. Most of these approaches introduce cell-specific barcodes to the cDNA ends at the reverse-

transcription step, which subsequently enables pooling and processing of all cells within single reaction 

and thereby decrease costs for library preparation. Hence, targeted amplification of specific transcript 

regions for genotyping via PCR on the cDNA would results in loss of the cell-barcode sequence which 

is located at the cDNA ends. Recently, new techniques have enabled the preservation of cell-barcodes 

while theoretically enabling genotyping of variants across any transcript position [146]. Although this 

approach may be problematic when genotyping transcripts that are expressed at relatively low levels 

due to increased drop-outs, it may serve as a very useful tool in future barcoding experiments. For 

example, when increased resistance towards chemotherapeutic treatment is observed in a fraction of 

barcoded cells, these cells could be directly linked to a known subclone defined from its mutational 

markers as defined from bulk sequencing of the sample. This approach would therefore allow to further 

close the gap between cellular barcodes and the identity of cells which they represent.  

One step further, in many cases it may prove advantageous to isolate specific barcoded clones due to 

their unique behavior observed in experiments. Recently, multiple methods have been described that 

enable enrichment and isolation of cells carrying specific barcodes from a whole population of barcoded 

cells. These methods additionally express the cellular barcodes as part of a single-guide RNA (sgRNA). 

Upon identification of interesting subclones, the barcoded cell population can be lentivirally transduced 

or transfected with an additional construct. This construct enables a Cas9-mediated activation of 

expression of additional markers, such as fluorophores or antibiotic resistance. The barcode-sgRNA of 

the subclone of interest matches a sequence upstream of the additional marker gene, thereby directing a 

Cas9 to the new marker and inducing its expression. [147, 148]. 
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Experimentally, barcoded cell populations are expanded in a first step in order to ensure that every 

barcode is represented by multiple cells. An aliquot of the starting cell population is frozen and the actual 

experiment, e.g. exposure of barcoded cells to a selection pressure, is carried out. Interesting subclones 

that either show increased or decreased cellular fitness, can be identified by the barcode frequencies of 

the cell populations. The frozen aliquot of the initial barcoded cell population can be thawed, expanded 

and transduced with the second lentiviral construct that enables the Cas9-mediated selection of specific 

clones. This approach greatly simplifies the process of isolating phenotypically interesting subclones 

and hence allows to further investigate their phenotypic, as well as genomic features. 

As of now these techniques have only been utilized in cell lines in vivo and mostly within in vitro cultures 

[147-149]. Their usage for leukemic Pdx lines within the mouse model system might pose additional 

challenges. However, successful establishment of this approach for the Pdx mouse model would allow 

for a fast and efficient isolation of interesting subclones and hence enable further targeted analysis of 

cells showing specific phenotypes, e.g. an increased resistance towards in vivo treatment. 
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5.2 The established smMIP panel allows for sensitive and highly cost-efficient 

sequencing of hundreds of samples 

 

A smMIP panel targeting more than 16 kb in exons and hotspot regions of 24 recurrent driver genes 

involved in clonal hematopoiesis and AML has been created and used for processing of over 550 

samples for a first cohort study. A re-designed smMIP backbone sequence enables the use of standard 

sequencing primers and subsequently allows to sequence prepared libraries as spike-ins on flowcells of 

high-output sequencers like NovaSeq, thereby further decreasing costs. A cost-efficient indexing 

strategy was set up to facilitate multiplexing of up to 192 libraries per flowcell lane while minimizing 

the risk of sample cross-contaminations through index swapping.  

Compared to the commercial Haloplex assay for which reagents usually cost about 175€ (16,790€ per 

96 reactions) [150] the established smMIP assay costs only about 7€ per sample (not including initial 

costs for oligonucleotide probes), while including technical duplicates of prepared libraries. This drop 

of costs to about 4% compared to the commercial assay allows to process 25 times more samples at the 

same price, thereby enabling cohort studies with a larger number of individuals that would otherwise be 

prohibitively expensive without dedicated funding, especially for smaller research groups. 

Additionally to the robustly preforming workflow for preparation of sequencing libraries an automated 

computational analysis pipeline has been established to enable processing of acquired sequencing data 

for hundreds of samples with little hands-on time. The analysis pipeline combines technical library 

duplicates for each sample, while preserving the information of which read originated from which 

replicate. Variant calling is based on raw sequencing reads using Mutect2 to provide a set of variants 

detected within the data. These variant calls are subsequently verified by umivariants, which utilizes the 

UMI information included in the data to reassess presence of the variants after computing single-

molecule consensus reads. In order to allow for efficient filtering of low frequency technical artefacts, 

position-specific error rates are calculated across all samples, allowing to calculate the likelihood of an 

observed variant being derived from background errors. 

The results of quality controls carried out using gDNA samples of the cohort study indicate a high 

sensitivity, reliably detecting variants at 0.7% allele frequencies. Comparisons of variant calls to data 

derived from the commercial Haloplex sequencing panel indicate good agreement between both 

methods, despite problems for smMIPs to detect larger insertions and deletions. To test reproducibility 

of obtained variant calls, library preparations from gDNA of 16 samples were repeated at a later time 

point. Here, about 60% of variants above 1% allele frequency could be detected in both batches. 

However, some variants were missing in either one of the variant call sets due to issues in the variant 
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calling pipeline and differences in sequencing coverage between the batches. Although the set of 

variants obtained for the cohort study may still contain false-positive variants especially at low variant 

allele frequencies below 1% after applying the established preliminary filters, the data is absolutely 

suitable for further analysis. The obtained variant calls from the cohort sequencing are currently being 

further analyzed and manually curated according to best practices [151] by Simon Krauß and Prof. Dr. 

Klaus Metzeler (Universitätsklinikum Leipzig) and are planned to be published within a separate 

research article. 

The smMIP panel is also further utilized in other projects at the Universitätsklinikum Leipzig, due to its 

combination of high sensitivity and cost-efficiency. If needed, the panel can be customized to exclude 

non-informative targets or include new targets by designing and including new smMIPs in the future.  

 

5.2.1 Possible enhancements to the current smMIP assay and library preparation workflow 

 

The smMIP assay has been set up to provide an optimized cost-efficiency. After demonstrating good 

performance and high-throughput capabilities in a first cohort study the smMIP panel will be further 

utilized in other projects. Hence, it may prove beneficial to further enhance its performance. 

 

5.2.1.1 Extending the smMIP panel to double-tiling to enable detection of further technical artefacts 

 

Currently an optimized single-tiling strategy was used to target the genomic regions of interest on only 

one strand, resulting in fewer probes needed to cover these areas and thereby decreasing the initial costs 

for the panel. However, oxidative damage of the gDNA during its preparation or during the smMIP 

hybridization reaction may introduce technical artefacts resulting in altered bases after PCR 

amplification. Most prominently cytosine deamination resulting mutation of a C:G pair to a T:A pair 

[152] or oxidation of Guanine to 8-oxo-Guanine which can pair with Adenine, resulting in mutation of 

G:C  to T:A [153, 154]. Although these artifacts are most pronounced when working with formalin-

fixed paraffin-embedded (FFPE) samples [155] or including shearing of gDNA in the library preparation 

procedure [154], they are also present within fresh clinical samples and contribute to technical noise 

[53]. As usually only one base of a specific base-pair is prone to oxidation the other strand retains the 

original sequence. When covering both DNA strands throughout the target regions, ex vivo gDNA 

oxidation can be detected by only being present within reads derived from one of both strands thereby 

enabling detection and removal of oxidative artifacts. Additionally, double-tiling would result in more 
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probes hybridizing with closer proximity which increases the ability to capture and detect bigger 

deletions or insertions, like the internal tandem duplication in FLT3 (FLT3-ITD). 

A strong improvement in precision could hence be achieved by designing and ordering new smMIP 

probes and extend the panel to double-tiling, targeting both DNA strands throughout the complete target 

regions. 

 

5.2.1.2 Longer sequencing reads to enable coverage of library fragments from forward as well as 

reverse reads can further decrease technical noise 

 

Another source of technical errors that can impair precision of variant calls at low allele frequencies are 

introduced by the sequencing itself. It has been shown that specific sequence motifs, e.g. ACGGCGGT, 

can introduce context-specific errors and result in significantly elevated error rates. However, as the 

reverse complements of such motifs are usually not inducing additional errors, a reverse read covering 

this motif would not show increased error rates at this position [156]. Overlapping forward and reverse 

reads of a paired-end sequencing setup can hence be used to identify and subsequently filter these 

artefacts [157]. For sequencing of the smMIP libraries of the first cohort study a 100-nt paired-end 

sequencing layout was chosen in order to optimize sequencing costs. The smMIPs had been designed 

with a capture size of 120 nucleotides, which comprises the hybridization arms and gap-fill sequence 

copied from the gDNA template, as well as a total of 10 degenerate nucleotides that serve as UMI. 

Consequently the ends of the gap-fill sequence of each smMIP are not covered by both forward and 

reverse reads and are therefore prone to elevated error rates.  

For future studies longer reads, e.g. 120 to 150 nucleotides, may be utilized in order to fully cover the 

whole captured sequences with the forward and reverse read of each read-pair. Using spike-ins on high-

output flow-cells of sequencers like NovaSeq 6000, which provide lower prices per million sequencing 

reads, can compensate the increased costs for the longer sequencing reads. This simple improvement is 

already used for current further experiments using the established smMIP panel at the 

Universitätsklinikum Leipzig. 
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5.2.1.3 Higher amounts of template gDNA within hybridization reactions can increase the number of 

unique capture events 

 

For the current cohort sequencing study detection of variants at 1 – 2% allele frequency was considered 

sufficient, as it is comparable to other commonly used panel sequencing technologies. When higher 

sensitivities are necessary, multiple potential improvements to the library preparation workflow could 

be tested.  

Increasing the amount of gDNA template within the hybridization reactions can increase the overall 

number of successful capture events and hence also the unique coverage within the final sequencing 

data. Although most commonly about 100 ng gDNA template are utilized [158-162], it has been shown 

that higher gDNA input of up to 500 ng per hybridization reaction can significantly increase the yield 

of successful target-captures [163]. Increasing the amount of template utilized for the hybridization 

reactions can provide a simple way to increase the assays sensitivity. For gDNA samples with a minimal 

concentration of 25 ng/µl template amounts per hybridization could be doubled from 100 ng to 200 ng 

with the currently used reaction setup. In order to exclude elevated rates of probe-probe interactions by 

increased molecular crowding within the reaction that can lead to self-ligated, circularized smMIPs 

without capturing any genomic sequence, a small pilot experiment would need to be conducted. 

Importantly, as more UMIs will be present within the library the sequencing depth needs to be increased 

in order to obtain enough reads per UMI to enable creation of consensus reads. Increasing the assay’s 

sensitivity by utilizing more hybridization products therefore simultaneously increases sequencing costs. 

Hence, it is necessary to balance sensitivity and costs based on the requirements of the conducted 

experiments. 

 

5.2.1.3 The usage of a high-fidelity polymerase for the gap-fill within the hybridization reaction can 

decrease the background error rate 

 

Another major factor within the smMIP hybridization reaction is the gap-fill, i.e. the copying of genomic 

sequences between the probes’ hybridization arms that is carried out by a DNA polymerase. 

The established workflow uses the Hemo KlenTaq (New England Biolabs) polymerase, which represents 

a derivative of Taq-Polymerase lacking the first 280 amino acids and having additional internal 

mutations in order to make it more resistant to PCR inhibitors [164] like hemoglobin. This makes the 

polymerase a good choice when template gDNAs for smMIP hybridizations are isolated from whole 

blood, as potential impurities do not influence its function. Additionally, the optimal extension 
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temperature of the Hemo KlenTag is at 68°C [165], which is lower than the 72°C optimal for most other 

DNA polymerases used in PCR. Hence, this polymerase is supposed to retain more activity at the 

hybridization temperature of 60°C. However, newer DNA polymerases engineered for highest fidelity 

generally show 50 – 300-fold lower error rates than traditional derivatives of the Taq-polymerase 

according to their manufacturers [166-168]. These polymerases have also been shown to reduce error 

rates within consensus reads when used at the UMI-integration step in a similar methodological 

approach [169], thereby further decreasing background noise within the de-duplicated sequencing data. 

Consequently, a smMIP panel used to detect minimal residual disease in acute myeloid leukemia 

samples utilizing a combination of 500 ng template gDNA in addition to Q5 HiFi DNA polymerase for 

the smMIP hybridization reaction reported detection for variants below 0.1% allele frequency [170]. 

However, it is important to note that about 80 million sequencing reads were needed in order to reach 

this sensitivity in the mentioned study, again emphasizing the need to balance sensitivity and costs for 

the study of larger cohorts.  

 

5.2.2 Optimization of the computational analysis pipeline to improve precision of variant calls 

 

To complement the established smMIP panel and its high-throughput library preparation workflow a 

computational pipeline that enables processing of many samples with minimal hands-on time has been 

established. The analysis pipeline is completely adapted to the established smMIP workflow and can be 

started by a single bash script to automatically process hundreds of samples by utilizing the SLURM 

workload manager on a linux server. The computational pipeline already proved very useful for 

processing of the sequencing data derived from the first cohort study. However, some issues remain to 

be resolved and more features could be added in order to further simplify downstream processing of 

obtained variant call sets, as well as comparisons between samples and improve robustness of variant 

calls. 

 

5.2.2.1 Integration of a second variant caller to increase sensitivity and prioritize variants 

 

The smMIP quality control experiments indicated good reproducibility for variant calls for allele 

frequencies of at least 1% when comparing independent library preparations within different batches for 

the same samples. However, one variant at 10% allele frequency was not consistently called in both 

datasets, although the mutations were clearly present within the mapped reads. This indicates that the 

lack of detection was caused by computational problems at the variant calling step using Mutect2 within 
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the established analysis pipeline. Further testing is needed in order to determine the reason why this 

variant was not correctly called and to adjust the parameters used for variant calling accordingly.  

It has been suggested that multiple variant callers should be used in order to increase the reliability for 

detecting mutations within analysis pipelines used in clinical settings [151]. Hence, integration of a 

second variant caller into the pipeline would be a second option to decrease the false negative rate of 

mutation calls. Variant calling by Mutect2 which detects variants based on local re-alignment of mapped 

reads could be complemented by a pile-up based variant caller. Pile-up based variant callers, such as the 

commonly used VarScan 2 [171], solely rely on mismatches between mapped sequencing reads and the 

reference genome and should therefore reliably detect the variant at 10% VAF described above. Call 

sets from both variant callers could be evaluated based on UMI consensus sequences and afterwards 

merged into one final call set. Information about detection of particular variants by only one or both 

variant callers may additionally help to prioritize and classify high confidence variants, in order to 

simplify the manual curation of detected variants. 

 

5.2.2.2 Improving the final filtering of variant calls to balance sensitivity and precision 

 

For quality control repeated library preparations and sequencings for 16 samples were carried out. One 

variant at about 2% was part of the variant set of only one batch, as it was detected with five supporting 

UMIs at a unique sequencing depth of 199x. However, the variant was also present within the second 

batch but supported only by one UMI at a unique coverage of 107x. The current filtering of variants 

includes a threshold of at least three UMIs that are necessary to support a variant in order to exclude 

false-positive variant calls derived from technical noise. Hence, this variant was filtered from the final 

set of variants in this batch.  

This emphasizes that the currently established set of filters used for final processing of the obtained 

variant call sets from the computational pipeline may be not optimal yet. In order to retain more 

sensitivity, especially in regions with low unique coverage, the number of UMIs needed to support a 

given variant could be based on the observed coverage at this position.  

Fortunately, 77 control samples derived from hip surgeries, have meanwhile been utilized in another 

study in order to analyze the prevalence of clonal hematopoiesis within these patients using the Haloplex 

assay established at the Klinikum der Universität München [172]. The filtering of variants detected by 

the smMIP assay could therefore be optimized using the Haloplex data of these samples in order to 

increase precision for variant calling. As the sensitivity of the Haloplex panel is limited to 1-2% allele 

frequency, depending on sequencing coverage, this optimization cannot be carried for variants at very 
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low frequencies below 1%. Nevertheless, the Haloplex data enables further comparison of variant calls 

in order to increase confidence in variants detected by the smMIP assay and refinement of variant 

filtration, especially in regions with lower unique sequencing coverage. 

 

5.2.2.3 Summarizing the obtained unique sequencing depths to identify limits for reliable detection of 

variants 

 

The re-sequencing of patient samples as quality control to assess reproducibility of variant calls showed 

that some variants are not consistently called within both data sets. This discrepancy was caused by 

differing unique sequencing coverages between the sequencing batches. A lower sequencing coverage 

resulted in variants not reaching the currently used thresholds of three variant-supporting UMIs for the 

final filtration of variants. 

In addition to the refinement of the filtering thresholds, as described above, summarizing the obtained 

unique sequencing depth across all target regions within a given sample should be integrated as an 

additional output for the analysis pipeline. This data could be used to calculate the limit of detection for 

variants across the target areas for each sample given the applied filtering criteria. A mapped BAM file 

with all read-pairs, de-duplicated based on their UMI information, is already part of the computational 

pipeline’s output. The unique coverage can therefore easily be obtained by integrating e.g. samtools to 

summarize the sequencing depth in target regions within the de-duplicated reads. This information about 

unique coverage can subsequently be used to estimate the sensitivity to detect variants across the 

targeted genomic regions, subsequently allowing a better direct comparison of detected variants between 

samples.  

 

5.2.2.3 Summary statistics about performance of individual probes can help to identify bad performing 

probes and potential undetected variants 

 

The established computational pipeline currently focuses on pre-processing of sequencing data as well 

as variant calling and annotation. However, the current output does not include summaries about the 

performance of each individual smMIP.  

Currently, the trimming of hybridization arm sequences from read-pairs produces are log file that 

contains information about how often which sequences were successfully trimmed. Extracting this 

information allows to identify the number of raw sequencing reads per probe that were detected within 
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the sample. In addition, the number of raw read-pairs and UMI-consensus reads could be derived from 

the mapped bam files produced as output of the current analysis pipeline. The expected read-start 

positions after mapping are specific for every smMIP and could therefore be utilized to generate 

information about the total and unique on-target reads for each probe. 

The raw reads per probe, detected upon initial trimming of hybridization arms from sequencing reads, 

would allow to also use the computational pipeline for rebalancing experiments when new probes are 

added to the pool, e.g. when including additional genomic targets for re-genotyping. In combination 

with the reads detected at the expected mapping position for a specific probe, these data would allow to 

easily assess the relative performance of each smMIP within the panel, as well as to identify probes that 

show elevated rates of off-target mappings, either due to unambiguous mapping or off-target capture 

events within the hybridization reaction. 

Additionally, hybridization efficiencies per smMIP could be summarized for all processed samples. If 

specific probes perform significantly worse within a specific sample, this could indicate the presence of 

undetected variants, e.g. caused by deletions within the genomic regions used to hybridize the smMIPs 

as observed for CALR (see 4.2.5.2), which could be further analyzed by additional re-genotyping 

methods if necessary. These statistics could therefore also contribute to a better characterization of 

samples that were sequenced using the smMIP panel. 

 

5.2.2.4 Comparison of the established computational pipeline to recently published smMIP analysis 

tools  

 

As smMIPs gained popularity within the last years due to their customizability, cost-efficiency, 

scalability and sensitivity to detect low frequency variants a few specialized analysis pipelines have been 

published recently. These pipelines allow for automated processing of smMIP data by including 

trimming of hybridization arms and de-duplication of reads based on UMIs into the pipelines [173, 174]. 

However, these pipelines are either not specifically intended to identify low-frequency variants [173] or 

classify the calling of these variants as experimental [174]. Interestingly, both of these pipelines rely on 

the use of the well-established GATK suite or even use Mutect2 to call low-frequency variants within 

the sequencing data, thereby confirming the choice of Mutect2 as a suitable variant caller.  

Even more recently smMIP-tools, an analysis pipeline specifically designed for detection of low-

frequency variants using smMIPs has been published, reporting robust detection of variants down to 

0.5% allele frequency [175]. The increased precision is achieved utilizing additional error-suppression 

by computing error rates to calculate the likelihoods for a detected variant being caused by technical 
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background noise, similarly to the approach implemented in the established pipeline. However, error 

rates are computed allele-specific, i.e. for all possible transversions and transitions at each position, 

which allows for even more specific error profile filtering. This refinement could easily be implemented 

into the currently established computational pipeline and could further enhance classification of 

background errors used for variant filtration.  

Additionally UMI-singletons that consist of single reads, as well as UMI-consensus reads calculated for 

UMIs that were observed in multiple reads are both utilized for pile-up based variant calling. Variants 

detected only in UMI-singletons but not in UMI-consensus sequences are separately output in a low-

confidence variant call set. Currently, UMIs detected with only one read-pair are being ignored when 

evaluating variants detected by Mutect2 using the umivariants package in the established pipeline. 

However, despite the missing possibility for error-correction the utilization of these ‘singleton-UMIs’ 

can contribute to increase sensitivity especially in regions with low sequencing depth.  

Furthermore, raw sequencing reads are mapped to the reference genome without trimming of 

hybridization arms beforehand within the smMIP-tools workflow. Instead, sequencing reads are 

assigned to the smMIP they originated from based on their mapping positions and the respective arm 

sequences are ignored when performing the pile-up based variant calling. This approach has the 

advantage of minimizing ‘edge-effects’ known from amplicon sequencing data. Here, SNVs or InDels 

near the end of the sequencing reads can lead to softclipping of bases, which are usually ignored for 

downstream processing and variant calling [176, 177]. As pile-up based variant calling is solely based 

on mismatches to the reference within mapped reads, this approach ensures that reads are correctly 

mapped in order to detect variants located next to the hybridization arms. In contrast, the variant calling 

using Mutect2 within the newly established computational pipeline relies on local-assembly of 

sequencing reads that also utilizes soft-clipped bases in order to maximize sensitivity. Hence, trimming 

of hybridization arm sequences from sequencing reads is not expected to significantly affect variant 

calling for the currently established analysis pipeline. However, if additional pile-up based variant 

callers are going to be integrated into the current pipeline (see 5.2.2.1) it might prove beneficial to 

remove the sequences derived from the smMIP-arms only after mapping to the reference. 
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6 Conclusion and Outlook 

 

For analysis of cell compositions within AML Pdx models, two barcode libraries were cloned and 

successfully used within first pilot experiments. Here, the barcoding approach not only allowed to 

observe differential response of subclones towards in vivo chemotherapeutic treatment but also to save 

laboratory mice and costs by substituting classical LDTA assays using the quantitative barcode read-out 

for the determination of LIC frequencies. Furthermore, the barcoding assay was used to estimate the 

bottleneck for engraftment of leukemic cells in order to estimate whether subclonal heterogeneity can 

be maintained throughout serial passages for a specific AML Pdx line, which represents an important 

information for the use of the mouse model. Additionally, subclones derived from single-cells of a single 

AML patient’s samples could be isolated allowing for detailed analysis of genomic features as well as 

in vivo characteristics of subclones. This study has recently been published in the Journal of Hematology 

& Oncology. For future experiments a new barcoding construct has been cloned that contains a high-

complexity expressed barcode, which combines advantages of both previous constructs and thus can be 

used as a universal tool for all future barcoding experiments. 

The established cellular barcoding assays already proved to be a powerful tool for investigation of 

subclonal heterogeneity within AML Pdx lines. One potential long term perspective lies in the isolation 

of more treatment resistant subclones from other AML Pdx lines in order to create a library of 

genotypically and phenotypically distinct adverse subclones. The subclones could subsequently be 

mixed and used to investigate their responses towards new therapeutics, allowing to further link 

effectiveness of new treatment options to known genotypes. 

As a complementary approach enabling the investigation of subclonal heterogeneity within patient 

samples a highly-sensitive smMIP panel for targeted re-genotyping of recurrent AML and CHIP driver 

genes was established. The published approach was enhanced by utilization of a custom multiplexing 

strategy allowing for sequencing of up to 192 samples on one flowcell lane. Futhermore the probe-

backbone was re-designed to enable sequencing of samples as spike-ins on big flowcells, thereby 

decreasing sequencing costs for carrying out screening of large cohorts. In combination with reagents 

costs for library preparations being reduced about 25-fold compared to the commercial Haloplex assay, 

which is being utilized for similar studies at the Klinikum der Universität München, the new assay 

provides a highly cost efficient and sensitive way for targeted re-genotyping of AML and CH driver 

genes. Although some smaller issues remain to be resolved the established smMIP assay demonstrated 

a robust workflow capable of high-throughput processing of hundreds of samples with minimized hands-

on time, both on the wet lab as well as the computational side, in combination with a generally high 
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sensitivity that enables detection of subclonal variants below 1% variant allele frequency. The variant 

calls acquired from the cohort study of AML patients in long-term remission are currently being 

analyzed and planned to be published within a separate research article.  

Due to the robust performance, high sensitivity and cost-efficiency demonstrated within the first 

sequencing project the smMIP panel is now utilized in additional projects and will be developed further 

by Simon Krauss at the Universitätsklinikum Leipzig within the group of Prof. Dr. Klaus Metzeler. Its 

high cost-efficiency will allow to increase cohort sizes in future sequencing studies and thereby 

contribute to new findings in the field of AML and clonal hematopoiesis. 

In summary, two complementary approaches for analysis of subclonal heterogeneity were successfully 

established and will continually be used for further studies by the respective collaboration partners Prof. 

Dr. Irmela Jeremias and Prof. Dr. Klaus Metzeler. 
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7 Publications 

 

- “Adverse stem cell clones within a single patient’s tumor predict clinical outcome in AML 

patients”. Zeller C*, Richter D*, Jurinovic V, Valtierra-Gutiérrez I A, Jayavelu A K, Mann 

M, Bagnoli J W, Hellmann I, Herold T, Enard W, Vick B, Jeremias I. Journal of Hematology & 

Oncology 15, 25 (2022).  

* contributed equally 

- “In vivo PDX CRISPR/Cas9 screens reveal mutual therapeutic targets to overcome 

heterogeneous acquired chemo-resistance”. Anna-Katharina Wirth, Lucas Wange, Sebastian 

Vosberg, Erbey Özdemir, Christina Zeller, Daniel Richter, Daniela Senft, Ehsan Bahrami, 

Ashok Kumar Jayavelu, Wolfgang Enard, Tobias Herold, Irmela Jeremias 

(in revision, Leukemia) 

-  “Prime-seq, efficient and powerful bulk RNA-sequencing
”, Aleksandar Janjic & Lucas E. 

Wange, Johannes W. Bagnoli, Johanna Geuder1, Phong Nguyen, Daniel Richter, Beate Vieth, 

Binje Vick, Irmela Jeremias, Christoph Ziegenhain, Ines Hellmann, Wolfgang Enard. Genome 

biology 23, 88 (2022). 

- “Regulatory and coding sequences of TRNP1 co-evolve with cortical folding in mammals”. 

Zane Kliesmete, Lucas Esteban Wange, Beate Vieth, Miriam Esgleas, Jessica Radmer, Matthias 

Hülsmann, Johanna Geuder, Daniel Richter, Mari Ohnuki, Magdalena Götz, Ines Hellmann, 

Wolfgang Enard 

(https://www.biorxiv.org/content/10.1101/2021.02.05.429919v2 - manuscript in preparation) 

- “T cell-expressed microRNAs critically regulate germinal center T follicular helper cell 

function and maintenance in acute viral infection in mice”. Zeiträg J, Dahlström F, Chang 

Y, Alterauge D, Richter D, Niemietz J, Baumjohann D. Eur J Immunol. 2020 Sep 30. 
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9 Supplemental material 

 

Supplemental Figure 1: Gel documentation of the products from screening PCRs of E.coli colonies that were transformed using 
the DNABC plasmid. PCR primers used annealed outside the barcode insert, producing an amplicon of 367bp for plasmid 

carrying the barcode and 267bp for plasmid without barcode integration. For easier identification of correct amplicon sizes 
products from a control PCR on clean plasmid not having an integrated barcode (‘ctrl’) were used as size comparison. Out of 
91 successfully screened colonies, only two samples (red boxes) showed deviations from the expected amplicon size. This 
corresponds to 97.8% of plasmids within the pool carrying the correct insert. ‘L’ = Ladder, ‘NTC’ = Non-Template Control. 
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Supplemental Figure 2: Sequence logo of the variable positions within the detected high-complexity barcodes (from replicate 
2). Nucleotide frequencies are evenly distributed at each position despite a slight over-representation of G throughout the 
barcode. 

 

Supplemental Figure 3: Screening PCR for successful integration of the expressed barcode insert into the plasmid. E.coli 
colonies transformed with the expressed barcode plasmid pool were picked and screened for the presence of the barcode insert 
via PCR. Out of 63 successfully screened colonies only 3 indicated absence of the barcode insert (red boxes). This corresponds 
to 95.24% of the plasmids within the pool carrying the correct insert. ‘L=’Ladder, ‘pos ctrl’=amplicon from plasmid carrying 
the correct barcode insert, ‘neg ctrl’ = amplicon from plasmid without the insert, ‘NTC’ = Non-Template Control  
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Supplemental Figure 4: Sequence logo showing the variable positions of the detected expressed barcodes within the final 
plasmid pool. Base frequencies are evenly distributed at all variable positions. Only a slight over-representation of T and A is 
consistently observed across all positions 

 

 

Supplemental Figure 5: Differentially represented barcodes between the Start and Control groups of the in vivo treatment 
experiment (see 4.1.6.2). 73 barcodes had statistically different frequencies detected when comparing biological replicates 
between the Start and Control groups. 33 barcodes were enriched, indicating increased fitness due to higher proliferation 
compared to the average cell within the barcoded leukemic cell population. In contrast, 40 barcodes were depleted after the 

outgrowth, indicating slower proliferation compared to the population’s mean. These results indicate that intratumoral 
heterogeneity, i.e. differences in cellular fitness among the subclones, also influences the outgrowth of leukemic cells of the 
AML-491 Pdx line without additional selective pressure of the in vivo chemotherapeutic treatment. 
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Supplemental Table 1: Oligonucleotide probes included in the final smMIP panel. Probe sequences are listed in 5'-3' 
orientation. RC refers to the relative concentration of the respective probe within the smMIP pool. For initial setup all probes 
were pooled equimolar (‘1x’). To balance target capture efficiencies within the panel relative molar concentrations of probes 
showing decreased performance were increased up to 50-fold (‘50x’). 

Target Probe name RC Probe sequence 

ASXL1 ASXL1_0311 1x 
AGAGAGGCGGCCACCACTGCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCACGGA
GTCCTCCTGCCGGGG 

ASXL1 ASXL1_0313 50x 
AGCCCAGGGGAGGCCCGAGCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGGGG
GGGTGGCCCGGGTGG 

ASXL1 ASXL1_0315 50x 
AGAGAGGACCTGCCTTCTCTGAGAANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAG
TGTACGTCAGATCT 

ASXL1 ASXL1_0317 1x 
GTCCTCCCAAACCTCAGTAGCTGANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGAG
GGCTACAGTTGGAC 

ASXL1 ASXL1_0319 25x 
AGACAATGGTCCCATTCTGTCTCTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGCA
GCCTCAGTTGCATC 

ASXL1 ASXL1_0321 1x 
TCCTCACCGACTGATTGCCTGCAGANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGA
GATGATACATTAGAG 

ASXL1 ASXL1_0322_SNP_a 1x 
AGGGAAAGTGATACTAGACAAGAAAACTTNNNN
NAGATCGGAAGAGCGTGTGTATAAGAGACAGNN
NNNCAGTTCCACACCTGAA 

ASXL1 ASXL1_0322_SNP_b 1x 
AGGGAAAGTGATACTAGACAAGAAAACTTNNNN
NAGATCGGAAGAGCGTGTGTATAAGAGACAGNN
NNNCAGTTCCACTCCTGAA 

ASXL1 ASXL1_0323 1x 
GTGGTTTGATACGTGAAAGTTGAANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGG
TCCTGGCGCCAGTC 

ASXL1 ASXL1_1443499 1x 
AGGTGGCAGAGGCAGCAGCAGTGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGG
CGAGAGGTCACCAC 

ASXL1 ASXL1_0327 25x 
AGGCCTCACCACCATCACCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCCCCATT
TAGAGGATAAGGC 

ASXL1 ASXL1_0329 1x 
AGCTCTGGACATGGCAGTTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGGAGTTG
GGAGGCATCTCCT 

ASXL1 ASXL1_0331 1x 
AGGCCTGGCATGGCTGGTCCCCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNAGTG
GTGCCAGACTCACA 

ASXL1 ASXL1_0333_SNP_a 1x 
GTCCTTGCTCCTCATCATCACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTCATAGT
GGGATGACTGTC 

ASXL1 ASXL1_0333_SNP_b 1x 
GTCCTTGCTCCTCATCATAACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCATAG
TGGGATGACTGTC 

BRAF 
hotspot 

BRAF_0001 1x 
AGAAATATATCTGAGGTGTAGTAAGTNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
CCAGACAACTGTTCA 
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 Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

BRAF 
hotspot 

BRAF_0002 1x 
TCCATTTTGTGGATGGTAAGAATTGANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
CATGAAGACCTCACA 

CALR 
Exon 9 

CALR_EXON9_0176 1x 
AGGATGAGGAGGATGAGGAGGACNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCA
GGACGAGGAGCAGAG 

CALR 
Exon 9 

CALR_EXON9_0178 1x 
CGCGCCAAATAATGTCTCTGTGAGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGA
GGAAGATGTCCCC 

CALR 
Exon 9 

CALR_EXON9_0179 50x 
GGCCTTGCCCCCTGCCAGCCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTGCGTTTC
TTGTCTTCTTCC 

CALR 
Exon 9 

CALR_EXON9_0181 1x 
GTCCTCATCATCCTCCTTGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCCTGGAGG
CAGGCCTCTCTAC 

CBL CBL_0063 1x 
TCGGTATTATATAGCCTTTACTGATACANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
GTGGACACCTCATGTG 

CBL CBL_0064_SNP_a 1x 
ACTTTTACTTTTTTTTGATCTCTAGNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCGAC
TTTTTTCAGCTA 

CBL CBL_0064_SNP_b 1x 
ACTTTTACTTTTTTTTGGTCTCTAGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCGA
CTTTTTTCAGCTA 

CBL CBL_0068 1x 
AGTTGGAATGTGGAGCCCATCTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGATC
CGTACCTGCCAGG 

CBL CBL_0071 1x 
ACCCCAAAAGCCAGGCCACCCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGCAAAA
GATAGTAACAGATGCA 

CBL CBL_0072 25x 
TCTGAAAATACTTAAAATATTAATCTACTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NTGGGTTCAGTACCTTT 

CSF3R CSF3R_1_0003 1x 
AGTGCCCTGGCCCTGGGCTNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCAGGGTC
CCCAAGGGGCTGGC 

CSF3R CSF3R_1_0005 50x 
AGGTCTGGACCAGAGTGGGGAGNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGGG
CTGCCCAGCAGCTG 

CSF3R CSF3R_1_0007_SNP_a 50x 
AGCCCCTCTTGGCGGGCCTCACCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTCCC
AGTCTGGCACCAG 

CSF3R CSF3R_1_0007_SNP_b 50x 
AGCCCCTCTTGGCAGGCCTCACCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTCCC
AGTCTGGCACCAG 

CSF3R CSF3R_2_0009 1x 
GGCTCCAGGCCATGGAGGACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCTCCCC
TTACCTGGGGTCA 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

DNMT3A 
Exon 10 

DNMT3A_EX10_0297 50x 
AGTGGGCTGCTGCACAGCAGGAGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNACT
CTGGCTCGTCATCG 

DNMT3A 
Exon 10 

DNMT3A_EX10_0299 1x 
AGTCACCTTGACCTCTCCAGGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCACCTTC
TGAGACTCCCCGG 

DNMT3A 
Exon 10 

DNMT3A_EX10_0300 1x 
GGGGGCCTTCCACTGCCAGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTGGGGT
CCGATGCTGGGGAC 

DNMT3A 
Exon 10 

DNMT3A_EX10_0057 1x 
TGGCCAGCTCTTTCCGGGGGCCTTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGTG
GGGTCCGATGCTGGGG 

DNMT3A 
Exon 10 

DNMT3A_EX10_0058 1x 
GGCGTGGTAGCCACAGTGGGGGATNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAA
AGAGCTGGCCACGG 

DNMT3A 
Exon 10 

DNMT3A_EX10_0302 1x 
GCATCCCCCACTGTGGCTNNNNNAGATCGGAAGA
GCGTGTGTATAAGAGACAGNNNNNGTCATTGCA
GGAATGAATGCTG 

DNMT3A 
Exon 11 

DNMT3A_EX11_0291 50x 
AGTTTCCCCCACACCAGCTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTCTCCG
AACCACATGACCCAG 

DNMT3A 
Exon 11 

DNMT3A_EX11_0293 1x 
AGGTTCTTGATCCCAGGGCCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGGAGCCG
AGCAGCTGAAGGCAC 

DNMT3A 
Exon 11 

DNMT3A_EX11_0295 1x 
AGGCCGCATTGTGTCTTGGTGGATGANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNG
TAATGATTTCTGCTC 

DNMT3A 
Exon 12 

DNMT3A_EX12_0284 1x 
GGCCTGGTGGAACGCACTGCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTCCTA
GTGCTCTAGGCTCC 

DNMT3A 
Exon 12 

DNMT3A_EX12_0286 50x 
GGCAGGGGCTGGGAGCCTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAGCTCAG
CGGCATCAGCTTCT 

DNMT3A 
Exon 12 

DNMT3A_EX12_0288 1x 
AGCCATCTACGAGGTCCTGCAGGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGTC
CCCCCAGGTGTGT 

DNMT3A 
Exon 13 

DNMT3A_EX13_0278 1x 
GTTCTGCACCTCCACGGCCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGGGTCCCA
GAAAGCTGGGTGC 

DNMT3A 
Exon 13 

DNMT3A_EX13_0280 1x 
GTCAGGACAGGCTGGAAGGCAGATNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNTG
GCAGTGTCACTCTC 

DNMT3A 
Exon 13 

DNMT3A_EX13_0282_SNP_
a 

1x 
GCTTCCAGCCTTCTGGCCNNNNNAGATCGGAAGA
GCGTGTGTATAAGAGACAGNNNNNGCGCGGGGA
AGCTGTTCCCGGT 

DNMT3A 
Exon 13 

DNMT3A_EX13_0282_SNP_
b 

1x 
GCTTCCAGCCTTCTGGCCNNNNNAGATCGGAAGA
GCGTGTGTATAAGAGACAGNNNNNGCGCAGGGA
AGCTGTTCCCGGT 

DNMT3A 
Exon 14 

DNMT3A_EX14_0272 1x 
GTGGAGGTGGTGCGTAGGCAGCTGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCC
TCTCCAGAAGCAGG 
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DNMT3A 
Exon 14 

DNMT3A_EX14_0050 1x 
CTGCTTCTGGAGAGGGTGGCACCAGGNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
ACCTCCACCAGCCAAAAA 

DNMT3A 
Exon 14 

DNMT3A_EX14_1068189 1x 
GCTTTTTGGCTGGTGGAGGTGGTGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGAT
GCAGGCCTCCTGGT 

DNMT3A 
Exon 14 

DNMT3A_EX14_0276 1x 
AGGAGATTATTGATGAGCGCACAAGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
ACGGACATGTGGGTG 

DNMT3A 
Exon 14 

DNMT3A_EX14_0277 50x 
GGCAGCTGCCTACGCACCACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTTTCCTGT
CAGCCTGTAACT 

DNMT3A 
Exon 15 

DNMT3A 
Exon 16 

50x 
GGGAACTCTGGCACTCCTNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCAGGCGCG
GCCTCCTCTGACGC 

DNMT3A 
Exon 16 

DNMT3A_EX16_0267_SNP_
a 

1x 
GGCCTCTCCCTCCCCGGGCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCCAACGA
AGAGGGGGTGTTC 

DNMT3A 
Exon 16 

DNMT3A_EX16_0267_SNP_
b 

1x 
GGCCTCTCCCTCCCTGGGCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCCAACGA
AGAGGGGGTGTTC 

DNMT3A 
Exon 16 

DNMT3A_EX16_0268 50x 
ACACCCACCCAGGAGAGGTGCCGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCTT
TCCAGACATCTGC 

DNMT3A 
Exon 17 

DNMT3A_EX17_0263 1x 
AGGGTCAGAAACCACCAGGACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNACCTC
ACGGCCCCCACAGCA 

DNMT3A 
Exon 17 

DNMT3A_EX17_0264 1x 
GTTGTGGCCTCCAGTGGTCTCCTNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCAGT
ACGACGACGACGG 

DNMT3A 
Exon 18 

DNMT3A_EX18_0256 1x 
AGTCCTCTCGCCGCCGCAGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCAAGGCT
CAGCCAAGGGAGCTC 

DNMT3A 
Exon 18 

DNMT3A_EX18_0258 1x 
AGCAGAGGAGACTCTCAGCCCNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCAGTT
CCAGGGGTCTTCCT 

DNMT3A 
Exon 18 

DNMT3A_EX18_0260 50x 
GGCCCTCCCGGCTCCAGANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNTGGGGCCG
GGGGCTGCCCAGGC 

DNMT3A 
Exon 19 

DNMT3A_EX19_0252 50x 
TCCTCTTCTCAGCTGGGACAGGTNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGCT
CCCCCATCCTGGGA 

DNMT3A 
Exon 19 

DNMT3A_EX19_0255 1x 
AGCCCATCCGGGTGCTGTCTCTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGGA
GCTTGGGACACCG 

DNMT3A 
Exon 20 

DNMT3A_EX20_0246 50x 
GTGATGGAGTCCTCACACACCTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGGC
TGCGCCCCACAGC 

DNMT3A 
Exon 20 

DNMT3A_EX20_0250 1x 
GGACGTCCGCAGCGTCACACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNACTTGG
GCATTCAGGTGGAC 
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DNMT3A 
Exon 20 

DNMT3A_EX20_0251 1x 
GCCTCGGAGGTGTGTGAGGACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGGGTG
CCAGGGAGATGGCTC 

DNMT3A 
Exon 21 

DNMT3A_EX21_0243 1x 
GGCCTGCTGTCCAGGGACANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGAGCAGG
GTTGACGATGGAGA 

DNMT3A 
Exon 21 

DNMT3A_EX21_0244 1x 
AGCTGGTGCTTCCGCACANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCGATCTGG
TGATTGGGGGCAGTC 

DNMT3A 
Exon 22 

DNMT3A_EX22_0236 50x 
GGCCACCACATTCTCAAAGANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCAGCAGT
CCAAGGTAGAAGC 

DNMT3A 
Exon 22 

DNMT3A_EX22_0237 50x 
AGAACTCAAAGAAGAGCCGGCCAGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNTC
TTGTCACTAACGCC 

DNMT3A 
Exon 22 

DNMT3A_EX22_0238 1x 
AGTGGTGTGGCTCGGGCACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCGCGCAT
CATGCAGGAGGCGG 

DNMT3A 
Exon 23 

DNMT3A_EX23_0233 1x 
AGATGAGCCAAGGAGGAGCATGANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGA
AGGTTACCCCAGAAG 

DNMT3A 
Exon 23 

DNMT3A_EX23_0234 1x 
GGACTGCAGGTGGGATGACCCANNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNAGAA
GTGTCAGCTGCACAC 

DNMT3A 
Exon 24 

DNMT3A_EX24_0229 1x 
AGGGCCCCAGCTGCACGACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCCAGACA
CTCCTGCAGCTCCA 

DNMT3A 
Exon 24 

DNMT3A_EX24_0230 1x 
AGCGTCTAGAACCTCTGCTGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAGTCTCTC
TTCTGCCTCCTAG 

DNMT3A 
Exon 25 

DNMT3A_EX25_0222 1x 
AGACAGGAAAATGCTGGTCTTTGCCCNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
AATCAGAACAGCCAC 

DNMT3A 
Exon 25 

DNMT3A_EX25_0224 1x 
GTCATGCGTCTACCAAATATGCCANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTGG
AGTTTGACCTCGT 

DNMT3A 
Exon 25 

DNMT3A_EX25_0226 1x 
AGAGGACATCTTATGGTGCACTNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCTCTTC
ATCTAGTTCAGCA 

DNMT3A 
Exon 26 

DNMT3A_EX26_23177 1x 
AGCGACACAAAGTTAAACAAACAAACANNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCCGGTCATGGAGCGTG 

DNMT3A 
Exon 26 

DNMT3A_EX26_0218_SNP_
a 

1x 
AGGCTGCCCGGAAGCCGTCTNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGCCAAG
CGGCTCATGTTGGAGAC 

DNMT3A 
Exon 26 

DNMT3A_EX26_0218_SNP_
b 

1x 
AGGCTGCCCGGAAGCTGTCTNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGCCAAG
CGGCTCATGTTGGAGAC 

DNMT3A 
Exon 26 

DNMT3A_EX26_0220 1x 
GCCACCTCTTCGCTCCGCTNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCAGGGTAT
TTGGTTTCCCAGTC 
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FLT3 
(ITD region) 

FLT3_ITD_0090 1x 
AGAAACATTTGGCACATTCCATTCTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCTT
TTCCAAAAGCACCT 

FLT3 
(ITD region) 

FLT3_ITD_0092_SNP_a 50x 
AGCTGGCTTTCATACCTAAATTGCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTCT
CTTGGAAACTCCCA 

FLT3 
(ITD region) 

FLT3_ITD_0092_SNP_b 50x 
AGCTGGCTTTCATACCTAAATTGCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTCT
CTTGGGAACTCCCA 

FLT3 
(ITD region) 

FLT3_ITD_0093 1x 
AGGAGTCTCAATCCAGGTTGCCGTCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNTG
CACGTACTCACCAT 

FLT3 
(ITD region) 

FLT3_ITD_0095 25x 
AGCATTTCTTTTCCATTGGAAAATCTNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGT
TGATTTCAGAGAAT 

FLT3 
(N676 hotspot) 

FLT3_N676_0087 1x 
GTGGCTTCCCAGCTGGGTCATCNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCTCTTT
GTCATCAAGCTAC 

FLT3 
(TKD hotspot) 

FLT3_TKD_0085 1x 
AGCACGTTCCTGGCGGCCAGGTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCAGC
CTCACATTGCCCCT 

GNB1 
(c57 hotspot) 

GNB1_c57_0002 1x 
GGGGCTGCTCTGTTGTCCTNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGGAGGACA
CTGCGGGGGCACC 

IDH1 
hotspot 

IDH1_hotspot_1359015 1x 
ACCCATCCACTCACAAGCCGGGGGANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGA
AAAAAAAAACATGCAAAA 

IDH1 
hotspot 

IDH1_hotspot_1358656 1x 
GCATGTTTTTTTTTTCATGGCCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGCTTG
TGAGTGGATGGG 

IDH2 
(c140-172 hotspot) 

IDH2_c140_172_0097 1x 
GGCTCCCGGAAGACAGTCCCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTCTCCA
CCCTGGCCTACCT 

IDH2 
(c140-172 hotspot) 

IDH2_c140_172_0100 1x 
ACATCCCACGCCTAGTCCCTGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCACAG
AGTTCAAGCTGAAG 

JAK2 
hotspot 

JAK2_617_0003 1x 
AGGCTTTCTAATGCCTTTCTCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCTTTGA
AGCAGCAAGTA 

JAK2 
hotspot 

JAK2_617_0004 1x 
AGCTTGCTCATCATACTTGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNAAACAGAT
GCTCTGAGAAAGG 

KIT 
Exon 17 

KIT_EX17_0389 1x 
GGTCTAGCCAGAGACATCANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTGGTTTTC
TTTTCTCCTCCAA 

KIT 
Exon 17 

KIT_EX17_0390 1x 
CTCTGCTTGACAGTCCTGCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCCTTACTCA
TGGTCGGATCACAA 

KIT 
Exon 8 

KIT_EX8_0386 1x 
CTTATAATGCAGAGGGGAAGGACTGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
TCCAATGTGTGGCAG 
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KIT 
Exon 8 

KIT_EX8_0387 1x 
AGAAATGGCCATATGTCAGAGTGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTCT
ATTGTGGGCTCTGGG 

KRAS 
(c12-13 hotspot) 

KRAS_c12_13_0076 1x 
AGTTTATATTCAGTCATTTTCAGCANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCCT
CTATTGTTGGATCA 

KRAS 
(c12-13 hotspot) 

KRAS_c12_13_0077 1x 
ACTGGTGCAGGACCATTCTTTGNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGTAGG
CAAGAGTGCCTTGAC 

KRAS 
(c58-61 hotspot) 

KRAS_c58_61_0074 1x 
GGGAGGGCTTTCTTTGTGTNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGAAGCAAG
TAGTAATTGATGG 

NPM1 
hotspot 

NPM1_hotspot_0205 1x 
ATTTCATTTCTGTAACAGTTGATATCTNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
CAGGCTATTCAAGAT 

NPM1 
hotspot 

NPM1_hotspot_4162406 1x 
GAAAAAAAAAAAAAGAAATGTGGTTAAGGNNNN
NAGATCGGAAGAGCGTGTGTATAAGAGACAGNN
NNNAGACGGAAAATTTTTT 

NRAS 
(c12-13 hotspot) 

NRAS_c12_13_0013 1x 
TCCAACCACCACCAGTTTGTACTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNACCA
CTGGGCCTCACCTC 

NRAS 
(c58-61 hotspot) 

NRAS_c58_61_0012 1x 
GGCTTCCTCTGTGTATTTGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAGTGGTT
ATAGATGGTGAAAC 

PPM1D 
Exon 6 

PPM1D_ex6_0030 1x 
ACCTGCCCTGGTTCGTAGCAATGCCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGT
TGAGTTCTGGGATAAATT 

PPM1D 
Exon 6 

PPM1D_ex6_0039 1x 
AGGTAAAACAAATAAGAAAAAATTTATCCNNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNTTGCTACGAACCAGGG 

PPM1D 
Exon 6 

PPM1D_ex6_0037 1x 
GGAAATCCTTTACTTCATCAACACAGGAANNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNGAAGTAGTGGTGCTCA 

PPM1D 
Exon 6 

PPM1D_ex6_0038 1x 
CTGGGAAATGAGGTTTTTCCAAACTTAGGNNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNGCAGACTTAGGGGCCA 

PPM1D 
Exon 6 

PPM1D_ex6_970662 1x 
GGTGAGTTTAACAGAGTTCTTTCGCTNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
AACCTCATTTCCCAGAT 

PPM1D 
Exon 6 

PPM1D_ex6_0159 1x 
GCTGAGATAGCTCGAGAGANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAGTCACT
GGAGGAGGATCCAT 

PPM1D 
Exon 6 

PPM1D_ex6_0161 1x 
AGCCTTCCAATTGGCCTTGTGCCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTGTC
CAAGGTGTAGTCA 

PPM1D 
Exon 6 

PPM1D_ex6_0163 1x 
AGGACATTAGAAGAGTCCAATTCTGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCA
AACACTGTCATGGAC 

PPM1D 
Exon 6 

PPM1D_ex6_0164 1x 
AGCCTGCAAGTCTCCCCANNNNNAGATCGGAAGA
GCGTGTGTATAAGAGACAGNNNNNGAACCCCTCC
AACAAACTTTAAA 
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PPM1D 
Exon 6 

PPM1D_ex6_0167 1x 
AGGCATTGCTACGAACCAGGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCAATTTT
CTTCAAGTGGTTC 

PPM1D 
Exon 6 

PPM1D_ex6_0169_SNP_a 1x 
AGAATCATGTATCCTTAAAGTCAGGGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
TTGGCCAGGAGTTGAC 

PPM1D 
Exon 6 

PPM1D_ex6_0169_SNP_b 1x 
AGAATCATGTATCCTTAAAGTCAGGGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
TTGGCCAGGAATTGAC 

PPM1D 
Exon 6 

PPM1D_ex6_0172 1x 
CCATTTCGTCTATGCTTCTTCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGCCCC
TAAGTCTGCGTCG 

PTPN11 
Exon 13 hotspot 

PTPN11_EX13_hotspot_008
4 

1x 
GTCAATATCGCAGTCAACACCTACGANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
ATGCTGGACCGCCAT 

PTPN11 
Exon 13 hotspot 

PTPN11_EX3_hotspot_0079 1x 
AGAAATTTGCCACTTTGGCTGAGTTGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
CTCCCTTTCCAATGG 

PTPN11 
Exon 13 hotspot 

PTPN11_EX3_hotspot_0082 1x 
AGTAATCACCAGTGTTCTGAATNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGACAT
CTCCATTCTTCTCT 

RUNX1 
Exon 4B 

RUNX1_EX4B_0371 50x 
AGTTGGGGCTGTCGGTGCGCACNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCCGC
CTGTCCTCCCACCAC 

RUNX1 
Exon 4B 

RUNX1_EX4B_0375 50x 
AGCTCCTACCAGACGGCGACAGGGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCT
CAGCGCGGTGGAAGG 

RUNX1 
Exon 4B 

RUNX1_EX4B_0377 50x 
CGCACTGGCGCTGCAACAAGACNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGAGG
AGCGGCGACCGCAG 

RUNX1 
Exon 4B 

RUNX1_EX4B_0092 1x 
GCTTGCCGGCCAGGGCAGCGCCGGCGTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NGAGGAAGTTGGGGCTG 

RUNX1 
Exon 4B 

RUNX1_EX4B_0091 1x 
GCGGTGGAAGGCGGCGTGANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNATGCTG
CGGTCGCCGCTCCTC 

RUNX1 
Exon 4B 

RUNX1_EX4B_0094 1x 
GTGGAGGTGCTGGCCGACCACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCAGGC
AAGATGAGCGAGGCG 

RUNX1 
Exon 4B 

RUNX1_EX4B_0098 1x 
GGACCCTGCAAACAGCTCCTACCANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTCG
CTCATCTTGCCTGG 

RUNX1 
Exon 4B 

RUNX1_EX4B_0093 1x 
GACGCCGGCGCTGCCCTGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGCTTGTTGT
GATGCGTATCCCCG 

RUNX1 
Exon 5 

RUNX1_EX5_0085 1x 
CCCACATTTCAAAATTCTAGTGATTTCTGNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NTGACCTCAGGTTTGTC 

RUNX1 
Exon 5 

RUNX1_EX5_0086 1x 
CCTGGTTCTTCATGGCTGCGGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGTGGGT
TTGTTGCCATGAAACG 
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RUNX1 
Exon 5 

RUNX1_EX5_0088 1x 
CCAGTCAAAGGACAAATGCAGACATCAGGNNNN
NAGATCGGAAGAGCGTGTGTATAAGAGACAGNN
NNNGCTCAGCCGAGTAGTT 

RUNX1 
Exon 5 

RUNX1_EX5_1949872 1x 
GCACTCTGGTCACTGTGATGGCTGGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAC
TACACAAATGCCCTA 

RUNX1 
Exon 5 

RUNX1_EX5_0367 1x 
AGCCGAGTAGTTTTCATCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGTTTTGACA
GATAACGTACCT 

RUNX1 
Exon 5 

RUNX1_EX5_0370 1x 
AGCTGAGAAATGCTACCGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCATTTGTC
CTTTGACTGGTGT 

RUNX1 
Exon 6 

RUNX1_EX6_0364 1x 
GGGACACGATAGAGAACAAAACNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGGG
CCCATCCACTGTGA 

RUNX1 
Exon 6 

RUNX1_EX6_0365 1x 
GGGGCTGGTACACCCTCCAGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCACTGT
CTTCACAAACCCA 

RUNX1 
Exon 7 

RUNX1_EX7_0357 1x 
GGTGGTGTGGGCTGACCCTCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGTGGGC
TCCATCTGGTACTT 

RUNX1 
Exon 7 

RUNX1_EX7_0361 50x 
GTGCCTCCCTGAACCACTCCACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGAGCT
TGTCCTTTTCCGAG 

RUNX1 
Exon 7 

RUNX1_EX7_0362 50x 
AGCAGCTGCGGCGCACAGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTCCCCTCC
CCTCCCTGCTCCC 

RUNX1 
Exon 8 

RUNX1_EX8_0083 1x 
AGCTGAGCTGGGGTGGAAGGTCCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNATT
TCACCTGGACGTGCCAG 

RUNX1 
Exon 8 

RUNX1_EX8_0080 1x 
GCGTTGCTGGGTGCACAGAAGGAGAGGNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NAGCTCAGCTGCAAAGA 

RUNX1 
Exon 8 

RUNX1_EX8_0351 1x 
AGAAGGAGAGGCAATGGATCCCAGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNTT
CAAGTGGCTTACTT 

RUNX1 
Exon 8 

RUNX1_EX8_0353 1x 
AGAAATGAGTGGCCCTTGTTCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCCACG
GTGGGGATGGTTGG 

RUNX1 
Exon 8 

RUNX1_EX8_0355 50x 
AGCAACGCCCATTTCACCTGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGATTCTCT
TCAGATACAAGG 

RUNX1 
Exon 9 

RUNX1_EX9_0335 50x 
GGCCTCCACCACGTCGCTCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCCAGCCGG
GCCAGGCCTGGCG 

RUNX1 
Exon 9 

RUNX1_EX9_0339 1x 
AGCCCATGGCCGACATGCCGANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNACAGG
TGGTAGGAGGGCGAG 

RUNX1 
Exon 9 

RUNX1_EX9_0341 50x 
GTCAGGTCGGGTGCCGCTGCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGTGAC
CGGCGTCGGGGAGT 

 



 

124 

 

Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

RUNX1 
Exon 9 

RUNX1_EX9_0346 50x 
AGCGCTCGCCGCCGCGCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCGTCGCAA
GCGCAGGGAGGCCC 

RUNX1 
Exon 9 

RUNX1_EX9_0348 50x 
GGCCACGCGCTACCACACCTNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCCTCCATC
TCCGACCCCCGCA 

RUNX1 
Exon 9 

RUNX1_EX9_0350 50x 
AGCGACCCGCGCCAGTTCCCCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCCTGGG
GCAGAGGGAAGAGC 

RUNX1 
Exon 9 

RUNX1_EX9_0066 1x 
GTCGCTCTGGTTCGGGAGGCTGGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGG
CCAGGCCTGGCGCCT 

RUNX1 
Exon 9 

RUNX1_EX9_0067 1x 
AGCGCTCGCCGCCCACCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNTTGCTGTG
GCTGCCCTCGGCCTCCACC 

RUNX1 
Exon 9 

RUNX1_EX9_0068 1x 
GTGGTAGGAGGGCGAGCTGGCTTGGANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
GGTGGAGGCGTTGGTG 

RUNX1 
Exon 9 

RUNX1_EX9_0069 1x 
GGGCGGCGGCAGGTAGGTGTGGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNAGA
ACTGGTAGGAGCCGG 

RUNX1 
Exon 9 

RUNX1_EX9_0074 1x 
AGCGCTCGCCGCCGCGCATNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAAGCGCA
GGGAGGCCCGTTCC 

SF3B1 
(K666 hotspot) 

SF3B1_K666_hotspot_0306 1x 
ACCAGTGTGTCTCGCTTGCCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTACATTAC
AACTTACCATGTTC 

SF3B 
(K700 hotspot) 

SF3B1_K700_hotspot_0305 25x 
AGCAACTCCTTATGGTATCGAATCTTTNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNG
TTAAAACCTGTGTTTG 

SRSF2 
(p95 hotspot) 

SRSF2_p95_hotspot_0046 10x 
GCGGCCGTAGCGCGCCATTTGCACCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNTT
TACCTGCGGCTCCGG 

SRSF2 
(p95 hotspot) 

SRSF2_p95_hotspot_0047 1x 
ACCGCCACCCCGCAGGTACGGGNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTGGA
CGGGGCCGTGCTGG 

SRSF2 
(p95 hotspot) 

SRSF2_p95_hotspot_10282
91 

1x 
GTCCAGCACGGCCCCGTCCATGGNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGTAC
CTGCGGGGTGGCGG 

SRSF2 
(p95 hotspot) 

SRSF2_p95_hotspot_10247
70 

10x 
ACGGACGCCGGAGCCGCAGGTAAANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGG
TGCAAATGGCGCGC 

TET2 
Exon 10 

TET2_EX10_0525 1x 
TCTGCCTTTATACAAAGTCTCTGACNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGGC
TGTAATGTCTTACT 

TET2 
Exon 10 

TET2_EX10_0527 1x 
AGAAGCCAAGAAAGCTGCAGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNAGGAGA
AAAAACGGAGTGGTG 

TET2 
Exon 10 

TET2_EX10_0528 1x 
AGTCAGCCCCATCACGTACANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCCAGTCA
AGACTTGCCGACAAAGGA 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 10 

TET2_EX10_0529 1x 
AGGTAAATTTAATGTAAAGCATTTGTAGNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCTGGAGAACAGCTCAA 

TET2 
Exon 10 

TET2_EX10_0532 1x 
ACGTGAAGCTGCTCATCCTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAAAAGAA
CTCAGTACCTGAA 

TET2 
Exon 10 

TET2_EX10_0535 1x 
GGGCTGACTTTTCCTTTTCATTTNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNATACC
ACACAACACATTT 

TET2 
Exon 11 

TET2_EX11_0537 1x 
GGATCCACCAATCCATACANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCTACAGA
AGCAGCCACCAC 

TET2 
Exon 11 

TET2_EX11_0539 1x 
TCTAATCCCATGAACCCTTACCCTGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCAA
ACTCTTCACACACT 

TET2 
Exon 11 

TET2_EX11_0540 1x 
AGTGGACAACTGCTCCCCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGCAGGTTC
ATATTTGAATTCT 

TET2 
Exon 11 

TET2_EX11_0542 50x 
AGCCAGAGTTTTACATCTNNNNNAGATCGGAAGA
GCGTGTGTATAAGAGACAGNNNNNCAGTCTCAGC
CGATGGATCTGT 

TET2 
Exon 11 

TET2_EX11_0547 1x 
AGATGCTTCCAGCTCTTAACCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCAGTG
CAGCTCCGGGCATGTTC 

TET2 
Exon 11 

TET2_EX11_0548 1x 
AGTGATGCTAATGGTCAGGAAAAGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGA
CATGCTTTCCCACAC 

TET2 
Exon 11 

TET2_EX11_0549 1x 
CGATGAGGTCTGGTCAGACANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTTGTGT
CCAAGGAGGCTTA 

TET2 
Exon 11 

TET2_EX11_0550 1x 
TCAATTCTCATTGAGTGTGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGGCTTCT
GGTGCAGAGGACAA 

TET2 
Exon 11 

TET2_EX11_0551 1x 
GGATCTCCCTCGTCTTTTACCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCGTGGC
TCCAACTCATGGG 

TET2 
Exon 11 

TET2_EX11_0552 1x 
CTGAAAAAGCCCGTGAGAAAGAGGAANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
AGGAATCACCCCACCA 

TET2 
Exon 11 

TET2_EX11_0553 1x 
AGTGAAACGGGAGCCTGCTGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTCTTTG
GGAAGCCAAAATGG 

TET2 
Exon 11 

TET2_EX11_0554 1x 
AGGACCATGTCCGTGACCACANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCCTCAG
AAATCCCATGGCAAAAA 

TET2 
Exon 11 

TET2_EX11_0555 1x 
GTCACAGGGCCTTACAACAGANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGAGCC
CACTTACCTGCGTTTC 

TET2 
Exon 11 

TET2_EX11_0556 1x 
AGACCACAACCAACCTGTCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCCACAGT
AACTACATCTCC 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 11 

TET2_EX11_0557 1x 
AGGGTAAGAGAGAACAGAANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTCTCTGC
TGCTGCTGGGGCT 

TET2 
Exon 11 

TET2_EX11_0559 1x 
AGAAGCAGAATAAGAGTTGACAGANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCA
TAGGGCTGGTGCTT 

TET2 
Exon 11 

TET2_EX11_0562 1x 
AGGTTTCCATTGCATTGATATGANNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCTTA
GACAGAGGGTCTTG 

TET2 
Exon 11 

TET2_EX11_0564 1x 
AGTGTATGGATGGGTGGTAGACTGAGNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
ACAACTGCTGAAACCA 

TET2 
Exon 11 

TET2_EX11_0565 1x 
ATATTTTGGTTTCCATAACCTAAGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNAGT
GGCCATCCATCTCA 

TET2 
Exon 11 

TET2_EX11_0566 1x 
TCCCTACATGATGTACATTTGGTCTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNATA
GTCCATGTTTGGA 

TET2 
Exon 11 

TET2_EX11_0567 1x 
GTAATCTAGAGGTGGCTCCCATGANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNACA
TGCCCGGAGCTGCAC 

TET2 
Exon 11 

TET2_EX11_0568 1x 
GTGAGAAGGTGAATGATGTTCACNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCTG
TGTGGGAAAGCATG 

TET2 
Exon 4A 

TET2_EX4A_0400 1x 
AGCCCAAGAAAATGCAGTTAAAGATTTCANNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNACTTCGGGGTAAGCCA 

TET2 
Exon 4A 

TET2_EX4A_0401 1x 
AGATTCTGAATGAGCAGGAGGGGAANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
GAATCTGTGAGTTCTG 

TET2 
Exon 4A 

TET2_EX4A_0402 1x 
AGGCAGTGCTAATGCCTAATGGTGCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCA
GTGGGCCTGAAAATC 

TET2 
Exon 4A 

TET2_EX4A_0403 1x 
GTGAACTCCTGGAAAAAACACTGTCTCNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
ACCATGACAAGAACAT 

TET2 
Exon 4A 

TET2_EX4A_0404 50x 
AGAAAACCACATCTCACATAAATGCCNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
CAGTTTCTGCCTCTTCC 

TET2 
Exon 4A 

TET2_EX4A_0405 50x 
TCACCCATCGCATACCTCAGGGCAGATNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
TCCAGATTGTGTTTCC 

TET2 
Exon 4A 

TET2_EX4A_0406 1x 
GTGAGTGAGGCCTGTGATGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNATGAGTT
GTCCTGTGAGATCA 

TET2 
Exon 4A 

TET2_EX4A_0408 1x 
CCTGCAGAAAATAACATCCAGGGAACCACNNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNCAGTAAACTAGCTGCA 

TET2 
Exon 4A 

TET2_EX4A_0410 1x 
GTGCTTACTTCAAGCAAAGCTCAGTNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAG
CGTCTGGTGAAGAA 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 4A 

TET2_EX4A_0413 50x 
AGTAACACAACACTTTTAAGGGAAGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCT
CCTCCTCTTCCACAGG 

TET2 
Exon 4A 

TET2_EX4A_0414 50x 
TCCATCTACACATGTATGCAGCCCTTCNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
CACCACCACTACCCC 

TET2 
Exon 4A 

TET2_EX4A_0415 1x 
AGACTGCAGGGACAATGACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNACCACCTT
CCCAGAGTCCTAA 

TET2 
Exon 4A 

TET2_EX4A_0416 1x 
AGAACACCTCAAGCATAACCCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNTCTGA
AAGGCCTCAGAATAAT 

TET2 
Exon 4A 

TET2_EX4A_0417 1x 
AGCAGTTGATGAGAAACAAAGAGCANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
CCATTGTGTTCTGAG 

TET2 
Exon 4A 

TET2_EX4A_0418 1x 
ACACAGCACTATCTGAAACCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGAGAG
CTACAGGACAACTGC 

TET2 
Exon 4A 

TET2_EX4A_0419 1x 
GTAATGAGGCATCACTGCCATCANNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNACAC
GAGATCTTGTGCCC 

TET2 
Exon 4A 

TET2_EX4A_0429 1x 
AGAAATTCCCCTTATAGTCAGACCATGANNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NGTTTTCATGGTGAAAA 

TET2 
Exon 4A 

TET2_EX4A_0431 1x 
AGACCCAAAACTTGCATCACANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCAAGTG
CATGCAAAATACAGG 

TET2 
Exon 4A 

TET2_EX4A_0433 1x 
AGATATGTCTGGTCAACAAGCTGCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGAT
CCCAAAGCAAGATCT 

TET2 
Exon 4A 

TET2_EX4A_0435 50x 
AGCATGCTGCTCTAAGGTGGCNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNCTCAG
CAAAGGTACTTGAT 

TET2 
Exon 4A 

TET2_EX4A_0436 50x 
AGTCAGATGCACAGGCCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCCTCCCCAG
AAGGACACTCAAA 

TET2 
Exon 4A 

TET2_EX4A_0438 50x 
GTGCAGCAAAAGAGCATCATTGAGACNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
CAAGCCACATGCCTGT 

TET2 
Exon 4A 

TET2_EX4A_0440 1x 
ACTAGACAAACCACTGCTGCAGNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNAGCAG
TTTCACGCCAAGT 

TET2 
Exon 4A 

TET2_EX4A_0442 1x 
AGAGTCACCTTCCAAATTACTAGANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNACT
TGATAGCCACACCC 

TET2 
Exon 4A 

TET2_EX4A_0444_SNP_a 25x 
TCCAGAATTAGCAAATTTATCTTCAGANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
TTTATTGGATACACCT 

TET2 
Exon 4A 

TET2_EX4A_0444_SNP_b 25x 
TCCATAATTAGCAAATTTATCTTCAGANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
TTATTGGATACACCT 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 4A 

TET2_EX4A_0445 50x 
AGGCTCATAAAAATCTGAAGCTTACNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGA
GACACATGGCGTTT 

TET2 
Exon 4A 

TET2_EX4A_0446 1x 
CCATCCACAAGGCTGCCCTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTTCTGTCT
GGCAAATGGGAG 

TET2 
Exon 4A 

TET2_EX4A_0447 1x 
GTGATGGTATCAGGAATGGACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGCCAC
TTGGTGTCTCCATT 

TET2 
Exon 4A 

TET2_EX4A_0448 50x 
ACTTCTGGATGAGCTCTCTNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNTTTCTTGTG
TAAAGTCAGGAC 

TET2 
Exon 4A 

TET2_EX4A_0105 1x 
GTAGAGGGTATTCCAAGTGTTTGCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGAG
ACACCAAGTGGCACT 

TET2 
Exon 4A 

TET2_EX4A_0106 1x 
CTCTCTGGGCTCCTTCAGATNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCGTGTGA
GTCCTGACTTTACACAAG 

TET2 
Exon 4A 

TET2_EX4A_0157 1x 
ACTTTTGAAAGAGTGCCACTTGGTGTCTCNNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNCCTCCATTTTGCAAAC 

TET2 
Exon 4A 

TET2_EX4A_0158 1x 
TCTACTTTCTTGTGTAAAGTCAGGACTCNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
CTTTTGGTCTTGTTTC 

TET2 
Exon 4A 

TET2_EX4A_0450 50x 
TCCTCCATTTTGCAAACACTTGGANNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGAAG
TTACGTCTTTCTC 

TET2 
Exon 4A 

TET2_EX4A_0451 50x 
AGCCTTTTGGTCTTGTTTCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCTCACAGAT
TCTTTCTTATCA 

TET2 
Exon 4A 

TET2_EX4A_0458 1x 
AGCTCAGAGTTAGAGGTCTNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTCTGAAA
GGAACAGGTATTTA 

TET2 
Exon 4A 

TET2_EX4A_0460 1x 
CTGATTTTTGTTGTTGTAGTTGTTCTGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
GCTGCTGGAACCTGA 

TET2 
Exon 4A 

TET2_EX4A_0462 1x 
ACCGTTCAGAGCTGCCACCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNTTGTGATG
GTGGTGGTGGTGT 

TET2 
Exon 4A 

TET2_EX4A_0463 25x 
AGTGGCAGAAAAGGAATCCTTAGTGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNT
TCAGAGTGCTTTTTC 

TET2 
Exon 4A 

TET2_EX4A_0465 1x 
AGTGTTGTGTTACTTTGGTTGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCAGAA
AGCATCGGAGAAGGG 

TET2 
Exon 4A 

TET2_EX4A_0470 1x 
GGGCCTTCAATTCAATCCATCCNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGGAGG
TCATTTGATTGGAG 

TET2 
Exon 4A 

TET2_EX4A_0471 1x 
AGAATTGATGGCAGTGATGCCTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNCTGG
GTGTAAGCTTGCCT 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 4A 

TET2_EX4A_0472 1x 
GGGAGCCCCCCAGGCATGTNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTTGGTC
CACTGTACCTTGGG 

TET2 
Exon 4A 

TET2_EX4A_0473 1x 
ACTGCCCTTGATTCATTTCANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNAGTGACT
GCACATGAGCTTT 

TET2 
Exon 4A 

TET2_EX4A_0474 1x 
GTAAATGGTCTGTTTTGGAGAAGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGTT
TCAACACTGGGGAC 

TET2 
Exon 4A 

TET2_EX4A_0475 50x 
AGTTTTTCAGTTTGGGAATCTGCTCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGTT
TATGAGGCTTATGT 

TET2 
Exon 4A 

TET2_EX4A_0476 1x 
AGTTTGAAAATGGCTCAGTCTCTGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNATT
TTTGCTGCTGTTGC 

TET2 
Exon 4A 

TET2_EX4A_0477 1x 
GGTTTTGAGGGAGATGTGAACTCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNGAT
CCTTCTCTTTGCTG 

TET2 
Exon 4A 

TET2_EX4A_0478 50x 
TCATTGTTGCTTTGGGGGTGAGGANNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTGA
GTCTCGAACTCGC 

TET2 
Exon 4A 

TET2_EX4A_0480 1x 
GTACTTCCTCCAGTCCCATTTGGACANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAC
TAGGTGTGTATTGT 

TET2 
Exon 4A 

TET2_EX4A_0482 1x 
AGTTCAGGATGTGTAGTCTGTTNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGTTCTT
GAAAGCACCTGT 

TET2 
Exon 4A 

TET2_EX4A_0484 25x 
TCTATTTTTATATCCCTGTAGAACTGANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
TGGTCAGGCACAGGA 

TET2 
Exon 4A 

TET2_EX4A_0487 1x 
AGACTCAGTTTGGGGTTGCTGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTTTTTC
CATGTTTTGTTTTC 

TET2 
Exon 4A 

TET2_EX4A_0489 1x 
TCACAGCTTGCAGGTGGATTCTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTTTG
AGAGTAAGAGCCT 

TET2 
Exon 4A 

TET2_EX4A_0491 1x 
CCCTGACATTTCAACTTTTACTTGNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNTGGT
GTCTTTTCTGAAG 

TET2 
Exon 4A 

TET2_EX4A_0493 1x 
AGAACAGAAGCAGCTGTTCTNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTCTGCA
AGATGGGAAATCATA 

TET2 
Exon 4C 

TET2_EX4C_0497 1x 
AGGGCAGATTAACGTTTATCCTTTTGTNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
GATGAAGGTCCTTTTT 

TET2 
Exon 4C 

TET2_EX4C_0498 1x 
AGATTATTATTTTAGACCTCAATTATACTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCTCTAATAGCTGCCAC 

TET2 
Exon 5 

TET2_EX5_0501 50x 
TCTTGGGCATTTTGATTTGTAAATCTGANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
AGTCATCTATACTGGT 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TET2 
Exon 5 

TET2_EX5_0502 1x 
ACCCACAGAAACACACACACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTTAGC
AATAGGACATCCCT 

TET2 
Exon 6 

TET2_EX6_0504 1x 
GGCTGCAGTGATTGTGATTCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTGTTTG
GGATGGAATGGTGAT 

TET2 
Exon 6 

TET2_EX6_0506 1x 
TCTCCCCTCTTTGCGGCCACTNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGACAAA
CTCTACTCGGAGCTT 

TET2 
Exon 6 

TET2_EX6_0508 1x 
TCACAGGTGTGGCCAGCTCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCGTATTT
CCTCAGCGTCTCGG 

TET2 
Exon 7 

TET2_EX7_0510 1x 
AGCATGTACTACAATGGATGTNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGCAAT
GAATTTGGTCTTTTGA 

TET2 
Exon 7 

TET2_EX7_0511 1x 
GGTTTGTTTACTTCCTGATGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTCTCTTTT
GGTTGTTCATGG 

TET2 
Exon 7 

TET2_EX7_0515 1x 
GGATCTTGCTTCTGGCAAACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCATCTA
AGCTAATGAATTCTCT 

TET2 
Exon 8 

TET2_EX8_0516 50x 
AGAAACTTGCACCTGATGCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTGGACT
TAGAATTTAATATGT 

TET2 
Exon 8 

TET2_EX8_0519 1x 
AGGTTTTGCAAATGAGACTCCAGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNAGT
TGTTACAATTGCTGC 

TET2 
Exon 9 

TET2_EX9_0520 1x 
CTGCATGTTTGGACTTCTGTGCTCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCAT
TCACACACACTTTT 

TET2 
Exon 9 

TET2_EX9_0521 1x 
GAGGACAGCTTAGCAGCTGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGCCGTCC
ATTCTCAGGGGTCA 

TP53 
Exon 1 

TP53_1_0102 1x 
AGCAGGGAGGAGAGATGACATCNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNTGT
CAGTCTGAGTCAGGCC 

TP53 
Exon 1 

TP53_1_0103 1x 
AGCCTCCCACCCCCATCTCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGTCCAAAA
AGGGTCAGTCTAC 

TP53 
Exon 10 

TP53_10_0144 1x 
GGGGCTGGTGCAGGGGCCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTCACAG
ACTTGGCTGTCCCAG 

TP53 
Exon 10 

TP53_10_0146_SNP_
a 

1x 
GGGACAGCATCAAATCATCCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGAGCT
GCTGGTGCAGGGGC 

TP53 
Exon 10 

TP53_10_0146_SNP_
b 

1x 
AGGACAGCATCAAATCATCCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGAGCT
GCTGGTGCAGGGGC 

TP53 
Exon 10 

TP53_10_0147 50x 
AGGTCCTCAGCCCCCCAGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGTGAACC
ATTGTTCAATATCGTC 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TP53 
Exon 10 

TP53_10_0148 1x 
AGACTTCAATGCCTGGCCGTNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCTACCAG
GGCAGCTACGGTT 

TP53 
Exon 10 

TP53_10_16882 1x 
AGCCTCTGGCATTCTGGGAGCNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGTTTTC
TGGGAAGGGACAG 

TP53 
Exon 11 

TP53_11_0154 1x 
GGGACCTGGAGGGCTGGGGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCAGAGA
CCTGTGGGAAGCGAA 

TP53 
Exon 12 

TP53_12_0156 1x 
GGGATCCAGCATGAGACACTTCNNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGTTT
CCTGACTCAGAGGG 

TP53 
Exon 12 

TP53_12_0026 1x 
CAGAGGGGGCTCGACGCTAGNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNTAGGGG
GCTGGGGTTGGGGT 

TP53 
Exon 12 

TP53_12_0027 1x 
GTGAGTGGATCCATTGGAAGGGCAGGNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
GGTCACTGCCATGGAGGAG 

TP53 
Exon 12 

TP53_12_618883 1x 
GCTCGACGCTAGGATCTGACTGNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNTAGGG
GGCTGGGGTTGGGG 

TP53 
Exon 2 

TP53_2_0105 1x 
TCCTTGAGTTCCAAGGCCTCATTCAGNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNA
CCTAGGAAGGCAGGG 

TP53 
Exon 2 

TP53_2_0107 1x 
GTTCAAGTTACAATTGTTTGACTTTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCTC
TCGGAACATCTCG 

TP53 
Exon 2 

TP53_2_0109 1x 
GGAGCAGGGCTCACTCCAGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNTCTGTTGC
TGCAGATCCGTGG 

TP53 
Exon 3_4 

TP53_4_0111 25x 
AGAACCATTTTCATGCTCTCTTTAACNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCC
ATTTTCAACTTACAA 

TP53 
Exon 3_4 

TP53_4_0112 50x 
AGTTGGTGTTCTGAAGTTAGTTNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNTCTGT
ATCAGGCAAAGTCA 

TP53 
Exon 5 

TP53_5_0117 1x 
GCACCCTTGGTCTCCTCCACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCCAGTGG
TTTCTTCTTTGGCT 

TP53 
Exon 5 

TP53_5_0118 1x 
AGTTTCCAGTCTAACACTCANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCAACAAC
ACCAGCTCCTCTCC 

TP53 
Exon 6 

TP53_6_0120 1x 
AGGCTCCCCTTTCTTGCGGAGANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNAAGTG
AATCTGAGGCATAACT 

TP53 
Exon 6 

TP53_6_0122 25x 
AGGAAATCAGGTCCTACCTGTCNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGGTCT
CTCCCAGGACAGG 

TP53 
Exon 6 

TP53_6_0124 50x 
AGCTGCCCCCAGGGAGCACNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNACTGGGA
CGGAACAGCTTTGAG 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

TP53 
Exon 7 

TP53_7_0126 1x 
GGTTCATGCCGCCCATGCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNAGAGGCAA
GCAGAGGCTGGGG 

TP53 
Exon 7 

TP53_7_0130 1x 
GGAGGCCCATCCTCACCATCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGCCTCATC
TTGGGCCTGTGT 

TP53 
Exon 8 

TP53_8_0131 50x 
TCCACACGCAAATTTCCTTCCACTCGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCC
TCCTCCCAGAGACC 

TP53 
Exon 8 

TP53_8_0132 50x 
AGAGGCCTGGGGACCCTGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCGAAAAGT
GTTTCTGTCATCCA 

TP53 
Exon 9 

TP53_9_0136 1x 
GTGACTGCTTGTAGATGGCCATGGNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNACC
AGCCCTGTCGTCT 

TP53 
Exon 9 

TP53_9_0138 1x 
AGGAAGGAGACAGAGTTGAAAGTCANNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
GGGCGGGGGTGTGGA 

TP53 
Exon 9 

TP53_9_0140 50x 
AGGCGCTGCCCCCACCATGANNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCTGCCCT
GTGCAGCTGTGGGT 

U2AF1 
(c34 hotspot) 

U2AF1_c34_0383 50x 
GTCTCCATGACGACATGCTCCANNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNACTGT
CTTTGAAAAGAACA 

U2AF1 
(c83 hotspot) 

U2AF1_c83_0382 50x 
GTGACGTGACTGAGCACAGTNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNGGTTTA
ATGGACAGCCGATC 

WT1 
Exon 1 

WT1_EX1_6591 50x 
AGCGCCCCCTACGCGCGGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNAGGCGTCA
TCCGGCCAGGCCAGG 

WT1 
Exon 1 

WT1_EX1_6640 50x 
AGGCTCCGGCTGTGCCAGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGGCTCTCG
AGGCAGCTGGGCAG 

WT1 
Exon 1 

WT1_EX1_6943 50x 
GGGCCCTTCGGTCCTCCTCNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNCGAGCTGG
GGCGGCGCGGAGC 

WT1 
Exon 1 

WT1_EX1_6990 50x 
GTTTGATGAAGGAGTGAGGCGGCGNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNCT
CCGGCTGTGCCAGT 

WT1 
Exon 1 

WT1_EX1_270319 50x 
GGCGGCGGAGCCGGTGGCGGNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGTGGA
CAGTGAAGGCGCTCA 

WT1 
Exon 10B 

WT1_EX10B_0019 1x 
AGTTTTACACTGGAATGGTTTCACACCTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NTAAATGTGAAGAAAAGT 

WT1 
Exon 10B 

WT1_EX10B_0022 1x 
ACCCACACCAGGACTCATACAGNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNGTTAG
GGCCGAGGCTAGAC 

WT1 
Exon 11 

WT1_EX11_0016 1x 
GCCAGTCAGAGACACTTGCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGATGCAT
GTTGTGATGGCGGA 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

WT1 
Exon 11 

WT1_EX11_0017 1x 
GTTCAGTGTCCCAGGCAGCACNNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNAGTTTG
CCCGGTCAGATGA 

WT1 
Exon 3 

WT1_EX3_0047 1x 
GGTGCGAGGGCGTGTGACCNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGGGGAGA
AGGACTCCACTTGG 

WT1 
Exon 3 

WT1_EX3_0050 50x 
AGTTCCCCAACCACTCATTCANNNNNAGATCGGA
AGAGCGTGTGTATAAGAGACAGNNNNNCTGACA
CTGTGCTTCTCTC 

WT1 
Exon 4 

WT1_EX4_0044 50x 
AGTGCGCCCCAAGGGCTCGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNGGCTGCC
GGTGCAGCTGTCGG 

WT1 
Exon 4 

WT1_EX4_0045 50x 
GTCTGGGTCCTTGGGACCCCGGANNNNNAGATCG
GAAGAGCGTGTGTATAAGAGACAGNNNNNGGTC
TATGGCTGCCACAC 

WT1 
Exon 4 

WT1_EX4_0010 1x 
GCTGTCGGTGGGGGTGTGGCAGCCATAGNNNNN
AGATCGGAAGAGCGTGTGTATAAGAGACAGNNN
NNTCCCAAGGACCCAGAC 

WT1 
Exon 4 

WT1_EX4_0011 1x 
GCTGCTCACCTGCAGAGAGAACCGAAGNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCCTTCCTACCTGCTGT 

WT1 
Exon 4 

WT1_EX4_0015_SNP_a 1x 
AGGCGCTGGGCTCTGCGTCTGGGTCCTTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCGGTCTATGGCTGCCA 

WT1 
Exon 4 

WT1_EX4_0015_SNP_b 1x 
AGGCGCTGGACTCTGCGTCTGGGTCCTTNNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NCGGTCTATGGCTGCCA 

WT1 
Exon 5 

WT1_EX5_0040 50x 
CCACAAAATAATACACAACTGTTTCTTCANNNNNA
GATCGGAAGAGCGTGTGTATAAGAGACAGNNNN
NTCATCTGATTCCAGGT 

WT1 
Exon 5 

WT1_EX5_0041 1x 
AGGTTTTCTCTATTCCATTGCCTTTCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNGT
TTTTCTAACAGTGAC 

WT1 
Exon 6 

WT1_EX6_0037 1x 
AGTGGGGAATGGAGCATGCATGGATCNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
TCTCCGCATTGTCCAC 

WT1 
Exon 7 

WT1_EX7_0006 1x 
GGGGGCCGCACTGCCTCTTCCTACTTANNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
ATAACCACACAACGCCCA 

WT1 
Exon 7 

WT1_EX7_0008 1x 
GCGTTGTGTGGTTATCGCTCTCGTNNNNNAGATC
GGAAGAGCGTGTGTATAAGAGACAGNNNNNCCC
TTCCCGCTGGGGC 

WT1 
Exon 7 

WT1_EX7_0033 1x 
GTACCCTGTGCTGTGGCTGNNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGGGCCTGT
CTGTGTGCTCACCT 

WT1 
Exon 7 

WT1_EX7_0036 50x 
AGAATACACACGCACGGTGTCTTCANNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAC
ACTGAGCCTTTTTC 

WT1 
Exon 8 

WT1_EX8_0004 1x 
TTCAAGAGCTCCTTTTCCAGGCTCTCNNNNNAGAT
CGGAAGAGCGTGTGTATAAGAGACAGNNNNNAT
ATTTTAAGCTGTCCCAC 
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Supplemental Table 1(continued) 

Target Probe name RC  Probe sequence 

WT1 
Exon 8 

WT1_EX8_0027 1x 
GCGTTTCTCACTGGTCTCANNNNNAGATCGGAAG
AGCGTGTGTATAAGAGACAGNNNNNGGACAGCG
GGCACACTTACCA 

WT1 
Exon 8 

WT1_EX8_0029 1x 
GTAGGTCTTGAGGGAGAGTGAGCACNNNNNAGA
TCGGAAGAGCGTGTGTATAAGAGACAGNNNNNC
GTACAAGAGTCGGGG 

WT1 
Exon 8 

WT1_EX8_0031 1x 
AGATATTTTAAGCTGTCCCACTTACAGNNNNNAG
ATCGGAAGAGCGTGTGTATAAGAGACAGNNNNN
CGTGTGCCTGGAGTAG 

WT1 
Exon 9 

WT1_EX9_0024 1x 
AGGCAACCTCTCCTACTAGGACNNNNNAGATCGG
AAGAGCGTGTGTATAAGAGACAGNNNNNTCGTTC
ACAGTCCTTGAA 

WT1 
Exon 9 

WT1_EX9_0025 1x 
AGGTTCACTTCTCATTGCTGNNNNNAGATCGGAA
GAGCGTGTGTATAAGAGACAGNNNNNCAAGGTG
AGAAACCATACCA 
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Supplemental Table 2: Index sequences for P5 adapter primers utilized for preparation of smMIP libraries, as well as barcode 
sequencing libraries. Index sequences present within the adapter-oligonucleotides are listed in 5’-3’ orientation. 

Adapter Name Index sequence Adapter Name Index sequence 

TruSeq_P5_xGen_001 ATATGCGC TruSeq_P5_xGen_048 GAGCAGTA 

TruSeq_P5_xGen_002 TGGTACAG TruSeq_P5_xGen_050 GATCGAGT 

TruSeq_P5_xGen_003 AACCGTTC TruSeq_P5_xGen_051 AGCGTGTT 

TruSeq_P5_xGen_004 TAACCGGT TruSeq_P5_xGen_052 GTTACGCA 

TruSeq_P5_xGen_005 GAACATCG TruSeq_P5_xGen_053 TGAAGACG 

TruSeq_P5_xGen_006 CCTTGTAG TruSeq_P5_xGen_055 CGGTTGTT 

TruSeq_P5_xGen_007 TCAGGCTT TruSeq_P5_xGen_056 GTTGTTCG 

TruSeq_P5_xGen_008 GTTCTCGT TruSeq_P5_xGen_057 GAAGGAAG 

TruSeq_P5_xGen_009 AGAACGAG TruSeq_P5_xGen_058 AGCACTTC 

TruSeq_P5_xGen_010 TGCTTCCA TruSeq_P5_xGen_059 GTCATCGA 

TruSeq_P5_xGen_011 CTTCGACT TruSeq_P5_xGen_060 TGTGACTG 

TruSeq_P5_xGen_012 CACCTGTT TruSeq_P5_xGen_061 CAACACCT 

TruSeq_P5_xGen_013 ATCACACG TruSeq_P5_xGen_062 ATGCCTGT 

TruSeq_P5_xGen_014 CCGTAAGA TruSeq_P5_xGen_063 CATGGCTA 

TruSeq_P5_xGen_015 TACGCCTT TruSeq_P5_xGen_064 GTGAAGTG 

TruSeq_P5_xGen_016 CGACGTTA TruSeq_P5_xGen_065 CGTTGCAA 

TruSeq_P5_xGen_017 ATGCACGA TruSeq_P5_xGen_066 ATCCGGTA 

TruSeq_P5_xGen_018 CCTGATTG TruSeq_P5_xGen_067 GCGTCATT 

TruSeq_P5_xGen_019 GTAGGAGT TruSeq_P5_xGen_068 GCACAACT 

TruSeq_P5_xGen_021 CACTAGCT TruSeq_P5_xGen_069 GATTACCG 

TruSeq_P5_xGen_023 CGTGTGTA TruSeq_P5_xGen_071 GTCGAAGA 

TruSeq_P5_xGen_024 GTTGACCT TruSeq_P5_xGen_072 CCTTGATC 

TruSeq_P5_xGen_026 CAATGTGG TruSeq_P5_xGen_073 AAGCACTG 

TruSeq_P5_xGen_027 TTGCAGAC TruSeq_P5_xGen_074 TTCGTTGG 

TruSeq_P5_xGen_028 CAGTCCAA TruSeq_P5_xGen_075 TCGCTGTT 

TruSeq_P5_xGen_030 AACGTCTG TruSeq_P5_xGen_076 GAATCCGA 

TruSeq_P5_xGen_031 TATCGGTC TruSeq_P5_xGen_077 GTGCCATA 

TruSeq_P5_xGen_032 CGCTCTAT TruSeq_P5_xGen_078 CTTAGGAC 

TruSeq_P5_xGen_033 GATTGCTC TruSeq_P5_xGen_079 AACTGAGC 

TruSeq_P5_xGen_034 GATGTGTG TruSeq_P5_xGen_080 GACGATCT 

TruSeq_P5_xGen_035 CGCAATCT TruSeq_P5_xGen_081 ATCCAGAG 

TruSeq_P5_xGen_036 TGGTAGCT TruSeq_P5_xGen_082 AGAGTAGC 

TruSeq_P5_xGen_037 GATAGGCT TruSeq_P5_xGen_083 TGGACTCT 

TruSeq_P5_xGen_038 AGTGGATC TruSeq_P5_xGen_084 TACGCTAC 

TruSeq_P5_xGen_039 TTGGACGT TruSeq_P5_xGen_085 GCTATCCT 

TruSeq_P5_xGen_040 ATGACGTC TruSeq_P5_xGen_086 GCAAGATC 

TruSeq_P5_xGen_041 GAAGTTGG TruSeq_P5_xGen_087 ATCGATCG 

TruSeq_P5_xGen_042 CATACCAC TruSeq_P5_xGen_088 CGGCTAAT 

TruSeq_P5_xGen_043 CTGTTGAC TruSeq_P5_xGen_090 CGCATGAT 

TruSeq_P5_xGen_044 TGGCATGT TruSeq_P5_xGen_091 TTCCAAGG 

TruSeq_P5_xGen_045 ATCGCCAT TruSeq_P5_xGen_092 CTTGTCGA 

TruSeq_P5_xGen_046 TTGCGAAG TruSeq_P5_xGen_093 GAGACGAT 

TruSeq_P5_xGen_047 AGTTCGTC TruSeq_P5_xGen_094 TGAGCTAG 
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Supplemental Table 2 (continued) 

Adapter Name Index sequence Adapter Name Index sequence 

TruSeq_P5_xGen_096 CTGATCGT TruSeq_P5_xGen_143 CGTACGAA 

TruSeq_P5_xGen_097 CGACCATT TruSeq_P5_xGen_144 GACTTAGG 

TruSeq_P5_xGen_098 GATAGCGA TruSeq_P5_xGen_145 AGTGCAGT 

TruSeq_P5_xGen_099 AATGGACG TruSeq_P5_xGen_146 TTGATCCG 

TruSeq_P5_xGen_100 CGCTAGTA TruSeq_P5_xGen_147 TGCCATTC 

TruSeq_P5_xGen_101 TCTCTAGG TruSeq_P5_xGen_148 CTTGCTGT 

TruSeq_P5_xGen_103 TGAGGTGT TruSeq_P5_xGen_149 CCTACTGA 

TruSeq_P5_xGen_104 AATGCCTC TruSeq_P5_xGen_150 CCAAGTTG 

TruSeq_P5_xGen_105 CTGGAGTA TruSeq_P5_xGen_152 TAGTTGCG 

TruSeq_P5_xGen_106 GTATGCTG TruSeq_P5_xGen_153 GTCTGATC 

TruSeq_P5_xGen_107 TGGAGAGT TruSeq_P5_xGen_154 CGTTATGC 

TruSeq_P5_xGen_108 CGATAGAG TruSeq_P5_xGen_155 GCTCTGTA 

TruSeq_P5_xGen_109 CTCATTGC TruSeq_P5_xGen_156 TTACCGAG 

TruSeq_P5_xGen_111 GAATCGTG TruSeq_P5_xGen_157 GCCATAAC 

TruSeq_P5_xGen_112 AGGCTTCT TruSeq_P5_xGen_158 CTCAGAGT 

TruSeq_P5_xGen_113 CAGTTCTG TruSeq_P5_xGen_159 CGAGACTA 

TruSeq_P5_xGen_114 TTGGTGAG TruSeq_P5_xGen_160 TGTGCGTT 

TruSeq_P5_xGen_115 CATTCGGT TruSeq_P5_xGen_161 TTCAGGAG 

TruSeq_P5_xGen_116 TGTGAAGC TruSeq_P5_xGen_162 GACTATGC 

TruSeq_P5_xGen_117 TAAGTGGC TruSeq_P5_xGen_163 AGGTTCGA 

TruSeq_P5_xGen_119 GTAGAGCA TruSeq_P5_xGen_164 AGTCTGTG 

TruSeq_P5_xGen_120 GTCAGTTG TruSeq_P5_xGen_166 TGCAGGTA 

TruSeq_P5_xGen_121 ATTCGAGG TruSeq_P5_xGen_167 AAGGACAC 

TruSeq_P5_xGen_122 GATACTGG TruSeq_P5_xGen_168 CAACCTAG 

TruSeq_P5_xGen_123 GCCTTGTT TruSeq_P5_xGen_169 CTGACACA 

TruSeq_P5_xGen_124 TTGGTCTC TruSeq_P5_xGen_171 AGCTCCTA 

TruSeq_P5_xGen_125 CCGACTAT TruSeq_P5_xGen_172 TACATCGG 

TruSeq_P5_xGen_126 GTCCTAAG TruSeq_P5_xGen_173 CACAAGTC 

TruSeq_P5_xGen_128 GATGCACT TruSeq_P5_xGen_174 CGGATTGA 

TruSeq_P5_xGen_129 GCTGGATT TruSeq_P5_xGen_175 AGTCGACA 

TruSeq_P5_xGen_130 ATGGTTGC TruSeq_P5_xGen_176 GTCTCCTT 

TruSeq_P5_xGen_131 CAGAATCG TruSeq_P5_xGen_177 GAGATACG 

TruSeq_P5_xGen_132 GAACGCTT TruSeq_P5_xGen_178 ATCGGTGT 

TruSeq_P5_xGen_133 TCGAACCA TruSeq_P5_xGen_179 TCTCGCAA 

TruSeq_P5_xGen_134 CTATCGCA TruSeq_P5_xGen_180 TCTAACGC 

TruSeq_P5_xGen_135 TACGGTTG TruSeq_P5_xGen_181 CAATCGAC 

TruSeq_P5_xGen_136 GAGATGTC TruSeq_P5_xGen_182 GAGGACTT 

TruSeq_P5_xGen_137 CTTACAGC TruSeq_P5_xGen_183 TGGAGTTG 

TruSeq_P5_xGen_138 AGGAGGAA TruSeq_P5_xGen_184 CTAGGCAT 

TruSeq_P5_xGen_139 GACGAATG TruSeq_P5_xGen_185 CTCTACTC 

TruSeq_P5_xGen_140 GAAGAGGT TruSeq_P5_xGen_186 AGAAGCGT 

TruSeq_P5_xGen_141 CGTCAATG TruSeq_P5_xGen_187 TCGAAGGT 

TruSeq_P5_xGen_142 TACCAGGA TruSeq_P5_xGen_188 GTCGGTAA 
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Supplemental table 2 (continued) 

Adapter Name Index sequence Adapter Name Index sequence 

TruSeq_P5_xGen_190 TCCGTATG TruSeq_P5_xGen_202 TATCAGCG 

TruSeq_P5_xGen_191 CTAGGTGA TruSeq_P5_xGen_203 AGCAGATG 

TruSeq_P5_xGen_192 CATTGCCT TruSeq_P5_xGen_204 AACGGTCA 

TruSeq_P5_xGen_194 TCGTGGAT TruSeq_P5_xGen_205 CGAACTGT 

TruSeq_P5_xGen_195 GTTCATGG TruSeq_P5_xGen_206 TCCGAGTT 

TruSeq_P5_xGen_196 TAGGATGC TruSeq_P5_xGen_207 TTCTCTCG 

TruSeq_P5_xGen_197 CATGGAAC TruSeq_P5_xGen_208 ATTCTGGC 

TruSeq_P5_xGen_198 GCTTAGCT TruSeq_P5_xGen_210 CATAACGG 

TruSeq_P5_xGen_199 CTAACTCG TruSeq_P5_xGen_211 CAGTCTTC 

TruSeq_P5_xGen_201 TCAGACGA TruSeq_P5_xGen_212 TGCCTCTT 
 

Supplemental Table 3: Index sequences of P7 adapter primers utilized for preparation of smMIP libraries. Index sequences 
present within the adapter-oligos are listed in 5’-3’ orientation. 

Adapter Name Index (5'-3') Adapter Name Index (5'-3') 

NT+RS_P7_xGen_2 TCGAGAGT NT+RS_P7_xGen_36 AGGTGTTG 

NT+RS_P7_xGen_3 CTAGCTCA NT+RS_P7_xGen_37 CAGTCACA 

NT+RS_P7_xGen_5 TCGACAAG NT+RS_P7_xGen_38 TCGATGAC 

NT+RS_P7_xGen_6 CCTTGGAA NT+RS_P7_xGen_39 GAAGTGCT 

NT+RS_P7_xGen_7 ATCATGCG NT+RS_P7_xGen_40 CTTCCTTC 

NT+RS_P7_xGen_8 TGTTCCGT NT+RS_P7_xGen_41 CGAACAAC 

NT+RS_P7_xGen_9 ATTAGCCG NT+RS_P7_xGen_44 CGTCTTCA 

NT+RS_P7_xGen_10 CGATCGAT NT+RS_P7_xGen_45 TGCGTAAC 

NT+RS_P7_xGen_11 GATCTTGC NT+RS_P7_xGen_47 ACTCGATC 

NT+RS_P7_xGen_12 AGGATAGC NT+RS_P7_xGen_48 TGAGCTGT 

NT+RS_P7_xGen_13 GTAGCGTA NT+RS_P7_xGen_50 GACGAACT 

NT+RS_P7_xGen_14 AGAGTCCA NT+RS_P7_xGen_51 CTTCGCAA 

NT+RS_P7_xGen_15 GCTACTCT NT+RS_P7_xGen_52 ATGGCGAT 

NT+RS_P7_xGen_16 CTCTGGAT NT+RS_P7_xGen_53 ACATGCCA 

NT+RS_P7_xGen_17 AGATCGTC NT+RS_P7_xGen_54 GTCAACAG 

NT+RS_P7_xGen_18 GCTCAGTT NT+RS_P7_xGen_55 GTGGTATG 

NT+RS_P7_xGen_19 GTCCTAAG NT+RS_P7_xGen_57 GACGTCAT 

NT+RS_P7_xGen_21 TCGGATTC NT+RS_P7_xGen_59 GATCCACT 

NT+RS_P7_xGen_23 CCAACGAA NT+RS_P7_xGen_60 AGCCTATC 

NT+RS_P7_xGen_24 CAGTGCTT NT+RS_P7_xGen_61 AGCTACCA 

NT+RS_P7_xGen_25 GATCAAGG NT+RS_P7_xGen_62 AGATTGCG 

NT+RS_P7_xGen_26 TCTTCGAC NT+RS_P7_xGen_63 CACACATC 

NT+RS_P7_xGen_28 CGGTAATC NT+RS_P7_xGen_64 GAGCAATC 

NT+RS_P7_xGen_29 AGTTGTGC NT+RS_P7_xGen_65 ATAGAGCG 

NT+RS_P7_xGen_30 AATGACGC NT+RS_P7_xGen_66 GACCGATA 

NT+RS_P7_xGen_32 TTGCAACG NT+RS_P7_xGen_67 CAGACGTT 

NT+RS_P7_xGen_33 CACTTCAC NT+RS_P7_xGen_68 CTGAACGT 

NT+RS_P7_xGen_34 TAGCCATG NT+RS_P7_xGen_69 TTGGACTG 

NT+RS_P7_xGen_35 ACAGGCAT NT+RS_P7_xGen_70 GTCTGCAA 
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Supplemental Table 3 (continued) 

Adapter Name Index (5'-3') Adapter Name Index (5'-3') 

NT+RS_P7_xGen_71 CCACATTG NT+RS_P7_xGen_110 GTATCGAG 

NT+RS_P7_xGen_72 GATGGAGT NT+RS_P7_xGen_113 GTCAGTCA 

NT+RS_P7_xGen_73 AGGTCAAC NT+RS_P7_xGen_114 CACGTCTA 

NT+RS_P7_xGen_74 TACACACG NT+RS_P7_xGen_119 TATGACCG 

NT+RS_P7_xGen_75 CAAGTCGT NT+RS_P7_xGen_127 GTGATCCA 

NT+RS_P7_xGen_76 AGCTAGTG NT+RS_P7_xGen_128 ACTGGTGT 

NT+RS_P7_xGen_78 ACTCCTAC NT+RS_P7_xGen_144 GTTCTTCG 

NT+RS_P7_xGen_80 TCGTGCAT NT+RS_P7_xGen_160 TGAGACGA 

NT+RS_P7_xGen_81 TAACGTCG NT+RS_P7_xGen_200 TTACGTGC 

NT+RS_P7_xGen_83 TCTTACGG NT+RS_P7_xGen_242 TCACTCGA 

NT+RS_P7_xGen_84 CGTGTGAT NT+RS_P7_xGen_267 GCCAATAC 

NT+RS_P7_xGen_85 AACAGGTG NT+RS_P7_xGen_287 ATCCACGA 

NT+RS_P7_xGen_87 TGGAAGCA NT+RS_P7_xGen_295 ACGCTTCT 

NT+RS_P7_xGen_90 AAGCCTGA NT+RS_P7_xGen_324 GTTATGGC 

NT+RS_P7_xGen_92 CGATGTTC NT+RS_P7_xGen_330 TCCGATCA 

NT+RS_P7_xGen_94 GAACGGTT NT+RS_P7_xGen_332 TCAGTAGG 

NT+RS_P7_xGen_97 TGATAGGC NT+RS_P7_xGen_364 GCCACTTA 

NT+RS_P7_xGen_100 CTGATGAG NT+RS_P7_xGen_379 CGCAATGT 

NT+RS_P7_xGen_104 TGCTGTGA NT+RS_P7_xGen_380 CCTAGAGA 

 

 

Supplemental Table 4: Reagents costs for preparation of smMIP libraries. The current workflow results in costs of about 3.30€ 
per library an 6.59€ per sample, if libraries are prepared in technical duplicates. As the ordered amounts of smMIPs 
oligonucleotides are sufficient for millions of reactions, the minimal costs per reaction are below 0.01€ and hence not included 
in this table. With initial costs of about 3,400€ for synthesis of all smMIP probes, the additional costs per reaction are only at 
3€ per library or 6€ per sample already after the first pilot experiment. 

Reagent name Vendor Cat.No. 
Official 

price 
Costs per 

library 
Costs per 
sample 

Hemo KlenTaq NEB M0332L 452.00 € 0.07 € 0.14 € 

Ampligase DNA Ligase + Buffer Biozym 111250 301.00 € 0.12 € 0.24 € 

Exonuclease I NEB M0293L 294.00 € 0.20 € 0.39 € 

Exonuclease III NEB M0206L 260.00 € 0.52 € 1.04 € 

Q5 Hot Start High-Fidelity DNA 
Polymerase 

NEB M0493L 534.00 € 2.14 € 4.27 € 

Deoxynucleotide Solutions, 
Mix [large] 

NEB N0447L 255.00 € 0.36 € 0.71 € 

Illumina Adapter Primers SigmaAldrich - 
21.50€ 

(50nmol) 
0.04 € 0.09 € 

SPRI beads [homemade] - - 
22.86€ 
(50ml) 

0.07 € 0.15 € 

   Total 
costs: 

3.51 € 7.04 € 
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