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Introduction

Obesity is a complex disease defined as an excessive accumulation of body fat mass. The current

definition by the World Health Organization (WHO) uses the body mass index (BMI) as an estimate

for body fat and establishes a BMI cutoff of 25 for overweight and of 30 for obesity [3]. Obesity

rates, according to this definition, have increased steadily in almost every country in the world since

the 1980s making it a public health issue of major concern [4]. In 2015, over half a billion adults

were obese worldwide [5] and, if trends remain unchanged, this number is estimated to double by

2030 [6].

The number of factors influencing and regulating metabolism contribute to the complexity of the

disease and its treatment. For many years it was believed that obesity was a simple imbalance

between food intake and physical activity. However, research during the last decades has highlighted

the importance of other factors such as appetite regulation, adipose tissue biology, host-microbiome

interactions as well other genetic, epigenetic and environmental factors [7].

Obesity is in itself a chronic, progressive and relapsing disease that is associated with functional im-

pairment, reduced quality of life and an increased all-cause mortality [8–10]. In addition, it increases

the risk of developing other conditions such as type 2 diabetes, fatty liver disease, hypertension,

myocardial infarction, stroke, dementia and several cancers [7]. Obesity is also accompanied by

chronic systemic inflammation, which is linked to the development of some of these comorbidities

[11].

Adipose tissue and its distribution

Body fat is stored in localized depots of adipose tissue, which is a specialized tissue distributed

throughout the body. By its function and morphology, it can be classified into brown and white

adipose tissue. Brown adipose tissue is characterized by its heat production capacity, whereas the

9



10 INTRODUCTION

main function of white adipose tissue is to store lipids in the form of triglycerides and release them as

free fatty acids. In addition, white adipose tissue produces several signaling proteins such as leptin,

FGF21 and adiponectin that contribute to the regulation of energy homeostasis [12]. Throughout

the rest of the present text, adipose tissue will refer exclusively to white adipose tissue.

An important feature of adipose tissue is its remarkable capacity to adapt to the nutritional status

of the individual and change its size accordingly. Expansion of adipose tissue for excess nutrient

storage is achieved through the enlargement of adipocytes (hypertrophy) and, to a lesser extent,

through adipogenesis (hyperplasia) [13]. Over a decade ago, Spalding et al. showed that adipocyte

number is mostly determined during childhood and adolescence and that it remains tightly regulated

during adulthood [14]. Soon after, however, it was observed that this is not the case for all adipose

tissue depots and that they respond differently to excess nutrition [15]. Indeed, adipose tissue

depots differ in several characteristics including mechanism of expansion, secretion patterns, blood

flow, fat storage efficiency and lipolysis rates [16]. Some of these differences might partly explain

why body fat distribution is a major determinant of metabolic health.

By its location, adipose tissue can be classified into subcutaneous and visceral (SAT and VAT,

respectively). SAT is the most abundant type of adipose tissue in normal conditions and is dis-

tributed across the body. By location, it can be divided into upper and lower body SAT. According

to its structure, it can be classified into deposit, structural and fibrous SAT and serves different

functions, including heat loss prevention and protection against physical stress [18]. VAT comprises

several depots located in the abdominal cavity; these include omental, mesenteric, retroperitoneal,

gonadal and pericardial. VAT is metabolically very active and releases free fatty acids into the

circulation. For this reason, and due to its proximity to inner organs, its expansion is particularly

detrimental [12,16].

For many decades now, it has been known that the accumulation of fat in the abdomen is linked to

negative effects on metabolic health as well as an increased risk of type 2 diabetes and cardiovascular

disease [19]. This was initially described in the 1950s using the concepts of gynoid and android

obesity, which reference the fat distribution differences observed between men and women [20].

Gynoid obesity is characterized by fat accumulation in the lower body in contrast to android

obesity, in which accumulation occurs in the upper body.

Abdominal or central obesity occurs due to the expansion of VAT depots and/or abdominal SAT.

The expansion of VAT has received special attention due to its association with insulin resistance,

low-grade inflammation, dyslipidemia and hypertension [21]. Adipose tissue accumulation in the
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extremities, as opposed to the trunk, has been shown to have a protective effect on metabolic risk.

Recent studies have suggested impaired fat accumulation in the extremities as a factor involved in

the development of insulin resistance [22].

Although BMI is widely used to diagnose obesity due to its simplicity, it is a poor predictor of the

development of comorbidities and of metabolic health [23]. By its nature, BMI does not distinguish

between fat mass and fat-free mass, nor does it provide any information about body fat distribution.

Other indices and ratios, such as waist circumference (WC) and waist-to-hip ratio, have been

developed and recommended [24]. Further characterization of obesity can be achieved through

imaging methods such as dual-energy X-ray absorptiometry and magnetic resonance imaging [25].

Ectopic fat accumulation

Despite the fact that adipose tissue is the only specialized tissue with the primary function of storing

lipids, fat can accumulate in other organs under certain conditions such as obesity. Surprisingly,

ectopic lipid accumulation is not always correlated with the amount of overall adiposity. To explain

this phenomenon, Vidal-Puig and others proposed the “adipose tissue expandability hypothesis”

[26,27]; according to which, adipose tissue has a limited capacity for lipid storage that depends

on genetic and environmental factors. When this capacity is reached, fat accumulates in other

organs causing inflammation and metabolic disturbances. Well-studied ectopic sites are the liver,

the pancreas and the muscle; other sites include pericardial fat, kidney fat and perivascular adipose

tissue [28].

In the liver, triglycerides can accumulate inside hepatocytes in lipid droplets; hepatic steatosis oc-

curs when fat in the liver exceeds five percent. Steatosis can be the result of drug treatments, viral

infections and alcohol intake. In the absence of any of these or other causes, steatosis is considered

part of a spectrum of progressive liver disorders known as non-alcoholic fatty liver disease (NAFLD)

or metabolic dysfunction-associated fatty liver disease (MAFLD), as it has been recently called [29].

Although NAFLD is closely related to obesity, it can occur without obesity and is referred to as lean

NAFLD [30]. NAFLD includes simple steatosis, steatohepatitis, fibrosis, cirrhosis and hepatocel-

lular carcinoma [31]. The exact causes for the progression of NAFLD are still not well understood.

One of the leading hypotheses is the “multi-hit hypothesis”, which considers that several events

contribute to the development of an inflammatory and toxic environment that eventually leads to

NASH and, in some individuals, to the more severe forms of the disease. Some of these events
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include local and systemic insulin resistance, adipose tissue dysfunction and inflammation, genetic

and epigenetic predisposition, changes in the microbiome as well as lipotoxicity and mitochondrial

dysfunction in the liver [32].

Similar to NAFLD, obesity-associated pancreatic fat accumulation in the absence of other causes

has been defined as non-alcoholic fatty pancreas disease (NAFPD). Compared to NAFLD, NAFPD

has been less studied and, in consequence, a consensus about its natural history is lacking. In the

pancreas, in contrast to the liver, fat can accumulate through intracellular fat deposition as well as

through adipocyte infiltration. Some studies have shown that fat infiltration is not homogeneous

and that there are differences in the distribution of fat within the pancreas related to ethnicity

[34]. For many years pancreatic steatosis was thought to be merely an imaging finding, which has

led to a poor understanding of its clinical relevance [35]. Whether pancreatic steatosis has a direct

impact on glucose homeostasis is still debated [34], although it is closely related to NAFLD, VAT

and the metabolic syndrome [38]. It has also been associated with other negative outcomes such

as more severe episodes of acute pancreatitis as well as the development of pancreatic cancer and

pancreatic fistula [40].

In skeletal muscle, fat can accumulate within muscle cells (intramyocellular) or in extramyocellular

adipose tissue compartments which include adipose tissue between muscle fibers (intermuscular)

as well as adipose tissue around large muscles (perimuscular). Both types of accumulation have

been associated with insulin resistance [41,42]. Notably, intermuscular adipose tissue is a strong

predictor of fasting glucose and insulin levels independently of BMI [43].

Adipose tissue inflammation

Inflammation is the coordinated activation of several cellular and non-cellular mechanisms in re-

sponse to an insult or an injury to the organism. Different types of cells and molecules participate

in the response, depending on the nature of the initial trigger. The classic inflammatory pathway

is characterized by the recruitment of immune cells to the site of the insult as well by as the pro-

duction of pro-inflammatory cytokines, such as TNF-alpha and IL-6, that induce further responses

locally and, in some cases, systemically.

The first link between inflammation and obesity was established over 50 years ago with the obser-

vation that adipose tissue of obese mice was infiltrated by macrophages [44]; and although we now

know that the presence of macrophages and other immune cells in adipose tissue is essential for
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homeostasis [45], the relationship between excess adipose tissue and inflammation has been widely

recognized.

How the inflammatory state in adipose tissue is initially triggered is still subject of debate but

several hypotheses have been put forward. Rapid expansion of adipose tissue, particularly through

hypertrophy, is thought to cause hypoxia and to induce mechanical stress on adipocytes, promoting

the upregulation of inflammation-related genes [46]. In addition, stressed and dead adipocytes pro-

mote macrophage infiltration and the formation of multinucleate giant cells, which cause persistent

macrophage activation [47]. Furthermore, inflammation could be triggered by increased circulating

levels of gut-derived antigens as well as the presence of free fatty acids [46].

Regardless of the event (or events) triggering inflammation, adipose tissue inflammation is char-

acterized by several changes in the number and the type of resident immune cells as well as by

abnormal cytokine production by immune cells and adipocytes. Macrophages are the most abun-

dant immune cell type in adipose tissue. During obesity, the total number of macrophages increases

through the recruitment of circulating monocytes [48]. In addition, there is an increase in the num-

ber of M1 or pro-inflammatory macrophages in relation to the number of M2 or anti-inflammatory

macrophages [49]. These macrophage populations are distinguished by the expression of cytokines

and cell surface markers; however, recent studies have shown that macrophage populations exist in

a spectrum rather than in two distinct populations [50]. Other immune cell populations affected

include B and T cells, regulatory T cells (Tregs) and mast cells. However, their main contribution

to the inflammatory state seems to be through the regulation of macrophage activity, function

and recruitment [49]. Importantly, in mice, macrophage depletion corrects some of the adverse

metabolic effects linked to inflammation [51], which underlies their importance.

Elevated TNF-alpha expression in adipose tissue was the first cytokine alteration observed in adi-

pose tissue [52,53]. This was fundamental evidence of the role that inflammation plays in the

development of obesity-associated insulin resistance, since TNF-alpha negatively regulates insulin

signaling [54,55]. Other cytokines produced by adipose tissue that show increased levels in obesity

are IL-6 and MCP-1. Altered levels of other proteins secreted by adipose tissue such as omentin,

leptin, FGF-21 and adiponectin have also been observed [18].
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Obesity-induced inflammation in other organs

In addition to adipose tissue inflammation, obesity-induced inflammation has been observed in

other organs including, the pancreas, the liver and the muscle [56].

In the liver, there is increased macrophage and neutrophil recruitment as well as changes in resident

macrophages, also known as Kupfer cells. Macrophage recruitment occurs mainly through MCP-1,

which can be produced by hepatocytes and kupfer cells. Once in the liver, recruited macrophages

show a pro-inflammatory profile as well as increased cytokine production that includes TNF-alpha,

IL-1 beta and IL-6 [57]. The overall number of kupfer cells, on the other hand, does not seem to be

affected. Kupfer cells exist in a spectrum, with some cells displaying pro-inflammatory and others

anti-inflammatory profiles. This balance seems to be affected, resulting in increased inflammation

[58]. Liver inflammation is accompanied by decreased insulin sensitivity [49,50] and is also a key

component of the progression of simple steatosis to steatohepatitis [32].

Obesity-induced macrophage recruitment also occurs in the pancreas. It is thought that increased

glucose and free fatty acids trigger cytokine and chemokine production in beta cells, which pro-

mote macrophage infiltration [59]. However, the proliferation of resident intra-islet macrophages

seems to be more important than macrophage recruitment, in contrast to what occurs in the liver.

Accumulated macrophages show an altered transcriptomic profile and can affect beta cell function

through several mechanisms [60]. Recruited pro-inflammatory macrophages also seem to contribute

to beta-cell dysfunction associated with type 2 diabetes [59].

In skeletal muscle, increased macrophage accumulation is similar to what has been observed within

VAT. Macrophages exhibit a pro-inflammatory profile and contribute to increased local levels of

inflammatory cytokines [11]. Like adipocytes, myocytes are also capable of secreting cytokines and

other factors called myokines. There is some evidence of changes in myokine expression during

obesity, although it does not seem to be the main driver of muscle inflammation. Obesity-induced

muscle inflammation is linked to muscle insulin resistance and, given the importance of muscle

in insulin-mediated glucose disposal, it is likely that it is involved in the development of type 2

diabetes [61].

Finally, recent research shows evidence of inflammation in the central nervous system as well as pro-

inflammatory changes in the gastrointestinal tract associated with obesity [62]. Neuroinflammation

affects several structures such as the hypothalamus, the amygdala and the cerebellum, and could

be implicated in obesity-related cognitive impairment and mood disorders [63]. Changes in the
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gastrointestinal tract include altered microbiome composition as well as increased gut permeability

[49].

Low-grade chronic systemic inflammation

Inflammatory responses can lead to tissue damage, therefore their extent and duration are tightly

regulated by several mechanisms that, in normal conditions, lead to a resolution phase. When

the resolution fails, however, the inflammatory response can become chronic. Low-grade chronic

systemic inflammation is characterized by a persistent and mild increased level of circulatory inflam-

matory proteins. Systemic responses to an inflammatory process are triggered by the production

and secretion of cytokines such as IL-1, TNF-alpha and IL-6. These cytokines signal the liver to

produce so-called acute phase proteins.

One of the most important acute phase proteins and biomarkers of inflammation is C-reactive pro-

tein (CRP). In acute conditions, it can increase up to a thousand-fold whereas moderate increases

are observed in low-grade chronic inflammation [64]. CRP production is mainly regulated by IL-6.

Thus, the discovery that IL-6 is produced by adipose tissue of healthy individuals and that it is

released into circulation led researchers to the hypothesis that obesity might induce a state of sys-

temic inflammation [65]. Indeed, several studies showed that CRP is elevated in obesity [66,67] and

that it is associated with insulin resistance [67]. Later research showed that the circulating level

of other proteins is also increased in obesity including MCP-1, FGF-21, leptin, IL-18 and PAI-1

[68–72].

Importantly, there are also alterations in circulating proteins that are not pro-inflammatory, which

makes it relevant to include proteins with a wide range of functions in exploratory studies. An im-

portant example is adiponectin, which was unexpectedly found to be negatively correlated with BMI

despite being secreted by adipose tissue [73]. Adiponectin has many target cells and is an impor-

tant regulator of energy homeostasis; in addition, it displays anti-inflammatory, insulin-sensitizing

and anti-atherosclerotic properties [74]. Similarly, omentin, also produced by adipose tissue, shows

beneficial effects on inflammation and cardiovascular disease and is decreased in obesity [75,76].

Another example is IL-15 which is negatively associated with total and trunk fat mass and is

thought to have protective effects in obesity by promoting fat mass loss [77]. Furthermore, IL-10

is a known anti-inflammatory and regulatory cytokine, with a key role in the termination of the

inflammatory response. Several studies have reported altered levels in obesity, although some of
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them are conflicting [78–80].

Recent studies have identified altered levels of other proteins implicated in inflammation, such as

IL-33 which was only characterized in 2005 [81] and linked to obesity during the last decade [82–

84]; or granzyme B, a serine protease with multiple functions in the immune system, which shows

elevated levels in obesity [86].

Low-grade chronic systemic inflammation has repercussions on multiple tissues and organs and

impacts overall health by directly contributing to disease development or by negatively affecting

disease outcomes. In addition to the well-known role of inflammation in insulin resistance and

type 2 diabetes, chronic inflammation links obesity with an increased risk of multiple diseases

including, but not limited to, cancer, bone-related and autoimmune disorders and cardiovascular

disease (CVD).

Cardiovascular disease encompasses several conditions including atherosclerotic CVD, heart failure,

stroke and arrhythmias; how obesity-induced inflammation affects their development and progres-

sion is disease-dependent and in some instances not yet clear. Early research showed that low-

grade systemic inflammation is an independent predictor of the risk of myocardial infarction [87];

subsequent research underlined the importance of inflammation in CVD by showing that antiin-

flammatory agents could help prevent cardiovascular events and that this effect was independent of

lipid levels [88,89]. This, and other research, helped to change the notion that CVD, particularly

atherosclerotic CVD, was mainly a lipid storage disease. Inflammation participates in the develop-

ment of the atherosclerotic plaque as well as the progression to advanced lesions through several

mechanisms including T-cell and macrophage activity [90–92]. In other types of cardiovascular

disease, such as heart failure, the involvement of obesity-induced chronic inflammation is not as

clear. Some studies suggest that adipokines, which regulate myocardial function, are implicated;

other studies point to the involvement of inflammation in pericardial and epicardial adipose tissue

[91,93].

Obesity is a risk factor contributing to the development of bone-related disorders through weight-

dependent mechanisms as well as by altering molecular pathways [94]. Low-grade systemic in-

flammation has emerged as an important mediator in this relationship. TNF-alpha and IL-6, for

instance, are thought to induce bone loss by modulating osteoclastogenesis [95]. Furthermore,

systemic inflammation contributes to local joint inflammation, which has been recently recognized

as an important factor in the pathogenesis of osteoarthritis [96]. Other factors with immune-

regulating properties such as leptin and adiponectin also contribute to bone and joint homeostasis
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[94,97]. Lastly, recent research suggests an interplay between obesity-induced inflammation and

bone marrow homeostasis [98].

In addition to its involvement in the pathogenesis of some diseases, chronic inflammation can also

exacerbate and affect the outcome of diseases that are accompanied by an inflammatory process.

Two examples are infections and autoimmune disorders. Obesity is known to affect both the

susceptibility and the severity of certain bacterial and viral infections [99]. A pertinent example is

SARS-CoV-2 infection, in which obesity is a major determinant of disease severity [100]. Chronic

inflammation has been proposed as a key mediator of negative outcomes in infections by interfering

with the adaptive and innate immune responses [101]. Moreover, obesity increases the risk of several

autoimmune disorders such as rheumatoid arthritis, multiple sclerosis and psoriasis and, in some

cases, it affects disease progression and treatment response [102]. Although several mechanisms are

likely to be involved, adipokines seem to play an important role through their pro-inflammatory

properties. Other mechanisms involve changes in different immune cell populations as well as the

activation of the inflammasome, a protein complex that can be activated by several factors altered

in obesity [102].

Some types of cancer are another example in which inflammation has been identified as a central

component in disease development and progression. Obesity increases the risk of several cancers

including breast cancer, hepatocellular carcinoma, colorectal and pancreatic cancer [103]. An im-

portant predictor of increased cancer risk is metabolic health, which is tightly connected to chronic

inflammation [104]. In addition, the chronic inflammatory environment promotes tumor growth

and progression through multiple mechanisms. The inflammation-mediated activation of some

transcription factors, in particular NF-kB, plays an important role in tumor initiation, promotion

and dissemination [105]. Inflammation also promotes angiogenesis through the activity of pro-

angiogenic factors like IL-6, leptin, VEGF-A and TNF-alpha [103].

Finally, low-grade chronic inflammation has been implicated in the intergenerational transmission

of obesity and metabolic disturbances as well as in the development of perinatal complications

[106,107]. Normal pregnancy is accompanied by multiple changes in the immune system that help

regulate implantation, placental development and delivery [107]. An altered obesity-induced inflam-

matory state is, therefore, hypothesized to be an important factor driving perinatal complications

such as gestational diabetes, preeclampsia and miscarriage [107]. Furthermore, recent studies have

shown that maternal inflammation affects fetal immune and metabolic programming which predis-

poses the offspring to metabolic disorders later in life [106,108].
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Project outline and objectives

The relationship between excess adipose tissue and inflammation has been widely studied in the

last decades. Nevertheless, our understanding of the molecular players involved remains incom-

plete. Recent technology improvements have allowed the development of multiplex immunoassays

that allow the simultaneous quantification of a broad number of proteins in low sample volumes.

Therefore, it is now feasible to use these methods in large-scale human studies, which facilitates

the identification of biomarkers as well as the elucidation of the molecular basis of diseases. The

primary goal of this doctoral project was to further explore the relationship between obesity and

systemic inflammation using data from five European population-based studies: KORA-Fit, BVSII,

ESTHER, SHIP and Bialystok PLUS. These data included measurements of circulating proteins

carried out using inflammation-specific multiplex panels as well as data obtained by medical imag-

ing techniques. In particular, we had the following objectives:

1) To identify novel associations between circulating inflammation-related proteins and general

adiposity.

2) To explore the relationship between circulating inflammation-related proteins and body fat

distribution.

3) To investigate the relationship between circulating inflammatory biomarkers and abdominal,

hepatic and pancreatic fat.

The first two objectives were addressed in publication 1 “Novel associations between inflammation-

related proteins and adiposity: A targeted proteomics approach across four population-based studies”

and the third objective in publication 2 “Links between ectopic and abdominal fat and systemic

inflammation: New insights from the SHIP-Trend study”.



Summary

Obesity affects more than half a billion people worldwide and its prevalence is estimated to double

by 2030 if trends remain unchanged. Obesity is often associated with a state of low-grade chronic

inflammation, which in turn has been proposed as a linking mechanism to the risk of developing

comorbidities, such as insulin resistance, cardiovascular disease and some types of cancer. It is,

therefore, crucial to better understand the relationship between excess adiposity and inflammation.

The objective of this doctoral project was to explore the relationship between several features of

obesity and low-grade systemic inflammation using data from five different European population-

based studies (KORA-Fit, BVSII, ESTHER, Bialystok PLUS and SHIP).

In the first part of the project, we investigated the association between anthropometric measures

of adiposity and an extensive panel of 72 circulating inflammation-related proteins using KORA-

Fit data for discovery. We replicated our results in BVSII, ESTHER and Bialystok PLUS and

further validated them using Dual-energy X-ray absorptiometry fat mass measurements from the

Bialystok PLUS study. This also allowed us to investigate how the proteins were affected by body

fat distribution. We found four novel associations between adiposity and inflammation-related

proteins (DNER, SLAMF1, RANKL and CSF-1) and confirmed ten that had been previously

reported (CCL19, CCL28, FGF-21, HGF, IL-10RB, IL-18, IL18R1, IL-6, SCF and VEGF-A).

Most of these proteins were associated with visceral fat as well as fat accumulation in the trunk.

In the second part, we explored the association between fat accumulation in the abdomen and 31

circulating biomarkers of inflammation using data from the SHIP study. We focused on abdom-

inal subcutaneous and visceral adipose tissue as well as hepatic and pancreatic fat. We used fat

mass measurements obtained by magnetic resonance imaging, which is the most accurate method

available. We found associations between sTNFR1, sTNFR2, and sCD163 and pancreatic fat that

have not been reported in the literature. However, further studies are necessary to replicate them

in independent populations. We also reported several associations with subcutaneous, visceral and
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hepatic fat.

In conclusion, the work presented in this cumulative dissertation provides new insights into the

complex relationship between fat accumulation and systemic inflammation. In addition to identi-

fying novel associations, we explored the role of body fat distribution as well as the involvement

of hepatic and pancreatic fat. The latter is particularly relevant since it has been poorly studied

in the past. Further studies are needed to investigate causality as well as to establish the clinical

significance of our findings.



Zusammenfassung

Weltweit sind mehr als eine halbe Milliarde Menschen von Fettleibigkeit betroffen und die Prävalenz

wird sich Schätzungen zufolge bis 2030 verdoppeln. Adipositas geht oft mit geringgradigen chronis-

chen Entzündungen einher, was wiederum als Verbindungsmechanismus mit dem Risiko für Komor-

biditäten wie Insulinresistenz, Herz-Kreislauf-Erkrankungen und einigen Krebsarten vorgeschlagen

wurde. Es ist daher wichtig, die Beziehung zwischen Adipositas und Entzündung besser zu ver-

stehen. In dieser Dissertation wurden Daten aus fünf verschiedenen europäischen bevölkerungs-

basierten Studien (Kora-Fit, BVSII, ESHTER, Bialystok PLUS und SHIP) verwendet, um die

Beziehung zwischen mehreren Merkmalen von Adipositas und systemischer Entzündung zu unter-

suchen.

Im ersten Teil des Projekts wurde der Zusammenhang zwischen anthropometrischen Messungen

der Adipositas und einem Panel zirkulierender entzündungsbezogener Proteine in KORA-Fit un-

tersucht. Die Ergebnisse wurden in BVSII, ESTHER und Bialystok PLUS repliziert und weiter vali-

diert mittels Dual-Röntgen-Absorptiometrie Fettmassenmessungen aus der Bialystok PLUS Studie.

Dadurch wurde auch der Einfluss der Körperfettverteilung auf den Proteingehalt untersucht. Wir

fanden vier neue Assoziationen zwischen Adipositas und entzündungsbezogener Proteine (DNER,

SLAMF1, RANKL und CSF-1) und bestätigten zehn zuvor berichtete (CCL19, CCL28, FGF-21,

HGF, IL-10RB, IL-18, IL18R1, IL-6, SCF und VEGF-A). Die meisten dieser Proteine waren sowohl

mit viszeralem Fett als auch mit Fettansammlungen im Rumpf verbunden.

Im zweiten Teil wurde der Zusammenhang zwischen der Fettansammlung im Abdomen und

zirkulierenden Entzündungsmarkern in der SHIP Studie untersucht. Wir konzentrierten uns auf

abdominales subkutanes und viszerales Fett sowie Leber- und Pankreasfett. Die Fettkomparti-

mente wurden mittels MRT quantifiziert, was derzeit als die genaueste Methode gilt. Wir fanden

Assoziationen zwischen sTNFR1, sTNFR2 und sCD163 und Pankreasfett, die in der Literatur
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bisher nicht beschrieben wurden. Es sind jedoch weitere Studien notwendig, um sie zu bestätigen.

Wir berichteten auch über mehrere Assoziationen mit subkutanem, viszeralem und hepatischem

Fett.

Abschließend geben unsere Ergebnisse neue Einblicke in die komplexe Beziehung zwischen Adiposi-

tas und systemischer Entzündung. Neben der Identifizierung neuer Assoziationen untersuchten wir

die Rolle der Körperfettverteilung sowie die Beteiligung von Leber- und Pankreasfett. Letzteres

ist besonders relevant, da es in der Vergangenheit kaum untersucht wurde. Weitere Studien sind

erforderlich, um die Kausalität zu untersuchen und die klinische Relevanz unserer Ergebnisse zu

etablieren.
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Package ‘IPAQlong’

March 23, 2022

Package: IPAQlong
Type: Package
Title: Calculates the Scores for the ‘International Physical Activity Questionnaire (IPAQ)’ Long Form
Version: 0.1.0
Author: Mariana Ponce-de-Leon
Maintainer: Mariana Ponce-de-Leon mariana.ponce-de-leon@outlook.com
Description: Calculates the scores for the ‘International Physical Activity Questionnaire (IPAQ)’ long
form, based on the “Guidelines for the data processing and analysis of the IPAQ” https://sites.google.com/
site/theipaq/home.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.2
Suggests:
knitr,
rmarkdown
Imports: dplyr

R topics documented

ipaq_scores 2

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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ipaq_subScores 3
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Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

References 3
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ipaq_scores

Description

ipaq_scores() calculates the continuous and categorical scores for the ‘International Physical Activity Ques-
tionnaire (IPAQ)’ long form.

Usage

ipaq_scores(data, truncate = F)

Arguments

Argument Description
data A data frame object containing 25 columns with the

replies to the IPAQ long format (parts 1-4). Yes/no
replies should be coded as yes-1, no-0. Time should be in
minutes.

truncate Logical vector. If TRUE all walking, moderate and
vigorous time variables are truncated following the IPAQ
short rule. Variables exceeding 180 minutes are truncated
to be equal to 180 minutes. Default FALSE.

Value

A data frame object with the continuous (metabolic equivalent of task minutes (MET-min)/week) and
categorical scores (low, moderate, high). Returns NA for cases with missing values.
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ipaq_subScores

Description

ipaq_subscores() calculates the domain and intensity sub scores for the ‘International Physical Activity
Questionnaire (IPAQ)’ long form.

Usage

ipaq_subScores(data, truncate = F)

Arguments

Argument Description
data A data frame object containing 25 columns with the

replies to the IPAQ long format (parts 1-4). Yes/no
replies should be coded as yes-1, no-0. Time should be in
minutes.

truncate Logical vector. If TRUE all walking, moderate and
vigorous time variables are truncated following the IPAQ
short rule. Variables exceeding 180 minutes are truncated
to be equal to 180 minutes.Default FALSE.

Value

A data frame object with the domain (work, transportation, domestic, leisure) and intensity (walking,
moderate, vigorous) sub scores in metabolic equivalent of task minutes (MET-min)/week. Sub scores are
calculated for all cases, even in the presence of missing values.

References

The IPAQ Group (2005). Guidelines for Data Processing and Analysis of the International Physical Activity
Questionnaire. Retrieved from https://sites.google.com/site/theipaq/home
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