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Zusammenfassung

Lebende Materie unterscheidet sich von toter Materie auf fundamentale Weise dadurch, dass
lebende Systeme über sämtliche Größenordnungen bis hin zur molekularen Ebene (selbst-)
organisiert sind. Ebene diese Selbstorganisation über viele Größenordnungen ist es, die dem
Leben solche erstaunlichen und einzigartigen Eigenschaften verleiht, wie zu adaptieren und
zu evolvieren, zu wachsen und sich zu reproduzieren, zu lernen, zu heilen sowie auf vielfältige
Art und Weise mit der Umgebung zu interagieren. Um die Verbindung von der molekula-
ren Ebene zu größeren Längenskalen herzustellen, ist die Fähigkeit lebender Systeme größere
funktionelle Strukturen aus kleineren Bestandteilen herzustellen von zentraler Bedeutung. Da
dieser Prozess in biologischen Systemen typischerweise selbstorganisiert abläuft, wird dieses
Phänomen als Self-Assembly bezeichnet. Das Konzept von Self-Assembly spielt demnach eine
zentrale Rolle sowohl für unser Verständnis lebender Systeme als auch für die Frage, wie das
Leben ursprünglich entstehen konnte.

Neben der rein wissenschaftlichen Faszination für das Phänomen Self-Assembly besteht je-
doch auch ein großes technologisches und medizinisches Interesse daran. Bei einem System
wie dem menschlichen Körper, welches bis zur molekularen Ebene selbstorganisiert ist, be-
steht womöglich die e�zienteste Möglichkeit unfunktionelles Verhalten zu korrigieren und
bestimmte Krankheiten zu heilen darin, direkt auf der kleinsten Längenskala einzugreifen. Im
Grunde ist das bereits das Prinzip nach dem übliche Pharmazeutika in der Regel den Orga-
nismus beeinflussen. Self-assembly in diesem medizinischen Kontext könnte jedoch das Tor
zur Herstellung von Arzneimitteln ö↵nen, die ein wesentlich komplexeres Verhalten haben als
übliche Pharmazeutika; die in der Lage sind Entscheidungen zu tre↵en, mit höherer Präzision
zu agieren und sich den Besonderheiten eines speziellen Problems anzupassen. Zum Beispiel
wäre es möglich, dass in der Zukunft komplexe Operationen minimalinvasiv von funktionel-
len Nanorobotern vorgenommen werden, und dass Krankheiten wie Krebs, Multiple Sklerose
oder Erbkrankheiten von “intelligenten” Pharmazeutika geheilt werden. In diesem Zusam-
menhang ist Self-Assembly so wichtig, weil es zusammen mit Sequenz-Faltung (z.B. DNA
Origami) vermutlich die einzige Möglichkeit darstellt um komplexe Strukturen auf dieser
kleinen Längenskala herzustellen. Andere Techniken, wie zum Beispiel das 3D-Drucken, die
auf externer Kontrolle anstatt auf Selbstorganisation beruhen, sind nicht in der Lage auf solch
kleinen Längenskalen zu agieren und können daher für diesen Zweck nicht eingesetzt werden.

Dieser Aspekt, der es erlaubt grundlegende Prinzipien des Lebens zu erforschen und gleichzei-
tig die Aussicht zu haben, zum Fortschritt von Technologie und Medizin beitragen zu können,
ist es, was meiner Meinung nach Biophysik im Allgemeinen und Self-Assembly im Speziel-
len zu einem so reichen und großartigen Forschungsfeld macht. Darüber hinaus ist das Feld
Self-Assembly sehr interessant weil es durch eine sehr schöne und reichhaltige Physik beschrie-
ben wird: Die analytischen Methoden, die benutzt werden um Self-Assembly Phänomene zu



verstehen und zu beschreiben, reichen dabei von einfachen heuristischen Argumenten und
Dimensionsanalyse über nichtlineare Dynamik, die Theorie kinetischer Ratengleichungen und
stochastischer Mastergleichungen bis hin zu Symmetrieprinzipien, Skalierungskonzepten und
Renormierungsgruppentheorie. Darüber hinaus ist natürlich die Numerik ein unverzichtbares
Werkzeug bei der Erforschung von Self-Assembly Systemen. So ist es in unserer Forschung
mehrere Male vorgekommen, dass wir sehr überrascht waren von dem Ergebnis einer nume-
rischen Studie, das wir intuitiv ganz anders erwartet hätten.

Diese Thesis untergliedert sich in drei Teile, die jedoch stark miteinander verbunden sind und
sich mit unterschiedlichen Aspekten von Self-Assembly Systemen beschäftigen: der Zeite�-
zienz von Self-Assembly-Prozessen, stochastischen E↵ekten in Self-Assembly-Systemen sowie
einer möglichen Kopplung von Self-Assembly mit Genexpression.

1. Zeite�zienz von Self-Assembly.

Der erste Teil der Dissertation beinhaltet drei Projekte und untersucht die Zeite�zienz von
Self-Assembly-Prozessen. Genauer fragen wir uns, wie lange es dauert bis ein substanzieller
Ertrag (Yield) vollständiger Strukturen in einem Self-Assembly-Prozess erreicht werden kann
und wie die Zeite�zienz kontrolliert und optimiert werden kann.
In dem ersten Projekt führen wir zu diesem Zweck ein konzeptionelles Modell ein, welches
es uns erlaubt vier Schlüsselstrategien (Szenarien) von Nichtgleichgewichts-Self-Assembly-
Prozessen zu beschreiben, die der Vermeidung unerwünschter Nukleationsereignisse und ki-
netischer Fallen dienen. Wir charakterisieren dabei die Zeite�zienz der vier Szenarien durch
ihre jeweilige Zeitkomplexität, also die Abhängigkeit der Dauer des Assembly-Prozesses von
der Größe der Zielstruktur. Ähnlich wie bei Computeralgorithmen erlaubt uns diese Cha-
rakterisierung mittels der Zeitkomplexität, die vier Szenarien aussagekräftig miteinander zu
vergleichen. Darüber hinaus o↵enbart die Zeitkomplexitätsanalyse, dass sowohl die Assem-
blyzeitdauer als auch der optimale Wert des Kontrollparameters robust mit der Größe der
Zielstruktur skalieren. Wir erwarten, dass die Robustheit dieser Skalierungsgesetze die Formu-
lierung von Gesetzmäßigkeiten ermöglicht, mit deren Hilfe der Ertrag und die Zeite�zienz in
experimentellen Self-Assembly-Systemen besser vorhergesagt und kontrolliert werden können.
Speziell interessant ist in diesem Zusammenhang eine Strategie, die e�zientes Self-Assembly
erzielt indem die Verfügbarkeit der Bausteine reguliert wird (Supply Regulation), wohinge-
gen die Feinjustierung von Ratenkonstanten und molekularer Eigenschaften der Bausteine
hinfällig wird. Wir denken, dass diese Strategie eine ergänzende Möglichkeit in der Nanotech-
nologie darstellen könnte um Self-Assembly e�zient umzusetzen.
Auf Grund der möglichen Bedeutung dieser Strategie für die Nanotechnologie, widmen wir
ein separates Projekt der Analyse und Bewertung möglicher Implementierungen von Supply
Regulation in Self-Assembly Systemen. Zu diesem Zweck haben wir ein spezielles theoreti-
sches Modell entwickelt, welches es uns erlaubt die Zeitkomplexitätsexponenten verschiede-
ner Supply-Strategien analytisch zu berechnen. Der Vergleich der betre↵enden Zeitkomple-
xitätsexponenten ermöglicht es uns dabei, eine der Strategien eindeutig als das zeite�zienteste
Verfahren für Supply Regulation zu identifizieren.
Die Skalierungsanalyse, die wir in dem ersten Projekt durchgeführt haben, legt nahe, dass
eines der vier Szenarien, nämlich jenes welches auf reversiblem Binden der Bausteine basiert,
auch sensitiv im Bezug auf die Morphologie der Bausteine sein könnte. Aus diesem Grund
untersuchen wir im dritten Projekt, wie die Morphologie der Bausteine die benötigte As-
semblyzeit beeinflusst, und ob die Zeite�zienz optimiert werden kann indem man die Form



der Bausteine verändert. In der Tat finden wir, dass die Form der Bausteine einen erheb-
lichen Einfluss auf die Zeite�zienz sowie die Zeitkomplexität hat und dass durch die Wahl
einer “günstigen” Morphologie die Zeite�zienz und Robustheit (im Bezug auf “Variabilität”
des Kontrollparameters) signifikant verbessert werden können. Die Abhängigkeit der Kinetik
von der Morphologie der Bausteine sehen wir in dem Umstand begründet, dass die Gestalt
der Bausteine relevante Eigenschaften wie die e↵ektive Nukleationsgröße der Strukturen sowie
die e↵ektive Ordnung der Bindereaktionen bestimmt, von denen wir wiederum zeigen können,
dass sie einen starken Einfluss auf die Assemblykinetik und deren Zeite�zienz haben. Da das
Szenario, welches auf reversiblem Binden basiert, als Standardszenario der Nanotechnologie
angesehen wird, könnte dieses Resultat wichtige technologische Konsequenzen haben.
Ein Manuskript über die Resultate des ersten Projektes wurde im Journal PNAS publiziert
und ist in Kapitel 2 abgedruckt. Ein Manuskripts zu den Ergebnissen des dritten Projekts
ist derzeit in Vorbereitung. Der Manuskriptentwurf ist in Kapitel 4 abgedruckt. In beiden
Projekten bin ich der einzige Erstautor.

2. Stochastische E↵ekte in heterogenen Self-Assembly Systemen.

Der zweite Teil meiner Arbeit beinhaltet drei Projekte und untersucht die Rolle stochastischer
E↵ekte in Self-Assembly-Prozessen im Falle beschränkter Teilchenzahlen. Allgemeiner fragen
wir uns, unter welchen Bedingungen Self-Assembly robust und resilient funktionieren kann,
wie seine Genauigkeit kontrolliert und stochastische E↵ekte abgeschwächt werden können.
Diese Fragen sind maßgeblich für Self-Assembly-Prozesse in Zellen relevant, da Zellen gewisse
Strukturen nur in relativ geringer Anzahl herstellen und daher stark von Stochastizität bzw.
Fluktuationen in den Teilchenzahlen betro↵en sein können.
In dem ersten Projekt beschreiben und quantifizieren wir einen stochastischen E↵ekt, den wir
auch als “stochastische Ertragskatastrophe” bezeichnen. Wir zeigen, dass dieser E↵ekt speziell
in heterogenen Self-Assembly Systemen auftritt und dass er von demographischen Fluktua-
tionen in den Teilchenzahlen verursacht wird. Interessanterweise kann dieser E↵ekt zu einer
starken Reduktion bis hin zur vollständigen Unterdrückung des Ertrages führen, obwohl die
deterministischen Ratengleichungen einen perfekten Yield vorhersagen. Es zeigt sich, dass die
stochastische Ertragskatastrophe im Limes großer Teilchenzahlen vernachlässigbar wird, dass
jedoch die minimale Anzahl an Teilchen, die benötigt wird um robust einen bestimmten Er-
trag erzielen zu können, stark mit der Größe der Zielstruktur anwächst. Wir zeigen außerdem,
dass höhere Homogenität der Bausteine, eine höhere Nukleationsbarriere sowie erhöhte Re-
versibilität der Bindereaktionen die stochastische Ertragskatastrophe abschwächen oder sogar
vollständig aufheben. Es ist daher anzunehmen, dass Zellen derartige Mechanismen nutzen
um Self-Assembly-Prozesse makromolekularer Strukturen robust ablaufen zu lassen.
Wie ist es möglich, dass demographische Fluktuationen in den Teilchenzahlen einen so starken
und schädlichen E↵ekt bewirken, selbst bei relativ hohen Gesamtteilchenzahlen? Ein genaue-
res Verständnis der zugrundeliegenden Mechanismen kann dabei helfen weitere Strategien zu
finden, mit denen stochastische E↵ekte abgewendet und die Robustheit von Self-Assembly-
Prozessen verbessert werden kann. Zu diesem Zweck beschäftigen wir uns in dem zweiten
Projekt damit eine e↵ektive Theorie zu formulieren, die in der Lage ist die stochastische Dy-
namik in unserem konzeptionellen Modell zu erfassen. Im Wesentlichen erklärt die e↵ektive
Theorie wie Fluktuationen in den heterogenen Konzentrationen zu einer e↵ektiv erhöhten
Nukleationsrate führen, welche das System in kinetische Fallen treibt. Basierend auf diesen
Erkenntnissen beschreiben wir fünf weitere Mechanismen, die es erlauben, durch Regulierung



des Levels von Teilchenzahlfluktuationen, deren schädlichem E↵ekt zu entkommen.
Neben der Problematik kinetischer Fallen, die auf Grund einer zu hohen Nukleationsrate ent-
stehen und zu vermehrtem Zusammenbau von unvollständigen Strukturen führen, ist auch
das Auftreten von Fehlern, welche zu einem inkorrekten Zusammenbau der Strukturen führen,
eine entscheidende Problematik in Self-Assembly-Prozessen. Aus diesem Grund beschäftigen
wir uns in dem dritten Projekt mit der Frage, wie Fehler in dem Assembly-Prozess e↵ektiv ver-
mieden werden können. Wir erweitern hierbei das Modell, indem wir eine endliche Fehlerrate
einführen und betrachten die finale Anzahl von fehlerfrei zusammengebauten Strukturen in
den verschiedenen irreversiblen Szenarien. Wir finden dabei, dass die finale Anzahl fehlerfreier
Strukturen typischerweise exponentiell mit der Fehlerrate und der Größe der Strukturen ab-
nimmt und zusätzlich durch einen weiteren stochastischen E↵ekt verringert werden kann, den
wir auch als “stochastische Defektkatastrophe” bezeichnen. Die Regulation der Verfügbarkeit
der Bestandteile (Supply Regulation) könnte jedoch eine e�ziente Methode sein, um die Feh-
lerrate zu minimieren und stochastische E↵ekte zu vermeiden. Wir betrachten hierbei einen
Supply Mechanismus, der auf Selbstregulation der Bausteine beruht und in seiner prinzipiel-
len Funktionsweise daher auch in biologischen Systemen realisiert werden könnte. Wir zeigen
außerdem, dass dieser auf Selbstorganisation basierende Regulationsmechanismus dieselbe
Zeitkomplexität besitzt als wenn die Verfügbarkeit der Bausteine extern kontrolliert wird.
Ein Manuskript über die Resultate des ersten Projektes wurde im Journal eLife publiziert
und ist in Kapitel 5 abgedruckt. Für dieses Projekt teile ich mir die Erstautorenschaft mit
Isabella Graf und Patrick Wilke. Manuskripte zu den Ergebnissen des zweiten und dritten
Projekts sind derzeit in Vorbereitung. Die entsprechenden Manuskriptentwürfe sind in den
Kapiteln 6 und 7 abgedruckt. Für das zweite Projekt teile ich Erstautorenschaft mit Isabella
Graf, in dem dritten Projekt bin ich der einzige Erstautor.

3. Self-Assembly und Genexpression.

Der letzte Teil meiner Arbeit untersucht mit Hilfe eines hypothetischen Modells, wie Self-
Assembly und Genexpression in Zellen gekoppelt sein könnten, um Self-Assembly von großen
Strukturen zu koordinieren.
Alle Bestandteile, die sich zu makromolekularen Strukturen in Zellen zusammen setzen, wer-
den zunächst durch Genexpression gebildet. Solche Strukturen wie Flagellae, Ribosome oder
Kernporen werden darüber hinaus üblicherweise in kontrollierter Anzahl in der Zelle benötigt.
Es stellt sich daher die Frage, wie Zellen in der Lage sind relativ präzise eine bestimmte Anzahl
von Molekülen herzustellen, die sich anschließend in eine bestimmte Struktur zusammenset-
zen, ohne dabei zu viel Energie zu verschwenden. Darüber hinaus haben wir aus den vorherigen
Projekten gesehen, dass durch eine entsprechende Regulation der Verfügbarkeit der Bausteine
die E�zienz des Assembly-Prozesses gesteigert und die Fehlerrate signifikant verringert wer-
den kann. In diesem Projekt erforschen wir einen möglichen, hypothetischen Mechanismus
wie Genexpression und Self-Assembly gekoppelt sein könnten, sodass von jeder Spezies eine
kontrollierte Anzahl von Molekülen in einer bestimmten zeitlichen Reihenfolge bereitgestellt
wird. Durch eine geeignete Approximation können wir das System analytisch beschreibbar
machen und dadurch einige relevante Eigenschaften berechnen. Wir finden dabei, dass der
Mechanismus durch besondere Robustheitseigenschaften gekennzeichnet ist sowohl im Bezug
auf Variation der Ratenkonstanten als auch im Bezug auf Teilchenzahlfluktuationen, die in
einem biologischen Kontext sehr wichtig sind. Obwohl das Modell ursprünglich als hypotheti-
sches Modellsystem entwickelt wurde, ergeben sich au↵ällige Gemeinsamkeiten zwischen dem



zentralen Netzwerkmotiv, das die Expression der Monomere in der richtigen Anzahl reguliert,
mit dem regulatorischen Netzwerk, das in gramnegativen Bakterien die Expression der Fla-
gellenmotorproteine kontrolliert.
Eine Publikation zu diesem Projekt ist geplant, ein Manuskriptentwurf dazu existiert jedoch
noch nicht.

Im letzten Kapitel dieser Arbeit führe ich die Ergebnisse der verschiedenen Projekte, vor allem
der ersten beiden Teile, zusammen um eine kinetische Theorie von Self-Assembly-Prozessen
zu formulieren. Die Theorie unterscheidet dabei vier grundlegende Self-Assembly Szenarien
und beschreibt für jedes dieser Szenarien das Skalierungsverhalten wichtiger Parameter und
Observablen in Abhängigkeit von der Größe der Zielstruktur. Ich ho↵e, dass diese Theorie
einen Beitrag zum besseren Verständnis von Self-Assembly Phänomenen, insbesondere der
benötigten Zeitdauer von Self-Assembly-Prozessen leisten wird. Darüber hinaus motiviert die
Theorie einen speziellen “Skalierungsansatz” der Nanotechnologie, der auch die benötigte
Assemblyzeit explizit berücksichtigt und es erlaubt diese zu minimieren.





Synopsis

Living matter is fundamentally di↵erent from dead matter in that it is (self-)organized over
all length scales down to the molecular scale. It is exactly this self-organization over many
length scales, which provides life with its fantastic and unique properties to adopt and evolve,
to grow and reproduce, to learn, heal and interact with its environment in a myriad of possible
ways. In order to bridge the gap from the molecular scale to larger length scales, the ability of
living systems to generate larger functional structures from smaller subunits plays a key role.
Because this formation typically proceeds in a self-organized way in a biological system, we
term this phenomenon self-assembly. The concept of self-assembly therefore plays a crucial
role for our understanding of living systems as well as for the question of how life could have
emerged originally.

Beside the pure scientific fascination of self-assembly, there is also huge technological and
medical interest in the subject: Given that life and, in particular, the human body is orga-
nized down to the molecular scale, the most e↵ective way to correct dysfunctional behaviour
and cure certain diseases may be to intervene directly on this smallest length scale. Basically,
this is how most pharmaceuticals already a↵ect the organism. However, self-assembly in this
medical context could open the path to generate medicals that exhibit a much more com-
plex behavior than usual pharmaceuticals, being able to take decisions, operate with higher
precision and adopt to the specificities of the concrete problem. For example, it can be envi-
sioned that, in the future, complex surgery will be performed in a minimally invasive way by
functional nano agents and that diseases like cancer, multiple sclerosis or congenital disorders
are healed by ‘clever’ pharmaceuticals. In this context, self-assembly is so important because
self-assembly together with sequence folding (e.g. DNA origami) are supposedly the only
possibilities to generate such complex structures at this small length scale. Other techniques
like 3D printing, which rely on external control rather than self-organization, fail to operate
on such small length scales and hence cannot be used for this purpose.

This combination of exploring the basic principles of life paired with the prospect of contribut-
ing to the advancement of technology and medicine, is, in my opinion, what makes biophysics
in general and self-assembly in particular such a rich and formidable field of research. More-
over, what makes this field even more stirring is that self-assembly gives rise to very beautiful
physics: The analytical methods used to describe and understand this phenomenon range
from simple heuristic arguments and dimensional analysis, over nonlinear dynamics, the the-
ory of kinetic rate- and stochastic master equations, to symmetry principles, scaling concepts
and the renormalization group. Furthermore, numerics is, of course, an indispensable tool in
the theoretical study of self-assembling systems. Such being the case, it occurred several times
in our research that we were completely surprised by the outcome of a numeric simulation,



which, intuitively, we had anticipated completely di↵erently.

This thesis is divided into three parts, which, however, are strongly interconnected and deal
with di↵erent aspects of self-assembly: the time e�ciency of self-assembly processes, stochastic
e↵ects in self-assembly systems as well as possible couplings between self-assembly and gene
expression.

1. Time e�ciency in self-assembly.

The first part of this thesis contains three projects and deals with the time e�ciency of self-
assembly processes. Specifically, we ask how long it takes for a self-assembling system to
realize a substantial yield and how this time e�ciency can be controlled and optimized.
In the first project, we introduce a conceptual model that allows us to describe four key
strategies (scenarios) for non-equilibrium self-assembly, which can be used to avoid spurious
nucleation and overcome kinetic traps. We characterize the time e�ciency of each of the
four scenarios by its time complexity, i.e. the dependence of the assembly time on the size
of the target structure. Similar as for computer algorithms, this characterization via the
time complexity allows us to informatively compare the four scenario. Furthermore, the time
complexity analysis reveals robust power law dependencies of both the assembly time and
the optimal value of the control parameter on the structure size. We claim that the robust-
ness of these scaling laws can be used to formulate reliable laws that allow to better predict
and control the yield and time e�ciency in self-assembly experiments. Especially interesting
in this context is a strategy that induces e�cient self-assembly by regulating the supply of
constituents and, therefore, does not require fine-tuning of rate constants or other molecular
properties. We suggest that this strategy might be a complementary way to realize e�cient
self-assembly in nanotechnology.
Due to the supposed importance of this strategy for nanotechnology, we dedicated a sepa-
rate project to the analysis and evaluation of di↵erent possible implementations of supply
regulation in self-assembly systems. To this end, we developed a specific theoretical model
that allows us to analytically compute the respective time complexity exponents for various
supply strategies. By comparing the pertinent time complexity exponents, we are thus able
to identify the most time e�cient implementation of supply regulation.
Our scaling analysis performed in the first project suggests that one of the four scenarios,
namely the one that relies on reversible binding of the constituents, might also be sensitive
to the morphology (shape) of the constituents. Therefore, in the third project, we investi-
gate how the morphology of the constituents influences the assembly time in this scenario and
whether the time e�ciency can be optimized by altering the shape of the constituents. Indeed,
we find that the shape of the building blocks crucially impacts the time e�ciency and time
complexity and that, by choosing a ‘favorable’ morphology, the time e�ciency and robustness
(with respect to ‘variability’ in the control parameter) can be significantly improved. The
reason is attributed to the fact that the morphology of the constituents determines relevant
properties like the e↵ective nucleation size and the e↵ective order of attachment reactions,
which, in turn, can be shown to strongly influence the assembly kinetics and its time e�ciency.
Since the scenario that is based on reversible binding reactions is considered as the current
standard in nanotechnology, this finding can have considerable technological consequences.
A manuscript discussing the results of the first project has been published in PNAS and is
reprinted in chapter 2. A draft of the manuscript for the third project, which is still in prepa-



ration for submission, is reprinted in section 4. In both projects I am the single first author.

2. Stochastic e↵ects in heterogeneous self-assembly.

The second part of my thesis contains three parts and investigates the role of stochastic e↵ects
in self-assembly if the particle number is limited. More generally, we ask under which con-
ditions self-assembly is robust and resilient, how its fidelity can be controlled and stochastic
e↵ects can be mitigated. These questions are important in a cellular context, because cells
often build structures in relatively low copy numbers and hence could be strongly a↵ected by
stochasticity or fluctuations in the particle numbers.
In the first project, we describe and quantify a stochastic e↵ect which we termed ‘stochastic
yield catastrophe’. We show that this e↵ect occurs specifically in heterogeneous self-assembly
systems and it results from demographic noise in the particle numbers. Interestingly, this
e↵ect can lead to a strong reduction or even a complete suppression of the assembly yield,
although the deterministic rate equations may predict a perfect yield. We find that the
stochastic yield catastrophe becomes negligible in the limit of large particle numbers but
that the minimal particle number that is required to achieve a fixed yield strongly increases
with the size of the target structure. We furthermore show that increased homogeneity of the
building blocks, an enhanced nucleation barrier as well as increased reversibility of the binding
reactions mitigates stochastic e↵ects or even leads to their complete elimination. Therefore,
it is to be expected that cells rely on such mechanisms in order to enable the robust self-
assembly of macromolecules.
How is it possible that demographic noise in the particle numbers provokes such a strong
detrimental e↵ect even for relatively larger particle numbers? Understanding the mechanisms
at work can help identify strategies to alleviate the stochastic yield catastrophe and to in-
crease resilience in assembly processes. To this end, in the second project, we formulate an
e↵ective theory that is capable of capturing the stochastic dynamics in our conceptual model.
Essentially, the e↵ective theory explains how fluctuations in the heterogeneous concentrations
lead to an e↵ectively increased nucleation rate, which drives the system into kinetic trapping.
Based on these insights, we propose five additional mechanisms that allow to prevent the
detrimental stochastic e↵ect by regulating the e↵ective noise level in the particle concentra-
tions.
Beside the problem of kinetic traps that arise due to an enhanced nucleation rate, resulting
in the assembly of incomplete structures, another key challenge to overcome in self-assembly
is the avoidance of errors that would lead to incorrectly assembled or malformed structures.
Therefore, in the third project, we ask how the emergence of assembly errors can e↵ectively
be avoided and the fidelity of self-assembly be optimized. To this end, we extend the model by
introducing a finite error rate with which particles bind incorrectly and we consider the final
number of correctly assembled structures in the various irreversible scenarios. We find that,
typically, the number of correctly assembled structures decreases exponentially both with
the error rate and the size of the structures and, in addition, can be significantly reduced
by another stochastic e↵ect, which we refer to as ‘stochastic defect catastrophe’. However,
regulation of the availability of the building blocks (supply regulation) might be an e�cient
method in order to minimize the error probability and to avoid stochastic e↵ects. In this
context, we investigate a supply mechanism that relies on self-regulation by the building
blocks themselves and, therefore, could principally also be realized in a biological system.
Furthermore, we show that this mechanism based on self-organization exhibits the same time



complexity as a scenario in which the availability (supply) of the building blocks is controlled
externally.
A manuscript that discusses the results of the first project has been published in eLife and
is reprinted in chapter 5. For this project I share co-first authorship with Isabella Graf and
Patrick Wilke. Manuscripts on the results of the second and third project are currently in
preparation for submission. The corresponding manuscript drafts are reprinted in chapters
6 and 7. For the second project I share co-first authorship with Isabella Graf while for the
third project I am the single first author.

3. Self-assembly and gene-expression.

The last part of my thesis, with the help of a hypothetical model, investigates how self-
assembly and gene-expression could be coupled in cells in order to coordinate the self-assembly
of large structures.
All components that self-assemble into macromolecular structures inside cells are created via
gene-expression. Furthermore, these macromolecular structures like flagellae, ribosomes or
nuclear pore complexes are typically built in well-controlled numbers. This raises the question
how cells are able to precisely count the number of molecules they need to produce in order
to assemble a specific number of structures without wasting too much energy. Furthermore,
we have seen from the previous projects that, by properly regulating the availability of the
building blocks, self-assembly e�ciency can be increased and the error probability significantly
reduced. In this project, we investigate a possible, hypothetical mechanism that couples
gene-expression with self-assembly, so that monomers of the di↵erent species are provided
in well-controlled amounts in a temporal sequence. Through an appropriate approximation,
the system can be made analytically tractable, which allows us to analytically access certain
key characteristics of the mechanism. In this way, we find that the mechanism fulfils special
robustness criteria both with regard to variations in the rate constants as well as to particle
number fluctuations, both of which would be crucially important in a biological context.
Although the model was originally conceptualized as a hypothetical model system, its central
network motif, which regulates expression of the building blocks in the correct amount, shows
some striking similarities with the regulatory network that controls the expression of flagellar
motor proteins in Gram-negative bacteria.
A publication on the results of this project is planned, however, a corresponding manuscript
does not yet exist.

In the last chapter of this thesis, I combine the results obtained from the various projects,
primarily of the first two parts, to formulate a concise kinetic theory of self-assembly processes.
The theory distinguishes four key scenarios for self-assembly and, for each of these scenarios,
characterizes the scaling behavior of important parameters and observables in dependence
of the size of the target structure. I hope that this theory will contribute to the better
understanding of self-assembly phenomena, in particular, of the time required by self-assembly
processes. Furthermore, the theory motivates a special ‘scaling approach’ to nanotechnology,
which also takes the required assembly time explicitly into account and thus allows one to
minimize it.
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1 Introduction: Self-assembly in biology and
nanotechnology

The purpose of this first chapter is to give an overview over the most important research
directions in the field self-assembly, both on the experimental and the theory side.

Many macromolecular protein complexes in biology, in order to be able to perform sophisti-
cated functions, reveal highly heterogeneous and complex architectures. These architectures
are typically formed from smaller subunits and they vary broadly in size: Some structures,
like small protein complexes [12], consist of only a few components, while others, like for
example large virus capsids [13] or complex organelles like the bacterial flagellum [14], can
comprise more than a thousand up to several thousand subunits. Since function is closely
related to structure in biology, building up such complex architectures is essential for living
systems in order to be able to perform sophisticated functions. A highly fascinating aspect of
the emergence of these structures is that they typically form in a self-organized way, without
external control and without a ‘blueprint’ or a template. A blueprint could be, for example,
an RNA sequence, which is translated into a corresponding sequence of amino acids, that
then folds into a protein. In contrast, building larger structures from individual subunits has
the central advantage that the same subunits can be repeated several times in the structure,
which reduces the total amount of information that needs to be stored. Furthermore, the
degree of complexity that can be realized by assembling independent constituents appears to
be significantly higher than the structural complexity that can be achieved by folding a single
sequence of amino acids. We generically refer to this process of the self-organized arrangement
of individual subunits into larger structures as self-assembly.

Although there is not always a sharp distinction in the literature, self-assembly should be
clearly delimited from aggregation. Aggregation [15] also refers to a process in which larger
structures form irreversibly from smaller subunits, however, the structures that emerge are
typically not defined by a specific subunit composition, subunit arrangement or size but
rather appear as random conglomerations of particles. These aggregates typically do not
fulfil a (complex) function and their formation is often even undesirable (for example some
protein aggregates that cause neurodegenerative diseases [16, 17, 18]). Correspondingly, bind-
ing reactions between the subunits that form these aggregates are typically non-specific and
reactions of larger clusters are common. Instead, self-assembly - at least according to our
perception - describes the formation of ordered structures of a specific subunit composition,
which are typically able to perform some biological function.
Furthermore, in the literature, the term ‘biogenesis’ is often used instead of ‘self-assembly’
in order to denote highly regulated and complex assembly processes that involve a large
number of ‘helper’ molecules, also called assembly factors. The reasoning thereby is that
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the principle of self-organization appears to be violated if the assembly process does not run
spontaneously but depends on a large number of associated assembly factors and, thus, the
term self-assembly might be unjustified. Indeed, for example, a eukaryotic ribosome consists
of roughly 80 building blocks, whereas the assembly process in total involves more than 200
di↵erent molecules [19, 20]. In the literature, one therefore often uses the term ‘biogenesis of
the ribosome’ [21, 22] instead of ‘self-assembly of the ribosome’.
However, whether a system is self-organized or externally controlled, largely depends on the
definition of the system. Furthermore, a distinction of assembly processes based on whether
or not molecules are involved that do not form part of the final structures, might not be
very conducive in understanding basic principles of the underlying processes that lead to the
formation of complex structures. We therefore take a pragmatic point of view in this respect
and generally consider processes that rely on assembly factors or other control factors as be-
longing to the field of self-assembly as well - at least as long as single molecules do not contain
a complete blueprint of the entire structure and, thus, information is only stored locally.

The reliability and e�ciency with which intracellular self-assembly processes create complex
structures, based only on local information, poses several questions: How can complex struc-
tures like ribosomes [19, 20], flagellae [14, 23, 24] or virus capsids [25, 26] be built up within
short time with such high accuracy? If information is stored only locally, how can be en-
sured that complete structures emerge and not only pieces or fragments of the structures are
formed? How can the number of assembly errors be minimized, which might have devastat-
ing consequences for an organism (see introduction to chapter 7 for examples)? Finally, what
sets a limit to the resource and time e�ciency of self-assembly processes and which conditions
must be met in order for those e�ciencies to be maximized?
A putative answer to these questions might be given by assuming that the desired structures
emerge as free energy minima of the system and thus the self-assembly process constitutes
the system’s approach to thermodynamic equilibrium [27, 28, 25, 29]. This perception of
self-assembly, also referred to as equilibrium self-assembly, is heavily used in the literature,
in particular, for example, on virus capsid assembly [30, 27, 31, 32, 33, 25, 34, 35]. While
this approach can be quite useful in some contexts for reversible self-assembling systems,
it generally does not account for local minima of the free energy, also called kinetic traps
[36, 31, 37, 34, 29, 38], which might be encountered while the system approaches the global
free energy minimum. In other words, equilibrium self-assembly disregards the time it takes
the system to approach the global free energy minimum through those local minima. If this
time scale is long compared to the biologically relevant time scale of the system, then the
equilibrium approach might be futile and transient states can be realized which do not corre-
spond to a global free energy minimum.
Therefore, in order to better understand the emergence of kinetic traps, kinetic self-assembly
models based on rate equations have been studied [39, 40, 36] and particle-based simulations
have been performed [41, 42, 43, 44, 45, 46]. These investigations show that a particular
kind of kinetic trap, which is also called depletion trap, can arise if in the initial phase of the
assembly process too many structures get initiated and thereby the resources run out before
the structures can be completed. In order to avoid such depletion traps, a fundamental prin-
ciple has been established, stating that, in order to obtain a high assembly yield, nucleation
of new structures must be significantly slower than the growth of existing structures (‘slow
nucleation principle’) [40, 47, 48, 49, 50, 51, 52, 53].
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Other kinds of kinetic traps, which have been described particularly in virus capsid assembly,
arise due to an incorrect arrangement of the subunits and can usually be ruled out by adjust-
ing the binding strengths between the subunits [54, 55, 25]. In general, it has been suggested
that weak and reversible interactions between the subunits might be a key requirement in
order to overcome kinetic traps [56, 57, 58, 59, 45, 60, 25, 34, 61]. Contrary to this, however,
it is broadly assumed that in the assembly of cellular structures like ribosomes, flagellae,
nuclear pore complexes etc., most binding reactions between the subunits are strong and ef-
fectively irreversible, suggesting that other ways to circumvent kinetic traps must exist. In
this thesis, we will characterize a broad range of possible strategies by which kinetic traps can
be overcome and, in particular, we will study a general framework that allows us to analyze
the time that these di↵erent strategies require in order to avoid kinetic traps.

In the following, we will more closely discuss two particular subfields of self-assembly that
have arisen and that play a prominent role in the exploration of self-assembly phenomena:
Virus capsid assembly and DNA-based nanotechnology. While the first subfield studies the
formation of virus capsids as an example of biological self-assembly processes, the second
subfield investigates principles of self-assembly with the help of artificial systems, which are
realized by exploiting the properties of DNA molecules. Another important di↵erence between
both subfields concerns the heterogeneity of the building blocks: While virus capsids are
typically built from a very limited number of di↵erent types of building blocks, artificial self-
assembly processes are often realized with a large number of di↵erent types of constituents.
Despite those di↵erences, basic principles like the slow nucleation principle discussed above
have emerged equivalently in both fields.

1.1 Virus capsid assembly

Virus capsids are a paradigmatic example of self-assembling systems: Once a cell gets in-
fected, the genetic material of the virus causes the cell to produce virus proteins, which then
assemble completely autonomously into new virions. Understanding this self-assembly pro-
cess of viruses is thus pivotal in getting a more thorough understanding of human diseases
and their spreading.
Most viruses have either an icosahedral or helical capsid structure and they di↵er broadly in
size [62]: One of the smallest viruses, the satellite tobacco mosaic virus, consists of a singe-
stranded RNA with 1059 nucleotides encapsidated by 60 identical capsid proteins [26]. In
contrast, the Megavirus, which is larger than some bacteria, consists of a double-stranded
DNA molecule with more than 1.2 million base pairs and a capsid that is built from more
than 1000 capsid proteins [13]. It has been shown that if a virus capsid would be made from
a single polypeptide chain, this capsid could impossibly be large enough in order to carry the
entire genetic information necessary to built the peptide [63]. Hence, in order for viruses to
be able to reproduce, it is necessary that the capsids self-assemble from inpedependent and
largely identical subunits. Typically, the capsids are built from many identical copies of a
small number of di↵erent types of constituents, which are arranged in a highly symmetrical
and regular fashion. In 1962, Caspar and Klug developed a classification scheme in order
to characterize the structure and symmetries of icosahedral capsids [64]. They found that
icosahedral capsids are built from multiples of 60 subunits. Three so-called asymmetric units
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thereby form each of the 20 identical triangular facets of the icosahedron. The triangula-
tion number (T-number) is mathematically defined as the squared length of an edge of a
triangular facet when the unfolded structure of the virus is mapped onto a two-dimensional
hexagonal lattice [65, 25]. Typically, the T-number corresponds to the number of subunits
forming one asymmetric unit, so that the total number of subunits forming the capsid is 60T .
For example, Herpesviridae form capsids with a T=16 icosahedral symmetry [66] and the
capsids of Turriviridae exhibit T=31 symmetry [65]. Also bacterial carboxysomes exhibits an
icosahedral symmetry corresponding to a triangulation number of T=75 [67].

In 1955 Fraenkel-Conrat and Williams demonstrated experimentally that active virions of the
tobacco mosaic virus assemble spontaneously from RNA and capsid proteins in vitro [68]. This
finding opened the path to in-depth experimental investigation of virus capsid self-assembly
and entailed a number of theoretical studies and computational models intended to describe
the self-assembly process of the capsids [69, 39, 40, 57, 36, 59, 70, 45, 71]; where we listed
just a few examples. Some of the main insights gained from these experimental studies are
discussed in the following:
The observations suggest that virus capsid assembly can essentially be described as a nu-
cleation and growth process [69, 40, 36, 72]. According to the slow nucleation principle, it
is thereby crucial that nucleation is slow compared to growth, since otherwise only incom-
plete fragments of capsids would form. This retardation of nucleation is generally achieved
by weak binding interactions mainly due to hydrophobic interactions among the constituents
[57, 59, 45], resulting in a highly reversible self-assembly dynamics and an e↵ective nucleation
size, similarly to nucleation phenomena in crystal growth or condensation [73].
Further observations from the experiments show that the assembly yield only sets in after a so-
called lag phase and then exhibits a characteristic sigmoidal dependence on time [69, 70, 48].
Moreover, under physiological conditions, only complete capsids and free subunits are typi-
cally present in detectable concentrations, whereas concentrations of larger intermediates are
very low and escape detection, for example, in size-exclusion chromatography experiments
[69, 45, 48, 25]. For this reason, it is still di�cult to characterise the detailed assembly path-
ways, as these intermediates are so transient and rare. It remains a major open question to
determine the precise mechanisms of the fast and robust growth phase.

From the theory side there are mainly three di↵erent approaches, namely by analysing the
self-assembly process with the help of thermodynamics, by kinetic rate equations and with
particle based simulations, as we will briefly outline in the following. Interesting reviews on
virus capsid assembly and these various theoretical approaches can be found, for example, in
[74, 75, 25, 34, 76].

Thermodynamics of virus capsid assembly

In the thermodynamic description, the final state of the system is characterized by mini-
mization of the free energy under the constraint that the total subunit concentration is fixed
[27, 34, 35]. This leads to the well-known law of mass action [77, 78, 25, 79], relating the
concentration cn of n-mers to the concentration of monomers c1:

cn = (c1e
��✏(n))n , (1.1)
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where � = (kBT )�1 and ✏(n) is the aggregation free energy per subunit in an n-mer. Due
to mass conservation, the concentrations are subject to the constraint

PS
n=1 ncn = C, where

C is the initial concentration of monomers and S the size of complete capsids. For spherical
capsids, the per subunit aggregation free energy ✏(n) will typically be minimal for some in-
termediate size n < S, while ✏(n) increases particularly strongly for the last subunits that are
added completing the capsid [72, 25, 34]. Therefore, under the constraint of mass conserva-
tion, the law of mass action predicts a large concentration only for monomers and complete
capsids, while intermediate concentrations are rather low, consistent with the experimental
findings [39, 25]. Based on this observation that intermediate concentrations are negligible
at equilibrium, the equations for capsid assembly thermodynamics can be simplified consid-
erably by neglecting all intermediates except free subunits and complete capsids, so that the
mass conservation constraint reduces to

C = c1 + ScS . (1.2)

Combining this condition with the law of mass action and assuming S � 1, it can be shown
that the fraction of subunits bound in capsids, f = ScS

C , becomes large if the total subunit

concentration is above a pseudo-critical concentration C
⇤ ⇡ e

�✏(S) [30, 25, 34]:

f ⇡
✓

C

C⇤

◆S

⌧ 1 for C ⌧ C
⇤ (1.3)

⇡ 1� C
⇤

C
for C � C

⇤
. (1.4)

Note that the transition between the two regimes becomes sharper with increasing capsid size
S. This result suggests that, increasing the total subunit concentration C or the magnitude
of the binding energy (i.e. decreasing C

⇤), increases the fraction of subunits in complete
capsids f at equilibrium. However, due to the finite time scale in experiments, increasing the
binding energy can lead to kinetic trapping, implying that the equilibrium cannot be reached
[25]. On the other hand, we will show in this thesis (primarily in chapter 4) that irreversible
intermediate assembly steps can be beneficial in that they allow to achieve high yields in
parameter regimes in which thermodynamics would not predict good yields.
It has furthermore been argued that also under optimal conditions virus capsid assembly will
not reach thermodynamic equilibrium because the last assembly steps, when the capsid is
completed, are e↵ectively irreversible on the relevant time scale. In fact, the time scale of
dissociation of complete capsids has been estimated to 50 days or more [80, 81, 25]. Moreover,
substantial hysteresis has been measured for the dissociation of HBV capsids under denat-
urant, indicating that the capsids are not at thermodynamic equilibrium [82]. Of course,
irreversible steps, especially in the late stages of the assembly process, make sense from a
biological point of view as they could significantly prolong the time over which the virus can
remain intact in infinitely diluted and unfavorable environments (also see our discussion in
the motivation for part I) [25]. It has been shown that, even if there are irreversible steps in
the assembly process, for times longer than the lag time, the same relation as in Eq. (1.3)
may hold but with a di↵erent value for the critical concentration C

⇤ [47]. This relation is
then also called the pseudo law of mass action.
Hence, it is likely that virus capsid assembly generically does not reach thermodynamic equi-
librium on the relevant time scales, although it can still be described by a (pseudo) law of
mass action. Fitting the aggregation free energy ✏(S) to C

⇤, however, might lead to a false
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value if this is not properly taken into account [25].

In summary, while the thermodynamic description leads to some qualitatively correct results
about virus capsid assembly, its assumptions are not strictly justified, likely causing quantita-
tive discrepancies. Furthermore, thermodynamics ignores the important aspect of time, which
is why it is unable to predict kinetic traps and generally the time e�ciency of self-assembly
schemes.

Rate equation models for capsid assembly

In order to study the dynamics of virus capsid self-assembly processes, rate equation models
have been investigated [39, 40, 36]. These models typically describe the evolution of the con-
centrations of the polymer sizes by associating each polymer size with a typical configuration
of an unfinished capsid (a similar approach will be used in chapter 4). The first step in these
models is typically described by a nucleation event with a specified nucleation size, whereupon
the structures grow reversibly by attachment and detachment of single monomer subunits un-
til they reach the size of a complete capsid. The rates for attachment and detachment can
thereby either be chosen generically [47] or be specifically related to the associated capsid
configurations [40, 36]. Conceptually, this approach is similar to the one used by Becker and
Döring in order to describe crystallization phenomena [73], with the important di↵erence that
in the case of virus assembly the final structures have a fixed, finite size. In more extensive
models, several configurations per cluster size have been taken into account, with transitions
between these configurations being specified accordingly [83, 84]. On the other hand, rate
equation models could be made analytically tractable by approximating the state space (de-
scribed by the cluster size variable) as a continuum [30, 47].
These rate equation models have generally shown good agreement with experimental kinetic
data [40, 85, 70] and have thus helped to develop a better understanding of the kinetics of
virus capsid assembly. In particular, they enabled a better understanding of depletion traps,
which could not be predicted with the thermodynamic approach, and thereby contributed
essentially to the establishment of the slow nucleation principle. Furthermore, the models
explain the origin of the lag time and the sigmoidal time dependence of the assembly yield
[70, 48]. The main insight thereby is that during the initial phase of the assembly process,
the cluster size distribution propagates as a travelling wave front and yield sets in as soon as
the wave reaches the final size S of the capsids [47]. If nucleation is too fast, free subunits
will deplete before the wave reaches the final size and thus the system becomes kinetically
trapped. A comparison with kinetic data moreover suggested the existence of an activation
step of the subunits prior to binding [70].
Some of the analytical models studied in this thesis will build upon kinetic rate equation
models as well.

Particle-based simulations of capsid assembly dynamics

A drawback of rate equation models is that, in order to be feasible, they require the com-
plexity of the state space to be simplified drastically (typically to a one-dimensional variable
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that characterizes the size of intermediates)1. Particle-based simulations, in contrast, allow to
explore the entire state space and do not require any further assumptions to be made about
the assembly pathways. Furthermore, in contrast to rate equation models, these simulations
also account for misbinding between subunits, which may result in the assembly of malformed
structures. For those reasons, various groups have performed particle-based simulations that
track the positions and orientations of each subunit [41, 42, 43, 44, 45, 46]. Simulations at
atomic resolution are practically impossible or would entail an extreme computational de-
mand [87], since already a single capsid protein typically has several hundred amino acids.
Hence, the di↵erent groups have developed various coarse-grained, excluded-volume models
for the subunits, representing them either as ‘patchy-spheres’ [88, 89], trapezoids consisting
of spherically symmetric ‘pseudoatoms’ [90, 91, 92] or as subunits with polygonal interaction
directions [93, 94].
An important insight gained from particle-based simulations concerns the ‘malformed capsid
trap’ that arises if subunit addition to growing capsids occurs more quickly than already
associated subunits can anneal defective or strained interactions [25], thereby leading to mal-
formed capsids. Generally, this trap occurs for large binding energies (annealing of defective
interactions is slow) and large subunit concentrations (addition of subunits is fast) but it also
significantly depends the binding specificity of the subunits. Malformed capsid traps have
also been observed experimentally [54, 95, 55].

1.2 DNA nanotechnology

The aim of nanotechnology is to control and manipulate matter on the molecular scale. Be-
ing able to build artificial functional structures on the nanometer scale could allow to realize
groundbreaking technological and medial advancements. For example, a few potential appli-
cations of artificial nanostructures and nanotechnology are: pin-point drug delivery systems
and tissue engineering, nano-sized robotics and diagnostics in medicine; optical, electronic,
catalytic or sensing devices, e.g. in solar cells, light emitting diodes or electronic circuits
[96, 97, 98, 99, 100].
It has turned out that DNA molecules have very favorable chemical and mechanical properties
in order to be used as building material for artificial nano structures [101, 102, 103]. Fur-
thermore, exploiting the properties of Watson-Crick base pairing between the four di↵erent
nucleotides A, T, G and C, allows to design highly specific, predictable and programmable
interactions among di↵erent substrands [102, 49]. Because A only binds with T and G with
C, varying a subsequence of n bases allows for the creation of 4n uniquely binding domains
of length n. Hence, with only a rather small sequence length n, a huge number of uniquely
binding sequence strands can be created. This ‘richness’ of the sequence space together with
the well-suited mechano-chemical properties of DNA molecules is at the very heart of DNA
nanotechnology and makes the approach so very versatile.

1For example, an icosahedral virus capsid composed of only 12 subunits already allows for 750 possible
intermediate configurations [86], whereby this number of possible configurations grows exponentially with
the structure size.
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DNA origami

One particular direction of DNA nanotechnology is DNA origami, which has been introduced
by Rothemund in 2006 [104] but relies on ideas put forward by Seeman already in 1982 [101].
Analogous to the ancient art of origami, in which a two-dimensional sheet of paper is folded
into three-dimensional objects, in DNA origami a long single-stranded DNA molecule is folded
into complex two- [104], or three-dimensional structures [105, 106, 107]. In order to fold the
long DNA strand (which is also called the sca↵old strand), a large number of short staple
strands is inserted, which bind specifically to two distinct regions of the sca↵old strand and
thereby fold it into the desired structure [102, 103, 100]. While the sca↵old strand can be any
generic DNA strand of su�cient length (typically the genome of the M13 phage is used for
that purpose), the short staple strands have to be specifically designed and synthesized so that
they bind to the correct positions of the sca↵old. There are computer algorithms available
that automatically calculate the set of required staple strands in order to fold a given sca↵old
strand into any desired target structure [108]. Subsequent annealing of a mixture consisting
of the sca↵old strands together with an excess of synthesized staple strands typically allows
to achieve high yields close to 100%.
The approach is very elegant and it is astonishing how well it works, given that DNA has
not been optimized for this kind of application. However, there are two major limitations
to this approach: First, DNA origami is hard to be scaled up, as the overall dimensions of
these nanostructures are limited by the length of the sca↵old strand, and ssDNA sca↵olds
significantly longer than the traditionally used M13 genome are technically challenging to
acquire and mechanically fragile [100]. Second, each time the shape of the structure needs to
be changed, even only slightly, a complete new set of staple strands has to be designed and
synthesized [49]. Both of these limitations can be overcome with DNA-brick based assembly.

DNA-brick based assembly

In DNA-brick based assembly, instead of using a single long sca↵old strand, the structures
are build in a modular way from several smaller strands (also called ‘bricks’ or ‘tiles’). These
bricks can either be rather complex, folded structures themselves that connect via junctions
[106, 105, 109, 110], smaller double-stranded bricks with two ‘crossovers’ that connect by
their ‘sticky ends’ [111, 112, 113] or tiny single-stranded bricks consisting e.g. of only 32 base
pairs each [49, 50]. Independently of the specific nature of the bricks, these approaches have
in common that the bricks self-assembly into higher order structures without any template.
In this way, DNA assemblies of more than one gigadalton and a size of almost 500 nm in
diameter could be assembled 2 [109, 110].
The large versatility of the brick-based approach in assembling three-dimensional structures
of complex shapes is nicely demonstrated by the works of Ke and Wei [49, 50]. In this ap-
proach, which is also called ‘tile lego’, hundreds or thousands of distinct, single-stranded tiles

2Since this is significantly larger than the size of most viruses, one particular very promising application of
these large-scale nanostructures aims to build artificial capsid shells with an aperture, which are equipped
with antibodies (or other virus-binding moities) on the shell’s interior surface [110]. In this way, if a virus
enters the capsid, it gets trapped inside and is thus prevented from interacting with the cells of an organism.
Due to the large number of antibodies in the interior, an individual antibody does not need to bind overly
strongly in order to trap the virus. Thus, the hope is that these virus traps can be used as a broad-spectrum
platform against virus infections.
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of 32 or 42 base pairs, respectively, in length assemble a cubic ‘canvas’. Each brick within the
canvas is unique and binds only with four specific neighbors. By selecting subsets of bricks
from this canvas, a large plethora of di↵erent shapes can readily be assembled.
This demonstrates a central advantage of the brick-based approach over DNA origami: While
in DNA origami, new staple strands must be designed and synthesized if a new structure is to
be build, the brick-based approach is much more versatile in that the same set of strands can
be used with only a di↵erent subset of strands being selected. Key to the functionality of this
approach is the large heterogeneity of DNA bricks, which allows to address each brick within
the canvas individually: In an improved method [114], which uses slightly longer strands of a
length of 52 base pairs, a canvas consisting of 30000 unique components and a side length of
more than 100nm could be created, which allowed for the creation of even more intricate 3D
structures. These examples therefore illustrate nicely how structure heterogeneity, which will
also play an important role in several projects of this thesis, can be achieved in nanotechno-
logical applications.
A drawback of the brick-based approach, however, is that the yields are currently still rather
low: in particular, for those very large structures with 30000 components, the yield is only
⇠ 1% but reaches up to 24% for smaller structures [49, 115, 114].
It was originally believed that self-assembly with heterogeneous DNA tiles was hard to be
realized, since it was expected that deviations from the stoichiometric ratios of the bricks
would lead to partial structure formation and kinetic trapping [115, 116, 53]. Kinetic trap-
ping, however, is presumably suppressed to a large extent due to a putative slow nucleation
step of the tiles followed by fast growth of the assemblies [49, 50, 51]. It might thus be this
nucleation barrier which renders brick-based nanotechnology possible. However, it can not
be excluded that the yield drop for larger structures might be due to an excess of nucleation
events.
We hope that the results of this thesis will contribute to establish additional strategies to
control DNA-brick based self-assembly allowing to improve the yield and time e�ciency of
these applications.

For reviews and perspectives on DNA nanotechnology please refer to [102, 116, 115, 103, 117,
100, 118]. Reviews on algorithmic self-assembly, which is another highly interesting subfield
of DNA nanotechnology, although not discussed in depth here, can be found in [119, 120, 121].
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Time e�ciency of self-assembly





1.2 General motivation 13

General motivation

In a discussion with Hendrik Dietz3 from the Technical University of Munich in November
2020, Hendrik told us about their work on the self-assembly of artificial capsids from DNA-
bricks [110], following the example of biological virus capsid assembly. Generally, artificial
shells have important potential biotechnological and medical applications, ranging from pin-
point drug delivery systems to compartmentalizations for chemical reactions [122, 123]. The
experiments of the Dietz group, in particular, aim to assemble capsids with an aperture at
one side, that will be equipped with antibodies in the interior. In this way, the capsids can be
used to trap virus particles inside an organism and prevent them from interacting with the
organism’s cells. The hope is that in this way a broadly applicable antiviral platform can be
created, which can be utilized to combat a broad range of viral infections. Rebuilding viral
shells with artificial components can furthermore help to shed light on yet poorly understood
aspects of the formation of viral capsids in vivo.
While the Dietz group - quite remarkably - managed successfully to assemble various capsid
shells consisting of up to 180 DNA bricks, when I asked how long the assembly processes
would typically take, Hendrik’s answer was the following: The smallest capsids, which consist
of only 8 components, assemble quasi instantaneously. The T=1 capsids, consisting of 60
components, still assemble rather quickly in the course of a few hours. The T=3 capsids with
120 components need roughly a day and the T=4 capsids with 180 components require 10 to
14 days to assemble with su�ciently high yield4.
This illustrates two important aspects of self-assembling systems: First, the required assembly
time apparently increases with the size of the target structure; and second, this increase can
be quite drastic, so that the required assembly time can easily become a limiting factor for
the self-assembly of large objects. After all, the T=4 capsid is by far not among the largest
capsids that appear in nature, where we find structures like the T=75 bacterial carboxysome
that consists of ⇠ 4500 components [124, 125]. The bacterial flagellum is even bigger and
consists of roughly ⇠ 30000 proteins [126]. Extrapolating the trend observed in the experi-
ment, it would probably take decades to assemble a structure as large as the carboxysome or
the flagellum. This shows that natural assembly processes are very likely optimized not only
with respect to resource e�ciency but also with respect to time e�ciency. Consequently, this
implies that for a comprehensive understanding of biological as well as artificial self-assembly
processes, the time component plays an essential role.

Nevertheless, in the literature on self-assembly so far, much more attention has been put
on understanding structural determinants of the resulting assemblies rather than on kinetic
aspects determining their assembly processes. The reasons for this bias are presumably mani-
fold. However, an important aspect is probably the fact that it is very di�cult to extract any
information on self-assembly kinetics from experiments, since on the one hand it is impossible
to directly observe the dynamics, and on the other hand it is rare to even observe intermediate
products like unfinished capsid shells, which might allow one to infer the underlying dynam-
ics: Typically, the distribution of assembly states is double-peaked with a high concentration

3Hendrik Dietz is professor for biomolecular nanotechnology at the Technical University of Munich and
a leading expert in the field. Together with his team he has the goal of building functional artificial
nanodevices via self-assembly and sequence folding.

4This data can also be found in Figure 3 in reference [110]
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of monomers on the one hand and a large concentration of finished products on the other
hand, while intermediate states exist only in very low concentrations [127, 36, 47].
As most theory in the field has been developed close to experiments, one has therefore rather
focused on structural aspects of the resulting assemblies, which could be compared and backed
with experimental data. To this end, thermodynamics provides a useful theoretic description,
that has been used extensively [35, 121, 128, 33, 27, 32, 78, 34], as it conveniently allows
one to characterize the structure of the assembly products without the need to specify the
underlying dynamics.
Usually, thermodynamics provides a valid description of a system that has reached thermo-
dynamic equilibrium and fulfils detailed balance. As has been discussed in the introduction,
however, it is very unlikely that self-assembling systems like virus capsids will reach ther-
modynamic equilibrium on biologically or experimentally relevant time scales [47, 129, 25].
Supposing, for example, virus capsid assembly would reach thermodynamic equilibrium, this
would imply that the chemical potential of a subunit in solution and as part of a capsid
would adopt the same value. Hence, releasing the virus particle from the infected cell into its
surrounding like the blood stream, which is depleted of free subunits, would inevitably lead
to the virus’s disassembly. Apparently, this does not happen, implying that virus assembly
is intrinsically out-of-equilibrium. The reason why thermodynamics can still be applied in
order to describe the final assembly state is owed to the fact that reversible self-assembling
systems can be shown to often obey a ‘pseudo-law of mass action’ [47]. This means that,
despite the presence of irreversible assembly steps, the distribution of assembly products may
qualitatively behave as if it were in equilibrium.
For those reasons, although the prerequisites for a thermodynamic description are usually
not strictly fulfilled, thermodynamics has become a prevalent theoretical tool in the study of
self-assembly systems [27, 32, 33, 25, 35]. The drawback of this theoretical approach, however,
is that it does not allow to investigate the underlying kinetics of the system; In particular, it
does not inform about the time the system requires to reach the (quasi-)equilibrium state.
For this reason, coarse-grained molecular dynamics simulations have been performed exten-
sively in order to gain a better understanding of kinetic aspects of self-assembly systems
[45, 43, 130, 131, 132, 133, 134]. However, since these simulations are typically computation-
ally expensive - in particular if the assembly dynamics is strongly reversible - only rather
small structures have been simulated so far. As the experiments of the Dietz group sug-
gest, however, time e�ciency becomes critical especially for the self-assembly of large objects.
Hence, detailed molecular dynamics simulations are presumably not very well suited to test
the e�ciency of self-assembly schemes for large objects and thereby are probably not the
optimal method either to establish a holistic understanding of self-assembly kinetics.

The di�culty or incapability of the prevalent analytical, numerical and experimental ap-
proaches to describe and quantify kinetic features of the self-assembly of large objects might
be important reasons why kinetics has largely been neglected against structural properties in
self-assembly5 [136]. As the experiments of the Dietz group suggest, however, both aspects

5As has been discussed in the introduction, kinetic models for virus capsid assembly do exist, though. For ex-
ample, Zlotnik and coworkers [135, 36] developed a model of rate equations analogous to the Becker-Döring
equations for a system undergoing crystallisation [73], that describes the evolution of capsid intermediates.
However, these models have primarily been used to study qualitative aspects of (reversible) self-assembly
kinetics like the origin of lag phase, the reason for the sigmoidal shape of temporal yield curves or the
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are essential for a proper understanding of self-assembling systems.

The goal of the first part of this thesis therefore comprises the development of conceptual, an-
alytical and numerical tools suitable to describe the time required by self-assembly processes
and to formulate a concise theory of their time e�ciency.
Specifically, the first chapter analyzes and compares the time e�ciency of various, reversible
and irreversible self-assembly schemes. To this end, we introduce the concept of time complex-
ity, which quantifies the dependence of the assembly time on the size of the target structure,
analogous with the concept of time complexity in computer science. The time complex-
ity thereby allows for a simple and informative characterization of the time e�ciency of
self-assembly processes and hence plays an important role also in the following chapters.
Furthermore, we describe analytical methods that allow one to calculate the exponent that
characterizes the scaling of the assembly time and we discuss methods to e�ciently simulate
the self-assembly processes. Equipped with these tools and concepts, we characterize the time
e�ciency of four di↵erent self-assembly scenarios.
In the second chapter, we analyze one of the irreversible assembly scenarios more in depth
and discuss a few di↵erent ways to implement this scenario. The concept of time complexity
thereby again provides a reliable and powerful tool to characterize the e�ciency of these dif-
ferent implementations.
Finally, in the last chapter of this first part, we discuss how the morphology of the constituents
influences the time e�ciency of reversible self-assembly processes. Thereby we determine how
the scaling of the assembly time as a function of the detachment rate and the structure size
is a↵ected by the morphology of the constituents.

In all studied cases, our findings suggest that time plays a critical role in self-assembly and
that certain changes, for example concerning the way in which nucleation events are controlled
or in the morphology of the constituents, can have a big e↵ect on the assembly time. The
concept of time complexity thereby provides a simple and informative description of the
assembly time and hence constitutes a powerful tool to characterize these e↵ects. We hope
that these insights into the time e�ciency of self-assembly processes will help to speed up
self-assembly experiments and contribute to a better understanding of biological self-assembly
processes.

emergence of kinetic traps. Furthermore, these models have typically only been considered for rather small
capsids. In contrast, the goal of this thesis is to develop a comprehensive theory of the time required by
self-assembly processes on a broader perspective, by examining also di↵erent kinds of assembly schemes or
assembly control scenarios.



16



2 The time complexity of self-assembly

The goal of this chapter is to summarize the most important findings of our project on the
time complexity of self-assembly. The corresponding manuscript has been published in PNAS
119(4) (2022). This chapter is based on and uses parts of this publication [2], which is also
reprinted in section 2.7.

2.1 Motivation

Self-assembly experiments, like the one of the Dietz group discussed in the general motiva-
tion, often rely on reversibility of the binding reactions in order to overcome kinetic traps.
This implies that single bonds are rather weak and hence can easily be broken up again. In
this way, assembly errors that occur at early stages in the assembly process can be corrected
and kinetic traps be avoided due to the reversibility of the reactions. Many experimental
and some biological self-assembly systems, like virus capsids, therefore rely on this scheme
[56, 57, 58, 59, 60, 25, 61] and reversibility has become a paradigm for virus capsid assembly
[45]. However, as we show in this project, a disadvantage of this method is that, in order to
be time e�cient, fairly precise fine-tuning of a control parameter (which can be either the
temperature, binding energy, monomer concentration, salt concentration, etc.) is necessary.
Because it is not a priori clear what the optimal value for the control parameter is, time
optimization is presumably a rather di�cult task. This might explain the di�culties and the
poor time e�ciency in the experiments of the Dietz group.
But is it possible that there is also a completely di↵erent, maybe simpler approach to artifi-
cial self-assembly that allows to optimize time e�ciency more easily? A very suggestive idea
would be to supply the constituent species in a specified sequence in order to favour a spe-
cific assembly pathway and thereby avoid kinetic traps. Experimentally, this could be a very
feasible strategy, as it would only require the various constituents to be added to the system
in a specified temporal order. In analogy with just-in-sequence supply for industrial assembly
processes, we therefore call this assembly scheme just-in-sequence scenario. But how can we
tell which of the two scenarios, the one relying on reversibility of binding reactions or the one
based on just-in-sequence supply, is more time e�cient?
A similar problem of evaluating di↵erent strategies based on their time e�ciency, frequently
occurs in computer science when di↵erent algorithms are available to solve a particular kind
of computational problem. Often it thereby occurs that a particular algorithm is fast if the
amount of input data is small, but it becomes very ine�cient if the ‘size’ of the problem
increases. Therefore, rather than quantifying the e�ciency of an algorithm by the time it
requires to solve a particular problem, one evaluates it by how its runtime scales with the size
of the problem. This important parameter is called the time complexity of the algorithm. The
time complexity has another central advantage, namely, that it can typically be computed
or estimated quite easily. This means that, while it is generally di�cult to predict the exact
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runtime of an algorithm, the scaling of the runtime in dependence of the size of the problem
can usually be accessed much more easily. The time complexity thus allows to informatively
compare di↵erent algorithms with respect to their e�ciency in solving large computational
problems and it has thus become an essential concept in computer science.
Hence, it is suggestive to apply the same concept to quantify and compare the time e�ciency
of di↵erent self-assembly schemes. To this end, we quantify the e�ciency of the di↵erent
self-assembly schemes by how the minimal time required to achieve a demanded yield of 90%
scales with the size of the target structure. Beside the reversible binding scenario and the
just-in-sequence scenario, we also examine two other irreversible scenarios that are relevant in
a biological and, potentially, in an artificial context. In these two scenarios, kinetic traps are
avoided either with the help of a (slow) activation step of the monomers or by reducing the
dimerization rate, which might be realized, for instance, with the help of allosteric e↵ects. We
call these two scenarios activation scenario and dimerization scenario, respectively. The idea
is that most biological and artificial self-assembly systems can qualitatively be characterized
as one of these four key scenarios or a superposition of them.
Just as for computer algorithms, the concept of time complexity turns out to be very useful in
characterizing and comparing the time e�ciency of these di↵erent self-assembly schemes: The
time complexity scaling can be accessed analytically, it is a very robust measure and, most
importantly, it reveals a huge discrepancy in the time e�ciency of the di↵erent self-assembly
scenarios for large sizes of the target structure. This implies that, depending on the strategy
that is used in order to avoid kinetic traps, the time required by the assembly process can
vary by orders of magnitude.
In particular, the analysis shows that the scenario that relies on reversible binding and the
scenario based on just-in-sequence supply are competitive in their time e�ciency but depend
critically on di↵erent kinds of parameters: While for the reversible binding scenario fine-tuning
of rate constants is essential in order to achieve high e�ciency, the just-in-sequence scenario
requires adjustment of the particle numbers supplied in order to function e�ciently and ro-
bustly. Hence, we conclude that the just-in-sequence scenario might indeed be a promising
complementary approach to artificial self-assembly and it would be very interesting to test
this strategy in experiments.

2.2 Model

The conceptual model that we used to investigate the time complexity of self-assembly pro-
cesses is illustrated in Fig. 8.1. The model allows us to simulate four key scenarios for
self-assembly that we will specify in detail below. We consider the assembly of N particles
of S di↵erent species into one-, two- or three dimensional target structures of variable size
S as depicted in the figure. Beside the size of the target structure, also the dimensionality
of the structure may be relevant for the required assembly time and, therefore, we vary the
dimensionality as well. We assume that particles start in an inactive state from which they
get activated at constant total rate N↵. The inactive state can represent an assembly inactive
configuration of the molecules, or, more generally, it could also represent a state before the
particles have entered the system or before they have been produced via gene-expression etc.
Once particles are active, they start to self-assemble. Assembly takes place in a well-mixed
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Figure 2.1 | Illustration of the model (slightly adapted from [2]). N identical copies of S di↵erent
species of monomers assemble into one- (1D), two- (2D) or three-dimensional (3D) heterogeneous
structures of volume S (only the 2D case is illustrated explicitly). A constant influx of monomers
of species i takes place during the time interval [Ti, Ti + 1

↵ ] with net influx rate N↵. Once added
to the system (activated), monomers start to self-assemble. A monomer of a bulk species has
2 (1D), 4 (2D) or 6 (3D) possible binding partners as illustrated in the figure. Any two fitting
monomers can dimerize with rate µ. Subsequent to dimerization, structures grow by attachment of
single monomers with rate ⌫ per binding site. Furthermore, monomers can detach from a cluster
with rate �n = Ae�nEB , where n is the number of bonds that need to be broken assuming a
binding energy EB per bond. Our goal is to minimize the time T90 until 90% of all resources are
assembled into complete structures. To this end, we control particular elements of the assembly
process (control parameters) and distinguish four scenarios which are defined through the respective
control parameter(s). Each scenario can be used to elude kinetic traps and achieve a high assembly
yield but how do these di↵erent strategies di↵er regarding their time e�ciency?

fluid environment. Furthermore, we assume that all particles bind specifically only with their
neighboring species. This means that erroneous binding events that would otherwise lead
to incorrectly assembled structures are neglected. Following the assumptions of ideal aggre-
gation theory, we only consider attachment of monomers and neglect interactions of larger
polymers [70, 77, 35].
The assembly process starts with a dimerization event followed by subsequent attachment of
further monomers. We assume that dimerization between two fitting monomers happens at
a rate µ which may be smaller than the general growth rate ⌫. Biophysical reasons for why
the dimerization rate may be significantly smaller than the growth rate could be allosteric
binding e↵ects or the action of enzymes (assembly factors) that guide biologcial assembly pro-
cesses. Indeed, it has been observed that several biomolecules like, for example, flagellin, the
components of ribosomes or some viruses, do not assemble spontaneously but preferentially
attach to a preexisting structure [137, 20, 138]. Furthermore, we also consider detachment
processes of particles from partially assembled structures. We assume that the detachment
rate of a particle decreases exponentially with the binding energy or, more generally, the
energy barrier that needs to be overcome, according to the Arrhenius law. The total binding
energy (energy barrier) of a particle is assumed to be proportional to the number of bonds
of the particle. Su�ciently low binding energies induce an e↵ective nucleation barrier simi-
larly as a decreased dimerization rate. However, the underlying biophysical mechanisms of
both nucleation scenarios are completely di↵erent. The nucleation mechanism induced by a
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low binding energy is related to the nucleation process in crystal growth and described by
standard nucleation theory. On the other hand, conformational switching is the essence of
the much more sophisticated mechanisms leading to a direct reduction of the dimerization
rate [137, 138]. Accordingly, we will also find that the time complexity is quite di↵erent for
both scenarios. Finally, in order to describe the just-in-sequence scenario as anticipated in
the motivation, we allow for the di↵erent species to be activated at distinct time points. This
allows to provide the various species in a specific sequence and thereby favor a designated
assembly pathway.
In order to achieve e�cient self-assembly, nucleation must be significantly slower than growth
[34, 31, 139]. Otherwise, too many structures would emerge and the resources would run
out before all structures can get finished. The system is then said to be kinetically trapped
[31, 60]. The model allows us to study four di↵erent mechanisms or scenarios to avoid such
kinetic traps. In the reversible binding and the dimerization scenario, the frequency of nu-
cleation events is regulated by controlling the binding energy EB (relative to the thermal
energy scale kBT ) or the dimerization rate µ, respectively. In the activation scenario, a
slow activation rate ↵ reduces the momentary concentration of active monomers and thereby
regulates the e↵ective dimerization rate (which depends quadratically on the concentration
of monomers). Note that the activation scenario does not discriminate between the di↵erent
species, i.e. all species are activated simultaneously. In contrast, the just-in-sequence scenario
distinguishes the time points Ti when the di↵erent species i get activated and thereby favours
specific assembly pathways. We denote the interval between the equidistant time points Ti

by �T . Hence, each of the four scenarios can be described by a single control parameter EB,
µ, ↵ or �T , respectively. For each of the four scenarios, we identify the optimal value of the
respective control parameter, which minimizes the time Tx required to achieve a fixed yield
x of completely assembled structures. Typically in the paper, we demand a fixed yield of
x = 90%.
We defined the model as a completely heterogeneous self-assembly system where each species
occurs only once in a completely assembled structure. However, for the activation, dimeriza-
tion and reversible binding scenario, the heterogeneity of the structure is actually irrelevant.
Because these three scenarios treat all species equivalently, the governing chemical rate equa-
tions are invariant under relabelling the species and, therefore, the dynamics can be shown to
be independent of the heterogeneity of the system (see Supplement [1] and [2]). Hence, the
results of the time complexity analysis for these three scenarios are actually valid in a much
more general sense.
Some other idealizations and specific choices were made in defining the model (for example,
it was assumed that the attachment rates for all species are identical). Therefore, in the
supplement, we analyze a number of modifications of the original model and show that the
results of the time complexity analysis mostly remain invariant to such variations.

2.3 Key challenges

A major challenge in this project was the simulation of the reversible binding scenario for
two- and three-dimensional target structures. In order to avoid kinetic traps and achieve
a high yield, it turned out that for some systems the detachment rate had to be chosen a
factor of 102 � 104 larger than the typical reaction rate C⌫ (where C is the initial concentra-
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tion of monomers). Consequently, due to the high level of reversibility, most of the time the
simulation just jumps back and forth between repeated attachment and detachment events.
Hence, many Gillespie steps are required in total until a yield of 90% is achieved. For some
simulations, several billion Gillespie steps were necessary to perform only a single run. Par-
ticularly expensive are simulations with large target structures and especially if detachment
rates deviate considerably from the optimal rate (such as for the plot in Fig. 3B in the paper).
Furthermore, many individual runs are necessary in order to reliably determine averages and
to perform the optimization of the parameter. Due to a high e↵ort in optimizing the C++
code of the simulation, the program could be improved to perform approximately one million
Gillespie steps per second on a 3,1 GHz CPU. By parallelizing individual runs and exploiting
the computational capabilities of the LRZ Cluster, all simulations necessary to determine
the parameter- and time complexity exponent for a specified scenario could be performed
approximately within 5 days.
Another challenge concerned the simulation of the activation scenario because, as we will
see later in this thesis, the activation scenario is a↵ected by strong stochastic e↵ects, unless
the number of particles N is very large (N > 107 for the largest simulated structures with
S = 1000). However, this problem can be bypassed by exploiting the deterministic inde-
pendence of the activation scenario from the heterogeneity. In other words, in the limit of
large particle numbers, the heterogeneous system behaves deterministically like an equivalent
homogeneous system. The homogeneous system, in contrast, is not a↵ected by such strong
stochastic e↵ects if the particle number is small and thus can be simulated with much lower
particle number (typically N=1000 is totally su�cient). We termed this method of simulating
a heterogeneous system as an equivalent homogeneous system as ‘method of homogenization’
(see [2] Supplement).
A more conceptual challenge was the determination of the optimal strategy for the two- and
three dimensional just-in-sequence scenario. As described in detail in the paper, time e�ciency
and robustness in the just-in-sequence scenario for higher dimensional target structures are
jeopardized by increasing competition for resources caused by a growing number of complexes.
Hence, additional regulation is necessary to down-regulate the level of competition. While at
least three suitable regulatory mechanisms exist theoretically (see next chapter), varying the
concentrations of the di↵erent species in specific, non-stoichiometric ratios, is seemingly the
most e�cient and experimentally feasible strategy. Determination of the optimal ratios for
the concentrations therefore was another challenge that appears straight-forward in hindsight
but was not obvious at the beginning of the project.

2.4 Results and discussion

An important result of this project is that for su�ciently large particle number N and struc-
ture size S, the optimal parameter value in all four scenarios as well as the minimal assembly
time exhibit power law dependencies on S. We denote the corresponding scaling exponents as
the control parameter exponent � and the time complexity exponent ✓, respectively. Impor-
tantly, these exponents do not depend on details and specific assumptions of the model and
are invariant to modifications of the assembly kinetics. For example, we verified robustness of
the exponents for di↵erent boundary conditions of the structures, for heterogeneous binding
rates and for di↵erent thresholds x of the yield in the definition of the assembly time Tx. Fur-



22 2. The time complexity of self-assembly

thermore, the simulation of more sophisticated experimental protocols like annealing1 in the
reversible binding scenario or alternative forms of monomer input in the activation scenario
(also see section 2.6.1) leave the exponents invariant.
The identification of these robust scaling laws suggests that the characterization of self-
assembly processes via the parameter- and time complexity exponent is informative and useful
in an experimental context: Often, as in the experiments of the Dietz group, a similar system
of building blocks is used to assemble structures of di↵erent sizes. The assembly of small
structures is typically fast. Hence, one could identify the optimal parameter for the small
system and, with the help of the simulated parameter exponent, estimate the optimal param-
eter (and the expected assembly time) for the larger system. Hence, in this ‘scaling approach’
to experimental self-assembly, one would first explore the small system and then ‘scale up’ to
the larger system. Importantly, the derived scaling laws are not limited only to the optimal
parameter and minimal assembly time but they can be shown to imply a general relation
between the parameter P , the yield x and the assembly time Tx. Precisely, it can be stated
that, upon altering the size S of the target structure, if the respective control parameter P

is scaled with S
�, then the assembly time Tx scales with S to the power of ✓:

P ⇠ S
� ) TxC⌫ ⇠ S

✓
. (2.1)

This relation implies, of course, that the same yield x will be achieved again if the parameter
is adapted in the prescribed way. We demonstrate in section 2.6.2 that the scaling relation
holds in this general form. To this end, we show that, in a plot of the assembly time versus
the parameter value, rescaling the y-axis by the minimal assembly time and the x-axis by the
optimal parameter enforces a collapse of the curves.
The time complexity analysis furthermore enables us to compare the di↵erent scenarios with
respect to their e�ciency. We find that controlling the dimerization rate µ is the most e�-
cient strategy. Reversible binding is very ine�cient for one-dimensional structures because
for one dimensional structures there is no e↵ective nucleation barrier in contrast to the higher
dimensional cases. For two- and three-dimensional structures, reversible binding is e�cient
and competitive with the JIS scenario, provided the detachment rate is fine-tuned precisely
(see Fig. 3B in [2]). The just-in-sequence scenario could be an alternative strategy for artifi-
cial heterogeneous self-assembly. Because it only relies on temporal control of the constituent
supply and does not require fine-tuned rate constants or other sophisticated molecular prop-
erties, it might be a more versatile and practicable approach compared to reversible binding.
However, key for the e�ciency and the robustness of the just-in-sequence scenario is that
the di↵erent species are supplied in concentrations of specific ratios, which must be met with
su�cient precision. Therefore, precise molecular counting mechanisms could open up an
alternative route to nanotechnology.

1‘annealing’ refers to the experimental procedure of slowly reducing the temperature during the experiment
in order to keep the ratio between the detachment rate and the reaction rate (which depends on the
concentration of (unbound) monomers) at a constant level. [140]
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2.5 Key results

In my opinion, there are three key results of this project:

• Optimization of time e�ciency plays a crucial role for self-assembling systems. Di↵er-
ent assembly strategies, despite all of them being highly resource e�cient (high final
yield), can nevertheless di↵er in their time e�ciency by several orders of magnitude.
Suboptimal parameter settings can also lead to an increase of the assembly time by
many orders of magnitude.

• The time complexity analysis yields a simple but informative characterization of the
time e�ciency of self-assembly processes. It allows us to informatively compare di↵erent
self-assembly scenarios and it identifies robust scaling laws for the optimal parameter
settings in these scenarios.

• Regulation of the temporal supply of constituents defines a time-e�cient strategy for
heterogeneous self-assembly. Specifically, the ‘just-in-sequence’ scenario, in which con-
stituents are provided in specific concentrations in a specified sequence, could be a
complementary, highly versatile approach to artificial self-assembly. Robust molecular
counting mechanisms are key to the successful implementation of this strategy.

The concept of time complexity turned out to be very useful in characterizing the time
e�ciency of self-assembly processes. An interesting question for future research would be
whether other self-organization processes, like pattern formation or self-organization of active
matter systems, can likewise be characterized by their time complexity in an informative way.
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2.6 Additional material

In this section we provide additional material that is not covered in the paper or in the
supplementary material but that is important in the context of time complexity and also
for later chapters in this thesis. First, we show analytically that the time complexity of
the activation scenario is independent of the form of the input. Second, we show that the
derived scaling laws describe dependencies of the assembly time on the structure size also
for non-optimal parameter values and independent of the yield. To this end we demonstrate
that upon rescaling the parameter by the optimal parameter and the assembly time by the
minimal assembly time, the assembly time curves collapse onto Master curves.

2.6.1 Independence of the time complexity of the activation scenario from the
form of monomer input

The activation scenario is characterized by a slow input of monomers that does not discrim-
inate between the di↵erent species. In the paper we assumed that the influx of monomers
is constant over a finite time interval, which is supposed to mimic the experimental act of
‘pipetting’ solute particles into the system. By contrast, in our project on stochastic e↵ects in
self-assembly [1] (see chapter 5), we assume that inactive particles get activated independently
at a constant per capita rate and hence the total input decreases exponentially. Of course,
in principle, there are arbitrary many possible choices for the input function in the activa-
tion scenario. Another biologically relevant example has been analyzed in the Supplementary
Material of this project. Thereby we assumed that activation of monomers is reversible and
that the switching between the active and inactive state is fast and thus can be assumed to
be at equilibrium. We showed numerically that the time e�ciency indeed can be increased
by this special form of input relative to the constant influx scenario, but the time complexity
exponent remains invariant.
In this section, we show analytically that the parameter- and time complexity exponent in
the activation scenario are independent of the form of the input. This ‘robustness result’ will
justify the nomenclature ‘activation scenario’ for all forms of monomer input and establishes
the connection between the di↵erent implementation of the scenario in this project and in
the later projects. It shows that the only inherent characteristic of the activation scenario is
that the species are supplied indiscriminately.
In the supplement of the paper, we used analytic scaling arguments in order to derive esti-
mates for the exponents. Here we choose a di↵erent, more rigorous analytic approach, which
will also from the basis of analytic considerations in later chapters of this thesis. For a rig-
orous derivation of the basic ansatz, for which we just give intuitive arguments here, please
refer to the later chapters (4 and 5).

The basic assumption is that the optimal parameter exhibits the same scaling as the threshold
parameter at which the onset of the yield occurs. The reason behind this assumption is that,
in the limit of large structure sizes, the yield transition curves have a constant shape and
both the threshold and the optimal parameter are at fixed positions on these curves. Hence,
we will determine the scaling of the threshold parameter.
To this end, we exploit the equivalence of the heterogeneous to a homogeneous system in which
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particles are indistinguishable and we only consider the case of one-dimensional target struc-
tures. The exponents for the higher-dimensional cases can be related to the one-dimensional
case by a simple rescaling argument (see main text in [2]).
As long as the yield is zero, the dynamics can be reduced to a two-component system that
describes the evolution of the concentration of monomers m(t) and the total concentrations
of complexes K(t):

d

dt
m = F (t)� ⌫mK , (2.2)

d

dt
K = µm

2
. (2.3)

Here F (t) is the input function that fulfils the constraint
R1
0 F (t)dt = N , so that in total N

monomers are supplied. The second term in the first line describes attachment of monomers to
complexes with rate ⌫ and the second line accounts for nucleation (dimerization) of complexes
with rate µ. Because the yield is zero, all complexes in the system have a constant growth
rate and it is not necessary to keep track of their sizes. Therefore, the reduction to this
two-component system is possible.
We assume that the input function F can be written in the form F (t) = N↵f(↵t), where
↵
�1 is a parameter that determines the time scale of the input function and f is an arbitrary

function that integrates to 1:
R1
0 f(x)dx = 1. For example, monomer input caused by the

irreversible activation of inactive particles is described by the input function f(x) = e
�x, and

constant influx over a finite time interval 1/↵, as assumed in the paper, is described by the
rectangular input function f(x) = ⇥(x)⇥(1� x).
Measuring time in units of (N⌫)�1 and particle numbers relative to N , the system can be
written in dimensionless form:

d

dt
m = !f(!t)�mK , (2.4)

d

dt
K = ⌘m

2
, (2.5)

where ! = ↵/(N⌫) and ⌘ = µ/⌫.
The crucial insight that enables us to determine the scaling from Eq. (2.4) and (2.5) is that,
asymptotically, in the limit of small ! (corresponding to large structure sizes S), the term d

dtm

becomes negligible against the terms on the right hand side. We will therefore neglect d
dtm

and then show a posteriori that this approximation is indeed justified. The system thereby
simplifies to

m =
!f(!t)

K
, (2.6)

d

dt
K = ⌘!

2 f
2(!t)

K2
. (2.7)

The second equation can be solved by separation of variables and gives

K(t) =

✓
3⌘!

Z !t

0
f
2(x)dx

◆ 1
3

, (2.8)

and hence for the monomer concentration we obtain

m(t) =
f(!t)!

⇣
3⌘!

R !t
0 f2(x)dx

⌘ 1
3

. (2.9)
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Taking the time derivative of m(t), we find d
dtm ⇠ !

5
3 ⌘

� 1
3 , while mK ⇠ !. Consequently, for

constant ⌘, in the limit of small !, the term d
dtm becomes indeed negligible against the right

hand side of Eq. (2.4), showing that the approximation was justified (see [141] Supplement
for a more rigorous argument).
The growth rate of complexes is proportional to the momentary concentration of monomers.
Hence, a dimer that emerges at time t = 0 will finally reach an expected size of s0 =

R1
0 m(t)dt

(in scaleless units). Since the complexes that emerge at t = 0 will finally represent the largest
complexes in the system, s0 approximately equals the final position of the foremost front of
the density profile2. In other words, in the limit s0 ! 1, the travelled distance of the density
profile equals s0. Therefore, the condition for the onset of the yield for structures of size S is
determined by setting s0 = S:

S = s0 =

Z 1

0
m(t)dt =

✓
!
2

3⌘

◆ 1
3
Z 1

0

f(!t)
⇣R !t

0 f2(x)dx
⌘ 1

3

dt =

✓
1

3!⌘

◆ 1
3
Z 1

0

f(y)
�R y

0 f2(x)dx
� 1

3

dy .

(2.10)
The integral term is independent of ⌘ and ! and thus gives a constant while the prefactor
determines the scaling. Using the above definitions for ! and ⌘, it follows for the scaling of
the threshold parameter,

↵th ⇠ ⌫

µ
N⌫S

�3
, (2.11)

yielding the control parameter exponent � = �3. Since the parameter ↵ determines the
time scale of the input, the total time required by the process will scale inversely with ↵:
T ⇠ ↵

�1 ⇠ S
3, and thus the time complexity exponent follows as ✓ = 3. Note that the result

(2.11) coincides3 in this more general form with the result that we obtained in a di↵erent way
from the scaling analysis in the supplement of the paper ([2]). The scaling exponents for two-
and three-dimensional target structures are obtained by substituting ⌫ ! ⌫S

(d�1)/d in Eq.
(2.11), as described in the main text of the paper.
This shows that for any input function that depends on a single time scale parameter, the
control parameter exponent and the time complexity exponent are invariant to the form of
the input as long as all species are supplied indiscriminately. The only possibility to reduce
the time complexity with a supply strategy is by discriminating the di↵erent species as is
done in the just-in-sequence scenario.
An interesting scenario would also be the case when active particles decay irreversibly into a
waste product as it occurs, for example, in the systems studied by the group of Job Boerkhoven
[142]. This scenario corresponds to an input function whose time integral is not constrained
to give N but can also be smaller. It is, however, very unlikely that the time- or resource
e�ciency can be improved by the irreversible wasting of monomers.

2the correspondence is only approximate because the tip of the wave front corresponds to the maximal size
reached by the early dimers not their average size. In the limit s0 ! 1, however, the di↵erence becomes
negligible; see [141] Supplement.

3to reproduce the exact result, the particle number N must be replaced with the concentration C and the
units of the rate constants must be adapted accordingly
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Figure 2.2 | Collapse of the Tx-curves. A The T90 and T50 curves in the dimerization scenario
are plotted against the dimerization rate for two-dimensional target structures of three di↵erent
sizes S = 100, S = 196 and S = 400. Rescaling the x-axis for each system size by the optimal
dimerization rate to obtain 90% yield, µopt

90 , and the y-axis by the minimal assembly time T opt
90 leads

to a collapse of the T90 and T50 curves. B Analogous to A, the rescaled assembly time is plotted
against the respective control parameter for the activation, just-in-sequence and reversible binding
scenario (only the rescaled plot is shown in each case). The T90 and T50 curves similarly collapse
onto Master curves. The collapse of the curves shows that the scaling that were derived for the
optimal parameter and the minimal assembly time in dependence of the structure size S, actually
holds for all points on the curve and independently of the yield threshold x in the definition of the
assembly time Tx. Thereby, the law that describes the scaling of the assembly time with structure
size for the di↵erent scenarios holds in the much more general sense given by Eq. (2.12).

2.6.2 Collapse of the time curves

In the paper, we only analyzed the scaling of the optimal parameter and the minimal as-
sembly time, which allowed us to informatively compare the di↵erent self-assembly scenarios.
However, the significance of the scaling laws, as described by the exponents � and ✓, actually
goes much further. Indeed, we show in this short section that the scaling applies not only for
the optimum but for any point in the parameter space. To this end, we rescale the assembly
time (T90 and T50) for di↵erent sizes of the target structure by the corresponding minimal
assembly time Tmin

90 , and the respective control parameter by the optimal parameter to obtain
90% yield, see Figure 2.2. The rescaled plots show that in all four scenarios the curves for the
50% and 90% assembly times collapse onto two Master curves. This implies that the same
scaling as for the optimum can be applied to all points on the curve that achieve the required
yield x. Furthermore, since also the 50% yield curves collapse despite being rescaled with the
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90% optimum, the scaling appears to be independent of the required yield x. In essence, the
theory that results from this data collapse can concisely be summarized as the following scal-
ing law: If, upon altering the size S of the target structure, the respective control parameter
P is scaled with S

�, then the assembly time Tx scales with S
✓:

P ⇠ S
� ) TxC⌫ ⇠ S

✓
. (2.12)

Note that P refers to the dimensionless control parameter, i.e. ↵
C⌫ ,

µ
⌫ ,

�
C⌫ and �TC⌫ for the

activation, dimerization, reversible binding and just-in-sequence scenario, respectively.
The parameter exponents therefore describe the ‘canonical way’ of controlling assembly pro-
cesses in dependence of the size of the target structure and the time complexity exponents
predict how the assembly time will behave in response to such control. Hence, the time com-
plexity analysis describes optimal control strategies for self-assembly systems in dependence
on the size of the target structure.
In practice, this control theory could be useful for experiments that use the same system of
building blocks to assemble structures of di↵erent sizes as in the experiments of the Dietz
group discussed in the introduction. Once a good setting is found for the small system, the
theory can then predict how the control parameters should optimally be adopted for the
larger system (‘scale-up approach’). Thereby, the theory can be useful to increase the time
e�ciency of self-assembly experiments.
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Time efficiency of self-assembly is crucial for many biological
processes. Moreover, with the advances of nanotechnology, time
efficiency in artificial self-assembly becomes ever more important.
While structural determinants and the final assembly yield are
increasingly well understood, kinetic aspects concerning the time
efficiency, however, remain much more elusive. In computer sci-
ence, the concept of time complexity is used to characterize the
efficiency of an algorithm and describes how the algorithm’s run-
time depends on the size of the input data. Here we characterize
the time complexity of nonequilibrium self-assembly processes by
exploring how the time required to realize a certain, substantial
yield of a given target structure scales with its size. We identify
distinct classes of assembly scenarios, i.e., “algorithms” to accom-
plish this task, and show that they exhibit drastically different
degrees of complexity. Our analysis enables us to identify opti-
mal control strategies for nonequilibrium self-assembly processes.
Furthermore, we suggest an efficient irreversible scheme for the
artificial self-assembly of nanostructures, which complements the
state-of-the-art approach using reversible binding reactions and
requires no fine-tuning of binding energies.

nonequilibrium self-assembly | time efficiency | time complexity |
self-assembly scenario | supply control

T ime efficiency of self-assembly plays an important role in
biology. For example, virus assembly must be fast to produce

many virus particles before the infected cell is eliminated by the
host’s immune system (1–3). Moreover, as larger and ever more
complex nanostructures are to be realized for technological or
medical applications, time efficiency in artificial self-assembly
becomes vital (4, 5). Designing self-assembly schemes that are
fast and resource efficient is, however, challenging. The task
amounts to finding strategies that avoid the formation of large
numbers of incompatible and incomplete fragments of the de-
sired target structure. Such kinetic traps (6–10) arise even when
all building blocks have a high binding specificity and erroneous
binding is negligible, and they become more prominent with
increasing structure size. Consequently, assembly time increases
with structure size.

But how exactly does the assembly time scale with the size of
the target structure, and how does this scaling depend on the self-
assembly scheme? What kinds of schemes optimize the assembly
time? Answers to these questions will enable assembly strategies
to be identified that are optimally suited for the production of
large, functionally complex macromolecular structures via artifi-
cial self-assembly, a major goal in nanotechnology (4, 5, 11–13).
Here, we address these questions by studying the time complexity
(as opposed to structural complexity) (14–17) of four prototypical
self-assembly scenarios, using scaling arguments and in silico
modeling of the stochastic dynamics. Three of these scenarios
have well-established realizations in biological and artificial self-
assembly processes. The fourth strategy is a distinct idea con-
ceptualized to achieve efficient self-assembly in a technological
context by effectively regulating the supply of building blocks.

General Model and Self-Assembly Scenarios
To explore these questions in their simplest form, we consider
an assembly process involving N identical copies of S different

species of building blocks (monomers) and assume chemical
reaction kinetics in a well-mixed fluid environment. By C =
N /V we denote the concentration of monomers per species,
where V is the reaction volume. As we expect the time efficiency
of the assembly process to depend on the dimensionality of
the structure, we investigate the assembly of linear polymers,
two-dimensional sheets, and three-dimensional cubes of edge
length L (volume S) (Fig. 1). We specify the system as a fully
heterogeneous system with S distinct species because this case
defines the most general self-assembly process that allows for
the largest set of different assembly strategies to be applied.
Our analysis shows, however, that for three of the four strategies
we consider, the heterogeneity of the building blocks is indeed
irrelevant in the limiting case of large particle numbers N and
therefore our results hold independently of the heterogene-
ity of the structures. We assume that all binding reactions are
specific and take place only between “neighboring” species as
illustrated in Fig. 1. Erroneous binding between the constituents
that would lead to malformed structures is thereby not taken
into account. Following the assumptions of classical aggregation
theory, we furthermore neglect interactions among oligomers
(17, 18).

Specifically, we assume the following reaction kinetics: Any
two compatible monomers can bind at rate µ, forming a dimer
that serves as a nucleus for further growth by sequential addi-
tion of monomers at rate ν per binding site. Analyses of more
complex reaction schemes including heterogeneous binding rates
are discussed in SI Appendix and show that our conclusions are

Significance

An important limiting factor for self-assembly processes is the
time it takes to assemble large structures with high yield.
While equilibrium self-assembly systems slowly relax toward a
state of minimal free energy, nonequilibrium systems offer var-
ious ways to control assembly processes and to optimize their
time efficiency. We show that these different control scenarios
can informatively be characterized by their time complexity,
i.e., their scaling of the assembly time with the structure size,
analogous to algorithms for computational problems. Espe-
cially for large structures, differences in the time complexity
of the scenarios lead to strongly diverging time efficiencies.
Most significantly, we show that by effectively regulating the
supply of constituents, high resource and time efficiency can
be achieved for self-assembly processes.
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Fig. 1. Schematic description of the model. N identical copies of S different species of monomers assemble into one- (1D), two- (2D), or three-dimensional
(3D) heterogeneous structures of edge length L (only the 2D case is illustrated explicitly). A constant influx of monomers of species i takes place during the
time interval [Ti , Ti + 1

α ] with net influx rate Nα. Once added to the system (activated), monomers start to self-assemble. A monomer of a bulk species has
two (1D), four (2D), or six (3D) possible binding partners as shown. In the 1D case, we assume periodic boundary conditions, i.e., species 1 and S can bind
as well and the final structures form closed rings. In the higher-dimensional cases, we assume open boundaries, implying that the species located at the
boundary have a reduced number of binding partners. Any two fitting monomers can dimerize with rate µ. Subsequent to dimerization, structures grow
by attachment of single monomers with rate ν per binding site. Furthermore, monomers can detach from a cluster with rate δn = Ae−nEB , where n is the
number of bonds that need to be broken and EB the binding energy per bond. We set A = 1018Cν, with C = N/V denoting the concentration of monomers
per species. Our aim is to minimize the assembly time T90 when 90% of all resources are assembled into complete structures. To this end, we control particular
elements of the assembly process (control parameters) and distinguish four scenarios that are defined through the respective control parameter(s). The other
parameters are fixed from the following set of “default” values: Ti = 0,α = ∞ , µ = ν, EB = ∞ (δn = 0). Each scenario can be used to elude kinetic traps and
achieve a high assembly yield but how much time do these different strategies require?

robust against model modifications. We mainly consider irre-
versible processes, in which structures can only grow. To assess
the relevance of reversible binding, we also discuss a scenario
in which individual monomers may detach from the edges of
incomplete structures at a finite detachment rate δn that de-
creases exponentially with the number n of bonds that need to be
broken: δn = Ae−nEB (Arrhenius’ law). Here EB is the binding
energy per contact (bond) in units of kBT and the constant
A can typically be assumed to be large relative to the rate of
reactions (19, 20). Note that we consider only the detachment
of single monomer units. In the special case of one-dimensional
structures, this implies that the structures grow and shrink only
at the ends but do not break up in the middle. This assumption
can be justified if some mechanism stabilizes linear structures in
the middle (for example, if allosteric effects stabilize the interior
bonds). Otherwise, fragmentation of one-dimensional structures
would strongly reduce the time efficiency of their self-assembly
and the result of our analysis below must be interpreted as an
upper limit for the efficiency.

Once a structure contains all S species it is considered com-
plete, and no further attachment or detachment processes occur
(absorbing state). The yield of the assembly process is defined
as the number of complete structures relative to their maximum
possible number N.

In artificial self-assembly systems, the temporal supply of com-
ponents can usually be controlled externally. This offers effective
ways of regulating the assembly dynamics. To examine the poten-
tial of such supply-control strategies, we study two diametrically
opposed cases. In the first case, all building blocks are supplied
(activated) uniformly over a fixed time interval τ = 1/α at a
constant influx rate N α. By controlling α one can regulate the
concentrations of monomers and hence the effective dimeriza-
tion rate. In the second case, the different species are added

in a defined temporal sequence (Fig. 1), which allows one to
favor specific assembly pathways by altering the order of the time
points Ti at which a species i is added (supply order).

Besides the binding rate ν that fixes the timescale, we are
left with four control parameters, EB , µ,α, {Ti}, which define
different assembly scenarios (Fig. 1). In the reversible binding
scenario, kinetic traps are avoided by “designing” monomers with
an optimal binding energy EB and resulting detachment rates
δn . This strategy is considered as the state of the art in DNA-
brick–based self-assembly (21–24) but it also plays an important
role in biology, for instance for virus capsid assembly (25). In
the dimerization scenario, the assembly process is controlled by
the dimerization rate µ. A nucleation barrier µ/ν < 1 can be
implemented for example by allosteric effects or with the help
of enzymes (assembly factors) and is known to play a central
role in many instances of biological self-assembly (26–29). In
the activation scenario, the assembly efficiency is controlled by
an overall influx rate α without discrimination between species.
Such a control of the availability of active monomers has been
suggested as a means to effectuate the self-assembly of some virus
capsids (26), as well as other cellular macromolecular structures
like the membrane attack complex (30). Finally, in the just-
in-sequence (JIS) scenario, the monomers are supplied just in
sequence with a favorably chosen assembly path by appropriate
design of the supply order {Ti}. We therefore expect that these
four key scenarios cover the underlying mechanisms of a large
class of biologically and experimentally relevant self-assembly
processes.

Time Complexity Analysis
For each of the four scenarios, we investigated the minimal time
required to achieve a target yield of 90% (denoted as Tmin

90 ). This
requires us to identify the optimal value of the respective control
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Fig. 2. Time complexity. (A–C) The minimal assembly time Tmin
90 in the four scenarios in dependence of the size S of the target structure as obtained from

stochastic simulations for different dimensionalities of the structures: (A) 1D, (B) 2D, and (C) 3D. The reactive timescale (Cν)−1 defines the basic timescale in
the system, which depends on the initial concentration C of monomers per species. Hence, the minimal assembly time is measured in units of (Cν)−1. Each
data point represents an average over several independent realizations of the stochastic simulation for the same (optimal) parameter value, determined
by a parameter sweep (SI Appendix, section 1). We find power-law dependencies of the minimal assembly time on the size of the target structure. The
corresponding time complexity exponents θsim resulting from the simulations are summarized in the tables in A–C together with their theoretic estimates
θth (which we derive in SI Appendix, section 3). We indicate the scenarios as rev, reversible binding; act, activation; jis, just-in-sequence; and dim, dimerization.

parameter that maximizes the time efficiency. We are interested
in the asymptotic dependence of Tmin

90 on the structure size S
for S ,N ≫ 1. In particular, while we have shown previously (31)
that for small copy numbers N, the activation scenario is strongly
influenced by stochastic effects, we here assume N to be large
enough so that stochastic effects can be considered irrelevant.

Maximal time efficiency can then be obtained by a proper
choice of the relative frequency of nucleation and growth events:
Initiation of new structures must be sufficiently retarded relative
to the growth of existing structures to avoid kinetic traps (“slow
nucleation principle”) (31–33). The larger the target structure is,
the smaller the ratio between the effective nucleation and growth
rate has to be to achieve a yield of 90%. However, too small
a nucleation rate severely limits the required assembly time on
the other hand. The various scenarios (with the exception of the
one-dimensional reversible-binding scenario, which constitutes a
special case) represent different mechanisms to control the ratio
between the nucleation and growth rate and therefore allow one
to tune it to an optimal value.

However, the effectiveness with which the ratio is controlled,
and thus the minimum assembly time that can be achieved, varies
greatly between the different strategies. In all cases, we find
numerically that both the optimal control parameter and the min-
imal assembly time exhibit power-law dependencies on the size
S of the target structure (Fig. 2). The corresponding exponents
are referred to as the control parameter exponent φ and the
(time) complexity exponent θ, respectively. Both exponents are
scenario specific and, moreover, depend on the dimensionality of
the assembled structure, as is discussed in detail below for each
scenario.

To derive analytical estimates for the exponents, we use that
the optimal ratio between nucleation and growth rate should
approximately scale inversely with the structure size,

number of nucleation events per time
number of attached monomers per time

∼ S−1 . [1]

A detailed mathematical evaluation of the scaling of the terms
on the left-hand side with the system parameters can be found in
SI Appendix, section 3. In the main text, we restrict ourselves to
a discussion of the phenomenology of our numerical results and
use heuristic scaling arguments.

Reversible-Binding Scenario. In the reversible-binding scenario,
the time complexity strongly depends on the dimensionality
of the structure. For one-dimensional structures, the rate of
monomer detachment is the same for all unfinished structures.
Hence, it is not possible to selectively disfavor nucleation of
new structures relative to the growth of existing structures
by varying the binding energy EB . In this respect, the one-
dimensional reversible-binding scenario constitutes a special
case among all scenarios, since it realizes a profoundly different
self-assembly mechanism. We find that structures are initially
formed in such an amount that the overall attachment and
detachment processes of the monomers balance out and the
concentration of monomers becomes stationary. Growth and
shrinkage of a structure then become approximately equally
likely and the cluster sizes evolve (approximately) diffusively,
with diffusion constant given by D = νm + δ, where m denotes
the stationary monomer concentration. Hence, varying the
detachment rate δ allows one to maximize the diffusive flux.
We show in SI Appendix, section 3 that the optimal detachment
rate and the resulting effective diffusion constant scale like
δopt ∼ D ∼ ν

µ (Cν)S−2. This implies that the assembly time for
one-dimensional structures scales like the diffusive timescale (to
diffusively transverse a distance S) Tmin

90 ∼ S2/D ∼ ν−2S 4 with
time complexity exponent θ = 4 , which agrees very well with the
results obtained from stochastic simulations (Fig. 2A).

In higher dimensions, large clusters are typically bound more
tightly and hence become energetically favored over clusters of
small size, as illustrated in Fig. 3A. This creates an effective
nucleation barrier, which allows one to strongly enhance the time
efficiency compared to the one-dimensional case. Essentially, the
monomer concentration is thereby much larger than in the one-
dimensional case, which enables nucleated structures to grow
quickly. However, to guarantee both high resource efficiency
(high yield) and time efficiency, the binding energy must be
fine-tuned to within few percent of its optimal value (Fig. 3B).
Larger binding energies imply a lower nucleation barrier and
lead to kinetic trapping, whereas lower binding energies pro-
gressively reduce the effective nucleation rate. By fine-tuning
of the binding energy EB , we obtain the time complexity ex-
ponents θ2D ∼ 1.19 and θ3D ∼ 0.75 , respectively, for the two-
dimensional (2D) and three-dimensional (3D) cases (Fig. 2 B
and C). Both exponents can also be estimated analytically from
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Fig. 3. Reversible-binding scenario. (A) In the reversible-binding scenario (if δ2 ≪ δ1), the cluster evolution typically proceeds via stable intermediate states
(in which all constituents form two or more bonds), whereas unstable intermediates are short lived. Hence, nucleation is disfavored relative to growth
because nucleation proceeds via two unstable intermediate states whereas attachment proceeds only via one. (B) Assembly time to achieve 50% yield (T50)
and 90% yield (T90) plotted against the binding energy EB for two-dimensional target structures of size S = 100 (with preexponential factor A = 1018Cν).
To achieve high yield with maximal time efficiency, EB must be fine-tuned to a narrow range (here ≈1.4%) around its optimal value. In Inset, the optimal
detachment rate δopt

1 exhibits a power-law dependence on the structure size with exponent characterized by the dimensionality of the structure. The control
parameter exponents φsim together with their theoretic estimates φth are summarized in the table.

Eq. 1 by deriving effective rates for nucleation and attachment
reactions (SI Appendix, section 3 and tables in Fig. 2 B and C).
Note that the binding energy EB is measured in units of kBT
and the detachment rate relative to the reaction rate (Cν).
Hence, the most feasible way to fine-tune the control parameter
in experiments will be to adapt either the temperature or the
monomer concentration C.

Dimerization Scenario. We then analyzed the remaining irre-
versible assembly scenarios, setting δn = 0. In the dimerization
scenario, decreasing the dimerization rate µ disfavors initiation
of new structures relative to the growth of existing structures.
Fig. 4A shows the corresponding transition from zero to perfect
final yield, with µ90 indicating the rate at which a final yield of
90% is achieved. We find that the optimal rate µopt that minimizes
the time required to achieve 90% yield is only slightly lower than
µ90 and, for linear structures, scales as µopt ∼ νS−2 (Fig. 4 A,
Inset). This dependence of µopt on S for linear structures can be
explained as follows: According to Eq. 1, when increasing the
structure size S, the ratio between nucleation (= dimerization)
and growth rate must be reduced to allow the structures to
grow to the larger size. However, to achieve the desired scaling,
µopt must scale quadratically with 1/S , because the number
of dimerization events per time increases with the number of
possible dimerization partners (∼S ) leading to an additional
factor of 1/S .

Since dimerization is the rate-limiting step, we expect that
the assembly time will predominantly be determined by the total
dimerization rate Tmin

90 ∼ (CµoptS)−1 ∼ (Cν)−1S . This estimate
correctly predicts the time complexity exponent θ = 1 for linear
structures (Fig. 2A). For target structures of higher dimension,
the effective growth rate of clusters is increased compared
to the one-dimensional case because structures grow radially.
This allows for a simple possibility to relate the exponents for
target structures of higher dimension to the one-dimensional
case by rescaling the binding rate ν: Note that the number of
possible binding partners of a globular structure with s particles
is proportional to its surface area and thus scales approximately
as s(d−1)/d , where d is the dimensionality of the structure. Thus,
defining an effective average binding rate νS ∼ νS (d−1)/d for
a target structure size S allows one to map higher-dimensional
growth processes to an effective one-dimensional process along
the radial coordinate. Replacing ν → νS therefore translates
the scaling laws for linear objects into approximate scaling laws
for higher-dimensional structures. This scaling idea for the

dimerization scenario accurately yields the control parameter
exponents for higher-dimensional structures (table in Fig. 4A)
and only slightly overestimates the time complexity exponents
in higher dimensions (Fig. 2 B and C). These deviations may be
attributed to the subleading contribution of the growth process
to the total assembly time, which becomes more pronounced
in higher dimensions. The dimerization scenario is the most
time-efficient scenario because reducing the dimerization rate
allows one to specifically control the effective nucleation speed
without simultaneously affecting the attachment rate. In contrast,
changing the binding energy in the reversible-binding scenario
at the same time reduces the effective attachment speed and
therefore renders this strategy less efficient.

Activation Scenario. In the activation scenario, nucleation is in-
hibited by controlling the concentration of available (or active)
monomers. Decreasing the influx rate α reduces the momentary
concentration of active monomers and therefore reduces the
effective dimerization rate. As in the dimerization scenario, this
leads to a transition from zero to perfect final yield (Fig. 4B).
The transition is not strictly monotonic but exhibits some small-
scale peaks, whose origin is not entirely clear. From the stochastic
simulations and scaling analysis (SI Appendix, section 3) we infer
for linear structures an optimal influx rate scaling as αopt ∼
ν
µ (Cν)S−3 (Fig. 4 B, Inset). The dependence of αopt on S can be
explained similarly to that for the dimerization scenario: When
increasing S, according to Eq. 1, the ratio between effective
nucleation and growth rate must be reduced, while the increase
of the total nucleation rate with increasing number of species
must be balanced. Together, this accounts for a factor of 1/S2

in αopt, analogous to the dimerization scenario. Additionally,
however, increasing S would enhance the total influx of particles
and thus the momentary concentration of monomers. This again
would increase the nucleation rate and needs to be balanced, thus
explaining the third factor of 1/S . The control parameter expo-
nents φ for higher-dimensional structures can again be derived
with our rescaling argument, ν → νS (d−1)/d , and are found to be
only slightly larger than those obtained from simulations (table in
Fig. 4B). As the monomers are activated over a time span 1/α, the
time complexity exponents are the reciprocals of the parameter
exponents (Fig. 2).

We expect that the exponents for the activation scenario
remain the same if other forms of monomer input are considered.
For example, monomers could (reversibly or irreversibly)
switch between an assembly inactive and active state. In
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value µopt or αopt that minimizes the time to achieve a yield of 90%. Insets show the dependence of the optimal parameter value on the structure size
for different dimensionality. The corresponding control parameter exponents φsim are summarized in the tables together with their theoretic estimates φth
(main text).

SI Appendix, section 4, we simulate the reversible case explicitly,
assuming that the switch is fast so that active and inactive
monomers are at equilibrium. This case might indeed be relevant
in virus capsid assembly (26) and it exhibits the same scaling as
the constant influx scenario (SI Appendix, Fig. S5C). Controlling
the switching rate between particle configurations (for example
with light) (34) could also be a feasible way to implement the
activation scenario experimentally.

Just-in-Sequence Scenario. In the irreversible assembly scenarios
discussed so far, all species are made available simultaneously.
Consequently, excess nucleation of structures can only be sup-
pressed by using a low dimerization or activation rate. In contrast,
the JIS scenario favors specific assembly paths by regulating the
order in which building blocks are supplied. The species supplied
first in this temporal sequence define the nuclei for subsequent
growth. Formation of other competing nuclei (dimers) during
the assembly process is suppressed by the sequential delivery
of building blocks, which ensures that mutual binding partners
are supplied successively. Binding of newly added monomers to
existing structures is therefore more likely than formation of new
dimers. The frequency of competing nucleation events can be
controlled by adjusting the interval ∆T between the equidistant
time points Ti at which subsequent “batches” of monomers are
provided. Longer time intervals increase the yield at the cost of
a lower time efficiency.

To minimize the total number of batches, we chose an “onion”
supply protocol, which allows structures to grow radially from the
inside out, like the skins of an onion (Fig. 5C). Furthermore, the
time efficiency can be enhanced by using increasing, nonstoichio-
metric concentrations for the monomers in successive batches
(Fig. 5B). Nonstoichiometric concentrations in a properly
chosen ratio (SI Appendix, section 1, Just-in-sequence scenario)
reduce competition for resources between growing structures
(Fig. 5A) and thereby greatly enhance the time efficiency, as
well as robustness to extrinsic noise in the particle numbers
supplied, especially for higher-dimensional structures (Fig. 5D
and E). Therefore, nonstoichiometric concentrations are the
key to successful implementation of the JIS strategy for higher-
dimensional structures. Since we assume equidistant time
intervals ∆T between subsequent batches, the total assembly
time is the product of ∆T (∼S ) and the total number of batches
(∼L ∼ S1/d ), yielding the complexity exponents θ = 1 + 1/d ,
as shown in Fig. 2. To demonstrate the broad experimental

applicability of the JIS supply strategy with a concrete example,
we discuss in detail in SI Appendix, section 5 how the JIS strategy
could efficiently be used to assemble artificial T = 1 capsids.
Artificial capsids have important potential technological and
medical applications (35–37) and the simulations show that
the JIS strategy might indeed be a feasible and efficient way
to assemble these structures.

Discussion
Fig. 2 shows the dependence of the minimal assembly time on
target structure size, together with the resulting time complex-
ity exponents for the different scenarios and dimensionalities.
All exponents decrease with increasing dimensionality of the
target structure and can even change their relative order. For
the dimerization, activation, and reversible-binding scenario, one
can show that the analysis is independent of the heterogene-
ity of the building blocks (SI Appendix, section 2). Remarkably,
the exponents are furthermore robust to various modifications
of the model such as heterogeneous binding rates, modified
boundary conditions, or altered definitions of the assembly time
(SI Appendix, section 4). Similarly, advanced protocols like an-
nealing or different forms of monomer input in the activation
scenario leave the exponents invariant. This invariance shows
that the time complexity analysis yields a reliable and robust
characterization of self-assembly processes. Furthermore, the
invariance of the parameter exponents allows for an optimal
control strategy to be identified in dependence of the size of the
target structure in each of the four scenarios.

The dimerization scenario turns out to be the most time-
efficient scenario in all dimensions. Controlling the dimerization
rate is efficient as it allows one to initiate just as many structures
as are needed, followed by a rapid growth phase if all particles
are readily available. For linear structures, the supply-control
strategies rank second and third, with coordinated supply in the
JIS scenario being more efficient than uncoordinated supply in
the activation scenario. Reversible binding is the least efficient
approach to assembling large linear structures, but it is efficient
for the assembly of higher-dimensional structures and then be-
comes competitive with the JIS scenario, slightly outperforming
it for large structure sizes.

The reason why reversible binding is inefficient for one-
dimensional structures is that for linear objects—in contrast
to higher-dimensional objects—nucleation cannot be slowed
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Fig. 5. JIS scenario. (A) In the JIS scenario, the different species are added sequentially; here, for illustration, they are in a linear sequence
(T1 < T2 < T3 < . . . ). Along the regular assembly paths, A1D (1D) or A2D (2D), additional dimers B can form, competing for resources with the regular
structures and thereby disrupting their growth. While for one-dimensional structures a disruption event prevents a structure A1D from further growth, in
higher dimensions both defective structures A2D and B continue to grow, thereby increasing competition for resources. (B) Competition for resources can be
alleviated by enhancing the amount of resources with each assembly step (nonstoichiometric concentrations; SI Appendix, section 1). For example, providing
the first species in concentration 0.9N and increasing linearly up to 1.1N for the last species strongly enhances assembly efficiency (D) and robustness (E).
(C) Parallel supply protocol illustrated for a 2D structure of size S = 25 causing the structures to grow radially in an “onion-skin”–like fashion. Roman
numbers indicate the order in which species are supplied. Species with identical numbers (“onion skins”) are supplied simultaneously in “batches.” (D) When
using nonstoichiometric concentrations, high yield can be achieved with a shorter time span ∆T between subsequent batches, exhibiting a smaller control
parameter exponent (Inset) compared to the case of stoichiometric concentrations. Simulations were performed for 3D structures with N = 104 to 105.
(E) External noise in the concentrations jeopardizes the yield when stoichiometric concentrations are used, whereas nonstoichiometric concentrations are
much more robust. Here, for each species we assumed a coefficient of variation CV = 0.1% with average particle numbers as in D.

down relative to growth by increasing the detachment rate. This
strong dependence of the efficiency on the dimensionality implies
that, generally, the morphology of the assembled structures
plays an important role for the reversible-binding scenario. For
example, assembling quasi-linear objects with two (or more)
layers of subunits instead of a one-layered linear object might
significantly increase the assembly efficiency. Identifying and
designing those morphologies that are particularly favorable and
assemble efficiently could therefore be an interesting direction
for future research.

In conclusion, our time-complexity analysis of self-assembly
describes lower bounds for the required assembly time as a
function of the target structure size. Furthermore, it provides
a robust description of how the parameters of the system must
be controlled to achieve optimal time and resource efficiency.
The analysis enables us to compare the efficiency of different
self-assembly scenarios. In computer science, the complexity of
a computational problem is defined as the complexity of the
fastest algorithm available to solve it (38). Among the assembly
scenarios discussed here, limiting the dimerization rate defines
the fastest assembly process and might thereby determine the
time complexity of self-assembly (of course, we cannot exclude
the possibility of even faster assembly strategies). Experimen-
tally, however, controlling the dimerization rate is difficult, as it
effectively requires building blocks that exhibit allosteric binding
effects. So far, experiments have typically resorted to rendering
binding reactions reversible (21–23, 25, 39, 40). Our analysis
shows that this common approach is time efficient for the assem-
bly of higher-dimensional structures. However, to be truly com-
petitive, fairly precise tuning of bond strengths, temperature, and
the concentration is required. Our analysis suggests that a supply-
control strategy like the JIS scenario is a promising alternative
that offers similar or better time efficiency using irreversible self-
assembly. As a significant advantage, this strategy does not rely
on sophisticated properties of the building blocks (like allosteric
effects or fine-tuned bond strengths) but only on temporal supply
control and hence on parameters that might be more amenable
to regulation and adaptation in experiments: In its simplest im-
plementation, the different species could just be added manually
to the system in the designated temporal sequence.

Compared to the current state-of-the-art approach via
reversible reactions, irreversible assembly schemes might thus
provide a complementary and more versatile strategy for
assembling complex structures, requiring control over relative
concentrations, rather than fine-tuning of the molecular details.
Importantly, the idea underlying the JIS scenario entails a
rather specific design principle for efficient irreversible assembly
protocols of complex nanostructures (“batches without mutual
binding partners”); we demonstrate in SI Appendix, section 5
how this principle is applied exemplarily for the assembly of
artificial T = 1 capsids. This design principle thereby provides
a clear path toward the experimental realization of the JIS
scenario, suggesting that the strategy will be broadly applicable
to the assembly of artificial structures.

An interesting question for future research concerns the
prospects for spatiotemporal supply control, i.e., controlling not
only the time interval but also the site at which monomers are
injected into a spatial system, for further enhancement of the
time efficiency. Moreover, it would be interesting to consider
the time complexity of assembly schemes like hierarchical self-
assembly (41–44), which include polymer–polymer interactions,
or assembly schemes in which interactions among the particles
allow for multiple self-assembly states. Finally, other potentially
important aspects of self-assembly include susceptibility to
errors in the case of reduced binding specificities or defective
particles, as well as robustness to stochastic effects for small copy
numbers. If particle numbers are large and nonspecific bonds
are sufficiently weak and reversible, we expect that these factors
will not considerably affect the assembly dynamics. Otherwise, it
might be instructive to test how the different assembly scenarios
are influenced by these factors and compare the robustness of
the various strategies in this respect.

Materials and Methods
This paper is accompanied by a detailed SI Appendix file, which discusses
the numerical and analytical methods that were used to simulate the four
scenarios and to determine their time complexity exponents. Specifically,
SI Appendix, section 1 shows the details of the numerical simulation and,
in particular, explains how the concentrations for the various species in the
just-in-sequence scenario were determined. SI Appendix, section 2 analyzes
the master equation and shows mathematically that the heterogeneity
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(distinguishability) of the building blocks is irrelevant for the dynamics in
the limit of large particle numbers. SI Appendix, section 3 is dedicated to
the mathematical scaling analysis and explains how the analytic estimates
for the time complexity and control parameter exponents are derived. Fur-
thermore, SI Appendix, section 4 demonstrates the robustness of the time
complexity exponents to various modifications of the model and variations
in the parameters. Finally, SI Appendix, section 5 illustrates how the just-in-
sequence supply strategy can be used in practice for the concrete example
of artificial T = 1 capsid assembly and thereby demonstrates the broad
applicability of the just-in-sequence scenario.

Data Availability. C++ code for simulations and data have been deposited
in GitHub (https://github.com/FloGat88/Self_Assembly.git) (45).
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Supporting Information Text37

In this Supporting Information (SI), we first discuss the numerical methods that were used in order38

to simulate the four scenarios and to determine their time complexity exponents. In particular, in39

the paragraph ‘Just-in-sequence scenario’, we show how the concentrations for the various species in40

the just-in-sequence scenario were determined. In the next section, we discuss the Master equation of41

the system and show that the heterogeneity (distinguishability) of the building blocks is irrelevant for42

the dynamics in the limit of large particle numbers. Subsequently, we derive analytic estimates for43

the time complexity and control parameter exponents using mathematical calculations and scaling44

arguments. These analytic estimates for the exponents are the basis for the ‘theoretical values’45

presented in the main text. Afterwards, we demonstrate that our results, in particular the time46

complexity and control parameter exponents, are robust to modifications of the model and variations47

in the parameters. Finally, in order to demonstrate the broad applicability of the just-in-sequence48

scenario, we show how the supply strategy can be used in practice for the concrete example of49

artificial T=1 capsid assembly.50

1. Numerical methods and implementation of the scenarios51

Simulation. Particle-based, stochastic simulations of the reaction kinetics of the system were per-52

formed using Gillespie’s algorithm (1). In the simulation, we store the numbers of active and inactive53

monomers of the various species in two separate linear arrays of length S. We only consider binding54

reactions of a species i with species i ± 1 in the one-dimensional case, additionally with i ± L in the55

two-dimensional case and additionally with i±L2 in the three-dimensional case, see Fig. 1. All other56

binding rates are assumed to be 0. In the one-dimensional case, periodic boundary conditions were57

implemented by allowing binding reactions also between species 1 and S. Hence, the final structures58

represent closed rings. In the higher dimensional cases, open boundaries were implemented by59

reducing the number of possible binding partners of the boundary species accordingly.60

When a complex is initiated from the dimerization reaction of two monomers, we reserve for the61

complex a boolean array of size S, which contains ones for the species that are contained in the62

complex and zeros for all other species. When additional species subsequently attach to (or detach63

from) the complex, the respective sites are set to one (zero) until the complex is complete and64

contains no more zeros. In this way, the simulation respects all possible configurations of clusters65

that can emerge. In order to speed up the simulation, we store for each species i an array which66

references all complexes to which species i can attach. The total attachment rate of species i is67

thereby given by the product of the rate ‹ with the number of active monomers of species i and the68

total number of binding sites in complexes that species i can bind to. Likewise, the total dimerization69

rate of species i is given by the product of the dimerization rate with the number of monomers70

of species i and the total number of monomers species i can bind to. Note that in summing the71

dimerization rates of individual species in order to calculate the total dimerization rate of all species,72

a factor of 1/2 has to be included in order to avoid double counting. Whenever a species dimerizes or73

attaches to a complex, its number of monomers is reduced by one unit and when a species detaches74

from a complex, its number is increased by one unit.75

In order to keep track of the detachment rates of the constituents of each complex, we associate76

with each complex additional arrays that store the indices of the constituents that detach, respectively,77

with rate ”1, ”2, ”3... . Depending on the chosen values for A and EB, however, typically some78

”n = Ae≠nEB become so small that they e�ectively do not influence the assembly dynamics and can79

therefore also be neglected in order to increase e�ciency. For example, rates can be set to zero if80
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the expected total number of events they will invoke during the simulated time span is much lower81

than 1. In any case, we assumed that constituents that have the maximum number of neighbors in82

a structure are always stable by setting ”2d to zero (where d is the dimensionality of the structure).83

This ensures that complete structures are always stable, which allows us to directly compare the84

various self-assembly strategies. Note that for one-dimensional structures, ”2d = 0 implies that the85

structures do not break up in the middle but only grow and shrink by adding/detaching single86

monomer units at the ends. This is a reasonable assumption because by allowing structures to also87

break up in the middle, the assembly process would be extremely ine�cient as larger structures88

would become increasingly more unstable. With the detachment events for a complex organized in89

the above-mentioned array structures, it is straight forward to calculate the total detachment rate90

for each complex and with it the total detachment rate for the system.91

This was a description of the basic structure of our simulation. Additional cross-references between92

the various data structures were implemented to enable e�cient updating of the respective rates93

and events after an event has happened. Optimizing the e�ciency of the simulation was necessary94

because, for example, the reversible binding scenario generally requires a large number of Gillespie95

steps (up to several billion per run for the large systems) due to the reversibility of binding reactions.96

With these optimizations, the simulation written in C++ was able to perform more than one million97

Gillespie steps per second on a 3.1 GHz CPU. The C++ code of the simulation is available online.98

The method of ‘homogenization’. We show in chapter 2 of this supplement, that in the case of99

periodic boundary conditions of the structures, the distinguishability (heterogeneity) of the species is100

irrelevant for the dynamics of the activation, dimerization and reversible binding scenario in the limit101

of large particle numbers. Therefore, these systems can also be simulated with only a single species102

that can occupy any site within a cluster (homogeneous system). The advantage of simulating a103

homogeneous rather than a heterogeneous system is that stochastic e�ects arising from fluctuations104

in the concentrations of the di�erent species are thereby suppressed (2). Hence, in order to observe105

deterministic behavior, a smaller total number of particles is required for homogeneous systems,106

increasing the e�ciency of simulations. We exploit this increase of e�ciency in our simulations of107

the activation scenario, where stochastic e�ects are particularly strong. In order to simulate the108

system as a homogeneous system while leaving the structure of the simulation and all data types109

unchanged, two simple steps can be performed:110

• Make monomer creation and annihilation act on all species simultaneously (i.e. if a monomer111

of one species is added or subtracted, add or subtract one for all other species as well),112

• rescale the influx rate – and dimerization rate µ by S≠1.113

The first step constrains all species to equal concentrations while the second rescales the rates as if114

there were only a single species. Computationally, however, it is more e�cient to count only the115

monomers of one species explicitly instead of acting on S species simultaneously.116

Note, in particular, that in this way complexes are still represented by the same data structure (i.e.117

arrays of length S filled with zeros and ones as described above) but any site can now be occupied118

by any monomer, irrespective of its species.119

In the case of periodic boundary conditions of the structures, the homogeneous system is shown120

in chapter 2 to behave exactly like the heterogeneous system in the limit of large N . Hence, for121

one-dimensional structures, which we implemented with periodic boundary conditions, this approach122

is exact. In the case of non-periodic boundary conditions, however, the ‘homogenized’ system is123

only an approximation to the heterogeneous dynamics because not all species are equivalent any124
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more due to the presence of the boundary. Nevertheless, Figure S2 shows that this approximation125

is indeed very accurate for higher dimensional structures by comparing the deterministic behavior126

for systems with small structure size S. The overall accuracy of the approximation in the case of127

non-periodic boundaries is consistent with the finding that the boundary conditions as such do not128

have a big impact on the assembly time (see Fig. S5). We refer to this method of approximating129

a heterogeneous system as a homogeneous system as ’method of homogenization�. We used this130

method in particular for the simulations of the activation scenario in order to reduce stochastic131

e�ects and thereby avoid the necessity of simulating huge numbers of particles for the heterogeneous132

systems.133

Note that, in order to investigate the system’s deterministic behavior, in principle, one could134

also formulate and solve the chemical rate equations (ordinary di�erential equations). However,135

this approach would require a characterization of all possible cluster configurations. In other136

words, each state of the boolean array which describes a possible cluster configuration must be137

represented by a separate di�erential equation (‘state-based’ approach). Due to the large number138

of possible configurations for higher dimensional structures, this is not feasible without further139

approximations. In contrast, ‘homogenization’ allows to stick with a particle-based description and140

hence is significantly more e�cient as it requires only the specification of a subset of all possible141

configurations (limited by the total number N of particles present in the system).142

In the following, we discuss the parameter settings and some particularities of the individual143

scenarios that are relevant for their simulation. In the subsequent section, we discuss the Master144

equations of the system and we show the equivalence between the heterogeneous and the homogeneous145

system for large particle numbers.146

Reversible binding scenario. For the reversible binding scenario, the parameters were set as follows:147

µ = ‹ = 1, – = Œ (i.e. all monomers are available right from the outset), Ti = 0 ’i and a variable148

binding energy per contact EB that fixes the detachment rates according to ”n = Ae≠nEB (Arrhenius’149

law). We fixed the pre-exponential factor at A = 1018C‹, which appears to be a realistic choice in150

the light of typical experimentally measured values for A (3, 4). However, we confirmed that the151

choice of the constant A does not qualitatively a�ect our results (in particular it does not a�ect the152

exponents) as long as A is large, and hence ”1 ∫ ”n>1. If A is small (for example A = 106C‹ or153

smaller), or when ”n values are chosen independently of one another, the minimal assembly time154

and the measured exponents can di�er slightly, as then ”2 is no longer negligible compared to ”1 (see155

Fig. S1).156

We simulated the reversible binding scenario with particle number N = 500. It is important that157

N is chosen large enough, because for small N the measured assembly time fluctuates very strongly158

between independent runs and the average assembly time increases with N . Only if N is large159

enough does the average assembly time (measured relative to the reactive timescale C‹ as in Fig. 2)160

converge and become independent of N . We verified that for N = 500 the remaining N -dependence161

is negligible. Alternatively, the method of homogenization described above can be used to reduce162

the role of fluctuations resulting from finite particle numbers and therefore allows the system to163

be simulated with fewer particles. In particular, the reversible binding scenario in one dimension164

can be simulated faster and more accurately in this way with a five-fold lower total particle number165

(Ntot = 100S).166

Generally, simulation of the reversible binding scenario is computationally much more expensive167

than that of the irreversible scenarios, since many more steps are generally needed owing to the168

fast detachment processes. Partly, a single run needed several billion Gillespie steps to complete. It169

is therefore useful to reduce the particle number in the simulations, as long as the results remain170
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accurate.171

We found that with N = 500, the standard deviation in the assembly time between di�erent runs172

is already rather small compared to the mean. Thus, averaging over a rather small number of173

independent runs (between 1 and 10) is usually su�cient. We generally found that self-averaging of174

the system by choosing a large particle number N is usually more e�ective than averaging over a175

large number of independent runs. The quality of the statistics can be controlled either with the176

help of the empirical standard deviation in the interesting observable (yield or assembly time) or177

visually by verifying that neighboring data points line up into smooth curves as in Fig. 3B.178

Dimerization scenario. For the dimerization scenario we used – = Œ, Ti = 0 ’i, ”n = 0 and179

a variable dimerization rate µ as well as N = 1000. The dimerization scenario can be simulated180

most e�ciently, because far fewer steps are needed due to the irreversibility of binding reactions.181

Furthermore, stochastic e�ects do not play an important role (2), so N can be chosen to be relatively182

small. Conversely, fluctuations in the assembly time between independent runs decrease with183

increasing N , allowing for greater accuracy in the determination of the exponents.184

Activation scenario. We defined the activation scenario by µ = ‹ = 1, Ti = 0 ’i, ”n = 0 and a185

variable influx rate –. Since the momentary concentration of active monomers is generally small186

for a low influx rate, the activation scenario is strongly a�ected by stochastic e�ects (see Ref.187

(2) for details). Furthermore, the magnitude of these stochastic e�ects strongly depends on the188

number of species, and hence on the size S of the target structure. Consequently, depending on189

S, a large number of particles N may be required to achieve a yield Ø 90% in the activation190

scenario. By “homogenizing” the system, i.e. treating species as indistinguishable and simulating a191

homogeneous system instead of a heterogeneous system as described above, the computational cost192

of the simulation can be drastically reduced using a much smaller total number of particles.193

In the case of one-dimensional structures, which were implemented with periodic boundary194

conditions, the homogenized simulation is exact, in the sense that it reproduces the same yield and195

assembly time as obtained for the heterogeneous system in the limit of large N . In the case of196

open boundaries of the structures which have been implemented for the higher dimensional cases,197

“homogenization” yields an accurate approximation (see Fig. S2). We exploited this method to198

simulate the activation scenario e�ciently with a total number of particles Ntot = 1000S, as in the199

dimerization scenario.200

Note that for two-dimensional structures in the activation scenario, apparently the approximation201

slightly underestimates the minimal assembly time (see Fig. S2). Hence, the time complexity202

exponent for heterogeneous 2D structures might in reality be even closer to its theoretic value than203

predicted by the approximation.204

Just-in-sequence scenario. For the JIS scenario, we set µ = ‹ = 1, – = Œ, ”n = 0 and control205

the time points Ti at which the di�erent species are supplied. Species with identical Ti define a ‘batch’.206

We only considered the case of equidistant intervals �T between successive batches. The supply207

protocol (see Fig. 5C) assigns the species to the batches and specifies the concentrations in which the208

species are supplied. In this work, we exclusively used the “onion-skin supply protocol” depicted in209

Fig. 5C, where structures grow radially from the center outwards. This protocol minimizes the total210

number of batches. As discussed in the main text, in the JIS scenario, choosing the concentrations211

of the species in specific, non-stoichiometric ratios is crucial in reducing competition for resources212

among the growing structures and enhancing the e�ciency of assembly. In order to compensate213

for the increasing number of clusters that form through excess dimerization events, the number of214
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resources supplied is increased with each batch. This comes at the price, insofar as the maximum215

yield is limited to a value less than 1 corresponding to the number of initial seeds. The desired216

e�ect is that each species can be provided in an amount that allows all the structures currently217

present in the system to grow, thus reducing competition for resources to a minimum. The most218

e�cient usage of resources is therefore achieved if all species are provided in the minimal amount so219

that all existing structures can grow. If a single species is provided in excess, additional nucleation220

events will be triggered and, consequently, all subsequent species must also be supplied in larger221

amounts in order to keep competition at a minimum. This would result in a lower resource- and time222

e�ciency. The optimal concentration of a species, which allows to achieve maximal time e�ciency,223

is therefore determined by the total number of structures formed during previous assembly steps224

that are capable of binding the species that has just been supplied. More precisely, for each species225

provided in the b
th batch, we supply a number226

Nb = (1 ≠ p)N + pSN
Zb

Ztot
[1]227

of monomers, where Z1 = 0 and Zi < Zj for i < j, see below. The first contribution, (1 ≠ p)N ,228

which is identical for all species, is the basal particle number, which defines the maximum number229

of complete structures that can be built. The second contribution is the excess concentration, which230

provides additional resources for the growing total number ≥ Zb of complexes that have already231

formed through excess dimerization events. Here, pSN with p < 1 is the total amount of resources232

that is distributed unevenly among the species, and Zb/Ztot is the fraction of that amount assigned233

to the individual species supplied in the bth batch. The normalization factor Ztot := qS
i=1 Zb(i), with234

b(i) denoting the batch number of species i, sums the Zb over all species, and thereby fixes the235

average particle number N per species: N = 1
S

qS
i=1 Nb(i) = (1 ≠ p) N + pN = N . The basal fraction236

of resources (1 ≠ p) determines the maximum yield, and hence should be at least 0.9 to meet our237

criterion for the assembly time. We found that p = 0.07 minimizes the assembly time T90 and,238

therefore, we used this value in the simulations.239

The success of the JIS strategy crucially depends on the choice of the numbers Zb. Optimally, in240

order to minimize competition and achieve maximal time e�ciency, the excess concentrations Zb241

should reflect the number of the excess complexes relevant for a species supplied in the bth batch (see242

Fig. S3). Approximately, the number of previous excess dimerization events will be proportional to243

the total number of species supplied previous to the bth batch, i.e. provided by the batches 1 to244

b ≠ 1. Since in the onion-skin protocol, species with batch number less than b form a d-dimensional245

volume (see Fig. 5C), for large b we obtain approximately: Zb ≥ bd. Correcting this count for small246

b (see Fig. S3) we can further improve the e�ciency by setting:247

Zb ≥

Y
]

[
0 if b = 1

(b + 1)d if b > 1
[2]248

for two- and three- dimensional structures and Zb ≥ (b ≠ 1) in the 1D case. It might be possible to249

improve the e�ciency further by assigning particle numbers Ns individually for each species, rather250

than identically for all species in the same batch. However, we already achieve very good results251

with this choice of Zb. On the other hand, with all species in a batch being supplied in identical252

particle numbers, those species could likewise be indistinguishable. In this way, a regular target253

structure could be designed with only two distinct species, which alternately assemble the “skins of254

the onion” (the “homogenized” version of the JIS scenario; also see the example on capsid assembly255
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in section 5 of this SI). Furthermore, note that, if the particle numbers Nb for the di�erent species256

are chosen appropriately on average, the system becomes robust to external noise up to a certain257

limit (see Fig. 5E and Fig. S7B).258

For reasons of computational e�ciency, we would like to simulate the system with a small (average)259

particle number N. Note, however, that the implementation of non-stoichiometric concentrations260

requires a minimum N due to the discreteness of particle numbers: In order to ensure that the right-261

hand side of Eq.(1) reasonably maps onto integer values for the numbers Nb, the factor pSN/Ztot262

that multiplies Zb should be of the order at least O(1). In order to find a rough condition for N , we263

therefore estimate the normalization factor Ztot:264

Ztot :=
Sÿ

i=1
Zb(i) =

bmaxÿ

b=1
m(b)Zb ¥

⁄ bmax

0
m(b)bddb , [3]265

where in the second step we change the sum over species to a sum over batches, with m(b) denoting266

the number of species in the bth batch (‘density of species’) and bmax = d
2L being the total number267

of batches (see Fig. 5C). Note that, in the onion-skin protocol, species with the same batch number268

lie on rhomboidal shapes around the center species. Furthermore, the densities are symmetric about269

bmax/2 (batches ii and iii have the same densities as v and vi, respectively, in the supply protocol270

depicted in Fig. 5C). Hence, we approximate the density of species by271

mb ≥

Y
]

[
abd≠1 b Æ

bmax
2

a(bmax ≠ b)d≠1 b > bmax
2 ,

[4]272

where the constant a is determined from the condition
s bmax

0 m (b) = S. Performing the calculation273

yields Ztot ≥ S2. Hence, in order to guarantee that the prescribed ratios of the particle numbers Nb274

can be met, the average particle number should be N & S
p .275

We used N = 104 in our simulations of the JIS scenario with non-stoichiometric concentrations,276

with p = 0.07 and a structure size S of maximally 103. By simulating individual runs with a larger277

particle number N = 105, we verified that the N -dependence of the assembly time is negligible for278

N Ø 104. The simulations of the JIS scenario with stoichiometric concentrations were performed279

with N = 105, because the larger time intervals �T led to very small momentary concentrations,280

and hence required a larger overall particle number to achieve N -independent assembly times.281

Determination of T min

90 and the optimal parameter. In order to determine the minimal assembly282

time for a specified scenario and target structure, we first varied the respective control parameter283

roughly to find an estimate for its optimal value that minimizes the assembly time in the simulation.284

Afterwards, we sampled the parameter range around the estimated parameter value thoroughly by285

varying the control parameter in equidistant increments of approximately 2-4 percent precision. For286

each parameter value, the assembly time was averaged over several independent runs (50-100 for287

the irreversible scenarios and 5-50 for the reversible binding scenario). The minimal assembly time288

T min
90 was then determined as the minimum of the averaged assembly times, and the corresponding289

parameter value was chosen as the optimal parameter value. If the minimum of the assembly times290

was attained at the boundary of the sampled parameter range, we increased the range in the direction291

of the respective boundary and simulated additional parameter values. We repeatedly increased the292

range (or modified the parameter estimate) until we found a minimum that was attained somewhere293

in the middle of the sampled range to ensure that the global minimum has been identified.294
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2. Master equation and the irrelevance of the heterogeneity of the system295

Here we show the moment equations resulting from the stochastic Master equation that describe the296

assembly kinetics for one-dimensional structures. The higher dimensional cases are conceptually297

similar to the one-dimensional case but do not allow for a simple representation of all possible cluster298

configurations. Therefore, we restrict ourselves to illustrating the mathematical framework only299

for the 1D case. The moment equations are subsequently used to show that for structures with300

periodic boundaries, the heterogeneity (distinguishability of species) is irrelevant in the limit of large301

N . This is the basis of our ‘method of homogenization’, which exploits the equivalence between302

heterogeneous and homogeneous systems in order to increase the e�ciency of the simulations.303

For one-dimensional structures, each possible kind of polymer can be characterized by two variables:304

the length ¸ of the polymer, and the monomer species s at its right end which will be referred to305

as the species of the polymer. We denote by ns
¸(t) with 2 Æ ¸ < L and 1 Æ s Æ S the number of306

polymers of size ¸ and species s in the system at time t. Furthermore, ns
0 and ns

1 denote the number307

of inactive (not yet added) and active monomers of species s, respectively, and nL the number of308

complete structures.309

The subsequent set of equations can then be interpreted in two di�erent ways: Either all terms
with a species index (upper index) outside the range 1 Æ s Æ S are considered as zero or species
indices are taken modulo S. The first case describes the self-assembly of structures with an open,
non-periodic boundary. In contrast, the second case describes the assembly process of a periodic
structure, i.e. a ring in this 1D case (the case considered in the main text). We show in section 4
of this SI that the choice of the boundary condition only has a small e�ect on the assembly time
and, in particular, does not a�ect the control parameter and time complexity exponents. By È...Í
we indicate (ensemble) averages. The system governing the evolution of the first moments (the
averages) of the {ns

¸} is then given by:

d

dt
Èns

0Í = ≠– �(t ≠ Ts)È�(ns
0)Í , [5a]

d

dt
Èns

1Í = – �(t ≠ Ts) È�(ns
0)Í ≠ µ

1
Èns

1n
s+1
1 Í + Èns

1n
s≠1
1 Í

2

≠ ‹
L≠1ÿ

¸=2

1
Èns

1n
s+¸
¸ Í + Èns

1n
s≠1
¸ Í

2
+ ”

L≠1ÿ

¸=2

1
Èns+¸≠1

¸ Í + Èns
¸Í

2
,

[5b]

d

dt
Èns

2Í = µ Èns≠1
1 ns

1Í ≠ ‹
1
Èns≠2

1 ns
2Í + Èns

2 ns+1
1 Í

2
+ ”

1
Èns

3Í + Èns+1
3 Í ≠ 2Èns

2Í
2

, [5c]

d

dt
Èns

¸Í = ‹
1
Èns≠¸+1

1 ns
¸≠1Í + Èns≠1

¸≠1 ns
1Í ≠ Èns≠¸

1 ns
¸Í ≠ Èns

¸ ns+1
1 Í

2

+ ”
1
Èns

¸+1Í + Èns+1
¸+1Í

2
1{¸ÆL≠2} ≠ 2”Èns

¸Í , 3 Æ ¸ < L ,
[5d]

d

dt
ÈnLÍ = ‹

Lÿ

s=1

Ë
Èns≠L+1

1 ns
L≠1Í + Èns≠1

L≠1 ns
1Í

È
. [5e]

Eq. (5a) and the first term in Eq. (5b) describe the influx of monomers of species s into the system310

starting at time Ts with a constant rate – until all inactive monomers have been added (which, on311

average, will be at time Ts + 1
–). Here, � denotes the Heaviside function. Besides the influx of312

monomers, the temporal change in the number of active monomers (Eq. (5b)) is governed by the313

following processes: dimerization of monomers at rate µ, binding of monomers to the left and to the314

right end of existing polymers at rate ‹ and detachment of monomers from the left and right end of315

polymers with rate ”.316
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Equations (5c) and (5d) describe the dynamics of dimers and larger polymers of size 3 Æ ¸ < L,317

respectively. The terms account for dimerization of active monomers as well as all possible kinds of318

reactions of polymers with monomers, together with detachment of monomers from polymers. The319

indicator function 1{¸ÆL≠2} in Eq. (5d) (which equals 1 if the condition ¸ Æ L ≠ 2 is satisfied and 0320

otherwise) excludes source terms that would account for detachment from completed structures,321

which are assumed to be stable. Finally, the complete structures form an absorbing state and,322

therefore, include only the respective gain terms (cf. Eq (5e)).323

For su�ciently large particle numbers N , correlations between the particle numbers {ns
¸} in324

Eq. (5) can be neglected and the two-point correlator can be approximated as the product of the325

corresponding mean values (mean-field approximation):326

Èns
i n

k
j Í = Èns

i ÍÈn
k
j Í ’s, k [6]327

Note that, in the case of periodic boundary conditions and if Ti = Tj ’i, j, all species are equivalent.328

Mathematically, this is reflected by the invariance of Eq. (5) with respect to relabelling the upper329

indices if Ti = Tj. This symmetry of the system allows us to drop the distinction by species and to330

define the homogeneous concentrations331

Èns
¸Í = Ènk

¸ Í := c¸ V ’s, k, [7]332

where V is the reaction volume. Setting Ti = Tj = 0 and rescaling the rate constants µ and ‹ by
a factor of V , Eq. (5) thereby reduces to a set of rate equations for a homogeneous (one species)
system in the deterministic limit N æ Œ:

d

dt
c0 = ≠– �(c0) , [8a]

d

dt
c1 = – �(c0) ≠ 2µc2

1 ≠ 2‹
L≠1ÿ

¸=2
c¸c1 + 2”

L≠1ÿ

¸=2
c¸ , [8b]

d

dt
c2 = µ c2

1 ≠ 2‹ c1c2 + 2” (c3 ≠ c2) , [8c]

d

dt
c¸ = 2‹ (c1c¸≠1 ≠ c1c¸) + 2” c¸+11{¸ÆL≠2} ≠ 2”c¸ , 3 Æ ¸ < L , [8d]

d

dt
cL = ‹ c1cL≠1 . [8e]

Note that, in transforming Eq. (5e), we had to multiply by a factor of L≠1 because the complete rings333

on the left hand side of Eq. (5e) are not distinguished into species. Therefore, in the deterministic334

limit, the heterogeneous system decouples into S independent homogeneous assembly processes for335

the S di�erent species. This means that, in the case of periodic boundary conditions and if the336

particle number N is large, the heterogeneity (distinguishability of species) is irrelevant; also see ref.337

(2) for more details. This holds true for the activation, dimerization and reversible binding scenario338

where Ti = Tj.339

The equivalence of species no longer holds exactly in the absence of periodic boundary conditions340

because then the species at the boundary of the structure violate the symmetry. However, the341

symmetry still holds approximately and the heterogeneous system can well be approximated by342

a corresponding homogeneous system for large N as described in the previous section. Figure S2343

shows that in the case of non-periodic boundaries, this approximation is still quite accurate by344

comparing the deterministic behavior for systems with small structure size S.345
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This result shows that our time complexity analysis of the activation, dimerization and reversible346

binding scenario does not depend on the heterogeneity of the system and therefore applies to a broad347

range of natural and artificial self-assembling systems. Furthermore, the (approximate) deterministic348

equivalence between heterogeneous and homogeneous systems can be exploited in order to speed349

up the simulations: While heterogeneous systems may be strongly a�ected by stochastic e�ects350

arising from fluctuations in the concentrations of the di�erent species (for example in the activation351

scenario), homogeneous systems suppress these stochastic e�ects (2). Hence, in order to observe352

deterministic behavior, a smaller total number of particles is required for homogeneous systems,353

increasing the e�ciency of simulations. We exploit this behavior in our ‘method of homogenization’354

as described in the previous section.355
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3. Scaling theory356

In this section, we provide a mathematical scaling analysis in order to derive the characteristic357

exponents for the four scenarios analytically, supporting our numerical findings. We first discuss the358

reversible binding scenario for one-dimensional structures, followed by a unified approach to the359

irreversible scenarios as well as the reversible binding scenario for higher dimensional structures.360

Note that only the one-dimensional reversible binding scenario is fully reversible, while in the higher361

dimensional cases one can identify quasi-stable intermediate assembly products that form irreversibly.362

Exploiting the (stepwise) irreversibility of the assembly kinetics allows to analyze reversible binding363

for higher dimensional structures together with the irreversible scenarios in a unified approach,364

whereas reversible binding in one dimension needs to be analyzed separately.365

Reversible binding for 1D structures366

To mathematically analyze the scaling behavior of the one-dimensional reversible binding scenario,367

we need to identify the optimal value of the detachment rate ” := ”1 that minimizes the time taken368

to achieve a yield of 90%, depending on the size of the target structure. Since generally several369

unfinished structures exist at the same time and thereby compete for resources when growing, an370

exact analysis requires knowledge of the full temporal evolution of the polymer size distribution,371

which is very hard to obtain. Therefore, we will make two simplifying assumptions to obtain the372

scaling behavior: First, we employ a quasi-stationarity assumption, ˆtm = 0, for the monomer373

concentration. While this may seem to be a rather drastic postulate, the idea is rather intuitive:374

During the assembly process, structures grow by consumption of monomers and, vice versa, the375

number of monomers increases due to their detachment from structures. As a result, in the limit of376

large structure sizes where many attachment and detachment events occur before any structure is377

completed, the concentration of monomers adjusts itself over time in such a way that attachment378

and detachment roughly balance and the monomer concentration is constant. As we will show379

more explicitly below, in this case the polymer size distribution corresponds to a random walk on a380

one-dimensional lattice with constant hopping rates. To proceed, we then make a second, important381

assumption: We postulate that the scaling of the time to obtain a yield of 90% is the same as382

the scaling of the mean first-passage time of the approximate random walk to reach the absorbing383

boundary at x = S (complete structure). This amounts to assuming that growth of structures is384

the time-limiting step and that the corresponding timescale does not change considerably over the385

course of the assembly process, e.g. the times to obtain 50 or 90% yield scale similarly with the386

structure size. With these assumptions, we identify the time complexity exponent to be 4 and the387

control parameter exponent to be -2, as we will outline in more detail in the following.388

In the reversible binding scenario, we have Ts = 0 ’s and – æ Œ. With the reaction rate ‹,
the dimerization rate µ and the detachment rate ”, the deterministic equations for the temporal
evolution of the concentrations are (see Eqs. (5) for the general case):

ˆtm = ≠2µm2
≠ 2‹m

S≠1ÿ

j=2
cj + 2”

S≠2ÿ

j=2
cj

ˆtc2 = µm2
≠ 2‹mc2 ≠ ”c2 + 2”c3

ˆtci = 2‹m(ci≠1 ≠ ci) ≠ 2”(ci ≠ ci+1) i = 3, . . . , S ≠ 2 [9]
ˆtcS≠1 = 2‹m(cS≠2 ≠ cS≠1) ≠ 2”cS≠1

ˆtcS = 2‹mcS≠1
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where m is the number of monomers per species and ci the number of i-mers. Defining K = qS≠1
j=2 cj

to be the number of unfinished complexes, the temporal evolution for the monomers is given by

ˆtm = ≠2µm2
≠ 2(‹m ≠ ”)K.

In the quasi-stationary limit, ˆtm = 0, the evolution of the polymer-size distribution ˆtci can389

be identified with a random walk on a one-dimensional lattice with constant hopping rates 2‹m390

to the right and 2” to the left, corresponding to monomer attachment and monomer detachment,391

respectively (see also the deterministic analogue in Eq. (9)). Since completed structures are stable,392

the right end at i = S is absorbing, implying that cS = 0 or, in the continuum limit, c(l = S) = 0.393

Furthermore, we assume that all particles are provided at t = 0 at the left end l = 0�. The394

last two points imply that the polymer concentration c(t, l) decreases over time. As a measure395

for the quasi-stationary properties of the system, we therefore consider the temporally integrated396

concentration I(l) =
s Œ

0 dt c(t, l).397

In the continuum limit, Eq. (9) becomes ˆtc(t, l) = ≠2(‹m ≠ ”)ˆlc(t, l) + (‹m + ”)ˆ2
l c(t, l). Using

that c(t æ Œ, l) = 0’l and c(0, l) = 0’l > 0, the integrated concentration satisfies vˆlI(l) = Dˆ2
l I(l)

where

v = 2(‹m ≠ ”)

is the drift coe�cient and

D = ‹m + ”

is the di�usion constant of the random walk. Its solution is given by

I(l) = C(1 ≠ ev(l≠S)/D)

where C is an integration constant that is related to the number of injected particles. It will, however,398

not be relevant for the calculation of the first-passage time.399

We will use the integrated concentration to calculate the time-averaged mean size of unfinished
polymers. This quantity is helpful to determine the number of monomers self-consistently as
conservation of particles requires m + qS

j=2 jcj = N . Before yield sets in this can be rewritten as
m + qS≠1

j=2 jcj = N . Furthermore, the sum can be expressed in terms of the average polymer size
of unfinished polymers ÈjÍ as qS≠1

j=2 jcj = ÈjÍ
qS≠1

j=2 cj = ÈjÍK. In the continuum limit, we find the
following self-consistency equations:

N = m + ÈlÍK [10]

ÈlÍ =
s S

0 dl lI(l)
s S

0 dl I(l)
= ≠

D

v
+ S2v

2(Sv + D(≠1 + e≠Sv/D)) . [11]

From the quasi-stationarity condition ˆtm = 0, we furthermore find

m2 + µ

µ
mK ≠

”

µ
K = 0. [12]

Taken together, we have three conditions (10), (11) and (12) to determine three unknown variables
m, K and ÈlÍ self-consistently (for fixed ”). Furthermore, we have another unknown, the optimal

�
Since we are interested in the limit of large S, we approximate S ≠ 2 ¥ S and, thus, do not distinguish whether particles are injected at l = 0, l = 1 or l = 2.

Florian M. Gartner, Isabella R. Graf and Erwin Frey 13 of 33



monomer detachment rate ”opt. So, we need another equation, namely by minimizing the first-passage
time. The mean first-passage time for the above random walk is given by

ÈT Í = L

v
≠

D

v2 (1 ≠ e≠vL/D). [13]

What is left to do is to determine m, K, ÈlÍ and ”opt self-consistently from (10), (11) and (12) and400

from minimizing the mean first-passage time (13).401

As a first step, we use condition (12) to write ” = ‹m + µm2

K . Correspondingly, we find

D = 2‹m + µ
m2

K

v = ≠2µ
m2

K

for the drift and di�usion constant in terms of m and K. Using condition (11) together with the
particle conservation condition (10) and with the mean-first passage time (13), we end up with the
two defining equations for m and K:

N = m + ‹

µ

K2

m
+ K

2 + S2K

2(S + ( ‹
µ

K
m + 1

2)(1 ≠ e
Sm

‹
µ K+ m

2 ))

ÈT Í = ≠
K

2µm2 (S + (‹

µ

K

m
+ 1

2)(1 ≠ e
Sm

‹
µ K+ m

2 )).

To make progress, we make a last approximation, namely that m π K. This assumption is justified
a posteriori and leads to

N = ‹

µ

K2

m
+ S2K

2(L + ‹
µ

K
m(1 ≠ eS µm

‹K ))

ÈT Í = ≠
K

2µm2 (S + ‹

µ

K

m
(1 ≠ eS µm

‹K ))

or, in slightly rewritten form,

(S µm
‹K )2

2(1 ≠
µmN
‹K2 )

= eS µm
‹K ≠ 1 ≠ S

µm

‹K
[14]

ÈT Í = S2K2

4µm( ‹
µK2 ≠ Nm) . [15]

Intriguingly, the first condition (14) is recast in terms of two dimensionless variables a = Sµm
‹K and

b = Nµm
‹K2 as

ea
≠ 1 ≠ a = 1

2(1 ≠ b)a2 [16]

whose possible solutions are independent of all other parameters of the system and, in particular,
independent of S. Furthermore, the average first-passage time then becomes

ÈT Í = µ

‹2
S4

4N

b

a2(1 ≠ b) . [17]
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In order to minimize ÈT Í, thus, the term b/(a2(1 ≠ b)) has to be minimized under the constraint
(16). This minimization procedure is entirely independent of S and we conclude that the average
first-passage time scales as

ÈT Í ≥
µS4

4‹2N
. [18]

Similarly, m and K behave as

m = ‹

µ

N

S2
a2

opt

bopt
≥

‹N

µS2

K = N

S

aopt

bopt
≥

N

S
.

From these scaling functions, we can finally determine the scaling of ”opt from (12):

”opt = ‹2

µ
(m + m2

K
) = ‹2

µ
( N

S2
a2

opt

bopt
+ N

S3
a3

opt

bopt
) ≥

‹2

µ

N

S2 ,

where we neglected the higher-order scaling ≥
N
S3 . This yields the parameter exponent „ = ≠2.402

As a last step, we can actually determine aopt and bopt numerically from minimizing b/(a2(1 ≠ b))
under the constraint (16). This procedure yields

aopt ¥ 2.687
bopt ¥ 0.672

and plugging in these values into the formulas for ÈT Í and ”opt we get:

ÈT Í ¥ 0.07 µS4

‹2N
[19]

”opt ¥
‹2

µ
(10.74 N

S2 + 28.87 N

S3 ) ¥ 10.74‹2

µ

N

S2 . [20]

Combining the scaling behavior of m and ”opt, we find that the drift coe�cient D vanishes to lowest403

order and the polymer size distribution behaves as a purely di�usive process. Intriguingly, this is404

true not only in the optimal case but follows more generally from the quasi-stationarity assumption:405

the system self-organizes into a di�usion process without drift where growth of structures and406

detachment of monomers balance. The optimal parameter choice thus corresponds to maximizing407

the di�usive flux through the system.408

Universal approach to the irreversible scenarios and reversible binding for409

2D/3D structures410

For the irreversible scenario as well as the reversible binding scenario in higher dimensions, one411

can use a unified scaling approach by demanding a specified ratio between the total nucleation412

and attachment rate. For reversible binding in higher dimensions, this approach works as well413

because during their growth processes, clusters pass through stable intermediate stats whose decay414

rate is negligible against their growth rate. Hence, transitions between these stable intermediates415

can e�ectively be considered as irreversible. Consequently, the reversible binding scenario for416
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higher dimensional structures is fundamentally di�erent from the reversible binding scenario for417

one-dimensional structures, whose dynamics was described by a random walk. After we introduce418

the general ansatz, we will first use it to derive the parameter and time complexity scaling for the419

irreversible scenarios and afterwards for the higher-dimensional reversible binding scenario.420

It is possible to derive simple scaling relations for the time e�ciency, because the simulations show421

that in the irreversible scenarios, the respective control parameter is optimal (achieving a minimal422

T90 assembly time) close to where the final yield is approximately 90% (see main text Fig. 4A,B).423

This is plausible because in all scenarios the control parameter defines the rate limiting time scale424

and hence the parameter is optimal close to where the desired yield is barely reached. Therefore,425

the scaling of the optimal parameter can be determined by identifying a scaling relation that fixes426

a constant final yield. In order for the final yield to be independent of the size S of the target427

structure, the ratio between the total nucleation and total attachment rate must scale inversely with428

S. To put it simply: if the size of the target structure is doubled, in order to achieve a constant429

yield, there need to be twice as many growth events relative to the same number of initiation events.430

total number of nucleation events per time
total number of attached monomers per time := µtot

‹tot

!
≥

1
S

. [21]431

(By the exclamation mark we indicate that we demand the relation to hold in order to guarantee432

a constant yield.) This formula provides the starting point of our argument. In the following433

paragraphs we identify the total nucleation rate µtot and total attachment rate ‹tot for the three434

irreversible scenarios as well as for the reversible binding scenario in higher dimensions.435

Dimerization scenario436

In the dimerization scenario, we focus on one-dimensional structures only. The higher dimensional437

cases are related to the one-dimensional case via rescaling of the reaction rate ‹ æ ‹S(d≠1)/d as438

explained in the main text.439

The total nucleation rate depends quadratically on the momentary concentration of active440

monomers m per species and linearly on S (number of possible dimerization partners).441

µtot = µm2S [22]442

The total attachment rate is given by the product of the total concentration of complexes K in the443

system and the concentration of monomers per species.444

‹tot = ‹Km [23]445

Note that the total concentration of complexes K will scale with C = N
V (which sets the scale for all446

concentrations in the system) but can be assumed to be independent of S as we demand a constant447

yield (note that a constant yield implies a constant fraction of complexes K/C). Therefore,448

µtot
‹tot

≥
µSm

‹C
!

≥
1
S

, [24]449

in order to obtain a constant yield. In the dimerization scenario, all particles are active from the450

outset, hence m ≥ C and therefore, µopt
≥

‹
S2 . Because dimerization is the time-limiting process in451

the dimerization scenario, this implies for the minimal assembly time452

T min
90 ≥

C

µopt
tot

≥
1

SCµopt ≥
S

C‹
. [25]453
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So, the argument reproduces the control parameter exponent „ = ≠2 and the time complexity454

exponent ◊ = 1 for the dimerization scenario for one-dimensional structures. By rescaling ‹ æ455

‹S(d≠1)/d the respective parameter- and time complexity exponents for the higher dimensional cases456

are obtained.457

Activation scenario458

In the activation scenario, we focus again on one-dimensional structures and obtain the scaling459

laws for higher dimensional structures by our rescaling argument. In contrast to the dimerization460

scenario, in the activation scenario the monomers are not active right from the outset. Instead, there461

is a constant influx of monomers that balances a steady consumption of monomers due to binding.462

Hence, the stationary concentration m of active monomers is determined from the condition that463

the total influx of monomers equals their consumption due to binding:464

total influx rate of monomers = total consumption of monomers due to binding. [26]465

With the total influx rate of monomers given by –CS, this translates into466

–CS = ‹tot ≥ ‹Km, [27]467

where we neglected the consumption of monomers due to dimerization, because for large S dimer-468

ization is negligible compared to attachment (compare Eq. (21)). Demanding a constant yield,469

we can again assume K ≥ C (constant yield implies a constant fraction of complexes K/C), and470

hence, m ≥ S –
‹ . The total nucleation and attachment rate are again given by Eqs. (22) and (23),471

respectively, and therefore Eq. (24) applies identically, yielding472

–opt
≥

‹2C

µ

1
S3 . [28]473

Furthermore, because the influx rate limits the assembly time,474

T min
90 ≥

1
–opt ≥

µ

C‹2 S3 , [29]475

confirming the control parameter exponent „ = ≠3 and time complexity exponent ◊ = 3 for the476

one-dimensional activation scenario, as well as a quadratic dependence on ‹ that is relevant for the477

rescaling procedure: Replacing ‹ æ ‹S(d≠1)/d, the respective exponents for the higher dimensional478

cases are obtained in the usual way. Note that Eqs. (28) and (29) were derived for a general479

dimerization rate µ, although the activation scenario was originally defined with µ = ‹. Performing480

the argument with a general µ is, however, crucial in order to obtain the correct quadratic dependence481

on ‹ to execute the rescaling argument. This is important because the dimensionality a�ects the482

typical growth rate of clusters but has no e�ect on the rate at which clusters nucleate. Therefore, µ483

and ‹ must be distinguished in order to correctly perform the rescaling to higher dimensionality.484

JIS scenario485

In the JIS scenario the di�erent species are provided sequentially in consecutive batches. In order to486

estimate the total nucleation and attachment rate in Eq. (21), we calculate the total number of487

nucleation and binding events per species in a single assembly step. The number of nucleation events488

will crucially be determined by the number of active monomers that are still unbound when the489
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next batch is supplied: Since the subsequent batch is supplied when most monomers of the previous490

batch have already bound, the remaining monomers encounter many partners to form dimers while491

there are only few remaining binding sites in the clusters. Therefore, the remaining monomers will492

dimerize to the largest extent. In order to estimate the total dimerization rate per assembly step,493

we therefore need to estimate the concentration of remaining monomers in relation to �T . We do494

this in the following by considering the dynamics of the concentration of monomers of an arbitrary495

species in the sequence.496

Let m denote the concentration of monomers of a species i and k the concentration of structures497

(binding sites) to which species i can attach. We assume that at time t = 0, species i is supplied498

in initial concentration m(0) = M ¥ C. Each binding event involving species i reduces both the499

concentration of binding sites k and the concentration of monomers m by one unit. Therefore,500

u := m ≠ k = const is a constant which denotes the excess concentration (i.e. the amount by501

which the total number of monomers M exceeds the number of binding sites k(0) := K). Indeed, u502

corresponds to the increase in concentration from one batch to the next if species are provided in503

non-stoichiometric concentrations. For the dynamics of m it then follows that504

d

dt
m = ≠‹mk = ≠‹m2 + ‹um. [30]505

By solving the di�erential equation, we find the monomer concentration m at time t = �T :506

m(�T ) = 1
1
u +

1
1

M ≠
1
u

2
e≠u‹�T

¥
1

1
u +

1
1

M ≠
1
u

2
(1 ≠ u‹�T )

¥
1

‹�T
, [31]507

where in the second step we assumed �T ≥ 1/(M‹) π 1/(u‹) (because u π M) and in the last508

step we again used 1/M π 1/u. Note that according to Eqs. (1) and (2), the excess concentration509

will be of order u ≥ (Nb+1 ≠ Nb) ≥ pCS≠1/d, with p ¥ 0.1, and hence can be assumed to be small510

compared to C and the initial monomer concentration: u π M .511

The total number of dimerization events during one assembly step can now be estimated as the512

concentration of monomers of species i that are still unbound at time �T when the next binding513

partner, species i + 1, is supplied (in concentration ¥ M). More specifically, the total number of514

dimerization events per assembly step is ≥ m(�T )M ≥ µtot, while the total number of attachment515

events per assembly step is ≥ KM ≥ ‹tot where K := k(0) ≥ C. Therefore, with Eq. (21),516

µtot
‹tot

≥
1

‹C�T
!

≥
1
S

. [32]517

and thus,518

�T opt
≥

S

C‹
, [33]519

yielding the control parameter exponent „ = 1. In order to obtain the total assembly time, �T must520

be multiplied by the total number of batches, which is bmax ≥ S1/d in the case of the ‘onion-skin’521

supply protocol (see Fig. 5C). Therefore,522

T min
90 ≥ �T opt S1/d

≥
S1+ 1

d

C‹
, [34]523

yielding the time complexity exponent ◊ = 1 + 1
d , where d is the dimensionality.524
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Reversible binding for 2D and 3D structures525

For the reversible binding scenario in two and three dimensions we can use the same approach as for526

the irreversible scenarios, starting from Eq. (21). The key insight is that during the assembly process527

stable intermediate assembly products form that decay only with rate ”2 π ”1 or ”3 n ”1 and hence528

are considered as long-lived on the relevant timescale. In contrast, intermediate states that decay529

with rate ”1 are highly unstable and decay quickly as ”1 is typically large compared to the reactive530

timescale C‹ in the reversible binding scenario. Figure S4 shows how the resulting total nucleation531

rate µtot (µtot here denotes the total nucleation rather than dimerization rate) and total attachment532

rate ‹tot can be estimated. Here nucleation is an e�ective four-particle reaction that proceeds via533

two unstable intermediate states. If the detachment rate ”1 is large, the e�ective per capita rate for534

the four-particle reaction can be approximated as µ‹2/”2
1 and the total nucleation rate is given by535

µtot ≥
µ‹2

”2
1

m4S (the factor S accounts for the fact that there are S possible combinations of species536

that can form a nucleus). Attachment typically proceeds in two steps. The first step, analogous to537

the nucleation process, can be approximated as an e�ective two-particle reaction passing through an538

unstable intermediate state (see Figure S4). The e�ective total rate for the first step is therefore539

≥
‹2

”2
1
Km2S

d≠1
d , where K is the total concentration of complexes and the factor S

d≠1
d estimates the540

number of possible binding sites for the first monomer (surface area of an average cluster). Once a541

new stable state has formed, a cascade of subsequent stable states can be traversed by attachment542

of additional monomers. Because in this second step the complex only passes through stable states,543

the second step can be assumed to be fast compared to the first step. We estimate the average544

number of monomers attaching in the second step to scale again proportionally to the cluster surface545

≥ S
d≠1

d . This yields an additional stoichiometric factor to be accounted for in the total attachment546

rate, resulting in ‹tot ≥
‹2

”1
Km2S(2≠ 2

d ). With Eq. (21), it follows that547

µtot
‹tot

≥
µC

”1
S( 2

d ≠1) !
≥

1
S

, [35]548

and, therefore,549

”opt
1 ≥ µCS

2
d , [36]550

with a control parameter exponent „ = 2
d . Since nucleation is the slowest step, we expect the551

minimal assembly time to scale approximately as the timescale of nucleation:552

T min
90 ≥

C

µtot
≥

C

µ
1

‹
”opt

1

22
m4S

≥
µ

‹(C‹)S
4
d ≠1 , [37]553

yielding a time complexity exponent ◊ = 4
d ≠ 1. Although the theoretical estimates for the exponents554

in the reversible binding scenario in higher dimensions do not coincide perfectly with the simulated555

values (compare main text Fig. 2B,C and Fig. 3B), their tendency and the dependence on the556

dimensionality of the structure are correctly predicted and explained. We suspect that the main557

reason for the deviations is a slight actual dependence of the average monomer concentration m on558

S, which has been neglected in this scaling argument.559

In conclusion, note that for all four scenarios, the scaling exponents for one-dimensional structures560

could be derived exactly from our scaling analysis. In contrast, for higher dimensional structures,561

the theoretical estimates generally do not fit the simulated values exactly. This may have various562

reasons like, for example, deviations from the presumed e�ective growth rate ‹S ≥ ‹S
d≠1

d that we563

used to rescale the exponent for the dimerization and activation scenario.564
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Furthermore, note that in the scaling argument applied to the reversible binding scenario in565

higher dimensions we used some specificities of the structure, most importantly, the number of566

unstable intermediate states in the processes of nucleation and attachment. This suggests that the567

exponents and the time e�ciency of the reversible binding scenario are not fully generic but depend568

on the shape of the structure and the constituents. In contrast, the scaling arguments for the other569

scenarios are fully generic, so we do not expect a significant dependence of the time e�ciency on570

specificities of the structure in the irreversible scenarios.571
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4. Robustness to model modifications572

To verify that our time complexity analysis is robust to model modifications, we investigated three573

variants of the original model and the assembly kinetics. Figure S5 shows the minimal assembly574

time for these variants in all four scenarios. The results of the analysis are discussed in the following.575

Structures with periodic boundaries. First we simulated the minimal assembly time for structures576

with periodic boundaries. While in the main text we only considered higher dimensional structures577

with an open boundary, some typical examples of self-assembling systems comprise the formation of578

closed structures with periodic boundaries, for instance, two-dimensional shells and capsids such579

as, for example, virus capsids (5, 6). To assess the relevance of the boundary, we simulated the580

minimal assembly time for two-dimensional periodic structures or tori. In all scenarios we measured581

almost the same time complexity exponent as in the original model. Only in the reversible binding582

scenario the exponent appears to be slightly larger. In the activation, dimerization and reversible583

binding scenario, the time e�ciency increases as a consequence of the modified boundary condition584

since a closed boundary e�ectively enhances the possibility of a cluster to grow, thereby increasing585

the e�ective binding rate. In the JIS scenario, the time e�ciency slightly decreases because the586

species at the boundary induce an increased excess dimerization rate compared to the case with587

non-periodic boundary. Also note that, in the JIS scenario, we simulated periodic structures only588

with an even edge length L, since for odd L it would have been necessary to modify the supply589

order of our protocol in order to make sure that species supplied in the same batch do not bind each590

other. Moreover, we increased the excess concentrations Zn (see Eqs. (1) and (2)) of the species591

at the boundary by a factor of 2 or 4, respectively, to achieve optimal e�ciency for the modified592

boundaries.593

Heterogeneous binding rates. Next, we investigated the impact of heterogeneous binding rates on594

the assembly time. Considering a heterogeneous system, the assumption of identical binding rates for595

all species is an idealization. More realistically, the rates will vary to a certain extent. We therefore596

simulated the system with heterogeneous rates for the di�erent species, drawn independently from a597

(truncated) normal distribution with a coe�cient of variation of 50%. We truncated the normal598

distribution for values that are below 20% of the mean in order to guarantee that individual rates do599

not become negative or very small. For each run the binding rates were chosen independently and the600

assembly times were averaged over 10-100 independent runs. We did not perform the simulations for601

the activation scenario since the simulation of the activation scenario is based on the homogeneous602

approximation and the results would thus not be reliable for heterogeneous rates of the species.603

In the other scenarios, the measured time complexity exponents are almost identical to those of604

the original model with homogeneous rates. Only in the dimerization scenario the time complexity605

exponent seems somewhat smaller, probably because heterogeneity in the rates influences the typical606

shapes in which clusters grow. In all cases, the time e�ciency was reduced as a consequence of607

heterogeneous rates because small rates influence the overall e�ective timescale more significantly608

than the large rates.609

Reduced resource efficiency. Finally, we altered the definition of the assembly time and explored610

its e�ect on the time complexity. In the main text we chose 90% yield as termination criterion611

for the assembly process. Here, we asked whether the exponents are invariant if a lower resource612

e�ciency of only 50% yield is demanded. In all scenarios, the minimal time T min
50 required to achieve613

50% yield is significantly smaller than T min
90 . With the exception of the activation scenario, however,614

the corresponding time complexity exponents are indistinguishable from those determined for T min
90 .615
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For the activation scenario, the exponent appeared to be a bit larger, very close to the theoretical616

value �th = 2. We relate this slight discrepancy between the two exponents to the fact that the617

yield transition curves in the activation scenario (compare main text Fig. 4B) become steeper if S is618

increased. This indicates that the real asymptotic exponent for the activation scenario lies between619

the exponents measured for T min
50 and T min

90 . Note that, among the four scenarios, the time e�ciency620

of the reversible binding scenario increases the most if lower resource e�ciency is demanded.621

Annealing (reversible binding scenario). The reversible binding scenario is controlled by the ratio622

between the detachment rate and the growth rate, given by the product of the binding rate ‹ and the623

concentration of monomers (see main text, paragraph reversible binding scenario). However, when624

more and more particles get attached during the assembly process, the concentration of monomers -625

if not replenished - gradually decreases. Consequently, the controlling parameter increases during626

the assembly process. In order to counteract this e�ect, a frequently used experimental approach627

consists in ‘annealing’ the system by decreasing the temperature (7). Typically, one starts at high628

temperature and gradually cools the system down to room temperature. Since the detachment629

rate decreases with decreasing temperature, ” ≥ e≠EB/(kBT ), if applied optimally, annealing allows630

to keep the ratio between detachment rate and growth rate constant during the assembly process.631

Here we ask how the time e�ciency in the reversible binding scenario behaves under an optimal632

annealing protocol. To this end, we assume that the temperature adapts instantaneously to the633

momentary concentration of monomers such that the ratio between detachment rate and monomer634

concentration remains constant throughout the simulation. By varying this fixed ratio we determine635

the minimal assembly time T min
90 as in the main text. Indeed we find that the assembly e�ciency636

can be significantly increased with an optimal annealing protocol, however, the time complexity637

exponent remains invariant (see Figure S5A, star marker).638

Alternate input functions (activation scenario). For the activation scenario in the main text we639

assumed a constant influx of active monomers until all inactive monomers are depleted. Hence, the640

input as a function of time has a rectangular shape. A natural question that arises is whether the641

e�cacy of the activation scenario can be altered by changing the temporal form of the input. To642

answer this question we simulated various di�erent input functions which correspond to di�erent643

biophysical processes providing the active monomers. Here we discuss one particular example for644

such a di�ering form of the temporal input which plays an important role in biology (8). Specifically,645

we assume that activation of monomers is no longer irreversible but, instead, monomers can switch646

back and forth between an assembly-active and inactive configuration (reversible activation cycle).647

Furthermore, we assume that this switching dynamics is fast compared to the assembly time scale648

and hence can be considered to be at equilibrium. The control parameter is the equilibrium constant649

K, which describes the ratio between the concentrations of active and inactive monomers. By650

measuring the minimal assembly time in the usual way, we find that the activation scenario becomes651

slightly more e�cient through the reversible activation cycle but that the time complexity exponent652

remains invariant (see Fig. S5C, star marker).653

Theoretically, the input can be described by any arbitrary function that integrates to the total654

particle number N . Note that input via fast reversible activation has a special significance because655

through equilibration it allows the net influx rate to dynamically adopt to the current state of the656

assembling system (fast binding of active monomers æ fast net influx, and vice versa). We also657

tested some other input functions and observed that it generally seems to be favourable for the time658

e�ciency if the input is higher at the beginning of the assembly process and lower towards the end.659

The measured time complexity exponents however remained invariant for all tested input functions.660
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This leads us to hypothesise that the time complexity exponent cannot be altered by the form the661

monomer input as long as all species are treated indi�erently.662

In conclusion, we tested how robust our results are with respect to modifications of the model,663

a�ecting the boundary of the structures, heterogeneities in the rates or the demanded resource664

e�ciency. Furthermore, we investigated di�ering experimental protocols like annealing or variable665

input functions for the activation scenario. We found that while the assembly time does indeed666

depend on details of the model and the assembly protocol, the time complexity exponents - apart667

from minor deviations - remain invariant to such variations. Furthermore, the general trend in668

response to a particular model variation is typically the same in the di�erent scenarios (an exception669

is the modification of the boundary condition in the JIS scenario). This confirms that the general670

conclusions in the main text on the time e�ciency of the di�erent scenarios and their relative671

ranking remain largely valid if details of the system are changed. On a broader perspective, this672

shows that the time complexity analysis yields a reliable, robust and informative characterization673

of self-assembly processes and the distinction of the four scenarios, characterized by di�erent time674

complexity exponents, is meaningful and useful.675
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5. Experimental JIS supply protocol for the assembly of an artificial T=1 capsid676

In this last chapter we aim to demonstrate the applicability of the just-in-sequence supply strategy677

for actual experimental problems of interest by proposing a specific supply protocol for the assembly678

of an artificial T = 1 capsid.679

Artificial shells and capsids have important potential biotechnological applications ranging from680

the compartmentalization of chemical reactions to the usage as vesicles that enable pinpoint delivery681

of drugs or other material to specific loci within an organism (9, 10). Other applications intend to682

use artificial shells with an aperture in order to trap virus particles inside and thereby prevent them683

from interacting with the host cells (11). The hope is that in this way a broadly applicable antiviral684

platform can be created that can be utilized to combat a broad range of viral infections. Due to685

these promising applications, we illustrate the usage of the Jis strategy for the asssembly of artificial686

capsids.687

The simplest icosahedral capsid is the T = 1 capsid (classification by Caspar and Klug (12)),688

which is assembled from 60 proteins. In the following, we discuss two possibilities to assemble689

artificial T=1 capsids irreversibly with high yield solely by regulating the supply of constituents.690

These strategies thereby avoid the necessity of fine-tuning the binding strengths or other molecular691

properties. The first possibility assumes a partly homogeneous design of the capsid (see Fig. S6A),692

while the second possibility relies on a fully heterogeneous design (Fig. S6C) of the structure.693

In principle, the T = 1 capsid can be build fully homogeneously out of 60 identical units. However,694

in order to use the just-in-sequence supply strategy as described in the main text, some degree of695

heterogeneity is necessary: constituents that are provided in the same batch should not be able to696

bind each other but only to the existing structures. We therefore propose the partly heterogeneous697

design depicted in Fig. S6A, which exploits the symmetry of the target structure. Components that698

are indicated by the same letter are identical and bind specifically only with those species that are699

adjacent to them.700

Designing structures as homogeneously as possible has three practical advantages. First, a lower701

number of di�erent components needs to be produced and counted, which reduces the experimental702

e�ort. Second, self-assembly is faster if a single type of constituent can bind to several distinct sites703

in the structure and finally, as we discuss below, the absolute tolerance to external noise in particle704

numbers increases if structures are more homogeneous.705

Note, however, that for the assembly of spherical objects like the T=1 capsid, a di�culty arises706

concerning the upper and the lower ”cap“, denoted here by A and L, respectively: If the caps are707

composed of several copies of a single species, these copies would be able to form homo-multimers708

when they are supplied, thereby undermining the JIS strategy. This challenge can be circumvented709

either by designing the caps heterogeneously or by making the respective bonds between the cap-710

species weak and reversible, thereby preventing spurious nucleation. Another possibility is to produce711

the caps A and L separately and supply them as single, complete units. In the following, for the712

assembly of the partly homogeneous capsid, we further discuss the second possibility, considering713

the caps A and L as single units.714

Figures S6B and D show possible supply protocols for the assembly of the partly homogeneous715

and the heterogeneous T=1 capsid, respectively. Both of these protocols were found by maximizing716

the yield in the simulation. The second column in the tables indicates the species that are supplied717

in the respective batch, while the third column shows the numbers Zb that describe the excess718

concentrations supplied for the species in the respective batch, see Eqs. (1) and (2). The total719

number Nb of particles for each species supplied in the bth batch (fourth column) is given by (compare720
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Eq. (2))721

Nb = deg ·

3
(1 ≠ p)N + pSN

Zb

Ztot

4
, [38]722

where deg is the degeneracy of the species, denoting the number of distinct binding positions per723

structure for this species in the respective assembly step. For the partly homogeneous capsid, the724

degeneracy is deg = 5 for all species except for the caps which are provided as complete units with725

degeneracy deg = 1. It is likely that the e�ciency of the supply strategy can be further improved726

by allowing the pairs of species C and D, F and G, as well as I and J, which are supplied in the727

same batches, to be assigned di�erent particle numbers. For simplicity, however, in this example we728

assign particle numbers only in correspondence to the batch number.729

Figure S7A shows the yield plotted against the interval �T between successive batches both for730

the partly homogeneous and the heterogeneous T = 1 capsid. Black circles indicate the position731

of the optimal interval �Topt that minimizes the time required to achieve 90% yield. The partly732

homogeneous capsids can be assembled in shorter time (provided that the same number of structures733

is assembled) because the binding speed is larger roughly by a factor of 5 compared to the fully734

heterogeneous T = 1 capsid.735

In applications, particle numbers can only be determined with limited accuracy. Hence, it is an736

essential question how robust this approach is to extrinsic noise in the particle numbers. In order737

to test the robustness to extrinsic noise we choose particle numbers randomly from a Gaussian738

distribution and quantify the noise level in terms of the coe�cient of variation (CV), defined as739

the standard deviation of the particle numbers relative to their respective mean. For simplicity, we740

assume that the CV is the same for all species. Figure S7B shows the yield plotted against the time741

interval �T for the partly homogeneous T = 1 capsid depending on the coe�cient of variation. The742

inset shows the maximum yield (achieved for su�ciently large �T ) plotted against the CV, both743

for the partly homogeneous and the heterogeneous design. As a rough estimate, for the two supply744

protocols discussed here, particle numbers would need to be chosen with an accuracy of about 1% in745

order to achieve high yield. For a fixed relative strength of noise compared to the mean (CV), the746

partly homogeneous capsid is slightly more robust than the heterogeneous structure. This implies747

that the absolute tolerable variability in the number of particles per species is larger by at least a748

factor of 5 for the partly homogenous capsid compared to the heterogeneous capsid.749

In conclusion, we found that both the partly homogeneously as well as the heterogeneously designed750

T = 1 capsid could be assembled e�ciently with an irreversible just-in-sequence supply strategy751

provided that particle numbers can be determined accurately enough. The supply protocols discussed752

here still leave space for improvement, for example, by assigning particle numbers individually for753

each species rather than only in correspondence to the batch number. Furthermore, the excess754

concentrations were chosen in order to guarantee maximal yield for �T æ Œ but have not been755

optimized for maximal robustness to external noise. Those improvements might allow to even further756

improve the e�ciency and robustness of the approach. Hence, provided that experimental methods757

for the accurate counting of molecules can be established, the JIS scenario o�ers a versatile strategy758

for the realization of biotechnologically relevant macromolecular structures. Our work therefore759

highlights how new experimental strategies to control concentrations could advance nanotechnology760

and its applications.761
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Supplementary Figures762
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Fig. S1. Reversible binding scenario: influence of the preexponential factor on the assembly time. A, assembly time T90 versus the binding energy EB for small

preexponential factor A = 106C‹ (marker: circle) for three-dimensional structures of size S = 125. For comparison, we also plotted the stepwise irreversible case (marker:

triangle) setting all detachment rates except for ”1 to 0. The stepwise irreversible case is equivalent to choosing A large (in the main text: A = 1018C‹) as in both cases only

”1 is effectively larger than 0 and all other detachment rates are negligible at close-to-optimal binding energies. Hence, a small preexponential factor A slightly decreases the

minimal assembly time (compared to large A) at the cost of a reduced variability in the binding energy (fine tuning of EB (or of the concentration C) becomes more critical with

small A). B, minimal assembly time T min

90 versus the structure size S for large (stepwise irreversible) and small (fully reversible) preexponential factor A. The minimal assembly

time that can be achieved as well as the time complexity exponent are slightly smaller for a small preexponential factor.
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Fig. S2. Accuracy of the homogeneous approximation in the activation scenario. Final yield (A) and assembly time T90 (B) versus the activation rate. Both quantities were

simulated for two-dimensional structures with and without periodic boundaries as well as with distinguishable (heterogeneous, blue drawn line) and indistinguishable particle

species (homogeneous approximation, red dashed line). For structures with periodic boundaries and large particle number N , the homogeneous and heterogeneous simulation

coincide exactly as predicted by the theory. For structures with non-periodic boundaries, the homogeneous system yields an accurate approximation of the heterogeneous

system, in particular if the target structure is small. For larger target structures in 2D, small deviations in the minimal assembly time are observed. For three-dimensional

structures, these deviation are extremely tiny even for large target structures. We exploited this equivalence to reduce the computational cost by simulating the activation

scenario as a homogeneous system with lower particle number. Generally, the heterogeneous system is subject to stochastic effects arising from fluctuations between

the concentrations of the different species, unless the particle number N is large (see (2)). The homogeneous system, in contrast, can be simulated with a much smaller

total number of particles. The observed deviations suggest that the approximation slightly underestimates the time complexity exponent for two-dimensional heterogeneous

structures by a few percent.

Florian M. Gartner, Isabella R. Graf and Erwin Frey 27 of 33



         

 

 

 

 

 

 

 

 

 

ix

viii

vii

vi

vi

vii

viii

ix

viii

vii

vi

vii

viii

vii

vi

vi

vii

vi

vi

vi

vi

vii

vi

vi

vii

viii

vii

vi

vi

vii

viii

ix

viii

vii

vi

vi

vii

viii

ix

v iv

v

v

iv

iii

iv

v

v

iv

iii

ii

iii

iv

v

v

iv

iii

ii

i

ii

iii

iv

v

v

iii

ii

iii

iv

v

v

iv

iii

iv

v

v

iv

v

v

ivvi

v

vii

iii

ii

iv

i

vi

iv

v

iv

iii

v

iv

iii

ii

vi

v

vii

Fig. S3. Assigning particle numbers in the Jis scenario. The just-in-sequence scenario requires specified ratios between particle numbers in order to avoid excessive

competition for resources (see Eq. (1)). Shown is the onion supply protocol (analogous to Fig. 5C) for a two-dimensional structure of size L=9 (S=81). Roman numbers

indicate the batch number (assembly step) in which species are supplied. The shaded square marks all species that can initiate a complex potentially able to bind the

species highlighted in red in the seventh assembly step. In order to minimize competition for resources, the species in the seventh batch must hence be supplied in excess

concentration Z7 proportional to the area of the square to allow all clusters present at the seventh assembly step to grow. Generalizing, we hence find the excess concentration

Zn ≥
!

(n+1)
2

"2
for a species supplied in the nth

batch (compare Eq. (2)).
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Fig. S4. Scaling analysis of the reversible binding scenario. In the reversible binding scenario, a stable nucleus forms by passing through two unstable intermediate states

that decay with rate ”1. Hence, the effective rate for the nucleation process is µeff ≥ ”2
1 . Attachment typically proceeds in two steps. In the first step, a monomer first binds

reversibly and must subsequently be stabilized by a second monomer. Because one unstable state is passed, the first step effectively happens at rate ‹eff

1 ≥ ”1
1 . Subsequently

to the first step, additional monomers can attach ‘filling the row‘, while the configuration is continuously stable. Therefore, the second step can be assumed to be fast compared

to the first step which, in turn, is fast compared to nucleation: µeff π ‹eff

1 π ‹eff

2 . By setting the total nucleation rate into relation with the total effective attachment rate as

detailed in section 3 of this SI, a rough estimate for the control parameter exponent and for the time complexity exponent can be derived.
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Fig. S5. Scaling of the minimal assembly time for variants of the model and assembly kinetics. The minimal time required to achieve 90% (T min

90 ) or 50% yield (T min

50 )

in the different scenarios (A, reversible binding; B, dimerization; C, activation and D, just-in-sequence scenario) is shown in dependence of the target structure size S for

two-dimensional structures and different variants of the original model. In each subpanel (scenario), the curve labeled T min

90 corresponds to the assembly time in the original

model. Furthermore, each subpanel shows T min

90 for 2D structures with periodic boundary (tori) as well as for variable or heterogeneous rates of the constituent species (not

available for the activation scenario), see section 4 of this SI. The curve labelled T min

50 shows the minimal assembly time for a lower resource efficiency of only 50% yield. While

the assembly time varies for the different model variants, the measured time complexity exponents are, aside from small deviations, largely invariant. This indicates that the time

complexity analysis of the self-assembly scenarios is robust and independent of many details of the model.
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batch
number

supplied 
species

excess 
conc. Zb

particle 
number Nb

1 A 0 0.9N
2 B 1 4.59N
3 C,D 2 4.69N
4 E 4 4.88N
5 F,G 5 4.97N

6 H 7 5.16N

7 I,J 10 5.45N

8 K 18 6.20N

9 L 40 1.66N

A B

batch
number

supplied 
species

excess 
conc. Zb

particle 
number Nb

1 A2 0 0.930N
2 A1, A3 1 0.932N
3 A4 3 0.935N
4 A5 4 0.937N
5 B 5 0.939N
6 C,D 10 0.948N
7 E 20 0.966N
8 F, G 25 0.975N
9 H 35 0.993N

10 I,J 50 1.02N
11 K 90 1.09N
12 L1 95 1.10N
13 L2, L5 130 1.16N
14 L4 170 1.24N
15 L3 200 1.29N
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Fig. S6. Capsid structure and supply protocols. A, Partly homogeneous design of the T=1 capsid consisting of 60 subunits and 12 different species. Species of subunits are

indicated by capital letters. It is assumed that each species binds specifically only with those species adjacent to it. Furthermore, we assume that the caps, each consisting of 5

subunits of A and L, respectively, are assembled separately and are supplied as complete single units. B, Just-in-sequence supply protocol that was simulated in order to

assemble the capsid with the structure defined in (A). Columns indicate the species that are supplied in a respective batch, their excess concentration and their resulting total

particle numbers assuming a fraction of unevenly distributed resources of p = 0.07 (cf. Eq. (38). Here, N is the number of complete structures to be built if the yield were

100%. C, Heterogeneous design of the T=1 capsid consisting of 60 subunits and 60 different species. Each species occupies a single specified position in the structure. D,

Just-in-sequence supply protocol for the heterogeneous structure described in (B). Letters without indices in the protocol represent all 5 corresponding species (for example

B = {B1, B2, B3, B4, B5}), which are supplied simultaneously. Note that for the heterogeneously designed capsid the caps are assembled from monomers as well.
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Fig. S7. Jis scenario for the T=1 capsid. A, Final yield plotted against the interval �T between subsequent batches both for the partly homogeneous and the heterogeneous

capsid (see Fig. S6). Black circles indicate the position of the optimal interval �Topt and the corresponding minimal assembly time T min

90 . Simulations were performed for a

maximal number of complete structures N = 104
and a fraction of resources that are distributed unevenly of p = 0.07 (cf. Eq. (38), which limits the yield to 93%. The partly

homogeneous structure can be assembled faster than the heterogeneous structure, mainly because the binding speed is larger by a factor of 5 in the partly homogeneous

capsid. B, Yield plotted against the interval �T for different levels of external noise in the particle numbers for the partly homogeneous capsid. For each species, the particle

number from the protocol was perturbed independently with a specified coefficient of variation (CV := Gaussian standard deviation / mean). Inset shows the maximal yield for

sufficiently large �T plotted against the coefficient of variation for the partly homogeneous and the heterogeneous structure. The fraction p of resources that were distributed

unevenly was chosen as follows: p = 0.07 for CVÆ0.5%, p = 0.15 for CV=1%, p = 0.2 for CV=2%, p = 0.3 for CV=3%, p = 0.36 for CV=4% and p = 0.5 for CV=5%.
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70 2. The time complexity of self-assembly



3 A conceptual model of the just-in-sequence
scenario

The goal of this chapter is to summarize our studies on the just-in-sequence scenario using
a conceptual model. We plan to publish these results in the near future but a draft for a
publication does not yet exist at the time of the original submission of this thesis.

3.1 Motivation

It was an essential finding of the last chapter and of our publication [2] that time e�cient
self-assembly can be achieved in heterogeneous systems by e↵ectively regulating the tempo-
ral supply of the constituents. This is an important finding because supply control is, in
principle, a simple strategy as it does not require fine-tuning of rate constants or rely on
other sophisticated binding properties. This makes this approach particularly interesting for
artificial self-assembling systems.
We called the scenario that implements such an e↵ective supply control strategy ‘just-in-
sequence’ scenario (Jis scenario). We described that in order to achieve e�cient self-assembly
with the Jis scenario for higher-dimensional target structures, it is essential that the species
are provided in specific, non-stoichiometric concentrations. The underlying reason is that for
two- and three-dimensional structures, an increasing number of complexes in the system con-
tinuously increases competition for resources. For one-dimensional target structures, on the
other hand, it is not necessary that species are provided in non-stoichiometric concentrations
because one-dimensional structures have a self-regulatory mechanism that keeps competition
for resources at a constant level.
In this chapter, we study a conceptual model of the just-in-sequence scenario, which quantifies
the underlying reason and the e↵ect of this self-regulatory mechanism for one-dimensional
structures and the di↵erence to the higher-dimensional systems. The insights gained from
this model will enable us to conceive three possible strategies to regulate competition in the
higher-dimensional cases. The first strategy tries to mimic the self-regulatory mechanism of
one-dimensional structures by selecting a very special assembly pathway. The second strategy
stipulates that a small fraction of complexes is removed from the system after each assembly
step in order to decrease competition among the remaining complexes. Complementarily, in
the last strategy, species are provided in increasing concentrations with each assembly step
in order to avoid competition. The e↵ects of these strategies on the assembly process can
easily be tested with the model. In particular, the model allows us to calculate the resulting
parameter- and time complexity exponents analytically. We find that providing the con-
stituents in increasing, non-stoichiometric concentrations leads to the lowest time complexity
exponent and hence promises to be the most e�cient implementation of the just-in-sequence
scenario for higher-dimensional structures.
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3.2 Model

The basic idea behind the Jis scenario is that the di↵erent species get activated in a sequence
and assemble in consecutive assembly steps. Optimally, all structures should get initiated
(dimerized) in the first assembly step and should only grow during the subsequent assembly
steps. Hence, in the subsequent assembly steps, binding to the existing structures must be
favoured and dimerization of additional complexes prohibited. There are two possible ways in
order to reduce the dimerization probability in the subsequent assembly steps. One possibility
consists in providing the di↵erent species in copy number of N particles at fixed, equidistant
time points i�T , as was assumed in the previous chapter:

dAi

dt
= N�(t� i�T ) , (3.1)

where Ai denotes the concentration of active monomers of species i. By increasing the interval
�T , a larger fraction of the monomers of species i will have bound before species i + 1 gets
activated. Consequently, the dimerization probability of species i with species i + 1 will be
reduced by increasing �T .
A di↵erent implementation of the Jis scenario stipulates that inactive monomers Ii of species
i get activated slowly with rate ↵ as soon as a fixed fraction (1�q) of the monomers of species
i� 1 has bound:

dAi

dt
= ↵Ii⇥(qN � (Ii +Ai)) , (3.2)

dIi

dt
= �↵Ii⇥(qN � (Ii +Ai)) , (3.3)

with initial condition Ai(0) = 0 and Ii(0) = N . We typically fix the fraction q below which
activation of the subsequent species starts as q = 0.1. Similar as in the activation scenario,
the dimerization probability is then controlled by the activation rate ↵: Reducing ↵ decreases
the momentary concentration of active monomers of species i and i+1 and therefore prevents
dimerization. This implementation of the Jis scenario will also play an important role in
chapter 7 of this thesis. It is motivated rather in a cellular than in an experimental context.
The idea is that via regulatory feedback, constituent species i inhibits activation of species
i + 1 and only if the concentration of species i drops below a threshold concentration, acti-
vation of species i + 1 can start. In order to verify our results in this chapter, we use this
second implementation of the Jis scenario.
In both implementations, however, the dimerization probability pd per assembly step is the
basic quantity that needs to be controlled in order to achieve e�cient self-assembly. Indeed,
it can be shown that, in both implementations, the time required for an individual assembly
step is inversely proportional to the dimerization probability1 [2, 143]. Hence, in order to
determine the time complexity exponent, it is enough to understand the dependence of the

1Precisely, for the first implementation, Eq. (31) in the Supplement of [2] shows that the concentration of
unbound monomers at time �T (which corresponds to the amount of monomers that will dimerize when the
subsequent species is supplied) is inversely proportional to �T : Ai(�T ) ⇠ �T �1. Hence, the dimerization
probability is inversely proportional to �T . Similarly, for the second implementation, Eq. (3) in [143]

states that the dimerization probability obeys pd = ↵
c⌫ ln

⇣
⌫

q↵

⌘
. Hence, by neglecting the logarithm and

since ↵ is inversely proportional to the time an individual assembly step takes, approximately, the assertion
pd ⇠ ↵ ⇠ �T �1 follows for this case as well.
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Figure 3.1 | Competition in the 1D and 2D Jis scenario. The illustration shows a snapshot
of the assembly dynamics at the 8th assembly step for one- (left) and two-dimensional structures
(right). In both cases, we assume that in the previous assembly step a monomer of species 6 has
formed a dimer with species 7, which, in turn, has led to a shortage in the supply of species 7 causing
a defect in one of the other complexes. In the one-dimensional case, due to the missing species 7,
the defective complex is unable to bind species 8 or any other species supplied subsequently. Hence,
this complex is latent defective (D̄). In contrast, in the two-dimensional case, the defective complex
can continue to grow (active defective (D⇤)). This increases the number of active complexes and
competition for resources: As there are more active complexes than supplied monomers in the 8th
step, the remaining complete complex (C) has to compete with the two defective complexes for the
resources to grow. In contrast, in the 1D case, the number of active complexes remains constant
and there is no increased competition for resources in subsequent steps. The defect exclusion factor

a measures the tendency of a complex to become either latent or active defective upon su↵ering a
defect.

yield on pd. This reduction facilitates a simplified description of the Jis scenario, which we
will introduce next.

In the simplified model for the Jis scenario, we distinguish three states of complexes, C(s),
D

⇤(s), D̄(s), which denote, respectively, the concentrations of complete-, active defective-
and latent defective complexes at the s

th assembly step. A complex is called complete if it
incorporates all species supplied up to the current assembly step. Otherwise, a complex is
active defective if at least one species j  s is missing but the complex can further grow in
subsequent assembly steps (see Fig. 3.1). If a complex has a defect that disrupts its growth,
it is called latent defective. Latent defective complexes are irrelevant for the subsequent as-
sembly dynamics because they can no longer bind monomers. By y := C + D

⇤ we denote
the total concentration of active complexes. All concentrations are measured in units of the
(average) initial concentration of monomers per species. At each assembly step, there is a flux
between these states: If a complete complex does not bind species s in the s

th assembly step,
it becomes either active defective or latent defective, depending on whether a defect excludes
the complex from further growth, see Fig. 3.1. Similarly, an active defective complex with a
certain probability becomes latent defective if it misses a species in an assembly step. The
defect exclusion factor a quantifies the probability with which a defect disrupts the growth of
a complex (excludes it from further growing). The parameter a depends on the dimensionality
of the structure and can be a↵ected by the supply sequence (see below). For one-dimensional
structures, a defect always leads to exclusion and hence a = 1 in the 1D case (see Fig. 3.1).
For higher-dimensional structures, in contrast, a defect usually does not exclude a complex
from further growth, yielding a < 1 or typically even a = 0.
The probability � = �(s) for a complex to miss species s in the s

th assembly step is given
by the shortage of the supply, y(s) + pd(s)� r(s), divided by the number of active complexes
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y(s), where r(s) denotes the amount of resources put in in the corresponding assembly step.
For example, suppose that there are y = 90 active complexes in the system and pd = 10
additional dimerization events occur during the assembly step but only r = 70 monomers are
provided. Then 30 complexes out of the 90 will miss a monomer in the assembly step and
hence, a fraction � = 30

90 = 1
3 of all complexes will get a defect.

On the other hand, spurious dimerization events create additional defective complexes. Unless
dimerization happens between species 1 and 2, these newly formed complexes will necessar-
ily be defective as they have no possibility to incorporate the previously supplied species.
Sometimes, however, a newly emerging dimer will also not be able to incorporate all species
supplied in subsequent assembly steps (see Fig. 3.3). Therefore, the dimer growth factor b

measures the extend to which a new dimer will be able to grow in subsequent steps. In other
words, it quantifies the fraction of all subsequent species that the dimer will principally be
able to incorporate. E↵ectively, this is taken into account by assigning only a fraction b of
newly emerging dimers to the active defective complexes and the remaining fraction 1� b to
latent defective complexes. For one-dimensional structures, we always have b = 1 while for
higher-dimensional structures b may be smaller than 1.

A diagram depicting the transitions between the three states of complexes together with the
corresponding transition probabilities is shown in Figure 3.2. The transition probabilities
describe the fluxes between these states at each assembly step. The system undergoes S

subsequent assembly steps, each of which is characterized by the same dynamics. Hence, we
can interpret the variable s as time and describe the whole process by an ordinary di↵erential
equation (ODE) in s. The resulting system of di↵erential equations is shown in the box in
Fig. 3.2. With the convention of measuring concentrations relative to the average initial
concentration of monomers per species, the final yield is then identical to the concentration
of complete complexes after the last assembly step: yield = C(s = S). We can use this
system of ODEs to describe di↵erent schemes and protocols for the Jis scenario. All relevant
characteristics of the structure and the assembly protocol are thereby combined into the
exclusion and growth factor a and b.
The model can also be used to describe ‘parallel’ assembly protocols in which individual
assembly steps are executed simultaneously (like the ‘onion’ protocol, see Fig. 3.3 and chapter
2). In this case, the assembly steps are treated by the model as if they were executed
sequentially and the e↵ect of parallelization is accounted for by appropriate choices of the
parameters a and b (this will become clear below when we apply this explicitly to the onion
protocol).

3.3 Results

We now use the simplified model in order to analyze di↵erent schemes of the Jis scenario and
to understand how these variations a↵ect the time complexity of the assembly process. First,
we investigate the assembly of one-dimensional and higher-dimensional target structures using
simple supply protocols. The insights gained from this analysis will enable us to bring forth
more sophisticated assembly schemes and protocols that will optimize the time e�ciency of
the assembly process. In order to predict the yield, it is enough to know the concentration C

of complete complexes at the end of the assembly process. Since the dynamics of C depends
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dC
ds

= � �C

dD*
ds
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dD̄
ds

= a�C + a�D*

�

Conceptual model of the just-in-sequence scenario 
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Figure 3.2 | Conceptual model of the just-in-sequence scenario. We describe the just-in-
sequence scenario by a set of equations governing the flow between three states of complexes: C,
complexes that are complete up to the current assembly step; D⇤, defective complexes that are able
to grow in subsequent assembly steps (active defective); and D̄, defective complexes that are unable
to grow in subsequent steps (latent defective); The flow between these states is determined by the
probability � for a complex to miss a species in an assembly step and the defect exclusion factor
a 2 [0, 1]. The defect exclusion factor measures the probability that a complex that has acquired a
defect will be able to grow in subsequent steps. Furthermore, pd denotes the dimerization probability
per assembly step, which creates a steady influx of defective complexes. The dimer growth factor
b 2 [0, 1] measures to which extent a newly emerging dimer will be able to grow in subsequent
assembly steps. The dynamic equations resulting from of the flows depicted in the diagram are
shown in the box. The variable s, which we interpret as time, quantifies the number of the assembly
step. The yield is then given by the concentration of complete complexes at s = S (all concentrations
are measured relative to the (average) concentration of particles supplied per species). Solving the
dynamic equations in the following allows us to easily calculate the parameter and time complexity
exponents for di↵erent schemes of the Jis scenario.

only on the concentration y of active complexes (see box in Fig. 3.2), the system can be
reduced to two coupled ODEs:

dy

ds
=

dC

ds
+

dD
⇤

ds
= bpd � a�(C +D

⇤) = bpd � a(y + pd � r) , (3.4)

dC

ds
= �y + pd � r

y
C , (3.5)

where r = r(s) is the amount of resources put in in the s
th assembly step. First, we assume

that all species are supplied in equal amounts, i.e. r = 1, and we apply the initial conditions
C(0) = y(0) = 1. We start by analyzing the assembly of one-dimensional target structures.
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3.3.1 One-dimensional target structures (a = 1, b = 1)

One-dimensional structures are characterized by a = b = 1, see Fig. 3.1. Hence, the dynamics
of y simplifies to

dy

ds
= 1� y . (3.6)

With the initial condition y(0) = 1, this has the solution y(s) = 1. Hence, for one-dimensional
structures, the concentration of active complexes remains constant throughout the assembly
process. Using this result in the equation for C gives

dC

ds
= �pdC , (3.7)

which, with C(0) = 1, is readily solved by C = e
�pds. Thus we obtain for the final yield

yield = C(s = S) = e
�pdS ⇡ (1� pd)

S
. (3.8)

This result for the yield is consistent with our result in [4] (see chapter 7). Solving the
equation for the dimerization probability yields

pd =
� log(yield)

S
. (3.9)

Therefore, in order to obtain a constant yield, the dimerization probability must scale in-
versely proportional with the structure size, pd ⇠ S

�1. Because the time that an individual
assembly step takes scales inversely with pd (see footnote above), the total assembly time for
S subsequent assembly steps scales as T ⇠ S

2. This yields a time complexity exponent of
✓ = 2 for the 1D Jis scenario, in accordance with [2] and [143]. The characteristic property
for one-dimensional structures is that, due to a = 1, the concentration of active complexes
remains constant throughout the assembly process and hence competition for resources does
not increase.

3.3.2 Higher-dimensional target structures (a = 0, b = const)

Next, we consider the assembly of two- and three-dimensional structures with the snake and
onion supply protocol, both of which are characterized by a = 0 and b = const (see Fig.
3.3). In this case, the dynamics of y (Eq. (3.4)) reduces to dy

ds = b pd, which has the solution
y(s) = 1+sbpd. Hence, because the growth exclusion factor is 0, any dimerization probability
larger than 0 will lead to a steady increase of the number of active complexes. Consequently,
it follows for the dynamics of C (Eq. (3.5)),

dC

ds
= �sbpd + pd

1 + sbpd
C , (3.10)

which is solved by separation of variables to give log(C) = �s� pd�1
bpd

log(1+ bpds), and hence
it follows for the yield,

log(yield) = �S � pd � 1

bpd
log(1 + bpdS) . (3.11)
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Figure 3.3 | Snake and onion protocol. A, B, supply sequences in the snake and onion protocol
for 2D structures are represented by roman numbers (numbers do not indicate the species but the
batch in which a species is supplied, also see previous chapter). In the snake protocol (A), the
species are supplied sequentially one at a time and the structure is assembled column-wise from
the left to the right. In the onion protocol (B), the structure is assembled radially from the inside
outward. Species that are indicated by the same roman number and marked by the same color
(forming the ‘skins of the onion’) are supplied simultaneously. Hence, a much lower total number
of batches is needed for the onion protocol compared to the snake protocol. C, D, Illustration of
the e↵ect of a defect (red shading) and dimerization (blue shading). In bright red, we mark the
species that are excluded from being incorporated into a structure as a consequence of a defect
(intense red shading) and the specific supply order. Similarly, in light blue, we mark all species that
can be incorporated by a newly formed dimer (intense blue). The defect exclusion factor a (dimer
growth factor b) can be interpreted as the average proportion of excluded species (species that can
be incorporated by the dimer) on the number of species yet to be supplied. Hence, the sizes of the
shaded regions (when averaged over all species) provide information about the exclusion and growth
factor. In the onion protocol, we find that only defects on the horizontal or vertical axis exclude
other species from being incorporated while in all other regions a defect has no further e↵ect. Since
the proportion of the two axes on the whole square vanishes in the limit S ! 1, we can set a = 0
in order to investigate the time complexity for large structures. Similarly, when calculating b in this
way we obtain a value between 1

4 and 3
8 .

We consider the limit S ! 1 and pd ! 0 assuming that pdS ! 0 (which we will verify a
posteriori). Expanding the logarithm on the right hand side to second order in pdS, we obtain

log(yield) = �S � (pd � 1)S +
1

2
(pd � 1)bpdS

2 +O(p2dS
3) ⇡ �1

2
bpdS

2 (3.12)

to leading order. Hence, it follows that in the limit of large S,

pd =
�2 log(yield)

bS2
, (3.13)
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and thus pd ⇠ S
�2. This confirms our above assumption pdS ! 0. Because the snake

protocol requires ⇠ S batches and the onion protocol ⇠ S
1
2 (2D structures) or ⇠ S

1
3 (3D

structures) batches, we expect T ⇠ S
3 (snake protocol) and T ⇠ S

2.5 (2D onion protocol)
or T ⇠ S

2.33 (3D onion protocol). Hence, despite the possibility of using parallel assem-
bly protocols in higher dimensions like the onion protocol, which require a lower number of
batches, the time e�ciency is significantly reduced compared to the one-dimensional case.
This ine�ciency is a consequence of the steady increase of the number of active complexes in
the higher-dimensional Jis scenario.

Intuitively, the negative e↵ect of enhanced competition due to an increasing number of active
complexes can be understood as follows: Suppose that in the s

th assembly step an addi-
tional active complex is formed. Hence, in all S � s subsequent assembly steps there is one
more active complex than monomers that will be provided. In the worst case, in each subse-
quent assembly step the additional complex can ‘take’ a monomer from a di↵erent complete
complex and interrupt its growth. Therefore - on average - the total reduction of the final
yield induced by only one additional complex scales like ⇠ S. Consequently, in order to
obtain a high yield, the dimerization probability must be controlled ⇠ S times more tightly
than in the one-dimensional case. This explains why the time complexity exponent for the
snake protocol ✓ = 3 is by 1 larger than the time complexity exponent for 1D structures ✓ = 2.
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Figure 3.4 | Testing the theory. The yield from stochastic simulations (markers) of the snake and
onion protocol for two-dimensional target structures of di↵erent sizes is compared to the theoretical
prediction of the model (drawn lines). To this end, for each activation rate ↵, the corresponding
dimerization probability pd has been calculated numerically using the theory presented in chapter 7
[4]. Subsequently, the ODE system 3.4 has been integrated numerically with the given dimerization
probability. The theory describes the onset of the yield very well for large structure sizes. However,
it does not capture the stochastic yield drop resulting from a finite particle number.

In order to verify our results and the general validity of the model, we compare in Figure
3.4 the results of the stochastic simulation with the prediction of the model. Specifically, we
simulated the onion and the snake protocol for two-dimensional structures of di↵erent sizes
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(see last chapter for details of the simulation) and plotted the final yield against the activation
rate for the implementation of the Jis scenario as given by Eq. (3.2)). In order to make the
theoretic prediction for the yield, we first calculated the expected dimerization probability pd

from the activation rate by using the theory that is presented in chapter 7 [4]. Subsequently,
we integrated the system (3.4) and (3.5) numerically in order to calculate the final yield.
Indeed, for larger structures, the theory predicts the onset of the yield very well. However,
in the limit of small ↵, the yield in the simulation does not reach the predicted maximal
value of 1. This phenomenon can be attributed to stochastic e↵ects because the particle
number N is too small. Because this is a finite size e↵ect, the yield drop is not captured by
the deterministic theory (see chapter 7 for more details). Thus, we conclude that the model
predicts the yield correctly under the condition that the particle number N is large enough.

3.3.3 Higher-dimensional target structures with 0 < a < 1 and b = const

We have found that the growth exclusion factor a is an important determinant for the e�-
ciency of the assembly process. For one-dimensional structures the exclusion factor is always
1, while for higher-dimensional structures it is typically 0, which results in the low e�ciency
of the process. Hypothetically, how would the assembly time behave for a constant exclusion
factor larger than 0 but smaller than 1? And could such a scenario be realized, for example
with the help of a special supply protocol for higher-dimensional target structures? First,
we will apply the usual formalism to calculate the time complexity for the hypothetical case
with 0 < a = const < 1. Afterwards we try to answer whether such a solution could exist in
practice.
For a constant exclusion factor a it follows from Eq.(3.4) for the dynamics of y:

dy

ds
= bpd � a(y + pd � 1) , (3.14)

which is solved by y(s) = 1+pd
b�a
a (1�e

�as). Hence, in the limit of large s, the concentration
of active complexes converges to a constant.

y(s) ���!
s!1

1 + pd
b� a

a
=: 1 + pdw = const. (3.15)

Using this result for the dynamics of C in Eq.(3.5), we obtain

dC

ds
= �y + pd � 1

y
C = �pdw + pd

1 + pdw
C , (3.16)

which gives log(C) = �pdw+pd
1+pdw

s, and hence, with C(S) = yield,

pd =
� log(yield)

S

⇣
w + 1 + w

log(yield)
S

⌘ =
� log(yield)

S
a

⇣
b+ (b� a) log(yield)S

⌘ ����!
S!1

�a

b

log(yield)

S
⇠ S

�1
.

(3.17)
Therefore, the time complexity for a hypothetical case with 1 > a > 0 will be the same as for
the one-dimensional case with a = 1. For example, an exclusion factor of a = 1

2 might signify
that only every other species, if missing in a complex, prevents the complex from further
growing. In the following, we refer to these species as disruptive species. The calculation
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shows that, theoretically, even a small fraction of disruptive species would su�ce to regulate
the number of active complexes and hence to induce the same time complexity exponent as
for 1D structures. How could such a supply protocol be realized?
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Figure 3.5 | Back bone protocol. A, Supply order in the back bone protocol. The structure
is divided into two parts: The back bone, which follows a similar supply path as the snake protocol
but leaves out every second column in the structure. These left-out columns are called the side

tracks, which are assembled independently from the back bone. Importantly, the supply order is
such that assembly of the back bone is always slightly ahead of the respective side track. In this
way, if a defect occurs in the back bone, the growth along the back bone cannot be resumed through
the side tracks, as the side tracks are assembled afterwards. Since the back bone itself is e↵ectively
a one-dimensional structure, this implies that the growth along the back bone will break up and
without the back bone as sca↵old, the subsequent side tracks can also not be assembled any more.
Hence, a defect in the back bone disrupts the growth entirely. On the other hand, a defect in
the side track has no e↵ect. The e↵ects of a defect and a dimerization event are illustrated in B,
analogously to Fig. 3.3. Because the growth exclusion factor a for defects on the back bone is 1,
we expect the back bone protocol to be more time e�cient than the snake protocol.

In order to investigate the potential of such a self-regulatory mechanism for higher-dimensional
structures, we study the back bone protocol for 2D structures, see Fig. 3.5. In the back bone
protocol, we distinguish two di↵erent regions of the structure, the back bone and the side
tracks. The back bone forms the sca↵old into which the species of the side tracks integrate.
The supply oder is depicted in Figure 3.5. As a consequence of the supply order, assembly
of the back bone is always slightly ahead of the side tracks. Therefore, if a defect occurs
in the back bone, the structure cannot continue to grow2. Hence, all species that form the
backbone are disruptive species. On the other hand, if a defect occurs in the side tracks, the
structure will continue to grow. Thus, we have a ⇡ 1 for the back bone and a = 0 for the side
tracks. On average, as there are roughly as many back bone species as side track species, we
have aav ⇡ 1

2 = const and hence we would expect pd ⇠ S
1. However, the simulation shows

that the scaling is not as good as expected and the back bone protocol is only slightly more
e�cient than the snake protocol (see Fig. 3.6). The apparent reason why it is less e�cient
than expected is because averaging a between the back bone and the side tracks is not valid.
The real exponent is revealed by calculating the yield of the back bone and the side tracks

2only parts of the adjacent side tracks can still be finished if a defect occurs in the back bone but then the
growth will stop
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independently. The final yield is then the product of the yield of the back bone and the yields
of the side tracks. Since the back bone has a = 1 and consists of roughly S/2 species, its

yield, according to Eq. (3.8), is e�pd

p
S
2 . Each side track is a structure with a = 0 and consists

of ⇠
p
S species and hence, according to Eq. (3.12), has a yield e

� 1
2pdS . Because there are

⇠
p
S
2 side tracks in total, the final yield is given by

yield = e
� 1

2pd

p
S ·

⇣
e
� 1

2pdS
⌘pS/2

= e
� 1

2pdS� 1
4pdS3/2

. (3.18)

Hence,

pd =
� log(yield)
1
2S + 1

4S
3/2

⇠ S
� 3

2 , (3.19)

to leading order, instead of pd ⇠ S
�1 as predicted by the calculation above with an average

aav = 1
2 . The time complexity exponent ✓ = �3

2 for the back bone protocol is confirmed by
the stochastic simulation, see Fig. 3.6. Hence, we conclude that simply averaging a is not
valid if there are non-disruptive regions in the structure that increase in size with S. In other
words, averaging a is only valid if the ‘distance’ between any non-disruptive and the next
disruptive species in the assembly path is independent of S. In the back bone protocol, the
side tracks are connected non-disruptive regions of increasing size and hence, their size-scaling
limits the scaling of the time e�ciency. Because we did not find a way to construct a supply
protocol without any increasing non-disruptive regions, we claim that, with this approach,
the time complexity cannot be improved beyond T ⇠ S

5
2 . Still it is remarkable that the time

complexity of the snake protocol can be improved only by slightly changing the supply order.
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Figure 3.6 | Comparison between back bone and snake protocol. The yield obtained from
stochastic simulations with the back bone and the snake protocol is plotted against the activation
rate for di↵erent sizes of the target structure. Inset shows the scaling of the optimal activation rate
(to achieve 20% yield) with the structure size. For the back bone protocol we measure a parameter
exponent of � = �1.5 versus � = �2 for the snake protocol. Hence the back bone protocol is more
time e�cient than the snake protocol for large structure sizes.
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3.3.4 Increasing assembly e�ciency by removing complexes

Even though generic supply protocols with an e↵ective average 0 < a < 1 presumably do
not exist, the regulatory mechanism behind this idea could be implemented di↵erently. The
underlying mechanism to make supply protocols with a = const > 0 e�cient is that interme-
diate disruptive species would regulate competition by converting active complexes into latent
defective complexes. Instead of converting active complexes into latent complexes, one could
likewise remove them entirely from the system, for example, by some outflux. In order to test
this idea with our formalism, we assume that after each assembly step, there is a constant
(per capita) outflux rate � for all kinds of complexes. The dynamics of active complexes then
has to be extended by this outflux term:

dy

ds
= bpd � a(y + pd � 1)� �y . (3.20)

Optimally, the outflux should be such that the concentration of active complexes is held
constant throughout the process: dy

ds = 0 and hence y = y(0) = 1. From this condition, it
follows that

� = pd(b� a) . (3.21)

The dynamics of the complete complexes (assuming y = 1) also has to be extended by the
outflux term:

dC

ds
= �pdC � �C = �Cpd(1 + b� a) , (3.22)

which can be solved to give: yield = e
�pd(1+b�a)S . Therefore,

pd =
� log(yield)

(1 + b� a)S
⇠ S

�1
. (3.23)

For the snake protocol we thus expect a time complexity of T ⇠ S
2. It seems paradoxically

that by removing complete complexes during the assembly process, the assembly e�ciency can
be increased and the time complexity exponent be reduced. The explanation of this apparent
paradox is that the e↵ect of increased competition due to additional complexes is way worse
than the e↵ect of losing a few complexes in each assembly step. Figure 3.7A shows the yield
plotted against the activation rate for the snake protocol with (� > 0) and without (� = 0)
removing complexes after each assembly step. We find that if complexes are removed, the
assembly process is significantly more e�cient and more robust to stochastic e↵ects for large
structure sizes. The simulation also confirms the expected parameter scaling ↵opt ⇠ pd ⇠ S

�1

for the snake protocol for large S (Fig. 3.7 inset).
The hope is that the same strategy of removing complexes can also be applied for the onion
protocol. If the parameter scales identically, due to the lower number of batches in the onion
protocol, this would imply a time complexity exponent of ✓ = 3

2 for 2D structures. However,
from the simulation, we only find a parameter exponent of 3

2 , implying a time complexity
exponent of 2 (see Fig. 3.7 inset). The reason for the deviant scaling is that removing
complexes only reduces competition between species that are supplied consecutively, but not
between species that are supplied simultaneously in the same batch. Hence, since the average
size of the batches increases like ⇠ S

1
2 in the onion protocol, the parameter scales with ⇠ S

3
2

instead of ⇠ S
1.

Thus, removing complexes during the assembly process works fine for the snake protocol but
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does not have the desired e↵ect for parallel protocols like the onion protocol because there is
still competition for species that are provided simultaneously (in the same batch). Both for
the snake and the onion protocol we thus obtain a time complexity of T ⇠ S

2.
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Figure 3.7 | Removing complexes to enhance assembly e�ciency. A, The yield obtained
from stochastic simulations is plotted against the activation rate for the snake protocol both with
a finite outflux (� = 0.1 1

S > 0) of complexes (drawn lines) and without outflux (� = 0; dash-
dotted lines). The outflux was implemented by removing a fraction � of all complexes after each
assembly step. Due to the outflux of complexes, the yield that can maximally be achieved for this
choice of � is roughly 90%. Nevertheless, for any yield smaller than 90%, self-assembly is found
to be significantly more time e�cient and robust to stochastic noise if complexes are removed. B,
Comparison between the snake and the onion protocol with outflux rate � = 0.1 1

S . Inset shows the
scaling of the optimal activation rate (to achieve 90% yield) with the structure size for large particle
number N . We measure a parameter exponent of � ⇡ �1 for the snake and � ⇡ �1.5 for the onion
protocol.

3.3.5 Increasing assembly e�ciency with non-stoichiometric concentrations

Instead of continuously decreasing the number of complexes in the system, one could approach
the problem of reducing competition the other way round, namely by increasing the amount of
resources put in with each assembly step. In this way, despite the number of active complexes
increases continuously, as species further downward in the assembly sequence are provided
in larger concentrations, all active complexes can nevertheless be permitted to grow in each
assembly step. Therefore, competition is reduced to a minimum. Furthermore, because
resource consumption is an individual process for each species, there is the hope that this
strategy is also fully compatible with parallel supply protocols like the onion protocol. In
order to calculate the time complexity exponent of this strategy with our formalism, we
assume that the resource input r(s) in Eq. (3.4) and (3.5) increases linearly with s,

r(s) = (1��) + s
2�

S
. (3.24)

Here, � is the total fraction of resources that is distributed unevenly. The amount of resources
increases linearly from C(0) = 1 �� in the first step to 1 +� in the last step, so that the
average amount of resources is 1. Because there cannot be more complete complexes than
there are initial nuclei, the yield is bounded by 1 � �. To achieve optimal e�ciency, the
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dimerization probability needs to be controlled such that the number of complete complexes
remains constant throughout the assembly process:

dC

ds
= �y + pd � r

y
C

!
= 0 , (3.25)

which implies pd = r(s) � y(s). In other words, the dimerization probability is controlled
such that the surplus of resources in each assembly step compensates the consumption of
monomers due to dimerization. It follows for the dynamics of active complexes,

dy

ds
= bpd � a(y + pd � r) = b(r � y) , (3.26)

which is solved by y(s) = r(s)� 2�
bS and thus yields

pd = r � y =
2�

bS
⇠ S

�1
. (3.27)

For � close to 0 (yield close to 1), approximately � ⇡ � log (1��) ⇡ � log (yield) and hence

pd ⇡ �2 log (yield)
bS . Comparing this result with Eq. (3.23) shows that the strategy of increasing

the amount of resources is even more e�cient than removing complexes. Furthermore, by
plotting the optimal parameter against the structure size (see Fig. 3.8B), we verify that
pd scales like ⇠ S

�1 both for the snake and the onion protocol. Hence, we conclude that
the strategy is also compatible with parallel supply protocols. Consequently, we expect a
time complexity of T ⇠ S

2 for the snake protocol and T ⇠ S
3
2 (2D) or T ⇠ S

4
3 (3D) for

the onion protocol, consistent with the result from the last chapter and with [2]. Hence, the
onion protocol with increasing, non-stoichiometric concentrations represents the most e�cient
strategy for the Jis scenario that we could identify for higher-dimensional structures. It is
the only strategy that achieves a lower time complexity exponent than the one-dimensional
Jis scenario.

3.4 Conclusion

The idea behind the just-in-sequence scenario is that the di↵erent species are supplied in
a specified sequence in order to favor a specific assembly pathway and to avoid spurious
nucleation. While this basic idea is simple, for its e�cient implementation additional consid-
erations are necessary. In this chapter, we analyzed an e↵ective model for the just-in-sequence
scenario, which allowed us to explore its intricacies and to conveniently calculate parameter-
and time complexity exponents for di↵erent implementations of the scenario.
We found that the central di↵erence between the one-dimensional and the higher-dimensional
Jis scenario can be quantified by a single parameter a, which we call the growth exclusion fac-
tor, and which measures the extent to which a defect in the structure prevents the structure
from further growing. While the parameter a is 1 for one-dimensional structures (a defect
always disrupts the growth (disruptive)), it is typically 0 for higher-dimensional structures
(a single defect never disrupts the growth (non-disruptive)). Therefore, competition continu-
ously increases in the higher-dimensional case and makes a naive implementation of the Jis
scenario very time ine�cient exhibiting a large time complexity exponent. We studied three
potential strategies to regulate the level of competition and to enhance the e�ciency of the
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Figure 3.8 | Just-in-sequence scenario with non-stoichiometric concentrations. The yield
is plotted against the activation rate for the snake and onion protocol when using increasing, non-
stoichiometric concentrations for the di↵erent species. The inset shows the scaling of the optimal
activation rate with the target structure size for large average particle number N . Asymptotically,
we measure a parameter exponent of � ⇡ �1 both for the snake and the onion protocol.

implementations 
of 2D Jis scenario

control parameter 
exponent

time complexity 
exponent 

naive 2 (s)
2 (o)

3 (s)
2.5 (o)

special assembly path 
(back bone protocol) 1.5 (b) 2.5 (b)

removing complexes 1 (s)
1.5 (o)

2 (s)
2 (o)

non-stoichiometric 
concentrations

1 (s)
1 (o)

2 (s)
1.5 (o)

(s): snake protocol;   (o): onion protocol;   (b): back-bone protocol

��

Table 3.1 | Summary of parameter and time complexity exponents for the di↵erent
strategies. The table summarizes the control parameter- and time complexity exponents for the
four implementations of the two-dimensional Jis scenario discussed in this chapter. The correspond-
ing assembly protocol to which each exponent refers is indicated in brackets.

Jis scenario for higher-dimensional structures. The resulting control parameter- and time
complexity exponents that we found for these di↵erent assembly schemes are summarized in
Table 3.1.
First, we tried to mimic the self-regulatory mechanism of one-dimensional structures by us-
ing a very special supply sequence (back bone protocol) such that about half of all species
become disruptive. The problem with this strategy is that, in order to significantly improve
the time e�ciency, it would be required that the distance between non-disruptive and dis-
ruptive species remained constant for all structure sizes. This, however, apparently cannot
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be achieved in practice. Consequently, the strategy only leads to a small improvement of the
time complexity.
The second strategy relies on an external control mechanism, which removes a small fraction
of the complexes from the system after each assembly step. In this way, competition for re-
sources among the remaining complexes can be reduced and the time e�ciency be enhanced.
Unfortunately, the favorable parameter scaling can not be maintained if a parallel supply
protocol like the onion protocol is used.
Finally, the last strategy reverses the approach of the second strategy and - instead of re-
ducing the number of complexes - stipulates that the amount of resources is increased with
each assembly step. In this way, competition for resources can be minimized. In contrast
to the strategy of removing complexes, the parameter scaling of this strategy remains the
same if parallel supply protocols are used. Hence, the onion protocol with increasing non-
stoichiometric concentrations can be identified as the most time e�cient strategy for the Jis
scenario.

The analysis shows that a naive implementation of the Jis scenario is very time-ine�cient
but the e�ciency can be largely improved by using an additional strategy in order to reduce
competition for resources. The time complexity analysis proved very useful in this context:
With the help of the simplified model, it was easily possible to calculate the parameter and
time complexity exponents, which allowed for a simple quantification and comparison of the
time e�ciency of the di↵erent strategies. This demonstrates again the general usefulness of
our time complexity analysis for the study of self-assembling systems.

Another important aspect of the Jis scenario, which has not been considered here explicitly,
is robustness to intrinsic and extrinsic noise. By intrinsic noise we mean noise originating
intrinsically from the stochastic dynamics. This kind of noise is responsible for the yield drop
observed in Figs. 3.4, 3.6 and 3.7, and its e↵ect vanishes for N ! 1. On the other hand,
extrinsic noise refers to variations in the supplied numbers of particles, as has been exemplified
in the last chapter and in [143]. In all studied cases, higher time e�ciency seems to correlate
with increased robustness to noise. However, it would still be instructive to quantify the e↵ect
of noise in a systematic way for these di↵erent implementations of the Jis scenario.



4 The role of the morphology of the
constituents in reversible self-assembly

The goal of this chapter is to summarize the most important findings of our project on the
dependence of the time e�ciency of reversible self-assembly processes on the morphology of
the constituents. The corresponding manuscript is currently in preparation for submission.
This chapter is based on and uses parts of the manuscript preprint in section 4.5.

4.1 Motivation

In the previous two chapters we have investigated the time e�ciency of di↵erent self-assembly
schemes or self-assembly scenarios. In contrast, in this chapter, we will analyze the influence
of the geometry of the constituents on the e�ciency of reversible self-assembly processes.
While for the irreversible scenarios discussed in chapter 1 we do not expect a qualitative
dependence of the dynamics on the shape of the constituents, our scaling analysis in chapter
2 ([2]) suggests that, in the reversible binding scenario, the geometry of the constituents might
play an important role. In the later case, we expect such a dependence because, according
to our scaling analysis, the parameter- and time complexity exponents for the reversible
binding scenario depend on the e↵ective order of nucleation and attachment reactions, which,
in turn, are largely determined by the geometry of the constituents. If a dependence of
the time complexity exponent on the geometry of the constituents can indeed be verified,
this could have important consequences for experiments as well as for our understanding of
biological self-assembly processes. For example, in experiments, designing constituents with
a specific geometry appears to be a feasible task and might be significantly simpler to realize
than using sophisticated protocols or alternative assembly schemes (for instance, the just-
in-sequence scenario discussed in the last two chapters can only be used for heterogeneous
systems and requires fine-tuning of the supplied concentrations). In particular, hierarchical
self-assembly could o↵er a simple and e�cient way in order to optimize the geometry of the
constituents: Making certain bonds stronger than others can induce the particles to first form
larger constituents with a favourable geometry so that, subsequently, these larger constituents
can self-assemble significantly more e�ciently. Additionally, these insights might shed light
on the kinetics of virus capsid assembly or other reversible biological self-assembly processes.
As stated in the introduction, the kinetics of these systems are still rather poorly understood
because intermediate assembly products are typically present in concentrations so low that
they escape detection in an experiment. Hence, a proper understanding of the geometry
dependence of the time complexity might be helpful, for example, by suggesting possible ways
in which the monomers could assemble hierarchically that would optimize the time e�ciency.
Afterwards, it can be tested specifically if the suggested assembly path is consistent either
with experimental data or with other specificities of the system like, for instance, the binding
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strengths of the various binding sites of the constituents. In this way, a more comprehensive
understanding of the kinetics of biological self-assembly processes might be established.
As a second research question in this chapter, we investigate how self-assembly e�ciency
depends on the ‘degree’ of reversibility, i.e., for example, whether or not particles that have
formed two or more bonds are still unstable and can detach from a structure at a su�ciently
large rate. While reversibility in general has been attributed great importance both for
biological and artificial self-assembling systems [58, 56, 61, 57, 60, 59, 45, 25, 34], we do not
know of any study that has investigated the e↵ect of reversibility systematically and specified
the role of the ‘degree of reversibility’. Typically, the meaning of reversibility is seen in the
purpose that it allows the system to approach the (quasi-)equilibrium state [27, 28, 25, 29, 31,
35]. However, a system with a low degree of reversibility can have irreversible reactions and is
hence inherently out-of-equilibrium. Therefore, by investigating reversibility systematically,
we also want to understand the relation between the equilibrium (high degree reversible) and
non-equilibrium (low degree reversible) nature of self-assembly processes and which of the
two is ultimately more time e�cient.
Generally, particle geometries that have a higher number of binding sites, in principle allow
for a larger degree of reversibility while the final assembly products (and possibly also some
intermediate states) may still be stable. Therefore, both research questions - on the role of the
morphology of the constituents and the optimal degree of reversibility - are closely related.

4.2 Model

In order to investigate how the time e�ciency of reversible self-assembly processes depends on
the geometry of the constituents and the ‘degree’ of reversibility, we explicitly simulate three
di↵erent particle systems (square, trigonally and hexagonally shaped particles), which self-
assemble into two-dimensional structures of a specified size. The model we use is illustrated
in Fig. 4.1 and it is simpler than the model that was introduced previously in chapter 2
for the following reasons: First, instead of four di↵erent scenarios in chapter 2, here we
simulate only the reversible binding scenario. Second, since in the limit of large particle
numbers the dynamics of the reversible binding scenario is independent of the heterogeneity
of the building blocks [1, 2], we only consider homogeneous systems here (i.e. monomers are
indistinguishable). Third, we constrain ourselves only to two-dimensional target structures
because all concepts can be illustrated more easily in the 2D case. We expect, however, that
our scaling results apply to the self-assembly of three-dimensional objects as well.
The dynamics of the model is then specified as follows: Any two monomers can bind with
rate µ along any edge to form a dimer, which can subsequently grow by further attachment
of monomers at any free, neighboring site with rate ⌫, see Fig. 4.1B. We formally distinguish
the dimerization rate from the attachment rate in the analysis because cooperative binding
e↵ects might disfavour dimerization against growth in biological or experimental systems
[137, 20, 138]. In the simulations, however, we typically set µ = ⌫. Following the assumptions
of classical or ideal aggregation theory, interactions among larger oligomers are neglected and
it is assumed that structures grow only by the attachment of single monomers [70, 77, 35].
In the paper, we evaluate to which extent this assumption is reasonable, specifically for the
simulated morphologies, and we also estimate the e↵ect when interactions of larger oligomers
are additionally taken into account.
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Figure 4.1 | Illustration of the model. A We consider the self-assembly of two-dimensional struc-
tures of volume S from square-, trigonally or hexagonally shaped particles and investigate the time
the assembly processes take in order to reach 90% yield. The blue, red and yellow shaded regions
illustrate the first three stable configurations (in which each particle has two or more bonds) along
a typical assembly path. The dynamics is e↵ectively described by the three parameters �, � and
!, which are listed for the three particle systems and denote the nucleation size, attachment order
and growth exponent, respectively (see C and main text). B Self-assembly dynamics is modelled
as follows (illustrated for the square system): Two monomers dimerize at rate µ along any of their
edges. Subsequently, particles attach at rate ⌫ to any free neighboring site until a square of volume
S (edge length

p
S) is completed assuming periodic boundary conditions. Furthermore, particles

detach from the structure at rate �n ⇠ e�nEB , with n being the number of bonds between the par-
ticle and the structure. C Coarse-grained e↵ective dynamics (illustrated for the trigonal system):
Assembly starts with the formation of a stable nucleus (blue shaded states in A), which requires a

minimum number of � particles. The e↵ective nucleation rate scales as ⇠ ��(��2)
1 because � � 2

unstable states must be traversed in order to form the nucleus. Analogously, attachment processes
are initiated by an e↵ective reaction of order �, after which a succession of reactions of smaller order
may follow.

In order to model reversibility of the binding reactions, we furthermore assume that single
monomers detach from a structures at a rate �n that decreases exponentially with the number
n of bonds that need to be broken in order for the particle to detach: �n = Ae

�nEB (Arrhenius’
law). Here EB is the binding energy per contact in units of kBT and the constant A is called
preexponential factor. The dynamics of the assembly process can be controlled by changing
the ratios between the frequencies of detachment and attachment events, �n

C⌫ = A
C⌫ e

�nEB

(with C denoting the initial concentration of monomers), which therefore define our general
control parameters. Analogous as �n is measured in units of C⌫, time is always measured
relative to the reactive time scale in units (C⌫)�1.
We define the yield as the fraction of monomers that are bound into complete structures
and the assembly time T90 as the time at which the yield first surpasses a value of 90%. In
particular, we are interested in how the minimal assembly time Tmin

90 scales with the structure
size S, as is described by the time complexity exponent ✓, and in how ✓ depends on the
particle morphology.
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4.3 Results and discussion

In the analysis, we first study the case in which all higher order detachment rates except �1
vanish. This case can be considered the ‘leading order’ e↵ect in an expansion that subse-
quently takes detachment rates of higher order into account. Since the ratio between detach-
ment rates of consecutive order is typically small: r := �n+1/�n = e

�EB ⌧ 1, we expected
this heuristic expansion to be useful in some sense. Indeed, it turned out that, while the
higher order attachment rates do have an important e↵ect on the assembly time in general
(see below), they only slightly a↵ect the minimum of the assembly time at least as long as the
ratio r (which we also call the reversibility ratio) is not too big. This implies that the minimal
assembly time T

min
90 and optimal detachment rate �

opt
1 are informative parameters that can,

in general, be well described by the first order theory. Plotting the assembly time T90 against
the detachment rate �1 for the three di↵erent particle systems with �n�2 = 0, thereby reveals
a typical behavior (Fig. 4.2): While for small values of �1 (fast nucleation), the systems gets
kinetically trapped, the minimum is attained in a pronounced U-shape, and for large values of
�1 the assembly time increases proportional to S

��2. Importantly, the minimal assembly time
strongly di↵ers between the three particle systems and - even more importantly - it scales
di↵erently with the structure size S, see Fig 4.2B). This implies that di↵erences in the assem-
bly times of the various particle systems become ever more pronounced with increasing size
of the target structure. Consequently, for the self-assembly of large objects, the morphology
of the building blocks plays an important role as it crucially determines the time e�ciency of
their self-assembly.
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Figure 4.2 | Assembly time and optimal parameter for vanishing �n�2 = 0. A The time required to
achieve 90% yield in the stochastic simulation (markers) is plotted against the detachment rate for
the trigonal- (red), square- (blue) and hexagonal (green) system for target structure size S = 100.
Dash-dotted lines represent the prediction of the e↵ective theory. For large detachment rates, the
assembly time scales proportional to ���2

1 , while for small detachment rates the assembly time
diverges. B, C The minimal assembly time (B) and optimal detachment rate (C) inferred from
the stochastic simulation (markers) and e↵ective theory (dash-dotted lines) are plotted against the
size of the target structure and exhibit approximate power-law dependencies for all three particle
systems. Tables show the scaling exponents ✓sim and �sim inferred from the last three data points
of the stochastic simulation in comparison with their theoretical asymptotic values ✓th and �th

obtained from Eq. (4.1).
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The first order theory brings about a number of simplifications which make it amenable to a
mathematical treatment. Most importantly, if higher order detachment rates �2, �3, ... are all
zero, intermediate assembly states in which each particle forms at least two bonds are stable
and do not decay any more. Since the assembly process proceeds via these stable intermediate
states, this allows us to describe the dynamics with a coarse-grained kinetic model based on
e↵ective, irreversible rate equations.
The coarse-grained model depends on three parameters: �, � and !, which denote, respec-
tively, the nucleation size, the e↵ective order of attachment reactions as well as the scaling
of the average growth rate of a cluster with its size. The three parameters di↵er for the
three particle systems (see Fig. 4.1) and they uniquely characterize the dynamics of the self-
assembly processes (apart from a numerical constant that can be estimated analytically or
fitted). The predictions of the e↵ective model for the assembly time and the optimal param-
eter are plotted in Fig. 4.2 and coincide very well with the data obtained from the stochastic
simulations. Hence, the e↵ective theory identifies the three parameters �, � and ! as the
major determinants of self-assembly kinetics.
The irreversibility of the e↵ective model furthermore allows us to simplify the system and to
calculate the asymptotic time complexity exponent ✓ and parameter exponent � analytically.
In dependence of the above parameters, we find

✓ =
(1� !)� + � + 2! � 3

� � � � 1
and � =

2� !

� � � � 1
. (4.1)

In general, the formulas yield good estimates for the exponents inferred from the stochastic
simulation (see tables in Fig. 4.2B,C) but do not reproduce them exactly, presumably because
the asymptotic scaling regime is not quite reached for the simulated system sizes and the real
growth exponent ! deviates slightly from its estimated value.
Equation (4.1) shows that if the attachment order � is 1 (and consequently ! = 1/2), as it
holds for example for the hexagonal system, then ✓ = 1

2 independently of �. We suppose that
this is the most time e�cient scenario that can be achieved1. The reason why the hexagonal
system is so e�cient is because � = 1 guarantees a constant growth rate of the clusters,
independent of �1, and, therefore, the ratio between the e↵ective nucleation rate and cluster
growth rate can be controlled most e�ciently. Note that the hexagonal system has the same
time complexity exponent as the dimerization scenario discussed in chapter 2.
If the attachment order � is larger than 1, according to Eq. (4.1), an increasingly large nu-
cleation size � is required in order to constrain the complexity exponent. However, a large
nucleation size leads to a strong increase of the assembly time for detachment rates larger
than the optimal value (where T90 ⇠ �

��2
1 ) and might therefore necessitate fine-tuning of the

control parameter in an increasing manner.
The problem of fine-tuning, however, can be avoided by increasing higher order detachment
rates, predominantly �2. Plotting the assembly time against �1 for fixed, nonzero reversibility
ratio2 r (Fig. 4.3) reveals an important di↵erence: While in the case �n2 = 0 the assembly

1Note that for � > 1 and large �, Eq. (4.1) would predict a value of ✓ even smaller than 1/2. However the
approximations that led to Eq. (4.1) become inaccurate if the di↵erence between � and � becomes too
large. Hence, we expect that the time e�ciency of the hexagonal system cannot be exceeded by a system
with � > 1.

2this control scenario (fixed r = �n+1/�n and variable �1) corresponds to the common experimental scenario
in the which (for example) the monomer concentration is steadily increased while the temperature (and
binding energy) is kept fixed.
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Figure 4.3 | The e↵ect of higher order reversibility on the assembly time. The assembly time
T90 obtained from stochastic simulations is plotted against the detachment rate �1 for di↵erent
reversibility ratios r = �n+1/�n = e�EB for the trigonal (A), square (B) and hexagonal (C) system
with structure size S = 100 and N = 100S or N = 1000S. For r > 0, the assembly time scales
inversely proportional to �1 for su�ciently small �1 and diverges at large �1. In contrast, for r = 0
the assembly time diverges at small �1 but scales with ⇠ ���2

1 for large �1. The minimal assembly
time is noticeably a↵ected by higher order reversibility only if r is large.

time diverges at small �1 due to kinetic trapping, for r > 0 all intermediate structures can be
dissolved again and, consequently, the assembly time only increases linearly with decreasing
�1. Hence, while the minimal assembly time is not strongly a↵ected by higher order detach-
ment rates, the problem of fine-tuning of �1 can possibly be avoided if r is large enough, due
to the slow increase of T90 with decreasing �1.
Overall, the e↵ect of the particle morphology on the assembly time must be evaluated as more
important than optimizing the reversibility ratio (which may not become too large since oth-
erwise the stability of the final assembly product is jeopardized). On the other hand, if the
reversibility ratio is too small (but �2 still large enough), the assembly time typically increases
very strongly to both sides of the optimum and extreme fine-tuning is necessary.

Hence, our study shows that the geometry of the constituents has a huge impact on the
time e�ciency of reversible self-assembly processes. In two dimensions, hexagonally shaped
particles thereby assemble particularly e�ciently and robustly. Indeed, it could be shown
that some viruses like the picornaviruses as well as the shells of carboxysomes assemble from
hexameric and pentameric building blocks of the form of hexagons and pentagons [144, 145].
In both cases, while the basic subunits have a triangular shape, the pentagons and hexagons
assemble as a hierarchical intermediate product. It is thinkable that it is only thanks to
this particular morphology of the intermediates that a structure as large as the carboxysome
(which consists of 12 pentameric and 740 hexameric capsomeres) can still assemble fast and
e�ciently. Maybe this hierarchical organisation of the assembly process, by which pentamers
and hexamers are generated first, applies even more generically to the assembly of icosahedral
viruses and shells. However, larger viruses typically assemble in the presence of a sca↵old and
hence their assembly kinetics might follow slightly di↵erent rules. In any case, an important
conclusion of our work is that in experiments like the ones of the Dietz group discussed
in the introduction, which build structures from artificial subunits, the time e�ciency will
most likely be able to be significantly improved by choosing suitable particle geometries or
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by organising the assembly process hierarchically. As far as we know, the Dietz group used
triangular particles, possibly even with a suboptimal reversibility ratio, which might explain
the poor time e�ciency of their experiments.

4.4 Key results

In my opinion, there are four key results of this project:

• The time e�ciency and time complexity of reversible self-assembly processes (as well as
robustness/variability in the control parameter) strongly depend on the morphology of
the constituents. Particle systems in which the e↵ective order of attachment reactions
is 1, as is the case for the hexagonal system studied here, generally assemble most
e�ciently. The time complexity is found to depend primarily on three ‘topological’
parameters (nucleation size, attachment order and growth exponent) that characterize
the morphology.

• Furthermore, the degree of reversibility (quantified by the reversibility ratio r = �n+1/�n)
plays an essential role: Depending on the morphology of the constituents, a large re-
versibility ratio can be either beneficial or detrimental (primarily regarding robust-
ness/variability in the control parameter) compared to very small r or �n�2 = 0, while
an intermediate reversibility ratio seems to be always very unfavorable.

• A simple, e↵ective model based on kinetic rate equations successfully describes the
dynamics of reversible self-assembly processes and can be used to investigate the depen-
dence of the time e�ciency on the morphology of the constituents. The ‘reversibility
order expansion’ thereby allows for a systematic analysis of reversible self-assembly ki-
netics and enables the analytic computation of the asymptotic parameter- and time
complexity exponent.

• Hierarchical self-assembly (or deliberate design of constituents with suitable geometries)
might o↵er a simple way to profit from these insights in order to strongly enhance the
time e�ciency of self-assembly experiments.
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Self-assembly is a fundamental concept in biology and of significant interest for nanotechnology.
Big advances have been made both experimentally and theoretically in characterizing and controlling
properties of the resulting structures. Much less is still known, however, about kinetic constraints
and determinants of dynamical properties like the time e�ciency of self-assembly processes, although
these can become a severe limiting factor in experiments. Therefore, we here investigate how the time
e�ciency and other dynamical properties of reversible self-assembly processes depend on the shape
(morphology) of the constituents and the ‘degree’ of reversibility. To this end, we explicitly simulate
three di↵erent particle systems (triangularly, square and hexagonally shaped particles), which self-
assemble into two-dimensional structures of a specified size. We find that these particle systems di↵er
strongly in their required assembly time, which is predominantly determined by three ‘topological’
parameters defining the morphologies. This characterization allows us to identify general scaling
laws that describe the assembly time as a function of the structure size and detachment rate. We
expect that these results can be used to significantly increase the time e�ciency of self-assembly
experiments.

I. INTRODUCTION

Self-assembly is an essential concept in biology that
explains the formation of large functional structures
from smaller subunits and thereby ‘bridges the gap’ be-
tween di↵erent lengths scales. Furthermore, artificial
self-assembly evokes great interest as it promises plen-
tiful significant applications in nanotechnology, medicine
and biology [1–5].

Typically, the formation of these artificial structures
as well as of many biological structures like virus capsids
is promoted by weak, reversible interactions between the
subunits [3, 6–13]. As a consequence, single bonds be-
tween subunits are usually unstable, and only a large
number of mutual interactions between subunits stabi-
lizes the structure as a whole. In this way, kinetic traps
are eluded that would arise if too many stable interme-
diates are formed which cannot be completed with the
available amount of resources [13–18].

While there are various strategies to overcome kinetic
traps even in irreversible self-assembly processes [19–
21], here we focus exclusively on the reversible case,
which plays a pivotal role in nanotechnology and biology
[9, 11, 22]. Reversible self-assembly (in thermal equilib-
rium systems) amounts to a process in which the system
minimizes its free energy and thereby reaches a state in
which a large fraction of the monomers are tied to com-
plete structures [12, 17, 23, 24]. This conception moti-
vates the use of ensemble theory from statistical physics
in order to characterize the final state [15, 25–27]. Indeed,
equilibrium methods have been applied successfully to a
broad class of self-assembling systems [23, 28–30] and –
when applicable - represent powerful and convenient tools

⇤ frey@lmu.de

to characterize the resulting structure and the yield.
An obvious drawback of equilibrium methods, how-

ever, is that they do not allow to draw conclusions on
the dynamics of the underlying processes. In particular,
they do not inform about the time the system requires
to achieve a specified yield. As a consequence, kinetic
aspects of self-assembly processes are significantly less
understood than structural properties of the resulting as-
sembly products. However, experiments suggest that the
time required for completion of self-assembly processes
can become a severe obstacle, especially when the struc-
tures are large [5]. Hence, it is indispensable for the
advancement of the field to gain a deeper understanding
also of those factors that control kinetic features like the
time e�ciency of self-assembly.
A very basic property of self-assembling systems is given
by the morphology of the constituents. In this work, we
therefore investigate how the shape of the constituents
and the ‘degree’ of reversibility of their binding reactions
influence the time e�ciency and other dynamical prop-
erties, like the role of interactions between intermediate
structures, in reversible self-assembly processes. To this
end, we perform stochastic simulations for particles of
di↵erent shapes, that self-assemble into two-dimensional
structures of a specified size. We characterize the time
e�ciency of the self-assembly processes by how the min-
imally required assembly time scales with the size of the
target structure (’time complexity’). A similar concept
was applied previously by us in order to quantify the time
e�ciency of di↵erent self-assembly strategies but with a
generic morphology of the constituents [21]. A major
benefit of this characterization is that the exponent that
describes the scaling of the assembly time with the struc-
ture size (‘time complexity exponent’) can be computed
analytically.
We find that the time e�ciency and, in particular, the
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FIG. 1. Illustration of the model. A We consider the self-assembly of two-dimensional structures of volume S from square,
triangularly or hexagonally shaped particles and ask for the time the assembly processes take in order to reach substantial
yields. The blue, red and yellow shaded regions illustrate the first three assembly steps (stable configurations, in which each
particle has two or more bonds) along a typical assembly path. The dynamics is e↵ectively described by the three parameters �,
� and !, which are listed for the three particle systems and denote the nucleation size, attachment order and growth exponent,
respectively (see C and main text). B Self-assembly dynamics is modelled as follows (illustrated for the square system): Two
monomers dimerize at rate µ along any of their edges. Subsequently, particles attach at rate ⌫ to any free neighboring site
until a square of volume S (edge length

p
S) is completed assuming periodic boundary conditions. At the same time, particles

detach from the structure at rate �n ⇠ e�nEB , with n being the number of bonds between the particle and the structure.
C Coarse-grained e↵ective dynamics (illustrated for the triangular system): Assembly starts with the formation of a stable
nucleus (blue shaded states in A), which requires a minimum number of � particles. The e↵ective nucleation rate scales as

⇠ ��(��2)
1 because in order to form the nucleus � � 2 unstable states must be traversed. Analogously, attachment processes

are initiated by an e↵ective reaction of order �, after which a succession of reactions of smaller order may follow.

time complexity depend strongly on the morphology of
the constituents as well as the ‘degree’ of reversibility.
Our analysis identifies three relevant parameters that de-
termine the time e�ciency and allows us to quantify the
time complexity exponent for arbitrary monomer mor-
phologies. From this result we derive a number of con-
clusions regarding biological self-assembly, e.g. of virus
capsids, and suggest possible ways in order to optimize
artificial self-assembly processes.

II. MODEL DESCRIPTION

We consider the self-assembly of N identical parti-
cles of triangular, square or hexagonal shape into two-
dimensional structures of volume S, assuming chemical
reaction kinetics in a well-mixed fluid environment (Fig.
1). For simplicity of the analysis, we assume that the final
structures have periodic boundary conditions, i.e. they
from closed tori. In this case, it can be shown that in the
limit of large particle numbers, it is irrelevant for the as-
sembly dynamics whether the particles are heterogeneous
and bind only with specific neighbors or whether all par-
ticles are identical and form unspecific bonds [21, 31].
For convenience, we therefore assume homogeneous sys-
tems in which the monomers are indistinguishable but

note that our results identically apply for heterogeneous
(‘information-rich’) systems as well. The initial concen-
tration of monomers is denoted by C = N/V , with V

being the reaction volume.

Specifically, we assume the following reaction kinet-
ics: Any two monomers can bind with rate µ along any
edge to form a dimer, which can subsequently grow at
rate ⌫ by further attachment of monomers at any free
neighboring site; see Fig. 1B. We formally distinguish
the dimerization rate from the attachment rate because
cooperative binding e↵ects might disfavour dimerization
of monomers over the attachment of monomers to larger
structures in biological or experimental systems. In the
simulations, however, we generally set µ = ⌫. Following
the assumptions of classical or ideal aggregation theory
[27], we assume that structures grow only by the attach-
ment of single monomers, while interactions among larger
oligomers are neglected [32, 33]. This assumption is gen-
erally justified since the concentration of monomers is
usually much larger than the concentrations of oligomers.
However, we will assess below to which extent ideal ag-
gregation theory is a reasonable assumption specifically
for the di↵erent morphologies.

Furthermore, in order to account for the reversibility of
the binding reactions, it is assumed that single monomers
detach from existing structures at a rate �n that decreases
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FIG. 2. Cluster size distribution and final yield for vanishing �i�2 = 0. A Shown is the cluster size distribution at a fixed,
early time point averaged over 100 independent simulations of the square system with target structure size S = 80. Structure
sizes that allow for a stable configuration are significantly more frequent on average than those which do not allow for a stable
configuration. A few of these stable configurations are illustrated explicitly. Our e↵ective theory describes only the most likely
assembly pathway connecting these stable configurations. B The final yield is plotted against �1 for di↵erent target structure
sizes. Rescaling the x-axis by the optimal detachment rate �opt

1 minimizing the assembly time leads to a collapse of the yield
curves. In particular, this shows that the minimal assembly time scales identically as the threshold rate �th to obtain nonzero
yield, a fact which we exploit in the mathematical analysis of the scaling behavior (see Methods).

exponentially with the number n of bonds that need to
be broken: �n = Ae

�nEB (Arrhenius’ law). Here, EB

is the binding energy per contact in units of kBT and
A is a constant which sets the overall scale of the un-
binding rate. The building blocks of triangular, square,
and hexagonal shape di↵er in the maximum number d

of bonds they can form: d = 3, 4, and 6, respectively.
In particular, if complete structures are to be stable, the
binding energy must be large enough so that the detach-
ment rate �d is su�ciently small.

The yield at time t is defined as the fraction of
monomers that are bound into complete structures. Fur-
thermore, in order to quantify the time e�ciency of the
self-assembly processes, the assembly time T90 measures
the time at which the yield first surpasses a value of 90%.
In particular, we will investigate how the minimal as-
sembly time T

min
90 that can be achieved depends on the

structure size and we will quantify its asymptotic scaling
behavior.

The dynamics of the assembly process can be con-
trolled by changing the ratio between the frequencies of
detachment and attachment events, i.e., by changing the
detachment rates relative to the overall scale of the reac-
tion kinetics: �n/(C⌫) = A

C⌫ e
�nEB . Assuming detailed

balance, the control parameter can also be written as
1
C e

�Gn , where �Gn is the free energy di↵erence between
an n-fold bound subunit and a free subunit. Experimen-
tally, this implies various possibilities in order to control
the assembly process. For example, it can be controlled
thermodynamically, by changing parameters that a↵ect
the free energy di↵erence �Gn like temperature, bind-
ing energy, pH value or salt concentration, in addition to
changing the monomer concentration C. Additional pos-
sibilities to control the assembly process kinetically can

be created by assuming that the monomers have di↵erent
internal states among which they switch under consump-
tion of energy, whereby detailed balance may be broken.
In this kinetic approach, therefore, we describe the be-
havior of the system in its most general form in terms
of the dimensionless control parameters �n/(C⌫). The
resulting assembly time is likewise measured relative to
the reactive time scale in units (C⌫)�1.

III. REVERSIBLE SELF-ASSEMBLY IN THE
LIMIT �1 � �2

If the binding energy EB is su�ciently large, the de-
tachment rate �1 is significantly larger than the higher
order detachment rates �2, �3, ... and therefore predomi-
nantly determines the assembly dynamics. Consequently,
cluster configurations in which each particle has at least
two bonds are significantly more stable than intermedi-
ate states in which particles are connected with only one
bond. This leads to specific intermediate states of en-
hanced stability via which the self-assembly process typ-
ically proceeds (Fig. 1C).
Hallmarks of this dynamics can be inferred from Fig-

ure 2A, which shows the polymer size distribution at a
specified time, averaged over 100 independent simulation
runs. Here, we simulated the assembly of square-shaped
building blocks with a target size of S = 80. Structure
sizes which allow for a configuration of enhanced stability
are thereby significantly more common on average than
those that do not. In the following, we first consider the
case where �2 is so small that it e↵ectively does not al-
ter the assembly dynamics on the relevant time scales
and can therefore be neglected. This case can be un-
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FIG. 3. Assembly time and optimal parameter for vanishing �2 = �3 = ... = 0. A The time required to achieve 90% yield
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hexagonal (green) system for target structure size S = 100. Dash-dotted lines represent the prediction of the e↵ective theory
(by numerically integrating Eq. (1)). For su�ciently large detachment rates, the assembly time scales proportional to ���2

1 ,
while for small detachment rates the assembly time diverges. B, C The minimal assembly time (B) and optimal detachment
rate (C) inferred from the simulation (markers) and e↵ective theory (dash-dotted lines) are plotted against the size of the target
structure and exhibit approximate power-law dependencies for all three particle systems. Tables show the scaling exponents ✓sim

and �sim inferred from the last three data points of the stochastic simulation in comparison with their theoretical asymptotic
values ✓th and �th derived by the mathematical analysis (see Eq. (2) and Methods).

derstood as the ‘leading order’ e↵ect in an expansion in
which one truncates the sequence of detachment rates
�1 ⌧ �2 ⌧ �3 . . . at successively higher order. The idea
is that the leading order e↵ect in which higher order de-
tachment rates �2, �3, ... are neglected might already de-
scribe essential features of the kinetics of self-assembly
processes. Thereafter, we will investigate how the as-
sembly dynamics is a↵ected by the higher order rates
�2, �3, ....

If �n2 = 0, stable intermediate configurations do not
decay any more and the assembly process thus contains
irreversible steps. Consequently, the system will even-
tually reach an absorbing state in which all monomers
are bound either into complete structures or stable inter-
mediate states. The process can therefore be unambigu-
ously characterized by its final yield, which is a mono-
tonic function of �1 (Fig. 2B): If the detachment rate
�1 is too small, structures nucleate too quickly and the
system falls into a kinetic trap, resulting in a poor final
yield. Increasing �1 slows nucleation relative to cluster
growth, thereby increasing the number of structures that
get completed but also the time required to reach the fi-
nal state. The optimal values of �1, with which a yield
of 90% can be achieved in the smallest amount of time,
are indicated on the curves in Fig. 2B for the di↵erent
target structure sizes.

The assembly time T90 as a function of �1 is dis-
played in Fig. 3A for the di↵erent morphologies of the
monomers and is found to exhibit a characteristic shape:
For small �1, the assembly time exhibits a U-shape with
a pronounced minimum, followed by a power law scaling
⇠ �

��2
1 as �1 increases. Notably, the minimal assembly

times for the three monomer morphologies di↵er by al-

most three orders of magnitude. Even more importantly,
the minimal assembly times behave di↵erently as a func-
tion of the structure size (Fig. 3B): For triangular- and
square-shaped monomers, the minimum assembly time
as a function of the structure size (for S � 1) increases
approximately as a power law with exponent ✓ ⇡ 1.2,
while for the hexagonal system it increases only with
an exponent of ✓ ⇡ 0.4. Similarly, the optimal detach-
ment rates show approximate power law dependencies on
the target structure size with characteristic exponents
�. We will refer to the (asymptotic) exponents ✓ and
� as time complexity- and control parameter exponent,
respectively [21]. Di↵erences in the time complexity ex-
ponents imply that the disparities in the assembly times
of the various monomer morphologies become ever more
pronounced with increasing size of the target structure.
Consequently, for the self-assembly of large objects, the
morphology of the building blocks plays a crucial role, as
it decisively determines the time e�ciency of their self-
assembly process.

IV. ANALYSIS WITH AN EFFECTIVE MODEL

In order to understand the parameters that influence
the assembly time and to predict the time complexity
exponent for arbitrary morphologies, we formulate an ef-
fective theory of the assembly dynamics. To this end,
we exploit the fact that the assembly process typically
follows a specific path that passes through a sequence
of stable intermediate states, as illustrated in Fig. 2A.
The larger the number of unstable states that must be
traversed to reach a new stable configuration, the less
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likely the particular path will be. In order to formulate
the e↵ective theory we therefore only consider the most
probable assembly pathways that link stable configura-
tions by the smallest number of unstable intermediate
steps. If the detachment rate �1 is large compared to the
assembly rate C⌫, transitions between two subsequent
stable states of size n and n + � can then be considered
as e↵ective �+1-particle reactions involving � monomers
as well as the cluster (see Methods for details).
Initially the assembly process starts with the formation
of a stable nucleus, which requires a minimal number of
� monomers, where � is called the nucleation size (see
Fig. 1). Subsequent attachment processes proceed in
two steps as illustrated in Fig. 1C: First, a leading order
reaction that involves � monomers, where � is called the
attachment order, must occur in order to reach a new
stable configuration. Subsequently, a number of sublead-
ing order reactions may follow that allow the complex to
traverse further stable configurations until another reac-
tion of leading order � is required (see Fig. 1C).
Besides � and �, we introduce a third parameter !, which
we call the growth exponent, and that quantifies how the
average growth rate of a cluster scales with its size. The
growth rate of a cluster typically increases with its size
s for two reasons: First, the leading order reaction can
occur at any site along the boundary of the cluster and,
therefore, its rate scales proportional with the boundary.
Second, the number of subleading order reactions follow-
ing a leading order reaction typically increases with the
size of the boundary as well. For example, in the case
of the triangular and square system, since the cluster
boundary scales approximately like ⇠ s

1/2, the e↵ective
growth rate scales with ⇠ s

1, yielding ! = 1. In con-
trast, in the case of the hexagonal system, there are no
subleading order reactions (because � = 1) and hence,
approximately ! = 1/2.
The three parameters �, � and ! are summarized in Fig.
1A for the three particle systems.

In the limit where the detachment rate �1 is large com-
pared to the reaction rate C⌫, the assembly dynamics
can be described by the following e↵ective theory for the
concentrations cn of n-mers (see Methods for details):

@tc1 = ��µ̄c
�
1 � ⌫̄c

�
1

XS�1

s=�
s

!
cs ,

@tc� = µ̄c
�
1 � ⌫̄�

!
c�c

�
1 ,

@tcs =
�
(s� 1)!cs�1 � s

!
cs

�
⌫̄c

�
1 .

(1)

The three equations describe the temporal evolution of
the concentration of monomers, stable nuclei of size �

and larger complexes of size � < s < S, respectively.
Since pre-nucleation states are unstable they are not
explicitly considered and the growth of larger clusters
is described in terms of e↵ective average growth rates
⇠ ⌫̄s

!
c
�
1 , where unstable states have been ‘integrated

out’ (see argument above and Methods). Specifically,
the terms on the right hand side of the first line account
for the loss of monomers due to nucleation with rate µ̄

and attachment of monomers to complexes with rate ⌫̄.

Similarly, the second line accounts for the gain and loss
of stable nuclei due to nucleation as well as growth of sta-
ble nuclei, respectively, and the last line describes gain
due to the growth of smaller complexes and loss due to
growth of complexes of the same size s. The e↵ective
rate constants for nucleation and attachment are given

by µ̄ := µ
�

⌫
�

���2
and ⌫̄ := a ⌫

�
⌫
�

���1
, respectively (see

Methods). Fitting the constant prefactor a in ⌫̄ for a
specified structure size S = 100, we find a very good
agreement between the stochastic simulation and the ef-
fective theory for all three particle systems; see Fig. 3.
Hence, the e↵ective theory identifies the three topological
parameters �, �,! (plus a numerical constant a) as the
major determinants of self-assembly kinetics. Since the
above kinetic approach is completely general, we expect
it to accurately describe the self-assembly dynamics of
arbitrary systems, for instance, also of three-dimensional
structures.
The theory also allows us to analytically compute the

asymptotic scaling exponents of the optimal detachment
rate and minimal assembly time characterizing their de-
pendence on the structure size. To this end, we exploit
the fact that the optimal detachment rate �

opt
1 scales

identically as the threshold rate �th to obtain a fixed
yield, which is a consequence of the collapse of the yield
curves in Fig. 2B. This permits us to strongly simplify
Eq. (1) as a two-variable system, which considers only
the concentration of monomers and the total concen-
tration of incomplete structures. From this simplified
system, the asymptotic parameter exponent can be de-
termined with a scaling ansatz (see Methods) and we
find the optimal detachment rate scaling as �

opt
1 ⇠ S

�

with � = 2�!
����1 . Furthermore, since nucleation is the

time limiting step, the total assembly time approximately
equals the time it takes for 0.9N/S nucleation events to
happen: T

min
90 ⇠ C

S /(µ̄optC
�) ⇠ S

✓, with time complex-
ity exponent

✓ =
(1� !)� + � + 2! � 3

� � � � 1
. (2)

The theoretical estimates of the exponents for the three
particle systems are displayed in the tables in Fig. 3B,C
in comparison with their values inferred from stochas-
tic simulations. In general, the theoretical exponents
yield good estimates for the numerically determined ex-
ponents. Remaining di↵erences may be attributed to the
circumstance that the asymptotic scaling regime is not
fully reached for the simulated system sizes and the ac-
tual growth exponent ! slightly deviates from its esti-
mated value.
As can be seen from the definitions of � and ✓, the

exponents are defined only if � � � + 2 and they tend
to decrease with increasing di↵erence between the nu-
cleation size � and attachment order �. This implies
that in order for self-assembly to be e�cient, in gen-
eral, � should be small and � large. This makes sense
intuitively because a large di↵erence between these pa-
rameters allows to reduce the nucleation rate by chang-
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FIG. 4. Beyond ideal self-assembly: The role of cluster interactions. A The ideality index I, which estimates the
number of interactions of an oligomer with other oligomers until time T90 (see definition Eq. (3)), is plotted against the
detachment rate �1 for the three particle systems (S = 100). The index has been calculated numerically by integrating the
e↵ective model, Eq. (1). Values of I larger than 1 (dotted line) indicate that cluster interactions can potentially be important
and a↵ect the assembly dynamics. A strong dependence of the potential role of cluster interactions on the particle morphology is
thus revealed. B Assembly time T90 with (dotted) and without (dash-dotted) cluster interactions plotted against the detachment
rate �1. In order to simulate the system with cluster interactions, we extended the e↵ective theory by additional terms that
account for all possible cluster reactions cs + cp

⌫! cs+p subject to the constraint s + p  S (see Methods for details). As in
the ideal case, the assembly time in the model with cluster interactions increases like T90 ⇠ ���2

1 for large �1 but the minimal
assembly time is smaller and shifted towards smaller detachment rates. Since the model most likely overestimates the rate of
reactions between clusters, the resulting curve must be considered an upper bound for the e↵ect that is to be expected in a
real system.

ing �1 without simultaneously a↵ecting the attachment
rate. Thereby, the ratio between the e↵ective nucleation
and attachment rate can be increased e�ciently, which
permits the assembly products to grow to a larger size
[21]. In the hexagonal system, the minimal attachment
order � = 1 even guarantees a constant growth rate in-
dependent of �1, which explains the high e�ciency of
the hexagonal system. Note, however, that if � is much
larger than �, the theoretical estimates for the exponents
may lose their validity because �opt

1 � C⌫ then no longer
holds. If � = � + 1, the ratio between the e↵ective nu-
cleation and attachment rate cannot be tuned any more
since both rates depend identically on �1 (the same num-
ber of unstable intermediate states must be transversed
in both processes). The exponents are thus undefined if
� = � + 1.

All results so far have been derived under two sim-
plifying assumptions; namely, first, that clusters do not
interact and grow only by attachment of single monomers
(ideality assumption), and, second, that all higher order
detachment rates �2, �3, . . . vanish. In the following, we
will relax both of these assumptions and see how this
a↵ects the assembly dynamics.

V. THE ROLE OF CLUSTER-CLUSTER
INTERACTIONS

In order to estimate the extent to which interactions
among oligomers can potentially influence the dynamics,

we define the assembly ideality index

I :=
S

C
⌫

T90Z

0

K
2
dt , (3)

with K(t) :=
PS�1

s=� cs(t) being the total concentration
of incomplete complexes in the system at time t. The
ideality index therefore estimates the expected number
of cluster interactions per completed structure until time
T90 (note that the concentration of completed structures
at 90% yield is 0.9C/S ⇡ C/S), assuming the same re-
action rate ⌫ between two clusters as between a cluster
and a monomer. This assumption for the reaction rate
between clusters most likely strongly overestimates their
real reaction rate because larger clusters would typically
di↵use and thus react more slowly than monomers and
only a fraction of their interactions would lead to sta-
ble configurations. Furthermore, geometric deformations
of larger assemblies might strongly decrease the reaction
rate between clusters. Therefore, the ideality index must
be interpreted as an upper limit for the expected num-
ber of reactions between clusters. Small values I ⌧ 1
indicate that cluster interactions can safely be neglected
(‘su�cient condition’), whereas large values I > 1 in-
dicate that they may potentially have an e↵ect on the
dynamics, depending on the specifics of the system.
Figure 4 shows the ideality index plotted against the

detachment rate �1 for the three particle systems. The
index reveals a strong dependence of the role of clus-
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ter interactions on the morphology of the constituents:
While cluster interactions can be safely neglected for the
hexagonal system (I ⌧ 1), the index for the triangular
system suggests a large potential role for these interac-
tions. Away from the optimal detachment rate, the role
of cluster interactions further decreases for the hexagonal
system but increases strongly in the triangular system.
We attribute those di↵erences in the ideality index pri-
marily to variations in the attachment order �: Small
values of � indicate that growth of clusters is compar-
atively fast and hence the concentration of incomplete
structures is rather low, enabling only a small number of
cluster encounters.

In order to estimate the e↵ect that cluster interactions
can have on the assembly time more accurately, we ex-
tended the e↵ective model by additional terms account-
ing for reactions of any two clusters of sizes i, j � � with
i+ j  S to a cluster of size s = i+ j at rate ⌫:

@tcs = ... +
1

2
⌫

X

i,j��
i+j=s

cicj � ⌫cs

X

i��
i+sS

ci , (4)

for all �  s  S. The factor of 1
2 in front of the first

sum avoids double counting and serves as stoichiometric
factor in the case i = j. As before, assuming that clusters
react at the same rate ⌫ as monomers will strongly over-
estimate the e↵ect that cluster interactions have on the
assembly time and thus the model can only describe an
upper limit for the e↵ect that is to be expected by clus-
ter interactions. Figure 4B compares the assembly time
of the ideal system with that obtained from simulating
the extended model accounting for cluster interactions.
The comparison shows that cluster interactions can po-
tentially reduce the assembly time in the triangular and
to a much lesser extent also in the square system. Given
that the model most likely overestimates the reaction rate
between clusters, however, the reduction of the assembly
time will presumably be rather small in reality. Operat-
ing at ideality is therefore probably desirable for general
self-assembly systems because cluster interactions could
additionally promote the emergence of assembly errors
and defects. The morphology of the constituents could
therefore also be an important determinant of the robust-
ness of the system against errors.

VI. HIGHER ORDER REVERSIBILITY

Finally, we return to the assumption of an ideal as-
sembly process and study the regime in which the higher
order detachment rates �2, �3, . . . are non-negligible for
the dynamics. Specifically, in the following, we quan-
tify the role of higher order detachment rates by the
ratio r between detachment rates of consecutive order,
r := �n+1/�n = e

�EB . Small values of r indicate that
the higher order detachment rates, which are given by
�n = �1 r

n�1, are small compared to the leading order de-
tachment rate �1 and the assembly process can e↵ectively

be considered as irreversible on some relevant time scale
(for example on the time scale of the minimal assembly
time T

min
90 ). We therefore call r also the reversibility ra-

tio. For su�ciently small r, we assume that the dynamics
is well described by Eq. (1) in some parameter regime
around the minimum but the question is how the system
is a↵ected if r is su�ciently large. Note that if the final
structures are required to be su�ciently stable, the re-
versibility ratio needs to be small enough so that the rate
S�d = S�1r

d�1, at which a monomer dissociates from a
completed structure is su�ciently small. This stability
requirement might set an upper limit for the reversibility
ratio in practice.

Figure 5 shows the assembly time for the various par-
ticle morphologies as a function of �1 (in units (C⌫)�1)
for di↵erent reversibility ratios r. Here, variation of
�1 at constant r corresponds to an experimental con-
trol scenario where, for example, the concentration C

is changed while the temperature (and binding energy)
is kept constant. Our numerical results show that the
key new feature arising from higher order reversibility is
that the range of �1 in which a yield of 90% is achieved
is now bounded from above when r > 0, whereas it is
bounded from below when r = 0 (in the plot, we in-
dicate divergences of the assembly time at a finite �1

by upward arrows in cases where the divergence does
not become apparent otherwise). Accordingly, the as-
sembly time diverges at finite �

div
1 either above the opti-

mal rate, i.e. �
div
1 > �

opt
1 , (r > 0) or below the optimal

rate, i.e. �
div
1 < �

opt
1 , (r = 0). The reason is that for

r > 0 the self-assembly process does not become kinet-
ically trapped even if �1 is small, because higher order
detachment processes can always disassemble any struc-
ture. Interestingly, we find that for su�ciently small de-
tachment rates, for all three particle morphologies, the
assembly time scales inversely proportional to the de-
tachment rate, independently of r > 0. In contrast, if
�1 is large, higher order detachment processes permit the
system to realize a stationary concentration profile. The
weight of the profile is shifted more and more towards
small structure sizes as �1 increases until a yield of 90%
can no longer be achieved. If �i�2 = 0, stable interme-
diate states block the reflux of density to structures of
smaller size and thus prevent the system from becoming
stationary, thereby explaining why the T90-curves do not
diverge at large but finite �1 in the case r = 0.

By decreasing the reversibility ratio, the T90-curves
gradually change over from the shape that diverges at
a finite rate above the optimal rate to the shape that di-
verges at a finite rate below the optimum. Interestingly,
there is typically a range of intermediate ratios r where
the minimum is in a deep funnel and the assembly time
increases sharply to either side. From an experimental
point of view, such a reversibility ratio would be very
unfavorable, as it requires extreme fine-tuning of �1 to
achieve a high yield in a reasonable time. However, de-
pending on the monomer morphology, a su�ciently large
reversibility ratio can be quite advantageous to reduce
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FIG. 5. The e↵ect of higher order reversibility on the assembly time. The assembly time T90 obtained from stochastic simulations
is plotted against the detachment rate �1 for di↵erent reversibility ratios r = �n+1/�n = e�EB for the triangular (A), square
(B) and hexagonal (C) system with structure size S = 100 and N = 100S or N = 1000S. Divergences of T90 at finite values of
�1 are indicated by upward pointing arrows if these would otherwise not be evident from the plot. For r > 0, the assembly time
scales inversely proportional to �1 for su�ciently small �1 and diverges at large finite �1. In contrast, for r = 0 the assembly
time diverges at small finite �1 but scales with ⇠ ���2

1 for large �1. The minimal assembly time is noticeably a↵ected by higher
order reversibility only if r is large. The inset in B compares the assembly time obtained from stochastic simulations for the
square system with the prediction of the e↵ective theory (cf. Eqs. (1) and (5)).

the assembly time and increase the range of variability
of the control parameter for which self-assembly is e�-
cient due to the slow increase of T90 with decreasing �1.
Note, in particular, that, as both the control parame-
ter and the assembly time are measured relative to (C⌫)
and (C⌫)�1, respectively, the assembly time in physical
units as a function of the monomer concentration C is
constant throughout the range in which T90 ⇠ �

�1
1 . This

implies that in an experimental control scenario in which
the monomer concentration is increased to trigger self-
assembly, the assembly time becomes constant for su�-
ciently large monomer concentrations.

To include higher-order reversibility in the e↵ective ki-
netic theory, we note that its main e↵ect is the dissocia-
tion of structures which are stable against disassembly by
�1, i.e., structures in which each component has two or
more bonds. Decay of these structures is mainly driven
by the subleading rate �2. For example, in the system
with square-shaped monomers, each stable state of rect-
angular shape decays at rate �̄ ⇡ 4�2, since there are four
edge-particles each detaching at rate �2. Hence, in order
to account for higher order reversibility in the e↵ective
theory, Eq. (1) needs to be extended by the following
terms accounting for the disassembly of structures:

@tc1 = . . . + ��̄c� + �̄

S�1X

s=�+1

cs

@tc� = . . . + �̄ (c�+1 � c�)

@tcs = . . . + �̄ (cs+1 � cs) .

(5)

The terms on the right hand side of the first line ac-
count for the influx of monomers due to the disassembly
of nuclei as well as detachment of monomers from larger
complexes. Similarly, the terms in the second and third

line account for the gain of complexes of size s  � due
to disassembly of larger complexes and loss due to disas-
sembly of complexes of the same size s. Note that, while
Eq. (1) describes self-assembly as an irreversible process,
only the additional terms in Eq. (5) render the process
fully reversible.
Integrating the extended model, we find that the the-

ory correctly describes the qualitative behavior of the
system (Fig. 5) but underestimates the assembly time
for small �1 and small nonzero r. We attribute those
quantitative di↵erences mainly to the averaging of at-
tachment rates in the e↵ective model, which leads to an
overestimation of the rate of transfer of monomers be-
tween complexes.
This approach of expanding the theory gradually by
terms that account for the heuristic e↵ect of higher or-
der reversibility thus o↵ers a systematic way to describe
reversible self-assembly processes. The first order theory,
Eq. (1), can thereby be treated analytically by exploit-
ing its irreversibility in order to derive analytic scaling
exponents. The theory approximately predicts the mini-
mal assembly time that can be achieved. The higher or-
der corrections lead to important qualitative di↵erences
compared to the first order theory, but typically do not
significantly alter the minimal assembly time unless r is
large.

VII. DISCUSSION

In this work we found that in the self-assembly of two-
dimensional structures, the morphology of the building
blocks crucially determines dynamic properties of the
self-assembly processes, most importantly their time ef-
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FIG. 6. Hierarchical self-assembly as a way to optimize the morphology. Organizing the assembly process in a hierarchical
way can increase self-assembly e�ciency significantly by optimizing the morphology of intermediate assembly products. A In
order to induce triangular particles to assemble hierarchically, bonds between edges indicated in brown are assumed to be more
stable than bonds between black edges. As a result of this variation of the binding strengths, particles first form hexamers
(hexagons) or dimers (rhomboids) which subsequently assemble into the structures more e�ciently than the original triangles.
B The assembly time is plotted against the detachment rate �1 for the triangular particle system in comparison with the two
hierarchical schemes illustrated in A and a target structure of size S = 1200. Simulations were performed with the e↵ective
model (see Methods), assuming a constant ratio rh = 10�4 between the detachment rates of strong and weak bonds. Since
self-assembly of particles with the hexagonal morphology is particularly e�cient, the assembly time can thus be reduced by
three orders of magnitude and variability in the control parameter is enhanced significantly.

ficiency. The dynamic e↵ect of the particle morphology
can thereby be expressed by three topological parame-
ters: the nucleation size and attachment order, which
describe the e↵ective order of reactions by which clusters
nucleate and grow, respectively, as well as the growth ex-
ponent, that determines how the growth rate scales with
the structure size. Most importantly, the time complex-
ity exponent, which characterizes the scaling of the as-
sembly time with target structure size, is approximately
a function only of these three parameters. Monomer mor-
phologies like the hexagonal system, with an attachment
order of 1 (and nucleation size larger than 2) are thereby
particularly e�cient, as they allow to control the nucle-
ation speed without a↵ecting the growth rate when tun-
ing the control parameter. In contrast, an attachment
order larger than 1 requires an increasingly large nucle-
ation size in order to keep the time complexity exponent ✓
small. A large nucleation size, however, implies a strong
increase of the assembly time for detachment rates larger
than the optimal rate and might hence necessitate fine-
tuning of the control parameter.

This necessity of fine-tuning can possibly be avoided by
increasing the reversibility ratio, i.e. the ratio between
detachment rates of consecutive order, which amounts
to reducing the binding energy between the constituents.
We found that a su�ciently large reversibility ratio in-
duces a slow increase of the assembly time for small de-
tachment rates and therefore allows one to achieve high
e�ciency in a large parameter range. However, too large
a reversibility ratio would require a very low binding en-
ergy and might hence not conform with the stability of
the final assembly products. On the other hand, interme-
diate reversibility ratios can lead to a very unfavorable
situation in which the assembly time increases sharply

to both sides of the optimum and extreme fine-tuning is
necessary in order to achieve e�cient self-assembly.
Our study suggests that understanding kinetic features of
self-assembly processes is crucial for a holistic perception
of the phenomenon and highly useful when it comes to
experimentally realizing self-assembling systems. Speci-
fying structural determinants and conditions under which
high yield is achieved might not be su�cient, because the
time it takes could be extremely long. Here we found
that the morphology of the constituents is an impor-
tant kinetic determinant, which strongly impacts self-
assembly e�ciency. We demonstrated that, depending
on the particle morphology, the time it takes to achieve
a high yield for large target structures can vary by several
orders of magnitude. These insights can be used to opti-
mize self-assembly experiments, for example, by suggest-
ing highly e�cient ways to implement hierarchical self-
assembly. For instance, Fig. 6 shows two possibilities in
order to significantly enhance the self-assembly e�ciency
of triangular monomers by optimizing their morphology
with a hierarchical assembly step. Making certain bonds
more stable than others enables the monomers to first
form squares or hexagons, which subsequently assemble
into the final structures much more e�ciently than the
original triangles. We simulated this hierarchical sce-
nario by modifying the e↵ective theory (see Methods)
and find that for structures of size S = 1200, a reduction
of the minimal assembly time by 3 orders of magnitude
can be achieved and robustness in the control parameter
is greatly enhanced (Fig. 6B).

Furthermore, our results may contribute to a better
understanding of the kinetics of biological self-assembly
processes. For example, several icosahedral virus cap-
sids assemble from triangular-shaped particles [34] but
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the mechanisms underlying their self-assembly are still
largely unknown. Our results would suggest that either
a hierarchical step or higher order reversibility is required
in order for large capsids to assemble time-e�ciently.
However, an additional problem concerns the icosahedral
symmetry of spherical capsids: At 12 precise positions
the capsid proteins must form pentamers while every-
where else they form hexamers. Consequently, it has
been suggested that large virus capsids can only assem-
ble in the presence of a sca↵old [35] coordinating their
formation and thus our results might not apply directly
in this case as a consequence of the sca↵olding. Other-
wise, assuming that icosahedral shells assembled without
a sca↵old with nucleation size � = 5, Eq. (2) would
predict a time complexity exponent of ✓ = 2, implying
that self-assembly of large icosahedral capsids would be
even significantly less e�cient than self-assembly of the
planar triangular system (✓ = 1). Hence, beside struc-
tural aspects, enhancement of time e�ciency could be
another essential reason for the requirement of a sca↵old
in the formation of large icosahedral viruses. In contrast,
alpha-carboxysomes, which also form large icosahedral
structures, were shown to assemble also in the absence
of a sca↵old and are composed of proteins with hex-
americ and pentameric quaternary structure (CsoS1ABC
and CsoS4AB) [36]. Hence, carboxysome capsids repre-
sent the icosahedral analogue of the hexagonal particle
system studied here. This particular morphology of the
constituents could be an essential factor in order for such
huge structures to be able to assemble e�ciently even
in the absence of a sca↵old. These insights might be
particularly relevant for experiments trying to mimic the
self-assembly of artificial capsids for biotechnological ap-
plications [5].
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Appendix A: Methods

1. Stochastic simulation

The simulations were performed using Gillespie’s
stochastic algorithm [37]. In the simulation complexes
are represented as boolean arrays of size S, which con-
tain ones at sites that are occupied by a particle and
zeros otherwise. For simplicity, one can imagine the
structures as two-dimensional arrays although internally,
of course, all data structures are represented as one-
dimensional memory sequences and two-dimensional sub-
script indices must be converted to linear indices. The
neighboring- or adjacency relations between the sites in
the two-dimensional array thereby determine the mor-
phology and are defined as follows: In the square sys-
tem, site (i, j) is adjacent to sites (i ± 1 mod L, j) and
(i, j ± 1 mod L), where L =

p
S is the linear extension

of the target structure and by taking the modulo pe-
riodic boundary conditions are implied. Accordingly, in
the hexagonal system, site (i, j) is adjacent to the six sites
(i±1 mod L, j), (i, j±1 mod L) and (i±1 mod L, j⌥1
mod L) and in the triangular system, site (i, j) has three
neighbors (i ± 1 mod L, j) and (i, j + 1 mod L) if j is
even or (i, j � 1 mod L) if j is odd (see Fig. 1A for the
logic behind these definitions).
As soon as a dimer forms, such a boolean array is reserved
for the complex and two arbitrary neighboring sites are
chosen and set to 1 in order to represent the initial dimer.
Due to the periodic boundary conditions, it is irrelevant
which two neighboring positions are chosen because the
structure is translationally invariant. Subsequently, each
unoccupied site in the complex which has at least one oc-
cupied neighbor is itself occupied by a monomer at rate
⌫n, where n is the number of monomers in the system
(monomer attachment). The reaction rate ⌫ is typically
set to 1. Similarly, a site that is occupied becomes disoc-
cupied again with rate �i, where i denotes the number of
occupied neighboring sites (monomer detachment). Each
attachment (detachment) event decreases (increases) the
number n of monomers in the system. In this way, the
simulation respects all possible configurations of clusters
that can emerge. By counting the number M of complete
structures, i.e. structures with S occupied sites, the yield
is calculated as yield = MS

N .
It is important to optimize the code for e�ciency be-
cause, since the detachment rate �1 is typically much
larger than the reaction rate N⌫, many Gillespie steps
are generally needed until a yield of 90% is reached even
for intermediate particle numbers N (typically, we simu-
lated the system with N between 100S and 1000S so that
a maximum number of 100 to 1000 target structures is
built). In particular, the simulation of the triangular
system is computationally expensive due to the compar-
atively large number of intermediate steps between two
stable configurations with the triangular morphology and
the longer time spans required to be simulated in order
to reach 90% yield. Partly, several billion Gillespie steps
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were needed for a single run to complete. The computa-
tional cost of the simulation strongly increases with the
size of the target structure because both the detachment
rate �1 and the required simulation time T90 increase with
S. Furthermore, the particle number N should typically
be increased with S in order to keep the number of assem-
bled structures constant. Hence, in order to be able to
simulate also large system sizes up to a size of S = 1000,
e�ciency of the simulation is crucial. By associating ad-
ditional data structures with the complexes that allow to
choose and update attachment and detachment events
e�ciently, our simulation written in C++ was able to
perform more than one million Gillespie steps per second
on a 3,1 GHz CPU. The C++ code of the simulation is
available online.

2. E↵ective model

In order to better understand the determinants of self-
assembly kinetics, an e↵ective model was described in the
main text (cf. Eq. (1)). Here we discuss the model and
show how it can be derived. The essence of the theory
is the restriction to the most likely assembly pathways,
i.e. pathways that traverse a minimal number of unsta-
ble states in order to arrive from one stable configuration
to the next. The process starts with the formation of a
stable nucleus, which requires a minimal number of �

monomers (see Fig. 1C for an illustration of the nucle-
ation process in the triangular system). Consequently,
to form the nucleus, the system must traverse � � 2 un-
stable states, each of which decays to the previous state
with rate ⇠ �1. Hence, according to classical nucleation
theory [38], if �1 is large compared to the forward rates
C⌫ and Cµ, respectively, nucleation can be described as
an e↵ective reaction of order �,

r(�c1!c�) = µ̄c
�
1 with µ̄ = µ

⇣
⌫

�

⌘��2
. (A1)

Here ci denotes both, an oligomer of size i as well as
its concentration. The e↵ective rate constant µ̄ thereby
equals the product of the forward rates divided by the
backward rates. The rates in Appendix Fig. 7 show
that - with the definitions of our model - all numeric fac-
tors in the forward and backward rates, which account
for equivalent assembly pathways, cancel out and so the
above expression for µ̄ defines not just a proportionality
but really an equality (the same holds true also for the
square and triangular system).
Attachment processes typically proceed in two steps

(see Fig. 1C): In the first step, a leading order reaction
of order � leads to the formation of a new stable configu-
ration. Similar as for nucleation, if �1 is large compared
to C⌫ the first step can be described as an e↵ective re-

action with rate constant ⇠ ⌫
�

⌫
�

���1
. Subsequently, in

the second step, a number of subleading order reactions
may follow ‘filling up the row’ until the process can only
proceed by another reaction of order �. If �1 is large

compared to the forward rate C⌫, the subleading order
reactions can be assumed to be fast compared to the
leading order reaction. Hence, denoting by ns the total
number of particles that are attached through the first
and second step on average for a cluster of size s, the rate
of the entire attachment process is approximately given
by:

r(cs+nsc1!cs+ns ) ⇠ bs

h
⌫
�

⌫
�

���1
i
c
�
1cs . (A2)

Here, bs scales with the size of the boundary of an aver-
age cluster of volume s and accounts for the number of
binding sites at which the leading order reaction can be
initiated. For the analysis, however, it is convenient to
consider the (harmonic) average rate for the attachment
of a single monomer:

r(cs+c1!cs+1) = nsr(cs+nsc1!cs+ns ) := s
!
⌫̄c

�
1cs

with ⌫̄ = a⌫

⇣
⌫

�

⌘��1
,

(A3)

where as
! := nsbs such that s

! captures the scaling of
the rate with the cluster size and the constant a combines
the numerical prefactors of ns and bs. We fitted the con-
stant a but its values can also be estimated analytically.
For example, in the square system, assuming that typical
clusters have the shape of a square, the cluster boundary
is bs = 4

p
s and the number of particles attached per

attachment sequence corresponds to one quarter of the
boundary, ns =

p
s, implying a = 4 and ! = 1. The

best fit was obtained with a slightly larger prefactor of
a = 5.3, which makes sense considering that clusters most
likely do not grow in perfect square shape and thus have
a slightly larger boundary-to-volume ratio. For the trian-
gular system, the best fit was obtained with a = 4, which
is slightly smaller compared to the square system, proba-
bly because a typical cluster has six edges instead of four
and so ns is slightly smaller than in the square system.
In the hexagonal system, there are no subleading order
reaction because � = 1 and thus ns = 1. Consequently,
we have ! = 1/2 and the best fit was obtained with a
rather small prefactor a = 2.3, which probably accounts
for the fact that, to leading order, particles only bind to
sites at which they have two neighbors, which amounts
to only a fraction of all boundary sites. The constant
a influences the minimal assembly time and the optimal
detachment rate but it does not a↵ect their scaling as we
show in the next section. We determined the respective
values of a by fitting the optimal detachment rate pre-
dicted by the theory with the stochastic simulation for
target structures of size S = 100.
With the definitions for the nucleation rate and average
attachment rate, Eqs. (A1) and (A3), it is straight for-
ward to formulate the ordinary di↵erential equations (1)
that constitute the leading order theory. Note, however,
that for the triangular system, the first attachment re-
action after formation of the nucleus has a higher order
� = 4 compared to all subsequent attachment reactions,
which have order � = 3 (see Fig. 1A). As it turned out,
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stable

FIG. 7. Depiction of the nucleation process including all prefactors for the transition rates. Prefactors account for the degeneracy
of attachment or detachment reactions leading to equivalent configurations. The prefactors of the forward and backward rates
cancel each other so that the e↵ective nucleation rate µ̄ has prefactor 1.

the fit to the simulation is significantly improved if the
higher order of the initial attachment reaction is taken
into account. Specifically, by accounting for all equiva-
lent assembly pathways that lead from the nucleus to the
next stable configuration, we determine the e↵ective rate
of the initial attachment reaction as

r(c�+4c1 ! c�+4) = 24 ⌫̄0c�c
4
1 with ⌫̄

0 = ⌫

⇣
⌫

�

⌘3
.

(A4)
Consequently, the (harmonic) average attachment rate
per monomer for �  s  � + 3 is given by

r(cs + c1 ! cs+1) = 96 ⌫̄0csc
4
1 . (A5)

We modified the e↵ective theory of the triangular system
accordingly in order to account for the higher order of the
initial attachment reaction.
Eq. (1) describes the basic reaction kinetics of reversible
self-assembly. The basic theory can easily be extended by
accounting for additional e↵ects. For example, in order to
estimate the e↵ect invoked by the interactions of larger
oligomers (see Fig. 4B), we additionally accounted for
the reactions of any two clusters of size i � � and j � �

with i+ j  S to a cluster of size i+ j at rate ⌫:

r(ci + cj ! ci+j) = ⌫cicj . (A6)

To this end, we augmented the right hand side of Eq. (1)
by the following terms:

@tcs = ... +
1

2
⌫

X

i,j��
i+j=s

cicj � ⌫cs

X

i��
i+sS

ci , (A7)

for all �  s  S, where the factor of 1
2 in front of the

first sum avoids double counting and serves as stoichio-
metric factor in the case i = j.
Similarly, the right hand side of Eq. (1) can be aug-
mented to account for the e↵ect of higher order reversibil-
ity as shown explicitly for the square system in Eq. (5).
In general, the e↵ect of higher order reversibility can be
included in the theory by accounting for detachment re-
actions at a rate of the general form

r(cs ! cs�1 + c1) = �̄s
�
cs . (A8)

Here s
� describes how the detachment rate invoked by

�2 scales with the cluster size and �̄ ⇠ �2 is the propor-
tionality constant. For example, for the square system,

we determined � = 0 and �̄ = 4�2. In contrast, in the
triangular and hexagonal system, the number of parti-
cles that can detach at rate �2 from the cluster boundary
increases proportional to the size of the boundary, im-
plying � = 1/2. As discussed in the main text, however,
the extended theory is able to predict the behavior of the
system only qualitatively in the regime of small �1 and
small r = �2/�1.
Finally, we used the e↵ective theory in order to simulate
the hierarchical self-assembly scenario by formally distin-
guishing weak and strong bonds of the particles (see Fig
6). To this end, we

In the first case, we simulated the irreversible dimeriza-
tion of two (triangular) monomers via strong bonds into
squares at rate µ = ⌫. In the second case, we considered
the formation of hexagons by explicitly simulating the
nucleation process in the triangular system illustrated in
Appendix Fig. 7 with detachment rate �str = 10�4 ⇤ �1.
The squares and hexagons, once formed, are stable and
react in the usual way as described by Eq. (1) medi-
ated by the weak bonds. Interactions between (trian-
gular) monomers as well as incomplete hexagons with
larger oligomers are fully neglected, which is motivated
by the time scale separation between reactions mediated
by strong and weak bonds. In the hexagonal case, it is im-
portant that the detachment rate �str of the strong bonds
is neither too large nor too small relative to �1: In both
cases, formation of the hexagons would be slow and lead
to an increase of the overall assembly time. We found
that a ratio of rh := �str

�1
⇡ 10�4 between the detach-

ment rates of the strong and weak bonds approximately
minimizes T90.

3. Derivation of the scaling exponents

In order to derive the scaling exponents of the minimal
assembly time and the optimal parameter as a function
of target structure size, we exploit that the leading order
theory, Eq. (1), describes self-assembly as an irreversible
process. In particular, thanks to irreversibility one can
define the final yield, which is plotted in Fig. 2B in de-
pendence of �1. Rescaling �1 by the optimal detachment
rate �

opt
1 approximately makes the yield curves collapse

onto a single curve (Fig. 2B inset) and thereby shows
that �opt

1 scales identically as the threshold rate �
th
1 , i.e.

the minimal detachment rate for which nonzero yield is
obtained. Analyzing the threshold rate instead of the
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optimal rate allows for a great simplification because, as
we will show in the following, detailed information about
the distribution of cluster sizes is not required in order
to derive the scaling of the threshold rate.
Specifically, one can rewrite the sum on the right hand
side of Eq. (1), governing the evolution of the concentra-
tion of monomers, as

SX

s=�

s
!
cs = K

SX

s=�

s
! cs

K
= Khs!i , (A9)

where K :=
PS

s=� cs denotes the total concentration of
complexes above nucleation size and hs!i the ! - moment
of the distribution of cluster sizes. In the case ! = 1,
which applies for the square and triangular system, as
long as the yield is zero, the average cluster size hsi cor-
responds to the total number of bound monomers divided
by the total number of clusters: hsi = C�m

K , where for
notational simplicity here and in the following we de-
note the concentration of monomers by m := c1. For
general !, there is no such exact identity but in order
to make progress we approximate the ! - moment by
hs!i = hsi! ⇡

�
C�m

K

�!
. Because ! is typically close to

1 (for example, for the hexagonal system ! ⇡ 1/2), we
expect the approximation to be quite accurate in general.
Hence, it follows for the evolution of the concentration of
monomers as long as the yield is zero,

dm

dt
= �⌫̄m

� (C �m)! K
1�! � �µ̄m

�
. (A10)

Furthermore, the total concentration of complexes K in-
creases as a consequence of nucleation events and thus
obeys:

dK

dt
= µ̄m

�
. (A11)

Nonzero yield is achieved if the foremost front of the den-
sity profile that describes the distribution of cluster sizes
and evolves according to Eq. (1) reaches the target struc-
ture size S. In order to find a simple condition for the
onset of the yield we first make a hydrodynamic approxi-
mation of the evolution of the cluster size concentration.
To this end, as the cluster size is typically large compared
to 1, we approximate the prefactor (s� 1)! in the third
line of Eq. (1) by s

! and subsequently Taylor expand
the concentration profile by interpreting c as continu-
ous function of s: cs�1 ⇡ c(s) � @sc(s) +

1
2@

2
sc(s) + ....

Hence, in this continuity approximation, the evolution of
the cluster size concentrations follows

@tcs = �⌫̄s
!
m

�
@sc+

1

2
⌫̄s

!
m

�
@

2
sc . (A12)

This partial di↵erential equation describes an advection-
di↵usion equation with coe�cients depending on the
cluster size s and the momentary monomer concentra-
tion m. A similar approach of approximating the sys-
tem of ordinary di↵erential equations by a continuous

advection-di↵usion equation was used previously in or-
der to describe virus capsid assembly [14, 39, 40]. Thus,
the foremost front of the density profile advectively trav-
els a distance �sadvec = ⌫̄

R1
0 s(t)!m(t)�dt, which equals

the square of the di↵usively travelled dsitance �sadvec =
(�sdi↵)2, since the advection and di↵usion coe�cient are
the same. Hence, as we are interested in the asymptotic
scaling for large target sizes S, we neglect the di↵usive
contribution against the advective contribution. As it
turns out, however, the di↵usive contribution is one of
the main reasons why the assembly time for small struc-
ture sizes deviates from its asymptotic scaling. Consid-
ering only the advective contribution and assuming that
a number of complexes nucleates at s = � at time t = 0,
the tip of the density profile evolves according to

ds

dt
= ⌫̄s

!
m

�
, (A13)

with s(0) = � and the yield threshold is arrived if
s(1) = S.
Hence, the closed system consisting of three ordinary dif-
ferential equations (A10), (A11) and (A13) predicts the
threshold of the yield. We were able to find an ana-
lytic solution to this problem only for the case of the
square system (! = 1 and � = 2) using elementary calcu-

lus. Specifically, in this case we find s(1) = �
1+

p
1�4⌘̃

1�
p

1�4⌘̃
,

with ⌘̃ := �µ̄C
⌫̄ , which, for large S (and ⌘ ⌧ 1) implies

�
th
1 /(C⌫) ⇠ µ

⌫ S.
However, in order to determine the asymptotic scaling
exponents, there is a much simpler way which does not
even require to solve the equations. To this end, we
note that in the limit of large structure size S, the nucle-
ation term in Eq. (A10) is negligible for the dynamics of
the monomer concentration because the number of nucle-
ation events is significantly smaller than the number of
attachment events. Furthermore, we non-dimensionalize
the system by measuring concentrations in units of C

and time in units of the e↵ective time scale (⌫̄C��1)�1:
m ! mC, K ! KC, t ! t(⌫̄C��1)�1, which reduces
the system to:

ṁ = �m
�(1�m)!K1�!

K̇ = ⌘m
�

ṡ = s
!
m

�
,

(A14)

with dimensionless parameter ⌘ := µ̄C
����1

/⌫̄. Using
a scaling ansatz for the three variables by defining m =
m̃(⌘z

t), K = ⌘
x
K̃(⌘z

t) and s = ⌘
y
s̃(⌘z

t) with z = (1 �
!)/(2� !), x = (2� !)�1 and y = �(2� !)�1, one can
easily verify that the system becomes independent of ⌘:

m̃
0 = �m̃

�(1� m̃)!K̃1�!

K̃
0 = m̃

�

s̃
0 = s̃

!
m̃

�
.

(A15)

Hence, the scaling forms m̃, K̃ and s̃, while still depend-
ing on �, � and !, are independent of ⌘. In particular,
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as condition for the yield onset in dependence of the de-

tachment rate one obtains: S
!
= s(1) = ⌘

y
s̃(1) ⇠ ⌘

y,
and hence

⌘
�1 ⇠ S

2�!
. (A16)

With the definitions for µ̄ and ⌫̄ from Eqs. (A1) and
(A3), we thus find the detachment rate scaling as

�
opt
1

C⌫
⇠ �

th
1

C⌫
⇠

⇣
µ

⌫

⌘ 1
����1

S
2�!

����1 , (A17)

with parameter exponent � = 2�!
����1 , consistent with the

solution above for the square system. Since nucleation is
the time limiting step, the assembly time T90 can be es-
timated as the time it takes for 0.9C/S nucleation events
to happen. Hence,

T
min
90 ⇠

C
S

µ̄optC�
⇠ (C⌫)�1

⇣
µ

⌫

⌘ ��1
����1

S
(1�!)�+�+2!�3

����1 ,

(A18)
where µ̄

opt denotes the e↵ective nucleation rate resulting
from �1 = �

opt
1 . Thus, we obtain as asymptotic time com-

plexity exponent ✓ = (1�!)�+�+2!�3
����1 .

Interestingly, the same scaling behavior for T90 is ob-
tained when considering the extreme case of very slow

nucleation that typically applies if �1 � �
opt
1 . To see

this, we note that in this regime the concentration of un-
finished structures is low at any time and thus, approxi-
mately, one can assume that each complex is completed
before the next one nucleates. Each nucleation event
then reduces the number of monomers by S units and
hence the evolution of the monomer concentration obeys
ṁ = �Sµ̄m

�. Separating variables and integrating m

from C to 0.1C and t from 0 to T90, we obtain T90 ⇠ C/S
µ̄C�

as above (Eq. (A18)). This result confirms the asymp-
totic scaling of T

min
90 and, moreover, suggests that the

typical shape of the T90 curves does not depend on S as
the di↵erent parts of the curve scale identically with the
target structure size. The invariance of the shape of the
curves in turn implies that the time complexity exponent
✓ not only describes the scaling of the minimal assembly
time but of the entire curve and hence the scaling law
can be formulated much more generally as:

�1 ⇠ S
� implies T90 ⇠ S

✓
, (A19)

as long as all higher order detachment rates are negligible:
�n�2 = 0.
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General motivation

In the first part of this thesis, we analyzed the time e�ciency of self-assembly processes, as-
suming that the particle number N is su�ciently large so that finite size e↵ects do not a↵ect
the physics of the system. In contrast, in this second part we investigate how self-assembly
systems behave in the limit in which the particle number becomes a relevant factor for the
dynamics of the system. The biological motivation is that, for example, within cells, many
components are available only in relatively small copy numbers [146]. Hence, it is not clear
whether the assumption of ‘su�ciently large’ particle numbers used in the previous part is
justified in the cellular context. Furthermore, slow di↵usion could limit the local availabil-
ity of constituents, causing noise in the local concentrations to become an important factor.
Therefore, in order to fully understand biological self-assembly systems and the mechanisms
that have evolved in order to guarantee their robust and resilient functioning, we believe that
it is indispensable to understand not only the deterministic but also the stochastic dynamics
of self-assembly processes.
Another assumption made throughout the first part of this thesis was that all binding re-
actions are specific, i.e. constituents can only bind with their designated binding partners.
Correspondingly, the final assembly products are uniquely defined. In biological and experi-
mental systems, however, non-specific or incorrect bonds between the constituents might also
lead to malformed or defective structures if the control parameters like temperature, binding
strength etc. are chosen unfavourably [34, 147, 129]. In other words, the yield in finished
structures alone might not be enough to characterize the quality of the assembly process, but
the number or frequency of assembly errors in the final structures must also be considered.

Subject of this second part of the thesis is hence a characterization of stochastic e↵ects in self-
assembly if the particle number is not abundant, as well as the susceptibility of self-assembly
systems to errors and defects in the case when binding is not fully specific. Furthermore,
we will discuss ways and strategies in order to avoid as far as possible the deleterious e↵ects
arising from stochasticity and error susceptibility.
Specifically, in chapter 5 we will discuss the role of stochastic e↵ects for the activation and
dimerization scenario, the factors that promote their emergence and how their deleterious
e↵ects can be alleviated. We thereby focus entirely on stochastic e↵ects that arise intrin-
sically from the stochastic dynamics of the self-assembly processes but not due to external
noise caused, for example, by external variations in the overall particle numbers [148, 149].
Furthermore, in this stochastic context, we will specify the role of the heterogeneity of the
building blocks as an important factor that promotes the emergence of stochastic e↵ects.
Subsequently, in chapter 6, we develop a more in depth mathematical understanding of the
stochastic yield catastrophe which a↵ects the activation scenario if particle numbers are not
abundant. Furthermore, we discuss various distinct strategies in order to overcome stochastic
yield catastrophes and achieve robust self-assembly also for small particle numbers.
Finally, in chapter 7, the robustness of the just-in-sequence scenario against stochastic e↵ects
is quantified. Furthermore, we discuss the susceptibility of the di↵erent self-assembly scenar-
ios to errors in the case of reduced binding specificities, both in the deterministic (abundant
particle numbers) and the stochastic (non-abundant particle numbers) regime. In particular,
we demonstrate that the just-in-sequence supply strategy o↵ers an e↵ective and robust way
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to avoid stochastic e↵ects and assembly errors and hence might be a useful strategy to control
non-equilibrium self-assembly processes.



5 Stochastic yield catastrophes and
robustness in self-assembly

This chapter summarizes the most important findings of our project on the self-assembly
of heterogeneous structures. The corresponding manuscript has been published in eLife.
This chapter is based on and uses parts of this publication [141], which is also reprinted in
section 5.6.

5.1 Motivation

In the first part of this thesis we analyzed the time e�ciency of various self-assembly scenar-
ios. Although we found that the time e�ciency of these scenarios sometimes di↵ers by orders
of magnitudes and depends di↵erently on the size of the target structure, all four scenarios,
in principle, exhibited a similar behavior: in all cases, by varying the respective control pa-
rameter, the final yield increases from 0 to the perfect value of 1 in a strictly monotonic,
sigmoidal fashion. The implicit assumption thereby is that the particle copy number N is
large. However, in cells, many components are available only in relatively small numbers
[146]. Furthermore, cells are rather crowded and, thus, concentrations might also be subject
to local fluctuations. For those reasons, in order to better understand biological self-assembly
systems and the obstacles that had to be overcome by evolution in order to guarantee their
robust functioning, it might be necessary to understand self-assembly dynamics also in the
stochastic regime in which particle numbers are low and subject to fluctuations.
Another particularly interesting question in this context is how heterogeneity a↵ects the
assembly e�ciency and the robustness of the process if the particle number is low. Deter-
ministically, we found that three out of the four scenarios discussed in the previous part
(namely the activation-, dimerization- and reversible binding scenario), which allow to slow
down nucleation, treat all constituent species equivalently and therefore are invariant to the
heterogeneity of the system. But does this remain true also in the limit of small particle
numbers? In other words, are the various strategies to slow down nucleation really equivalent
(when considering only the yield and neglecting time e�ciency) or are there fundamental
di↵erences regarding their stability and robustness to noise?
In order to answer these questions, we investigate a conceptual model that describes the
self-assembly of a number of constituents into ring structures of variable sizes and variable
heterogeneity. We study the behavior of the activation and the dimerization scenario, which
were introduced already in the previous part, in the limit of small particle numbers. We show
that, while the dimerization scenario is robust for small particle numbers, the activation sce-
nario is strongly a↵ected by a stochastic e↵ect, which can strongly reduce or even completely
suppress the yield of the assembly process. We call this e↵ect stochastic yield catastrophe and
we identify irreversibility and heterogeneity as the driving forces behind it. We show that this
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phenomenon leads to intriguing e↵ects in which the final yield can become a non-monotonic
function of the deterministic nucleation speed. Furthermore, we identify possible ways in
order to mitigate the detrimental e↵ect of stochasticity.
Importantly, in studying the e↵ect of noise in this chapter, we constrain ourselves exclusively
to e↵ects arising from internal noise. Internal noise defines noise that arises exclusively from
the stochastic dynamics of the system itself and therefore constitutes an intrinsic constraint
on the assembly yield. External noise, in contrast, refers to variability of the concentrations
in which the di↵erent species are provided. While e↵ects of external noise have been studied
previously, for example in [148, 149], we are not aware of any previous study that explicitly
quantifies the e↵ects of internal noise in self-assembly processes.

5.2 Model

The model that we use to study the e↵ects of noise is similar to the model we introduced in
chapter 2 in the 1D case and similar to the system studied in [53], which was also the original
motivation for our model. To investigate the e↵ect of noise in its simplest form, we restrict
ourselves to one-dimensional target structures that form closed rings, see Fig. 8.1. This
choice is motivated by the fact that rings are the simplest objects in which all species have
equivalent binding properties. This symmetry and simplicity of the model thereby allow us to
study in isolation the e↵ects arising intrinsically from the stochastic dynamics. Superposing
e↵ects that could possibly arise from irregularities due to the presence of a boundary in the
structures or due to more complex reaction schemes can thereby be ruled out.
Similar as before, we assume that N monomers, each of S di↵erent species, start in an inactive
state and become activated at per capita rate ↵. Once active, monomers start to assemble in
periodically consecutive order to form closed ring structures of size L, see Fig. 8.1. Here, L
is a multiple of the number of species S, so that each species is represented equally often in a
fully assembled structure. Choosing di↵erent values of S while keeping the size L of the rings
constant, allows us to vary the heterogeneity of the structures without changing their size.
The extreme cases S = 1, and S = L are also referred to as the homogeneous and the fully
heterogeneous case, respectively. The homogeneous case, in which structures are built from
identical particles of only one species, can be interpreted as a simplified, one-dimensional
model for virus capsid assembly [127, 34] or linear protein filament assembly [150, 151],
because both systems typically assemble from only one or a very small number of di↵erent
protein species. On the other hand, fully heterogeneous self-assembly systems forming so-
called ‘information-rich’ structures are often represented in DNA-brick based nanotechnology
[33, 53, 152].
We assume that growth of the structures occurs only by attachment of single monomers.
Structures with size smaller than a criticial nucleation size Lnuc grow with size dependent
rates µ1, µ2, ..., while structures of a size larger than or equal to Lnuc grow with a constant
attachment rate ⌫ ⌘ 1. Furthermore, we assume that structures with a size smaller than
Lnuc are unstable and decay back into monomers at a size dependent (per capita) rate �i.
Hence, the critical nucleation size can be interpreted in terms of classical nucleation theory
as the structure size at which the free energy barrier becomes maximal [73]. Regarding the
kinetics of the process, by altering the nucleation size and the decay rates, we can vary the
level of reversibility in the assembly process in order to study its e↵ect on the robustness of
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Figure 5.1 | Illustration of the model (slightly adapted from [141]). Ring structures of size
L assemble from S di↵erent species. N monomers of each species are initially in an inactive state
(blue) and are activated at per-capita rate ↵. Once active (green), species with periodically consec-
utive index can bind to each other. Structures only grow by addition of single monomers. Below a
critical nucleation size (Lnuc), structures (yellow) are unstable and decay again into monomers. In
contrast, above the critical size, polymers (dark yellow) are stable and grow irreversibly until the
ring is complete (the absorbing state; red). Since the structure size L is restricted to multiples of
the number of species S, each species appears equally often in a ring and all species have equivalent
properties.

the assembly yield. For convenience, we typically assume that all sub-nucleation growth and
decay rates are constant, µi = µ and �i = � 8 i < Lnuc, but we also consider other cases in
the appendix of the publication reprinted in section 5.6.
Furthermore, in order to show that our results are not an artefact of the one-dimensional
geometry of the structures or the simplified assembly kinetics, we also study variations of
the model by simulating the assembly of two-dimensional structures and a more complicated
assembly kinetics that takes interactions between polymers into account, see section 5.6.
As a big advantage, the simplicity of the model furthermore allows us to simulate the reaction
kinetics of the ring model with kinetic rate equations (ordinary di↵erential equations), which
represent the mean-field equations of the stochastic process. By comparing the outcome of
the stochastic simulation with that of the mean-field equations, we are thus able to identify
unambiguously the e↵ects arising from stochasticity in the system.

5.3 Results and discussion

With the model we investigate the e↵ect of noise in the activation and dimerization scenario,
which have already been introduced in chapter 2. In the dimerization scenario, we set the
critical nucleation size Lnuc = 2 and � = 0 and we control the nucleation speed by the dimer-
ization rate µ1 := µ. In contrast, in the activation scenario, we set µ = ⌫ = 1 and � = 0 and
control the e↵ective nucleation speed by the activation rate ↵.
First, we characterize the behavior of the system for large particle numbers N (for example
N � 105). We find that, by decreasing either the activation or the dimerization rate below
a respective threshold value, the final yield increases until it becomes perfect in the limit of
small activation or dimerization rates; see Fig. 2 in the publication reprint in chapter 5.6.
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Both in the activation and dimerization scenario, the final yield obtained from the stochastic
simulation coincides perfectly with the yield obtained from solving the kinetic rate equations,
which, by their nature, neglect noise in the system. Furthermore, the yield is found to be
independent of the heterogeneity of the system. In other words, the parameter S, which
determines the number of species, is irrelevant for the final yield.
This independence from the heterogeneity in the deterministic limit can also be shown ana-
lytically with the chemical rate equations by a symmetry argument (see supplement of the
publication reprint in chapter 5.6): since the rate equations are invariant to relabelling of
the species index, mathematically, the assembly process decouples into S independent and
identical processes for the S di↵erent species. Hence, the yield and also the assembly time
are independent of S in the deterministic limit. This simplification furthermore enables us
to calculate the threshold rate constants ↵th and µth, which mark the onset of the yield.
Specifically, we find ↵th ⇠ ⌫

µ
C⌫
L3 and µth ⇠ ⌫

L2 in agreement with the result from chapter 2,
which has been derived in a di↵erent way using a scaling argument.

Intriguingly, a markedly di↵erent behavior is observed if the particle number N is reduced.
Figure 3a and b in the publication reprint in chapter 5.6 show the final yield in the activation
and dimerization scenario for decreasing numbers of particles. While a perfect yield of 1
is achieved in the dimerization scenario even for N = 1, the yield in the activation scenario
saturates at an imperfect value ymax < 1, if the particle number becomes too small. Decreasing
N reduces the maximum yield ymax further until the yield is zero for any value of ↵. This
behavior is in sharp contrast to the deterministic theory, which still predicts a perfect yield in
the limit of small ↵ even for small particle numbers. Importantly, the reduction of the yield
can be observed in the stochastic simulation already for rather large particle numbers up to
several thousands, for example, for a structure of size L = 60.
Due to the strength of this e↵ect and its stochastic origin, we termed this phenomenon
stochastic yield catastrophe. The strength of the stochastic yield catastrophe strongly increases
with the size of the (heterogeneous) target structure: the minimal particle number N crit

y that
is necessary in order to achieve a fixed yield y increases strongly with the structure size L (see
Fig. 3c in the publication reprint and Fig. 5.2 below). Approximately, the dependence ofN crit

y

on L is described by a power law with exponent ⇡ 2.6. This strong nonlinear dependence of
the strength of the stochastic yield catastrophe on the structure size emphasizes its significance
and motivated us to use the term ‘catastrophe’ to describe it.
We find that the stochastic yield catastrophe can be alleviated by increasing the critical
nucleation size Lnuc, which enhances reversibility of the process, or by decreasing heterogeneity
(i.e. by building the same number of structures more homogeneously with less di↵erent
species), see Fig. 3d in the publication reprint. Therefore, we identify (partial) irreversibility
and heterogeneity as the driving factors behind the stochastic yield catastrophe. Note that
the fully homogeneous case (S = 1) is not a↵ected at all by the stochastic yield catastrophe
and a maximal yield of 1 is achieved robustly even for arbitrarily small particle numbers.
Higher dimensionality of the target structures or interactions among larger polymers are other
factors that would mitigate the stochastic yield catastrophe but the reduction of the yield is
still considerable in these cases. Therefore, the stochastic yield catastrophe is not an artefact
of the one-dimensional geometry of the structures or the simplified reaction kinetics.

How can the occurrence of this strong stochastic e↵ect be explained? Since the yield does not
reach the perfect value of 1, the e↵ective dimerization speed must be bounded from below
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as a result of the stochastic dynamics. Intuitively, this can be explained as follows: In the
limit of small ↵, activation will be much slower than binding and hence the random order of
activation events determines the availability of monomers and, therefore, the order of binding.
Hence, monomers dimerize more frequently if momentarily no other binding sites with larger
structures are available, see Fig. 4a in the publication reprint. As a result of the enhanced
dimerization rate, more complexes are initiated than predicted by the deterministic theory,
and hence, only a fraction of all complexes can be completed (Fig. 4b publication reprint).
We analyze this intriguing stochastic dynamics in much more detail in the next chapter.
Furthermore, the mitigating e↵ect of increasing Lnuc or decreasing heterogeneity S can be
explained as follows: If Lnuc is increased, smaller complexes can decay again into monomers
and so the system can correct the excessive number of dimerization events that occurred at
early stages of the assembly process. On the other hand, building the structure with fewer
di↵erent species allows for more binding possibilities for each species and so mitigates the
stochastic e↵ect that drives the enhancement of the dimerization rate.

The stochastic yield catastrophe leads to a very intriguing behavior of the yield in the activa-
tion scenario if the dimerization rate µ/⌫ < 1 is kept at a fixed value smaller than 1. Because
µ/⌫ < 1 is a characteristic of the dimerization scenario, we can also regard this case as a
‘mixed type’ scenario. We find that, depending on the ratio µ/⌫ and the structure size S, the
yield can become a non-monotonic function of ↵ and hence a non-monotonic or increasing
function of the deterministic nucleation rate (see Fig. 4 of the publication reprint). The shape
of the yield curves is thereby the result of the behavior of the yield in three distinct regimes:
the deterministic regime (large ↵), in which the dimerization rate µ controls the assembly
process; the stochastic regime (small ↵), in which activation is the time-limiting step and
thus a stochastic yield catastrophe occurs; and an intermediate regime, at which ↵ and µ

synergistically control the nucleation speed but stochastic e↵ects are still week. Depending
on the setting of the parameters, the maximum in the yield can be attained in either of the
three regimes, giving rise to the counterintuitive shapes of the yield curves observed in Fig.
4 of the publication reprint.

5.4 The stochastic exponent ⇠

The strength of the stochastic yield catastrophe can informatively be characterized by the
dependence of the minimal particle number N

min
y required to achieve a fixed yield y on the

number of species S. We found that for one-dimensional structures, the relation between
N

min
y and S can approximately be described by a power law, see Fig. 3c in the publication

reprint. Hence, we define the stochastic exponent or particle number exponent ⇠ in order to
characterize this dependence:

N
min
y ⇠ S

⇠
. (5.1)

For one-dimensional structures, we found ⇠ ⇡ 2.6. Note that for the range of structure sizes
sampled, the power law dependence is only approximate and the curves flatten for larger
sizes, indicating that the asymptotic exponent might still be a bit smaller. Interestingly,
the exponent is roughly independent of the yield y (for large enough S), see Fig. 3c in the
publication reprint. In order to further examine the robustness of the stochastic exponent,



120 5. Stochastic yield catastrophes and robustness in self-assembly

Figure 5.2 | Robustness and dimensionality dependence of the stochastic exponent.
A The minimal particle number Ncrit

>0 required to achieve a non-zero yield in the limit ↵ ! 0
is plotted against the structure size L for di↵erent boundary conditions of the one-dimensional
structures and a smaller nucleation barrier µ/⌫ = 10�4 (instead of µ/⌫ = 1). The scaling of the
critical particle number is the same in all three cases, which shows the robustness of the stochastic
exponent to modifications of the model and variations in its parameters. B Dependence of Ncrit

>0

on L for di↵erent dimensionality of the target structure (periodic boundaries in each case): The
critical particle number and the stochastic exponent strongly depend on the dimensionality of the
target structure as explained in the main text.

we plot the minimal particle number N
min
>0 to obtain nonzero yield also for one-dimensional

structures with non-periodic boundaries and with a smaller value for the dimerization rate
µ (Fig. 5.2A). In both cases, we find that the stochastic exponent remains invariant to such
variations of the model and the parameters. However, the exponent strongly depends on the
dimensionality of the structures, as we verify by plotting N

min
>0 against S likewise for two- and

three-dimensional structures (Fig. 5.2B). Specifically, we obtain for two-dimensional struc-
tures ⇠ ⇡ 1.3 and for three-dimensional structures ⇠ ⇡ 0.9. This suggests that the impact of
the stochastic yield catastrophe is determined by the linear dimension (diameter) of a hetero-
geneous structure rather than its total size: Since the diameter of a d-dimensional structure
scales as ⇠ S

1/d, this implies a stochastic exponent of ⇠ ⇡ 2.6
d , which reproduces roughly the

exponents measured for one-, two- and three-dimensional structures.
Another possible interpretation of this result is found by noting that the number of binding

sites of a d�dimensional structure (which is proportional to its boundary) scales as ⇠ S
d�1

d .
Hence, the probability f that a randomly chosen complex and a randomly chosen species can

bind to each other scales as f ⇠ S
d�1

d /S = S
�1/d. Intuitively, we explained the stochastic

yield catastrophe by the enhancement of the dimerization probability resulting from a lack of
binding possibilities of species with existing complexes. Therefore, it is a plausible assumption
that the minimal particle number Nmin

y can be described as a function of the (inverse) prob-
ability f that a random monomer and a cluster can bind. Indeed, from the one-dimensional
case, in which f is a constant independent of S, we learn that the dependence on f must be
given by N

min
y ⇠ f

�2.6 = S
2.6
d , which reproduces the correct stochastic exponents also for the

higher-dimensional cases.
What still remains elusive is the exponent ⇠ = 2.6 for one-dimensional structures. Simple scal-
ing arguments that we tried to understand this dependence all underestimated the stochastic
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exponent. However, this could also be because the real asymptotic exponent might still be
significantly smaller than the values we measured for finite values of S.

5.5 Key points

In my opinion, the key results of this project are the following:

• Heterogeneous self-assembly processes are strongly a↵ected by stochasticity if the avail-
ability of monomers is subject to noise. These stochastic e↵ects are not captured by
a deterministic description in terms of chemical rate equations and they can lead to a
strong reduction of the final yield.

• Di↵erent scenarios or strategies that slow down nucleation are not equivalent in the
limit of small particle numbers: While the dimerization scenario is highly robust to
noise, the activation scenario is strongly a↵ected by noise and su↵ers a stochastic yield
catastrophe.

• The stochastic yield catastrophe is jointly triggered by irreversibility and heterogeneity
of the assembly process. Hence, while heterogeneity of the target structure is irrelevant
if resources are abundant, it can play an essential role if resources are scarce.

• The e↵ect of the stochastic yield catastrophe can informatively be characterized by the
stochastic exponent ⇠, which measures the (approximate) scaling of the minimal number
of particles necessary to achieve a certain yield with the number of species. The exponent
⇠ depends on the dimensionality of the structure but is robust to modifications of the
parameter settings and other details of the model.

• For biologically relevant subunit numbers, stochastic e↵ects might pose a potential
threat for self-assembly. Hence, it is to be assumed that assembly schemes and con-
trol mechanisms have evolved in cells so that the occurrence of stochastic e↵ects is
suppressed.
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Abstract A guiding principle in self-assembly is that, for high production yield, nucleation of
structures must be significantly slower than their growth. However, details of the mechanism that
impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-
sized target structures employing mathematical modeling. We investigate two key scenarios to
delay nucleation: (i) by introducing a slow activation step for the assembling constituents and, (ii) by
decreasing the dimerization rate. These scenarios have widely different characteristics. While the
dimerization scenario exhibits robust behavior, the activation scenario is highly sensitive to
demographic fluctuations. These demographic fluctuations ultimately disfavor growth compared to
nucleation and can suppress yield completely. The occurrence of this stochastic yield catastrophe
does not depend on model details but is generic as soon as number fluctuations between
constituents are taken into account. On a broader perspective, our results reveal that stochasticity
is an important limiting factor for self-assembly and that the specific implementation of the
nucleation process plays a significant role in determining the yield.

Introduction
Efficient and accurate assembly of macromolecular structures is vital for living organisms. Not only
must resource use be carefully controlled, but malfunctioning aggregates can also pose a substantial
threat to the organism itself (Jucker and Walker, 2013; Drummond and Wilke, 2009). Furthermore,
artificial self-assembly processes have important applications in a variety of research areas like nano-
technology, biology, and medicine (Zhang, 2003; Whitesides and Grzybowski, 2002;
Whitesides et al., 1991). In these areas, we find a broad range of assembly schemes. For example,
while a large number of viruses assemble capsids from identical protein subunits, some others, like
the Escherichia virus T4, form highly complex and heterogeneous virions encompassing many differ-
ent types of constituents (Zlotnick et al., 1999; Zlotnick, 2003; Hagan, 2014; Leiman et al., 2010).
Furthermore, artificially built DNA structures can reach up to Gigadalton sizes and can, in principle,
comprise an unlimited number of different subunits (Ke et al., 2012; Reinhardt and Frenkel, 2014;
Gerling et al., 2015; Wagenbauer et al., 2017). Notwithstanding these differences, a generic self-
assembly process always includes three key steps: First, subunits must be made available,
for example by gene expression, or rendered competent for binding, for example by nucleotide
exchange (Alberts and Johnson, 2015; Chen et al., 2008; Whitelam, 2015) (‘activation’). Second,
the formation of a structure must be initiated by a nucleation event (‘nucleation’). Due to coopera-
tive or allosteric effects in binding, there might be a significant nucleation barrier (Chen et al., 2008;
Jacobs and Frenkel, 2015; Sear, 2007; Lazaro and Hagan, 2016; Hagan and Elrad, 2010). Third,
following nucleation, structures grow via aggregation of substructures (‘growth’). To avoid kinetic
traps that may occur due to irreversibility or very slow disassembly of substructures (Hagan et al.,
2011; Grant et al., 2011), structure nucleation must be significantly slower than growth
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(Zlotnick et al., 1999; Ke et al., 2012; Reinhardt and Frenkel, 2014; Wei et al., 2012;

Jacobs et al., 2015; Hagan and Elrad, 2010). Physically speaking, there are no irreversible reac-

tions. However, in the biological context, self-assembly describes the (relatively fast) formation of

long-lasting, stable structures. Therefore, at least part of the assembly reactions are often consid-

ered to be irreversible on the time scale of the assembly process. In this manuscript we investigate,

for a given target structure, whether the nature of the specific mechanism employed in order to slow

down nucleation influences the yield of assembled product. To address this question, we examine a

generic model that incorporates the key elements of self-assembly outlined above.

Model definition
We model the assembly of a fixed number of well-defined target structures from limited resources.

Specifically, we consider a set of S different species of constituents denoted by 1; . . . ; S which assem-

ble into rings of size L. The cases S ¼ 1 and 1<S " L (S ¼ L) are denoted as homogeneous and par-

tially (fully) heterogeneous, respectively. The homogeneous model builds on previous work on virus

capsid (Chen et al., 2008; Hagan et al., 2011), linear protein filament assembly (Michaels et al.,

2016; Michaels et al., 2017; D’Orsogna et al., 2012) and aggregation and polymerization models

(Krapivsky et al., 2010). The heterogeneous model in turn links to previous model systems used to

study, for example, DNA-brick-based assembly of heterogeneous structures (Murugan et al., 2015;

Hedges et al., 2014; D’Orsogna et al., 2013). We emphasize that, even though strikingly similar

experimental realizations of our model exist (Gerling et al., 2015; Wagenbauer et al., 2017;

Praetorius and Dietz, 2017), it is not intended to describe any particular system. The ring structure

represents a general linear assembly process involving building blocks with equivalent binding prop-

erties and resulting in a target of finite size. The main assumption in the ring model is that the differ-

ent constituents assemble linearly in a sequential order. In many biological self-assembling systems

like bacterial flagellum assembly or biogenesis of the ribosome subunits the assumption of a linear

binding sequence appears to be justified (Peña et al., 2017; Chevance and Hughes, 2008). In order

eLife digest The self-assembly of a large biological molecule from small building blocks is like
finishing a puzzle of magnetic pieces by shaking the box. Even though each piece of the puzzle is
attracted to its correct neighbours, the limited control makes it very hard to finish the puzzle in a
short amount of time.

The problem becomes even more difficult if several copies of the same puzzle are assembled in
one box. If several puzzles start at the same time, the different parts might steal pieces from each
other, making it impossible to successfully complete any of the puzzles. This is called a depletion
trap. If the box is only shaken and there is no real control over individual pieces, these traps occur at
random.

Overcoming these random depletion traps is an important challenge when assembling
nanostructures and other artificial molecules designed by humans without wasting many, potentially
expensive, components. Previous studies have shown that when multiple copies of the same
structure are assembled simultaneously, slowing the rate of initiation increases the yield of correctly-
made structures. This prevents new structures from stealing pieces from existing structures before
they are fully completed.

Now, Gartner, Graf, Wilke et al. have used a mathematical model to show that changing the way
initiation is delayed leads to different yields. This was especially true for small systems where
fluctuations in the availability of the different pieces strongly enhanced the initiation of new
structures. In these cases, the self-assembly process terminated undesirably with many incomplete
structures.

Nanostructures have various applications ranging from drug delivery to robotics. These findings
suggest that in order to efficiently assemble biological molecules, the concentrations of the different
building blocks need to be tightly controlled. A question for further research is to investigate
strategies that reduce fluctuations in the availability of the building blocks to develop more efficient
assembly protocols.
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to test the validity of our results beyond these constraints we also perform stochastic simulations of
generalized self-assembling systems that do not obey a sequential binding order: i) by explicitly

allowing for polymer-polymer bindings and ii) by considering the assembly of finite sized squares
that grow independently in two dimensions (see Figures 6 and 7).

The assembly process starts with N inactive monomers of each species. We use C ¼ N=V to
denote the initial concentration of each monomer species, where V is the reaction volume. Mono-
mers are activated independently at the same per capita rate a, and, once active, are available for

binding. Binding takes place only between constituents of species with periodically consecutive indi-
ces, for example 1 and 2 or S and 1 (leading to structures such as . . .1231. . . for S ¼ 3); see Figure 1.
To avoid ambiguity, we restrict ring sizes to integer multiples of the number of species S. Further-

more, we neglect the possibility of incorrect binding, for example species 1 binding to 3 or S#1. Pol-
ymers, that is incomplete ring structures, grow via consecutive attachment of monomers. For

simplicity, polymer-polymer binding is disregarded at first, as it is typically assumed to be of minor
importance (Zlotnick et al., 1999; Chen et al., 2008; Murugan et al., 2015; Haxton and Whitelam,
2013). To probe the robustness of the model, later we consider an extended model including poly-

mer-polymer binding for which the results are qualitatively the same (see Figure 6 and the discus-
sion). Furthermore, it has been observed that nucleation phenomena play a critical role for self-
assembly processes (Ke et al., 2012; Wei et al., 2012; Reinhardt and Frenkel, 2014; Chen et al.,

2008). So it is in general necessary to take into account a critical nucleation size, which marks the
transition between slow particle nucleation and the faster subsequent structure growth

(Michaels et al., 2016; Lazaro and Hagan, 2016; Morozov et al., 2009; Murugan et al., 2015). We
denote this critical nucleation size by Lnuc, which in terms of classical nucleation theory corresponds
to the structure size at which the free energy barrier has its maximum. For l<Lnuc attachment of

monomers to existing structures and decay of structures (reversible binding) into monomers take
place at size-dependent reaction rates !l and dl, respectively (Figure 1). Here, we focus on identical

rates !l ¼ ! and dl ¼ d. A discussion of the general case is given in Appendix 4. Above the nucle-
ation size, polymers grow by attachment of monomers with reaction rate n $ ! per binding site. As
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Figure 1. Schematic description of the model. (a) Rings of size L are assembled from S different particle species. N

monomers of each species are initially in an inactive state (blue) and are activated at the same per-capita rate a.

Once active (green), species with periodically consecutive index can bind to each other. Structures grow by

attachment of single monomers. Below a critical nucleation size (Lnuc), structures of size l (light yellow) grow and

decay into monomers at size-dependent rates !l and dl, respectively. Above the critical size, polymers (dark

yellow) are stable and grow at size-independent rate n until the ring is complete (the absorbing state; red). (b)
Illustration of depletion traps. If nucleation is slow compared to growth, initiated structures are likely to be

completed. Otherwise, many stable nuclei will form that cannot be completed before resources run out.
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we consider successfully nucleated structures to be stable on the observational time scales, mono-

mer detachment from structures above the critical nucelation size is neglected (irreversible binding)

(Murugan et al., 2015; Chen et al., 2008). Complete rings neither grow nor decay (absorbing

state).
We investigate two scenarios for the control of nucleation speed, first separately and then in com-

bination. For the ‘activation scenario’ we set ! ¼ n (all binding rates are equal) and control the

assembly process by varying the activation rate a. For the ‘dimerization scenario’ all particles are

inherently active (a ! ¥) and we control the assembly process by varying the dimerization rate ! (we

focus on Lnuc ¼ 2). It has been demonstrated previously in Chen et al. (2008) and (Endres and Zlot-

nick, 2002; Hagan and Elrad, 2010; Morozov et al., 2009) that either a slow activation or a slow

dimerization step are suitable in principle to retard nucleation and favour growth of the structures

over the initiation of new ones. We quantify the quality of the assembly process in terms of the

assembly yield, defined as the number of successfully assembled ring structures relative to the maxi-

mal possible number NS=L. Yield is measured when all resources have been used up and the system

has reached its final state. We do not discuss the assembly time in this manuscript, however, in

Appendix 5 we show typical trajectories for the time evolution of the yield in the activation and

dimerization scenario. If the assembly product is stable (absorbing state), the yield can only increase

with time. Consequently, the final yield constitutes the upper limit for the yield irrespective of addi-

tional time constraints. Therefore, the final yield is an informative and unambiguous observable to

describe the efficiency of the assembly reaction.
We simulated our system both stochastically via Gillespie’s algorithm (Gillespie, 2007) and deter-

ministically as a set of ordinary differential equations corresponding to chemical rate equations (see

Appendix 1).

Results

Deterministic behavior in the macroscopic limit
First, we consider the macroscopic limit, N % 1, and investigate how assembly yield depends on the

activation rate a (activation scenario) and the dimerization rate ! (dimerization scenario) for Lnuc ¼ 2.

Here, the deterministic description coincides with the stochastic simulations (Figure 2a and b). For

both high activation and high dimerization rates, yield is very poor. Upon decreasing either the acti-

vation rate (Figure 2a) or the dimerization rate (Figure 2b), however, we find a threshold value, ath

or !th , below which a rapid transition to the perfect yield of 1 is observed both in the deterministic

and stochastic simulation. By exploiting the symmetries of the system with respect to relabeling of

species, one can show that, in the deterministic limit, the behavior is independent of the number of

species S (for fixed L and N, see Appendix 1). Consequently, all systems behave equivalently to the

homogeneous system and yield becomes independent of S in this limit. Note, however, that equiva-

lent systems with differing S have different total numbers of particles SN and hence assemble differ-

ent total numbers of rings.
Decreasing the activation rate reduces the concentration of active monomers in the system.

Hence growth of the polymers is favored over nucleation, because growth depends linearly on the

concentration of active monomers while nucleation shows a quadratic dependence. Likewise, lower

dimerization rates slow down nucleation relative to growth. Both mechanisms therefore restrict the

number of nucleation events, and ensure that initiated structures can be completed before resources

become depleted (see Figure 2c and d).
Mathematically, the deterministic time evolution of the polymer size distribution cðl; tÞ is

described by an advection-diffusion equation (Endres and Zlotnick, 2002; Yvinec et al., 2012) with

advection and diffusion coefficients depending on the instantaneous concentration of active mono-

mers (see Appendix 2). Solving this equation results in the wavefront of the size distribution advanc-

ing from small to large polymer sizes (Figure 2e). Yield production sets in as soon as the distance

travelled by this wavefront reaches the maximal ring size L. Exploiting this condition, we find that in

the deterministic system for Lnuc ¼ 2, a non-zero yield is obtained if either the activation rate or the

dimerization rate remains below a corresponding threshold value, that is if a<ath or !<!th, where
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ath ¼ Pa
n

!

nC

ðL#
ffiffiffi

L
p

Þ3
and !th ¼ P!

n

ðL#
ffiffiffi

L
p

Þ2
(1)

(see Appendix 3) with proportionality constants Pa ¼ ½
ffiffiffiffi
p

p
Gð2=3Þ=Gð7=6Þ)3=3»5:77 and

P! ¼p2=2»4:93. These relations generalize previous results (Morozov et al., 2009) to finite activa-

tion rates and for heterogeneous systems. A comparison between the threshold values given by

Equation 1 and the simulated yield curves is shown in Figure 2a,b. The relations highlight important

differences between the two scenarios (where a!¥ and !¼ n, respectively): While ath decreases

cubically with the ring size L, !th does so only quadratically. Furthermore, the threshold activation

rate ath increases with the initial monomer concentration C. Consequently, for fixed activation rate,

the yield can be optimized by increasing C. In contrast, the threshold dimerization rate is indepen-

dent of C and the yield curves coincide for N % 1. Finally, if a is finite and !<n, the interplay between

the two slow-nucleation scenarios may lead to enhanced yield. This is reflected by the factor n=! in

ath, and we will come back to this point later when we discuss the stochastic effects.
In summary, for large particle numbers (N % 1), perfect yield can be achieved in two different

ways, independently of the heterogeneity of the system - by decreasing either the activation rate

(activation scenario) or the dimerization rate (dimerization scenario) below its respective threshold

value.
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Figure 2. Deterministic behavior in the macroscopic limit N % 1. (a, b) Yield for different particle numbers N

(symbols) and ring sizes L (colors) for Lnuc ¼ 2. Decreasing either (a) the activation rate (‘activation scenario’: ! ¼ n )

or (b) the dimerization rate (‘dimerization scenario’: a ! ¥) achieves perfect yield. The stochastic simulation results

(symbols) average over 16 realizations and agree exactly with the integration of the chemical rate equations (lines).

The threshold values (Equation 1) are indicated by the vertical dashed lines. Plotting yield against the

dimensionless quantity a=ðnCÞ causes the curves for different C to collapse into a single master curve (inset in a).

For both scenarios there is no dependency on the number of species S in the deterministic limit. (c, d) Illustration
showing how depletion traps are avoided by either slow activation (c) or slow dimerization (d). If the activation or

the dimerization rate is small (large) compared to the growth rate, assembly paths leading to complete rings are

favored (disfavored). The color scheme is the same as in Figure 1. (e) Deterministically, the size distribution of

polymers behaves like a wave, and is shown for large and small activation rate for L ¼ 60, Lnuc ¼ 2, N ¼ 10000 and

! ¼ n ¼ 1. The distributions are obtained from a numerical integration of the deterministic mean-field dynamics,

Equation 6, and are plotted for early, intermediate and final simulation times. The respective percentage of

inactive monomers and complete rings is indicated by the symbols in the scale bar on the left or right.
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Stochastic effects in the case of reduced resources
Next, we consider the limit where the particle number becomes relevant for the physics of the sys-

tem. In the activation scenario, we find a markedly different phenomenology if resources are sparse.

Figure 3a shows the dependence of the average yield on the activation rate for different, low parti-

cle numbers in the completely heterogeneous case (S ¼ L). Here, we restrict our discussion to the

average yield. The error of the mean is negligible due to the large number of simulations used to

calculate the average yield. Still, due to the randomness in binding and activation, the yield can dif-

fer between simulations. A figure with the average yield and its standard deviation is shown in

Appendix 6. For very low and very high average yield, the standard deviation has to be small due to

the boundedness of the yield. For intermediate values of the average, the standard deviation is high-

est but still small compared to the average yield. Thus, the average yield is meaningful for the essen-

tial understanding of the assembly process. Whereas the deterministic theory predicts perfect yield

for small activation rates, in the stochastic simulation yield saturates at an imperfect value ymax<1.

Reducing the particle number N decreases this saturation value ymax until no finished structures are

produced (ymax ! 0). The magnitude of this effect strongly depends on the size of the target struc-

ture L if the system is heterogeneous. Figure 3c shows a diagram characterizing different regimes

for the saturation value of the yield, ymaxðN; LÞ, in dependence of the particle number N and the size

of the target structure L for fully heterogeneous systems ðS ¼ LÞ. We find that the threshold particle

number Nth
y necessary to obtain a fixed yield y increases nonlinearly with the target size L. For the

depicted range of L, the dependence of the threshold for nonzero yield, Nth
>0, on L can approxi-

mately be described by a power-law: Nth
>0 ~ L

", with exponent " » 2:8 for L " 600. Consequently, for

y
max 
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Figure 3. Stochastic effects in the case of reduced resources. (a, b) Yield of the fully heterogeneous system (S ¼ L)

for reduced number of particles (symbols) for L ¼ 60 and Lnuc ¼ 2 averaged over 1024 ensembles. In the activation

scenario, at low activation rates the yield saturates at an imperfect value ymax, which decreases with the number of

particles (a). This finding disagrees with the deterministic prediction (black line) of perfect yield for a ! 0. In

contrast, the dimerization scenario robustly exhibits the maximal yield of 1 for small N, in agreement with the

deterministic prediction (black line) (b). (c) Diagram showing different regimes of ymaxðN; LÞ in dependence of the

particle number N and target size L (for the fully heterogeneous system S ¼ L) as obtained from stochastic

simulations in the limit a ! 0. The minimal number of particles necessary to obtain a fixed yield increases in a

strongly nonlinear way with the target size. The symbols along the line L ¼ 60 represent the saturation values of

the yield curves in (a). (d) Dependence of ymax on the number of species S for fixed L ¼ 60 and fixed number of

ring structures NS=L. Symbols indicate different values of the critical nucleation size Lnuc. The impact of stochastic

effects strongly depends on the number of species under the constraint of a fixed total number of particles NS and

fixed target size L. The homogeneous system is not subject to stochastic effects at all. Higher reversibility for

larger Lnuc also mitigates stochastic effects.
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L ¼ 600 already more than 105 rings must be assembled in order to obtain a yield larger than zero.

In Appendix 8 we included two additional plots that show the dependence of ymax on N for fixed L

and the dependence on L for fixed N, respectively. The suppression of the yield is caused by fluctua-

tions (see explanation below) and is not captured by a deterministic description. Because these sto-

chastic effects can decrease the yield from a perfect value in a deterministic description to zero (see

Figure 3a), we term this effect ‘stochastic yield catastrophe’. For fixed target size L and fixed maxi-

mum number of target structures NS
L
, ymax increases with decreasing number of species, see

Figure 3d. In the fully homogeneous case, S ¼ 1, a perfect yield of 1 is always achieved for a ! 0.

The decrease of the maximal yield with the number of species S thus suggests that, in order to

obtain high yield, it is beneficial to design structures with as few different species as possible. In

large part this effect is due to the constraint SN ¼ const, whereby the more homogeneous systems

(small S) require larger numbers of particles per species N and, correspondingly, exhibit less stochas-

ticity. If N is fixed instead of SN, the yield still initially decreases with increasing number of species S

but then quickly reaches a stationary plateau and gets independent of S for S % 1, see Appendix 7.

Moreover, increasing the nucleation size Lnuc, and with it the reversibility of binding, also increases

ymax, see Figure 3(d). This indicates that, beside heterogeneity of the target structure, irreversibility

of binding on the relevant time scale makes the system susceptible to stochastic effects.
The stochastic yield catastrophe is mainly attributable to fluctuations in the number of active

monomers. In the deterministic (mean-field) equation the different particle species evolve in bal-

anced stoichiometric concentrations. However, if activation is much slower than binding, the number

of active monomers present at any given time is small, and the mean-field assumption of equal con-

centrations is violated due to fluctuations (for S>1). Activated monomers then might not fit any of

the existing larger structures and would instead initiate new structures. Figure 4a illustrates this

effect and shows how fluctuations in the availability of active particles lead to an enhanced nucle-

ation and, correspondingly, to a decrease in yield. Due to the effective enhancement of the nucle-

ation rate, the resulting polymer size distribution has a higher amplitude than that predicted

deterministically (Figure 4b) and the system is prone to depletion traps. A similar broadening of the

size distribution has been reported in the context of stochastic coagulation-fragmentation of identi-

cal particles (D’Orsogna et al., 2015).
In the dimerization scenario, in contrast, there is no stochastic activation step. All particles are

available for binding from the outset. Consequently, stochastic effects do not play an essential role

in the dimerization scenario and perfect yield can be reached robustly for all system sizes, regardless

of the number of species S (Figure 3(b)).
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Figure 4. Cause and effect of stochasticity in the activation scenario. (a) Illustration of the significance of stochastic

effects when resources are sparse. Arrows indicate possible transitions and the probabilities in the depicted

situation for sufficiently small activation rate a. For small a, the random order of activation alone determines the

availability of monomers and therefore the order of binding. In the depicted situation, the complete structure is

assembled only with probability 1/2. In all other cases, only fragments of the structure are assembled such that the

final yield is decreased. (b) Polymer size distribution for the activation scenario (symbols) as obtained from

stochastic simulations, in comparison with its deterministic prediction (lines) for S ¼ L ¼ 100, N ¼ 1000 and

Lnuc ¼ 2. Due to the enhanced number of nucleation events, the stochastic wave encompasses far more structures

and moves more slowly. As a result, it does not quite reach the absorbing boundary.

Gartner et al. eLife 2020;9:e51020. DOI: https://doi.org/10.7554/eLife.51020 7 of 37

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.51020


Non-monotonic yield curves for a combination of slow dimerization and
activation
So far, the two implementations of the ‘slow nucleation principle’ have been investigated separately.

Surprisingly, we observe counter-intuitive behavior in a mixed scenario in which both dimerization

and activation occur slowly (i.e., !<n, a<¥). Figure 5 shows that, depending on the ratio !=n, the

yield can become a non-monotonic function of a. In the regime where a is large, nucleation is dimer-

ization-limited; therefore activation is irrelevant and the system behaves as in the dimerization sce-

nario for a ! ¥. Upon decreasing a we then encounter a second regime, where activation and

dimerization jointly limit nucleation. The yield increases due to synergism between slow dimerization

and activation (see !=n dependence of ath, Equation 1), whilst the average number of active mono-

mers is still high and fluctuations are negligible. Finally, a stochastic yield catastrophe occurs if a is

further reduced and activation becomes the limiting step. This decline is caused by an increase in

nucleation events due to relative fluctuations in the availability of the different species (‘fluctuations

between species’). This contrasts the deterministic description where nucleation is always slower for

smaller activation rate. Depending on the ratio !=n, the ring size L and the particle number N, maxi-

mal yield is obtained either in the dimerization-limited (red curves, Figure 5), activation-limited (blue

curve, Figure 5b) or intermediate regime (green and orange curves, Figure 5).

Robustness of the results to model modifications
In our model, the reason for the stochastic yield catastrophe is that - due to fluctuations between

species - the effective nucleation rate is strongly enhanced. Hence, if binding to a larger structure is

temporarily impossible, activated monomers tend to initiate new structures, causing an excess of
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Figure 5. Yield for a combination of slow dimerization and activation. (a, b) Dependence of the yield of the fully

heterogeneous system on the activation rate a for N ¼ 100 and different values of the dimerization rate (colors/

symbols) for L ¼ 60 (a) and L ¼ 40 (b) (averaged over 1024 ensembles). For large activation rates the yield behaves

deterministically (lines). In contrast, for small activation rates, stochastic effects (blue shading) lead to a decrease in

yield. Depending on the parameters, the yield maximum is attained in either the deterministic, stochastic or

intermediate regime. (c) Table summarizing the qualitative behavior of the yield (poor/intermediate/perfect) for a

combination of dimerization and activation rates for both the deterministic and the stochastic limit. The columns

correspond to low and high values of the dimerization rate, as indicated by the marker in the corresponding

deterministic yield curve at the top of the column. Similarly, the rows correspond to low, intermediate and high

activation rates. Arrows and colors indicate where and for which curve this behavior can be observed in (a) and (b).
Deviations between the deterministic and stochastic limits are most prominent for low activation rates.
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structures that ultimately cannot be completed. Natural questions that arise are whether (i) relaxing

the constraint that polymers cannot bind other polymers or (ii) abandoning the assumption of a lin-

ear assembly path, will resolve the stochastic yield catastrophe. To answer these questions, we per-

formed stochastic simulations for extensions of our model system showing that the stochastic yield

catastrophe indeed persists. We start by considering the ring model from the previous section but

take polymer-polymer binding into account in addition to growth via monomer attachment (Fig-

ure 6). In detail, we assume that two structures of arbitrary size (and with combined length " L) bind

at rate n if they fit together, that is if the left (right) end of the first structure is periodically continued

by the right (left) end of the second one. Realistically, the rate of binding between two structures is

expected to decrease with the motility and thus the sizes of the structures. In order to assess the

effect of polymer-polymer binding, we focus on the worst case where the rate for binding is inde-

pendent of the size of both structures. If a stochastic yield catastrophe occurs for this choice of

parameters, we expect it to be even more pronounced in all the ‘intermediate cases’. Figure 6

shows the dependence of the yield on the activation rate in the polymer-polymer model. As before,

yield increases below a critical activation rate and then saturates at an imperfect value for small acti-

vation rates. Decreasing the number of particles per species, decreases this saturation value. Com-

pared to the original model, the stochastic yield catastrophe is mitigated but still significant: For

structures of size S ¼ L ¼ 100, yield saturates at around 0.87 for N ¼ 100 particles per species and at

around 0.33 for N ¼ 10 particles per species. We thus conclude that polymer-polymer binding

indeed alleviates the stochastic yield catastrophe but does not resolve it. Since binding only happens

between consecutive species, structures with overlapping parts intrinsically can not bind together

and depletion traps continue to occur. Taken together, also in the extended model, fluctuations in

the availability of the different species lead to an excess of intermediate-sized structures that get

kinetically trapped due to structural mismatches. Note that in the extreme case of N ¼ 1, incomplete

polymers can always combine into one final ring structure so that in this case the yield is always 1.

Analogously, for high activation rates yield is improved for N ¼ 10 compared to N $ 50 (Figure 6b).
Kinetic trapping due to structural mismatches can occur in every (partially) irreversible heteroge-

neous assembly process with finite-sized target structure and limited resources. From our results, we

thus expect a stochastic yield catastrophe to be common to such systems. In order to further test

this hypothesis, we simulated another variant of our model where finite sized squares assemble via

monomer attachment from a pool of initially inactive particles, see Figure 7. In contrast to the
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Figure 6. Extended model including polymer-polymer binding. (a) In the extended model, structures not only

grow by monomer attachment but also by binding with another polymer (colored arrow). As before, binding only

happens between periodically consecutive species with rate n per binding site. So, the reaction rate for two

polymers is identical to the one for monomer-polymer binding, n. Furthermore, only polymers with combined

length " L can bind. All other processes and rules are the same as in the original model described in Figure 1. (b)
The yield of the extended model as obtained from stochastic simulations is shown in dependence of the activation

rate a for S ¼ L ¼ 100, ! ¼ n ¼ 1, Lnuc ¼ 2 and different values of the number of particles per species, N (averaged

over 1024 ensembles). The qualitative behavior is the same as for the original model. In particular, yield saturates

(in the stochastic limit) at an imperfect value for slow activation rates. Note that for small particle numbers

polymer-polymer binding results in an increase of the minimal yield (here for large activation rates). This is due to

the fact that even in the case where a priori too many nucleation events happen, polymers can combine into final

structures.

Gartner et al. eLife 2020;9:e51020. DOI: https://doi.org/10.7554/eLife.51020 9 of 37

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.51020


original model, the assembled structures are non-periodic and exhibit a non-linear assembly path

where structures can grow independently in two dimensions. While the ring model assumes a

sequential order of binding of the monomers, the square allows for a variety of distinct assembly

paths that all lead to the same final structure. Note that, because of the absence of periodicity, the

square model is only well defined for the completely heterogeneous case. Figure 7 depicts the

dependence of the yield on the activation rate for a square of size S ¼ 100. Also in this case, we find

that the yield saturates at an imperfect value for small activation rates. Hence, we showed that the

stochastic yield catastrophe is not resolved neither by accounting for polymer-polymer combination

nor by considering more general assembly processes with multiple parallel assembly paths. This

observation supports the general validity of our findings and indicates that stochastic yield catastro-

phes are a general phenomenon of (partially) irreversible and heterogeneous self-assembling sys-

tems that occur if particle number fluctuations are non-negligible.

Discussion
Our results show that different ways to slow down nucleation are indeed not equivalent, and that

the explicit implementation is crucial for assembly efficiency. Susceptibility to stochastic effects is

highly dependent on the specific scenario. Whereas systems for which dimerization limits nucleation

are robust against stochastic effects, stochastic yield catastrophes can occur in heterogeneous sys-

tems when resource supply limits nucleation. The occurrence of stochastic yield catastrophes is not

captured by the deterministic rate equations, for which the qualitative behavior of both scenarios is

the same. Therefore, a stochastic description of the self-assembly process, which includes fluctua-

tions in the availability of the different species, is required. The interplay between stochastic and

deterministic dynamics can lead to a plethora of interesting behaviors. For example, the combination

of slow activation and slow nucleation may result in a non-monotonic dependence of the yield on

the activation rate. While deterministically, yield is always improved by decreasing the activation

rate, stochastic fluctuations between species strongly suppress the yield for small activation rate by
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Figure 7. Assembly of squares of size
ffiffiffi

L
p

*
ffiffiffi

L
p

from L different particle species. (a) As in the ring models, there

are N monomers of each species in the system. All particles are initially in an inactive state (blue) and are activated

at the same per-capita rate a. Once active (green), species with neighboring position within the square (left/right,

up/down) can bind to each other. Structures grow by attachment of single monomers until the square is complete

(absorbing state). Depending on the number b of contacts between the monomer and the structure, the

corresponding rate is bn. For simplicity, all polymers (yellow) are stable (Lnuc ¼ 2) and we do not consider polymer-

polymer binding. (b) The yield of the square model as obtained from stochastic simulations is shown in

dependence of the activation rate a for S ¼ L ¼ 100, ! ¼ n ¼ 1 and different values of the number of particles per

species, N (averaged over 256 ensembles). The qualitative behavior is the same as for the previous models:

Whereas the yield is poor for large activation rates, it strongly increases below a threshold value and saturates (in

the stochastic limit) at an imperfect value < 1 for small activation rates. The saturation value decreases with

decreasing number of particles in the system.
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effectively enhancing the nucleation speed. This observation clearly demonstrates that a determinis-

tically slow nucleation speed is not sufficient in order to obtain good yield in heterogeneous self-

assembly. For example, a slow activation step does not necessarily result in few nucleation events

although deterministically this behavior is expected. Thus, our results indicate that the slow nucle-

ation principle has to be interpreted in terms of the stochastic framework and have important impli-

cations for yield optimization.
We showed that demographic noise can cause stochastic yield catastrophes in heterogeneous

self-assembly. However, other types of noise, such as spatiotemporal fluctuations induced by diffu-

sion, are also expected to trigger stochastic yield catastrophes. Hence, our results have broad impli-

cations for complex biological and artificial systems, which typically exhibit various sources of noise.

We characterize conditions under which stochastic yield catastrophes occur, and demonstrate how

they can be mitigated. These insights could usefully inform the design of experiments to circumvent

yield catastrophes: In particular, while slow provision of constituents is a feasible strategy for experi-

ments, it is highly susceptible to stochastic effects. On the other hand, irrespective of its robustness

to stochastic effects, the experimental realization of the dimerization scenario relies on cooperative

or allosteric effects in binding, and may therefore require more sophisticated design of the constitu-

ents (Sacanna et al., 2010; Zeravcic et al., 2017). Our theoretical analysis shows that stochasticity

can be alleviated either by decreasing heterogeneity (presumably lowering realizable complexity) or

by increasing reversibility (potentially requiring fine-tuning of bond strengths and reducing the sta-

bility of the assembly product). Alternative approaches to control stochasticity include the promotion

of specific assembly paths (Murugan et al., 2015; Gartner, Graf and Frey, in preparation) and the

control of fluctuations (Graf, Gartner and Frey, in preparation). One possibility to test these ideas

and the ensuing control strategies could be via experiments based on DNA origami. Instead of

building homogeneous ring structures as in Wagenbauer et al. (2017), one would have to design

heterogeneous ring structures made from several different types of constituents with specified bind-

ing properties. By varying the opening angle of the ‘wedges’ (and thus the preferred number of

building blocks in the ring) and/or the number of constituents, both the target structure size L as

well as the heterogeneity of the target structure S could be controlled.
Moreover, the ideas presented in this manuscript are relevant for the understanding of intracellu-

lar self-assembly. In cells, provision of building blocks is typically a gradual process, as synthesis is

either inherently slow or an explicit activation step, such as phosphorylation, is required. In addition,

the constituents of the complex structures assembled in cells are usually present in small numbers

and subject to diffusion. Hence, stochastic yield catastrophes would be expected to have devastat-

ing consequences for self-assembly, unless the relevant cellular processes use elaborate control

mechanisms to circumvent stochastic effects. Further exploration of these control mechanisms

should enhance the understanding of self-assembly processes in cells and help improve synthesis of

complex nanostructures.

Materials and methods
All our simulation data was generated with either C++ or MATLAB. The source code is available at

the eLife website.
Here we show the derivation of Equation 1 in the main text, giving the threshold values for the

rate constants below which finite yield is obtained. The details can be found in Appendices 1–3.

Master equation and chemical rate equations
We start with the general Master equation and derive the chemical rate equations (deterministic/

mean-field equations) for the heterogeneous self-assembly process. We renounce to show the full

Master equation here but instead state the system that describes the evolution of the first moments.

To this end, we denote the random variable that describes the number of polymers of size ‘ and

species s in the system at time t by ns‘ðtÞ with 2 " ‘<L and 1 " s " S. The species of a polymer is

defined by the species of the respective monomer at its left end. Furthermore, ns
0
and ns

1
denote the

number of inactive and active monomers of species s, respectively, and nL the number of complete

rings. We signify the reaction rate for binding of a monomer to a polymer of size ‘ by n‘. a denotes

the activation rate and d‘ the decay rate of a polymer of size ‘. By h:::i we indicate (ensemble)
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averages. The system governing the evolution of the first moments (the averages) of the fns‘g is then

given by:

d

dt
hns

0
i¼#a hns

0
i ; (2a)

d

dt
hns

1
i¼ ahns

0
i#
XL#1

‘¼1

n‘ hns
1
nsþ1

‘ iþ hns
1
ns#‘
‘ i

" #

þ
XLnuc#1

‘¼2

Xk¼s

k¼sþ1#‘

d‘hnk‘i ; (2b)

d

dt
hns

2
i¼ n1 hns1 n

sþ1

1
i# n2 hns2 n

sþ2

1
i# n2 hns2 n

s#1

1
i# d2 hns2i1f2<Lnucg ; (2c)

d

dt
hns‘i¼ n‘#1 hns‘#1

n‘þs#1

1
iþ n‘#1 hnsþ1

‘#1
ns
1
i# n‘ hns‘ n

sþ‘
1

i# n‘ hns‘ n
s#1

1
i# dhns‘i1f‘<Lnucg ; (2d)

d

dt
hnsLi¼ nL#1 hnsL#1

nLþs#1

1
iþ nL#1 hnsþ1

L#1
ns
1
i : (2e)

The different terms of this equation are illustrated graphically in Figure 8. The first equation
describes loss of inactive particles due to activation at rate a. Equation 2b gives the temporal

change of the number of active monomers that is governed by the following processes: activation of

inactive monomers at rate a, binding of active monomers to the left or to the right end of an existing

structure of size ‘ at rate n‘, and decay of below-critical polymers of size ‘ into monomers at rate d‘

(disassembly). Equations 2c and 2d describe the dynamics of dimers and larger polymers of size

3" ‘<L, respectively. The terms account for reactions of polymers with active monomers (polymeri-

zation) as well as decay in the case of below-critical polymers (disassembly). The indicator function

1fx<Lnucg equals 1 if the condition x<Lnuc is satisfied and 0 otherwise. Note that a polymer of size ‘$ 3

can grow by attaching a monomer to its left or to its right end whereas the formation of a dimer of a

specific species is only possible via one reaction pathway (dimerization reaction). Finally, polymers of

length L – the complete ring structures – form an absorbing state and, therefore, include only the

respective gain terms (cf Equation 2e).
We simulated the Master equation underlying Equation 2 stochastically using Gillespie’s algo-

rithm. For the following deterministic analysis, we neglect correlations between particle numbers

fns‘g, which is valid assumption for large particle numbers. Then the two-point correlator can be

approximated as the product of the corresponding mean values (mean-field approximation)

hnsi n
k
j i¼ hnsi ihn

k
j i 8s;k (3)

Furthermore, for the expectation values it must hold

hns‘i¼ hn1‘ i 8s (4)

because all species have equivalent properties (there is no distinct species) and hence the system is
invariant under relabelling of the upper index. By

c‘ :¼
hns‘i
V

; (5)

we denote the concentration of any monomer or polymer species of size ‘, where V is the reaction
volume. Due to the symmetry formulated in Equation 4, the heterogeneous assembly process

decouples into a set of S identical and independent homogeneous assembly processes in the deter-

ministic limit. The corresponding homogeneous system then is described by the following set of

equations that is obtained by applying (Equation 3, Equation 4) and (Equation 5) to (Equation 2)

d

dt
c0 ¼#ac0 ; (6a)
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d

dt
c1 ¼ ac0 # 2c1

XL#1

‘¼1

n‘ c‘ þ
XLnuc#1

‘¼2

ld‘ c‘ ; (6b)

d

dt
c2 ¼ n1 c

2

1
# 2n2 c1 c2 # d2 c2 1f2<Lnucg ; (6c)

d

dt
c‘ ¼ 2n‘#1 c1 c‘#1 # 2n‘ c1 c‘# d‘ c‘ 1f‘<Lnucg ; for3" ‘<L ; (6d)

d

dt
cL ¼ 2nL#1 c1 cL#1 : (6e)

Figure 8. Graphical illustration of Equations 2 and 6. (a) Visualization of the gain and loss terms in the dynamics of the active monomers in

Equation 2b. Gain of active monomers is due to activation of inactive monomers as well as decay of unstable polymers. Loss of active monomers is

due to dimerization and attachment of monomers to larger polymers. (b) Visualization of the transitions between clusters of different sizes (without

distinction of species). The first and second box represent the inactive and active monomers in the system, the subsequent boxes each represent the

ensemble of polymers of a certain size. The arrows between the boxes show possible reactions and transitions with the reaction rates indicated

accordingly. Each arrow starting from or leading to a box is associated with a corresponding loss or gain term on the right hand side of Equation 2 and

Equation 6.
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The rate constants n‘ in Equations 6 and 2 differ by a factor of V . For convenience, we use however
the same symbol in both cases. The rate constants n‘ in Equation 6 can be interpreted in the usual

units ½ liter
molsec). Due to the symmetry, the yield, which is given by the quotient of the number of

completely assembled rings and the maximum number of complete rings, becomes independent of

the number of species S

yieldðtÞ ¼
ScLðtÞV
SNL#1

¼
cLðtÞVL

N
: (7)

Hence, it is enough to study the dynamics of the homogeneous system, Equation 6, to identify the
condition under which non zero yield is obtained.

Effective description by an advection-diffusion equation
The dynamical properties of the evolution of the polymer-size distribution become evident if the set

of ODEs, Equation 6, is rewritten as a partial differential equation. This approach was previously

described in the context of virus capsid assembly (Zlotnick et al., 1999; Morozov et al., 2009). For

simplicity, we restrict ourselves to the case Lnuc ¼ 2 and let n1 ¼! and n‘$2 ¼ n. Then, for the polymers

with ‘>2 we have

qtc‘ ¼ 2nc1 ½c‘#1 # c‘) : (8)

As a next step, we approximate the index ‘2 f2;3; . . . ;Lg indicating the length of the polymer as a
continuous variable x2 ½2;L) and define cðx¼‘Þ :¼ c‘. By A :¼ c1 we denote the concentration of active

monomers in the following to emphasize their special role. Formally expanding the right-hand side

of Equation 8 in a Taylor series up to second order

cð‘# 1Þ ¼ cð‘Þ# qxcð‘Þþ
1

2
q
2

xcð‘Þ ; (9)

one arrives at the advection-diffusion equation with both advection and diffusion coefficients
depending on the concentration of active monomers AðtÞ

qtcðxÞ ¼#2nAqxcðxÞþ nAq2xcðxÞ : (10)

Equation 10 can be written in the form of a continuity equation qtcðxÞ¼ # qxJðxÞ with flux
J¼2nA c# nA qxc. The flux at the left boundary x¼2 equals the influx of polymers due to dimerization

of free monomers Jð2; tÞ¼!A2. This enforces a Robin boundary condition at x¼2

2nA cð2; tÞ# nA qxcð2; tÞ ¼ !A2 : (11)

At x¼L we set an absorbing boundary cðL; tÞ¼0 so that completed structures are removed from the
system. The time evolution of the concentration of active monomers is given by

qtA¼ aCe#at # 2!A2 # 2nA

ZL

2

cðx; tÞdx : (12)

The terms on the right-hand side account for activation of inactive particles, dimerization, and bind-
ing of active particles to polymers (polymerization).

Qualitatively, Equation 10 describes a profile that emerges at x¼ 2 from the boundary condition
Equation 11, moves to the right with time-dependent velocity 2nAðtÞ due to the advection term,

and broadens with a time-dependent diffusion coefficient nAðtÞ. In Appendices 2–3 we show how

the full solution of Equations 10 and 11 can be found assuming knowledge of AðtÞ. Here, we focus

only on the derivation of the threshold activation rate and threshold dimerization rate that mark the

onset of non-zero yield. Yield production starts as soon as the density wave reaches the absorbing

boundary at x¼ L. Therefore, finite yield is obtained if the sum of the advectively travelled distance

dadv and the diffusively travelled distance ddiff exceeds the system size L# 2

dadvþ ddiff $ L# 2 : (13)
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According to Equation 10, dadv ¼ 2n
R¥

0

AðtÞdt and ddiff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
R¥

0

AðtÞdt

s

, giving as condition for the onset

of finite yield

2n

Z¥

0

AðtÞdt¼!
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðL# 2Þ
p

# 1

$ %2

»L#
ffiffiffi

L
p

; (14)

where the last approximation is valid for large L.

In order to obtain
R
¥

0
AðtÞdt we derive an effective two-component system that governs the evolu-

tion of AðtÞ. To this end, we denote the total number of polymers in Equation 12 by

BðtÞ :¼
R
¥

2
cðx; tÞ dx (as long as yield is zero the upper boundary is irrelevant and we can consider

L ¼ ¥). Equation 12 then reads

d

dt
A¼ aCe#at # 2!A2 # 2nA B ;

(15)

and the dynamics of B is determined from the boundary condition, Equation 11

d

dt
B¼

Z¥

2

qtcðx; tÞdx¼
Z¥

2

#qxJðx; tÞdx¼#Jð¥; tÞ
|fflfflffl{zfflfflffl}

¼0

þJð2; tÞ ¼ !AðtÞ2: (16)

Measuring A and B in units of the initial monomer concentration C and time in units of ðnCÞ#1 the
equations are rewritten in dimensionless units as

d

dt
A¼ !e#!t # 2hA2# 2AB; (17a)

d

dt
B¼ hA2; (17b)

where !¼ a
nC

and h¼ !
n
. Equation 17 describes a closed two-component system for the concentra-

tion of active monomers A and the total concentration of polymers B. It describes the dynamics

exactly as long as yield is zero. In order to evaluate the condition (14) we need to determine the inte-

gral over AðtÞ as a function of ! and h

Z¥

0

A!;hðtÞdt :¼ gð!;hÞ : (18)

To that end, we proceed by looking at both scenarios separately. The numerical analysis, confirming
our analytic results, is given in Appendix 3.

Dimerization scenario
The activation rate in the dimerization scenario is a!¥, and instead of the term !e#!t in dA=dt, we

set the initial condition Að0Þ ¼ 1 (and Bð0Þ ¼ 0). Furthermore, h ¼ !=n , 1 and we can neglect the

term proportional to h in dA=dt. As a result,

dA

dB
¼#

2B

hA
:

Solving this equation for A as a function of B using the initial condition AðB¼ 0Þ ¼ 1, the totally trav-
elled distance of the wave is determined to be

2gð!;hÞ ¼ 2
p

2
ffiffiffi

2
p 1

ffiffiffi
h

p ; (19)

where for the evaluation of the integral we used the substitution hA2dt¼ dB.
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Activation scenario
In the activation scenario, yield sets in only if the activation rate and thus the effective nucleation
rate is slow. As a result, in addition to ! , 1, we can again neglect the term proportional to h in
dA=dt. This time, however, we have to keep the term !e#!t. As a next step, we assume that dA=dt is
much smaller than the remaining terms on the right-hand side, !e#!t and #2AB. This assumption
might seem crude at first sight but is justified a posteriori by the solution of the equation (see
Appendix 3). Hence, we get the algebraic equation AðtÞ ¼ !e#!t=ð2BðtÞÞ. Using it to solve

dB=dt ¼ hA2 for B, and then to determine A, the totally travelled distance of the wave is deduced as

2gð!;hÞ ¼ 2
32=3

ffiffiffiffi
p

p
Gð2=3Þ

6Gð7=6Þ
ð!hÞ#1=3: (20)

Taken together, we therefore obtain two conditions out of which one must be fulfilled in order to
obtain finite yield

2aðh!Þ#
1

3 $ L#
ffiffiffi

L
p

) a<ath :¼ Pa
n

!

nC

ðL#
ffiffiffi

L
p

Þ3
(21)

or 2bh#1

2 $ L#
ffiffiffi

L
p

) !<!th :¼ P!
n

ðL#
ffiffiffi

L
p

Þ2
; (22)

where a and b are numerical factors, and Pa¼8a3 »5:77 and P!¼4b2 »4:93. This verifies Equation 1 in

the main text.
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Appendix 1

Chemical reaction equations and the equivalence of
models with different numbers of species
In this section we derive the chemical rate equations (deterministic equations) for the self-
assembly process as described in the main text. Furthermore, we show that for general S in
the deterministic limit the model is equivalent to a set of S independent assembly processes
with only one species.

Homogeneous structures
First, we consider the homogeneous model (S¼ 1). By c‘ðtÞ we denote the concentration of
complexes of length ‘ (‘ $ 2) at time t, c1ðtÞ is the concentration of active monomers and c0ðtÞ
the concentration of inactive monomers at time t. In the following we will usually skip the time
argument for better readability. We denote the reaction rate for binding of a monomer to a
polymer of size ‘ by n‘. The model from the main text is recovered by setting n‘ :¼ !‘ if ‘<Lnuc,
and n‘ :¼ n otherwise. The ensuing set of ordinary differential equations then reads:

d

dt
c0 ¼#ac0 ; (A1a)

d

dt
c1 ¼ ac0 # 2c1

XL#1

‘¼1

n‘ c‘þ
XLnuc#1

‘¼2

ld‘ c‘ ; (A1b)

d

dt
c2 ¼ n1 c

2

1
# 2n2 c1 c2 # d2 c2 1f2<Lnucg ; (A1c)

d

dt
c‘ ¼ 2n‘#1 c1 c‘#1# 2n‘ c1 c‘ # d‘ c‘ 1f‘<Lnucg ; for3" ‘<L ; (A1d)

d

dt
cL ¼ 2nL#1 c1 cL#1 : (A1e)

The indicator function 1fx<Lnucg equals 1 if the condition x<Lnuc is satisfied and 0 otherwise. The

first equation describes loss of inactive particles due to activation at rate a. It is uncoupled
from the remainder of the equations and is solved by c0ðtÞ¼Ce#at, with C denoting the initial
concentration of inactive monomers. The temporal change of the active monomers is
governed by the following processes (Equation A1b): activation of inactive monomers at rate
a, binding of active monomers to existing structures at rate n‘ (polymerization), and decay of
below-critical polymers into monomers at rate d‘ (disassembly). All binding rates appear with a
factor of 2 because a monomer can attach to a polymer on its left or on its right end.

Note that there is a subtlety with the dimerization term 2 n1 c
2
1
in Equation A1b: the

dimerization term as well bears a factor of 2 because two identical monomers A and B can
form a dimer in two possible ways, either as AB or BA. Additionally, there is a stoichiometric
factor of 2 for the monomers in this reaction. However, one factor of 2 is cancelled again
because, assuming there are n monomers, the number of ordered pairs of monomers that

describe possible reaction partners is 1

2
nðn# 1Þ» n2=2 (if n is large) rather than n2 (the number

of reaction partners when two different species react). This leaves us with a single factor of 2
like for all the other binding reactions.

Equations A1c and A1d describe the dynamics of dimers and larger polymers of size
3 " ‘<L, respectively. The terms account for reactions of polymers with active monomers
(polymerization) as well as decay in the case of below-critical polymers (disassembly). The
dimerization term in the equation for qtc2 lacks the factor of 2 because the stoichiometric
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factor is missing for the dimers as compared with the dimerization term for the monomers in
the line above. Finally, polymers of length L – the complete ring structures – form an
absorbing state and therefore only include a reactive gain term (Equation A1e).

Heterogeneous structures
Next we consider systems with more than one particle species (S>1). The heterogeneous
system can be described by dynamical equations equivalent to the homogeneous system. We
show this starting from a full description that distinguishes both monomers and polymers into
a set of different species 1; . . . ; S. The species of a polymer is defined by the species of the
respective monomer at its left end. As polymers assemble in consecutive order of species, a
polymer is uniquely determined by its length and species (i.e. species of leftmost monomer). In
that sense, cs‘ with 0 " ‘<L and 1 " s " S denotes the concentration of a polymer of length ‘

and species s (cs
0
and cs

1
again denote inactive and active monomers of species s, respectively).

For example, c5
4
denotes the concentration of polymers [5678] if S $ 8, or of polymers [5612] if

S ¼ 6. Upper indices are always assumed to be taken modulo S whenever they lie outside the
range ½1; S). Therefore, the dynamics of the concentrations cs‘ with 3 " ‘<L is given by

d

dt
cs‘ ¼ n‘#1 c

s
‘#1

c‘þs#1

1
þ n‘#1 c

sþ1

‘#1
cs
1
# n‘ c

s
‘ c

sþ‘
1

# n‘ c
s
‘ c

s#1

1
# dcs‘ 1f‘<Lnucg : (A2)

The terms on the right-hand side account for the influx due to binding of the respective
polymers of length ‘# 1 with a monomer either on the right or on the left (first and second
term), and for the outflux due to reactions of a polymer of length ‘ and species s with a
monomer on the right or on the left (third and fourth term), as well as for decay into
monomers for ‘<Lnuc (last term). For the dynamics of the dimers, however, there is only one
gain term arising from dimerization:

d

dt
cs
2
¼ n1 c

s
1
csþ1

1
# n2 c

s
2
csþ2

1
# n2 c

s
2
cs#1

1
# d2 c

s
2
1f2<Lnucg : (A3)

Equivalently, for the active monomers we find:

d

dt
cs
1
¼ aCe#at # cs

1

XL#1

‘¼1

n‘ csþ1

‘ þ cs#‘
‘

" #

þ
XLnuc#1

‘¼2

Xk¼s

k¼sþ1#‘

d‘c
k
‘ :

Now we exploit the symmetry of the system with respect to the species index, that is, the
upper index in fcs‘g: Since all species in the system are equivalent, the dynamic equations are

invariant under relabelling of the upper indices. Consequently, it must hold that:

cs‘ðtÞ ¼ ck‘ðtÞ; foranys;k" Satanytimet: (A5)

In other words, the upper index is irrelevant and can also be discarded. The variable c‘ then
denotes the concentration of any one polymer species of length ‘. Taking advantage of this
symmetry for the equations of the heterogeneous system, (Equation A2, Equation A3 and
Equation A4), and collecting equal terms leads to a set of equations fully identical to those for
the homogeneous system (Equation A1). We show the equivalence to the homogeneous
model exemplarily for the dynamics of the polymers with size ‘$ 3 in Equation A2. Applying
cs‘ðtÞ ¼ c‘ðtÞ to Equation A2 yields for the dynamics of the concentration of an arbitrary

polymer species of size ‘:

d

dt
c‘ ¼ n‘#1 c‘#1 c1þ n‘#1 c‘#1 c1 # n‘ c‘ c1 # n‘ c‘ c1# dc‘ 1f‘<Lnucg :

¼ 2n‘#1 c‘#1 c1# 2n‘ c‘ c1 # dc‘ 1f‘<Lnucg;

which is identical to the respective dynamic Equation A1d for the homogeneous model. The
other equations for the heterogeneous system reduce to those for the homogeneous system
in an analogous manner.
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Summarizing, we have shown that the (deterministic) heterogeneous assembly process
decouples into a set of S identical and independent homogeneous processes. In particular,
yield, which is given by the quotient of the number of completely assembled rings and the
maximal possible number of complete rings, becomes independent of S:

yieldðtÞ ¼
ScLðtÞ
SNL#1

¼
cLðtÞL
N

: (A6)
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Appendix 2

Effective description of the evolution of the polymer size
distribution as an advection-diffusion equation
The dynamical properties of the evolution of the polymer size distribution become evident if
the set of ODEs, Equation 1, is rewritten as a partial differential equation. This approach was
previously described in the context of virus capsid assembly (Morozov et al., 2009;
Zlotnick et al., 1999; Endres and Zlotnick, 2002) but we will restate the essential steps here
for the convenience of the reader. To this end we interpret the length index of the polymer
‘ 2 f2; 3; . . . ; Lg as a continuous variable that we rename x 2 ½2; L). With such a continuous
description in view we write cðx¼ ‘Þ :¼ c‘ to denote the concentration of polymers of size ‘.

Since the active monomers play a special role, we denote their concentration in the
following by A. For simplicity we restrict our discussion to the case Lnuc ¼ 2 and let n1 ¼! and
n‘$2 ¼ n. Generalizations to Lnuc>2 can be done in a similar way. Then, for the polymers with
‘ $ 3 we have:

qtcð‘Þ ¼ 2nA ½cð‘# 1Þ# cð‘Þ) : (A7)

Formally, expanding the right-hand side in a Taylor series up to second order

cð‘# 1Þ ¼ cð‘Þ# qxcð‘Þþ
1

2
q
2

xcð‘Þ ; (A8)

we arrive at an advection-diffusion equation with both advection and diffusion coefficients
depending on the concentration of active monomers AðtÞ,

qtcðxÞ ¼#2nAqxcðxÞþ nAq2xcðxÞ : (A9)

Equation A9 can be written in the form of a continuity equation qtcðxÞ¼ # qxJðxÞ with flux
J¼2nA c# nA qxc. The flux at the left boundary, x¼2, equals the influx of polymers due to

dimerization of free monomers, Jð2; tÞ¼!A2. This enforces a Robin boundary condition at x¼2,

2nA cð2; tÞ# nA qxcð2; tÞ ¼ !A2 : (A10)

At x¼L, we have an absorbing boundary cðL; tÞ¼0 so that completed structures are removed
from the system. Furthermore, the time evolution of the concentration of active particles is
given by

qtA¼ aCe#at # 2!A2 # 2nA

ZL

2

cðx; tÞdx : (A11)

The terms on the right-hand side account for activation of inactive particles, dimerization, and
binding of active particles to polymers (polymerization).

Qualitatively, Equation A9 describes a profile that emerges at x¼ 2 from the boundary
condition, Equation A10, moves to the right with time dependent velocity 2nAðtÞ due to the
advection term, and broadens with a time-dependent diffusion coefficient nAðtÞ. The
concentration of active particles A determines both the influx of dimers at x¼ 2, as well as the
speed and diffusion of the wave profile.

Next, we derive an expression that solves Equation A9, assuming that we know AðtÞ. We
start by solving Equation A9 at the left boundary cð2; tÞ, and then translate the resulting
expression to obtain a solution for cðx; tÞ. To obtain cð2; tÞ in dependence of aðtÞ we can solve
d
dt
cð2; tÞ ¼ !A2 # 2nAcð2; tÞ (see Equation A1c) by ’variation of the constants’ as
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cð2; tÞ ¼
Z t

0

!Að~tÞ2 exp #2

Z t

~t

nAðt0Þdt0
2

4

3

5d~t : (A12)

With help of this expression we find cðx; tÞ: Given cð2; tÞ, the advective part of Equation A9,

qt~cðxÞ ¼#2nAqx~cðxÞ : (A13)

is solved by

cadvecðx; tÞ ¼ cð2;tðx; tÞÞ : (A14)

Here, tðx; tÞ denotes the time when a particle now at position x and time t was at x¼ 2. In other
words, a particle at time t and position x has entered the system at x¼ 2 at time tðx; tÞ. This
ansatz solves the PDE (Equation A13) if and only if tðx; tÞ satisfies

tðx; tÞ ¼ ~A#1 ~AðtÞ#
x# 2

2n

' (

(A15)

with ~A being an arbitrary integral of A such that qt~AðtÞ ¼ AðtÞ and ~A#1 denoting its inverse.
More easily, we find this form of t by requiring that the integral over the velocity from time t

to t equals the travelled distance x# 2:

Z t

t

2n Aðt0Þdt0 ¼ x# 2 : (A16)

To include the diffusive contribution in Equation A13, we use the diffusion kernel,

kðx;y; tÞ ¼ 4p

Z t

tðy;tÞ
DðtÞ

 !#1=2

exp
#x2

4
R t

tðy;tÞDðtÞ

 !

; (A17)

with the time dependent diffusion constant DðtÞ ¼ nAðtÞ. The kernel kðx;y; tÞ accounts for the
mass that has been diffusively transported from y over a distance of x. Because the mass has
entered the system at x¼ 2 at time tðy; tÞ, it diffused for the time t# tðy; tÞ. The complete
expression for cðx; tÞ is then obtained as the convolution of cadvecðx; tÞ (Equation A14), that is
obtained from Equation A12 and Equation A15, and the diffusion kernel kðx;y; tÞ
(Equation A17):

cðx; tÞ ¼
Z

cadvecðs; tÞkðx# s; s; tÞds¼
Z

cð2;tðs; tÞÞkðx# s; s; tÞds : (A18)

Interpreting the terms in the equations and the general form of the solution, we are able to
understand the qualitative behavior of the system. If both the activation and the dimerization
rate are large, the system produces zero yield: both advection and diffusion are driven by the
concentration of active monomers A. If activation is fast, the concentration of active monomers
A will become large initially since activation is faster than the reaction dynamics. Consequently,
provided !~n, dimerization dominates over binding because it depends quadratically on A,
see Equation A11. The reservoir of free particles then depletes quickly and cannot sustain the
motion of the wave for long enough to reach the absorbing boundary, resulting in a very low
yield. Only if either the activation rate is low enough or if !, n, the motion of the wave can
be sustained until it reaches the absorbing boundary.
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Appendix 3

Threshold values for the activation and dimerization rate
Based on the analysis from the previous section, we will now determine the threshold
activation rate and threshold dimerization rate which mark the onset of non-zero yield. Yield
production starts as soon as the density wave reaches the absorbing boundary at x¼ L.
Therefore, finite yield is obtained if and only if the sum of the advectively travelled distance
dadv and the diffusively travelled distance ddiff exceeds the system size L# 2:

dadv þ ddiff $ L# 2 : (A19)

The condition for the onset of non-zero yield is obtained by assuming equality in this relation.
The advectively travelled distance is obtained from Equation A16 by setting the borders of
the integral over the velocity to t¼ 0 and t¼¥:

dadv ¼
Z¥

0

2nAðt0Þdt0: (A20)

The diffusively travelled distance is approximately given by the standard deviation of the
Gaussian diffusion kernel, Equation A17, again with t¼ 0 and t¼¥,

ddiff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n

Z¥

0

AðtÞdt

v
u
u
u
t : (A21)

Taken together, we obtain a condition for the onset of finite yield:

2n

Z¥

0

AðtÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n

Z¥

0

AðtÞdt

v
u
u
u
t ¼ L# 2 : (A22)

Substituting y¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2n
R

A
p

and requiring that y is positive, we solve the quadratic equation and

find that Equation A22 is equivalent to

2n

Z¥

0

AðtÞdt¼ y2 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðL# 2Þ
p

# 1

$ %2

»L#
ffiffiffi

L
p

; (A23)

where the last approximation is valid for large L.
We determine the threshold values for the activation rate a and the dimerization rate ! by

finding solutions of the dynamical equation for the active particles AðtÞ, Equation A11, such
that the condition, Equation A23, is fulfilled. Thus, we start by deriving the dependence of
R
¥

0
AðtÞdt on a and !.

The concentration cðx; tÞ appears in Equation A11 only in terms of an integral
R L

2
cðx; tÞ dx,

counting the total number of polymers in the system. As long as yield is zero there is no
outflux of polymers at the absorbing boundary x¼ L and the total number of polymers in the
system only increases due to the influx at the left boundary x¼ 2. As long as yield is zero we
can therefore equivalently consider the limit L ! ¥. We denote the total number of polymers

in Equation A11 by BðtÞ :¼
R

cðx; tÞ dx for which the dynamics is determined from the boundary

condition, Equation A10:

d

dt
B¼

Z¥

2

qtcðx; tÞdx¼
Z¥

2

#qxJðx; tÞdx¼#Jð¥; tÞ
|fflfflffl{zfflfflffl}

¼0

þJð2; tÞ ¼ !AðtÞ2: (A24)

Hence, as long as yield is zero, the total number of polymers increases with the rate of the
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dimerization events. The system then simplifies to a set of two coupled ordinary differential
equations for A and B:

d

dt
A¼ aCe#at # 2!A2 # 2nAB (A25a)

d

dt
B¼ !A2: (A25b)

The dynamics of A and B is equivalent to a two-state activator-inhibitor system, where A

dimerizes into B at rate !, and B degrades (inhibits) A at rate 2n. Note that Equation A25
describes the exact dynamics of the active monomers A and total number of polymers B in the
deterministic system as long as yield is zero. The system has therefore been greatly reduced
from originally SN coupled ODEs to now only two coupled ODEs.

For the further analysis it is useful to non-dimensionalize Equation A25 by measuring A and

B in units of the initial concentration of inactive monomers C and time in units of ðnCÞ#1:

d

dt
A¼ !e#!t # 2hA2 # 2AB; (A26a)

d

dt
B¼ hA2; (A26b)

with the remaining dimensionless parameters !¼ a
nC

and h¼ !
n
. We are interested in the

integral over AðtÞ as a function of ! and h,

Z¥

0

A!;hðtÞdt :¼ gð!;hÞ ; (A27)

which relates to the totally travelled distance of the wave. Note that, in case of zero yield,
2gð!;hÞ is the total advectively travelled distance of the wave (cf. Equation A20) and the
square of the diffusively travelled distance (cf. Equation A21).

Analysis of the dimerization scenario
The dimerization scenario is characterized by fast activation a % Cn and slow dimerization
! , n. For the dimensionless parameters these assumptions translate to h , 1 and h , !.
Because for small h , 1 nucleation is much slower than growth we neglect the dimerization
term in Equation A26a against the growth term. Furthermore, because h , ! activation
happens on a fast time scale compared with nucleation and we may therefore integrate out
the fast time scale assuming that all particles are activated instantaneously at the beginning.
The system Equation A26 then reduces to

d

dt
A¼#2AB; (A28a)

d

dt
B¼ hA2; (A28b)

with the initial condition Að0Þ ¼ 1 and Bð0Þ ¼ 0. We divide the first equation by the second one
(formally applying the chain rule and the inverse function theorem) to obtain a single equation
for the dynamics of AðBÞ:

dA

dB
¼#

2

h

B

A
; (A29)

where AðB¼0Þ ¼ 1. This first order ODE can be solved by separation of variables and
subsequent integration, yielding
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AðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1#
2

h
B2

s

: (A30)

Because the number of active monomers AðtÞ must vanish for t!¥, the final value of B is

B¥ :¼ Bðt¼¥Þ ¼
ffiffiffi

h

2

r

: (A31)

Thereby, we calculate the function gðhÞ via variable substitution dt¼ dB
hA2:

gðhÞ ¼
Z¥

0

AðtÞdt¼
ZB¥

0

AðBÞ
dB

hAðBÞ2
¼

1

h

ZB¥

0

dB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1# 2

h
B2

q ¼
p

2
ffiffiffi

2
p h#1

2 : (A32)

So, the dependence of the travelled distance of the wave on h obeys a power law with

exponent # 1

2
, confirming the previous result (Morozov et al., 2009). For the coefficient we

find p
2
ffiffi
2

p »1:1107.

Additionally, we can determine the time dependent solutions AðtÞ and BðtÞ. Using the
solution for AðBÞ from Equation A30 in Equation A28b we obtain BðtÞ as

BðtÞ ¼
ffiffiffi

h

2

r

tanh
ffiffiffiffiffiffi

2h
p

t
$ %

: (A33)

We use this expression for BðtÞ in Equation A28a to obtain AðtÞ. The resulting ODEs can again
be solved by separation of variables as

AðtÞ ¼
1

cosh
ffiffiffiffiffiffi
2h

p
tð Þ
: (A34)

Analysis of the activation scenario
In the activation scenario, a , Cn, such that ! , 1 and ! , h. As we know already that
decreasing ! will slow down nucleation relative to growth we can again neglect the
dimerization term in Equation A26a. In contrast to the dimerization scenario, however, we
have to keep the activation term. Transforming time via t :¼ 1# e#!t such that t 2 ½0; 1) and
writing aðtÞ ¼ að1# e#!tÞ :¼ AðtÞ and bðtÞ ¼ bð1# e#!tÞ :¼ BðtÞ the system in Equation A26
becomes:

d

dt
a¼ 1#

2

!ð1# tÞ
ab ; (A35a)

d

dt
b¼

h

!ð1# tÞ
a2 ; (A35b)

with the initial condition að0Þ ¼ bð0Þ ¼ 0. The function gð!;hÞ transforms as

gð!;hÞ ¼
Z¥

0

AðtÞdt¼
1

!

Z1

0

aðtÞ
1# t

dt: (A36)

In the following we derive the asymptotic solution for aðtÞ in the limit of small ! in order to

evaluate the integral in Equation A36. In the limit t! 1 (, t!¥) both aðtÞ and d
dt
aðtÞ will

become small whereas bðtÞ increases monotonically. The reaction term in Equation A35a is

furthermore weighted by a factor 1

! which will become large if !, 1. We therefore postulate

that for sufficiently large t the derivative d
dt
aðtÞ is much smaller than the two terms on the

right-hand side of Equation A35a and hence negligible. This assumption has to be justified a
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posteriori with the obtained solution. Neglecting the derivative term d
dt
a in (Equation A35a)

reduces the equation to an algebraic equation and we find

a¼
!ð1# tÞ

2b
: (A37)

Using this result in Equation A35b we can solve for b by separation of variables and
subsequent integration:

bðtÞ ¼ ð!hÞ
1

3 -
3

4
t#

3

8
t
2

' (1

3

: (A38)

From Equation A37 we immediately obtain aðtÞ:

aðtÞ ¼
!

2

3

h
1

3

-
1# t

ð6t# 3t2Þ
1

3

:¼
!

2

3

h
1

3

hðtÞ ; (A39)

where by hðtÞ we denote the part of the solution that depends only on t. Hence, we find that a

and hence also d
dt
a scale like ~!

2

3, and will thus become small if !, 1 and t is large enough.

Therefore the solution is consistent and justifies the approximation in which we neglected the
derivative term in the limit of small ! and sufficiently large t.
Note that consistency of the solution with the approximation is a sufficient criterion for the
validity of the approximation: We can solve the system for A and B in Equation A35 iteratively
by defining

d

dt
ai#1 ¼ 1#

2

!ð1# tÞ
aibi;

d

dt
bi ¼

h

!ð1# tÞ
a2i :

Assuming that for i!¥, ai and bi converge to the correct solutions aðtÞ and bðtÞ when
starting with a0 ¼ 0, we obtain a1 and b1 as given by Equation A39 and Equation A38
and can iteratively refine the approximation. The next iteration step then reads:
d
dt
a1 ¼ 1# 2

!ð1#tÞa2b2. As a1 ~!
2

3 we know that the left-hand side will be small and a1 and b1

solve the system if the left-hand side equals 0. Writing a2 ¼ a1 þ ~a2 and b2 ¼ b1 þ ~b2 this
gives:

d

dt
a1 ¼ 1#

2

!ð1# tÞ
ða1þ ~a2Þðb1 þ ~b2Þ»

#2

!ð1# tÞ
ða1~b2 þ b1~a2Þ : (A40)

From dimensional analysis it follows that the correction terms ~a2 and ~b2 must scale like ~a2 ~!
4

3

and ~b2 ~! and are hence much smaller than the first order approximations a1 and b1. Higher

order corrections will give even smaller contributions showing that if d
dt
a1 , 1, a1 is indeed a

very good approximation.
In the limit t ! 0, however, the expression for aðtÞ in Equation A39 diverges and

consistency is violated. Hence, the obtained solution is valid only for sufficiently large t.
We fix some small #>0 such that the approximation can be assumed to be sufficiently

good if d
dt
a<#. Furthermore, we define t# such that d

dt
a<# for all t>t#. Using Equation A39

we can write this as d
dt
h<#h

1

3=!
2

3 for all t>t#, where the left-hand side, d
dt
h, depends only on

t. Hence, by decreasing ! we can make t# arbitrarily small: lim!!0 t# ¼ 0. In order to
calculate gð!;hÞ the integral in Equation A36 can be separated in a domain where the
approximation aðtÞ is accurate and a domain where the correct solution ~aðtÞ deviates
strongly from aðtÞ:
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gð!;hÞ ¼
1

!

Z
t#

0

~aðtÞ
1# t

dtþ
1

!

Z1

t#

aðtÞ
1# t

dt: (A41)

We see from Equation A35a that d
dt
~a¼ 1 describes an upper bound to ~a showing that

~aðtÞ " t. Therefore we can bound the contribution of the first integral as
R
t#

0

~aðtÞ
1#t

dt"
R
t#

0

t

1#t#
dt¼ 1

2

t2#
1#t#

. Because this upper bound for the integral goes to 0 if ! and

hence t# become small the first integral will become negligible against the second one.
Asymptotically, we therefore only need to consider the second integral with the solution
for aðtÞ as given by Equation A39:

gð!;hÞ ¼ !hð Þ#
1

3

R1

0

ð6t# 3t2Þ#
1

3dt¼ !hð Þ#
1

3

R3

0

dz

6z
1
3

ffiffiffiffiffiffi
1#z

3

p ¼

¼ 3
2
3
ffiffiffi
p

p
Gð2

3
Þ

6 Gð7
6
Þ !hð Þ#

1

3 »0:8969 - !hð Þ#
1

3;

(A42)

where we used the substitution t¼ 1#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1# z=3
p

and GðxÞ is the (Euler) Gamma function. So, in

the limit of small !, g scales with ! and h with identical exponent # 1

3
. This contrasts the

dimerization scenario where g as well as A and B depend only on h and are independent of !
(cf. Equation A32, A33 and A34).

Numerical analysis and the threshold values for the rate
constants
In order to confirm the results of the last two paragraphs and to see how gð!;hÞ behaves in
the intermediate regime where ! and h are of the same order of magnitude we also
investigate the function gð!;hÞ numerically. For that purpose we numerically integrate the
ODE-system for AðtÞ and BðtÞ in Equation A26 for different values of ! and h with a semi-
implicit method. Subsequently, we integrate the solution AðtÞ using an adaptive recursive
Simpson’s rule. Plotting g in dependence of ! for fixed h on a double-logarithmic scale reveals
a rather simple bipartite form of g, see Appendix 3—figure 1a:

gð!;hÞ ¼ g1ðhÞ!#1

3 !,1

g2ðhÞ !%1.

(

(A43)
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Appendix 3—figure 1. Fit of gð!;hÞ on log-log scale. The function gð!;hÞ¼
R¥

0

A!;hðtÞdt

describes (half) the travelled distance of the profile of the polymer size distribution in

dependence of !¼ a
nC

and h¼ !
n
. Marker points show solutions for gð!;hÞ as obtained

numerically from integration of Equation A26. Red lines are linear fits on log-log scale. In (a)
we plot gð!;hÞ for fixed h (here exemplarily for h¼0:01) over 25 orders of magnitude in ! and
find a markedly bipartite behavior: For small ! the dependence on ! is perfectly matched by a
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power law with exponent # 1

3
and h-dependent coefficient g1ðhÞ, whereas for large ! it is a

constant g2ðhÞ. (b) Plotting g2ðhÞ¼gð!¼¥;hÞ in dependence of h reveals again strictly
bipartite behavior. Here, however, only the branch for small h" 1 is relevant. With the
coefficient g1ðhÞ that can be determined in a similar way this leads to the final form of gð!;hÞ
as given by Equation A46.

The transition between these two regimes is rather sharp so that g is best described in a
piecewise fashion

gð!;hÞ ¼max ðg1ðhÞ!#1

3;g2ðhÞÞ : (A44)

Next, we plot the coefficients g1ðhÞ and g2ðhÞ against h. Here we find that g1ðhÞ¼ah#1

3 with
a¼const»0:90 and g2ðhÞ is again bipartite with a sharp kink in between (Appendix 3—figure
1b):

g2ðhÞ ¼minðbh#1

2;b0h#0:85Þ ; (A45)

where b»1:11 and b0 »1:37. The transition between both regimes is at h»1:82. The second
regime is not relevant for self-assembly since it refers to both large ! and large h, hence the
travelled distance 2g is too small to give finite yield in this regime. Therefore, we discard the
second regime and obtain as final result

gð!;hÞ ¼max ðaðh!Þ#
1

3;bh#1

2Þ; (A46)

with a»0:90 and b»1:11. This confirms perfectly the exponents as well as the coefficients found
in the last two paragraphs. It is, however, surprising that there is such a sharp transition
between both regimes, which allows to define gð!;hÞ in a piecewise fashion. This behavior
must be the result of a series of lower oder terms in gð!;hÞ which are unimportant in the limits
!, h and h, ! but cause the sharp transition when ! and h are of the same order of
magnitude.

Finally, we return to our original task of finding the threshold values of the activation and
dimerization rate for the onset of yield. Using our result for gð!;hÞ in Equation A23 we find as
necessary and sufficient condition to obtain finite yield in the deterministic system:

2max ðaðh!Þ#
1

3;bh#1

2Þ $ L#
ffiffiffi

L
p

: (A47)

Alternatively, we can state this result as two separate conditions out of which at least one must
be fulfilled to obtain finite yield:

2aðh!Þ#
1

3 $ L#
ffiffiffi
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L
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(A49)

where Pa¼8a3 »5:77 and P!¼4b2 »4:93. This verifies Equation 1 in the main text.
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Appendix 4

Impact of the implementation of sub-nucleation reactions
In the main text we focused our discussion on irreversible binding Lnuc ¼ 2. In this section we
investigate the effect of different implementations of the sub-nucleation reactions.

In general, perfect yield is trivially achieved if the complete ring is the only stable structure.
However, yield can be maximal already for smaller nucleation sizes Lnuc depending on the
explicit decay rate d. In the deterministic limit without the dimerization and activation
mechanisms (!¼ n, a ! ¥ ) a rapid transition from zero yield to perfect yield occurs in
dependence of the critical nucleation size (see Appendix 4—figure 1). The threshold value in
this case is approximately half the ring size and is weakly affected by the decay rate d. In order
to obtain finite yield for small nucleation sizes, an extremely high decay rate would be
necessary. Hence, maximizing the yield solely by increasing the nucleation size is not very
feasible.
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Appendix 4—figure 1. Yield maximization due to increased nucleation size. Without activation
and dimerization mechanism ða ! ¥;!¼ nÞ the yield can still be optimized by increasing the
critical nucleation size Lnuc. However, a significant improvement is only achieved for critical
sizes larger than half the ring size. Above, a rapid transition to perfect yield takes place. Below
no effect is observed at all. Increasing d shifts the onset of yield to slightly smaller critical
nucleation sizes. Other parameters: L¼ 60, N ¼ 10000.

In our model, the subcritical reaction rates !i may take different values. Here, we want to
restrict our discussion to two scenarios. First, all rates have an identical value !i ¼! and
second, the rates increase linearly up to the super-nucleation reaction rate:

!i ¼!þ n # !ð Þ i#1

Lnuc#1
.

In the deterministic limit, both implementations show the same qualitative behavior as the
dimerization mechanism with Lnuc ¼ 2 in the main text (see Appendix 4—figure 2). The only
relevant aspect for the final yield is the extend to which nucleation is slowed down in total. In
the constant scenario all reaction steps contribute equally. As a results there is a strong
dependence on the number of such reaction steps, that is on the critical nucleation size. If
however, the reaction rates increase linearly with the size of the polymers, the dimerzation rate
dominates. Only in the case ! , n finite yield is observed at all. In this limit the dimerization
rate is much smaller than the subsequent growth rates. The explicit form of the different !i is
not of major importance for the yield. The total slowdown of nucleation is the central feature.
Structure decay does not play any role for intermediate nucleation sizes.
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Appendix 4—figure 2. Yield for the dimerization mechanism (a ! ¥) with different nucleation
sizes (colors). (a) If all sub-nucleation growth rates are identical ð!i ¼!Þ increasing the nucleation
size increases the threshold value !th. The slow down of nucleation due to the individual sub-
nucleation steps in total determines the yield. (b) If the sub-nucleation growth rates increase

linearly !i ¼!þ ðn # !Þ i#1

Lnuc#1

$ %

no dependence on the nucleation size is observed. The

dimerization rate !1 ¼! (which is the most limiting step) dominates entirely. Other parameters:
L¼ 60, N ¼ 10000, d¼ 1.

The last question we want to address is how the combination of activation and dimerization
mechanism and the corresponding non-monotonic behavior is affected by the nucleation size.
Again, we compare constant sub-nucleation growth with a linearly increasing growth rate (see
Appendix 4—figure 3). In the deterministic regime both implementations behave qualitatively
similar as the dimerization mechanism discussed in the main text. However, in both cases the
stochastic yield catastrophe is less pronounced. For the constant growth rates a saturation of
the maximal yield is observed for sufficiently low !. If the profile is linear this effect is weaker
as compared to the constant case and a dependency on the explicit value of ! is still
observed. The saturation value is not reached for these reactions rates.
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Appendix 4—figure 3. Combined mechanisms for different nucleation sizes (symbols) and
dimerization rates (color). (a) If the sub-nucleation growth rates are identical ð!i ¼!Þ the
stochastic yield catastrophe is weakened but still has a drastic impact. The qualitative behavior
remains unchanged. (b) For a linearly increasing sub-nucleation growth rate

!i ¼!þ ðn # !Þ i#1

Lnuc#1

$ %

in the deterministic regime no changes are observed at all. The effect

of the stochastic yield catastrophe is less pronounced. This improvement is mainly caused by
structure decay which mitigates stochastic fluctuations. However, a slight dependency of the
saturation value on the rate ! is observed. Other parameters: L¼ 60, S¼ L, N¼ 100, d¼ 0:1.

Taking all our results for the sub-nucleation behavior together we draw the following
conclusions: First, structure decay by itself it not very efficient in order to maximize yield.
Second, the explicit choice of the sub-nucleation rates is of minor importance for the
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qualitative behavior. The system behaves similarly to the case Lnuc ¼ 2. Third, larger nucleation
sizes mitigate the stochastic yield catastrophe in general.
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Appendix 5

Time evolution of the yield in the activation and
dimerization scenario
In the main text we focus on the final yield, which represents the maximal yield that can be
obtained in the assembly reaction for t ! ¥. Here, we briefly discuss the temporal evolution of
the yield in the two scenarios. Appendix 5—figure 1 shows the yield as a function of time for
the dimerization scenario (blue) and the activation scenario (red) for the corresponding
parameters indicated in the plot. Drawn lines show the evolution of the yield in the stochastic
simulation whereas dashed lines represent its deterministic evolution obtained by integrating
the corresponding mean-field rate equations (only shown for the activation scenario). In both
scenarios, yield production sets in after a short lag time (Hagan and Elrad, 2010). The
emergence of a lag time can be understood in terms of the interpretation of the assembly
process as the progression of a travelling wave (see Sec. B). The travelling wave thereby
describes the polymer size distribution and the time that is needed for the wave to reach the
absorbing boundary equals the lag time for yield production observed in Appendix 5—figure
1. After the lag time, the yield increases very abruptly in the dimerization scenario and a bit
more continually in the activation scenario. Since monomers are provided gradually in the
activation scenario, the emerging wave is flatter and extends over a larger range (in polymer
size space) as compared to the dimerization scenario. Consequently, yield production is more
gradual in the activation scenario than in the dimerization scenario. For the same reason, the
dimerization scenario is generally ‘faster’ or more time efficient than the activation scenario.
For a detailed analysis of the time efficiency of these and other self-assembly scenarios we
refer the reader to our manuscript in preparation (Gartner, Graf and Frey, in preparation).

In all depicted situations, the yield increases monotonically with time. This is, of course,
generally true since the completed ring structures define an absorbing state in our system.
The final yield, which is indicated in the right bar, therefore represents the upper limit for the
yield that can be achieved in the assembly reaction. Appendix 5—figure 1 shows that the
temporal yield curves initially are rather steep and quickly reach a value that lies within 10% of
the final yield (‘quickly’ thereby refers to the respective time scale), before the curves flatten
and increase more slowly. This underlines that the final yield is a meaningful observable that
not only describes the upper limit for the yield but also approximates the typical yield of the
assembly reaction under appropriate time constraints that are not too restrictive (on the time
scale set by the respective lag time).
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Appendix 5—figure 1. Time evolution of the yield in the activation and dimerization scenario.

The time dependence of the yield is depicted for a dimerization scenario (blue) with ! ¼
5* 10#4 and N ¼ 100 and for two activation scenarios (red) with a ¼ 0:1 and N ¼ 2* 102 and

N ¼ 104, respectively, for target structures of size L ¼ 20. Drawn lines show the time evolution
of the stochastic systems while dashed lines describe the time evolution in the corresponding
deterministic systems (where the final yield may be higher in the activation scenario). In all
cases the yield increases monotonically with time. The final yield, that is indicated in the right
bar, represents the upper limit of the yield at any time. Yield production in the activation
scenario is generally more gradual than in the dimerization scenario. Therefore, the
dimerization scenario is, in general, more time efficient than the activation scenario.
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Appendix 6

Standard deviation of the yield
In the main text, the analysis focuses on the average yield. A priori it is, however, not apparent
that this average quantity is informative, in particular due to the strong effect of stochasticity
in the system. Here, we thus take a step forward to complement this picture by additionally
considering a simple measure for the fluctuations of the yield, its standard deviation.
Appendix 6—figure 1 is an extension of Figure 3a in the main text, showing the dependence
of the average yield and its sample standard deviation on the activation rate. Since yield is
always positive, the standard deviation of the yield has to be small if the average yield is close
to 0 (N ¼ 500 in Appendix 6—figure 1). The same holds true for average yield close to 1 as
the yield is bounded by one from above (N ¼ 5000 in Appendix 6—figure 1). For intermediate
values of the average yield, the standard deviation is highest but still small compared to the
average yield (N ¼ 1000 in Appendix 6—figure 1). The average yield is, thus, meaningful.
Naturally the ratio of the standard deviation compared to the average yield also depends on
the number of particles per species N and on the number of species S. Generally speaking, for
higher N and S, this ratio decreases (see Appendix 7—figure 1 for the dependency on S).

10-8 10-7 10-6 10-5 10-4 10-3

activation rate α [Cν]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yi
e
ld

 ±
 σ

N = 5000

N = 1000

N = 500

Yield for L = 60

Appendix 6—figure 1. Average yield and its sample standard deviation. For average yield
close to 0 or close to 1, the standard deviation has to be small due to the boundedness of the
yield to the interval [0, 1]. For intermediate values, the standard deviation is highest. Its value
is, however, still considerably smaller than the average yield. The parameters are L¼ 60, S¼ L,
! ¼ n ¼ 1 and different particle numbers N (colors/symbols). To obtain the average yield, the
yield has been averaged over 1000 simulations. The standard deviation corresponds to the
unbiased sample standard deviation.
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Appendix 7

Influence of the heterogeneity of the target structure for
fixed number of particles per species
Figure 3d in the main text shows how the maximal yield ymax depends on the number of
species S if the ring size L and the number of possible ring structures NS=L is fixed. This
comparison for fixed NS is motivated by the question which role the heterogeneity of a
structure plays for assembly efficiency if a certain number of structures should be realized.
Figure 3d illustrates that a higher number of species S (more heterogeneous structures) leads
to a lower maximally possible yield, suggesting that it is beneficial to build structures with as
few different species as possible. However, this situation does not correspond to the
deterministically equivalent case of fixed number of particles per species N (note, though, that
in the deterministic case the maximally possible yield is always 1, namely for a ! 0). Instead,
for higher number of species S, the number of particles per species N / 1=S decreases. How
does the heterogeneity of the structures S alter the maximally possible yield if L and N

(instead of L and NS) are fixed? Appendix 7—figure 1 shows how the maximal yield ymax and

its standard deviation (obtained as average yield and sample standard deviation for a ¼ 10#8

when the yield has well saturated and the dynamics (except for the timescale) get
independent of the exact value of the rate-limiting activation rate) depend on the number of
species S. For homogeneous structures S ¼ 1 yield is always perfect since in this case there can
be no fluctuations between species. As a result, the average yield is 1 and the standard
deviation is 0. For increasing S, the average yield decreases until it levels off for S % 1. This
behavior indicates that indeed the decreasing number of particles per species N for larger S is
essential for the decrease of the maximal yield with S in Figure 3d. As mentioned above, the
standard deviation is largest for small S>1 and decreases with S.
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Appendix 7—figure 1. Influence of the heterogeneity of the target structure on the yield for
fixed number of particles per species N. The maximal yield and its standard deviation (obtained

as average yield and sample standard deviation for a ¼ 10#8) are plotted against the number
of species S making up the structure of size L ¼ 60. The number of particles per species N ¼
1000 is fixed. Yield drops from a perfect value of 1 for S ¼ 1 to a smaller value and levels off
for S % 1. The standard deviation is largest for small S (except for S ¼ 1 where the yield is
always perfect) and decreases with increasing number of species.
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Appendix 8

Dependence of the maximal yield ymax in the activation
scenario on N and L
Figure 3c in the main text characterizes the dependence of the maximal yield ymax in the
activation scenario as a ‘phase diagram’ distinguishing different regimes of ymax in
dependence of the particle number N and target size L. Supplementing this figure in the main
text, Appendix 8—figure 1 shows the maximum yield that is obtained in the activation
scenario in the limit a ! 0 for fixed L in dependence of N (Appendix 8—figure 1a) as well as
for fixed N in dependence of L (Appendix 8—figure 1b). For larger particle number N, the
maximal yield exhibits a transition from 0 to 1 over roughly three orders of magnitude.
Increasing L shifts the transition to larger N. The threshold particle number where the

transition starts is characterised by N>0
th ðLÞ (see main text). Approximately, for L " 600, we find

N>0
th ðLÞ ~L2:8 (cf. main text, Figure 3c). Similarly, decreasing the target size L for fixed N, the

maximal yield exhibits a transition from 0 to 1 over roughly one order of magnitude in L. The

corresponding threshold value L>0th as a function of N is obtained as the inverse function of

N>0
th ðLÞ. Hence, at least for N " 105, approximately it holds L>0th ðNÞ~N0:36. Since ymax is largely

independent of the number of species S for fixed N and L (see Appendix 7), the maximal yield
in the activation scenario (for Lnuc ¼ 2) can be fully characterized as a function ymaxðN; LÞ of N
and L. Hence, ymax can roughly be expressed in terms of the threshold particle number N>0

th ðLÞ
as

ymaxðN;LÞ
»1 ifN>103N>0

th ðLÞ
<1 ifN>0

th ðLÞ<N<103N>0
th ðLÞ

¼ 0 ifN<N>0
th ðLÞ
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Appendix 8—figure 1. Dependence of the maximal yield ymax in the activation scenario on N

and L. For each data point, ymax was determined as the average yield of 100 independent

stochastic simulations of the activation scenario with a¼ 10#12. (a) Variation of the particle
number N for different target sizes L. The maximal yield increases from 0 to 1 over roughly
three order of magnitude in N. The onset of the transition depends on L. (b) Variation of the
target size L for different particle numbers N. Increasing the target size L with N being fixed
causes the maximal yield to drop to 0. The transition from 1 to 0 spans roughly one order of
magnitude in L and its position is determined by N.

As can be seen from Figure 3c in the main text, the transition line between zero and

nonzero yield slightly flattens with increasing L. Hence, the power law N>0
th ðLÞ~ L2:8 (and

similarly for L>0th ) only holds approximately and for a restricted range in L and N. The

asymptotic behavior of N>0
th in the limit L ! ¥ remains elusive.
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6 Understanding and controlling stochastic
heterogeneous self-assembly

This chapter summarizes the most important findings of our project on understanding and
guiding robust self-assembly of heterogeneous structures, which directly links to the previous
project and seeks to establish a deeper understanding of the stochastic yield catstrophe in the
activation scenario. The corresponding manuscript is currently in preparation for submission.
This chapter is based on and uses parts of the manuscript preprint in section 6.5.

6.1 Motivation

In the last chapter, we discussed how heterogeneous self-assembly systems are a↵ected by
stochastic e↵ects if particle concentrations are low and subject to fluctuations. As a result
of these stochastic e↵ects, we found that the activation scenario undergoes a stochastic yield
catastrophe, which can completely suppress the yield despite the deterministic theory would
predict a perfect yield. Several questions about this strong stochastic e↵ect still remain
unclear. For example: how can fluctuations between the concentrations of species, which
are typically of the order of 1/

p
N , can have such a drastic, deleterious e↵ect? How can

the strong, nonlinear dependence of the strength of the stochastic yield catastrophe on the
number of species be explained? In order to be able to find e�cient strategies to mitigate
stochastic yield catastrophes, it might furthermore be useful to understand which kind of
noise causes the e↵ect in the first place: Is demographic noise in the particle concentrations
the primary cause of the stochastic yield catastrophe or rather the random order in which
particles bind to each other, also referred to as ‘reaction noise’? Finally, having achieved a
deeper understanding of the e↵ect and its underlying causes, it would be interesting to see if a
similar e↵ect could also arise in other systems di↵erent from self-assembly, like, for example,
general complex reaction networks, or if the e↵ect is specific to self-assembling systems.
In order to answer these questions and to gain a deeper understanding of the stochastic yield
catastrophe, we will formulate an e↵ective theory of the stochastic dynamics in the activation
scenario. An e↵ective theory typically provides a coarse-grained view on a physical system
and thereby allows one to understand the essential factors that cause or contribute to an
e↵ect.
The value of an e↵ective theory is nicely illustrated with the example of superconductivity:
When superconductivity was discovered, it was assumed that the e↵ect is caused by a special
from of transport of electrons between atoms [153, 154]. A much deeper understanding was
established later with the help of Ginzburg-Landau theory, which relates the phenomenon of
superconductivity to the breaking of a global U(1) gauge symmetry in the e↵ective field theory
[155, 156]. This conception enabled the prediction of other systems with superconducting
properties - among those, most astonishingly, systems which do not even consist of atoms
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or electrons, like, for example, deconfined quark matter in neutron stars exhibiting colour
superconductivity [157].
This kind of abstraction or generalization achieved by the e↵ective theory, which provides
the deepest level of understanding of a physical e↵ect, is the result of the identification of
the essential ‘degrees of freedom’ of a system and their interactions. By formulating an
e↵ective theory of our stochastic system, we likewise seek to gain a deeper understanding of
the essential factors that cause stochastic yield catastrophes and to find answers to the above
mentioned questions. With the help of this understanding, we will be able to propose various
strategies in order to mitigate or suppress stochastic e↵ects and to improve self-assembly
e�ciency in the stochastic limit.

6.2 Model

The model that we studied in this project is the same as the one used in the previous chapter.
We therefore do not discuss the model again but refer the reader to section 5.2 of the previous
chapter. Here we set the critical nucleation size to Lnuc = 2, so that growth is completely
irreversible. Furthermore, in the manuscript preprint in section 6.5, we also introduce the
ability for particles to bind incorrectly with a small error rate ⌫def. Incorrect binding, however,
was only treated incidentally in this project and, in general, we set the error rate ⌫def to
zero. Therefore, we will not go more into detail about incorrect binding here but discuss its
consequences in-depth in the next chapter.

6.3 Results and Discussion

As has been discussed in detail in the last chapter, several unexpected e↵ects are observed in
the model if the activation rate ↵ is decreased and the particle number N is not abundant.
First, if the activation rate is decreased, the final yield increases only up to an imperfect value
(which can also be zero), whereas a perfect yield, as predicted by the deterministic theory,
can only be achieved if the particle number N is very large.
Second, if µ < ⌫, the yield can even become a non-monotonic function of the activation rate,
and hence - quite counterintuitively - a non-monotonic function of the deterministic nucle-
ation speed. Third, the strength of the stochastic yield catastrophe strongly increases with the
number of species S, while for S = 1 (homogeneous case) the system behaves deterministically.

The idea of this project is to formulate an e↵ective theory that describes the stochastic be-
havior of the system by taking fluctuations in the concentrations of the di↵erent species into
account (demographic noise) while neglecting noise arising from randomness in choosing a
binding partner (reaction noise). Hence, the assumption of the theory is that the stochastic
yield catastrophe is primarily a result of demographic noise in the species’ concentrations
arising from randomness in the order of their activation. Specifically, nucleation events are
expected to be triggered if individual species are currently underrepresented as a result of
their retarded activation. We call those species that are currently not available for binding
unavailable species. The idea is illustrated in Fig. 6.1. Here, activation of species 6 and 2 are
retarded and hence these species are momentarily unavailable. As a consequence, complexes
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Figure 6.1 | Illustration of the e↵ective theory. A Species which are currently unavailable for
binding (‘unavailable species’) lead to additional nucleation events: If certain species (‘unavailable
species’; here e.g. species 6) have been activated less than average, the growth of existing structures
(here e.g. the complex 3-4-5) may be blocked as a result of their shortage and, consequently,
additional nucleation events between neighboring species might be triggered (here e.g. species 4
and 5). B In contrast, in the deterministic description (B left), species are activated uniformly and,
hence, the number of nucleation events is strongly underestimated by the deterministic theory as
compared to the stochastic case (B right). C By averaging the distribution of unavailable species,
we calculate the probability for a complex to be in the blocked state, which is used in order to
formulate the e↵ective theory. The e↵ective theory describes transitions between the ‘blocked’ and
‘growing’ states of complexes during their growth. Integration of the theory yields a description of
the stochastic dynamics that accounts for the e↵ects arising as a consequence of demographic noise.

like 1-2-3-4-5 or 3-4-5 that would required these unavailable species in order to further grow
are prevented from growing. These complexes are called blocked. At the same time, avail-
able monomer species like 4 and 5, which cannot bind to the existing complexes because a
connecting species like 6 is unavailable, instead nucleate new structures. Supposing species 6
were available, it could bind to the complex 1-2-3-4-5 to form a complex 6-1-2-3-4-5, to which
subsequently species 5 and 4 could attach. Without species 6, however, nucleation of 4 and
5 is much more likely. In this way, fluctuations between the concentrations of species trigger
additional nucleation events. The deterministic theory, in contrast, assumes that all species
are activated uniformly and, hence, does not capture the additional nucleation events arising
from fluctuations in the availability of species (see Fig. 6.1B).
The statistics that describe the number and distribution of unavailable species therefore
promise to be key in a quantitative description of the stochastic system. Since activation
of monomers is independent of the reaction dynamics, the (time dependent) probability of a
species to be unavailable can be estimated with a ‘fluctuation-corrected mean-field’ ansatz.
In a next step, the probability of a complex of length ` to be in a blocked state is related to
the probability of a species to be unavailable. To this end, again in the spirit of a ‘fluctuation-
corrected mean-field’ approach, we perform a weighted average over all possible configurations
in which a certain number of species is missing (see Fig. 6.1C) and from its statistics derive
the average probability for a complex of length ` to be in the blocked state. As it turned out,
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the probability for a complex to be blocked generally increases with its size because larger
complexes are more likely to have stopped growing due to a missing species. Consequently,
the average growth rate of a cluster decreases with its size, which is in sharp contrast to the
deterministic theory, where all clusters grow with the same rate. This finding suggests that
fluctuations suppress the yield by favouring the emergence of small structures while at the
same time blocking the growth of larger ones, which, over time, leads to a strong competition
for resources. Herein we also find an explanation for the strong dependence of stochastic
e↵ects on the number of species: Since larger clusters grow increasingly slower, the total
amount of resources needed to reach a specified yield increases nonlinearly with the size of
the target structure (i.e. the number of species it consists of).
In the last step, in order to fully quantify the stochastic dynamics, we formulate an e↵ective
theory, which, for each cluster size, distinguishes a blocked and a growing state, and accord-
ingly characterizes the transition probabilities between these two states (see Fig. 6.1C). With
the help of the e↵ective theory, the evolution of the full cluster size distribution can be pre-
dicted. Despite several simplifications that were made in order to derive the e↵ective theory,
its predictions qualitatively fit the behavior of the stochastic system very well (see Fig. 2 in
the publication preprint in section 6.5). For example, the saturation of the yield for small
activation rates, as well as its non-monotonicity as a function of ↵ in the case where µ < ⌫

are described very well by the e↵ective theory. This confirms that demographic noise in the
concentrations of the di↵erent species is the main cause of the stochastic yield catastrophe
while reaction noise appears to be less significant. The essential variable that characterizes
the level of demographic noise is thereby the variance �

2
0 of the number of activated particles

of a (randomly chosen) species. Finding strategies in order to decrease this variance is tanta-
mount to increasing assembly e�ciency.

The understanding gained from the e↵ective theory enabled us to conceptualize four control
strategies to mitigate or suppress stochastic e↵ects and enhance resource e�ciency of self-
assembly in the stochastic limit. Since demographic noise in the concentrations of the various
species was identified as the main cause of the stochastic yield catastrophe, all four strategies
aim to control fluctuations in the species’ concentrations. There are, however, two principally
di↵erent ways how this can be achieved: Two of the four strategies aim to equilibrate the
concentrations of the di↵erent species while the other two reduce randomness by promoting
a specific order in which the species are activated. As a further criterium, we distinguished
whether external or self-organized, internal control is used to reduce the level of noise.
For example, in order to reduce the variance between the concentrations of species, inactive
particles can be provided in successive ‘bursts’. This means that, instead of providing all
monomers at once, only a fraction of the monomers is supplied, with the di↵erent species be-
ing distributed as evenly as possible (in their stoichiometric ratios). After some waiting time,
the next such burst of particles is supplied until all N particles per species have been provided.
If the variability of the concentrations within each burst is su�ciently low, demographic noise
can thus be reduced and the final yield be increased (see Fig. 5a,b in the manuscript preprint
in section 6.5). Since the composition of the bursts is not regulated by the system itself but
requires some external control mechanism, we consider this as an external control strategy.
For example, cells could realize a similar strategy by controlling a number of genes that code
for the various constituents by a common promoter region (so-called gene cassettes). In this
way, transcription of the genes could proceed in ‘bursts’, thereby decreasing the level of noise
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in the constituents. However, translation might still be an additional source of noise in this
system.
A di↵erent way to reduce variability in the species’ concentrations can be achieved with in-
ternal feedback. Specifically, a mechanism by which active monomers inhibit the activation
of their own species could likewise decrease variability since species which are available in
lower numbers would thus be activated more often than species that are available in large
numbers. For example, cells could realize such a mechanism by endowing the constituents
with gene-regulatory functions controlling their own expression. In our system, we modelled
this case by assuming that the activation rate of species i is given by ↵(i) = ↵0e

�qma
i , where

↵0 is a basal activation rate, q the inhibition strength and m
a
i the concentration of active

monomers of species i. Indeed we find that by increasing the inhibition strength q, the yield
in the limit of small ↵0 increases as a result of the reduction of demographic noise in the
system (see Fig. 5c,d in the manuscript preprint in section 6.5).
Taken together, these findings confirm that demographic noise plays an important role for
assembly e�ciency, as suggested by the e↵ective theory. Control strategies that reduce de-
mographic noise can thereby enhance resource e�ciency in heterogeneous self-assembly.

Another possibility in order to reduce stochastic e↵ects and enhance self-assembly e�ciency is
by promoting a specific order in which the species are activated, similar to the just-in-sequence
supply strategy discussed in part 1 of this thesis. At first glance, this approach seems to be
counterproductive in mitigating stochastic e↵ects since consecutive activation of the species
apparently increases the variability between their concentrations. The crucial point, however,
is that variability between species must be increased in a very coordinated fashion so as to
promote a specific assembly path, inhibiting spurious nucleation events.
One way to activate the species in consecutive order is by using inhomogeneous activation
rates for the di↵erent species. For example, in the linear ring structure that we consider,
activation rates can be chosen to decrease exponentially with the species index: ↵(i) = ↵0!

�i,
where ↵0 is the basal activation rate and ! is a constant (in the manuscript we chose a slightly
di↵erent activation order in which ↵

(i) decreases symmetrically to both sides of the ring). In
this way, species with a lower index tend to be activated earlier than those with a larger
index. By choosing the parameters ↵0 and ! suitably, we find indeed that the final yield can
be improved significantly in this way (see Fig. 6(b) in the manuscript preprint in section 6.5).
A just-in-sequence supply strategy as introduced in chapter 2 allows for even further reduc-
tion of the noise level and thus permits us to achieve even higher resource e�ciency in the
stochastic limit. For example, particles can be provided in ‘batches’, whose composition and
timing is controlled externally as described in part 1. Alternatively, just-in-sequence supply
can also be implemented in a self-organized way, for example, by assuming that the monomers
of each species inhibit activation of the species that follows next in the supply sequence. This
scenario and its implications will be discussed at length in the subsequent chapter, which is
why we do not go further into detail here but refer the reader to chapter 7.

In another project [6], which was conducted by our Master student Frederik Träuble but is
not part of this thesis, we investigated if an e↵ect similar to the stochastic yield catastrophe
could also occur in other complex reaction networks, like enzymatic or metabolic networks.
This, however, is apparently not the case because the competition between nucleation of new
structures and growth of existing structures, which is a hallmark specifically of self-assembling
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systems and has no analogue in general reaction networks, is crucial to the emergence of
stochastic yield catastrophes. Therefore, we believe that the phenomenon of stochastic yield
catastrophes is restricted to self-assembly systems.

6.4 Key points

In my opinion, the key results of this project are the following:

• Fluctuations in the availability of di↵erent species (demographic noise) is the origin
of the stochastic yield catastrophe in the activation scenario and can thus be a severe
limiting factor for heterogeneous self-assembly.

• The stochastic dynamics of the system is well described by an e↵ective theory that
accounts for demographic noise between the species but neglects noise arising from the
random binding kinetics (reaction noise).

• Stochastic e↵ects can be mitigated either by controlling the level of demographic noise
or by supplying the species in sequence so as to favour a particular assembly path. We
examined specific examples to implement both of these strategies. All examples rely
on supply regulation conducted either by external control or self-inhibitory feed-back.
We furthermore discussed concrete ideas how these strategies could be realized in a
biological context.
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Self-assembly is not only crucial for living organisms but also an important component for the
technological production of functional nanostructures. For these structures to be versatile, they
must be heterogeneous and consist of a number of di↵erent modules that are responsible for specific
functions or tasks. Recently, however, a conceptual model has demonstrated that the self-assembly
of heterogeneous structures can be subject to strong stochastic e↵ects that significantly suppress
yield. Given that self-assembly is an essential process in living systems and in nanotechnological
applications, this finding raises two immediate questions: How do heterogeneous structures assemble
e�ciently in living organisms? Which guiding strategies could be implemented into the design of
artificial assembly systems in order to achieve high assembly yield? An answer to these questions re-
quires a thorough understanding of the occurrence of the detrimental stochastic e↵ects (“stochastic
yield catastrophe”). To make progress, here we formulate an e↵ective theory for the aforementioned
conceptual model that enables us to unravel the various sources of stochasticity in terms of their
relevance to assembly e�ciency. From this e↵ective theory, we identify the fluctuations in the avail-
ability of the di↵erent constituents for binding as the major cause of the stochastic yield catastrophe.
We use this insight to propose and implement two control strategies to improve yield by reducing the
variance in the relative availability of constituents. These are based on supply control by providing
particles in bursts or by implementing self-inhibitory feedback. Remarkably, also a strong increase
in the variance between constituents enhances assembly yield, provided it is coordinated and favors
a specific assembly path. We discuss possible limitations and applications of all control strategies
and place our findings in a broader perspective.

I. INTRODUCTION

One of the defining features of living systems is their
ability to autonomously generate complex structures and
macro-molecular machineries. Underlying this ability are
self-assembly and self-organization processes. These rely
on local interactions between constituents but are gener-
ically not driven by external guidance or a global control
system [1, 2]: Unlike someone who assembles bricks in
the correct order to create a predefined structure, the
assembly of cellular structures such as microtubules [3–
5], ribosomes [6, 7], flagellar motors [8, 9] or intracel-
lular viruses [10–12] must work without an externally
provided construction plan. How do local interactions
between constituents su�ce to build macroscopic struc-
tures? In particular, it is still an open question why as-
sembly yield can be high although the free energy land-
scape may exhibit many local minima [2, 13–15] in which
the dynamics can get kinetically trapped on the relevant
timescales. As a result of such kinetic trapping, only
fragments of structures might be formed but no complete
structures [2, 16, 17].

Elucidating principles for the kinetics of self-assembly
processes is expected to be useful not only for the un-
derstanding of intracellular self-assembly but also for the
design of artificial self-assembly systems [13]. These ar-
tificial assembly processes are based on techniques such

⇤ These authors contributed equally to this work.
† Please send correspondence to frey@lmu.de.

as DNA nanotechnology, including DNA origami [18, 19],
DNA bricks [20], or single-stranded tiles [21], and allow
for a rich variety of possible large-scale structures. As a
result, artificial self-assembly is believed to be a promis-
ing route towards functional nanostructures [2, 22], with
proof-of-principle achievements ranging from nanoboxes
with programmable lids [23] to micrometer-sized col-
loids [24].
The problem of kinetic trapping has long been stud-

ied in these systems and has been described both in ex-
periments reproducing natural assembly processes of, for
example, virus capsids [10, 25, 26], as well as in artifi-
cial self-assembly systems based on DNA nanotechnol-
ogy [27, 28]. It has been pointed out by several studies
that reversibility of binding is a possibility to overcome
kinetic trapping [29–34]. However, for virus capsids and
other functional biological structures it has been shown
that at least part of the reactions are not reversible on the
time scale of the assembly process [35, 36]. From a biolog-
ical point of view, this (partial) irreversibility is reason-
able since, for instance, virus shells must be stable to pro-
tect their cargo in adverse environments, which requires
su�ciently strong and stable bonds. Allosteric control
has therefore been proposed as a viable mechanism to
actively suppress nucleation and thereby avoid kinetic
trapping in weakly reversible self-assembly [36–39]. And
indeed, it has been demonstrated that allosteric e↵ects
play an important role in the self-assembly of viruses,
flagellar motors and actin filaments [37, 38, 40–43].
Furthermore, the principle of “slow nucleation but fast

growth” has become a guiding rule for self-assembly [10,
16, 20, 44, 45]. It is based on the idea that if nucle-
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ation of new structures is slow compared to the growth
of existing structures, the structures are formed one af-
ter the other and there is no competition for resources.
One would expect that such a situation could be induced
by allosteric e↵ects, which are assumed to control the
nucleation speed. However, a recent study shows that
for heterogeneous systems, the way in which allosteric
control is implemented plays a critical role [46]. In par-
ticular, if fluctuations in the availability of the di↵erent
kinds of building blocks are relevant, a severe stochas-
tic e↵ect termed ‘stochastic yield catastrophe’ can cause
kinetic trapping in weakly reversible self-assembly. This
type of kinetic trapping is special in that it constitutes a
genuinely stochastic e↵ect that is not captured by mean-
field chemical rate equations.

Since fluctuations in the relative concentrations of par-
ticles can arise in multiple di↵erent ways ranging from
di↵usion to stochastic production of the building blocks,
stochastic yield catastrophes might represent a major
limitation for self-assembly e�ciency. Hence, it is cru-
cial to gain a deeper understanding about the underlying
causes of stochastic yield catastrophes in order to pro-
pose e↵ective strategies to mitigate their detrimental ef-
fect. These insights could enhance our understanding of
cellular self-assembly processes and usefully inform ex-
periments and nanotechnological implementations. To
this end, here we revisit a conceptual model of a lin-
ear, heterogeneous assembly process as introduced in
Ref. [46] and focus on a quantitative understanding of
the role of fluctuations. In line with Einstein’s demand
on what a proper model should be like [47], we find that
this model is conceptually rich enough to show all es-
sential features of self-assembly processes and – at the
same time – as simple as possible to allow for an in-depth
theoretical analysis. We develop an e↵ective stochastic
theory that extends a previously formulated mean-field
description [46]. In contrast to this mean-field descrip-
tion, it captures the observed phenomenology, including
the stochastic yield catastrophe, qualitatively correctly.
Our analysis reveals that the main contribution to the
stochastic yield catastrophe is indeed due to demographic
noise, rather than inherent reaction noise. Based on this
insight, we propose di↵erent strategies to suppress the
detrimental e↵ect of fluctuations and discuss their pos-
sible implementations. Concretely, these strategies pre-
vent stochastic e↵ects either by reducing fluctuations in
the availability of the di↵erent species or by controlling
the supply in a way to favor specific assembly paths.
We expect that these strategies could be implemented
in systems based on modern nanotechnological devices
in rather straightforward ways. Hence, these strategies
might constitute viable ways to realize irreversible self-
assembly of complex information-rich nanostructures.

II. MODEL DEFINITION AND RESULTS FROM
STOCHASTIC SIMULATIONS

A. Stochastic model

We consider a conceptual irreversible self-assembly
process with a unique target structure (ring) of finite
size L composed of monomers of S di↵erent species, as
illustrated in Fig. 1, which summarizes the key processes
during self-assembly. Specifically, we take into account
a stochastic activation step and irreversible binding re-
actions as introduced in Refs. [46, 48]. All monomers
are inactive initially and are activated at a per capita
rate ↵. Once active, monomers of species i2 {1, . . . , S}
bind other monomers of the (periodically) neighboring
species (i±1)modS to form dimers at rate µ (dimer-
ization), e.g. active monomers 3 and 4 in Fig. 1. Fur-
thermore, monomers can also attach to larger structures
by binding to a periodically consecutive species (correct
binding) at rate ⌫, e.g. active monomer 5 and polymer
3-4. Alternatively, binding may also occur between poly-
mers and monomers of the next-nearest-neighbor species
at a reduced rate ⌫def ⌧ ⌫, creating a defect in the struc-
ture (defect formation, e.g. active monomer 4 and poly-
mer 6-1-2, creating a defect at species 3 (or 5). Since
polymer-polymer binding is typically assumed to be less
relevant as compared to binding between monomers and
polymers [10, 17, 49, 50], we assume that structures only
grow by the attachment of monomers. Once the struc-
ture has reached the target size L (including the defects;
see the final target structures in Fig. 1), the ring closes
and no further growth of this ring is possible.

A typical assembly pathway proceeds as follows: As
soon as some monomers have been activated, monomers
dimerize and polymers start to grow by monomer attach-
ment of correct (neighboring) or defect-forming (next-
nearest neigbhboring) species. These polymers then all
continue to grow until they have either reached the target
size or until all monomers are bound in polymers.

The quality of the assembly process (“yield”) is mea-
sured at exactly this time when no further growth is pos-
sible any more as all monomers have been activated and
are depleted (bound in larger structures). The yield Y

is defined as the number of finished target structures,
Ntarget, compared to the maximally possible number of
defect-free target structures, N⇤

target. In a perfect assem-
bly process each species occurs exactly L/S times in each
finished structure. Hence, the number of possible defect-
free target structures is given by N

⇤
target = N/(L/S).

Hence, the yield is defined as

Y =
LNtarget

SN
. (1)

Analogously, the defect-free yield, Y (0) is defined as the

number of defect-free target structures, N
(0)
target, com-
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FIG. 1. Schematic of the conceptual self-assembly model Rings of target size L are assembled from S di↵erent species of
particles (here L = 12 and S = 6). All monomers start in an inactive state (blue) and have to be activated before being able to
bind. This activation happens at a per-capita rate ↵. Structures grow by attachment of active monomers (green). Defect-free
binding happens only between nearest-neighbor species (in a periodically consecutive ordering), so species i can bind to i ± 1
(modulo S). Dimerization happens at rate µ whereas monomer binding to larger structures (orange) happens at rate ⌫. Defect
formation occurs at a much lower rate ⌫def ⌧ ⌫ between next-nearest neighbors, leaving out one species and thereby creating
a defect (black). A structure is finished (red) once its size (including the defects) has reached the target size L. There are N
particles of each species, so that in total the system could build NS/L defect-free target structures.

pared to N
⇤
target:

Y
(0) =

LN
(0)
target

SN
. (2)

If many structures are completed during the process (ir-
respective of whether they contain defects or not), the
yield is high. In contrast, the defect-free yield is high
only if many defect-free structure are produced. It thus
quantifies the quality and amount of target structures.

B. Mean-field behavior (abundant resources)

In this section we summarize the most important find-
ings of the previous studies [46, 48] to gain a first intuition
about the self-assembly process. We discuss the more in-
tuitive deterministic limit of large system size N ! 1
first and focus on the case of finite resources afterwards.

A well-known principle for e�cient self-assembly is the
‘slow-nucleation principle’ [10, 20, 21, 44–46, 51] which
states that the assembly yield is high if nucleation of new
structures is slow compared to the growth of structures.
In this case, it is very likely that a structure that has been
nucleated grows into the target structure before a new
structure is nucleated. As a result, structures are assem-
bled one after the other and the assembly yield is high.
Conversely, if nucleation of new structures is fast, many
structures will be nucleated simultaneously. These poly-
mers then compete for the same resources and resources
run out before the structures are completed (‘depletion
trap’).

In the deterministic limit of many particles per species
N !1, the self-assembly process in our model, Fig. 1,
behaves according to the slow-nucleation principle [46].

For high activation rate (large ↵) and fast dimerization
(µ⇡ ⌫), the number of active monomers is high and nu-
cleation of new structures (dimerization) occurs more fre-
quently than growth of larger structures. Correspond-
ingly, the yield is very low. In agreement with the slow-
nucleation principle, the e�ciency of the assembly pro-
cess can be improved by either decreasing the dimeriza-
tion rate µ or the activation rate ↵ compared to the
growth rate ⌫⌘ 1: Yield is a monotonic function of both
↵ and µ and perfect yield is always achieved in the limit
of small ↵ or µ, irrespective of the number of particles
N � 1 or species S [46, 48]. Indeed, for fixed number of
particles N per species and fixed target size L yield is
independent of the number of species S.
As discussed in the next section IIC, stochastic e↵ects do,
however, qualitatively alter the self-assembly process.

C. Stochastic e↵ects for finite resources

For reduced resources (smaller N) and heterogeneous
structures S > 1, fluctuations in the dynamics become
relevant and the behavior of the system is qualita-
tively di↵erent from the behavior in the deterministic
limit [46, 48]. In this case, stochastic simulations of the
system based on Gillespie’s algorithm [52] demonstrate
that the yield saturates at an imperfect value Ymax in the
limit of small ↵ if N is not large enough (Fig. 2 (a, d)).
Previously, we have shown that below a threshold value of
N , which depends on the size of the target structure, this
saturation value Ymax is in fact zero and the system pro-
duces no yield although yield is perfect in the correspond-
ing deterministic description (‘stochastic yield catastro-
phe’) [46]. Furthermore, we have shown that yield can
be a non-monotonic function of the activation rate both
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FIG. 2. Stochastic yield catastrophe as observed in stochastic simulations (circles) and results of the e↵ective
theory (crosses). (a) The average yield and its standard deviation (in stochastic simulations) are plotted against the activation
rate ↵ for di↵erent numbers of particles per species N = 3000 (blue), N = 1000 (red) and N = 500 (yellow). Yields saturates
at an imperfect value for ↵ ! 0. The parameters are L = S = 60, µ = ⌫ = 1 and ⌫def = 0. (b) For small dimerization rate, here
µ = 10�3 (blue; L = S = 60, N = 103) or µ = 10�2 (red; L = S = 40, N = 102), the average yield can become a non-monotonic
function of the activation rate ↵. The other parameters are ⌫ = 1 and ⌫def = 0. (c) For finite defect formation rate, here
⌫def = 10�4 (blue) or ⌫def = 10�3 (red), both the defect-free yield (inset), i.e. the yield of all target structures without defects,
as well as the total yield (main figure), i.e. the yield of all target structures with and without defects, can be a non-monotonic
function of the activation rate ↵. The other parameters are N = 1000, µ = ⌫ = 1 and L = S = 60 (red) or L = S = 40 (blue).
(d) The average yield and its standard deviation are plotted against the number of species S for fixed total number of particles
NS = 60000 (blue), NS = 30000 (red) and NS = 7500 (yellow). In this case, the average yield decreases with increasing
heterogeneity of the structure (number of species S that make up the ring). The parameters are L = 60, ↵ = N/L3/1000,
µ = ⌫ = 1 and ⌫def = 0. The activation rate is chosen small enough that the yield has already reached its saturation value Ymax

for ↵ ! 0. (e, f) The average yield and its standard deviation are plotted against the number of species S. In contrast to
(d), here the number of particles per species N (and not NS) is fixed. Yield is highest for homogeneous structures S = 1 and
levels o↵ at an imperfect value for S � 1 (e) The parameters are L = 100, ↵ = 10�2, µ = ⌫ = 1, ⌫def = 0 and N = 104 (blue)
or N = 4 ⇤ 103 (red) as indicated. (f) The parameters are L = 60, ↵ = 10�5, µ = ⌫ = 1, ⌫def = 0 and N = 5 ⇤ 103 (blue) or
N = 5 ⇤ 102 (red) as indicated.

for µ< ⌫ or ⌫def > 0 (Fig. 2 (b,c)), a feature that does
not occur in the limit N !1. In the case ⌫def > 0, also
the defect-free yield shows non-monotonic behavior with
respect to the activation rate ↵ (inset in Fig. 2 (c)). Fi-
nally, for fixed number N of particles per species and
fixed target structure size L, the yield is not indepen-
dent of the number of species S (Fig. 2 (e,f)). Instead,
the yield is large for S=1 but then drops for S > 1 and
saturates for S� 1. It remained, however, elusive why
these stochastic e↵ects are so strong and which sources of
stochasticity (demographic noise or reaction noise) con-
tribute mostly to the observed phenomenology. One goal
of this manuscript is to gain a deeper insight into which
physical principles underlie the stochastic yield catastro-
phe.

D. Fundamental di↵erence between the
deterministic and the stochastic limit

What is the fundamental di↵erence between the de-
terministic limit (N !1) and the case of reduced re-
sources? For N !1, the randomness of binding and
fluctuations in the relative number of the di↵erent con-
stituents (demographic noise) are negligible [46, 48]. This
is, however, not true for reduced resources. Heuristically,
if certain species are temporarily less available than oth-
ers due to random fluctuations in the activation of par-
ticles, the neighboring species will tend to nucleate addi-
tional structures or to form defects (Fig. 3 (a, b)). For
instance, if a species required for correct growth is tem-
porarily not available as an active monomer (e.g. species
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6 in Fig. 3 (a)), a monomer of the next species might
form a defect (species 1 in the figure). Similarly, ac-
tive monomers of this next species might dimerize with
a monomer of their other neighboring species instead.
As a result, there will be too many nucleation events or
too many defective structures, suppressing the (defect-
free) yield. While it is intuitive that fluctuations in the
availability of the di↵erent species may lead to additional
nucleation events or defect formation, a quantitative un-
derstanding is still lacking. Due to the central limit the-
orem, demographic fluctuations or shot noise are typi-
cally expected to scale as 1/

p
N compared to the mean

N . So, why do demographic fluctuations in the relative
availability of the di↵erent species lead to such strong
stochastic e↵ects even in cases when the number of par-
ticles per species N is large? To which extent do the
di↵erent sources of stochasticity (demographic noise, re-
action noise due to randomness in binding) contribute
to the observed e↵ects? To address these questions, we
next formulate an e↵ective theory. This e↵ective descrip-
tion of the self-assembly process focuses on stochasticity
introduced by demographic fluctuations in the relative
number of active monomers of the di↵erent species and
neglects reaction noise. It will turn out that e↵ectively
putting in this source of stochasticity can indeed quali-
tatively account for the observed strong deviations from
the deterministic description.

III. EFFECTIVE THEORY: IDEA

The goal of this section is to provide a first motivation
for the formulation of the e↵ective theory. Since the e↵ec-
tive theory will be based on the deterministic description
of the system in Ref. [46], we summarize the most impor-
tant aspects of this deterministic picture first. In addi-
tion, this summary is intended to give insights into which
additional aspects might be important for a description
of the stochastic e↵ects. Building on these insights, we
will then argue for our particular approach to extend the
deterministic description.

A. Reduction to one-species problem in the
deterministic limit

The deterministic description of the process as pre-
sented in Ref. [46] is based on the assumption that the
number N of particles per species is large. Accordingly,
it neglects chemical noise due to randomness in choosing
a binding partner and demographic fluctuations in the
number of active particles of the di↵erent species. Con-
sequently, all species are equivalent and all structures of
equal size can be treated on the same footing, irrespective
of which species they are composed of. Using symmetry
arguments, it is thus possible to characterize the assem-
bly dynamics only in terms of the size l of the di↵erent
structures (for simplicity, we restrict our discussion to the

case without defect formation ⌫def = 0). Polymers of all
sizes l 2 {2, . . . , L� 1} (except for the target size l = L)
grow by attachment of monomers at rate ⌫ per monomer
at either end. In the time evolution of the number cl of
polymers of size l per species, this process corresponds to
a loss term of �2⌫ma

cl where m
a denotes the number of

active monomers per species. The factor of 2 comes from
the two configurations in which a monomer can bind to
a polymer (namely from the left or right). This loss term
appears as a gain term for the number cl+1 of structures
of size l+1 since attachment of a monomer to a structure
of size l leads to a structure of size l + 1. Furthermore,
two active monomers dimerize at per capita rate µ. For
m

a active monomers per species, this yields a gain term
µ(ma)2 for the dimers. In contrast to the gain term due
to polymer growth, there is no factor of 2 here. This is
due to the fact that there is only one possibility to create
a dimer from two monomers. Taken together, the time
evolution of the number of structures cl of size l � 2 per
species is thus given by [46]

@tc2 = µ(ma)2 � 2⌫ma
c2 , (3a)

@tcl = 2⌫ma(cl�1 � cl) , (3b)

@tcL = 2⌫ma
cL�1 . (3c)

Initially there are N inactive monomers of each species.
All of these are activated at the per-capita rate ↵. The
survival probability up to time t is thus e�↵t and the av-
erage number of inactive monomers at time t is Ne

�↵t.
Hence, the gain term for active monomers at time t

(which is given by the total activation rate) is ↵Ne
�↵t.

The loss term has two contributions, one from dimeriza-
tion and one from growth of polymers. Analogously to
the corresponding loss/gain terms for the polymers, these
are given by �2⌫ma

cl for l2 {2, . . . , L�1} for polymer
growth and �2µ(ma)2 for dimerization. The additional
factor of 2 in the dimerization loss term is a stoichio-
metric factor (two monomers participate in the dimeriza-
tion). In summary, the time evolution of the monomers
is given by [46]

@tm
a = N↵e

�↵t � 2µ(ma)2 � 2⌫ma
L�1X

l=2

cl . (4)

Note that here and in the following we always consider
the number of structures per species. For better readabil-
ity, we will not explicitly mention this in the following.
As mentioned before, in the deterministic limit, the

assembly yield is independent of the number of species
S (for fixed N and L). This equivalency is apparent
from the time evolution of the structures, Eqs. 3 and 4,
into which the number of species S does not enter. It
is, however, in conflict with stochastic simulations where
heterogeneous systems (S > 2) are subject to strong fluc-
tuation e↵ects but the homogeneous system (S=1) is
not (Fig. 2 (e,f)). The reason for the equivalency in the
deterministic description lies in the assumption that all
species behave identically. Extending the deterministic
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FIG. 3. Illustration of the e↵ective theory and the terminology. (a, b) Species which are currently unavailable for
binding (in short: “unavailable species”) lead to additional nucleation events and defect formation. If a species (“unavailable
species”; here e.g. species 6) has been activated much less than its neighbors, these neighbors tend to nucleate new structures
(e.g. excess of active monomers of species 4 and 5 in (a) or missing link between polymers 3-4-5 and 1-2 in (b)) or to form
defects (e.g. active monomer 1 binds erroneously to polymer 3-4-5 due to a lack of other binding partners, thereby forming a
defect). In the deterministic description, which assumes symmetry between the species, all species are equally available and
large structures form. (c) The number of activated particles of the di↵erent species Ai (di↵erent colors) relative to their mean,
�Ai=Ai�Ā, is shown in dependence of the average number of activation events per species Ā. The data are shown for one
simulation with parameters L = 60, N = 500, ⌫ = µ = 1, ⌫def = 0 and ↵ = 0.01. (d) The simulated (symbols) and theoretical

values (line) of the standard deviation of the neighbor fluctuations � = std(�Aneighbor
i =Ai+1+Ai�1�Ai�Ā) =

p
3Ā(1 � Ā/N),

are plotted against the average number of activation events per species, Ā, and for the same parameter values as in (a). The
standard deviation is calculated with respect to all species i in a single realization of the process. (e) Unavailable species
(crosses) act as obstacles for growth. The distribution of segment sizes between unavailable species depends on the probability
that species are unavailable. (f) Illustration of the assembly paths into structures with di↵erent numbers of “growing ends”.
If structures grow by attachment of monomers of an available species, the number of growing ends either stays the same or
decreases by one. (g) Prediction for the steady-state probability pl that a structure that grows to size l ends up in a state
where it can grow by attachment of monomers of available species. This probability depends on the number S⇥ of unavailable
species. The relevant parameters are L = 60 and L⇥ = (L/S)S⇥ = 5 (red circles), L⇥ = 10 (yellow triangles), L⇥ = 20 (green
stars) and L⇥ = 20 (blue squares). (h) In the e↵ective theory, structures can be either in a state where both neighboring species
are unavailable (“blocked”) or in a state where at least one neighbor is available (“growing”); see also (a). Structures in the
blocked state can only grow once an unavailable species is activated, whereas structures in the growing state can also grow by
available species. Over time, the number of unavailable species changes. As a result, structures can change from being blocked
to being able to grow or vice versa.

picture with the goal to capture the stochastic limit, will
thus require to reconsider this assumption. In the next
subsection, we will motivate our particular choice for ex-
tending the deterministic description.

B. E↵ective description of the stochastic system as
one-species problem

A fully stochastic description of our system would re-
quire a high-dimensional master equation, including all
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possible structure configurations (lengths and composi-
tions). Such a master equation is not very revealing per
se since it reflects the complexity of the dynamics one-to-
one. However, by finding an (e↵ective) representation in
a lower-dimension space, one can hope to get important
insights into which features of the full process are crucial
for the dynamics and which are not. A typical approach
for finding such a lower-dimensional representation are
moment-closure techniques [53]. For this purpose, one
derives a hierarchy of equations that relates the di↵erent
moments to each other. For large systems with many
interacting elements, this hierarchy is typically extensive
and it is necessary to define a closure relation that trun-
cates the hierarchy. In the simplest case, only the first
moment (i.e. the average) is taken into account while
all correlations are neglected. Implementing this proce-
dure rigorously [46] leads to the deterministic description,
Eqs. 3 and 4. We tried to refine this closure relation by
considering second-order moments. However, due to the
large number of combinatorial possibilities, there is no
canonical choice for the closure relation and we did not
succeed to define a reasonable one. Is there another pos-
sibility to e↵ectively reduce the high-dimensional system
to a lower-dimensional space? Potentially yes, at least if
one assumes that only demographic fluctuations in the
relative number of active monomers between species but
not reaction noise are crucial. In this case, it might not be
necessary to resolve the exact composition of the struc-
tures. Instead one could try to classify structures into
two di↵erent states per given size of a structure: one for
structures which currently cannot grow due to a lack of
neighboring particles (“blocked polymers”) and one for
the structures that can grow by monomer attachment of
neighboring species (“growing polymers”); see Fig. 3 (a)
for an illustration. In that way, the description is still
“close” to the deterministic description in the sense that
only an additional state has to be introduced. If this were
successful, it would reduce the original set of (L+1)⇥S

ordinary, stochastic di↵erential equations [54] to a sys-
tem of 2(L + 1) ordinary di↵erential equations (see also
below for details) compared to L in the deterministic case
(Eqs. 3 and 4).

Of course, to formulate such an e↵ective theory it is
necessary to define more precisely what we mean by
“blocked” and “growing polymers”. To do this and to
develop a good intuition for the system, in the next sec-
tion, we will look more closely at the system’s properties
and, in particular, the variations between species.

C. Origin of stochastic yield catastrophe:
Inter-species variability and “unavailable species”

As mentioned above, intuitively, fluctuations in the
availability of the di↵erent species can lead to undesir-
able nucleation events or defect formation if the species
necessary for correct growth are currently unavailable for
binding. So, how distinct is the availability of the di↵er-

ent species? Or, more concretely, how much do the num-
bers of activated particles Ai of the di↵erent species vary
compared to each other and compared to the mean value
Ā=

P
i Ai/S? Fig. 3(a) shows the deviation �Ai =Ai�Ā

of the number of activated particles for all species (col-
ors) relative to their mean value, as measured in one
single stochastic simulation with parameters L=60 and
N =100. The deviation is plotted against the average
number of activation events per species Ā (which is a
monotonic function of time). As expected, the deviation
is zero at the beginning (Ā=0) and at the end (Ā=N)
since then no particles of either species or all particles of
all species are activated, respectively. In between these
two limits, it attains values of typically 2-3 % of the to-
tal number of particles per species N . This value can be
understood analytically: There are N particles of each
species and NS particles in total. Furthermore, if the
average number of activation events per species is Ā, in
total SĀ activation events have happened. Thus, since
activation of particles occurs independently for all parti-
cles and species, the number of activated particles of one
species Ai is determined by the following random pro-
cess: Take SĀ random draws without replacement from
a population of size SN that containsN “successes” (par-
ticles of species i). The distribution corresponding to this
random process is called hypergeometric distribution [55]
with parameters SN , N and SĀ:

Ai ⇠ HypGeo(SN,N, SĀ). (5)

Its variance is given by

Var0 = Ā

✓
1� 1

S

◆✓
1� Ā

N

◆
NS

NS�1
⇡ Ā

✓
1� Ā

N

◆
, (6)

where the approximation is valid for large S. As a re-
sult, the standard deviation is maximal when half of the
particles have been activated on average, Ā=N/2, with a
value of

p
N/2 which is roughly 11 (or 2.2 %) forN =500.

Since the average number of particles per species Ā /
N , this scaling of the variance shows that the fluctuations
in the relative particle number of the di↵erent species are
indeed of the order 1/

p
N compared to the total number

of particles N per species. As mentioned above, this scal-
ing is expected for demographic noise. But how can these
order 1/

p
N fluctuations have such a strong e↵ect even

for large N? There are several possible reasons: First,
the dynamics of the process triggers a kind of reinforcing
e↵ect (“snowball e↵ect”) where the e↵ect of fluctuations
gets amplified due to the dynamics it causes itself. If
fluctuations at the beginning of the dynamics result in
too many nucleation events, too many structures form.
In the worst case, none of these structures is then com-
pleted due to competition for resources. So, a small fluc-
tuation in the beginning has a large e↵ect on the outcome
and whether a fluctuation changes the self-assembly pro-
cess considerably is thus history- and time-dependent.
This dependence on time is amplified even more since
the population size is non-constant. As a result, it is
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not necessarily the standard deviation compared to the
total number of particles N that is relevant for the pro-
cess but rather the standard deviation compared to the
mean number of activated particles, Ā. So, the quantity
to look at is not Var0/N2 = Ā (1�Ā/N)/N2 but rather
the coe�cient of variation,

CV
2 =

Var0
Ā2

=
Ā(1� Ā/N)

Ā2
=

1� Ā/N

Ā
. (7)

This coe�cient of variation is indeed very large at the be-
ginning (it diverges for Ā! 0 due to the zero mean), sug-
gesting that in particular at the beginning, there can be
too many undesirable nucleation events. In conclusion,
the e↵ect of fluctuations is strongly time- and history-
dependent.

In this section, we tried to motivate our approach to
extend the deterministic description of the self-assembly
process by its “essential” ingredients. It is based on the
idea that it is mainly the demographic noise that is de-
cisive for the dynamics of the assembly process. So,
inspired by the species symmetry in the deterministic
description, we assume that it is not necessary to keep
track of all possible configurations of structures but that
it is su�cient to characterize structures only in terms
of whether they can grow by monomer attachment or
whether they are blocked due to unavailable species. The
probabilities to be in either state are expected to depend
on the variability between species which is quantified by
the distribution of the number of active particles, Eq. 5.
We will revisit this distribution when we set up the ef-
fective theory in the next section.

IV. EFFECTIVE THEORY: QUANTIFICATION

The goal of this section is to make the e↵ective the-
ory for the model in Fig. 1 explicit. As we formulate
the theory, we also try to give an answer to the following
questions: How does variability between species influ-
ence the dynamics of the assembly process? How does
a species that is currently not available for binding alter
the self-assembly dynamics?

We will proceed as follows: First, we introduce some
terminology (Sec. IVA) that will make the formulation
of the e↵ective theory more convenient; see also Fig. 3
(a). Next, we determine the probability of species i to
be currently unavailable for binding; for a precise def-
inition see Sec. IVA and Fig. 3 (a). This can be due
to low activation of species i itself or due to high acti-
vation of the neighboring species i ± 1 and thus a high
likelihood for species i to be bound to these neighbor-
ing species on both sides already; for instance, species 6
in Fig. 3 (a) has been activated less than average and,
at the same time, its neighbors, species 5 and 1, have
been activated more than average. From the probability
of being unavailable for binding and the corresponding
number of “unavailable species” we then determine the

probability for a structure to be able to further grow, de-
pending on the length of the structure. Finally, we write
down an e↵ective one-species theory for the polymer-size
distribution that considers two states, one “blocked” and
one “growing” state for each polymer size (for a precise
definition see Sec. IVA; in Fig. 3 (a) the polymer 3-4-5
is blocked because there is neither an active monomer of
species 2 nor one of species 6 whereas 3-4 can grow by
attachment of an active monomer of species 5). A reader
not interested in the mathematical details is referred to
Sec. IVF for a summary.

A. Terminology

To begin with we define some terminology that will be
useful in formulating the e↵ective theory; for an illustra-
tion see also Fig. 3(a):

• “Monomers” denote particles that are not bound
to any other particle, yet.

• “Edge particles” are defined as particles attached
to either end of unfinished polymers, e.g. particles
of species 5 and 2 in the polymer 5-6-1-2.

• In contrast, “bulk particles” are defined as those
particles that are part of a larger polymer but are
not edge particles, e.g. particles of species 2, 3 and
4 in the polymer 1-2-3-4-5.

• “Growing polymers” in a given system are defined
as those polymers that have available binding part-
ners in the pool of active monomers which (upon
binding to the polymer) lead to the correct assem-
bly of the structure, without creating a defect, e.g.
polymer 3-4 to which active monomer 5 could bind
to.

• “Blocked polymers”, on the other hand, are those
polymers in the system that lack correct binding
partners in the monomer pool, e.g. polymer 3-4-5
can only grow by attachment of an active monomer
which is out-of-sequence and would create a defect
(monomer of species 1) since there are no active
monomers of species 2 or 6 available.

• Finally, we denote a species as “unavailable” if it is
currently not available for binding to any structure
(monomer or polymer) in the system. For this to be
the case two conditions need to be fulfilled: First,
there is no active monomer of that species present.
Second, there are no edge particles of that species.
If there are neither active monomers nor edge par-
ticles, all activated particles are bulk particles and,
thus, already have binding partners on both sides.
Hence, in this case there are currently no processes
possible that would lead to further binding of a par-
ticle of an unavailable species to another monomer
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or polymer. Note that this definition does not nec-
essarily imply that the unavailable species has not
been activated, at all, but rather that its activa-
tion is small compared to its neighboring species
(see also below) and, as a result, it is not available
for binding (any more).

B. Probability for the unavailability of species

How do fluctuations in the relative number of particles
of the di↵erent species translate into species currently not
being available for binding? To address this question, we
will employ a fluctuation-corrected mean-field argument

in the following: Denote by N
(b)
i the number of parti-

cles of species i a neighboring species can bind to. This
number has two contributions, namely the edge particles
and active monomers of this species. Deterministically,
the number of edge particles per species is given by 2u
where

u=
L�1X

k=2

ck (8)

is the total number of all unfinished polymers (of size
k2 {2, . . . , L� 1}) per species. The reason is that each
unfinished polymer has two ends, implying that there
are in total 2S

PL�1
k=2 ck edge particles or on average

2
PL�1

k=2 ck per species. As a result, deterministically (i.e.

in a mean-field description) N (b)
i is given by

N̄
(b)
i = 2u+m

a (9)

where m
a is the number of active monomers per species.

Due to the species symmetry in the deterministic mean-
field description [46], this result is independent of the
species index i.

This will not be the whole story in a stochastic de-
scription since fluctuations in the activation of the di↵er-
ent species are expected to influence the number of ac-
tive monomers and edge particles of the di↵erent species.
Heuristically, if species i is activated less (more) than av-
erage, there will be less (more) active monomers and/or

edge particles, so N
(b)
i will be smaller (larger). To

quantify this heuristic picture, we apply a fluctuation-
corrected mean-field argument which conceptually corre-
sponds to a lowest-order perturbation theory in the fluc-

tuations: We assume that N
(b)
i increases (decreases) by

1 for each particle that species i is activated more (less)

than average. That is, N (b)
i has an additional term

�Ai = Ai � Ā, (10)

where Ai is the number of activated particles of species i
and Ā=

P
i Ai/S is the average over all species, as above.

The idea is that each additionally activated particle is ei-
ther present as an active monomer or bound to a polymer

as an edge particle. Conversely, if one had to remove one
particle of one species from a mean-field configuration
with the goal to change “as little as possible”, one would
remove an active monomer or an edge particle. Remov-
ing or adding an edge particle also changes the number

of edge particles of the neighboring species. Thus, N (b)
i

is also a↵ected by the activation levels of the neighboring
species i±1. For simplicity, we assume that each addi-
tionally (less) activated particle of one of the neighboring
species reduces (augments) the number of edge particles
or the number of active monomers of species i by 1 [56].
Thus, from this direct dependency of the number of edge
particles of species i on the activation levels of the neigh-

boring species i± 1, N (b)
i gets reduced by

�(�Ai+1 + �Ai�1). (11)

Taken together, we find the following fluctuation-
corrected mean-field expression for the number of active
monomers and edge particles of species i

N
(b)
i = 2u+m

a + �Ai � (�Ai+1 + �Ai�1)

= 2u+m
a + Ā+Ai � (Ai+1 +Ai�1) . (12)

In principle, this expression can become negative. This is
an artefact of the above mentioned procedure which per
se only makes sense for small fluctuations with respect to
the mean-field configuration. We elaborate on this point
in the following: In a mean-field configuration, the num-
ber of particles of species i a neighboring species can bind

to is given byN
(b)
i = N̄

(b)
i =2u+m

a. Decreasing the acti-
vation level of species i, Ai, or increasing the levels of i±1,
Ai±1, will e↵ectively remove active monomers and edge

particles of species i, thus decreasing N
(b)
i . Of course, if

at all, this procedure only makes sense until there are no
more active monomers and edge particles of species i left:

N
(b)
i =0. Further reduction of Ai or increase Ai±1 will

certainly also a↵ect the bulk particles of species i, poten-
tially “breaking up” larger polymers. Then, we formally

have N
(b)
i < 0. Intricately, it is exactly this tail statistics

when formally N
(b)
i < 0 that is presumably most relevant

for the strength of the stochastic e↵ects: As soon as fluc-
tuations are large enough to trigger a qualitatively dif-
ferent growth behavior (“breaking up larger polymers”),
strong stochastic e↵ects are expected. Since it appears
infeasible to us to derive this tail statistics from first prin-
ciples, we try to gauge its e↵ect through the probability

that N (b)
i  0. More concretely, we use this “lowest-order

perturbation theory procedure” and its prediction of the

transition from N
(b)
i > 0 to N

(b)
i  0 as a proxy for when

a species qualitatively changes the growth behavior of the
neighboring species because it is unavailable for binding.
In this picture, the probability of species i to be un-

available (“unavailability probability”) is

p⇥ = Prob(N (b)
i  0)

= Prob(Ai+1+Ai�1�Ai�Ā � 2u+m
a). (13)
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Does this formula for the probability meet the intuitive
criteria for when a species should be unavailable? Which
characteristics should such a probability of species i to be
currently unavailable for binding have intuitively? First,
it should increase if species i has been activated less than
average because then it is likely that the species is un-
available for binding. Indeed, the smaller Ai, the larger
p⇥ according to Eq. 13. Moreover, if the neighboring
species i±1 are present in excess, they also e↵ectively re-
duce the number of active monomers and edge particles
of species i by binding to them. Thus, the probability for
species i to be unavailable should increase. Also this cor-
relation is reflected in Eq. 13: The larger Ai+1+Ai�1, the
larger p⇥. Finally, if the average number of unfinished
structures and active monomers, 2u+m

a, increases, the
probability to be unavailable should decrease. This is be-
cause then the deviation from the mean and, thus, the
fluctuations must be larger. In fact, for larger 2u +m

a

in Eq. 13, the unavailability probability p⇥ decreases. In
sum, the e↵ective probability given in Eq. 13 at least
captures our intuitive expectations.

In order to find an explicit expression for p⇥ from
Eq. 13, we next determine the distribution of the num-
ber of activated particles, Ai, up to time t. For each
particle the survival probability up to time t, i.e. the
probability not to become activated until time t, is given
by e

�↵t. Thus, since all particles are activated indepen-
dently, the number of activated particles of species i is
binomially distributed with number of trials N and prob-
ability 1� e

�↵t:

Ai ⇠ Bin(N, 1� e
�↵t). (14)

The variance of this distribution (“single-species vari-
ance”) is given by

�
2
0 = N (1� e

�↵t) e�↵t
. (15)

Moreover, the number of activated particles of each
species is independent for all species, that is, the Ai are
independent for all i. As a result, the fluctuations in
the relative activation levels between neighboring species
�A

neighbor
i :=Ai+1+Ai�1�Ai�Ā exhibit a variance

�
2 ⇡ 3�2

0 . (16)

Note that here we assumed Ā to be deterministic:
Ā=N(1� e

�↵t) which is a reasonable assumption if
S� 1. Interestingly, this predicted standard deviation
of �A

neighbor
i ,

p
3�0 =

p
3N(1� e�↵t)e�↵t , (17)

already captures the standard deviation in a single real-
ization of the stochastic process when averaged over all
species i quite well; see Fig. 3(d). This observation indi-
cates that the system is self-averaging, at least for large
numbers of species S� 1. Such a self-averaging prop-
erty of the system is reassuring because this whole idea

for the quantification of the e↵ective theory is based on a
(fluctuation-corrected) mean-field argument that should
ultimately capture the typical behavior of single realiza-
tions of the self-assembly process. If there would not
be any “internal averaging” in a single realization, there
would not be much hope that the fluctuation-corrected
mean-field argument for the unavailability probability,
Eq. 13, is informative.
Combining all of the above and approximating the dis-

tribution of �A
neighbor
i as a Gaussian distribution with

mean zero and standard deviation �, Eq. 16, we find the
following expression for the probability of species i to be
unavailable:

p⇥ = Prob(�A
neighbor
i � 2u+m

a)

=
1

2


1� erf

✓
2u+m

a

p
6�0

◆�
, (18)

where erf is the error function.
This equation makes sense intuitively: If there are on

average more active monomers and edge particles per
species (larger number of unfinished structures 2u+m

a),
larger fluctuations are required to find a species without
active monomers and edge particles. As a consequence,
the probability of a species to be unavailable for binding
decreases.
So far, we only considered a single species and asked

what the probability is that this particular species is un-
available. For the dynamics of the self-assembly process
it is, however, relevant to know how many species are un-
available, since this determines which fraction of struc-
tures can grow. It is a nontrivial problem to determine
the overall number of unavailable species from the single-
species probability, due to correlations between species.
For simplicity, we neglect these correlations and assume
that the probability for species to be unavailable is in-
dependent for all species [57]. Then, the number of un-
available species scales with the number of species and is
given by

S⇥ = S p⇥ =
S

2


1� erf

✓
2u+m

a

p
6�0

◆�
. (19)

If the number of species S does not equal the size of the
target structure L (S < L) it is useful to also define the
number of “unavailable sites” in the full ring structure,

L⇥ =
L

S
S⇥ =

L

2


1� erf

✓
2u+m

a

p
6�0

◆�
. (20)

This number does not equal the number of unavailable
species if each species occurs repeatedly in the ring, i.e.
if L/S > 1. Each unavailable species, thus, has to be
associated with L/S unavailable sites along the ring.

C. Size-dependent probability for a growing
polymer to be able to further grow

Suppose there are S⇥ unavailable species and, corre-
spondingly, L⇥ unavailable sites along the ring. What is
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the probability pl that a structure that has reached size
l2 {2, . . . , L � 1} can further grow by attachment of an
available species? To answer this question, let us look at
segments of size l (Fig. 3(e-f)). These segments can be
in three states: i) available species can bind to both ends
(denoted by S

l
2; two “growing” ends), ii) an available

species can bind to one end, whereas the other end would
require an unavailable species to grow (Sl

1; one “grow-
ing” end, one “blocked” end), and iii) both ends require
an unavailable species to grow and are, correspondingly,
blocked by the unavailability of the neighboring species
(Sl

0; two “blocked” ends).
What are the abundances of these states, denoted by

s
l
2, s

l
1 and s

l
0, respectively? And what do the (relative)

abundances tell us about the probability that a structure
that has reached size l can grow further by attachment
of available species?

We will proceed as follows: First, as illustrated in
Fig. 3(f), we define a simplified assembly process that
is supposed to reflect the original assembly process in a
stationary state in which the number of unavailable sites
L⇥ is fixed. For this simplified assembly process, we then
derive e↵ective transition probabilities and determine the
steady-state configuration by considering all possible as-
sembly/growth paths into a structure of size l in state
S

l
j , j = 0, 1, 2. Finally, this configuration will be used to

determine the probabilities pl that a structure which has
grown to size l ends up in state where it has at least one
growing end.

1. Simplified assembly process

Assuming for simplicity that structures only grow by
attachment of available species, in the simplified assem-
bly process, we consider the following transitions between
structures of di↵erent sizes (see also Fig. 3(f)):

S
l
2

↵l
22��! S

l+1
2 , (21a)

S
l
2

↵l
21��! S

l+1
1 , (21b)

S
l
1

↵l
11��! S

l+1
1 , (21c)

S
l
1

↵l
10��! S

l+1
0 . (21d)

Here, ↵l
ij denotes the transition rate from a structure of

size l and state i to size l+1 and state j= i or j= i� 1.
The basic idea to just consider these transitions in the
simplified assembly process depicted in Fig. 3(f) is as
follows: Available species only bind to so-called “grow-
ing” ends of structures. If an available species binds to a
growing end of a structure S

l
2 or S

l
1 of size l, this grow-

ing end is replaced by a new end in the structure of size
l+1, namely the subsequent species. This new end can
be either growing (if another available species could sub-
sequently bind) or blocked (if the next required species
for growth is an unavailable species). Thus, by binding of

an available species, the number of growing ends either
stays the same or decreases by 1 but can never increase.
As a result, there are only transitions between S

l
i and

S
l+1
i , Sl+1

i�1 for i=1, 2.
Note that the simplified assembly process assumes that

unavailable species are not present at all (instead of being
present as bulk particles). Correspondingly, the transi-
tion rates ↵

l
ij automatically entail that all structures in

the simplified assembly process are made up from avail-
able species only. Certainly, this is not satisfied in the
original assembly process. Unfortunately, however, we
were not successful in incorporating this aspect directly
into the simplified assembly process, for instance, by ad-
ditionally considering the possibility that blocked struc-
tures grow at a reduced rate (corresponding to activation
events of unavailable species). One reason is that it was
not clear to us how one should choose such a reduced rate
in comparison to the other transition rates. Furthermore,
even with a given reduced rate, we did not manage to de-
rive an analytic expression for the probabilities pl that a
structure that has grown into size l can grow further,
which is what we need to formulate the e↵ective theory
(see later). This e↵ective theory will then indeed include
the aspect that the number of available species changes
over time but will be based on the quasi-stationary ap-
proximation of a fixed number of unavailable species L⇥
in the simplified assembly process. It will turn out that
the fact that structures in the simplified assembly pro-
cess only contain available species leads to a strict length
cuto↵ in the dynamics above which there is no growth
at all. We will come back to this point at the end of the
section when we compare the predictions of the e↵ective
theory to results from stochastic simulations.

2. Transition rates

In order to determine the transition rates explicitly,
consider a structure of size l with two available species
next to both ends (two growing ends). For such a struc-
ture, there are

�L�(l+2)
L⇥

�
possibilities to distribute the L⇥

unavailable sites to the L� (l+2) remaining sites on the
ring. This number of possibilities decreases to

�L�(l+3)
L⇥

�

possibilities if the structure grows in a way that after
growth there are still two growing ends. As a result, if
the unavailable species (and sites [58]) are randomly dis-
tributed around the ring, the probability that this hap-
pens is

�L�(l+3)
L⇥

�
/
�L�(l+2)

L⇥

�
. Correspondingly, the proba-

bility that the structure grows into a structure with one
growing and one blocked end is 1�

�L�(l+3)
L⇥

�
/
�L�(l+2)

L⇥

�
.

Translating this probability into a transition rate yields
2�(1 �

�L�(l+3)
L⇥

�
/
�L�(l+2)

L⇥

�
) where � corresponds to the

total rate of attachment of an active monomer of an avail-
able species to one end. The factor of 2 is due to the
fact that the rate that a monomer binds to a structure
with two growing ends is twice as large as the rate that it
binds to a structure with one growing end. Employing an
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analogous argument for structures with one growing and
one blocked end, we find the following transition rates
(see Appendix for details)

↵
l
22 = 2�

�L�(l+3)
L⇥

�

�L�(l+2)
L⇥

� = 2�

✓
1� L⇥

L�(l+2)

◆
= 2� � ↵

l
21,

(22a)

↵
l
11 = �

�L�(l+3)
L⇥�1

�

�L�(l+2)
L⇥�1

� = �

✓
1� L⇥ � 1

L�(l+2)

◆
= � � ↵

l
10.

(22b)

To determine the steady-state configuration of the sim-
plified assembly process, we do not only need the transi-
tion rates between the states in the network but we also
have to define a boundary condition which specifies at
which rates (“influx rates”) active monomers enter the
system at the left boundary l = 1. For this purpose, we
will denote by i2, i1 and i0 the influx of active monomers
that can grow at both ends (corresponding to state s

1
2),

at only one end (s1
1) and at no end (s1

0), respectively. The
total influx of active monomers I = i2 + i1 + i0 is not cru-
cial for the growth probabilities because it just scales the
occupancy in the network and will drop out at the end.
What is relevant are the relative influx rates for the dif-
ferent states. Similarly to above, the explicit forms we
use come from considering the probabilities for a ran-
dom monomer of an available species to have two, one
or zero available neighbors, respectively: If the monomer
has two available neighbors, there are

�L�3
L⇥

�
possibili-

ties to distribute the remaining unavailable sites along
the ring. For one or zero available neighbors, the num-
ber of possibilities are 2

� L�3
L⇥�1

�
and

� L�3
L⇥�2

�
, respectively.

If the unavailable sites are randomly distributed around
the ring, the influx rates have to scale with exactly these
numbers of possibilities and we get

i2 =

✓
L�3

L⇥

◆
I , (23a)

i1 = 2

✓
L�3

L⇥�1

◆
I , (23b)

i0 =

✓
L�3

L⇥�2

◆
I . (23c)

3. Steady-state configuration and growth probabilities

From the influx rates, Eq. 23, and the transitions rates,
Eq. 21, one can determine the steady-state numbers s

l
j

of structures of size l with j=1, 2 growing ends (see Ap-
pendix B). How is the probability pl that a structure that
grows into size l has at least one growing end expressed
in terms of these steady-state numbers? It is given as the
ratio of (1) the rate �1 at which structures of size l � 1
grow into structures of size l that are still able to further
grow by attachment of an available species compared to

(2) the overall rate �2 at which structures of size l � 1
grow into structures of size l:

pl =
�1

�2
. (24)

�2 has two contributions, namely the rate at which a
monomer of an available species attaches to any structure
of size l� 1 with one growing end, (↵l�1

11 +↵
l�1
10 )sl�1

1 , and
the corresponding one for attachment to a structure with
two growing ends (↵l�1

22 +↵
l�1
21 )sl�1

2 . According to Eq. 22,
↵

l�1
11 +↵

l�1
10 = � and ↵

l�1
22 +↵

l�1
21 = 2�, so we find

�2 = (↵l�1
11 + ↵

l�1
10 )sl�1

1 + (↵l�1
22 + ↵

l�1
21 )sl�1

2 (25)

= �(sl�1
1 + 2sl�1

2 ). (26)

�1 only counts the growth events for which the result-
ing structure is still able to grow by attachment of an
available species (at least at one end). Correspondingly,
it has the same contributions as �2 except that is does
not include the transition s

l�1
1 ! s

l
0 which produces a

structure that cannot grow further. Compared to �2 the
rate is thus reduced by ↵

l�1
10 s

l�1
1 and we have

�1 = ↵
l�1
11 s

l�1
1 + (↵l�1

22 + ↵
l�1
21 )sl�1

2 (27)

= ↵
l�1
11 s

l�1
1 + 2�sl�1

2 . (28)

It follows that

pl =
↵

l�1
11 s

l�1
1 + 2�sl�1

2

�s
l�1
1 + 2�sl�1

2

. (29)

Combining the above and using ��↵
l�1
11 =↵

l�1
10 yields the

following expression for the probability pl that a struc-
ture that has reached size l can grow further by attach-
ment of available species:

pl = 1� ↵
l�1
10

�

s
l�1
1

s
l�1
1 + 2sl�1

2

(30)

Finally, and as explained in detail in Appendix B, con-
sidering all possible assembly/growth paths to determine
s

l
j gives an explicit expression of pl

pl =

(
1� lL⇥(L⇥�1)

[L�(l+1)] [L+(l�1)L⇥�l] , l <L�L⇥

0 else,
(31)

if L⇥ > 1. Otherwise, pl =1 for all l.
Figure 3(g) shows pl as a function of the structure size

l for a ring size L=60 and for di↵erent, fixed numbers of
unavailable sites L⇥ =5, L⇥ =10, L⇥ =20, and L⇥ =30.
Intriguingly, pl decreases for larger structure size l, im-
plying that it becomes increasingly di�cult for structures
to grow further once they get larger. This suggests that
unavailable species foster growth of small structures com-
pared to large ones, which, generally speaking, leads to
lower yield.
In closing this section, we would like to critically as-

sess the validity of the simplified assembly process. First,
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we assumed that always the same species are unavailable
for binding. As can be seen in Fig 3(c) this assumption
that always the same species are unavailable describes
the right trend: If a species has a very low activation
level compared to the mean at one point in time t0, it is
more likely to still have a very low activation level later,
as compared to a species with high activation level at t0.
However, it is also evident from the figure that this state-
ment is not strictly true. Indeed, there are species that
have an average activation level at first but then over
time change to having a low activation level compared to
the mean and become unavailable for binding. Related to
the first assumption, we furthermore hypothesized that
these unavailable species are entirely unavailable, mean-
ing that they are not incorporated in any structure. As a
result, only structures of size l  L�L⇥�1 can grow and
the growth probability is identical to zero for all other
structures. This assumption cannot be quite true since
unavailable for binding only refers to not being present
as active monomer or as edge particles but not to be-
ing absent completely. Nonetheless, from comparison of
this theory with stochastic simulations it seems that ul-
timately this is a reasonable approximation for under-
standing the qualitative behavior (see Sec. V).

D. Two-state ansatz

The probability pl determined in the last section rep-
resents the probability that a specific polymer that has
just reached size l is able to grow further by monomer
attachment of available species, i.e. has at least one grow-
ing end when it has reached size l. This probability is,
however, not the same as the fraction of structures of size
l that has at least one growing end. The reason is a bit
subtle and has to do with what we condition on.

In the way we determined pl in the previous section
(Eq. 31), it corresponds to the probability that a specific
structure that has just grown from size l � 1 to size l is
in a state with at least one growing end, i.e. is (in the
terminology of the previous section) in state Sl

i=1 or S
l
i=2.

We, thus, condition on the fact that the specific structure
just grows from size to l � 1 to l. We could also have
looked at the fraction fl = (Sl

i=1 + S
l
i=2)/(S

l
i=0 + S

l
i=1 +

S
l
i=2) of structures of size l in a state with one or two

growing ends, Sl
i=1 or Sl

i=2, as compared to a state with
two blocked ends, Sl

i=0. This fraction fl would describe
the probability that a randomly picked structure of size
l can, in principle, grow. Hence, fl would correspond to
conditioning the probability on the fact that the structure
has a size l (irrespective of when it reached this size).

These two probabilities pl and fl are, in general, not
the same. The reason is that structures of size l with at
least one growing end continue to grow while the struc-
tures of size l with no growing end accumulate. As a
result, over time the number of structures of size l that
cannot grow increases compared to the one of size l that
can grow. This can be seen very nicely in the simpli-

fied assembly process mentioned in the previous section:
Indeed, fl would be ill-defined there because there is a
continuous influx of monomers and the states S

l
0 would

get more and more populated. In contrast, the numbers
of structures in the states Sl

1,2 converge to a steady-state
value because there is not only influx into these states but
also outflux from them (due to the growth of structures).
Taken together, the probabilities pl determined in

Eq. 31 do not correspond to the fraction of structures
of size l that can grow.

As a result, if there are now cl structures of size l,
one cannot conclude that a fraction pl of those grows by
monomer attachment and, correspondingly, that there
are pl · cl structures of size l (per species) available for
binding.
One approach to resolve this issue would be to try to

determine the momentary fraction fl of structures of size
l that can grow. Since, however, many factor would influ-
ence how exactly fl should change over time (including
the growth dynamics itself!), we chose an alternative ap-
proach: Instead of treating all structures of a certain size
as one “population” – as one does in a mean-field descrip-
tion [46] – we introduce two populations Gl and Bl (for
growing and blocked) with corresponding concentrations
gl and bl (Fig. 3(h)). The first population Gl includes all
structures that grow by attachment of monomers of avail-
able species (i.e. those with at least one growing end),
whereas Bl denotes those that are blocked (meaning they
only grow if currently unavailable species get activated).

The respective probabilities of these populations corre-
spond to the growth probabilities pl determined in Eq. 31
which quantify how likely it is that a structure that has
just reached size l can grow further by attachment of an
available species. Thus, if a structure of size l� 1 grows
to size l, with probability pl it ends up in Gl and with
probability 1� pl in Bl:

Gl�1 �!
(
Gl with probability pl

Bl with probability 1� pl.
(32)

If now structures in Gl grow, this does not influence the
population Bl and there is no need to determine a mo-
mentary fraction fl of structures that can, in principle,
grow.

Due to activation and binding events, the number of
unavailable species S⇥ and thus pl (Eq. 31) change over
time. If the number of unavailable species increases,
structures previously in the growing state might get
blocked and, vice versa, if the number of unavailable
species decreases, structures that were in the blocked
state might transition to the growing state. As a result,
there has to be an exchange between the populations Gl
and Bl if dS⇥/dt 6= 0. In order to formulate the e↵ective
theory, it is necessary to quantify this exchange. For this
purpose, we define the flux between the two states Bl

and Gl as the number of structures that transition from
Bl to Gl per time. How does this flux depend on the
derivative of the probability pl, dpl/dt?
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Since this dependency is not entirely intuitive, we con-
sider a much simpler system first. In this simpler system,
it is straightforward to derive the fluxes and the result-
ing formulas for the fluxes can then be generalized for
our purpose. Consider a system with N particles where
each can be in either of two states, with p(t) denoting
the fraction in state g at time t: Then we have

Ng(t) = Np(t) , and Ng(t+�t) = Np(t+�t) . (33)

Consequently,

Ng(t+�t)�Ng(t) = Ng(t)
p(t+�t)� p(t)

p(t)
, (34)

and hence

dNg(t)

dt
= Ng

d ln p(t)

dt
= (Ng�N)

d

dt
ln (1�p(t)) , (35)

where we used (N �Ng)/(1� p)=N �Ng/p in the last
step. Equation 35 implies that the per-capita rate of ex-
change between the two states is not equal to the change
in probability but rather to the change in the logarithm
of the probability. Intuitively, in order for the probability
p to change by a fixed value, always the same number of
particles has to transition from one state to the other, ir-
respective of the number of particles in the original state.
As a result, if the number of particles was high (low) in
the original state, a small (large) fraction of them needs
to be exchanged.

In our system, there are not only two states but
particles can transition between di↵erent states (grow-
ing/blocked and di↵erent polymer sizes). Nonetheless,
the exchange dynamics relative to the number of parti-
cles in each state should be the same as in the simple
system. Thus, the fluxes between the “growing” Gl and
“non-growing/blocked” Bl populations (i.e. the number
of structures that transition from Bl to Gl per time) are
given by

J
B!G
l = �J

G!B
l =

(
gl

d
dt log pl if dpl

dt < 0

�bl
d
dt log(1� pl) if dpl

dt > 0.

(36)

These equations imply that if the probability pl de-
creases (dpl/dt< 0) a part of the structures of size l cur-
rently in the growing state will transition to the non-
growing (blocked) state: J

G!B
l > 0. Conversely, if pl

increases (dpl/dt< 0) structures of size l can grow again
and will transition from the blocked to the growing state:
J

B!G
l > 0.
Before we discuss the last aspect of the e↵ective the-

ory, namely the monomer dynamics, we give a short sum-
mary of the mathematical analysis so far. Starting from
the fluctuations in the relative availability of the di↵erent
species due to the random activation process, we aimed
to quantify how these fluctuations modify the growth dy-
namics of self-assembling structures. Intuitively, the idea
is the following: If certain species are less activated than

their neighboring species, these species can become un-
available for binding. This unavailability of some species
then blocks the growth of those structures that need the
unavailable species for the next step of the assembly pro-
cess. Assuming a random distribution of these unavail-
able species along the ring structure, we quantified this
blockade e↵ect through the probabilities pl that a struc-
ture that has just reached size l can continue to grow
(i.e. is not blocked by unavailable species), Eq. 31. These
growth probabilities are large if the number of unavail-
able species is small, as one would intuitively expect; see
also Fig. 3 (g). Importantly, one has to distinguish be-
tween the probability (pl) that a single structure that
has just reached size l can continue to grow and the
probability fl that a randomly picked structure of this
size l is able to grow. The reason is that structures
that can continue to grow have a di↵erent growth dy-
namics than those that cannot: While structures in the
growing state can grow as usual, structures in the non-
growing (blocked) state can only grow if a currently un-
available species is activated. As a result of this diverg-
ing growth dynamics, there is generally an accumulation
of non-growing structures (compared to growing ones).
This accumulation entails that the probability fl that a
randomly picked structure of size l cannot grow is much
higher than the probability pl that a single structure that
has just reached size l can grow further. To account for
this di↵erence, we introduced two distinct states for each
structure size, corresponding to the growing and non-
growing (blocked) polymers.

What remains to be discussed before we can write
down the full dynamics of the self-assembly process is the
e↵ective behavior of the monomers. This will be done in
the next subsection.

E. Monomer dynamics

So far, we have identified two di↵erent states for the
polymers, namely blocked (non-growing) and growing
ones, depending on whether the species they need for
further growth are currently unavailable or not. This
separation already implies that there need to be at least
two di↵erent states of active monomers, namely those
monomers belonging to currently unavailable species and
those that belong to species that are currently avail-
able for binding. Furthermore, in analogy with the
polymer states, also a third state is reasonable, namely
a “blocked” (non-growing) monomer which would need
monomers of unavailable species on both sides to be able
to form a dimer. What are the respective probabilities
for these states of monomers if there are S⇥ unavailable
species in the system? We denote them by capital let-
ters P to avoid confusion with the probabilities pl that
a structure that reached size l ended up in the growing
state.

The probability of monomers to belong to an unavail-
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able species can be approximated by

P⇥ =
S⇥
S

=
L⇥
L

, (37)

since there is the same total number N of particles
of each species and a randomly chosen monomer thus
corresponds with probability S⇥/S to an unavailable
species [59]. The probability of a monomer to be blocked
is given by

Pb = 1� p1 (38)

with p1 determined by Eq. 31, analogously to the prob-
ability 1� pl that a polymer of size l is in the blocked
(non-growing) state. Finally, the probability of all other
monomers (“normal monomers”) is given by the remain-
ing probability

Pn = 1� Pb � P⇥ . (39)

Since P⇥ and Pb increase with the number of unavailable
species, the probability of a monomer to be in the “nor-
mal” state decreases with increasing L⇥ or increasing
fluctuations in the relative availability of species. Indeed,
one can interpret the normal monomers as the equivalent
to the monomers in the deterministic description: If the
fluctuations between the species are small and there are
no unavailable species, L⇥ = 0, we have P⇥ =Pb = 0 and
all monomers are in the normal state: Pn =1. In fact, we
then have pl = 1 for all l implying that also all polymers
are in the “growing” state which is the equivalent to the
(unique) polymer state in the deterministic description.

When we explored a dynamics with these three states
of monomers (combined with the polymer dynamics as
stated below), it turned out that these are su�cient to
capture the qualitative behavior of the stochastic model.
However, in particular for self-assembly processes with a
small dimerization rate, µ⌧ ⌫, where the monomer dy-
namics plays an important role, the quantitative agree-
ment with the result from stochastic simulations can be
improved considerably by the introduction of an addi-
tional monomer state. This “unblocked” state comprises
all monomers that have been in the blocked state but
then got unblocked due to a decrease in the number of
unavailable species over time, dL⇥/dt< 0; see also Fig. 4
for an illustration of the monomer dynamics. Such a de-
crease in L⇥ eventually happens in each system, since
after activation of all particles, there is no variability
between species and, thus, no species with less activa-
tion compared to the other species. The reason why
this additional state changes the dynamics is that it can
prevent the di↵erent monomers that have been blocked
before from instantaneously dimerizing with each other
once they are unblocked. Such a behavior would not
make much sense since the di↵erent species in the blocked
state either correspond to exactly the same species or
are separated by at least one unavailable species. In
both cases, they are not supposed to bind to each other.
With the introduction of the unblocked state, it is possi-
ble to eliminate this binding pattern by not allowing the

monomers in the unblocked state to dimerize with each
other. If they would just transition back to the normal
state instead, such a rule could not be implemented since
monomers need to be able to dimerize. In summary, we
take into account a forth monomer state that, however, is
not directly accessible if monomers are activated but gets
populated by the originally blocked monomers. Based on
these e↵ective states of monomers and the description of
polymers in two di↵erent state (non-growing/blocked and
growing), we will next formulate the full e↵ective theory.

F. E↵ective theory

In the last sections, we have discussed several aspects
of the e↵ect of stochasticity and the resulting variability
between species. First, we have introduced the concept
of a currently unavailable species. It is a species that
does not have any (already activated) particles with free
binding sites on the left or right. Roughly speaking, if a
species is considerably less activated than other species
it is likely that it becomes an unvailable species. The un-
availability of such a species then e↵ectively blocks the
growth of structures. Employing a fluctuation-corrected
mean-field argument, relating fluctuations in the ran-
dom activation of the di↵erent species to the availabil-
ity of particles for binding, we have then deduced the
probability of a structure to further grow by attachment
of monomers of an available species. Importantly, this
probability pl, of being in the “growing state”, Eq. 31,
depends on the size l of the structure so that larger struc-
tures are less likely to grow by attachment of available
species. Instead they need to “wait” for a monomer of a
currently unavailable species to be activated before they
can grow (“blocked state”).
To sum up, the picture is as follows: There are two

types of species, available and unavailable ones, and each
structure can be in either of two states, a growing and
a blocked state (see also Fig. 3 (a)). Unavailable species
have been activated less compared to their neighboring
species and due to their unavailability block the growth
of structures. Once they get activated, they bind to all
structures because most structures can grow by attach-
ment of a monomer of an unavailable species – at least at
one end [60]. In contrast, monomers of available species
can principally only bind to structures in the growing
state (Fig. 4), i.e. to structures that are not completely
blocked by the unavailability of the neighboring species
but instead can grow at least at one end by attachment
of an available species. If structures of size l� 1 grow by
monomer attachment, with a certain probability 1� pl
they end up in the non-growing (blocked) state in which
both ends need a monomer of an unavailable species to
grow further. This probability 1� pl, Eq. 31, increases
with increasing number of unavailable species and with
increasing size of the structure l. With the inverse proba-
bility pl, structures end up in the growing state. As a re-
sult, during the growth process more and more structures
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FIG. 4. Illustration of the monomer dynamics. There are four monomer states: an unavailable, blocked, unblocked
and normal one. Monomers in the unavailable, blocked and normal state are activated at rates N↵e�↵tP⇥, N↵e�↵tPb and
N↵e�↵tPn, respectively. If the number of unavailable species decreases, monomers in the unavailable state transition to the
normal state and monomers in the blocked state transition to the unblocked state. Conversely, if the number of unavailable
species increases, monomers in the normal state either transition to the unavailable or to the blocked state. Monomers in the
unblocked state transition back to the blocked state. Polymers in the growing state can bind to monomers in the normal,
unavailable and unblocked state. In contrast, polymers in the non-growing state can only bind to monomers in the unavailable
state.

will transition from the growing to the blocked state in
which activation of a monomer of an unavailable species
is necessary for further growth.

Taken together, we can now build up the e↵ective
growth dynamics of the self-assembly process with no
defect formation, ⌫def =0; for an analysis of the more
general case, we refer the reader to Appendix C. For
better readability, we will explain the di↵erent contribu-
tions to the dynamics in separate paragraphs: activation
of monomers (proportional to ↵), dimerization between
monomers (proportional to µ), growth dynamics of poly-
mers by monomer attachment (terms proportional to ⌫),
and the exchange dynamics between the di↵erent states
of each structure size (denoted by ⇢ and %). The full
dynamics is shown in Sec. IVF 5. We use the follow-
ing notation: gl (bl) denotes the concentration of poly-
mers of size l � 2 in the growing (blocked) state. The
concentrations mn, m⇥, mb and mub denote the concen-
tration of monomers in the normal, unavailable, blocked
and unblocked state, respectively; see also Sec. IVE. All
concentrations always refer to one species.

1. Activation of monomers (see also Fig. 4)

Each of the N particles for each species is activated at
a per-capita rate ↵. Hence, at time t, on average Ne

�↵t

particles per species are still inactive, and the overall
rate of monomer activation per species is thus ↵Ne

�↵t.
As we have discussed in detail in Sec. IVE, there are
four di↵erent monomers states, one for monomers be-
longing to unavailable species m⇥, one for monomers
that are blocked by an unavailable species on each end
mb, one for monomers that had been blocked but were
“freed” (unblocked) due to a decrease in the number
of unavailable species, mub, and the remaining one for
normal monomers mn. At activation, monomers either
end up in the normal, unavailable or blocked state with

respective probabilities Pn, P⇥ and Pb =1 � Pn � P⇥.
The corresponding gain terms in the monomer dynamics
are, thus, ↵Ne

�↵t
Pn, ↵Ne

�↵t
P⇥ and ↵Ne

�↵t
Pb, respec-

tively. There is no gain term for unblocked monomers due
to activation because this type of monomer only includes
the monomers that have been in the blocked state before
and then got unblocked as fluctuations between species
(or, equivalently, L⇥) decreased.

2. Dimerization between monomers

In general, dimerization happens at rate µ. However,
not all monomers can dimerize with all other monomers.
More concretely, monomers in the blocked state can only
dimerize with monomers in the unavailable state (be-
cause by definition they are blocked on both sides by an
unavailable species). There are 2m⇥mb di↵erent combi-
nations of monomers for such dimerization events where
the factor of 2 takes into account that monomer 1 can
bind from the left or from the right to monomer 2. Thus,
the overall rate for this process is 2µmbm⇥ and it oc-
curs as loss terms in the dynamics of both mb and m⇥.
In the gain term for the dimers g2 and b2, these terms
are multiplied by the probabilities p2 and 1� p2, respec-
tively, to account for the fact that a newly formed dimer
is with probability p2 in the growing state and with in-
verse probability 1�p2 in the non-growing (blocked) one.
Monomers in the unavailable state not only dimerize with
monomers in the blocked state but also with monomers
in the normal and unblocked state because monomers of
the unavailable species are supposed to be “required” by
all other structures. Analogous to the previous case, the
corresponding rates are 2µmnm⇥ and 2µmubm⇥, respec-
tively, again with additional factors p2 and 1� p2 for the
gain terms. Finally, monomers in the unavailable state
dimerize among themselves. Due to the indistinguisha-
bility between monomers of one state, there are only m

2
⇥
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combinations for two monomers in the unavailable state
to dimerize. Since two monomers are lost in the process,
the overall loss rate for the monomers is still 2µm2

⇥. The
gain term for the dimers is, however, just µm

2
⇥, again

weighted with the probabilities p2 and 1�p2. Monomers
in the normal state not only dimerize with the monomers
in the unavailable state but also with themselves (as is the
case in the deterministic description where there are only
“normal” monomers) and with the unblocked monomers
(which are basically the same as normal monomers only
that they have been in the blocked state before). Simi-
larly to above, the corresponding loss terms are 2µm2

n and
2µmnmub and the gain terms are µm

2
np2 or µm2

n(1� p2)
and 2µmnmubp2 or 2µmnmub(1 � p2), respectively. Fi-
nally, monomers in the unblocked state behave similarly
as the monomers in the normal state only that they do
not dimerize among themselves. Thus, there are just
the loss terms from dimerization of monomers in the un-
blocked state with monomers in either the normal or the
unavailable state, as described above.

3. Growth dynamics (see also Fig. 4)

As mentioned above, monomers of the unavailable type
(i.e. monomers of an unavailable species) bind to all poly-
mers. These binding processes are represented by the
terms

2⌫m⇥glpl+1 + 2⌫m⇥gl(1� pl+1) = 2⌫m⇥gl (40a)

2⌫m⇥blpl+1 + 2⌫m⇥bl(1� pl+1) = 2⌫m⇥bl . (40b)

For instance, each monomer of the unavailable type can
bind at rate ⌫ to each structure of size l in the growing
state. Overall, there are 2m⇥gl possible combinations
because the monomer can attach from both sides to the
structure. So, the overall binding for a monomer of the
unavailable type to a structure of size l in the growing
state is 2⌫m⇥gl. With probability pl+1 the newly formed
structure of size l+1 is in the growing state and with the
inverse probability 1 � pl+1 in the blocked state. As a
result, the rate of formation of a structure of size l+1 in
the growing or blocked state due to binding of a monomer
in the unavailable state to a growing structure of size l is
given by 2⌫m⇥glpl+1 or 2⌫m⇥gl(1 � pl+1), respectively.
Similarly, the overall binding rate for a monomer in the
unavailable state to a structure of size l in the blocked
state is 2⌫m⇥bl. Again, the thereby formed structures
of size l + 1 are in the growing (non-growing) state with
probability pl+1 (inverse probability 1 � pl+1) and the
respective rates are 2⌫m⇥blpl+1 and 2⌫m⇥bl(1� pl+1).

4. Exchange dynamics

The strength of stochastic fluctuations and with it the
number of unavailable species changes over time. For
instance, as shown above in Fig. 3(d), the standard devi-
ation of the availability of di↵erent species as compared

to their neighbors is maximal when just half the particles
have been activated and is zero at the beginning and at
the end of the process. As a result, the probability for a
structure of size l to be in the growing state, pl, changes
over time. If pl changes there needs to be an exchange
of structures of size l between the corresponding growing
(Gl) and blocked state (Bl). A structure in the blocked
state that was blocked by the unavailability of its two
neighboring species might, for instance, transition to the
growing state once one of the originally unavailable neigh-
boring species gets available. As motivated in Sec. IVD,
the corresponding fluxes between the states are propor-
tional to the derivative of the logarithm of the respective
probability pl or 1�pl (depending on the direction of the
exchange). Thus, we have

⇢l = J
B!G
l =

(
gl
pl

dpl

dt if dpl

dt < 0
bl

1�pl

dpl

dt if dpl

dt > 0,
(41)

where we defined ⇢l as the flux from the blocked to the
growing state, JB!G

l (compare also Eq. 36). So, if the
probability to be in the growing state pl increases (de-
creases), there is positive flow from the blocked (growing)
to the growing (blocked) state.

The fluxes between the monomer states are a bit more
involved because there are not only two di↵erent states
but, in principle, four of them. We denote them by a
slightly di↵erent letter, %, to avoid confusion with the
other fluxes. If the number of unavailable species de-
creases, dL⇥/dt < 0, the generalization is straightfor-
ward: Monomers of the unavailable type transition to
the normal state and monomers that had been blocked
by unavailable species will become unblocked (see also
Fig. 4). Thus, there are only transitions from one state
to one other state. As motivated in Sec. IVD, the per-
capita transition rates are proportional to the derivative
of the logarithm of the probability of the respective state.
In the case dL⇥/dt < 0, we thus have

%n = �%⇥ = �m⇥
P⇥

dP⇥
dt

(42a)

%ub = �%b = �mb

Pb

dPb

dt
. (42b)

Here dP⇥/dt < 0 and dPb/dt < 0, so that the flux into
the normal, %n, and unblocked state, %ub, is positive, as
expected.

In contrast, if the number of unavailable species in-
creases, both the number of active monomers in the un-
available state as well as the number of active monomers
in the blocked state increases. This implies that
monomers in the normal state can either transition to
the unavailable or to the blocked state (see also Fig. 4).
Furthermore, monomers in the unblocked state transition
back to the blocked state. As we show in Appendix B 2,



18

these transitions for dL⇥/dt > 0 are realized by

%n =
mn

Pn

dPn

dt
= �mn

Pn

dp⇥
dt

� mn

Pn

dPb

dt
(43a)

%⇥ =
mn

Pn

dP⇥
dt

(43b)

%ub = � mub

1� Pb

dPb

dt
(43c)

%b =
mn

Pn

dPb

dt
+

mub

1� Pb

dPb

dt
. (43d)

Now, dP⇥/dt > 0, dPb/dt> 0 and dPn/dt< 0, so that
there is indeed flux from the normal to the unavailable
and blocked state and from the unblocked to the blocked
state. The influx from the normal into the unavailable
state %⇥ is proportional to the number of monomers in
the normal state mn and to the change in the likelihood
of species to be unavailable, dP⇥/dt. This term appears
as a gain term for the monomers of unavailable species,
%⇥, and as a loss term for monomers in the normal state,
%n. Monomers in the normal state also transition to the
blocked state. This flux is again proportional to mn and
to the change in the likelihood of species to be blocked,
dPb/dt. This term appears in %n as loss term and as gain
term in %b. Finally, monomers in the unblocked state
transition back to the blocked state. The corresponding
flux is proportional to the number of monomers in the
unblocked state mub, and to the change in the likelihood
of species to be unblocked, dPub/dt = d(1 � Pb)/dt =
�dPb/dt.

Irrespective of the sign of dL⇥/dt, we have

%n + %⇥ + %b + %ub = 0 (44)

due to conservation of particles.

5. Full dynamics

Combining all of these contributions to the dynamics,
the full dynamics reads as follows:
Monomer dynamics (see also Secs. IVF 1, IVF 2, IVF 3
and IVF4):

@tmn = ↵Ne
�↵t

Pn � 2µDn � 2⌫mn� + %n (45a)

@tm⇥ = ↵Ne
�↵t

P⇥ � 2µD⇥ � 2⌫m⇥ (� + �) + %⇥
(45b)

@tmb = ↵Ne
�↵t

Pb � 2µDb + %b (45c)

@tmub = �2µDub � 2⌫mub� + %ub (45d)

where

2Dn = 2
�
m

2
n +mnm⇥ +mnmub

�
(46a)

2D⇥ = 2
�
m

2
⇥ +m⇥mn +m⇥mub +m⇥mb

�
(46b)

2Db = 2mbm⇥ (46c)

2Dub = 2 (mubmn +mubm⇥) , (46d)

denote the number of ways in which a monomer in the
normal, unavailable, blocked or unblocked state can
dimerize with another monomer, respectively. Here,
mn, m⇥, mb and mub denote the numbers of monomers
in the normal, unavailable, blocked and unblocked
state (per species), respectively; see also Sec. IVE.

Furthermore, � =
PL�1

l=2 gl and � =
PL�1

l=2 bl denote the
total number of unfinished polymers in the growing and
blocked state, respectively. Here, gl and bl denote the
numbers of polymers of size l � 2 (per species) in the
growing and blocked state, respectively.
Polymer dynamics (see also Secs. IVF 2, IVF 3
and IVF4):

@tg2 = µ (Dn +D⇥ +Db +Dub) p2 � 2⌫g2MG + ⇢2

(47a)

@tb2 = µ (Dn +D⇥ +Db +Dub) (1� p2)� 2⌫b2m⇥ � ⇢2

(47b)

for the dimers and

@tgl = 2⌫ (gl�1MG + bl�1m⇥) pl � 2⌫glMG + ⇢l (48a)

@tbl = 2⌫ (gl�1MG + bl�1m⇥) (1� pl)� 2⌫blm⇥ � ⇢l

(48b)

for all polymers with l 2 {3, . . . , L � 1} where MG =
(mn +m⇥+mub) denotes the number of monomers that
can bind to structures in the growing state. Finally, for
the final target structures there is only one state (since
they do not grow further) which we denote by GL with
concentration gL:

@tgL = 2⌫ (gL�1MG + bL�1m⇥) . (49)

The probabilities pl�2 are defined in Eq. 31 and the
probabilities for the monomers in Eqs. 37, 38 and 39. The
full dynamics (Eqs. 45, 47, 48, 49) is solved numerically
using MATLAB.

V. COMPARISON TO STOCHASTIC
SIMULATIONS AND DETERMINISTIC THEORY

Does this e↵ective theory capture the strong stochastic
e↵ects as observed in stochastic simulations of the sys-
tem? Figure 2 shows the result of a numerical integration
of the e↵ective theory (Eqs. 45, 47, 48, 49), in compar-
ison with the stochastic simulations. While the e↵ec-
tive theory does not coincide fully quantitatively with the
stochastic simulations, it correctly predicts the qualita-
tive behavior of the system, in contrast to the determin-
istic theory [46] (not shown). First, the e↵ective theory
correctly predicts that the yield saturates at an imperfect
value Ymax < 1 in the limit of small activation rate (Fig. 2
(a)). This imperfect value decreases for smaller numbers
N of particles per species and for larger target structure
sizes L. Furthermore, we recover the non-monotonic be-
havior of the (defect-free) yield with the activation rate,
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if the dimerization rate is small (µ ⌧ ⌫; Fig. 2 (b)) or
if defect formation is allowed (⌫def > 0; Fig. 2(c)). Note
that in the case of defect formation, we do recover the
non-monotonic behavior of the defect-free yield (yield of
all defect-free target structures) but not of the total yield
(yield of all target structures). This is presumably be-
cause in our theory defect formation is always possible
and since we do not account for additional fluctuations
in the availability of the di↵erent species due to defect for-
mation [48]; for details on the e↵ective theory with defect
formation, ⌫def > 0, please refer to Appendix C. Finally,
for fixed target size L and fixed total number of parti-
cles NS (or, equivalently, fixed number of rings NS/L

if assembly proceeds perfectly), the yield decreases for
larger heterogeneity of the target structure (correspond-
ing to the number of species S in the system) (Fig. 2 (d)).
In contrast, yield becomes independent of the number of
species S for S � 1 if the number of particles per species
N is kept constant (Fig. 2 (e) and (f)). This implies
that, as long as the structures are not fully homogeneous
and variability between di↵erent species exists (S � 1),
for constant N and L the number of species is not de-
cisive for the process. In the e↵ective theory, this can
be seen from the fact that only the number of unavail-
able sites along the ring, L⇥, enters but not the number
of unavailable species, S⇥ itself (at least if we assume
that the periodicity of the arrangement does not change
the length of segments of available species considerably,
see Sec. IVC). As a result, the redundancy L/S of the
structure does not influence the assembly process in the
e↵ective theory, as long as N and L are constant. In this
case of fixed N and L, the average yield can even be a
non-monotonic function of the number of species (blue
(upper) curves in Figs. 2(e) and (f)). We speculate that
this is a consequence of the variance of the yield being
dependent on the number of species in the system and of
the yield being bounded between 0 and 1: Our e↵ective
theory suggests that the single-species fluctuations are
one of the decisive factors for the strength of stochastic
e↵ects. These fluctuations are quantified by the aver-
age variance between neighboring species. This variance,
however, is also subject to stochasticity itself: The fewer
species there are in the system, the more we expect the
average variance between neighboring species (where the
average is taken with respect to the di↵erent species)
to fluctuate between single realizations of the assembly
process. As a result, it is intuitive that also the yield
fluctuates more if there are less species. Since, further-
more, yield is bounded by 0 and 1, this could imply that
for systems with yield “close to” 1, fluctuations might
actually decrease the average yield, whereas for yields
close to 0, the opposite happens. This suggests that in
cases where the yield for S � 1 is “close to” 0, systems
with few species actually exhibit a higher average yield
(as they are subject to more fluctuations) (red (lower)
curves in Figs. 2(e) and (f)), whereas for the case where
the average yield is “close to” 1, the opposite is true,
and yield can indeed be a non-monotonic function of the

number of species S (blue (upper) curves in Figs. 2(e) and
(f)) It would be very interesting to check more rigorously
whether this speculation is indeed true.
So far, we have focused on the final yield of the as-

sembly process. In order to check whether the e↵ective
theory captures the dynamics of the polymer size dis-
tribution qualitatively correctly (and not only the final
yield), we compare the temporal evolution of the polymer
size distribution as predicted by the e↵ective theory and
as measured in stochastic simulations in Appendix A.
While there exist obvious di↵erences (such as, for in-
stance, the dynamics of the monomers and the result-
ing dynamics for the smaller structures), the front of the
wave in the stochastic simulations seems to be predicted
quite reliably by the e↵ective theory. This front is mainly
determined by the probabilities pl, Eq. 31, that determine
which portion of structures of size l ends up in the grow-
ing state. These probabilities predict that there is a sharp
transition between structures of size l >L�L⇥ � 1 that
do not grow at all and smaller structures lL�L⇥ � 1
that have a high likelihood to grow (see also Sec. IVC
and Fig. 3). As a result of the sharp transition and the
fact that large structures do not grow much, the waves
produced by the e↵ective theory build up much larger
and, correspondingly, move much more slowly through
the system (as more structures grow simultaneously), as
compared to the waves predicted by the deterministic
theory [46]. This higher amplitude and slower speed of
the wave predicted by the e↵ective theory is in agreement
with the waves from the stochastic simulations, suggest-
ing that the probabilities pl capture the dynamics rea-
sonably well although they were determined from a much
simplified assembly process (see Sec. IVC). Finally, al-
though there are quantitative deviations in the monomer
dynamics, in both the stochastic simulations and in the
e↵ective theory the number of monomers is high until
very late in the process.
Taken together, these results suggest that the e↵ec-

tive theory captures the most important aspects of the
self-assembly process. In order to suggest ways how to
improve yield in the system, it thus seems promising to
analyze the integral new aspects of the e↵ective theory
as compared to a deterministic description of the system
as given in Sec. III A.

VI. REDUCE FLUCTUATIONS IN THE
AVAILABILITY OF THE DIFFERENT SPECIES

IN ORDER TO IMPROVE YIELD

How can we use the insights gained from the formula-
tion of the e↵ective theory to suggest viable ways to im-
prove the yield in the self-assembly process? Since, deter-
ministically, the yield is always perfect for small enough
activation rate, we take a closer look at the di↵erence be-
tween the deterministic and e↵ective theory. This di↵er-
ence is in the additional blocked state Bl in the e↵ective
theory. This state describes structures that would need a
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particle of an unavailable species to grow and thus, gen-
erally speaking, tend not to grow due to variability be-
tween species. These fluctuations are quantified by the
single-species standard deviation �0, Eq. 15. Our e↵ec-
tive theory thus suggests that reducing the single-species
standard deviation should improve the yield in the sys-
tem. In the following, we will consider two specific ways
to achieve this goal.

A. Provision in bursts

As shown in Fig. 3(d), where
p
3�0 (black) is plot-

ted against the average number of activation events per
species, the single-species standard deviation has a pro-
nounced maximum when on average half the particles
have been activated. Our e↵ective theory, thus, suggests
that in order to improve the assembly yield one could
constrain the system in a way that the single-species stan-
dard deviation takes on a value of zero from time to time.
This can be achieved by providing particles in bursts: In-
stead of providing all N particles of each species right
from the beginning, the particles are put into the sys-
tem in b bursts, where each burst contains a number of
N/b particles per species. This means that at first only
N/b particles of each species are put into the system.
Only when these particles have been activated and the
binding processes have been completed, the next burst
of particles is provided - and so on until all N particles
per species have been provided. Figure 5(a) shows the
resulting single-species standard deviation measured in
stochastic simulations when a total number of N = 500
particles is provided in 1, 2, 10 or 20 subsequent bursts
(the x-axis represents time in units of activation events).
The standard deviation decreases for larger numbers of
bursts since it is reduced to zero at the end of each burst:
After the i-th burst exactly iN/b particles of each species
have been activated and there is no variability between
species at this point in time. Consequently, the maxi-
mum of the single-species standard deviation decreases
from 1

2

p
N in the original system to 1

2

p
N/b; see Ap-

pendix D for more details. According to the e↵ective
theory, the yield is expected to increase as a result of
the reduced single-species standard deviation. Fig. 5(b)
shows the final yield curves in dependence of the activa-
tion rate ↵ for the di↵erent numbers of bursts. Indeed,
it is found that the yield strongly increases with increas-
ing number of bursts. As one can infer upon inspection
of Fig. 5(a), this increase in the yield correlates with a
smaller standard deviation of the neighbor fluctuations.

In order to improve the yield by providing the par-
ticles in bursts it is necessary that the bursts are suf-
ficiently deterministic, i.e. the number of particles per
species per burst has to be subject to little fluctuations.
Otherwise, the single-species standard deviation cannot
be reduced e↵ectively. Indeed, we show in Appendix E
that if the number of particles per species per burst is
drawn randomly from a Poisson distribution with mean

N/b, the process is independent of the number of bursts.
There, we also discuss some aspects of bursts for which
the number of particles per species per burst is drawn
independently from a Gaussian or Binomial distribution,
respectively. We find that, for provision of particles in
bursts to be e↵ective, the width of the distribution of
the particles per species per bursts need not be too large
(Fano factor F < 1).

B. Self-inhibitory feedback

As indicated by the e↵ective theory, the large single-
species variance is detrimental because it favors growth
and nucleation of small structures as compared to large
structures. The reason is that, when species are unavail-
able, active monomers of the neighboring species can ac-
cumulate as there are no fitting polymers to bind. Sub-
sequently, this accumulation of active particles strongly
increases the tendency to form new nuclei. A very direct
way to avoid this problem would be to introduce a self-
inhibition mechanism that suppresses the accumulation
of these active monomers. Explicitly, we will consider a
variant of the system (“self-inhibition scenario”) where
the activation rate of species i is given by

↵
(i) = ↵0 exp

�
qm

a
i

�
, (50)

where m
a
i is the number of active monomers of species i,

↵0 is the bare activation rate and q  0 is the inhibition
strength. If one species has been activated more (less)
than average, it will typically have more (less) active
monomers than average. In the self-inhibition scenario
with q < 0, this implies that the activation of additional
monomers is suppressed (enhanced) for over-represented
(under-represented) species and so the di↵erent levels of
activation are expected to converge. Fig. 5(c) shows how
for increasing inhibition strength q the standard devia-
tion of the neighbor fluctuations decreases. The e↵ect
of the inhibition strength q on reducing the neighbor
fluctuations is pronounced already in the early stages of
the assembly process where not as many structures and
monomers are present. This is particularly useful be-
cause fluctuations in the beginning are expected to sup-
press yield most considerably. We thus anticipate from
the e↵ective theory that yield should improve. Indeed,
Fig. 5(d) shows that higher inhibition strengths improve
yield significantly. Again, we see that there is a clear cor-
relation between higher yield and smaller neighbor fluc-
tuations; compare Figs. 5(c) and (d).

Taken together, decreasing the variance between the
species by either directly influencing the single-species
variance or by self-adjusting the activation levels of di↵er-
ent species due to feedback, can strongly improve yield,
as suggested by the e↵ective theory.



21

FIG. 5. Decreasing the variance in the relative number of available particles per species improves yield. (a)
Burst scenario: The standard deviation of the neighbor fluctuations std(�Aneighbor

i ) for the original system and for systems with
b = 2, 10 and 20 bursts, respectively, are plotted against the average number of activation events per species. The theoretical
predictions are shown with dotted-dashed lines and the results from stochastic simulations (averaged over 200 samples) with
solid lines (and slightly lighter color to ease the comparison). The parameter values are L = 60, N = 500, ⌫ = µ = 1, ⌫def = 0
and ↵ = 10�4. Note that for the stochastic simulations with several bursts, we measured the standard deviation in one
burst and concatenated it b times with itself. Since the assembly dynamics does not influence the activation of particles,
the standard deviations should statistically be the same in all bursts. (b) Burst scenario: The average assembly yield and
its standard deviation obtained from stochastic simulations (1000 samples; solid lines with markers) is shown in dependence
of the activation rate for di↵erent number of bursts. The theoretical predictions from the e↵ective theory with bursts (see
Appendix D) are shown for comparison (dotted-dashed lines). The parameters are L = 60, N = 500, ⌫ = µ = 1, ⌫def = 0
and number of bursts as indicated in the plot. (c) Self-inhibition scenario: The standard deviation of the neighbor fluctuations
std(�Aneighbor

i ) as obtained from stochastic simulations (averaged over 200 samples) is shown for di↵erent inhibition strengths
q (di↵erent colors, solid lines). The theoretical prediction for zero inhibition strength is shown as dotted-dashed line in red.
The parameters are L = 60, N = 500, ⌫ = µ = 1, ⌫def = 0, ↵0 = 10�3 and inhibition strength as indicated in the plot. (d)
Self-inhibition scenario: the average assembly yield and its sample standard deviation obtained from stochastic simulations
(1000 samples) is plotted as a function of the bare activation rate ↵0 for di↵erent inhibition strength q (di↵erent colors). The
other parameters are L = 60, N = 500, ⌫ = µ = 1, ⌫def = 0.

VII. CONTROLLED VARIABILITY BETWEEN
SPECIES

Remarkably, not only decreasing the variance between
species but also increasing it in a controlled fashion can

improve yield [17, 48]. In this section, we will shortly
discuss two suggestions of recent studies [17, 48] as well
as a third possibility to increase the yield by increasing
the variance between the relative concentrations of the
di↵erent species. Key to all of these strategies is that
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by inducing di↵erences in the concentrations of active
monomers specific assembly paths are favored.

A. Non-stoichiometric concentrations: specific
assembly path

Recently, it has been shown that one can considerably
enhance assembly e�ciency by using non-stoichiometric
concentrations for the di↵erent building blocks [17].
Specifically, it was suggested to provide building blocks
of a small region of the target structure in excess com-
pared to the remaining species. In light of our results,
this is surprising at first glance: Rather than decreas-
ing the variability between di↵erent species, this setup
actually increases the inter-species variation. How can
the observed increase in e�ciency be reconciled with the
finding that fluctuations in the relative concentrations
of species favor kinetic trapping? The key insight that
solves this riddle is that one has to use non-stochiometric
concentrations in a highly coordinated fashion. Instead
of indiscriminately over-expressing species randomly, one
has to specifically select a set of species in a single con-
nected region of the structure [17]. This procedure then
favors a specific assembly path by favoring the formation
of nucleation seeds in that chosen region. As a result, all
structures grow from these more or less identical seeds
without competition for resources; the assembly yield is
high.

B. Non-homogeneous activation rates

A very similar e↵ect can be achieved by using non-
homogeneous activation rates for the di↵erent species.
For randomly distributed rates along the ring, this
would increase fluctuations in the relative availability of
species and thus lead to a lower yield; see Appendix F,
Figs. 14, 15. If, however, a specific assembly path is
favored by specifying a particular order of species activa-
tion, yield can be increased. Figure 6(a) illustrates such
a choice of activation rates

↵
(i) =

(
↵0 w

i for i  S/2

↵0 w
S�(i�1) for i > S/2,

(51)

where ↵0 scales all rates homogeneously and w deter-
mines the relative magnitude of the activation rates. The
two species with indices S/2 and S/2+1 have the largest
activation rates, their neighbors the second largest and
so on. In this way, this specific choice of activation rates
favors assembly paths that proceed in the same order
by starting with nucleation of species S/2 and S/2 + 1
and subsequently grow to larger and smaller indices to
the right and to the left. Correspondingly, due to re-
duced competition for resources, the yield increases [61]
if w > 1; see Fig. 6(b). Increasing the exponential weight
w enhances the tendency of particles to be activated in

the chosen order and hence improves the yield. However,
once w becomes so large that activation of some species
is faster than binding, active monomers of those species
would accumulate and form new nuclei. Consequently,
the yield decreases again once w exceeds this threshold.
The maximal (total) activation rate in the system is the
activation rate of species L/2 and L/2+1 and is given by
↵max ⇠ N↵0w

L/2. In contrast, the time scale for binding
is ⌫N . Hence, the threshold can be estimated by equat-
ing ↵max = ⌫N , resulting in an expected yield drop if

w > wmax := ↵
�2/L
0 . As the maximal activation rate

and therefore wmax depend on ↵0, the range of values of
w for which yield improves increases with decreasing ↵0.
Therefore, the maximum yield rises if ↵0 is reduced, see
Fig. 6(b).

C. Just-in-sequence mechanism

The purpose of using non-stoichiometric concentra-
tions or non-homogeneous activation rates is to control
the order in which particles become available for binding
and thereby to favor specific assembly pathways. We re-
cently presented a mechanism for e�cient self-assembly
that implements such a ‘supply control strategy’ in a sim-
ilar but more e↵ective way, based on inhibitory feedback
between neighboring species [48]. To that end, we as-
sume that the inactive (and optionally active) monomers
of species i<L inhibit the activation of the subsequent
species i+1. In this way, species i+1 gets activated
‘just-in-sequence’ after species i has been activated and
has, in large part, been assembled already. Only species
1 is not inhibited. The resulting inhibition cascade that
ensures that the particles are provided and assembled in
the specified sequence is illustrated in Fig. 6. We termed
this supply control strategy ‘just-in-sequence’, or short,
JIS mechanism. Similar to Eq. 50, we assume that the
activation rate of species i+ 1 with i < L is given by

↵
(i+1) = ↵0e

qmi
i , (52)

where ↵0 denotes the basal activation rate, q < 0 the pa-
rameter that controls the strength of inhibition and m

i
i

the concentration of inactive monomers of species i. Op-
tionally, one could also account for inhibition by active
monomers by replacing m

i
i with m

i
i + m

a
i as this would

only have a negligible e↵ect on the assembly process [48].
Figure 6 shows the yield in dependence of the activa-
tion rate ↵ for di↵erent values of the inhibition strength
q and for S=60 and N = 500. Interestingly, a small
nonzero q reduces the yield compared to the original case
with q=0, because weak inhibition amplifies stochastic
e↵ects [48]. However, by further increasing the inhibi-
tion strength, the yield quickly rises up to the perfect
value of 1 in the respective regime of ↵. Moreover, the
threshold activation rate below which the yield rises in-
creases due to a finite inhibition strength. Note that, in
comparison with the self-inhibitory mechanism, a much
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FIG. 6. Increasing the variance in a coordinated fashion improves yield. (a,b) Non-homogeneous activation rates.
Yield can be improved by choosing the activation rates non-homogeneously. (a) Activation rates plotted against the species
index according to Eq. 51 for ↵0 + 10�4, ! = 1.2 and L = 60. The activation rate is highest for the two species in the middle,
i = S/2 and i = S/2+1, and decreases exponentially to the left and to the right. Therefore, assembly pathways that start with
the dimerization of species S/2 and S/2 + 1 are strongly favored. (b) Yield plotted against the magnitude of the exponential
base ! for di↵erent basal activation rates ↵0 and S = 60, N = 500. The yield increases with increasing ! and attains a
maximum. Then yield drops again because for large ! activation of the species becomes fast compared to the growth dynamics.
(c,d) JIS scenario. Just-in-sequence supply can be realized e↵ectively with inhibitory feedback, thereby greatly enhancing the
yield. (c) Inhibition cascade. The inactive monomers of each species i inhibit the activation of the subsequent species i + 1 as
described by Eq. 52. Only species 1 is not inhibited and is therefore activated first. This triggers an activation cascade which
provides the particles in sequence with the specified assembly pathway. (d) Yield in dependence of ↵0 for di↵erent inhibition
strengths q and S = 60, N = 500. For small, nonzero values of q the yield decreases due to an amplification of stochastic
e↵ects. For larger values of q, however, the yield quickly rises up to the perfect value of 1. For increasing q, the threshold
activation rate is shifted towards higher values of ↵0.

lower inhibition strength q is required to achieve high
yield. This is because in the self-inhibitory mechanism
inhibition is e↵ectuated by the active monomers while
in the JIS mechanism it is accomplished by the inac-
tive monomers, which are usually present in much larger
numbers. Hence, the JIS mechanism is a very e↵ective
strategy to increase self-assembly e�ciency and to avoid
stochastic yield catastrophes.

VIII. CHARACTERIZATION OF THE
MITIGATION MECHANISMS

As noted in this and earlier studies [46, 48], there ex-
ists a variety of methods how to mitigate the stochas-
tic yield catastrophe in heterogeneous self-assembly sys-
tems. Depending on the system, one may have access to
manipulate or control di↵erent elements of the assembly
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process and hence some strategies can be more feasible
than others. For instance, if one has direct control over
the binding properties of the constituents, it might be
most e�cient to reduce the ratio between the molecular
rates for nucleation and growth by relying on allosteric
e↵ects. As long as the availability of constituents is not
rate-limiting, stochastic e↵ects then do not severely limit
the yield of the assembly process [46, 48]. However, con-
trolling the assembly process via the molecular binding
rates might be e↵ortful and not very versatile since the
constituents would need to be specially tailored for a
specific target structure and the corresponding assembly
process. Furthermore, allosteric control might require an
elaborate design of the constituents, hard to be realized
in a controlled fashion in nanotechnological applications.
In these applications, it might be more viable to exe-
cute control on a systemic level via supply regulation
[48]. Supply regulation exerts control over the assembly
process by governing the way, specifically the order and
amount, in which particles are provided. Elaborate bind-
ing properties enabling e.g. allosteric e↵ects are thereby
not required. Furthermore, supply regulation provides a
way to realize e↵ective self-assembly even if the binding
reactions are not or only weakly reversible on the time
scale of the assembly process. This is convenient since
not relying on reversibility of binding allows to maximize
the bond strengths in order to assemble stable and long-
living structures. On the downside, however, stochastic
e↵ects can easily jeopardize the assembly e�ciency if the
availability of binding particles is constrained. In order
to overcome the limitation arising from the stochastic
yield catastrophe, we have discussed several possibilities
to implement e�cient supply control strategies. Here we
want to briefly mention these di↵erent possibilities and
discuss their respective advantages and drawbacks. We
classify these mechanisms by two main distinguishing fea-
tures: type of regulation and e↵ect on the inter-species
variance; see Fig. 7.

Regarding the type of regulation, we have encoun-
tered two principally di↵erent strategies: the JIS mech-
anism [48] and the self-inhibitory feedback mechanism
both rely on feedback that returns information about
the specific state of the assembly process (specifically
how many active and/or inactive monomers there are).
This information is used to regulate the supply in a self-
organized, autonomous fashion. In contrast, in the burst
scenario, no such feedback was implemented. Instead,
we assumed that the bursts were provided automatically
after long enough time spans so that all particles of the
previous burst had enough time to bind. Similarly, in
the scenarios with non-homogeneous activation rates or
non-stoichiometric concentrations [17], no feedback of in-
formation about the state of the system was needed.

A second distinguishing characteristic of the presented
supply control strategies is their respective e↵ect on
the inter-species variance. Processes like bursts or self-
inhibition decrease the variance between the species’ con-
centrations and thereby reduce stochastic e↵ects with-

out favoring specific assembly paths. Conversely, strate-
gies including just-in-sequence supply [48], engineer-
ing inhomogeneous activation rates or choosing non-
stoichiometric concentrations [17] increase the variance
in a coordinated way. In this fashion, certain assem-
bly paths are favored which leads to reduced competi-
tion for resources and consequently suppresses stochas-
tic e↵ects. The advantage of using a strategy that de-
creases the inter-species variance is that such a strategy
is expected to be applicable independently of the het-
erogeneity and design of the target structure: Irrespec-
tive of whether certain species occur several times in the
target structure, decreasing inter-species fluctuations re-
duces undesirable nucleation events [62]. Conversely, for
those strategies that favor specific assembly paths, sup-
ply regulation has to be adapted accordingly if species
occur several times in the target structure and hence in
the assembly path. Specifically, this would demand a
higher degree of regulation as it must be assured then
that species are delivered not only in the correct order
but also in the correct amount. The specific mechanisms
discussed here are not directly suitable for this purpose:
there is no control over the portion of each species that
is delivered at once (specifically, constituents cannot be
activated in fractions of their total numbers). However,
more sophisticated supply regulatory mechanisms based

FIG. 7. Summary of the di↵erent control strategies
to improve yield and guide the assembly process. In
essence, the control strategies discussed in this manuscript in
order to improve yield can be classified into two categories.
First, the variance between species is either decreased (burst
scenario and self-inhibitory feedback) or increased in a co-
ordinated fashion (non-homogeneous activation rates, non-
stoichiometric concentrations [17] and coordinated inhibition
of neighboring species (JIS mechanism) [48]). Second, these
strategies either rely on regulatory feedback (self-inhibitory
feedback and coordinated inhibition of neighboring species
(JIS mechanism) [48]) or not (non-homogeneous activation
rates, non-stoichiometric concentrations [17] and burst sce-
nario). Increasing the variance in a controlled manner by
either non-homogeneous activation rates or in the JIS mech-
anism not only improves yield but also controls defect for-
mation. In contrast, reducing the variance is generally useful
for heterogeneous structures, irrespective of whether species
occur several times in one target structure or not.



25

on feedback might be able to support the self-assembly
of structures also with repeated patterns of constituents.
A major advantage of providing constituents in a way
to favor a specific assembly path lies in the reduction
of assembly errors and defects that would result form
incorrect binding events [48]. This is plausible because
if particles are delivered specifically as they are needed
in the assembly process the probability for cross-specific
binding reactions is minimized and correct growth fos-
tered.

In conclusion, depending on whether structures are
fully heterogeneous or show repeated patterns and
whether or not defect control is essential, a coordinated
increase or a general decrease of inter-species variability
may be beneficial.

IX. SUMMARY AND DISCUSSION

The goal of this manuscript was to understand the
role of stochastic e↵ects in heterogeneous self-assembly
processes. To this end, we formulated an e↵ective the-
ory for a conceptual model for the assembly of het-
erogeneous ring structures. Previously it was shown
that stochastic e↵ects can be detrimental for the yield
of the self-assembly process (“stochastic yield catastro-
phe”) [46, 48]. However, it remained elusive why stochas-
tic fluctuations do have such a strong e↵ect and which
role the di↵erent sources of stochasticity play for the
assembly process. The main insights gained from our
analysis are the following: First, we have shown that
fluctuations in the relative availability of species are the
main cause for the stochastic yield catastrophe. An e↵ec-
tive theory incorporating only this source of stochasticity
and neglecting other fluctuations such as randomness in
binding captures the phenomenology of the full stochas-
tic model. Second, the e↵ective theory allowed us to
pinpoint the consequences of inter-species variability on
the fidelity of the assembly process: If certain species are
activated less than their binding partners, they can be-
come temporarily unavailable for the assembly process.
Their unavailability then blocks the growth of neighbor-
ing structures. Growth is biased towards small struc-
tures, which accumulate in the system. This accumu-
lation is detrimental because a substantial amount will
not be completed before resources run out. As a result,
the assembly yield is low [10, 20, 21, 44–46, 51]. This
e↵ect that may lead to kinetic trapping is not captured
in a deterministic description but constitutes a genuine
stochastic e↵ects caused by fluctuations in the relative
concentrations of the di↵erent species.

Importantly, our theoretical analysis also reveals that
the strength of the fluctuations in the relative availabil-
ity of the di↵erent species is, to a large extent, set by the
single-species variance in the supply. This key insight
enabled us to identify di↵erent ways to significantly in-
crease assembly e�ciency by reducing variability between
species. All of these strategies use supply regulation to

suppress stochastic e↵ects and avoid kinetic trapping.
We distinguished these strategies according to two rel-
evant criteria: whether or not feedback or information
about the system is used to regulate the supply (type of
regulation) and whether the variance between di↵erent
species is reduced or specific assembly paths are favored
(e↵ect on inter-species variance). Corresponding to this
classification scheme we discussed five di↵erent strategies
to improve the yield. The first two strategies reduce the
inter-species variance with or without the help of feed-
back:

• Burst scenario: inactive monomers are provided in
several bursts, each of which contains a fraction
of the total number of monomers in stoichiomet-
ric ratios. The time intervals between subsequent
bursts are su�ciently long so that all possible bind-
ing reactions of the previous burst have taken place
before the next burst is provided.

• Self-inhibition scenario: activation is inhibited by
active monomers of the same species. The accu-
mulation of active monomers of single species is
thereby inhibited.

We found that improving the yield by providing parti-
cles in bursts requires the bursts to be su�ciently de-
terministic, i.e. the number of particles per species per
burst must be tightly controlled to obey stoichiometric
ratios; see Appendix E. We believe that cells could, in
principle, e↵ectuate such a strategy by controlling the
composition of bursts via a regulation of several genes by
a common promoter. Interesting open questions in the
context of whether this would be a realistic possibility
for cells concern the dependence of the yield on the exact
(deterministic or stochastic) timing between the bursts.
Furthermore, it might be enlightening to consider bursts
of di↵erent size and to ask to what extend the order of
bursts of di↵erent sizes matters.
Two recent studies demonstrated that also the oppo-

site strategy, namely increasing the variation between
species, can increase yield [17, 48]. However, increasing
the inter-species variability only leads to an improved as-
sembly process if it occurs in a very coordinated way that
favors a specific assembly path (see also Appendix F).
Then, competition of di↵erent structures for the same
resources is reduced to a minimum and the assembly pro-
cess leads to completed target structures. The following
strategies have been proposed to favor specific assembly
paths, where only the last one relies on feedback:

• Non-stoichiometric concentrations [17]: certain
species are heavily over-represented to trigger nu-
cleation events specifically between these species
and to favor assembly paths that emanate from
these nuclei.

• Inhomogeneous activation rates: exponentially in-
creasing or decreasing activation rates provide ac-
tive monomers in sequence with a specific assembly
path.
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• Just-in-sequence scenario [48]: activation is in-
hibited by inactive monomers of the neighboring
species. The resulting inhibition cascade between
the species favors a specific assembly path and de-
livers active monomers just-in-sequence with this
chosen path.

From a theoretical perspective, there are several other
interesting aspects about the described stochastic e↵ects
in self-assembling systems. Naively, one might ask how
fluctuations between the concentrations of species, which
are typically of the order of 1/

p
N (compared to the num-

ber of particles per species N), can lead to such dramatic
e↵ects. To answer this question, two aspects should be
considered: First, at early stages of the assembly process,
the relevance of stochastic e↵ects must be evaluated with
respect to the number of particles that have been acti-
vated to that point, rather than the total number of parti-
cles. Hence fluctuations at the beginning of the assembly
process might not be suppressed as ⇠ 1/

p
N but rather

as ⇠ 1/
p
Ne↵ where Ne↵ is some e↵ective particle number

which can be much smaller than N . Hence at the onset of
the assembly process fluctuations are indeed much more
substantial even if N is large. Second, it is exactly the
first part of the assembly process that is most crucial for
the final state. If too many structures nucleate in the
beginning, too many structures compete for the same
resources and none of them can be finished. This im-
plies that especially fluctuations at the beginning of the
assembly process may have a big impact since their in-
fluence determines the fate of the system. A similar phe-
nomenology is observed, for instance, in self-reinforcing
processes [63].

On a broader perspective, we demonstrate that demo-
graphic noise can be an important limiting factor for the
self-assembly of heterogeneous structures. In our model,
demographic noise is due to an additional activation step
that renders particles competent for binding. This can
be either interpreted in terms of an actual activation step
(such as for instance due to allosteric e↵ects [39, 49, 64])
or in terms of co-translational [65] or co-transcriptional
assembly [66]: While the building blocks are still pro-
duced, the assembly process already takes place simul-
taneously. The e↵ects of simultaneous production and
assembly of building blocks is expected to be relevant
both for self-assembly in living organisms as well as in
nanotechnological applications: In particular, it has been
suggested that combining in vivo transcription with si-
multaneous RNA-based assembly techniques might be a
promising route for the further development of nanotech-
nology [66–69]. In light of our findings, it will be interest-
ing to see whether such approaches applied to the assem-
bly of large and heterogeneous structures need further
regulation mechanisms to circumvent strong stochastic
e↵ects. Our proposed control strategies may then pro-
vide a first step to improve assembly e�ciency.
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Temporal evolution of the polymer size distribution in the limit ↵ ! 0. The polymer size distribution (of
all species combined) as measured in stochastic simulations (red; averaged over 100 simulations each) is shown in comparison
to the prediction of the e↵ective theory (Scl(t) = S(gl(t) + bl(t)) as obtained by a numerical integration of Eqs. 45, 47, 48, 49;
blue) and in comparison to the prediction of the deterministic theory (Scl(t) as obtained by a numerical integration of Eqs. 3, 4;
see also Ref. [46]; black). For each parameter combination (L = 60, N = 500 in (a,b,c) and L = 100, N = 1000 in (d,e,f)) the
polymer size distribution is shown for small (a,d), intermediate (b,e) and large time (c,f), respectively. The other parameters
are L = S, µ = ⌫ = 1, ⌫def = 0 and ↵ = 10�4N/L3. The wave predicted by the deterministic theory has an extremely small
amplitude and is therefore not visible.

Appendix A: Temporal evolution of the polymer size distribution

Figs. 8, 9 show the time evolution of the structure size distribution (of all species combined) in the stochastic
simulations and in the e↵ective theory (with cl(t) = gl(t) + bl(t) according to Eqs. 45, 47, 48, 49), in comparison to
the deterministic prediction (cl according to Eqs. 3, 4) as presented in Ref. [46]. We make the following observations:
On the one hand, the monomer dynamics does not seem to be reproduced very well by the e↵ective theory. Corre-
spondingly, the back of the wave decays more rapidly in the e↵ective theory as compared to the stochastic simulations.
In relation to the deterministic wave, however, the waves produced by the e↵ective theory and by the stochastic simu-
lations are quite similar. This is true in particular in the limit ↵ ! 0 (Fig. 8) where the deterministic wave is not really
visible because it exhibits a very small amplitude. In both the stochastic simulations and in the e↵ective theory the
number of monomers is high until very late in the process and the waves move much more slowly as compared to the
deterministic wave because many structures compete for the same resources. Furthermore, while the e↵ective theory
does not capture the front of the wave perfectly, it does describe the right trend. As a result, the approximations made
to determine the probabilities pl in terms of the simplified assembly process appear to be justifiable in retrospect.

Appendix B: Detailed mathematical analysis

In this section, we will present the details of the parts of the mathematical analysis that have been skipped in the
main text.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Temporal evolution of the polymer size distribution for ↵ = N/L3. The polymer size distribution (of all
species combined) as measured in stochastic simulations (red; averaged over 100 simulations each) is shown in comparison to
the prediction of the e↵ective theory (Scl(t) = S(gl(t) + bl(t)) as obtained by a numerical integration of Eqs. 45, 47, 48, 49;
blue) and in comparison to the prediction of the deterministic theory (Scl(t) as obtained by a numerical integration of Eqs. 3, 4;
see also Ref. [46]; black). For each parameter combination (L = 60, N = 1000 in (a,b,c) and L = 100, N = 500 in (d,e,f)) the
polymer size distribution is shown for small (a,d), intermediate (b,e) and large time (c,f), respectively. The other parameters
are L = S, µ = ⌫ = 1, ⌫def = 0.

1. Derivation of the growth probabilities pl

In this subsection, we will explain our choice of transition rates ↵l
jk more thoroughly. From the resulting formulas

(which are also given in the main text, Eq. 22), we derive the steady-state occupancy in the e↵ective assembly network
(Eq. 21 and Fig. 3 (f)). This steady-state occupancy will then be used to calculate the growth probabilities pl, Eq. 31.

a. Transition rates ↵l
jk

To determine the transition rates between the di↵erent states S
l
i of the simplified assembly process described in

section IVC and illustrated in Fig. 3(f), we proceed as follows: First, we derive the probability ⇧l
ij that a structure

of size l with i = 1 or i = 2 growing ends has j = 0, 1 or 2 growing ends after attachment of a monomer to one of the
original growing ends. Then, we use this probability to calculate the transition rates.

To determine ⇧l
ij , it is convenient to consider the ways in which a monomer can attach to a structure of size l

with i = 1 or i = 2 growing ends: We begin with a structure that has two growing ends. Then, a monomer can
attach either to the left or to the right. In order to calculate the probability that the structure still has two growing
ends after the monomer attachment, we consider the probabilities of the following configurations (“embeddings”; see
Fig. 10 A for an illustration):
a) The two neigboring sites of the structure of size l with two growing ends both correspond to species that can grow
further in the direction away from the structure (left configuration in A). That is, regardless of which end of the
structure a monomer attaches to, the new end will also be in a growing state.
b) One neighboring site corresponds to a species that can grow further in the direction away from the structure,
whereas the other one does not (middle configurations in A). In this case, the probability that the new end is in the
growing state is 1/2 and the probability that the new end is in the blocked state is also 1/2.
c) Both neighboring sites correspond to species that cannot grow further in the direction away from the structure
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FIG. 10. Illustration of the probabilities ⇡l
ij that a structure of size l with i growing ends is embedded in

configurations with additional growing or blocked ends. (a) A structure of size l with two growing ends i = 2 can be
embedded in four di↵erent configurations of structures: one structure with an additional growing end at both ends (j = 2;
left), two structures with one additional growing and one additional blocked end (j = 1; middle) and one structure with two
additional blocked ends (j = 0; right). If the original structure of size l is embedded in the structure on the left (j = 2), it will
with probability 1 still have two growing ends after growth by one monomer. If it is embedded in one of the middle structures
(j = 1), after growth by one monomer it will have either one or two growing ends (depending on which monomer attached to
it). The probability is 1/2 for both cases. Finally, if the original structure was embedded in the structure on the right (j = 0),
after growth it will in both cases have one growing and one blocked end. Thus the probability to end up in a configuration
with one growing end and one blocked end is 1. (b) A structure of size l with one growing end i = 1 can be embedded in two
configurations: one structure with an additional growing site next to the original growing end (j = 1; left) and one structure
with a blocked site next to the growing end (j = 0; right). If it is embedded in the structure on the left (j = 1), after growth
(which can only happen at one end) it will still have one growing end. In contrast, if it is embedded in the structure on the
right (j = 0), it will be blocked after growth.

(left configurations in A). Then, the probability that the new end is in the blocked state is 1.
What are the probabilities for either of these configuration? If we assume that the unavailable species are distributed
randomly along the ring, the number of configurations in which the next-nearest neighbor species at each end of the
structure of size l are available (configuration a) is given by

X
l
22 =

✓
L� (l + 4)

L⇥

◆

since the L⇥ unavailable species can be distributed to the remaining L� (l+4) sites along the ring (the configuration
we consider comprises the original structure of size l, the two neighboring species and the two next-nearest neighboring
species). Similarly, the number of configurations in which the next-nearest neighbor species at one end of the structure
of size l is available but the next-nearest neighbor at the other end is unavailable (configuration b) is given by

X
l
21 = 2

✓
L� (l + 4)

L⇥ � 1

◆

because one of the unavailable species is already part of the complex of size l plus the four surrounding next and
next-nearest neighbors. Thus, only L⇥ � 1 unavailable species are distributed among the remaining L� (l + 4) sites
along the ring. The factor 2 comes from the fact that there are two equivalent configurations of this type (the available
next-nearest species can be on the left or on the right). Finally, the number of configurations in which the next-nearest
neighbor species at both ends of the structure of size l are unavailable (configuration c) is given by

X
l
20 =

✓
L� (l + 4)

L⇥ � 2

◆

because two of the unavailable species are already part of the complex of size l plus the four surrounding next and
next-nearest neighbors.

From the number of configurations we can determine the respective probabilities by normalizing the number of
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configurations by the overall number of configurations:

⇡
l
22 =

X
l
22

X l
22 +X l

21 +X l
20

⇡
l
21 =

X
l
21

X l
22 +X l

21 +X l
20

⇡
l
20 =

X
l
20

X l
22 +X l

21 +X l
20

.

As mentioned before, in configuration a (⇡l
22), the probability that after growth by a monomer the structure still has

two growing ends is 1. In configuration b (⇡l
21) it is 1/2 and in configuration c (⇡l

20) it is zero. The overall probability
⇧l

22 that a structure of size l with two growing ends has still two growing ends after attachment of a monomer to one
of the original growing ends is given by

⇧l
22 = ⇡

l
22 +

1

2
⇡

l
21 = 1� L⇥

L� l � 2
.

In the last step, we plugged in the explicit formulas in terms of the binomial coe�cients.
Analogously, the overall probability ⇧l

21 that a structure of size l with two growing ends has still one growing end
after attachment of a monomer to one of the original growing ends is given by

⇧l
21 = ⇡

l
20 +

1

2
⇡

l
21 =

L⇥
L� l � 2

.

For structures with only one growing end, the situation is simpler because attachment of a monomer can only
occur at one end (see Fig. 10 B for an illustration). Then the only question is whether the next-nearest neighbor at
the growing end is available or not. Analogously to above, the number of configurations in which the next-nearest
neighboring species at the growing end of the structure of size l is available (left in panel B) is given by

X
l
11 =

✓
L� (l + 3)

L⇥ � 1

◆
.

In this case, the size of the relevant complex is l+3, namely the original size l plus the two nearest neighbors plus the
next-nearest neighbor at the growing end. Since one end of the structure is blocked, one of the neighboring species is
unavailable and, thus, there remain L⇥ � 1 unavailable species that can be distributed among L� (l + 3) sites along
the ring. Similarly, the number of configurations in which the next-nearest neighboring species at the growing end of
the structure of size l is unavailable (right in panel B) is given by

X
l
10 =

✓
L� (l + 3)

L⇥ � 2

◆
.

In this case one of the neighboring species and the next-nearest neighboring species at the growing end are unavailable;
there remain L⇥ � 2 unavailable species that can be distributed among L� (l + 3) sites along the ring.

The respective probabilities for these configurations are

⇡
l
11 =

X
l
11

X l
11 +X l

10

= 1� L⇥ � 1

L� l � 2
= ⇧l

11

⇡
l
10 =

X
l
10

X l
11 +X l

10

=
L⇥ � 1

L� l � 2
= ⇧l

10,

where we plugged in the explicit expressions in terms of the binomial coe�cients. Furthermore, due to the way in
which the configurations were defined, the overall probabilities ⇧l

1j that a structure of size l with one growing end
has j = 0 or 1 growing ends after attachment of a monomer are in this case directly given by the probabilities of the
respective configuration (see also the table at the bottom of Fig. 10 B).

How can we use these probabilities ⇧l
ij to determine the transition rates? ⇧l

ij denotes the conditional probability
that a structure of size l with i = 1 or i = 2 growing ends has j = 0, 1, 2 growing ends after a monomer has attached,
if we already know that attachment happens. So, to translate these conditional probabilities, we need to multiply
them by the rate at which monomer attachment occurs.
In the main text, we defined � as the total rate of attachment of a monomer to one growing end. Thus, the overall rate
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for attachment of a monomer to a structure with two growing ends is 2� and the one for attachment to a structure
with one growing end is �. Therefore, the probabilities for structures with two growing ends have to be multiplied by
2� and the ones for structures with one growing end by �. The transition rates are thus given by

↵
l
22 = 2�⇧l

22 = 2�

✓
1� L⇥

L� l � 2

◆

↵
l
21 = 2�⇧l

22 = 2�
L⇥

L� l � 2

↵
l
22 = �⇧l

22 = �

✓
1� L⇥ � 1

L� l � 2

◆

↵
l
22 = �⇧l

22 = �
L⇥ � 1

L� l � 2
,

as stated in the main text, Eq. 22.

b. Steady-state occupancy sl
j in the e↵ective assembly network for fixed number of unavailable sites L⇥

In this section, we will determine the steady-state occupancy s
l
j in the simplified assembly network described in

section IVC and illustrated in Fig. 3(f).
To this end, we consider the in- and outfluxes into the states S

l
j for l � 2 and j = 1, 2 (l denotes the size of the

structure and j the number of growing ends). Since the number of growing ends cannot increase in the simplified
assembly network, the influx into state S

l
2 is solely from state S

l�1
2 at rate ↵

l�1
22 . Outflux occurs at rates ↵

l
22 into

state S
l+1
2 and ↵

l
21 into state S

l+1
1 . Thus, the temporal evolution of the number sl

2 of particles in state S
l
2 is given by

dsl
2

dt
= ↵

l�1
22 s

l�1
2 �

✓
↵

l
22 + ↵

l
21

◆
s

l
2 = ↵

l�1
22 s

l�1
2 � 2�sl

2.

Regarding state S
l
1, there is influx from state S

l�1
2 at rate ↵

l�1
21 and from S

l�1
1 at rate ↵

l�1
11 . Outflux occurs at rates

↵
l
11 into state S

l+1
1 and ↵

l
10 into state S

l+1
0 . The temporal evolution of the number sl

1 of particles in state S
l
1 is thus

dsl
1

dt
= ↵

l�1
21 s

l�1
2 + ↵

l�1
11 s

l�1
1 �

✓
↵

l
11 + ↵

l
10

◆
s

l
1 = ↵

l�1
21 s

l�1
2 + ↵

l�1
11 s

l�1
1 � �s

l
1.

In steady-state, dsl
j/dt = 0, these equations are rewritten in terms of a recursion relation as

s
l
2 =

↵
l�1
22

2�
s

l�1
2

s
l
1 =

↵
l�1
21

�
s

l�1
2 +

↵
l�1
11

�
s

l�1
1 .

The solution to this recursion relation for l � 3 is given by

s
l
2 =

(L� L⇥ � 3)(L� L⇥ � 4) . . . (L� L⇥ � l)

(L� 3)(L� 4) . . . (L� (l + 1))

✓
L� L⇥ � (l + 1)

◆
s
1
2 = (B1a)

= (L� L⇥ � (l + 1)) s1
2�l, (B1b)

s
l
1 =

(L� L⇥ � 3)(L� L⇥ � 4) . . . (L� L⇥ � l)

(L� 3)(L� 4) . . . (L� (l + 1))

✓
(L� L⇥ � 2)s1

1 + 2(l � 1)L⇥s
1
2

◆
= (B1c)

=
�
(L� L⇥ � 2)s1

1 + 2(l � 1)L⇥s
1
2

�
�l, (B1d)

where we defined

�l =
(L� L⇥ � 3)(L� L⇥ � 4) . . . (L� L⇥ � l)

(L� 3)(L� 4) . . . (L� (l + 1))
.
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These expressions depend on the steady-state numbers s1
j of monomers with either j = 1 or j = 2 growing ends. To

make progress, we thus need to determine these steady-state numbers. This can be done by considering the steady-
state dynamics of the monomer states. Into state S

1
2 there is an influx i2 (as defined in the main text in Eq. 23), and

the monomers transition to states S2
1 and S

2
2 at rates ↵1

21 and ↵
1
22, respectively. As a result,

ds1
2

dt
= i2 �

✓
↵

1
22 + ↵

1
21

◆
s
1
2 = i2 � 2�s1

2.

Similarly, we have

ds1
1

dt
= i1 �

✓
↵

1
11 + ↵

1
10

◆
s
1
1 = i1 � �s

1
1.

In steady-state, these equations reduce to

s
1
2 =

i2

2�
(B2a)

s
1
1 =

i1

�
. (B2b)

c. Growth probabilities pl

Finally we plug in the expressions, Eqs. B1, B2, for the steady-state number s
l
j of particles in state S

l
j into the

equation for the probability pl, Eq. 30. Using the explicit form of the influx rates i2 and i1, Eq. 23, yields after some
algebra

pl =

(
1� lL⇥(L⇥�1)

[L�(l+1)] [L+(l�1)L⇥�l] , l <L�L⇥

0 else,
(B3)

as given in the main text, Eq. 31. As it is derived here, it is only valid for l � 4 (since Eq. B1 is only valid for l � 3).
By explicitly calculating pl for l = 1, 2 and 3 from the recursion relation, one can, however, show that the same
formulas also apply in these cases. More generally, if there is less than one species unavailable, L⇥ < 1, all structures
can grow. Then we have pl = 1 8l.

2. Exchange dynamics between the di↵erent monomer states

In this subsection, we give details on how we determined the fluxes between the di↵erent monomer states if the
number of unavailable sites L⇥ changes.

For this purpose, it is illustrative to consider a system with three states A, B and C and total number of particles
N . We assume that the probability to be in state A at time t is pA(t) and analogously for B and C the probabilities
are pB(t) and pC(t) with pA(t) + pB(t) + pC(t) = 1. Furthermore, we assume that the total number is conserved:
N = const. Then, we have for the numbers of particles NA, NB and NC at time t:

NA(t) = NpA(t) NB(t) = NpB(t) NC(t) = NpC(t).

For the derivatives, we thus find analogously to the main text

dNA

dt
= N

dpA

dt
=

NA

pA

dpA

dt
= NA

d ln(pA)

dt
,

and similarly for B and C. As a result, for a three-state system we get exactly the same per-capita rates of exchange
r
pc
A as for the two-state system discussed in the main text in Sec. IVD:

r
pc
A =

dln(pA)

dt
.
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It is given by the time derivative of the logarithm of the corresponding probability. The only di↵erence now is that
it is not clear, yet, which portion of A transforms to B and C, respectively, if dpA/dt < 0.

To answer this question, we consider two cases:
For the first case, we assume that dpA/dt < 0 and dpB/dt > 0 and dpC/dt > 0, so there is only outflux from state A

into states B and C. In this case, it is useful to rewrite the time derivatives of NB and NC as follows:

dNB

dt
= N

dpB

dt
=

NA

pA

dpB

dt
dNC

dt
= N

dpC

dt
=

NA

pA

dpC

dt
.

Thus, the fractions of particles that transition from state A to the states B and C are proportional to the corresponding
changes in the probability, dpB/dt and dpC/dt, respectively.
For the second case, we assume that dpA/dt < 0 and dpB/dt < 0 whereas dpC/dt > 0, so there is outflux from states
A and B into state C. The time derivative of NC is then conveniently rewritten as

dNC

dt
= N

dpC

dt
= �N

✓
dpA

dt
+

dpB

dt

◆
= �NA

pA

dpA

dt
� NB

pB

dpB

dt
,

where the second equality follows from conservation of probability pA + pB + pC = 1. As expected, the flux into state
C then just corresponds to the sum of the two outfluxes from states A and B, respectively.

These “rules” can now be applied to the exchange of monomers between the di↵erent states:
Consider first the case where the number of unavailable species decreases, dL⇥/dt < 0. Some monomers of the
blocked state will then transition to the unblocked state and some monomers that have been unavailable previously
will transition to the normal state. In this case, there are only interactions between two states each and we can
immediately conclude that the fluxes between the states are given by

%⇥ =
m⇥
P⇥

dP⇥
dt

%n = �%⇥ (B4a)

%b =
mb

Pb

dPb

dt
%ub = �%b, (B4b)

as given in the main text, Eq. 42.
In the case where the number of unavailable species increases, dL⇥/dt > 0, some monomers of the unblocked state

transition back to the blocked state and some monomers of the normal state either transition to the unavailable state
or also to the blocked state. In this case, we thus have according to the above rules:

%⇥ =
mn

Pn

dP⇥
dt

(B5a)

%n =
mn

Pn

dPn

dt
(B5b)

%b =
mn

Pn

dPb

dt
+

mub

1� Pb

dPb

dt
(B5c)

%ub =
mub

Pub

dPub

dt
= � mub

1� Pb

dPb

dt
, (B5d)

where we used that the unblocked state e↵ectively corresponds to a probability 1 � Pb because all outflux from the
blocked state goes into it (instead of going into the unavailable or the normal state). These equations correspond to
Eq. 43 as given in the main text.

Appendix C: E↵ective theory with defect formation

In the main text, we presented the e↵ective theory for the case of no defect formation ⌫def = 0. Here, we explain our
approach to generalize the theory by e↵ectively including erroneous binding. We make several (crude) simplifications:

• Erroneous binding (defect formation) is not subject to stochastic e↵ects. That is, all monomers in states in
which they cannot regularly bind to a polymer can bind at rate ⌫def to this polymer, thereby creating a defect in
the structure. The essential idea is that it is unlikely that a polymer or monomer in the blocked state is blocked
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by two unavailable species in a row: Say species i and j > i were unavailable, then a structure (i+1). . .(j�1) is
in the blocked state. We assume that it is unlikely that simultaneously also species i�1 and j+1 are unavailable,
so the structure (i+1). . .(j�1) can grow by erroneous binding by either species i�1 or j+1.

• Although structures with defects will e↵ectively include unavailable species (because these species have typically
been left out if erroneous binding occurs), we take the probabilities that these structures end up in a growing or
blocked state to be the same as for the structures with defects: pl. This certainly is a simplification because in
the “derivation” of pl on the basis of the simplified assembly process described in section IVC and illustrated
in Fig. 3(f), we assumed that all structures only grow by attachment of available species.
As a result, the further growth dynamics of a polymer does not depend on whether it contains defects or not.

• We do not take into account that erroneous binding can lead to additional stochastic e↵ects (see also [48]).

In order to write down the ensuing dynamics of all the structures, we define the following quantities:

• g
D
l for l � 4 denotes the concentration of polymers with at least one defect and size l in the growing state.
The size l always refers to the number of subunits in the structure plus the number of defects. If, for instance,
a polymer of size l grows by erroneous binding (creating a defect in the structure), the size of the resulting
polymer is taken to be l+2. This convention is convenient because it ensures that it is always the structures of
size L that do not grow further. Since we do not keep track of the number of defects in a structure, this would
be di�cult to achieve otherwise.
Since erroneous binding only occurs from the dimers onwards (there is no erroneous dimerization), polymers
with defects have at least a size l = 4.

• Analogously, bD
l for l � 4 denotes the concentration of polymers with at least one defect and size l in the blocked

state.

• As before, gl and bl are defined as the concentration of polymers of size l with no defect in the growing and
blocked state, respectively.

How does the dynamics of monomers change due to the defect formation? First, the monomers that could bind
regularly to the (defect-free) polymers in either the growing and/or blocked state, can now additionally grow to the
corresponding defect-containing polymers in either the growing and/or blocked state because we assume that defect-
free structures and defect-containing structures in the growing and or blocked state do not di↵er in their growth
dynamics.
Second, the monomers that previously could not bind to a polymer in a certain state, can now erroneously bind to
these polymers at rate ⌫def , irrespective of whether the polymers in question already contain defects or not. In this
case, an (additional) defect is created in the structure.
With these ingredients the monomer dynamics reads as follows:

@tmn = ↵Ne
�↵t

Pn � 2µDn � 2⌫mn� + %n �
⇥
2⌫defmn

�
�def + �

D
def

�
+ 2⌫mn�

D
⇤

(C1a)

@tm⇥ = ↵Ne
�↵t

P⇥ � 2µD⇥ � 2⌫m⇥ (� + �) + %⇥ �
⇥
2⌫m⇥

�
�

D + �
D
�⇤

(C1b)

@tmb = ↵Ne
�↵t

Pb � 2µDb + %b �
⇥
2⌫defmb

�
�def + �

D
def + �def + �

D
def

�⇤
(C1c)

@tmub = �2µDub � 2⌫mub� + %ub �
⇥
2⌫defmub

�
�def + �

D
def

�
+ 2⌫mub�

D
⇤

(C1d)

Here, the expressions [. . .] in the brackets at the end of each line correspond to the new terms with respect to the
equations presented in the main text where ⌫def = 0 was assumed. Furthermore, we defined

�
D =

L�1X

l=4

g
D
l �

D =
L�1X

l=4

b
D
l (C2a)

�def =
L�2X

l=2

gl �def =
L�2X

l=2

bl (C2b)

�
D
def =

L�2X

l=4

g
D
l �

D
def =

L�2X

l=4

b
D
l (C2c)

as i) all the unfinished polymers with defects (superscript D) in either the growing (�D) or blocked state (�D)
ii) all unfinished polymers without defects (no superscript) in either the growing (�def) or blocked state (�def) whose
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size is less than or equal to L � 2 so that they still grow by erroneous binding (subscript “def”) without surpassing
the target structure size
iii) all unfinished polymers with defects (superscript D) in either the growing (�D

def) or blocked state (�D
def) whose size

is less than or equal to L � 2 so that they still grow by erroneous binding (subscript “def”) without surpassing the
target structure size.

Before going to the polymers, we shortly illustrate the above “rules” for mn: Previously, the monomers in the
normal state could only bind to unfinished polymers in the growing state �. So now they additionally bind to the
unfinished polymers in the growing state �

D with defects and erroneously to the polymers in the blocked states with
size l  L� 2 (�def and �

D
def).

How does the dynamics of the dimers change? Dimers cannot contain defects, so there are no polymers gD
2 or bD

2
and the only new terms in g2 and b2 come from erroneous binding of dimers with monomers with which they do not
bind correctly:

@tg2 = µ (Dn +D⇥ +Db +Dub) p2 � 2⌫g2MG + ⇢2 � [2⌫defg2mb] (C3a)

@tb2 = µ (Dn +D⇥ +Db +Dub) (1� p2)� 2⌫b2m⇥ � ⇢2 � [2⌫defb2MD] , (C3b)

where the new terms [. . .] are again in the brackets. Furthermore, we defined

MD = mn +mub +mb (C4)

as all the monomers that bind erroneously to polymers in the blocked state, thereby creating a defect. These are
exactly monomers in the normal, unblocked and blocked state because these cannot bind to polymers in the growing
state.

These additional terms for the monomers appear equivalently for all other polymers without defects that are of size
l  L� 2 and, thus, are small enough to potentially bind erroneously:

@tgl = 2⌫ (gl�1MG + bl�1m⇥) pl � 2⌫glMG + ⇢l � [2⌫defglmb] (C5a)

@tbl = 2⌫ (gl�1MG + bl�1m⇥) (1� pl)� 2⌫blm⇥ � ⇢l � [2⌫defblMD] . (C5b)

Finally, the dynamics of the polymers of size L� 1 and L without defects does not change because only a correct
monomer can bind to these structures and they cannot be made by erroneous binding:

@tgL�1 = 2⌫ (gL�2MG + bL�2m⇥) pL�1 � 2⌫gL�1MG + ⇢L�1 (C6a)

@tbL�1 = 2⌫ (gL�2MG + bL�2m⇥) (1� pL�1)� 2⌫bL�1m⇥ � ⇢L�1. (C6b)

@tgL = 2⌫ (gL�1MG + bL�1m⇥) (C6c)

What is the dynamics of the polymers with defects? To address this question, we distinguish several cases for the
growth into the structures and for the growth out of them. We begin with the growth into the structures:

• Polymers of size l = 4 with defect can only result from erroneous binding of a dimer with a monomer (total size:
2 (from dimer) + 1 (from monomer) + 1 (from defect)).

• Polymers of size l = 5 with defect(s) can result from correct growth of a polymer of size l = 4 with defect or
from erroneous binding of a monomer with a polymer of size l = 3 without defects (there are no polymers of
size l = 3 with defects).

• Polymers of size 6  l  L with defect(s) can result from correct growth of a polymer of size l � 1 with defect
or from erroneous binding of a monomer with a polymer of size l � 2 with or without defects.

For the growth out of the structures we have

• Polymers of size 4  l  L�2 can either grow correctly or erroneously by binding of a monomer in the respective
state(s) (see also the dynamics of the monomers).

• Polymers of size l = L� 1 can only grow correctly by binding of a monomer in the respective state(s) because
they are too large to incorporate another defect.

• Polymers of size l = L do not grow any more.
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Taken together, these aspects yield the following dynamics of polymers with defects: For structures of size l = 4:

@tg
D
4 = 2⌫def (g2mb + b2MD) p4 � 2⌫gD

4 MG � 2⌫defg
D
4 mb + ⇢̃

D
4 (C7a)

@tb
D
4 = 2⌫def (g2mb + b2MD) (1� p4)� 2⌫bD

4 m⇥ � 2⌫defb
D
4 MD � ⇢̃

D
4 , (C7b)

where the flux ⇢̃
D
4 between the blocked and growing state is defined analogously to the fluxes between the blocked

and growing states for the polymers without defects (see below). For structures of size l = 5 we have

@tg
D
5 =

�
2⌫def (g3mb + b3MD) + 2⌫

�
g

D
4 MG + b

D
4 m⇥

��
p5 � 2⌫gD

5 MG � 2⌫defg
D
5 mb + ⇢̃

D
5 (C8a)

@tb
D
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2⌫def (g3mb + b3MD) + 2⌫

�
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D
4 MG + b

D
4 m⇥

��
(1� p5)� 2⌫bD
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D
5 MD � ⇢̃

D
5 , (C8b)

and for all structures with 6  l  L� 2:

@tg
D
l =

✓
2⌫def

⇣ �
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D
l�2

�
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�
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l
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� 2⌫bD
l m⇥ � 2⌫defb

D
l MD � ⇢̃

D
l .

Finally, we find for the structures of size l = L� 1
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D
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and of size l = L:
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The only thing left to determine is the exchange dynamics between the polymers with defect in the growing and
blocked state, respectively. Since we assumed that the dynamics of polymers in the growing and blocked state does
not depend on whether the polymers include defects or not, these fluxes for the polymers with defects are entirely
analogous to the fluxes for the polymers without defects. We thus have:

⇢̃
D
l = J

BD!GD

l =

(
gD

l
pl

dpl

dt if dpl

dt < 0
bD

l
1�pl

dpl

dt if dpl

dt > 0.
(C12)

As one can observe in Fig 2 (c), a numerical integration of the full dynamics presented in this section in MATLAB
captures the non-monotonic behavior of the defect-free yield (inset) but not of the overall yield. This is presumably
due to two of the simplifications we made: First, erroneous binding is always possible, irrespective of the state of the
polymers (growing/blocked). As a result, if stochastic e↵ects are strong, erroneous binding is very likely and in the
limit of small activation ↵ ! 0, structures acquire more and more defects, leading to a higher yield. (In principle,
the maximal possible yield is L/(L/2 + 1) ⇡ 2 because from the dimer state onwards all structures might only bind
erroneously and then only 2+(L�2)/2 = L/2+1 (instead of L) particles would make up one final structure.) Second,
we did not consider that erroneous binding might itself enhance stochastic e↵ects: If species i is unavailable for a long
time, the neighboring species i± 1 might bind erroneously instead of species i. In the end, however, this means that
there will be too many particles of species i available because the defects have already taken the original places of
species i.

Appendix D: E↵ective theory with bursts

The e↵ective theory as given in the main text, Eqs. 45, 47, 48, 49, can be straightforwardly generalized to the burst
scenario if the bursts are well-separated as described in the main text: The particles of the i-th burst are provided to
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the system only once all binding reactions of the previous i�1-th burst have taken place and no more reactions are
possible.

For b bursts in total, the dynamics of the i-th burst is then determined by the original dynamics as given in the
main text, 45, 47, 48, 49, except for two small modifications.
First, the influx of active particles into the monomer states µ 2 {n,⇥, b} due to the activation process is modified by

↵Ne
�↵t

Pµ �! ↵
N

b
e
�↵(t�tfinali�1 )Pµ (D1)

for all t 2 [tfinal
i�1 , t

final
i ] where t

final
i denotes the time after which all reactions after the i-th burst have taken place

(and t
final
0 = 0 by convention). This is just due to the fact that in each burst not N but N/b particles are provided.

Furthermore, at t = t
final
i�1 the number of inactive particles is increased to N again and a new round of activation

starts.
Second, one has to rescale the time and the number of particles in �0 with respect to the formula Eq. 15 given in the
main text:

�
2
0 = N (1� e

�↵t) e�↵t �! N

b

⇣
1� e

�↵(t�tfinali�1 )
⌘
e
�↵(t�tfinali�1 ). (D2)

Again, this is due to the fact that at t = t
final
i�1 , there is no variability between the species because exactly N/b particles

per species per preceding burst have been provided. Furthermore, per burst there are only N/b (instead of N) particles
per species, so the Binomial distribution is with respect to N/b (and not N as before). As a result, over time the
maximal standard deviation is given by

p
N/b/2 for b bursts instead of

p
N/2 for only one burst (see also Fig. 5(a)).

The full dynamics is then obtained by a piecewise integration of this dynamics where the initial configuration of
the i-th burst is given by the final configuration of the i�1-th burst (and by convention the initial configuration of
the 1st burst corresponds to the original configuration of the system: all particles are inactive).

Appendix E: Random bursts (limit ↵ ! 0)

In the main text, we restricted our discussion to the case of deterministic bursts with exactly N/b particles per
species per burst (where b denotes the number of bursts). Here, we will touch upon some features of random bursts
where the numbers of particles per species per burst are drawn independently from a random distribution. We will
focus on three types of distributions: Poisson, Gaussian and Binomial statistics. As in the main text, we will restrict
our discussion to the case where the bursts are well-separated in time, meaning that particles of the i-th burst are
only provided once all binding reactions between the particles of the previous bursts have taken place. Furthermore,
we consider the limit ↵ ! 0, i.e. the limit where particles are provided one after the other with all possible binding
reactions taking place in between. In this limit, only the ordering of particles matters.

The yield is determined as the number of particles in the target structures relative to the total number Ntot of
particles (of all species) provided to the system:

Y =
LNtarget

Ntot
. (E1)

In the case of a deterministic number of particles, the total number is Ntot = NS and we recover the definition of the
yield as given in the main text.

1. Poisson bursts: no advantage due to several bursts

In this subsection, we illustrate that for bursts for which the particles per species and per burst are drawn inde-
pendently from a Poisson distribution with parameter (mean) N/b per species per burst, the number of bursts does
not have any influence in the limit ↵ ! 0.

In Figure 11 the average yield (and its standard deviation) is shown for systems with b bursts for which the number
of particles per species per burst is drawn independently from a Poisson distribution with mean N0/b. We observe
that in this case the yield is independent of the number b of bursts, in contrast to the case of deterministic bursts
discussed in the main text; Fig. 5(b)).

In more mathematical terms, this can be understood as follows: Suppose there are two species V and W whose
numbers of particles are independently Poisson distributed with mean V̄ and W̄ , respectively. Then the distribution
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FIG. 11. Di↵erent numbers of bursts with Poisson distributed numbers of particles. Particles are provided in b
bursts for which the number of particles per species per burst is each drawn independently according to a Poisson distribution
with mean N0/b.The average yield and its standard deviation (averaged over 1000 samples each) is plotted against the number
of bursts for di↵erent values of N0: N0 = 3000 (blue triangles), N0 = 1000 (red crosses), N0 = 3000 (yellow diamonds). The
other parameters are L = S = 60, µ = ⌫ = 1, ⌫def = 0 and ↵ = 10�6.

of the number v of particles of species V conditioned on the total number of particles of species V and W being
v + w = z is given as Binomial distribution with sample size z and probability V̄ /(V̄ + W̄ ):

Prob(V = v|V +W = z) =
Prob(V = v, V +W = z)

Prob(V +W = z)
=

Prob(V = v,W = z � v)

Prob(V +W = z)
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=

=
V̄ v

v! e
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◆v ✓
W̄

V̄ + W̄

◆z�v

, (E2)

where the third equation is due to the independence of V and W . Furthermore, since the sum of independent Poisson
distributions is again a Poisson distribution with the summed average, V + W is Poisson distributed with mean
V̄ + W̄ . Equation E2 shows that the distribution of the number v of particles of species V conditioned on the total
number of particles of species V and W being v+w = z only depends on the ratio of the averages of the two Poisson
distributions but not on their absolute values.

This argument can be transferred to the self-assembly process with Poisson distributed bursts. The total number
of particles of each species up to burst i is Poisson distributed since the individual numbers of particles per burst are
Poisson distributed as well. For all these Poisson distributions, the ratio between the mean of the number of particles
of one species and the mean of the number of particles of all the S�1 other species is always 1/(S � 1) (or in terms
of V̄ /(V̄ + W̄ ) = 1/S), irrespective of how many bursts are used and in which burst the system currently is. So, the
single-species variance after Ā activation events (or SĀ total activation events) is given by

�
2
Poisson = SĀ

1

S

✓
1� 1

S

◆
⇡ Ā, (E3)

irrespective of the number of bursts. Taken together, this (non-rigorous) argument underpins that in the case of
Poisson bursts, the variances in the relative availabilities of the di↵erent species is independent of the number of
bursts. Furthermore, Equation E3 suggests that, in contrast to the deterministic case where the number of particles
per species (per burst) is fixed, the variance increases linearly with the number of activation events and does not
decrease again.

2. Gaussian and Binomial bursts

So far, we have considered two cases: deterministic bursts (with zero variability or zero Fano factor, Fd = 0) and
Poisson bursts (with Fano factor, FPoisson = 1). This raises the question how the yield depends, more generally, on
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FIG. 12. Single random burst with di↵erent distributions. The yield and its standard deviation (averaged over 1000
samples each) for systems with one single burst for which the number of particles per species is drawn according to di↵erent
distributions is plotted against the Fano factor of the respective distribution. In the Gaussian (Binomial) burst, the number of
each species is drawn independently according to a Gaussian (Binomial) distribution with mean N0 = 1000 (blue; Gaussian:
diamonds; Binomial: crosses) or N0 = 500 (red; Gaussian: diamonds; Binomial: crosses) and Fano factor F = �2/N0. In the
Poisson burst, the number of each species is drawn according to a Poisson distribution with mean N0. In this case, the Fano
factor is always 1. For better comparison, we nonetheless plot the corresponding average value of the yield (dotted-dashed line)
as a function of the “Fano factor” although the Fano factor does not change. The other parameters are L = S = 60, µ = ⌫ = 1,
⌫def = 0 and ↵ = 10�6.

the Fano factor which is defined as the ratio between the variance �
2(X) and the mean hXi of a random variable X:

F (X) =
�

2(X)

hXi .

Since the Fano factor for a Poisson distribution is always 1, we consider two other distributions to address this
question: a Binomial distribution and a Gaussian distribution. More concretely, we performed simulations for well-
separated bursts for which the number of particles per species per burst is drawn independently from a Binomial
or Gaussian distribution, respectively. In the case of b bursts, the mean is taken to be N0/b per burst per species.
Furthermore, the variance per burst per species is chosen as �2 = FN0/b, so the Fano factor is F . These expressions
for the mean and the variance directly define the Gaussian distribution. For the Binomial distributions, the mean
and variance translate into a probability p and a sample size NS as follows:

NSp
!
=

N0

b
and Nsp(1� p)

!
= F

N0

b
=) p = 1� F and NS =

N0

b(1� F )
. (E4)

Correspondingly, the Binomial distribution can only be defined for a Fano factor F < 1.

a. Single random burst

We consider a system with b = 1 burst first. Figure 12 shows how the yield depends on the Fano factor F for a single
burst for which the number of particles per species is drawn independently from a Gaussian or Binomial distribution
with mean N0 and Fano factor F . For comparison, we also show the average yield of a single Poisson burst with mean
N0. In this case, the Fano factor is always F = 1 and we only plot it as a line for better comparison. As expected, the
yield is smaller for higher Fano factor or larger variance �

2. Furthermore, it does not depend on whether the burst
is drawn from a Gaussian or Binomial distribution since these two distributions align for large enough sample size:
The curves for the two cases lie on top of each other (note, though, that the Binomial distribution is only defined for
Fano factors F < 1; see Eq. E4). At a Fano factor F = 1, these curves cross the average yield for the corresponding
Poisson distribution which also exhibits a Fano factor of 1. Taken together, this suggests that even a single burst
with “controlled variance” (Fano factor F < 1) improves the yield as compared to a system where the particles are
provided according to a Poisson process.
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FIG. 13. Di↵erent numbers of bursts with binomially distributed numbers of particles. The yield and its standard
deviation (averaged over 1000 samples each) for systems with b bursts for which the numbers of particles per species per burst
are drawn independently from a Binomial distribution with mean N0/b = 1000/b and Fano factor F = 0.2 (green circles),
F = 0.5 (yellow crosses) and F = 0.8 (red diamonds) is plotted against the number of bursts b. For comparison, we also show
the yield and its standard deviation (averaged over 1000 samples each) for “deterministic” bursts with exactly N0/b particles
per species per burst. The other parameters are L = S = 60, µ = ⌫ = 1, ⌫def = 0 and ↵ = 10�6. Note that for a Fano factor
F = 0.2 the maximal number of bursts that ensures that the sample size NS of the binomial distribution (see Eq. E4) is an
integer value is bmax = 250.

b. Several bursts

As discussed in the main text, a higher number of bursts improves assembly e�ciency if the number of particles
per species per burst is deterministic (and equal for all species; compare Fig. 5(a,b)). How does this change if the
number of particles per burst is drawn according to a distribution with non-zero variance? To address this question,
we considered the case where the number of particles per species is drawn independently according to a Binomial
distribution with mean N0/b per burst (for b bursts) and Fano factor F . We restrict our discussion to the case of the
Binomial distribution: For large numbers of bursts the number of particles per species per burst is small and then
one has to be careful to use a Gaussian distributions due to two reasons:
First, a Gaussian distribution can, in principle, generate negative values. Second, and more importantly, we would
have to convert the continuous Gaussian distribution into a discrete distribution (since the number of particles of each
species should be a natural number). For small averages, this conversion would lead to artefacts.

Fig. 13 shows how the yield depends on the number of bursts if the number of particles per species per burst is
drawn independently from a Binomial distribution with mean N0 = 1000 and Fano factor as indicated in the legend.
In the deterministic case F = 0, the yield increases considerably with the number of bursts (apart from the kink). For
larger values of the Fano factor, this increase is less pronounced but still present. Note, however, that the Binomial
distribution only allows for Fano factors F < 1 (see Eq. E4).

Taken together, this suggests that as long as the bursts are “deterministic enough”, i.e. exhibit a small Fano factor,
yield indeed increases for larger numbers of bursts.

Appendix F: Random non-homogeneous activation rates

As discussed in the main text, non-homogeneous activation rates can considerably increase the yield (compare
Fig. 6(a,b)) if they favor a specific assembly path. In this section, we briefly illustrate that a system with non-
homogeneous activation rates that are randomly distributed over the species generally strongly decreases the assembly
e�ciency.

We consider two scenarios.
In the first case, the activation rate of species i is determined by

↵
(i) = ↵0(1 + ✏U[0,1))
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FIG. 14. Random inhomogeneous activation rates with uniformly distributed variability. The average yield and its
standard deviation (for a sample of size 1000 each) is plotted against the variability ✏ in the activation rate. The activation rate
of species i is given by ↵(i) = ↵0(1 + ✏U[0,1)) where U[0,1) is uniformly distributed between [0, 1) and is chosen independently
for all species and all samples. The parameters are L = 40 (blue circles) or L = 60 (red triangles) and S = L, N = 1000,
↵0 = 10�6, µ = ⌫ = 1
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FIG. 15. Random inhomogeneous activation rates with exponentially faster species. The average yield and its
standard deviation (for a sample of size 1000 each; red triangles) are plotted against the exponential base w. The activation rate
of species i is given by ↵(i) = ↵0f(perm(i)) where perm creates a random permutation of the species 1, 2, . . . , S, independently
for all samples. f is the scaling function that was also chosen for the case with coordinated inhomogeneous activation rates as
described in the main text: f(i) = wi for i  S/2 and f(i) = wS�i for i > S/2. For comparison, the coordinated case without
permutation, perm ⌘ identity, is also shown (blue circles). The parameters are L = S = 40, N = 1000, ↵0 = 10�6, µ = ⌫ = 1.

where U[0,1) is uniformly distributed between [0, 1) and is chosen independently for all species and all samples. ✏

controls the typical variability between two species.

Figure 14 shows how the yield depends on the variability ✏. For larger variability between the species, the average
yield decreases. This is expected as higher variability generally leads to larger fluctuations in the availability of the
di↵erent species and, thus, to stronger stochastic e↵ects that suppress the yield.

In the second case, we taken the same functional form as in the main text (exponential) only that these activation
rates are not coordinated among the species to yield a favored assembly path but instead are randomly distributed
among the di↵erent species. That is, the activation rate of species i is given by
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↵
(i) = ↵0f (perm(i))

where f is the scaling function that was also chosen for the case with coordinated inhomogeneous activation rates as
described in the main text: f(i) = w

i for i  S/2 and f(i) = w
S�i for i > S/2. However, in contrast to the situation

in the main text, perm now creates a random permutation of the species 1, 2, . . . , S, independently for all samples.
Fig. 14 shows how the yield depends on the exponential base w. Since in this case the variability between species

is extremely large (due to the exponential functional form of the scaling function f), the yield strongly decreases
with w and is zero already for w ⇡ 1.05. For comparison, we show again the dependency of the yield on w if the
inhomogeneous activated rates are coordinated as described in the main text: perm ⌘ identity. Due to the small
range of w shown, the yield only slightly increases.
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7 Controlling fidelity in heterogeneous
self-assembly

This chapter summarizes the most important findings of our project on error-proneness and
fidelity in heterogeneous self-assembly. The corresponding manuscript is currently in prepa-
ration for submission. This chapter is based on and uses parts of the manuscript preprint in
section 7.5.

7.1 Motivation

In the previous chapters, we have considered kinetic traps that arise from an excess of nu-
cleation events resulting in a large amount of incomplete structures. Another important
threat for self-assembling systems is posed by kinetic traps that arise due to the assembly
of erroneous or malformed structures. In particular, errors or defects that occur in highly
functional structures can lead to dysfunctional behavior and thereby pose a substantial threat
to the entire organism [158]. It is therefore not surprising that various human diseases can
be related to errors or defects in relevant structures like ribosomes, nuclear pore complexes
or proteasomes [159, 160, 161]. For example, defective ribosomes are associated with a broad
range of diseases, collectively termed ribosomopathies [159] and proteasome dysfunction is
especially related to neurodegenerative [162, 163], cardiovascular [164, 165] and autoimmune
diseases [166] as well as cancer [167]. In order to ensure the correct assembly of such com-
plex structures, elaborate control- and proofreading mechanisms have evolved that initiate
degradation of malformed structures or intermediates. For example, nuclear pore complex as-
sembly is surveilled by a protein called Heh2, which destabilizes and clears defective complex
intermediates [160]. Malfunctioning of this control mechanism leads to malformed nuclear
pore complexes and is associated with neurodegenerative diseases, ageing and cancer [160].

Despite the existence of such elaborate proof reading mechanisms, however, self-assembly
would be very ine�cient if the assembly processes were not optimized to avoid errors and de-
fects in the first place as far as possible. Therefore, in this chapter we investigate how e↵ective
the simple control strategies for irreversible self-assembly introduced in part 1 (specifically,
the activation, dimerization and just-in-sequence scenario) are in avoiding assembly errors.
We restrict our attention to the irreversible scenarios here, because complex molecular ma-
chines like ribosomes, nuclear pore complexes or flagellae are broadly assumed to assemble
irreversibly. Error susceptibility in reversible self-assembly is, of course, an equally important
subject but needs to be discussed in depth in a separate project (which is not part of this
thesis).
It should be noted that self-assembly of complex biological structures is typically highly
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regulated, relying on a large number of assembly factors and elaborate mechanisms, and is
certainly not exclusively described by one of our simple scenarios. Nevertheless, these elab-
orate mechanisms might possibly realize or build upon a simpler strategy and might have
evolved to overcome the remaining deficiencies of the simpler strategy. By studying the sim-
ple scenarios, we therefore hope to gain a better understanding of the challenges that had to
be overcome by evolution in order to achieve robust and resilient self-assembly and get an
idea of how elaborate control mechanisms would need to function.
The emergence of complex structures and their assembly processes thereby poses a chicken-
egg-problem: Without reliable assembly factors no reliable assembly of machinery like ribo-
somes, nuclear pore complexes etc., and without the latter no reliable assembly of the former
[168]. A possible solution to this apparent paradox could be that assembly processes initially
were much simpler, then evolved to optimize their reliability and gradually increased their
complexity by including additional assembly factors. Studying simple control mechanisms for
self-assembly could therefore also make an important contribution to the understanding of
the origin of complex structures and of life in general.

An important source of errors and uncertainty in heterogeneous self-assembly is caused by
imperfect binding specificities between the constituents. For example, if monomers attach
incorrectly or at a wrong site in the structure - even if this happens only with a small
rate - errors might accumulate and compromise the functionality of the structure. Another
possibility might be due to monomers attaching prematurely to the structure and thereby
hindering the attachment of other species that should have bound earlier, causing a defect
(for an illustration of this process see Fig. 1 in the preprint in section 7.5).
Here we investigate a simple model that accounts for both these kinds of errors or defects
by considering structures that assemble via a linear assembly path. A linear assembly path
amounts to assuming that, under normal conditions, the di↵erent species attach one by one in
a given order, as it typically applies to the self-assembly of complex structures like ribosomes,
flagellae or nuclear pore complexes [20, 126, 24, 169]. We assume that, with a finite error
probability, the typical assembly path can be disrupted, causing an error, and we ask how the
frequency of errors depends on the control scenario. In particular, we investigate to which
extent errors can be avoided by e↵ectively regulating the supply of the constituents.
To this end, we study a slightly modified version of the just-in-sequence scenario, in which
the monomers are activated slowly and activation of a species is inhibited by the species
prior in the sequence. In this form, the just-in-sequence scenario might be able to be realized
in a biological context with the help of inhibitory feedback. Finally, we compare the time
e�ciency of the just-in-sequence scenario based on inhibitory feedback with that of the Jis
scenario relying on external supply control as discussed in chapter 2, as well as with the time
e�ciency of the other scenarios.

7.2 Model

The model we used in this project builds on the models for heterogeneous self-assembly stud-
ied in the former chapters of this thesis and expands those by accounting for assembly errors
and by implementing a feedback mechanism for supply control. Specifically, as illustrated in
Fig. 8.1, we consider a set of S = L di↵erent species of constituents labeled by indices i from
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Figure 7.1 | Illustration of the model. Rings of size L are assembled from S = L di↵erent
species of monomers. N monomers of each species are initially in an inactive state and are activated
at a maximum per-capita rate ↵. Activation of species i  2 is inhibited by the inactive monomers
of species i � 1 as detailed in the main text. Once active, species with periodically consecutive
indices can bind to each other. Dimerization of two monomers happens at rate µ and attachment
of monomers to polymers at rate ⌫. Furthermore, monomers can bind incorrectly to a polymer
at rate ⌫def, thereby omitting one species (defect). More precisely, a monomer of species i binds
incorrectly with rate ⌫def to a complex with species i � 2 (i + 2) at its right (left) end, thereby
omitting species i � 1 (i + 1), respectively. There is no incorrect dimerization. If the di↵erence
between the left and the right end of a polymer is 1 (modulo L) the polymer closes to a ring which
constitutes an absorbing state. The yield measures the number of completed rings relative to their
maximum number N , whereas the defect-free yield measures the number of completed rings without
any defects relative to N .

the set {1, . . . , L}, which assemble into rings. The ring structure thereby represents a general
linear assembly process in which monomers attach in a given order (the resulting structure
could also be higher-dimensional). The periodicity of the ring allows us to analyze the system
mathematically.
As before, we assume that any two species with (periodically) consecutive indices can dimer-
ize with a rate µ. Once a dimer has formed, it serves as a nucleus for further growth by
sequential addition of monomers with rate ⌫. Furthermore, monomers can bind incorrectly
with rate ⌫def, where upon binding a single-species defect is created in the structure (see Fig.
8.1 and Fig. 2a,c in the publication preprint in section 7.5). As incorrect binding is typically
much less likely than binding in the correct sequence order, we assume ⌫def ⌧ ⌫. Moreover,
it is assumed that (correctly and incorrectly assembled) monomers detach from the ends of
an (incomplete) structure at rate �. Typically, however, we set � = 0, thereby considering a
process that is irreversible on the relevant time scale. The yield is defined as the number of
completed, correctly or incorrectly assembled rings relative to their maximum number N . In
contrast, the defect-free yield is defined as the number of completed rings without any defects
relative to N and quantifies the robustness of the assembly process to errors (fidelity).

Initially, N monomers per species are in an inactive state and need to get activated in order
to be able to bind. Activation of species i is inhibited by species i�1. Specifically, we assume
that species i � 2 is activated at rate ↵i = ↵e

�qIi�1 , where q is called the inhibition strength, ↵
is the basal activation rate and Ii�1 denotes the concentration of inactive monomers of species
i� 1 (only species 1 is not inhibited, which implies that the process starts with activation of
species 1). If the inhibition strength q is large, activation of species i is strongly suppressed
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as long as species i � 1 has not been activated in considerable amounts. Hence, increasing
the strength of inhibition enforces the species to be activated in a sequence similar to the
just-in-sequence scenario studied in chapter 2. While in chapter 2 supply regulation required
external control, here supply regulation is promoted internally via inhibitory feedback. In this
feedback-based Jis scenario, (unless q is unrealistically large) the di↵erent species will not be
activated perfectly in sequence, but there will always be some temporal ‘overlap’ between the
activation of consecutive species. Therefore, in order to avoid spurious nucleation events, the
basal activation rate ↵ must additionally be controlled as will be discussed in detail below.
The limiting case without inhibition (q = 0) corresponds to the activation scenario. Since the
activation scenario is strongly a↵ected by stochastic e↵ects, it will be particularly interesting
to see how stochastic e↵ects behave when q is gradually increased from zero. Furthermore,
the dimerization scenario corresponds to setting ↵ = 1 and controlling the assembly process
by the dimerization rate µ.
We will investigate the proneness of these three scenarios (activation, dimerization and just-
in-sequence scenario) to assembly errors and analyze the behavior of the yield and defect-free
yield as functions of the respective control parameters.

7.3 Results and Discussion

First, we determine how e↵ectively the number of defects can be controlled in the dimerization
and activation scenario. To this end we study the behavior of the defect-free yield. Since
deterministically, the monomer concentrations of all species are the same in both scenarios,
a simple mean field argument predicts the ratio between the yield and the defect-free yield:
Since all species are available in equal concentrations, the probability that a defect occurs at
a given site is pdef = ⌫def/(⌫ + ⌫def). Hence, the probability that a completed structure is free
from defects equals the probability that in L � 2 subsequent binding steps no defect occurs
and thus,

defect-free yield

yield
= (1� pdef)

L�2 ⇡ e
�(L�2)pdef , (7.1)

assuming that pdef ⌧ 1. Hence, the defect-free yield is expected to decrease exponentially
with the size of the target structure and the defect probability pdef.
Indeed, plotting the yield and defect-free yield against the dimerization rate shows that the
dimerzation scenario behaves according to this mean-field prediction also in the limit of small
particle numbers N , see Fig. 3a in the publication preprint in section 7.5.

In contrast, the activation scenario shows a more intricate behavior: Upon decreasing the
activation rate, the yield rises up to a maximal value that is generally smaller than 1 due to
the stochastic yield catastrophe (see chapter 5). The defect-free yield also increases at first
but then reaches a maximum and subsequently drops again to a stationary plateau if ↵ is
further decreased. This non-monotonic behavior of the defect-free yield is not captured by
the mean-field theory, Eq. (7.1), which only predicts the maximum of the defect-free yield in
the limit N ! 1. In analogy with the term ‘stochastic yield catastrophe’, we refer to the
drop of the defect-free yield in the limit of small ↵ as ‘stochastic defect catastrophe’. Similar
to the stochastic yield catastrophe, the defect catastrophe originates from fluctuations in the
relative copy numbers of the di↵erent species if the activation rate is small: If a shortage
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in the supply of one species persists long enough, incorrect binding by the wrong building
blocks becomes more likely as the proper building blocks are not readily available. The defect
catastrophe occurs once the activation rate decreases below the characteristic rate at which
incorrect binding occurs, which is determined by ⌫def. Since ⌫def ⌧ ⌫, where ⌫ determines
the threshold activation rate, the defect-free yield first rises to a maximum when decreasing
↵ before the defect catastrophe occurs, which thereby causes the non-monotonic behaviour.

Together, this shows that the error proneness of self-assembly cannot be e�ciently controlled
neither in the dimerization nor in the activation scenario. While the dimerization scenario
behaves as predicted by mean-field theory, the activation scenario is additionally a↵ected by
stochastic e↵ects, which strongly increase the error rate. Similarly, stochastic e↵ects could
also arise in a spatial system due slow di↵usion causing demographic noise in the local concen-
trations. This suggests that defects and errors might be a strong limitation for self-assembling
systems, in particular if, additionally, fluctuations in the relative concentrations of the di↵er-
ent species are relevant.

Next, we investigated whether by increasing the inhibition strength q, the frequency of as-
sembly errors can be reduced. Interestingly, plotting the yield and defect-free yield against
the inhibition strength q for a fixed activation rate ↵ reveals that the (defect-free) yield
initially declines when q is increased but finally almost reaches the perfect value of 1 if q
becomes large and ↵ is su�ciently small, see Fig. 4a in the publication preprint in section
7.5. Hence, with the help of inhibition, the impact of noise can be regulated: A small value
of q increases stochastic e↵ects because species are activated ‘out-of-sequence’, i.e. before the
previous species has been activated, which causes strong demographic noise in the species’
concentrations. If, however, q is large enough so that out-of-sequence activation is su�-
ciently suppressed, the strict sequential activation of the constituents reduces randomness
and thereby decreases the probability for monomers to bind incorrectly, which leads to an
enhancement of the (defect-free) yield.
In order to obtain a high (defect-free) yield, it is furthermore crucial that the basal activation
rate ↵ is small enough: Keeping q fixed and varying ↵ shows that the yield is zero if ↵ is
large and starts to increase only if the activation rate is reduced below a threshold value ↵JIS

th ,
see Fig. 4b in the publication preprint. A small basal activation rate is important because
inhibition is imperfect for any finite q and thus there is always a certain temporal overlap in
the activation of consecutive species, which would trigger additional nucleation events (also
see Fig. 5 in the publication preprint). By decreasing ↵, however, the concentration of active
monomers is reduced, similar as in the activation scenario, and thus attachment of monomers
to already existing structures is favoured over nucleation of new structures. Due to the in-
fluence of inhibition, the threshold activation rate to obtain non-zero yield is generally larger
in the Jis scenario than the threshold rate in the activation scenario. Specifically, we find
the former scaling with the size of the target structure as ↵Jis

th ⇠ L
1 while the later scales as

↵
Act
th ⇠ L

3.

Approximating the inhibition function as a step function, e�qIi ⇡ ⇥(1/q�Ii), and considering
the coarse-grained dynamics of the concentrations of active, inactive and bound monomers,
analytic expressions for several key quantities of the assembly process in the just-in-sequence
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scenario can be derived; for details see Supplement of the publication preprint in section 7.5.
For example, the probability for a defect to occur at a specified site is approximately given
by pdef =

⌫def
(qC�1)⌫ , and the total assembly time follows as T90 = L

↵ ln (qC). This shows that
the defect probability can be e�ciently suppressed by increasing the inhibition strength q,
while the assembly time depends only logarithmically on q and thus increases only slightly
when q is augmented. This implies that in an e↵ective implementation of the JIS scenario
the inhibition strength should be maximized.
Furthermore, the minimal time required to achieve 90% yield can be shown analytically to
scale roughly like T

min
90,Jis ⇠ L2

⌫C . Hence, the Jis scenario based on inhibitory feedback has
the same time complexity as the Jis scenario that relies on external supply control, compare
chapter 2. This result again demonstrates the robustness of the time complexity exponents.
By explicitly simulating both cases, however, we find that the minimal assembly time in the
Jis scenario with external supply control is roughly 1.5 orders of magnitude smaller compared
to the Jis scenario with inhibitory feedback. The reason for this discrepancy in the time e�-
ciency is that the feedback-based Jis mechanism requires slow activation in order to prevent
spurious nucleation events, which makes it less e�cient than the externally controlled Jis
mechanism, in which all monomers of a ‘batch’ are provided simultaneously.

In total, these results suggest that temporal supply regulation as e↵ectuated in the Jis scenario
can mitigate stochastic e↵ects and greatly enhance the robustness of the assembly process to
errors compared to the activation and dimerization scenario.
Generally speaking, in the self-assembly of heterogeneous structures, information is required
to specify the location and connectivity of the building blocks within the assembled struc-
ture (‘information-rich’ structures). This information can, for example, be stored in the
constituents themselves (through their binding specificities, allosteric e↵ects to avoid kinetic
traps or fine-tuned bond strength to find free energy minima). We call such strategies that rely
on sophisticated molecular binding properties of the constituents ‘molecular’ control strate-
gies. Supply regulation constitutes an alternative way to provide this assembly information
that helps the constituents to assemble correctly (‘supply control strategy’). The information
provided through the supply sequence allows to decrease the information content of the con-
stituents, which may thus become less specific and less specialized.
Hypothetically, this could have been an important factor enabling the evolution of complex
macromolecules: If, for example, a regulatory program ensures that the constituents are made
competent for binding in a specified sequence and thereby supports the correct self-assembly of
these subunits, the constituents themselves might have more flexibility to mutate and acquire
additional functions. Evidence for supply regulation in biological self-assembly are indeed
found, for instance, in the bacterial flagellum, where gene-expression programs coordinate
the expression of the relevant genes in correspondence with specific stages of the assembly
process [24]. Hence, as a hypothetical idea, it might be thinkable that it was the interplay
between these redundant or ‘orthogonal’ strategies, the molecular- and supply control strat-
egy, that enabled the evolution of those complex macromolecules and sophisticated assembly
processes that we observe in nature.
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7.4 Key points

In my opinion, the key results of this project are the following:

• Supply regulation in the just-in-sequence scenario can be realized either by external
control (see chapter 2) or in a self-organized way with the help of inhibitory feedback.
The latter case describes a possible scenario that could be realized in a biological system
and it requires the monomers to be activated slowly, similarly as in the activation
scenario. Both implementations of the just-in-sequence scenario exhibit the same time
complexity exponent.

• In the activation and dimerization scenario, in the limit of large particle numbers, the
number of structures without errors/defects decreases exponentially with the rate for
incorrect binding ⌫def as well as with the size of the target structure. If particle numbers
are not abundant, the activation scenario su↵ers a stochastic defect catastrophe, which
further decreases the defect-free yield. Assembly errors might therefore pose a strong
limitation in these systems, in particular if fluctuations in particle concentrations are
relevant (e.g. due to slow di↵usion).

• In the just-in-sequence scenario, the defect-free yield can be enhanced e�ciently by
increasing the strength of inhibition between consecutive species, while at the same time
the required assembly time increases only slightly. Supply regulation might therefore
o↵er an e↵ective and viable way to increase the fidelity of self-assembly processes both
in biological and artificial systems. Hypothetically, this might have been an important
factor enabling the evolution of complex macromolecules.
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Abstract 
 
Self-assembly is a fundamental concept used to explain the astonishing ability of 
living systems to autonomously generate complex structures and machineries. Yet, 
it remains largely unclear how nature achieves such high reliability and 
reproducibility in these processes. Using a conceptual and generic model we 
examine different strategies to effectuate the self-assembly of finite-sized 
heterogeneous target structures. These different strategies are compared with 
respect to their yield, error-proneness and time-efficiency. In particular, we 
discuss supply regulation as a powerful yet simple mechanism to enhance the 
efficiency and fidelity of heterogeneous self-assembly processes. Supply regulation 
requires the assembling constituents to be provided in accordance with the most 
favorable assembly pathway (‘just-in-sequence supply’). Since this method has 
several benefits but does not rely on optimized molecular binding properties, it 
constitutes a promising possibility for artificial self-assembly. 
 
  



Introduction 
 

The self-assembly of functional structures on the nanometer scale from smaller 
subunits or elementary building blocks plays a fundamental role in biology (Whitesides, 
2002; Mendes, 2013). Understanding and being able to imitate these processes will give 
rise to novel applications in engineering, biotechnology and medicine (Whitesides, 
1991; Whitesides 2002; Zhang, 2003). The obstructions to efficient and reliable self-
assembly are, however, numerous: For example, a self-assembling system might get 
trapped in a local minimum of the free energy landscape which is different from its 
optimal state, known as kinetic trap (Hagan, 2011; Grant, 2011). Furthermore, we have 
recently shown that the dynamics of self-assembling systems can be strongly affected 
by stochastic effects that emerge due to a slow activation or production step of the 
constituents and can completely suppress the yield (termed “stochastic yield 
catastrophe”) (Gartner, 2019). These stochastic effects were shown to arise when 
fluctuations in the concentrations of the various species become large, thereby 
enhancing the effective nucleation rate. 

Moreover, in this work we discuss two further central aspects of self-assembly 
processes: Error proneness and time efficiency. In particular, we ask to which extend 
fidelity in self-assembly can be achieved if there is a (small) chance for particles to bind 
incorrectly. Additionally, we characterize the time efficiency of self-assembly 
processes by examining the minimal time needed to reach a certain yield in an assembly 
product for various self-assembly scenarios. Based on our findings, we argue that both, 
error proneness and poor time efficiency, can constitute major limitations of general 
self-assembling systems.   

In order to overcome these limitations, elaborate	mechanisms	have	evolved	
in	cellular	systems	whose	function	is	to	guide	the assembly processes and increase 
their efficiency. For example, in ribosomal assembly, specialized assembly factors 
coordinate the assembly process and control the finished structures for errors and 
defects (Nerurkar, 2015; Peña, 2017). In bacterial flagellum assembly, membrane 
proteins and chaperons form an export system that, by switching its export specificity, 
determines the exact order in which flagellar components are exported through the 
membrane to assemble the external parts of the flagellum (Macnab, 2004; Chevance, 
2008; Vonderviszt, 2013). Finally, in virus capsid assembly, allosteric binding effects 
prevent the spontaneous dimerization of molecules and favor growth of the capsids over 
nucleation, thereby avoiding kinetic traps (Caspar, 1980; Packianathan, 2010; Lazaro, 
2016).   

While those mechanism have evolved over evolutionary time scales and rely on 
specialized molecules with precisely adopted binding properties, for artificial self-
assembly one would like to implement simpler control mechanisms (Zhang, 2001). 
Optimally, such control mechanisms should make minimal demands on molecular 
properties of the constituents in order to allow for a flexible design of the building 
blocks. In line with these requirements, we show that the efficiency and reliability of 
heterogeneous assembly processes can be greatly enhanced by coordinating the supply 



of the assembling constituents. This assembly strategy relies on the intuition that, for 
optimal efficiency, the different types of molecules should be made available for 
binding in the same order in which they are assembled. In a very similar way, industrial 
assembly processes, in particular in the automotive industry, profit in various ways 
from an organizational principle referred to as ‘just-in-sequence’ supply (Werner, 2003; 
Roser, 2017). This principle demands that the different pieces are delivered to the 
assembly line in the exact sequence in which they are built in. Thereby, the efficiency 
of the workflow can be increased, human errors resulting from incorrect assembly 
reduced and storage costs minimized (Roser, 2017).  

 
We propose a simple feedback mechanism for molecular self-assembly by 

which each species inhibits the availability of its successor in order to achieve just-in-
sequence supply in a self-organized way. Alternatively, the supply could be controlled 
externally, e.g. by an appropriate supply protocol in an experiment. By comparing with 
other assembly scenarios, we show that a ‘just-in-sequence’ supply strategy is effective 
in minimizing the number of assembly errors, avoids stochastic yield catastrophes and 
kinetic traps, and also enhances the time efficiency.  

 
 
Model 
 
Model motivation  

In this work we focus on heterogeneous linear assembly processes. A linear 
assembly process presupposes that the constituents bind to the growing structure one 
by one, in a preferred linear order with one or two independent growth directions 
(Zlotnik, 1999; Endres, 2002; Morozov, 2009). Please note, however, that the emerging 
structure itself does not necessarily have to be a spatially linear (one-dimensional) 
object. It may as well have a more complex, three-dimensional geometry as long as 
there is a unique assembly pathway (or several topologically equivalent ones). With 
this in mind, assembly line models have been used extensively to study the formation 
of virus capsids  (Zlotnik, 1994; Zlotnik, 1999; Endres, 2002; Morozov, 2009; Hagan 
2010; Chen, 2008; Hagan, 2014). Furthermore, many other biological systems like the 
bacterial flagellum or the subunits of ribosomes assemble in a linear order (Chevance, 
2008; Vonderviszt, 2013; Peña, 2017), probably because a linear binding sequence 
constitutes the easiest way to realize the formation of such complex structures. These 
complex macromolecular machineries typically represent ‘information-rich’ structures, 
i.e. they consist of multiple different types of constituents where each constituent has a 
well-defined locus within the structure (Cademartiri, 2015; Whitelam, 2015). Here, for 
simplicity, we consider systems that are fully heterogeneous, i.e. all constituents are 
assumed to be different. 

Generally, before an assembly process starts, the constituents need to be 
supplied or produced, e.g. by gene expression, or rendered competent for binding, e.g. 
by a biochemical process like nucleotide exchange (Chen, 2008; Alberts, 2015; Lazaro, 



2016). We model this ‘activation’ step as a transition from an inactive state to an active 
state for each constituent. The inactive state can be thought of as representing a different 
molecular conformation or a precursor of the corresponding molecule/protein that is 
not yet competent for binding. In a synthetic system, it might also represent the state 
before the particle has entered the system. A major theme in our analysis concerns the 
question how supply can be effectively regulated through (simple) interactions between 
the various constituents. 

Once the constituents start to assemble, occasionally binding events might 
happen that lead to incorrectly assembled structures (Hedges, 2014; Whitelam, 2015). 
Here, for specificity, we consider assembly errors that result if a constituent binds 
prematurely and thereby disrupts the intended assembly order; see Fig. 1 for an 
illustration. These assembly errors might occur because of similarities in the binding 
domains of the constituents. In particular, in the self-assembly of a three-dimensional 
structure, structural stability is often achieved by numerous bonds between the different 
constituents (high inter-species connectivity), see Fig. 1. Hence, in a naive 
implementation of the assembly process, the geometry of the structure may easily allow 
for deviations from the desirable assembly path that then lead to defects in the structure 
as shown in the lower panel of Fig. 1. Here, for example, species F adheres prematurely 
before the predecessor species E has bound. Thereby, species F hinders the accessibility 
of species E to its binding spot due to steric effects and prevents its binding, resulting 
in a defect in the final structure.  

 
	
	
	
	
	
	
	
	
	
	
	
	
Figure 1: Sketch of a generic assembly process illustrating the occurrence of assembly errors 
(defects). We depict the assembly of 6 constituents (denoted as A…F) on top of a substrate. The 
favorable assembly path is A-B-C-D-E-F. The upper line shows the assembly of the last three 
constituents (D,E,F) in the correct order. The lower line illustrates the occurrence of an assembly error: 
constituent F binds prematurely sticking only to D and C while E is still missing. Subsequent binding of 
E is hindered by F and therefore prevented. This causes a defect of particle E in the structure. 
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Model description 
 

We build on previous models describing the self-assembly of heterogeneous, 
finite-sized target structures (D’Orsogna, 2013; Murugan, 2015; Gartner, 2019)	and 
expand those by accounting for assembly errors and by implementing a feedback 
mechanism for supply control. Specifically, as illustrated in Fig. 2, we consider a set of 
! different species of constituents labeled by indices " from the set {1, … , !}, which 
assemble into rings. The ring structure thereby ought to represent a general linear 
assembly process with two independent growth directions. We choose the ring as model 
for the target structure because the periodicity of the ring allows to analyze the system 
mathematically by exploiting its symmetry without otherwise affecting the qualitative 
behavior. The completed rings form an absorbing state of the system which do no 
longer participate in any reactions. 

In detail, we assume that any two species with (periodically) consecutive indices 
(like 1 and 2 or ! and 1) can dimerize with a rate (.  Once a dimer has formed, it serves 
as a nucleus for further growth by sequential addition of monomers. In the following, 
we will refer to the ensuing structure as a polymer, keeping in mind that the actual 
structure may as well be three-dimensional.  The rightmost (leftmost) species of a 
polymer will be referred to as the right (left) end of that polymer. Binding of additional 
monomers to either end of that polymer in correct sequence order occurs with a fixed 
rate ). There may also be incorrect binding of species violating the sequence order. For 
specificity, we consider single species defects, where upon binding a gap is created in 
the sequence order; see Fig. 2a,c. As incorrect binding is typically much less likely than 
correct binding we assume )def ≪ ) . Finally, to be able to also consider assembly 
dynamics where binding is reversible we introduce a process where monomers detach 
from the ends of a structure with a detachment rate +. If not stated otherwise, we set 
+ = 0, thus considering a process that is irreversible on the time scale at which the 
assembly reaction takes place (cf. section “Time efficiency”). The ring closes when the 
sequence indices between the left and right end differ by 1 (modulo !). Then, the 
structure is completed and no further attachment or detachment processes are possible. 
If a completed structure is free of defects, we call it `perfect’ otherwise `imperfect’; see 
Fig. 2a. 

Initially,	/ monomers per species are assumed to be in an inactive state where 
they are still unable to form bonds. The initial concentration of each monomer species 
is denoted by 0 = //2, where 2 is the reaction volume. In order to be able to bind, 
monomers have to undergo an activation step. We are interested in how self-assembly 
efficiency is affected by inhibitory feedback. Specifically, we consider a kinetic process 
where activation of species tends to occur in the desired sequence order. Given a basal 
activation rate 3 for the first species (which we take1 as i	=	1), we implement such a  

	
1	Since the ring model is symmetric, it is an arbitrary choice from which species the 
activation sequence is started. In assembly processes with only one growth direction 
there would be a unique sequence.	



	
Figure 2: Schematic description of the model and the different scenarios. (a) Rings of size ! are 
assembled from ! different particle species. " monomers of each species are initially in an inactive state 
and are activated at a maximum per-capita rate α. Activation of species # is inhibited by the monomers 
of species # − 1 (if # ≥ 2) as detailed in Eq. (1). Once active, species with periodically consecutive 
indices can bind to each other. Dimerization of two monomers happens at rate ( and attachment of 
monomers to polymers at rate ). Furthermore, monomers can bind incorrectly to a polymer at rate )def, 
thereby omitting one species (defect). There is no incorrect dimerization. If the difference between the 
left and the right end of a polymer is 1 (modulo !) the polymer closes to a ring which constitutes an 
absorbing state. The yield measures the number of completed structures (closed rings) relative to the 
maximum number " of perfect rings (completed and without defects). The defect-free yield measures 
the number of perfect rings relative to ". (b) Inhibition cascade that realizes just-in-sequence supply in 
the JIS scenario. In the JIS scenario, the inactive monomers of each species inhibit the activation of the 
subsequent species. This inhibition cascade effectuates that the different species are provided just-in-
sequence for the assembly process along a chosen assembly path. (c) Possible binding reactions of a 
polymer (#, ,) with left end # and right end ,. Species indices are understood modulo !. To the left end 
of the polymer, a monomer of species # − 1 can bind correctly, (#, ,) → (# − 1, ,), with rate / or species 
, − 2 can bind incorrectly, (#, ,) → (# − 2, ,), with rate )def. In the case of incorrect binding, a defect of 
species # − 1 is created. Analogously, to the right end a monomer of species , + 1 can bind correctly, 
(#, ,) → (#, , + 1), or species , + 2 can bind incorrectly. (d) Specification of the parameters for the four 
different assembly scenarios studied in this work. The respective parameter(s) declared as ‘variable’ in 
each scenario will be tuned in order to optimize the (defect-free) yield and the time-efficiency. The 
default parameters which are not declared ‘variable’ are set as follows: 1 = ∞, 4 = 0, ( = ), 6 = 0.  

 

sequential inhibitory feedback by assuming that the activation rate of the subsequent 
species is reduced with respect to the basal value: 

                                                       3! = 3 ∙ 5(7!"#)	.                                             (1) 

The inhibition function 5 with 0 ≤ 5 ≤ 1 depends on the concentration of the inactive 
monomers, 7!"#, of the preceding species " − 1 in such a way that inhibition of species 
" is strong if there is no significant number of active monomers of the preceding species 



available yet; see below for specific choices of the inhibition function. Heuristically, 
this is expected to lead to a ‘just-in-sequence’ assembly process, where the activation 
of the subsequent species starts only when a large fraction of the species just preceding 
in sequence order is already bound; for an illustration see Fig. 2b.      

 For the numerical analysis we choose the inhibition function 5#(7) ∶= <"$%, that 
suppresses activation of a species exponentially with the number 7  of inactive 
preceding monomers. The parameter =, that we will refer to as the inhibition strength, 
can be thought of as describing an inhibition threshold: activation is inhibited if 7 ≫ 7& 

and unhindered if  7 ≪ 7&, where 7& =
#
$. In order to make the system amenable for an 

analytic treatment we will use a (Heaviside) step function 5'(7) ∶= Θ(7& − 7). We will 
show later that in the relevant regime where self-assembly is efficient, the precise form 
of the inhibition function is not important but different inhibition functions lead to 
quantitatively very similar results, suggesting that the results and findings apply in 
general. 
 
Scenarios and observables  
 

We will analyze the model in various limiting cases (called ‘scenarios’) that are 
informative about the respective role of activation, dimerization, inhibitory feedback 
(implementing a ‘just-in-sequence’ supply of constituents) and reversibility of binding, 
regarding the efficiency and fidelity of the self-assembly process. These different 
scenarios are listed in Fig. 2c. The first three scenarios are irreversible and rely on 
different mechanisms to impede nucleation and thereby favor growth of existing 
structures over the initiation of new ones (‘slow nucleation principle’) (Zlotnik, 1999; 
Hagan, 2010; Ke, 2012; Reinhardt, 2014; Jacobs, 2015; Gartner, 2019). This ensures 
that initiated structures can get finished before resources run out (‘depletion trap’) 
(Grant, 2011; Hagan, 2011; Nakagawa, 2018). In the ‘dimerization scenario’, the 
number of nucleation events is restricted by controlling the nucleation rate ( while all 
monomers are active right from the outset (3 = ∞, = = 0) . In contrast, in the 
‘activation scenario’, all species are activated slowly and uniformly with a constant 
rate 3 while the nucleation rate is taken as identical to the growth rate (	( = ), = = 0). 
Slow activation can have a similar effect as slow dimerization in that it restricts the 
number of nucleation events (Lazaro, 2016; Gartner, 2019). Both of these 
implementations of the slow nucleation principle limit early stages of the assembly 
process in a way that does not discriminate between the various species.  As motivated 
in the introduction, the efficiency and fidelity of the assembly process might be 
improved by introducing some element of coordination in the supply of the different 
species. In the ‘Just-In-Sequence scenario’ (JIS-scenario) the different species get 
activated ‘one after the other’ as effectuated by a non-zero inhibition strength = that 
reduces the basal activation rate 3 as detailed above. Finally, in the discussion of the 
time efficiency of assembly processes, we investigate a fourth scenario that is 
distinguished by a finite monomer detachment rate + while all particles are active from 



the outset and nucleation is not disfavored relative to growth (α	=	∞,	( = )). While the 
first three scenarios are irreversible and rely on some mechanism to suppress 
nucleation, this ‘reversible binding’ scenario does not actively prevent nucleation. 
Rather, in a random process bound monomers can detach from some structures and 
attach to others until a sufficient amount of structures has been completed. 

In the following, we perform stochastic simulations for all four scenarios using 
the Gillespie algorithm (Gillespie, 2007), as well as numeric integration of the 
deterministic mean-field equations (chemical rate equations, see SI). We quantify the 
assembly process using three key observables. The yield measures the number of 
completed structures (closed rings), relative to the initial number / of monomers per 
species (that corresponds to the maximum number of perfect rings), irrespective of the 
number of defects. In contrast, the defect-free yield counts only perfect structures, i.e. 
those that are completed and without any defects, again relative to /. While the defect-
free yield is always bounded by 1, the yield can exceed the value of 1 if many defects 
in the structures provide additional resources for further structures to be completed. In 
order to evaluate the effectiveness of an assembly process, we measure its final yield 
and defect-free yield when all resources are consumed and the system has reached its 
final state. Furthermore, in order to quantify the time-efficiency, we define the 
(deterministic) assembly time B(&  as the elapsed time until the (deterministic) yield 
reaches a value of 90%. If the final yield remains smaller than 90% we set B(& = ∞. 
The deterministic assembly time (obtained from integrating the chemical rate 
equations) corresponds to the mean stochastic assembly time if the number of particles 
/ is sufficiently large. We compare the different scenarios with respect to their time 
efficiency by determining for each scenario the minimal deterministic assembly time, 

B(&
min, that can be achieved by optimizing the respective variable parameter(s). 

 

 

Results 
 

We start by discussing the final yield and defect-free yield in the dimerization, 
activation and JIS scenario. In particular, we are interested in how effectively the 
number of defects can be controlled in the different scenarios, and to which extend the 
yield and defect-free yield are affected by stochastic effects. For specificity, we fix the 
defect rate to )def )⁄ = 0.01. 
 
The dimerization scenario. The stochastic simulations show that upon decreasing the 
dimerization rate below a threshold value, the yield increases towards the perfect value 
of 1 (or even slightly larger than 1, if )def is sufficiently large); see Fig. 3a. This is a 
manifestation of the slow nucleation principle: If nucleation is sufficiently retarded, an 
increasing number of structures gets finished (Morozov, 2009; Hagan, 2010; Gartner, 
2019). Furthermore, we find that the defect-free yield is always a constant fraction of 
the yield. It can be estimated by a mean-field argument neglecting fluctuations between  
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Figure 3: Dependence of the yield (drawn line) and defect-free yield (dashed line) on the dimerization 
rate (‘dimerization scenario’, (a)) and activation rate (‘activation scenario’, (b)) for L=20 and /def /⁄ =
0.01. Different particle numbers N are indicated by different colors. (a) Decreasing the dimerization rate 
achieves perfect yield. The defect-free yield is always a constant fraction of the yield as described by the 
mean-field identity in Eq. (2). Varying the initial concentration 9 of monomers or the copy number " 
has an insignificant effect on the final (defect-free) yield. Larger target structure size ! (inset) shifts the 
transition to smaller dimerization rates and reduces the defect-free yield. (b) Decreasing the activation 
rate enhances the yield as well, however, as a result of stochastic effects a perfect yield cannot be 
achieved in general. Also due to stochastic effects, the defect-free yield becomes a non-monotonic 
function of 1, which exhibits a maximum at intermediate activation rates. Both the yield and defect-free 
yield decrease with decreasing number of particles N as stochastic effects become more pronounced. 
While the yield behaves fully deterministic for " ≥ 10!, the defect-free yield shows a significant drop 
still for " = 10".   
 
 
the copy numbers of different species: Assuming that all species are available in equal 
concentrations, the probability that a defect occurs at a given binding site is 
Ddef = 	)def () + )def)⁄ . The probability that a completed structure is perfect (defect-
free), then, equals the probability that in ! − 2 subsequent binding steps no defect 
occurs. Therefore,  
 

                         
defect free yield

yield
= (1 − Ddef),"' ≈ exp	[−(! − 2)Ddef]  ,            (2) 

 
where in the last step we assumed Ddef ≪ 1. As can be inferred from Fig. 3a, the defect-
free yield in the dimerization scenario is well approximated by this mean-field result. 
We attribute this to the fact that for 3 = ∞ the concentration of active monomers is 
typically large and, therefore, fluctuations in the relative copy numbers of the different 
species are negligible. This is no longer the case for the activation scenario, as we will 
see in the next paragraph. Equation (2) states that the number of completed structures 
without defects decreases exponentially with the defect probability Ddef, as well as with 
the structure size !. Therefore, in the dimerization scenario, incorrect binding severely 
limits the correct assembly of large objects. 
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The activation scenario. The activation scenario shows a more intricate behavior. By 
decreasing the activation rate, the yield rises as in the dimerization scenario; see Fig. 
3b. As a consequence of the stochastic yield catastrophe, however, it generally does not 
reach a perfect value of 1 unless / is very large (Gartner, 2019). The defect-free yield 
also initially rises with decreasing activation rate. While with further decreasing 3 the 
yield stays constant, the defect-free yield decreases again to a constant value that 
depends on /. This non-monotonic behavior of the defect-free yield is not captured by 
mean-field theory, Eq. (2); however, it correctly predicts the maximum value of the 
defect-free yield in the limit / → ∞ . In analogy with the term ‘stochastic yield 
catastrophe’, we refer to the drop of the defect-free yield due to defect formation as 
‘stochastic defect catastrophe’. It originates from the large fluctuations in relative copy 
numbers of the different species at low activation rates: if a shortage in supply of one 
species persists long enough, incorrect binding by the wrong building blocks becomes 
more likely as the proper building blocks are not readily available. Accordingly, one 
expects stochastic effects in the defect-free yield if the time scale for incorrect binding 
of an active monomer in the system, ()def0)

"#, is small compared to the time scale for 
activation of a specific species, (3/)"#. The characteristic scale of the activation rate 
that marks the onset of the stochastic defect catastrophe, therefore, equals 
3def	~ )def	0 /⁄ . In systems that achieve a non-zero defect-free yield, this scale is 
typically smaller than the threshold value 3th~)0 !-⁄  below which the deterministic 
yield rises (Gartner, 2019). Hence, the defect-free yield is usually a non-monotonic 
function of 3, taking a maximum in the interval 3def ≤ 3 ≤ 3th. Interestingly, for large 
target sizes ! and nonzero defect rate )def > 0, the yield also becomes a non-monotonic 
function of the activation rate. The reduction of yield for small 3 thereby is caused by 
incorrectly binding particles occupying the regular binding sites of their neighboring 
species, which enhances the effective nucleation rate. As this is only an incidental 
finding, however, we will not go more into detail about this effect causing non-
monotonic yield curves here. 

Summarizing, we find that the error proneness of assembly processes cannot be 
efficiently controlled in neither the dimerization nor the activation scenario. While the 
(defect-free) yield in the dimerization scenario is well described by mean-field theory, 
both the yield and defect-free yield are strongly reduced by stochastic effects in the 
activation scenario with respect to the expected mean-field values. This suggests that 
reduction in yield is a general feature of ‘far-from-equilibrium’ self-assembly processes 
if fluctuations in the relative concentrations of the different species are relevant; this 
might likewise be the case in spatial systems due to diffusion.  
 
The Just-In-Sequence Scenario.  
Next, we investigate the effect of just-in-sequence supply on the effectiveness of the 
assembly process. We first consider a fixed activation rate 3 and discuss how the yield 
depends on the inhibition strength = (Fig. 4a). In the limit = = 0 (activation scenario), 
the values of the yield and defect-free yield depend on /, ! and 3. The stochastic 
simulations show that increasing the inhibition strength initially amplifies stochastic  
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Figure	 4:	 Dependence	 of	 the	 yield	 (drawn	 line)	 and	 defect-free	 yield	 (dashed	 line)	 on	 the	
inhibition	strength	and	activation	rate	(‘JIS	scenario’).	(a)	Main	plot:	Variation	of	the	 inhibition	
strength	 for	 different	 particle	 numbers	 " 	and	 constant	 activation	 rate	 1 = 10#"9/, 	 L =
20	and	/$%& = 0.01.	Increasing	the	inhibition	strength	first	leads	to	a	drop	of	the	yield	and	defect-
free	yield	due	to	stochastic	effects.	Sufficiently	strong	inhibition,	however,	achieves	near	perfect	
yield	 and	 defect-free	 yield	 for	 arbitrary	 particle	 numbers	" .	 Inset:	 Variation	 of	 the	 inhibition	
strength	for	larger	target	structure	size	! = 100	with	fixed	" = 1000	and	different	1.	The	yield	is	
zero	at	q=0	because	1	is	above	the	threshold	value	for	the	activation	scenario	(1thact~10#+9/)	and	
stochastic	effects	suppress	yield.	Increasing	the	inhibition	strength,	however,	leads	to	an	abrupt	
rise	of	 the	 (defect-free)	yield	here	as	well.	 If	 the	activation	 rate	becomes	 too	 large,	 though,	no	
nonzero	yield	can	be	achieved	any	more	by	varying	the	inhibition	strength.	(b)	Variation	of	the	
activation	 rate	 for	 different	 inhibition	 strengths	 q	 and	 constant	L = 100," = 1000	and	/$%& =
0.01.	 The	 (defect-free)	 yield	 increases	 if	 the	 activation	 rate	 is	 reduced	below	a	 threshold	 level	
provided	 inhibition	 is	 strong	 enough.	 Increasing	 the	 inhibition	 strength	 suppresses	 stochastic	
effects	and	leads	to	a	rise	of	the	(defect-free)	yield.	
 
effects with an ensuing decline in the (defect-free) yield. Intuitively, this decline is 
caused by premature activation events if inhibition between species is not strong 
enough. Instead of activation of all species in the right (just-in-sequence) order, 
monomers are activated ‘out-of-sequence’, thereby causing additional, undesirable 
nucleation events. To determine the scale of q on which the yield drop occurs, we 
estimate the number of monomers that are activated ‘out-of-sequence’ (i.e. before the 
preceding species has been activated). Premature activation of inactive monomers 

obeys ,
,-7! = −3!

min7! , where 3!
min ≔ 3!

	(7!"# = 0) = 3<"$2  is the maximally 

inhibited, premature activation rate. Integrated over the time span T of the assembly 

process this results in 0(1 − <"3.
min4)	 monomers per species being activated 

prematurely (see Fig 5).  The time span T of the assembly process scales as 

B~!'3"# (see SI). Hence, for 3!
minB~<"$2!' ≳ 1  (i.e. =0 ≲ 2	ln(!)), a substantial 

concentration of monomers gets activated ‘out-of-sequence’. These monomers cannot 
be used in the regular assembly path and may instead facilitate nucleation of new 
structures and, correspondingly, resource depletion. In contrast, for larger = this effect 
is negligible. Therefore, upon further increasing =, both the yield and defect-free yield 
are observed to rise again and reach values close to 1. This shows that temporal supply  
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Figure 5: Dynamics in the JIS scenario. (a) The inhibition cascade (cf. Fig 3) causes travelling wave 
front and travelling pulse-like solutions for the concentrations of inactive monomers (@, blue), active 
monomers (A, green) and polymers with a determined right end (B, orange) after coarse-graining in 
species space. The inactive monomers get activated species after species as soon as the concentration of 
inactive monomers of the previous species has dropped to ~1/4. The activated monomers bind to the 
right ends of the polymers, thereby translating the B field to higher species indices. Premature or ‘out-
of-sequence’ activation ahead of the wave front occurs if inhibition is insufficiently strong. The 
stationary value of B after the wave has passed is identical to the dimerization probability 6(D, E) per 
assembly step (cf. Eq (4)) and indicatory of the final yield (cf. Eq (5)). (b) Time dependence of the 
concentrations of inactive monomers (@, blue) and polymers with a determined right end (B, orange) for 
four consecutive species. Species indices are counted from 0 to 3 for consistency with the notation in the 
analytic section. The upper panel shows the trajectories in the deterministic simulation with 1/4 =
0.12	9 , 1 = 10#/9/  and inhibition function F0 . The lower panel shows the corresponding 
approximations for @ and B, resulting from replacing H1 with H2, which are used in the mathematical 
analysis to derive A(t) (cf. SI). The approximated @1 are simple exponentials that start to decay when @1#0 
has dropped to 1 4⁄  and the B1  are approximated as B1 ≈ @1#0 − @1 . To derive the analytic results, we 
study the kinetics of the 1st assembly step indicated in red. 
 
regulation, effectuated by a finite inhibition strength, can mitigate stochastic effects and 
greatly enhance the fidelity of the assembly process compared to the activation and 
dimerization scenario. 

Besides inhibition of premature activation via the inhibition strength =	also	the 
magnitude of the basal activation rate 3 has an important effect on the final yield. 
Figure 4b shows the yield and defect-free yield in dependence of 3  for different 
inhibition strengths = and ! = 100. We find that nonzero yield is obtained only if the 

activation rate is below a threshold value 3th
JIS, independently of the value of q (cf. Fig. 

4b). The significance of the basal activation rate 3 for the yield is explained as follows: 
Considerable activation of a given species " starts, roughly, when the inactive monomer 
concentration of the preceding species " − 1 drops below the inhibition threshold 7& =
1/= . Therefore, there is always a certain temporal overlap in the activation of 
consecutive species; for an illustration see Fig. 5. Decreasing 3	 reduces the 
concentration of active monomers, similar as in the activation scenario, and thereby 



favors attachment of the monomers to already existing structures over nucleation of 
new structures. In contrast to the activation scenario, however, the impact of stochastic 

effects for 3 < 3th
JIS can be controlled in the JIS scenario by increasing the inhibition 

strength. Consequently, if q is large enough, near perfect yield and defect-free yield are 

achieved for 3 ≪ 3th
JIS even for small particle numbers. Furthermore, we find 3th

JIS~!"# 
(see SI) while the threshold rate in the activation scenario scales as 3th

act~!"- (Gartner, 
2019). This difference in the scaling exponent has important consequences regarding 
time efficiency, as we will see below. 

 
Indeed, the precise implementation of the inhibition mechanism is not crucial 

for these findings. To understand this robustness property, it is insightful to think of the 
assembly process as a dynamic process in species space, where the concentrations of 
inactive, active, and bound monomers are considered as time-dependent functions of 
the species index. The ensuing coarse-grained dynamics of the concentration profiles 
then describes travelling wave fronts and pulses (see Fig. 5). Intriguingly, these wave 
fronts are generally very steep for strictly sequential inhibition cascades, irrespective 
of the details of the inhibition mechanism. This observation can be exploited by 
approximating the inhibition function 5#  by a step function 5'(7) ∶= Θ(1 =⁄ − 7) , 
which enables one to obtain closed mathematical expressions for several key quantities 
of the assembly process. In the following, we discuss these results on an intuitive basis; 
for the formal calculations we refer the reader to the SI. Intuitively, the assembly 
process works well only if it is unlikely for two neighboring species " and " + 1 to 
dimerize before species "  attaches to the growing polymer [1… " − 1] . The 
dimerization probability Ddim  of two subsequent monomers grows linearly with the 
number of possible dimerization partners for a monomer. To lowest order, the 
momentary monomer concentration is linear in the basal activation rate and hence, one 
expects Ddim~3. A detailed calculation (see SI) indeed shows 

 

           	Ddim =	
2
34	ln X

3
52Y .                                            (3) 

Such a dimerization event could occur in each step of the assembly process. Hence, the 
yield is equal to the probability that no dimerization events occurs in the L-2 subsequent 
growth steps between the dimer and the target structure: 
 

              yield = (1−	Ddim),"'.                                         (4)    

Likewise, the defect-free yield is the fraction of the yield that has not acquired any 
defect in the relevant L-3 assembly steps: 
 

               
defect-free yield

yield
= (1 − Ddef)

,"-,           (5) 

with the defect probability Ddef per assembly step given by 
 

       Ddef =
5def

($2"#)5	.	                       (6) 

The defect probability is proportional to the ratio of the per-capita rates )def )⁄  weighted 
with the ratio between defective and regular binding sites for a monomer: When 



activation of species " + 1  begins, roughly 0 − 1/=  monomers of species "  have 
already been activated and bound. Hence, a monomer of species " + 1  has 
approximately 0 − 1/=  possibilities to bind correctly versus the remaining 1/q 

possibilities to bind incorrectly. The corresponding ratio, 
6 5⁄

(2"6 5⁄ ) =
#

($2"#), accounts for 

the additional factor in Equation (6). 
Furthermore, the time of a single assembly step equals the time it takes for the 

concentration of inactive monomers of a given species to drop from C to 1/q. The total 
assembly time bears an additional factor of ! , summing the time of all individual 
assembly steps:                         

 B(& =
8
2 ln($2).                            (7) 

Thus, we find that the dimerization probability must be controlled by decreasing the 
activation rate since variation of the inhibition strength only has a small effect on Ddim, 
cf. Eq. (3). Decreasing the activation rate, however, as a side effect increases the 
assembly time according to Eq. (7). Correspondingly, the minimal possible assembly 
time to achieve 90% yield is determined by solving Eqs. (3) and (4) for 3 and using the 
result in Eq. (7). Approximately, we find for large !: 
 

                  	B(&,JIS
min ~

,9
52.                        (8) 

Hence, the minimal assembly time in the JIS scenario increases quadratically with the 
size of the target structure. In contrast, the defect probability can be efficiently 
suppressed by increasing the inhibition strength =, while the assembly time depends 
only logarithmically on =. This implies that in an effective implementation of the JIS 
scenario the inhibition strength should be maximized. 

In Figures S3 - S5 of the SI we compare these analytic results, Eqs.(3)-(7), with 
numeric simulations of the original process. We find that the analytic expressions are 
indeed very accurate for sufficiently small Z  and large enough = . Therefore, we 
conclude that the approximations done in the analysis are justified in the regime where 
self-assembly is effective. The fact that with rather crude approximations an accurate 
description of the system can be achieved suggests that many model details, such as the 
exact implementation of the inhibition mechanism and the precise form of the inhibition 
function, are irrelevant for the successful realization of a JIS supply strategy. 
 
The optimized JIS scenario. According to Eq. (7), the assembly time is mainly 
constrained by the basal activation rate whereas inhibition affects the assembly time 
only logarithmically. This raises the question whether we can trade slow activation 
(small 3) for large inhibition = in order to improve the time efficiency. In the previous 
section we found that a small basal activation rate was necessary to keep the 
concentration of active monomers low and thus prevent nucleation between 
consecutive species, which are activated in overlapping time intervals (see Fig. 5). 
Intuitively, we expect that increasing the inhibition strength and assuming that both 
inactive and active monomers inhibit activation of the next species will make slow 

activation obsolete (3th
JIS → ∞) and allow to regulate the supply solely via inhibition. In 



a real-world system, this may hardly be realized via direct inhibitory feedback, because 
inhibition might need to be unrealistically strong. A supply mechanism that does not 
rely on feedback but activates the different species at fixed time intervals, though, could 
achieve a similar effect. In the framework of our model, we describe this case with an 
inhibition function 5-  similar to 5'  that additionally takes inhibition by the active 
monomers into account:  

                  5-(7!"#, [!"#) ∶= Θ \
6
5 − (7!"# + [!"#)] .                     (9) 

We find that the inhibition strength must fulfill =0 ≥ !/ln	(_"#), where _ is the yield 
to be realized with	3 → ∞ (see SI). The minimal total assembly time, then, is obtained 
as 

                 B9min = 89
43	ln;<=6>.                                       (10) 

Surprisingly, the exponent 2 that describes the scaling of the minimal assembly time 
with the target size is robust and cannot be altered by such modifications to the feedback 
(cf. Eq. (8)). This is because binding of the monomers, which now constitutes the time 
constraining process of an individual assembly step, leads to the same scaling behavior 
(see SI). However, we will see in the next paragraph that the minimal assembly time is 
reduced by a constant (L-independent) factor as a consequence of this kind of feedback. 
 

A further possibility to increase the time efficiency in the JIS scenario consists 
in choosing non-stoichiometric concentrations for the different species (Murugan, 
2015). Nonstoichiometric concentrations allow to compensate the resource 
consumption caused by undesired nucleation events more effectively and thereby 
contribute to enhance the time efficiency (see SI). Specifically, by choosing an initial 
concentration profile that, in our model, increases linearly with the species index 
reduces the minimal assembly time by roughly 50%. In the following, we refer to the 
JIS scenario with improved supply coordination (strong inhibition in combination with 
an inhibition function like 5-) and optimized resource distribution as optimized JIS 
scenario. 
 
Time Efficiency 
 

In a biological context, the relevant question might not so much concern the 
final yield that can be achieved after arbitrarily long time but rather the time scale at 
which a sufficiently high yield in assembly product can be achieved. Therefore, we now 
compare the different scenarios with respect to their time-efficiency. Beside the three 
irreversible scenarios discussed above we also evaluate the time efficiency of the 
‘reversible binding’ scenario that has a variable detachment rate + . We restrict the 
analysis to a discussion of the deterministic assembly time (that is obtained by 
integrating the ensuing set of ordinary differential equations, see SI). The deterministic 
assembly time corresponds to the average stochastic assembly time provided the 
particle number / is large enough so that stochastic effects are negligible (primarily 
concerning the activation scenario). For convenience we set )def = 0, as a small defect  



	
Figure 6: Time Efficiency. (a) Dependence of the minimal assembly time to achieve 90% yield on 
the size of the target structure for the different scenarios. The assembly time is minimized using a 
constrained optimization algorithm on the variable parameter of the respective scenario. The minimal 
assembly time exhibits a power law dependence on the target structure size. The exponents are integer 
numbers that characterize the different scenarios. The largest exponent of 4 is found for the ‘scenario of 
reversible binding’ where the assembly time is minimized over a variable detachment rate 6 . The 
‘activation scenario’ is characterized by an exponent of 3. The ‘JIS scenario’ and ‘optimized JIS scenario’ 
(using maximally strong inhibition and an optimized resource distribution) both scale with ! to the power 
of 2, however, the ‘optimized JIS scenario’ exhibits a smaller prefactor. The dimerization scenario scales 
with ! to the power 1 and is the most time-efficient of all four scenarios. (b) The table summarizes the 
exponents for the minimal assembly time and the optimal parameter values that achieve the 
minimization. All exponents are derived analytically in the SI. 

 
rate would only have a negligible effect on the assembly time. In each scenario, we 
determine the minimal time span B(&

min  to obtain a yield of 90% by optimizing the 
value(s) of the respective variable parameter(s), cf. Fig.2. 

The basic time scale in all scenarios is set by the reactive time scale	(0))"#. 
Hence, the minimal assembly time is proportional to 	(0))"# times a dimensionless 
factor s̀cenario(!) that is scenario-specific and depends only on the target structure size 

 

              B(&
min,scenario

= (0))"# s̀cenario(!) .                             (11) 

Consequently, in each scenario, the absolute assembly time can be reduced by 
increasing the initial concentration or the reaction rate. In order to determine the target 
size dependence :̀;<=>?@A(!)	of B(&

min,	 an optimization algorithm is used to minimize 
the assembly time B(&  for each scenario in the deterministic simulation under the 
constraint that the yield is larger or equal 90%. Figure 6 shows the result of this 
minimization, corresponding to the minimal assembly time in units of the typical 
reaction time, B(&

min[(0))"#], as a function of the target size ! for all four scenarios on 
a double logarithmic scale. For each scenario, we find a power-law dependence of the 
minimal assembly time on L: s̀cenario(!)~!

B(scenario) . Interestingly, the exponents c 
that characterize the target size dependence in the four scenarios are the integer 
numbers {1,2,3,4} . Hence, a clear hierarchy in time-efficiency at large !  can be 
identified: The dimerization scenario is the most time efficient scenario at large target 
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sizes exhibiting the exponent c(dimerization) = 1. Controlling the dimerization rate is 
efficient as it allows to initiate just as many structures as needed, each of which can be 
completed very quickly since all constituents are available in active form. The second 
most time efficient scenario is the optimized JIS scenario with c(JIS) = 2. The JIS 
scenario also exhibits an exponent of 2, but has a larger prefactor compared to its 
optimized version. The activation scenario has an exponent of c(activation) = 3 
because for large target structures uncoordinated activation is less time efficient than 
coordinated activation in the JIS scenario. Finally, for the scenario of reversible binding 
we find c(reversible binding) = 4. Here, nucleation events are not a priori prevented 
but initiated structures can be degraded again in order to free the resources for other 
structures to grow and get finished. Since structure degradation due to reversibility is a 
random process, the scenario of reversible binding is very time inefficient at large !. 
For small structure sizes, on the other hand, reversible binding is quite effective and 
may even outperform the other scenarios in terms of time efficiency. The exponents 
characterizing the target size dependence of the minimal assembly time in the different 
scenarios together with the scaling of the parameter values that minimize B(&  are 
summarized in Fig. 6b. All exponents can also be derived analytically (see SI). 
Importantly, the exponents do not depend on the value of the yield that we choose in 
the definition of the assembly time, as long as this value is smaller than 100% (e.g. B(C

min 

and BD&
min would exhibit the same exponents). 

 
 

Conclusion 
 

In this work we discussed four different scenarios that effectuate the self-
assembly of finite-sized heterogeneous target structures. These scenarios exemplify 
two principally different control strategies by which the assembly processes are 
regulated. On the one hand, control of the assembly process can be achieved on a 
molecular level by optimizing the molecular binding properties of the constituents. 
Alternatively, we showed that control of the assembly process can be attained on a 
systemic level via supply regulation. This suggests to distinguish between ‘molecular 
control strategies’ and ‘systemic control strategies’ in the context of self-assembly. The 
dimerization scenario corresponds to a molecular control strategy that relies on 
allostery, a sophisticated molecular mechanism, to avoid kinetic trapping (Caspar, 
1980; Packinathan, 2010). Allosteric control enables cooperative binding effects and 
thereby allows to reduce the ratio between the dimerization and the growth rate. 
Consequently, the dimerization scenario is the most time efficient of all four scenarios. 
Reversible binding also exemplifies a molecular control strategy since it demands 
optimized bond strengths that are sufficiently stable but at the same time reversible on 
the relevant time scale (Ceres,2002; Rapaport, 2008; Grant, 2011, Hagan 2014). This 
scenario is time-efficient for small structure sizes but inefficient at large sizes. Besides 
the avoidance of kinetic traps, assembly errors represent a major threat for the assembly 



product. Hence, a maximization of the binding specificity is vital in these scenarios in 
order to minimize the molecular rate for errors and defects.  

As an alternative to a molecular control strategy, we found that the assembly 
process can also be controlled on a systemic level via supply regulation. The activation 
scenario constitutes a first step in this direction as it avoids kinetic traps by slow 
provisioning of the constituents. However, our analysis shows that – due to randomness 
in the order of supply – the activation scenario is prone to unfavorable stochastic effects 
that may manifest themselves as stochastic yield and defect catastrophes. To overcome 
these deficiencies, we have proposed a just-in-sequence supply strategy, where, in 
addition, the supply sequence is regulated. We find that this leads to a strong attenuation 
of stochastic effects as well as an effective reduction of the error frequency, even in 
case of a large molecular error rate. Furthermore, for large target structures, the time 
efficiency can be significantly increased in comparison to the activation scenario or 
reversible-binding scenario. 

A purely molecular control strategy requires optimized molecular properties 
which might compromise the functionality of the structure or pose severe restrictions 
on the design of the constituents and the structure. For example, in assembly processes 
with reversible bindings, the requirement of reversibility demands optimized bond 
strengths rather than maximally stable bonds. A reduced molecular bond strength, 
however, might diminish the stability of the structure as a whole – unless a special 
design of the structure that realizes a high number of intermolecular bonds establishes 
collective stability. Hence, in this case, the molecular control strategy relying on 
reversibility of binding either compromises the functionality of the structure (its 
stability) or restricts its design by demanding high intermolecular connectivity. In 
contrast, a just-in-sequence supply strategy can be realized without the need to modify 
the components and thereby compromise the functionality of the structure. For 
example, one can envision an experimental protocol in which the different constituent 
species are given into solution one-by-one after experimentally indicated time intervals. 
JIS supply strategies might therefore constitute a viable way to realize large structures 
in irreversible artificial self-assembly. Furthermore, evidence have amounted in recent 
years that in the assembly of complex cellular organelles, such as the bacterial 
flagellum, temporal gene expression is coupled to specific stages of the assembly 
process (Chevance, 2008). This might hint at a role of JIS supply strategies also in 
cellular self-assembly processes.  

The two control strategies on the molecular and on the systemic level are, of 
course, not mutually exclusive but can be combined to enhance the efficiency of self-
assembly. In this sense, molecular control mechanisms and supply regulation can be 
regarded as ‘orthogonal’ strategies, that can synergize but still be implemented 
independently from each other. Such redundant, independent control mechanisms can 
enhance robustness to mutations and are thus often considered a promoting factor for 
evolution. Hence, it might be thinkable that it was the interplay between molecular and 
systemic control strategies that has enabled the evolution of such complex machineries 
and sophisticated assembly processes that we observe in nature. 
 



Acknowledgements. We would like to thank Patrick Wilke and Philipp Geiger for useful 
discussions. This research was funded via the Excellence Cluster “ORIGINS” by the 
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s 
Excellence Strategy – EXC-2094 – 390783311. FG and IRG were supported by a DFG 
fellowship through the Graduate School of Quantitative Biosciences Munich (QBM). 
 
 
References 

1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 
Wilson, J., and Hunt, T. Molecular Biology of the Cell. (Garland Science, 2015). 

2. Baek, K., Hwang, I., Roy, I., Shetty, D. & Kim, K. Self-Assembly of Nanostructured 
Materials through Irreversible Covalent Bond Formation. Acc. Chem. Res. 48, 2221–
2229 (2015). 

3. Cademartiri, L. & Bishop, K. J. M. Programmable self-assembly. Nat. Mater. 14, 2–9 
(2015). 

4. Caspar, D. L. Movement and self-control in protein assemblies. Quasi-equivalence 
revisited. Biophys. J. 32, 103–138 (1980). 

5. Ceres, P. & Zlotnick, A. Weak protein-protein interactions are sufficient to drive 
assembly of hepatitis B virus capsids. Biochemistry 41, 11525–11531 (2002). 

6. Chen, C., Kao, C. C. & Dragnea, B. Self-assembly of brome mosaic virus capsids: 
Insights from shorter time-scale experiments. J. Phys. Chem. A 112, 9405–9412 
(2008). 

7. Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial 
macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). 

8. D’Orsogna, M. R., Zhao, B., Berenji, B. & Chou, T. Combinatoric analysis of 
heterogeneous stochastic self-assembly. J. Chem. Phys. 139, (2013). 

9. Endres, D. & Zlotnick, A. Model-Based Analysis of Assembly Kinetics for Virus 
Capsids or Other Spherical Polymers. Biophys. J. 83, 1217–1230 (2002). 

10. Gartner, F. M., Graf, I. R., Wilke, P., Geiger, P. M. & Frey, E. Stochastic Yield 
Catastrophes and Robustness in Self-Assembly. bioRxiv 660340 (2019) 
doi:10.1101/660340. 

11. Gillespie, D. T. Stochastic Simulation of Chemical Kinetics. Annu. Rev. Phys. Chem. 
58, 35–55 (2007). 

12. Grant, J., Jack, R. L. & Whitelam, S. Analyzing mechanisms and microscopic 
reversibility of self-assembly. J. Chem. Phys. 135, (2011). 



13. Hagan, M. F. Modeling Viral Capsid Assembly. Adv. Chem. Phys. 155, 1–68 (2014). 

14. Hagan, M. F. & Elrad, O. M. Understanding the Concentration Dependence of Viral 
Capsid Assembly Kinetics—the Origin of the Lag Time and Identifying the Critical 
Nucleus Size. Biophys. J. 98, 1065–1074 (2010). 

15. Hagan, M. F., Elrad, O. M. & Jack, R. L. Mechanisms of kinetic trapping in self-
assembly and phase transformation. J. Chem. Phys. 135, (2011). 

16. Hedges, L. O., Mannige, R. V. & Whitelam, S. Growth of equilibrium structures built 
from a large number of distinct component types. Soft Matter 10, 6404–6416 (2014). 

17. Jacobs, W. M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly 
pathways for complex multicomponent structures. Proc. Natl. Acad. Sci. U. S. A. 112, 
6313–6318 (2015). 

18. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-
assembled from DNA bricks. Science (80-. ). 338, 1177–1183 (2012). 

19. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of 
reversible and irreversible nanoparticle suprastructures. Proc. Natl. Acad. Sci. U. S. A. 
104, 10305–10309 (2007). 

20. Lazaro, G. R. & Hagan, M. F. Allosteric Control of Icosahedral Capsid Assembly. J. 
Phys. Chem. B 120, 6306–6318 (2016). 

21. Linko, V. & Dietz, H. The enabled state of DNA nanotechnology. Curr. Opin. 
Biotechnol. 24, 555–561 (2013). 

22. Macnab, R. M. Type III flagellar protein export and flagellar assembly. Biochim. 
Biophys. Acta - Mol. Cell Res. 1694, 207–217 (2004). 

23. Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self-assembly in nature: 
using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. 
Rev. Nanomedicine Nanobiotechnology 5, 582–612 (2013). 

24. Morozov, A. Y., Bruinsma, R. F. & Rudnick, J. Assembly of viruses and the pseudo-
law of mass action. J. Chem. Phys. 131, (2009). 

25. Murugan, A., Zou, J. & Brenner, M. P. Undesired usage and the robust self-assembly 
of heterogeneous structures. Nat. Commun. 6, 6203 (2015). 

26. Nakagawa, M., Kai, S., Kojima, T. & Hiraoka, S. Energy-Landscape-Independent 
Kinetic Trap of an Incomplete Cage in the Self-Assembly of a Pd 2 L 4 Cage. Chem. - 
A Eur. J. 24, 8804–8808 (2018). 

27. Nerurkar, P. et al. Eukaryotic Ribosome Assembly and Nuclear Export. Int. Rev. Cell 
Mol. Biol. 319, 107–140 (2015). 



28. Packianathan, C., Katen, S. P., Dann, C. E. & Zlotnick, A. Conformational Changes in 
the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus 
Assembly. J. Virol. 84, 1607–1615 (2010). 

29. Peña, C., Hurt, E. & Panse, V. G. Eukaryotic ribosome assembly, transport and quality 
control. Nat. Struct. Mol. Biol. 24, 689–699 (2017). 

30. Rapaport, D. C. Role of reversibility in viral capsid growth: A paradigm for self-
assembly. Phys. Rev. Lett. 101, 1–4 (2008). 

31. Reinhardt, A. & Frenkel, D. Numerical evidence for nucleated self-assembly of DNA 
brick structures. Phys. Rev. Lett. 112, 1–5 (2014). 

32. Roser, C. Just in Sequence | AllAboutLean.com. https://www.allaboutlean.com/just-
in-sequence-definition/ (2017). 

33. Vonderviszt, F. & Namba, K. Structure, Function and Assembly of Flagellar Axial 
Proteins. (2013). 

34. Werner, S., Kellner, M., Schenk, E. & Weigert, G. Just-in-sequence material supply—
a simulation based solution in electronics production. Robot. Comput. Integr. Manuf. 
19, 107–111 (2003). 

35. Whitelam, S. Hierarchical assembly may be a way to make large information-rich 
structures. Soft Matter 11, 8225–8235 (2015). 

36. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and 
nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 
1312–9 (1991). 

37. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science (80-. ). 295, 
2418–2421 (2002). 

38. Zhang, S. Molecular Self-assembly. Encycl. Mater. Sci. Technol. 5822–5828 (2001) 
doi:10.1016/B0-08-043152-6/01012-3. 

39. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. 
Biotechnol. 21, 1171–1178 (2003). 



Supplementary Information for

”Controlling fidelity and time-e�ciency in self-assembly”

Florian M. Gartner, Isabella R. Graf and Erwin Frey

(Dated: December 28, 2021)

1



CONTENTS

A. Master equation and chemical rate equations 3
B. Reduction in the case q = 0 (activation, dimerization and reversible binding

scenario) 4
C. Continuity approximation for q=0 5
D. Reduction in the case q > 0 (Jis scenario) 9
E. Continuity approximation and traveling wave ansatz for q > 0 10

Derivation of the wave speed (continuity approach) 12
F. Steep-front-approximation (2-species-approximation) for q > 0 15

References 23

2



We discuss the stochastic Master equations that have been simulated by Gillespie’s al-
gorithm and derive the chemical rate equations (deterministic/mean-field equations) for the
full self-assembly system. Furthermore, we outline the calculations that led to the analytic
results presented in the main text.

A. Master equation and chemical rate equations

We start with the general Master equation and derive the chemical rate equations
(deterministic/mean-field equations) for the self-assembly system. We will not show the
full Master equation here but instead discuss the system that describes the evolution of
the first moments. To this end, we denote by ns

`(t) the number of polymers of size ` and
species s that are present in the system at time t, where 2  ` < L and 1  s  S. The
species of a polymer is defined by the species of the respective monomer at its right end.
Furthermore, ns

0 and ns
1 denote the number of inactive and active monomers of species s,

respectively, and nL the number of complete rings. In the following, species indices are
always assumed to be taken modulo L in case they lie outside the range 1  s  L. We
denote the dimerization rate of two monomers by µ and the rate for binding of a monomer
to a polymer by ⌫. Furthermore, � denotes the rate for detachment of a monomer from the
end of a polymer. Finally, ↵s = ↵H(ns�1

0 ) is the activation rate for a monomer of species
s, where ↵ is the basal activation rate and H(ns�1

0 ) := e�qns�1
0 (1��s1) the inhibition function,

which implements inhibition by the left neighbouring species except for s = 1. By h...i we
indicate (ensemble) averages. The system governing the evolution of the first moments (the
averages) of the numbers {ns

`} is then given by:

d

dt
hns

0i = �↵ hH(ns�1
0 )ns

0i , (1a)

d

dt
hns

1i = ↵ hH(ns�1
0 )ns

0i � µ
�
hns

1n
s+1
1 i+ hns

1n
s�1
1 i

�
� ⌫

L�1X

`=2

�
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1n
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` i
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The first equation describes loss of inactive particles due to activation. Eq. (1b) gives
the temporal change of the number of active monomers that is governed by the following
processes: activation of inactive monomers, dimerization of active monomers at rate µ, cor-
rect and incorrect binding of active monomers to the left and to the right end of existing
polymers at rate ⌫ and ⌫def, respectively, and detachment of monomers from the left and
right end of polymers with rate �.
Equations (1c) and (1d) describe the dynamics of dimers and larger polymers of size 3  ` <
L, respectively. The terms account for dimerization of active monomers (only in Eq (1c)) as
well as all possible kinds of reactions of polymers with active monomers along with detach-
ment of monomers from polymers. Note that a polymer of size ` � 3 can grow by attaching
a monomer to its left or to its right end whereas the formation of a dimer of a specific species
is only possible via one reaction pathway (dimerization reaction). The indicator function
1{`L�2} in Eq. (1d) (which equals 1 if the condition `  L� 2 is satisfied and 0 otherwise)
excludes source terms that would account for detachment from completed rings, which we
always assume as stable. Finally, the complete ring structures form an absorbing state and,
therefore, include only the respective gain terms (cf. Eq (1e)).
We simulated the Master equation underlying Eq. (1) stochastically using Gillespie’s algo-
rithm and in the simulation additionally kept track of the number of defects that a polymer
has acquired.
For su�ciently large particle copy numbers N , correlations between the particle numbers
{ns

`} in Eq. (1) can be neglected and the two-point correlator can be approximated as the
product of the corresponding mean values (mean-field approximation):

hns
in

k
j i = hns

i ihnk
j i 8s, k (2)

Applying this to Eq. (1) and defining the concentrations cs` :=
hns

`i
NAV , where V is the reac-

tion volume and NA is Avogadro’s constant, we arrive at the (deterministic) chemical rate
equations for the concentrations {cs`}.
In order to further simplify the analysis, we exploit the symmetry of the system and take
into account the nature of the dynamical processes involved. To this end, as we will explain
in the following, we can discard either the species index (if q = 0) or the length index (if
q > 0) and thereby reduce the e↵ective number of degrees of freedom. First we discuss the
case q = 0.

B. Reduction in the case q = 0 (activation, dimerization and reversible binding

scenario)

When inhibition is absent (q = 0), all species have equivalent properties (there is no
distinct species). In fact, the term (1� �s1) in the inhibition function is the only term that
explicitly depends on the species index in Eq. (1) if q > 0. For q = 0, however, the system
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is invariant under relabelling the upper index and for the expectation values it consequently
holds

hns
`i = hnk

` i := hn`i 8s, k (3)

This symmetry is relevant for the activation, dimerization and reversible binding scenario
where q = 0. By discarding the species index, the number of degrees of freedom in these
scenarios can be reduced from L2+1 to L+1. Mathematically, the heterogeneous assembly
process thereby decouples into L identical and independent homogeneous assembly processes
in the deterministic limit. The corresponding homogeneous system is described by the
following set of equations that is obtained from Eq. (1) by applying (2), (3) and the definition
of the {c`}. The quantities {c`} thereby describe the concentrations of structures of size `
of any species:

d

dt
c0 = �↵ c0 , (4a)

d

dt
c1 = ↵ c0 � 2µc21 + 2 (�⌫c1 � ⌫defc1 + �)

L�1X

`=2

c` , (4b)

d

dt
c2 = µ c21 � 2⌫ c1c2 � 2⌫def c1c2 � � c2 , (4c)

d

dt
c` = 2⌫c1 (c`�1 � c`) + 2⌫defc1 (c`�2 � c`) + 2�

�
c`+11{`L�2} � c`

�
, (4d)

d

dt
cL = 2⌫ c1cL�1 + 2⌫defc1cL�2 . (4e)

The rate constants ⌫` in Eq. (4) and (1) di↵er by a factor of V . For convenience, however,
we use the same symbol in both cases. The rate constants ⌫` in Eq. (4) can be interpreted
in the usual units [ liter

mol sec ]. In the last equation we omitted a factor of L that should be
present according to Eq. (1) but is left out here because we only consider the contribution
to cL per species.
Note that this dynamical system describes an equivalent homogeneous self-assembly process,
i.e. one where the structures are assembled from identical particles (cf. [1] ). By integrating
Eq. (4) numerically, the deterministic self-assembly system can be simulated e�ciently. We
used this approach to determine the minimal assembly time in dependence of L for the
activation, dimerization and reversible binding scenario.

C. Continuity approximation for q=0

The system for q = 0 can be further simplified by a continuity approximation in which
the ODE system is written as a partial di↵erential equation. A similar approach was used
previously in [1–3]. To this end, we approximate the index ` 2 {2, 3, . . . , L} indicating the
length of the polymer as a continuous variable x 2 [2, L] and define c(x= `) := c`. By
A := c1 we denote the concentration of active monomers in the following to emphasize their
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special role. Formally expanding the terms on the right-hand side of Eq. (4d) in a Taylor
series up to second order,

c(`± 1) = c(`)± @xc(`) +
1

2
@2
xc(`) , (5)

c(`� 2) = c(`)� 2@xc(`) + @2
xc(`) , (6)

one arrives at the following advection-di↵usion equation

@tc(x) = [2� � 2A(⌫ + 2⌫def)] @xc(x) + [� + A(⌫ + 2⌫def)] @
2
xc(x) . (7)

Note that both the advection and the di↵usion coe�cient depend on the concentration A
of active monomers. Equation (7) can be written in the form of a continuity equation
@tc(x)= � @xJ(x) with flux J = [2� � 2A(⌫ + 2⌫def)] c� [� + A(⌫ + 2⌫def)] @xc. The flux at
the left boundary x=2 equals the influx of polymers due to dimerization of free monomers
J(2, t)=µA2. This enforces a Robin boundary condition at x=2

[2� � 2A(⌫ + 2⌫def)] c(2)� [� + A(⌫ + 2⌫def)] @xc(2) = µA2 . (8)

At x=L we set an absorbing boundary c(L, t)= 0, so that completed structures are removed
from the system. The time evolution of the concentration of active monomers is given by

@tA = ↵Ce�↵t � 2µA2 � 2A(⌫ + ⌫def)

LZ

2

c(x, t) dx+ 2�

2

42c(2) +
LZ

3

c(x, t) dx

3

5 . (9)

The terms on the right-hand side account for activation of inactive particles, dimerization,
binding of active particles to polymers (polymerization) and detachment of monomers.

Qualitatively, Eq. (7) describes a profile that emerges at x=2 from the boundary condi-
tion Eq. (8), moves to the right with time-dependent velocity [2� � 2A(⌫ + 2⌫def)] due to the
advection term, and broadens with a time-dependent di↵usion coe�cient [� + A(⌫ + 2⌫def)].
Assuming A(t) is known, the full solution of Eqs. (7) and (8) can be constructed, as we
show explicitly in [1]. Here, however, we are mainly interested the scaling exponents that
describe the dependence of the minimal assembly time and the control parameters on the
structure size L. For the reversible binding scenario, the analysis has been performed in [4]
by using a first passage time approach to the random walk process described by Eq. (7).
The exponent � = 4 for the structure size dependence of the minimal assembly time in the
reversible binding scenario could thereby be confirmed analytically.
Also for the activation and dimerization scenario, the exponent � can be derived analyt-
ically. This is done in the easiest way by deriving the scaling exponent of the threshold
rate for the onset of non-zero yield. It can be verified that in the limit of large structure
sizes L, the threshold activation or dimerization rate scales identically as the optimal acti-
vation or dimerization rate that minimizes the assembly time [4]. Deriving the scaling of the
threshold activation or dimerization rate has the advantage that the outflux of structures

6



through the absorbing boundary can be neglected and therefore the system can be strongly
simplified. We have derived scaling laws for the threshold dimerization and activation rate
previously [1], but for the convenience of the reader we will reprint the essential steps of
the analysis here. To this end, we set � = 0 in the following and we neglect the error rate
⌫def against ⌫. Then, the total advectively and di↵usively travelled distance of the fore-

most tip of the concentration profile according to Eq. (7) is given by dadv = 2⌫
1R
0

A(t)dt

and ddi↵ =

s
2⌫

1R
0

A(t)dt, respectively. Yield production starts as soon as the density wave

reaches the absorbing boundary at x=L. Hence, in order to obtain non-zero yield, it must
hold

dadv + ddi↵ � L� 2 . (10)

As condition for the onset, we thus obtain

2⌫

1Z

0

A(t)dt
!
=

1

4

⇣p
1 + 4(L� 2)� 1

⌘2
⇡ L�

p
L , (11)

where the last approximation is valid for large L.
In order to obtain

R1
0 A(t)dt, we derive an e↵ective two-component system that governs

the evolution of A(t). To this end, we denote the total number of polymers in Eq. (9) by
B(t) :=

R1
2 c(x, t) dx (as long as yield is zero the upper boundary is irrelevant and we can

consider L = 1). Eq. (9) then reads

d

dt
A = ↵Ce�↵t � 2µA2 � 2⌫A B , (12)

and the dynamics of B is determined from the boundary condition, Eq. (8)

d

dt
B =

1Z

2

@tc(x, t) dx =

1Z

2

�@xJ(x, t) dx = � J(1, t)| {z }
=0

+J(2, t) = µA(t)2. (13)

Measuring A and B in units of the initial monomer concentration C and time in units of
(⌫C)�1, the equations are rewritten in dimensionless units as

d

dt
A = !e�!t � 2⌘A2 � 2A B , (14a)

d

dt
B = ⌘A2 , (14b)

where != ↵
⌫C and ⌘= µ

⌫ . Eq. (14) describes a closed two-component system for the concen-
tration of active monomers A and the total concentration of polymers B. It describes the
dynamics exactly as long as the yield is zero. In order to evaluate the condition (11) we
need to determine the integral over A(t) as a function of ! and ⌘

1Z

0

A!,⌘(t)dt := g(!, ⌘) . (15)
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To that end, we proceed by looking at both scenarios separately. We only give an outline of
the results; Details of the analysis can be found in [1]

Dimerization scenario

The activation rate in the dimerization scenario is ↵ ! 1, and so the term !e�!t in
dA/dt can be dismissed, if instead we set the initial condition A(0) = 1 (and B(0) = 0).
Furthermore, ⌘ = µ/⌫ ⌧ 1 and we can neglect the term proportional to ⌘ in dA/dt. As a
result,

dA

dB
= �2B

⌘A
.

Solving this equation for A as a function of B by using the initial condition A(B = 0) = 1,
the totally travelled distance of the wave is determined to be

2g(!, ⌘) = 2
⇡

2
p
2

1
p
⌘
, (16)

where for the evaluation of the integral we used the substitution ⌘A2dt = dB.

Activation scenario

In the activation scenario, yield sets in only if the activation rate and thus the e↵ective
nucleation rate is slow. As a result, we can again neglect the term proportional to ⌘ in
dA/dt. This time, however, we have to keep the term !e�!t. As a next step, we assume
that dA/dt is much smaller than the remaining terms on the right-hand side, !e�!t and
�2AB. This assumption might seem crude at first sight but is justified a posteriori with
the solution of the equation. Hence, we get the algebraic equation A(t) = !e�!t/(2B(t)).
Using it to solve dB/dt = ⌘A2 for B, and then to determine A, the totally travelled distance
of the wave is deduced as

2g(!, ⌘) = 2
32/3

p
⇡�(2/3)

6�(7/6)
(!⌘)�1/3. (17)

Taken together, from the analysis of the activation and dimerization scenario we obtain
two conditions out of which one must be fulfilled in order to obtain a finite yield

2a(⌘!)�
1
3 � L�

p
L ) ↵ < ↵th := P↵

⌫

µ

⌫C

(L�
p
L)3

(18)

or 2b⌘�
1
2 � L�

p
L ) µ < µth := Pµ

⌫

(L�
p
L)2

, (19)

where a and b are numerical factors, and P↵ =8a3 ⇡ 5.77 and Pµ =4b2 ⇡ 4.93. Because in
the activation scenario monomer activation defines the rate limiting step, the assembly time
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scales inversely to the activation rate. Since the optimal activation rate that minimizes the
assembly time scales identically as the threshold rate, we obtain the minimal assembly time
scaling as

Tmin
90 ⇠ 1

↵th
⇠ (C⌫)�1µ

⌫
L3 , (20)

in the limit of large L. Therefore, �(activation) = 3, in agreement with the numerical result
in the main text. Similarly, dimerization is the rate limiting step in the dimerization scenario
and thus the minimal assembly time scales like the inverse dimerization rate,

Tmin
90 ⇠ C

µth
⇠ (C⌫)�1L1 . (21)

Therefore, �(dimerization) = 1. Hence, all scaling exponents for the minimal assembly time
could be derived correctly for the three scenarios with q = 0 with the reductionist approach
and the continuity approximation. Next, we analyze the case q > 0, corresponding to the
Jis scenario.

D. Reduction in the case q > 0 (Jis scenario)

In the Jis scenario, the symmetry of species is broken due to the presence of inhibition
(q > 0). However, here we can argue on physical grounds that the length index is irrelevant:
Because of inhibition, monomers are activated in sequence and binding to the right end of
the polymers is strongly favoured over binding to the left end. Whereas the right end of a
polymer is described by its species index, the length index serves to keep track of its left
end in Eq. (1). Therefore, if binding to the left and detachment of monomers are neglected,
the length index can be disregarded. To this end, we introduce the variables Is := cs0,

As := cs1 and Bs :=
LP

`=2
cs` which denote, respectively, the concentrations of inactive and

active monomers of species s, as well as the total concentration of polymers of species s and
arbitrary length `. The governing set of equations for As, Is and Bs can then be derived
from Eq. (1) by setting � = 0 and disregarding binding to the left end of polymers:

d

dt
Is = �↵Ise

�qIs�1(1��1s) , (22a)

d

dt
As = ↵Ise

�qIs�1(1��1s) � µ (AsAs+1 + AsAs�1)� ⌫AsBs�1 � ⌫defAsBs�2 , (22b)

d

dt
Bs = µAsAs�1 + ⌫ (AsBs�1 � As+1Bs) + ⌫def (AsBs�2 � As+2Bs) . (22c)

Thereby, the number of degrees of freedom has been reduced from L2 + 1 in Eq. (1) to
3L. Note that BL does not measure the concentration of complete structures and, there-
fore, the yield cannot be assessed in a direct way. However, the final concentration of
polymers, Bs(1) for any 1 ⌧ s < L, is directly related to the dimerization probability by
pdim = Bs(1)/N . This holds because each dimerization event consumes a monomer which
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is then missing for the growth of a structure. The yield is equal to the probability that in
L�2 subsequent assembly steps no dimerization event happens and hence can be calculated
from the dimerization probability as yield = (1� pdim)

L�2 (cf. Eq. (4) in the main text).
Similarly, the defect probability pdef =

⌫def
N2

R1
0 AsBs�2 dt can be calculated from the solution

of Eq. (22) by evaluating the temporal correlator of As with Bs�2 for any 1 ⌧ s < L � 2.
Initially, for small s, there might be a short transient before stationary values for the dimer-
ization and defect probability can be obtained. Therefore, we included the condition s � 1
when s is the species index for which the corresponding concentrations of A and B are
measured. Typically, however, the transient is short so that the e↵ect caused by a deviant
transient dimerization and defect probability on the yield and defect-free yield is negligible
for large L. Hence, Eq. 22 can be used to e�ciently simulate the JIS scenario and determine
all relevant quantities from the simulation.

In both cases, for q = 0 and q 6= 0, we could therefore reduce the description of the system
in the deterministic limit to only a single set of indices. The interactions and transitions
between the degrees of freedom labelled by the corresponding index sets are local, meaning
that transitions only occur between neighbouring degrees of freedom labelled by consecutive
indices. Therefore, in both cases, we can use a hydrodynamic approach to further simplify
the systems. For the case q = 0, as shown above, this describes the system as an e↵ective ad-
vection di↵usion process in one spatial dimension. In this case, the hydrodynamic approach
works very well and yields an accurate description of the dynamics of the concentration
profile. Therefore, it seems promising to use the same approach also for the case q > 0.
We will show in the following that the ensuing partial di↵erential equation admits travelling
wave solutions for the concentration profiles I, A and B in qualitative agreement with the
phenomenology observed in the system (see main text Fig. 5). However, when evaluating
the speed of the wave, we find that, quantitatively, the analytic result strongly deviates
from the propagation speed in the simulation. We attribute these deviations to the fact that
the emerging wave profile is too steep in order for the continuity approximation and the
gradient expansion to yield quantitatively correct results. Therefore, we will subsequently
use a complementary approach in which we exploit the steepness of the wave front in order
to derive quantitatively accurate results. Nevertheless, as we consider the analysis of the
traveling wave solutions quite instructive, we start by discussing the continuum approach
first.

E. Continuity approximation and traveling wave ansatz for q > 0

In order to rewrite Eq. (22) as a set of partial di↵erential equations, we interpret the
length index ` as a continuous variable and expand all fields up to second order. We measure
time in units of

⇥
1
C⌫

⇤
and I, A,B in units of [C]. Furthermore, since inhibition is never

perfect, the concentration of inactive monomers on the right of the travelling wave front
would slowly decrease (‘out-of-sequence’ activation of monomers). Hence, in order to obtain
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a real travelling wave solution, we have to add a small correction term � to the equation
for the inactive monomers, which compensates the permanent outflux of particles. In order
to guarantee mass conservation and the existence of travelling wave solutions, we subtract
the same term � from the equation for the active monomers. In order for self-assembly
to be e�cient, out-of-sequence activation and hence the correction have to be negligibly
small; Therefore, the requirement of the correction term is merely a mathematical subtly
that guarantees the existence of real travelling wave solution.
Setting � and ⌫def to zero, Eq.(22) then transforms to

@tI = �!Ie�Q(I�@xI+
1
2@

2
xI) + � , (23a)

@tA = !Ie�Q(I�@xI+
1
2@

2
xI) � ⌘A(2A+ @2

xA)� A(B � @xB +
1

2
@2
xB)� � , (23b)

@tB = A(B � @xB +
1

2
@2
xB) + ⌘A(A� @xA+

1

2
@2
xA)� B(A+ @xA+

1

2
@2
xA) , (23c)

where ! = ↵
C⌫ , ⌘ = µ

⌫ and Q = qC are the dimensionless parameters and for the correction
we set � = !e�Q, in order to ensure @tI = 0 at the far right of the wave front. Assuming
that a travelling wave solution exists, we make the ansatz:

I(z) := I(x� ct), A(z) := A(x� ct), B(z) := B(x� ct), (24)

where c is the resulting speed of the wave. The system then reads:

�cI 0 = �!Ie�Q(I�I0+ 1
2 I

00) + � , (25a)

�cA0 = !Ie�Q(I�I0+ 1
2 I

00) � ⌘A(2A+ A00)� A(B � B0 +
1

2
B00)� � , (25b)

�cB0 = A(B � B0 +
1

2
B00) + ⌘A(A� A0 +

1

2
A00)� B(A+ A0 +

1

2
A00) . (25c)

Assuming an infinitely extended system, we imply the following asymptotic behaviour:

I(�1) = �, I(+1) = 1 , (26a)

A(�1) = 0, A(+1) = 0 , (26b)

B(�1) = p, B(+1) = 0 . (26c)

The final concentration of complexes p = pdim is interpreted as the (stationary) dimeriza-
tion probability (the fraction of complexes whose growth was interrupted by a dimeriza-
tion event). Furthermore, the constant � must be such that the concentration of inactive
monomers at x = �1 becomes stationary, meaning:

0 = �!�e�Q� + � ) �e�Q� = e�Q (27)

resulting in � = � 1
QW0(�Qe�Q), where W0 denotes the relevant branch of the Lambert

W-Function.
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Knowledge of the dimerization probability p and the wave speed c in dependence of the
parameters !, ⌘ and Q is su�cient in order to evaluate the quality and the e�ciency of
the assembly process: The yield relates to the dimerization probability via yield =

�
1 �

pdim(!, Q)
�L�2

(see main text Eq. (4)), and the assembly time corresponds to the time it
takes the wave to travel a distance L: T90 =

L
c . In the following, we will therefore derive the

speed of the traveling wave arising from Eq. (25a).

Derivation of the wave speed (continuity approach)

In order to show that traveling wave solutions exist and to determine their speed, we
consider only the equation for the dynamics of the inactive monomers since it is decoupled
from the other two equations forA and B and can be analyzed independently. Dividing both
sides of Eq. (25a) by ! and defining c̃ = c

! , the equation becomes independent of !,

�c̃I 0 = �Ie�Q(I�I0+ 1
2 I

00) + e�Q , (28)

which means that c̃ can be a function only of Q and hence:

c(!, Q) = ! c̃(Q) . (29)

To proceed, we make the equation amenable for phase plain analysis by rewriting it as a
coupled system of two first order equations for I and S = I 0:

I 0 = S ; S 0 = I 00 = � 2

Q
ln

✓
e�Q + c̃S

I

◆
� 2I + 2S . (30)

There are two fixed points obeying

S = 0 , Q+ ln I �QI = 0. (31)

which correspond to the asymptotic values for I and S:

(I⇤1 , S
⇤
1) = (�, 0) and (I⇤2 , S

⇤
2) = (1, 0) (32)

The solution that corresponds to a travelling wave solution is a heteroclinic orbit connecting
the two fixed points.
The fixed points, however, do not change their stability when varying c̃ or Q, so a local
stability analysis does not help to determine c̃(Q). Furthermore, there is not only one but
a bunch of di↵erent (physically meaningful) heteroclinic orbits and one has to determine
the one that corresponds to the initial conditions. Solving Eq. (30) numerically shows that
for fixed Q, the heteroclinic orbits make an increasingly larger excursion (larger amplitude)
when c̃ becomes smaller, and finally for some minimal value of c̃ hits the fixed point at 1
directly from above rather than from the left, see Fig. S1. For illustration, this is plotted
here for Q = 16 and the minimal c̃ is found to be approximately c̃min ⇡ 0.26.
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Fig. S 1: Solution of Eq. (30) obtained numerically for the heteroclinic orbits connecting the fixed points

given by Eq. (32) for di↵erent values of c. Upon decreasing c, the orbits make an increasingly larger

excursion (larger amplitude) until for the minimal wave speed cmin ⇡ 0.26 they hit the fixed point (1, 0)

directly from above instead of from the left. The minimal wave speed therefore corresponds to the steepest

wave front and is thus consistent with our initial conditions.

The heteroclinic orbit with the largest amplitude corresponds to the steepest wave front
and, therefore, we argue that this must be the front that is realized when initially I = 1
everywhere except for the first site, i.e. when starting with a maximally steep gradient.
Hence, c̃ = c̃min.

Dividing S 0 by I 0 in Eq. (30), we obtain a di↵erential equation for S(I) that describes
the trajectory in the phase plain:

dS

dI
= � 2

SQ
ln

✓
e�Q + c̃S

I

◆
� 2

I

S
+ 2 (33)

The term e�Q is very small if Q is su�ciently large and is only relevant if S goes to 0.
Therefore, we can neglect this term if we take as initial value some small but finite S = ✏
rather than S = 0 and break up if S becomes smaller than ✏ again. We define S̃ = QS and
Ĩ = QI, so that the equation becomes independent of Q. Furthermore, let x := (log 1

c̃ )
�1.

Equation (33) then becomes

dS̃

dĨ
=

2

S̃x
� 2

S̃
ln

 
S̃

Ĩ

!
� 2

Ĩ

S̃
+ 2 . (34)

Since I goes to 1 asymptotically, Ĩ goes to Q. Hence, for a given wave speed c̃, the corre-
sponding value of Q is determined as the point where the trajectory hits the I�axis from
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above. In this way, one can easily determine the function Q(c̃) numerically.
Plotting the trajectories for di↵erent values of c̃ or x reveals some interesting behaviour:
Rescaling the Ĩ� and S̃�axis for each trajectory individually by its maximal Ĩ� and S̃�
value, Ĩmax = Q and S̃max, respectively, makes all curves collapse onto a single master curve
(see Fig. S2). The collapse is imperfect if c̃ is large but becomes very accurate if c̃ is small.

a

0 50 100 150
I

0

20

40

60

80

100

120

S

~

~

b

0 0.5 1 1.5 2
I / Q

0

0.2

0.4

0.6

0.8

1

1.2

S 
/ S

m
ax

~

~
~

Fig. S 2: a) Plot of trajectories as obtained by solving Eq. (34) numerically for di↵erent c̃ = e
�1/x

(c̃ = exp (�8 : 0.5 : �1)). The maximal Ĩ�value (Ĩmax), i.e. the point where the trajectories get down

on the Ĩ�axis is identical to Q. b) Rescaling the Ĩ� and S̃�axis by Ĩmax = Q and S̃max for each curve

individually makes the trajectories collapse onto a single master curve.

We thus find that the trajectories described by Eq. (34) apparently obey an asymptotic
scaling form for small c̃ or x. This motivates us to use the following ansatz in which we
expand S̃ in a power series in x and scale Ĩ with x:

Ĩ =
1

x
Ĩ0 (35a)

S̃(Ĩ) =
1

x
S̃0(Ĩ0) + S̃1(Ĩ0) + xS̃2(Ĩ0) + ... (35b)

Using this ansatz to order O(1) in x in Eq. (34) gives

dS̃0

dĨ0
+ x

dS̃1

dĨ0
=

2

S̃0 + xS̃1

� 2x

S̃0 + S̃1x
ln

 
S̃0

Ĩ0
+ x

S̃1

Ĩ0

!
� 2

Ĩ0

S̃0 + xS̃1

+ 2 . (36)

Expanding the rhs in x and taking together terms with equal power in x yields:

0 =

 
�dS̃0

dĨ0
+

2

S̃0

� 2
Ĩ0

S̃0

+ 2

!
+ x

 
�dS̃1

dĨ0
� 2

S̃2
0

S̃1 �
2

S̃0

ln
⇣ S̃0

Ĩ0

⌘
+ 2

Ĩ0

S̃2
0

S̃1

!
+O(x2) . (37)
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So, in the limit x ! 0, only the leading order term is relevant and reveals the defining
equation for the scaling form S̃0(Ĩ0) independent of x:

dS̃0

dĨ0
=

2

S̃0

� 2
Ĩ0

S̃0

+ 2 . (38)

With the solution for the asymptotic scaling form S̃0(Ĩ0), the subleading order correction
S̃1(Ĩ0) could be calculated and with that one the next lower order correction and so on.
According to Eq. (35), in the limit of small x, the point Ĩ = Q in which the curve hits the
Ĩ axis from above obeys Q = 1

xa0 = �a0 log (c̃), where a0 := Ĩmax
0 is a constant. Therefore,

to leading order,

c̃ = e�Q/a0 , (39)

where the constant a0 is determined numerically from the scaling form described by Eq.
(38) as a0 ⇡ 24.12. For larger values of x or c̃ (small Q), higher order corrections to the
scaling form have to be considered Q = 1

xa0+a1+xa2+ ..., which gives a constant prefactor
to the wave speed as a subleading order correction

c̃ = ea1/a0e�Q/a0 . (40)

However, numerically we find that the higher order terms only make a minor correction
to the shape of the trajectory and hence also to the wave speed. Therefore, the analysis
predicts that the wave speed decreases exponentially with the inhibition parameter Q.
Figure S3 compares the wave speed that is measured when numerically integrating the
partial di↵erential equation (23) to the speed of the wave that emerges from the original
ODE system, Eq. (22). We find that the continuity approximation strongly underestimates
the resulting wave speed and that c can be fitted very well assuming a logarithmic dependence
on Q (see fits in Fig. S3) rather than an exponential dependence as predicted by the theory.

Hence, we find that while the continuity approximation correctly predicts the qualitative
behavior of the system (traveling wave solutions, wave speed is a decreasing function of Q),
it fails to give quantitatively correct results. The reason for this discrepancy is that the
wave front is too steep and, therefore, the gradient expansion of the fields in Eq. (23) up to
second order is not su�cient in order to obtain accurate results. We will therefore now use
a complementary approach that exploits the fact that the wave front is very steep and we
will find that this approach, in contrast, yields very accurate results for the wave speed, the
dimerization probability and the defect probability.

F. Steep-front-approximation (2-species-approximation) for q > 0

This complementary approach, which was also sketched in the main text, relies on a few
approximations that are justified under the assumption that the emerging wave profile is
steep and ! ⌧ 1. With a few simplifications, we can thereby reduce the dynamical system
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Fig. S 3: Comparison of the wave speed c̃ = c/! as a function of Q obtained from numerical integration of

the partial di↵erential equation (23) (black line) with the speed measured from the original ODE system,

Eq. (22) (blue line). The large discrepancy implies that the continuity approximation of the ODE system

and the gradient expansion of the fields is inaccurate because the wave front is too steep. The dashed lines

show fits of c by functions depending inverse logarithmically on Q, which yield much better fits compared

to the inverse exponential dependence (Eq. (39)) predicted by the hydrodynamic approach.

to a two-component system that describes the dynamics of two consecutive species in the
sequence and which can be solved analytically.
First, we approximate the inhibition term exp (�QIi�1) as a step function ⇥( 1

Q � Ii�1),
so that inhibition of Ii is assumed to be perfect while Ii�1 is larger than 1

Q and negligible
below this threshold. This approximation is generally justified if the wave front is steep and
thus the concentration of inactive monomers changes quickly from its maximum value (near
perfect inhibition) to zero (no inhibition). The wave speed is then easily determined from
the timespan T of an individual assembly step, which is given by the time it takes until Ii
drops from 1 to 1

Q assuming that Ii�1 has already fallen below 1
Q . Ii then follows a simple

decay dynamics Ii = e�↵t and we thus find T = 1
↵ lnQ and

c =
1

T
=

↵

lnQ
. (41)

This result di↵ers strongly from the previous result, Eq. (39), obtained with the hydro-
dynamic approximation. We find that the actual wave speed c̃ as a function of Q, which
is obtained by simulating the ODE system, is indeed very well described by c̃ = a/ lnQ,
where the optimal fit is obtained with a coe�cient a = 0.86 only slightly smaller than one
(see Fig. S3). An even more accurate fit is obtained by adding correction terms of the
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form c̃ = a/ lnQ + b + d lnQ, with coe�cients being determined as a = 0.7, b = 0.06 and
d = �0.0044. Hence, the approximation apparently works very well and the wave speed
depends indeed only very mildly on Q .

With this correct result for the wave speed, we can also estimate the minimal inhibition
strength Q that is required so that ‘out-of-sequence’ activation does not noticeably deterio-
rate the yield. To this end, we estimate the number of monomers N leak

L of the last species L
that are activated out-of-sequence (i.e. before species L�1 was activated) with rate N↵e�Q:

N leak
L

N
= ↵e�QT = ↵e�Q L

↵c̃
= e�Q lnQ

L

a
⇠ Le�Q , (42)

where T is the total time the assembly process takes. On the deterministic level, this ratio of
‘leaked’ particles N leak

L /N is identical to the yield deficiency resulting from out-of-sequence
activation. In the stochastic system, however, the yield deficiency will be higher because
there will be much more dimerization events resulting from out-of-sequence activation due to
stochastic e↵ects (stochastic yield catastrophe) than predicted deterministically. An upper
bound for the detrimental e↵ect of the stochastic yield catastrophe is therefore determined
by estimating the total concentration of monomers of all species that are activated out-
of-sequence (until each species is reached by the wave front) and equating this with the
yield deficiency. This corresponds to assuming that each monomer that is activated out-of-
sequence initiates a new complex, which certainly overestimates the stochastic e↵ect:

1� yield =

LZ

0

le�Qdl =
1

2
L2e�Q ⇠ L2e�Q . (43)

Hence, if the yield deficiency due to out-of-sequence activation should be smaller than ✏, Q
must be larger than

Q > ln

✓
L2

✏

◆
. (44)

For example, if L = 100 and ✏ = 0.01 then Q should be larger than 13.8.

Next, we determine the dimerization probability and the defect binding probability from
the simplified model. To this end, we consider the dynamics of active monomers of two
subsequent species that, for simplicity, we denote by indices 1 and 2. Since in the regime
in which self-assembly is e�cient only a tiny fraction of monomers will dimerize or bind
incorrectly, we neglect dimerization and defect binding in the dynamics. For the active
monomer concentrations of species 1 and 2 it then follows:

@tA1 = !I1 � A1B0 , (45a)

@tA2 = !I2 � A2B1 , (45b)

with initial condition I1 = I2 = B0 = 1 and A1 = A2 = B1 = 0 at t = 0. The dimerization

probability and defect binding probability are then given by pdim =
1R
0

A1(t)A2(t)dt and

17



pdef = ⌫def
⌫

1R
0

B0(t)A2(t)dt, respectively. Assuming that all species are supplied in equal

concentrations, as described in the main text, the number B0 of complexes of species 0
equals the number of unbound monomers of species 1: B0 = I1 + A1. Similarly, B1 is
given by the number of monomers of species 1 that have already bound (to B0) minus the
number of monomers of species 2 that have already bound (and thus transformed B1 to B2):
B1 = (1�I1�A1)�(1�I2�A2). Since in the limit of small !, where self-assembly is e�cient,
the number of active monomers is typically small, we neglect the concentrations of active
monomers in B0 and B1, which would lead to nonlinear terms in the above equation. This,
however, has the consequence that A1 and A2 in the equation above will never relax to zero
because when Ii becomes zero, @tAi is zero as well. This is a problem when integrating the
concentrations of active monomers over all time until 1. In order to remedy this problem,
we replace 1 in the integral by an upper cuto↵ that is defined as the time point where I1
becomes smaller than A1 and thus the approximation is no longer justified. The system can
then be written as follows:

@tA1 = !I1 � A1I1 , (46a)

@tA2 = !I2 � A2(I2 � I1) . (46b)

As long as I1 is above the threshold 1
Q , I2 will not be activated and consequently A2 will

remain 0. Hence, as initial condition we set I1(0) = 1/Q, I2(0) = 0 and A1(0) = A2(0) = 0.
Then, starting from time t0 = 0, there is no inhibition on I2 in this approximation and
the concentrations of inactive monomers follow simple decay dynamics: I1 = 1

Qe
�!t and

I2 = e�!t:

@tA1 = e�!t 1

Q
(! � A1) (47a)

@tA2 = e�!t(! � A2 +
1

Q
A2) . (47b)

Furthermore, it is useful to transform time via ⌧ := 1�e�!t so that ⌧ is in the integral [0, 1]:

@⌧A1 =
1

Q!
(! � A1) (48a)

@⌧A2 =
1

!
(! � A2 +

1

Q
A2) (48b)

The solutions to this inhomogeneous linear system of ODEs with constant coe�cients are
given by

A1 = !

✓
1� exp (� ⌧

Q!
)

◆
, (49a)

A2 =
!

1� 1
Q

✓
1� exp

✓
�(1� 1

Q
)
⌧

!

◆◆
. (49b)
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The time point when I1(⌧) =
1
Q(1� ⌧) becomes smaller than A1(⌧), which defines the upper

bound for the integrals, is thus given by b := 1�Q!
⇣
1� exp (� 1

!Q)
⌘
. For the dimerization

probability we then obtain

pdim =

bZ

0

A1(⌧)A2(⌧)
d⌧

!(1� ⌧)

=
!

1� 1
Q

bZ

0

✓
1� exp

✓
� ⌧

Q!

◆◆✓
1� exp

✓
�(1� 1

Q
)
⌧

!

◆◆
1

1� ⌧
d⌧ .

(50)

Since in the limit of small ! the exponentials become very small, we approximate both of
them by 0 and are left with:

pdim =
!

1� 1
Q

bZ

0

1

1� ⌧
d⌧ = � !

1� 1
Q

ln(1� b) = � !

1� 1
Q

ln

✓
Q!(1� exp (� 1

Q!
))

◆
. (51)

Neglecting also here the exponential in the limit of small !, we obtain as final result for
! ⌧ 1

Q :

pdim(!, Q) =
!

1� 1
Q

ln

✓
1

Q!

◆
. (52)

Comparing this result with the dimerization probability obtained from numerical integration
of the ODE system Eq. (22) shows a very good agreement for ! < 1

Q , see Fig. S4 where
Q=50.

Hence we find for the yield under the assumption that Q is large enough and ! ⌧ 1
Q

(compare main text Eq. (4)):

yield =
�
1� pdim(!, Q)

�L
=

 
1� !

1� 1
Q

ln

✓
1

Q!

◆!L

, (53)

where it was further assumed that L is large, otherwise L would need to be replaced by
L � 2. For example, demanding the yield to be larger or equal y we have to determine !
such that

!Q ln

✓
1

Q!

◆

⇣
1� y

1
L

⌘
(Q� 1) ⇡ � ln y

L
(Q� 1) , (54)

where we assumed that L is large and y is su�ciently close to 1 so that y
1
L = exp ( 1

L ln y) ⇡
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Fig. S 4: Dimerization probability versus ! for Q = 50: Comparison between theory, Eq. (52), (red dashed

line) and the simulation of the ODE system Eq. (22) (black dawn line).

1 + 1
L ln y. The solution is given by the LambertW-function as1

! =
ln y
L (1� 1

Q)

LambertW
�
ln y
L (Q� 1)

� . (55)

For a rough estimate, however, we can replace ln
⇣

1
Q!

⌘
in Eq. (54) by a constant d to obtain

(assuming Q is large)

! ⇡ � ln y

d L
. (56)

So ! scales approximately like ! ⇠ L�1. The total time Ty that it takes to reach a yield y
is then given by

Ty =
L

c
=

L

↵c̃(Q)
⇡ L lnQ

!⌫N
⇡ �d lnQ

ln y

L2

⌫N
⇠ L2

⌫N
. (57)

confirming the characteristic scaling exponent (time complexity exponent) of 2.

1 Aside: Solution of x lnx = y (or similarly x
x = z):

x lnx = y

) x = exp
⇣
y

x

⌘

) y

lnx
= exp

⇣
y

x

⌘

) y =
y

x
exp

⇣
y

x

⌘

) y

x
= LambertW(y)

) x =
y

LambertW(y)
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In a similar way we determine the probability for defect binding (note that here we do
not need to cut o↵ the integral because B0(⌧) = I1(⌧) =

1
Q(1 � ⌧) becomes 0 if ⌧ ! 1 and

makes the integral converge):

pdef =
⌫def
⌫

1Z

0

B0(⌧)A2(⌧)
d⌧

!(1� ⌧)
=

⌫def
⌫

1Z

0

I1(⌧)A2(⌧)
d⌧

!(1� ⌧)

=
⌫def

(Q� 1)⌫

1Z

0

✓
1� exp(�(1� 1

Q
)
⌧

!
)

◆
d⌧ ⇡ ⌫def

(Q� 1)⌫
,

(58)

where we again neglected the exponential in the integral in the limit of small !. Therefore,
we find that pdef can be e�ciently controlled by increasing Q.
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For the defect-free yield it thus follows:

yielddefect-free = yield · (1� pdef)
L =

 
1� !

1� 1
Q

ln

✓
1

Q!

◆!L✓
1� ⌫def

(Q� 1)⌫

◆L

. (59)
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In conclusion, while the hydrodynamic approach failed to give quantitatively correct
results for the Jis scenario, the steep-front-approximation, in which we approximate the
exponential inhibition term by a step function, yields very accurate results for several key
quantities describing the assembly process like the wave speed, the dimerization probability
and the defect probability, see Figs. S3, S4 and S5. The good agreement between the
analytic results obtained with the steep-front-approximation and the numeric results ob-
tained from ODE simulations of the original model suggest that details of the functional
form of the inhibition term are not too important. The crucial point seems to be only that
inhibition is generally strong enough and that out-of-sequence supply is widely suppressed.
This coincidence justifies our rather arbitrary choice of the inhibition function in order to
derive generic results on the just-in-sequence scenario. Furthermore, it suggests that with
other inhibition terms like, e.g. a sigmoidal inhibition function, our findings and results will
apply as well - at least on a qualitative basis.
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266 7. Controlling fidelity in heterogeneous self-assembly



Part III

Self-assembly and gene-expression





8 Self-assembly and gene-expression: a
hypothetical model

8.1 Motivation

All components that self-assemble into macromolecular structures inside cells are created via
gene-expression. Furthermore, these macromolecular structures like flagellae, ribosomes or
nuclear pore complexes are typically built in well-controlled numbers [170, 20, 171]. This
raises the question of how cells are able to precisely count the number of molecules they need
to produce in order to assemble a specific number of structures without wasting too much
energy. Energy will be wasted if constituents are produced in larger numbers than are needed
but also if there is much variability in the concentrations of the di↵erent species so that their
numbers deviate strongly from the stoichiometric ratios. Hence, precision of molecule count-
ing in gene expression is an essential factor that influences resource e�ciency.
Furthermore, we have seen that kinetic traps can be avoided and self-assembly e�ciency be
increased if the constituents are provided in a temporal sequence. Therefore, another scope
of gene expression could be to regulate or to support the assembly process by providing the
constituents in a temporal sequence. Indeed, it has been discovered that in the assembly of
large structures like the bacterial flagellum, gene expression is temporally coupled to specific
stages of the organelle-assembly process [23, 24, 172, 173].
Together, this shows that self-assembly and gene-expression are closely related and can hardly
be analyzed isolatedly for self-assembly processes in a cellular context. Furthermore, in syn-
thetic biology, during the last decades, big advances have been made in producing synthetic
biomolecules via artificial gene-expression and regulating their expression through synthetic
gene-regulatory networks [174, 175, 176]. Hence, a promising approach to artificial self-
assembly might be to produce the components that self-assemble into the structures directly
in the system itself [177, 178]. If counting of molecules could be made precise enough, this
would open up the path for e�cient implementations of the just-in-sequence scenario (see
discussion in previous chapters). E�ciency and fidelity of the assembly process could then
be controlled by regulation of the supply, whereas fine-tuning of the reaction rate constants
and other sophisticated molecular properties would no longer be required.

In this chapter, we study a hypothetical model of how gene-expression and self-assembly could
work together in order to create a specified number of heterogeneous target structures. To
this end, we show how basic gene-regulatory functions like activation and inhibition can be
used in order to coordinate the supply of constituents in a temporal sequence. More specif-
ically, we consider a sequence of genes, each of which activates its successor and inhibits its
own activity. As a result, a travelling wave in gene activity emerges, which travels down the
gene sequence and produces the building blocks of the structures in a temporal sequence. We
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Figure 8.1 | Illustration of the model. We assume that a bunch of genes G1, G2, ... (green)
express the constituents C1, C2, ... (black), which assemble into a heterogeneous structure. Together
with the respective constituent, each gene expresses an activator Ai (red) and an inhibitor Ii (blue).
The activator is a transcription factor that activates the subsequent gene in the sequence. Instead,
the inhibitor is an enzyme that degrades the activator produced by the previous gene. Therefore, by
expressing the activator and inhibitor, a gene activates the next gene in the sequence and inhibits
its own activity. The initial activator A0 is regarded as an external signal to start the assembly
process. The system is described by the rate equations given in Eq. 8.1.

show that the count of molecules produced per gene can be described by an iterative map
that relates the concentration of gene-product to the concentration of activator produced by
the preceding gene in this sequence. The stationary molecule count corresponds to a stable
fixed point of this iterative map.
Furthermore, in order for this mechanism to be useful in a biological or artificial context,
two criteria of robustness must be fulfilled: First, the existence of an activation barrier must
prevent the mechanism from accidental release due to small fluctuations in the particle num-
bers. Second, the stationary molecule count should be stable to noise in the particle numbers
and rate constants. With the help of the iterative map we identify conditions that must be
met in order for these two criteria to be fulfilled. In identifying these conditions, we find
some interesting overlap with specificities of the regulatory network that controls expression
of the building blocks of the flagellar motor in Gram-negative bacteria. This suggests that
regulation of the flagellar motor protein components might be identified with a single segment
of our proposed multi-gene cascade.

8.2 Model

We consider a number of genes G1, G2, ... GS which express the constituents C1, C2, ... CS

that assemble in a linear sequence. The linear assembly pathway only represents a specific
assembly order but it does not necessarily imply a one-dimensional geometry of the final
structure. Examples of biological macromolecules that are assembled in a strictly linear
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fashion include the bacterial flagellum or the subunits of the ribosome [24, 20]. The focus in
this chapter, however, is not on the assembly process as such but only on the gene regulatory
mechanism that coordinates the supply of constituents. Therefore, we assume that each gene
Gi along with the constituent expresses an activator Ai and an inhibitor Ii. The activator
activates the expression of the subsequent geneGi+1, while the inhibitor degrades the activator
Ai�1 of the preceding gene and thereby inhibits the activity of gene Gi, see Fig. 8.1. Ii could,
for example, act by catalyzing the phosphorylation or dimerization of Ai�1, assuming that in
phosphorylated or dimerized form the activator loses its activating e↵ect. The idea behind
this regulatory gene cascade is that each gene is activated by its predecessor and - as soon as a
specified expression level has been achieved - stops the production as a consequence of the self-
inhibitory feedback. We assume that expression of a gene is described by a sigmoidal function
of the activator concentration with maximum rate ↵ and Hill coe�cient b. The Hill coe�cient
thereby models a preceding b-merization of the activator molecules prior to attaching to the
promoter region of the corresponding gene. Similarly, we assume that the inhibitor first forms
a d-mer before degrading the activator at a rate ⇢. Denoting concentrations by lower case
letters, the model is hence represented by the following set of di↵erential equations:

d

dt
ai =

↵

1 + a
�b
i�1

� ⇢aii
d
i+1 ,

d

dt
ii =

d

dt
ci =

↵

1 + a
�b
i�1

.

(8.1)

Activation of the first gene G1 is triggered by an initial activator A0, which is interpreted as
an external signal to initiate the gene cascade and to start the assembly process. Our initial
condition will therefore be some finite concentration of a0 and all other concentrations set to
zero.
It should be noted that this model does not represent any particular biological or artificial
system. Rather, it describes a hypothetical mechanism of how a temporal supply sequence of
constituents can be achieved by means of basic gene regulatory functions. It can give an idea
of how biological systems could possibly work and inspire the design of artificial systems.

A characteristic of the model is that supply regulation is not facilitated by the constituents
themselves but by separate transcription factors, which we call activators Ai and inhibitors
Ii. This separation of tasks could have various advantages: First, gene-regulation can take
place even if a part of the constituents has already assembled and can no longer fulfill gene-
regulatory tasks. Second, the activators and inhibitors could be produced in larger numbers
than the constituents themselves. This would improve the precision with which the regulation
factors can be detected by the promoter regions of the genes according to the Berg-Purcell
limit [179, 180]. As a consequence, the counting precision and the robustness of the mecha-
nism can be enhanced. Lastly, regulating the supply with independent transcription factors
extricates the constituents from additional tasks associated with gene-regulation and with the
avoidance of kinetic traps in the assembly process (see chapter 7). This allows for more flex-
ibility in the design of the constituents as well as the gene-regulatory mechanisms and could
increase evolvability for a biological system or adaptability/versatility for artificial systems.
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8.3 Results

For the analysis of the model it is useful to consider the dynamics, Eq. (8.1), in dimensionless
form by measuring time in units of the inverse maximal expression rate ↵

�1:

d

dt
ai =

1

1 + a
�b
i�1

� 'aii
d
i+1 ,

d

dt
ii =

d

dt
ci =

1

1 + a
�b
i�1

,

(8.2)

where ' := ⇢/↵ is a dimensionless parameter. Equation (8.2) has been integrated numerically
using Matlab. Figure 8.2 shows snapshots of the concentration profiles of the constituents,
activators and inhibitors for a system with S = 50 genes, simulated for di↵erent initial con-
centrations a0 and di↵erent '. For suitable values of the parameters, a solitary wave in gene
activity is triggered by the initial activator. The triggered wave travels down the cascade of
genes and produces the constituents of the structures in a temporal sequence (Fig. 8.2A and
B). While the concentration profile of the activator has a pulse-like shape, the constituent and
inhibitor concentrations form a travelling wave front. The final concentration of constituents
(and inhibitors) thereby approaches a constant value for large i, independent of the initial
activator concentration. If a0 is large, the stationary concentration is approached from above
(Fig. 8.2A), otherwise it is approached from below (Fig. 8.2B).
However, if a0 is too small and the Hill coe�cient b large enough, the wave cannot be trig-
gered. The activator concentration then decreases too quickly and the wave cannot proceed
beyond the first few genes (Fig. 8.2C). Hence, we find that the Hill coe�cient b generates
an activation barrier for the trigger wave which can protect it from accidental release due to
noise. Only an initial signal that is strong enough will be able to trigger the wave. Moreover,
the wave can not be triggered if the ratio ' between the inhibition rate ⇢ and the maximal
expression rate ↵ becomes too large (Fig. 8.2D). In this case, the wave is not released no
matter how large the initial activator concentration is.

In the following, we will try to understand the behavior of the system analytically. In par-
ticular, we would like to understand the following three quantities, which are highly relevant
from a biophysical point of view:

• the speed v of the travelling wave,

• the stationary constituent concentration cs and

• the activation barrier ath (activation threshold).

The wave speed is an essential parameter in order to control the assembly process. Imple-
mentation of the just-in-sequence mechanism requires the constituents to be provided slowly
enough and hence necessitates a su�ciently low speed of the travelling wave. The stationary
constituent concentration represents the count in which molecules are produced. In order to
be resource e�cient or to avoid kinetic traps in the assembly process with the just-in-sequence
strategy, it is essential that this counting mechanism is su�ciently robust to noise. Finally,
the activation barrier prevents the trigger wave from accidental release due to noise. There-
fore, its existence is an essential prerequisite for this mechanism to be relevant in a biological
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Figure 8.2 | Snapshots of the temporal dynamics. The momentary concentrations of con-
stituents, activators and inhibitors are plotted as profiles over all species. Arrows indicate the
direction of propagation of the profiles. A,B For suitable parameter settings and su�ciently large
initial activator concentrations, travelling wave fronts and pulses emerge, which travel down the
gene sequence. If the initial activator concentration is large (low), the stationary constituent con-
centration is approached from above (A) (or below (B)). C,D If the initial activator concentration
is too low (C) or the ratio ' = ⇢/↵ between the inhibition and activation rate is too large (D), the
wave cannot be triggered. Instead of propagating as a solitary wave, the activator concentration
then quickly decays.

or experimental context.

8.3.1 Insights from dimensional anaylsis

Before we analyze the system more in depth, an immediate result from dimensional analysis
informs about the functional form of the wave speed v and how the system is optimally
controlled: Because ' = ⇢/↵ is the only relevant parameter (for fixed b and d), the wave
speed ṽ in dimensionless units can only be a function of ': ṽ = ṽ('). Hence, transforming
back to physical units, the wave speed has the form

v = ↵ṽ(') . (8.3)
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In contrast, the stationary constituent concentration and threshold activator concentration
are functions only of ' (again for fixed b and d),

cs = cs(') (8.4)

ath = ath(') . (8.5)

Hence, by changing ↵ but keeping the ratio ' = ⇢/↵ constant, the speed v of the wave can be
adapted while the other properties of the wave and the counting mechanism remain constant.
This is an important result on biological grounds, because the speed v of the wave is an
important parameter to be tuned in order to overcome kinetic traps in the assembly process
according to the just-in-sequence scenario.

In the following, we investigate the behavior of the system more in depth and derive analytic
expressions for cs and ath. Since travelling wave solutions can be observed, one might suspect
that a good approach to the problem would be to use a continuum (hydrodynamic) approxi-
mation of the ordinary di↵erential equation and then describe its solutions with a travelling
wave ansatz [181]. However, similarly as in chapter 7, the continuum approximation fails in
the physically relevant regime because the wave front is too steep. Therefore, we use a com-
plementary approach, which exploits the steepness of the wave front. In this approximation,
we assume that only one gene is active at a time. Only as soon as the activator of a gene is
degraded and the gene has become inactive again, expression of the next gene in the sequence
starts. This divides the whole gene cascade into individual segments which can be analyzed
separately. Each of these gene segments is characterized by a map that relates the activator
input to the concentration of produced constituent / inhibitor. The whole process is then de-
scribed iteratively by reapplying the map for subsequent gene segments. Analyzing the fixed
point structure of this iterative map informs about the stationary constituent concentration
cs, and the activation barrier ath.

8.3.2 Analysis via an iterative map

In order to describe the gene cascade via an iterative map, we approximate the process by
assuming that the expression of a gene Gi+1 starts only as soon as the previous gene Gi is
fully expressed and has become inactive again. Consequently, during the expression of Gi, the
inhibitor Ii+1 will not yet be produced and both transcription factors Ai and Ii and the con-
stituent Ci will thus be present in equal amounts. Denoting the equal concentrations of gene
products (activator ai, inhibitor ii and constituent ci) by p and the activator concentration
ai�1 by a, Eq. (8.2) simplifies for an individual segment in the cascade to

d

dt
a = �'ap

d
, (8.6)

d

dt
p =

1

1 + a�b
. (8.7)

Note that the production term in the first line is missing because, according to the approxi-
mation, production of a has already stopped before production of p by the subsequent starts.
In the next segment, the final product concentration p1 := p(t = 1) of the last step will be
identical to the new initial activator concentration a0 := a(t = 0). This process is iterated to
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the last gene segment. Hence, knowing the final product concentration p1 as a function of
the initial activator concentration a0, the process is described iteratively by reapplying the
function on itself. In order to derive the function p1(a0), we divide Eq. (8.6) by Eq. (8.7):

da

dp
= �'ap

d(1 + a
�b) , (8.8)

which can be solved by separation of variables:

0Z

a0

1

a(1 + a�b)
da =

p1Z

0

�'p
d
dp , (8.9)

) p1(a0) =
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b

1

'
log(ab0 + 1)

◆1/(d+1)

. (8.10)

This equation defines the iterative map [182]. The dynamics of successive steps in the map
can be visualized graphically by plotting p1(a0) together with a bisecting line of slope one
through the origin (Fig. 8.3A): Starting from an arbitrary initial activator concentration a0 on
the x-axis, the corresponding final product concentration p1(a0) is found as the y-coordinate
of the point in which a vertical line through a0 intersects with the curve. In order to apply
the function a second time, p1(p1(a0)), the argument p1(a0) first has to be mapped on the
x-axis by intersecting the bisector with a horizontal line through p1(a0). The new function
value p1(p1(a0)) is then found by intersecting the curve with a vertical line through the point
on the bisector. This process can be iterated arbitrarily. The final constituent concentrations
p
i
1(a0) produced by the genes are thereby indicated by the tips of the vertical arrows. Points

in which the curve intersects with the bisector are called fixed points. In these points, the out-
come remains the same if the map is applied repeatedly. Fixed points also organize the flow
of the map: The dynamics approaches stable fixed points and moves away from unstable ones.

In the scenario depicted in Fig. 8.3A, there are three fixed points in total, an unstable and
two stable ones (one of which is the trivial fixed point). We also show the flow for two di↵erent
initial activator concentrations, which qualitatively correspond to the two cases depicted in
Fig. 8.2A and B. In both cases, the final constituent concentration flows to the same stable
fixed point.
In contrast, the unstable fixed point corresponds to the activation barrier: If the initial acti-
vator concentration lies below the x-value of the unstable fixed point, the flow goes to 0 and
the wave cannot be triggered as has been seen in Fig. 8.2C.
Decreasing b or increasing d, we find that the curve loses its typical S-shape and so the unsta-
ble fixed point disappears (Fig. 8.3B). The trivial fixed point then becomes unstable and the
slightest perturbation or activator input could trigger the wave. This case is therefore very
unfavorable in a biological context.
Furthermore, if the parameter ' becomes too big, a saddle node bifurcation occurs and elim-
inates the nontrivial stable and unstable fixed points (Fig. 8.3C). Then the wave cannot be
triggered no matter how large the initial activator concentration is. This case corresponds to
the scenario depicted in Fig. 8.2D.
In contrast, decreasing the parameter ', there will always be a nontrivial stable fixed point,
which, however, at some point starts to increase very quickly if ' becomes too small (Fig.
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Figure 8.3 | Analysis of the system via an iterative map. A Visualization of the flow
resulting from repeated application of the function p1(a0). The points where the vertical arrows
hit the blue curve correspond to the final constituent concentrations in subsequent gene segments.
Intersections of the curve (blue) with the bisector (red) represent fixed points of the map. The
flow goes towards a stable fixed point (stationary constituent concentration cs) and away from the
unstable fixed point (activation barrier ath). B Decreasing the Hill coe�cient b or increasing d,
the intermediate unstable fixed point disappears in a transcritical bifurcation. Then, there is no
activation barrier and slightest perturbation in the activator concentration can trigger the wave. C
Increasing the ratio ' = ⇢/↵, the stable and the unstable fixed point get eliminated in a saddle
node bifurcation. The wave then cannot be triggered no matter how large the initial concentration
of activator is. D If ' becomes small, the stable fixed point becomes very large and the curve
intersects the bisector at a sharp angle. Consequently, many steps may be required in the iterative
map until the stable fixed point is approached.
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8.3D). This implies that the curve will intersect with the bisector at a sharp angle, and,
consequently, many steps may be needed for a general initial activator concentration un-
til the stable fixed point is reached. The molecule count is less robust then. Increasing
the parameter d increases the range in ' for which cs is well-behaved and, hence, d plays an
important role in enhancing robustness of the system (also see Fig. 8.4 and discussion below).

From Eq. (8.10) it follows that all fixed points a⇤ are solutions of the equation

✓
d+ 1

b

1

'
log(ab⇤ + 1)

◆1/(d+1)

= a⇤ . (8.11)

In the following, we will derive analytic expressions for the two nontrivial fixed points, which
describe the activation barrier ath and the stationary constituent concentration cs, and derive
conditions for their existence.

The activation barrier

The existence of the unstable fixed point is indicated by the slope of the curve p1(a0) at
a0 = 0. If p01(0) > 1, there is no unstable fixed point but only an additional stable one (see
Fig. 8.3B). If p01(0) < 1, there are either two additional fixed points (Fig. 8.3A and D) or
none (Fig. 8.3C). In order to calculate the initial slope, we approximate the function p1(a0)
(Eq. (8.10)) for small a0, then take the derivative and evaluate it at a0 = 0:
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In the case b = d + 1, it can be shown that the curve has no inflection point and, therefore,
an unstable fixed point does not exist. Hence, only for b > d+1 does the unstable fixed point
and the activation barrier exist. This result could indeed be verified with simulations of the
full system, Eq. (8.2). Assuming that a

b
th is small, we can use the same approximation for

p1(a0) as above in order to find an approximate expression for the activation barrier:
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! ath =
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for d+ 1� b < 0 . (8.16)

For d + 1 � b > 0 we also obtain a solution which, however, in this case corresponds to
the stable fixed point cs (which is more accurately described in the way shown in the next
paragraph).
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The stationary constituent concentration

In order to find an analytic expression for the stationary constituent concentration, we assume
that c

b
s � 1 and hence we approximate log(1 + c

b
s) ⇡ log(cbs) = b log(cs) in Eq. (8.11). The

fixed point condition for the stationary constituent concentration then reads

log(cs) =
'

d+ 1
c
d+1
s . (8.17)

Substituting y := �(d+ 1) log (cs), this is transformed to

ye
y = �' , (8.18)

which constitutes the defining equation of the LambertW function. For ' 2 (0, e�1), there
are two real solutions; for ' = e

�1 there is one and for ' > e
�1 there is none:
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Resubstituting, we obtain:
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8
><

>:

�
e
�W0(�')/(d+1)

, e
�W�1(�')/(d+1)

 
' 2 (0, e�1)

e
1/(d+1)

' = e
�1

; ' > e
�1

(8.20)

So, the solution predicts both fixed points, the stable and the unstable one. The unstable fixed
point ath (the solution with W0) is, however, better described by the former approximation,
Eq. (8.16), since the assumption a

b
th � 1 is not satisfied (typically even a

b
th < 1). In contrast,

the stable fixed point cs of the map is accurately described as:

cs = e
�W�1(�')/(d+1)

. (8.21)

Furthermore, Eq. (8.20) predicts the value of ' at which the saddle node bifurcation occurs
as 'c = e

�1, independently of b and d.

In order to verify these results, we compare in Fig. 8.4 the analytic result (Eq. (8.21)) for
the stationary constituent concentration (drawn line), with a numeric solution of the fixed
point condition in the iterative map, Eq. 8.11), (dashed line), together with the actual value
of cs obtained from numeric integration of the full system, Eq. (8.2), (markers). All curves
are plotted for di↵erent values of d and fixed b = 6. We find that the analytic solution, Eq.
(8.21), coincides perfectly with the numeric solution of the fixed point condition. Further-
more, the iterative map describes the constituent concentration accurately in the regime of
large ', where the curves are flat. However, the approximation via the iterative map fails to
describe the process quantitatively if ' becomes too small. In this regime, the trigger waves
become very long, extending over many genes, and thus the approximation that only one gene
will be active at a time breaks down. Furthermore, in the regime of small ', it takes many
steps in the cascade until the stationary concentration is approached and cs is highly sensitive
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Figure 8.4 | Stationary constituent concentration (analysis vs simulation). The stable
fixed point (drawn and dashed line) of the iterative map in dependence of ' is plotted in comparison
with the stationary constituent concentration cs obtained in the simulation after S = 100 gene
segments (markers). Plots were obtained with a Hill coe�cient b = 6 and d = 1 (A) as well as
d = 2, 3, 4 (B). The approximative analytic solution (drawn line) and the numeric solution (dashed
line) of the fixed point condition, Eq. 8.11, coincide perfectly. The iterative map predicts cs

accurately, if the ratio ' = ⇢/↵ is su�ciently large. This corresponds to the regime in which the
wave profile is steep and cs is insensitive to variations in '. Increasing d enlarges this physically
relevant regime and the general quality of the fit improves.

to variations in '. Hence, we conclude that the regime of small ' is not favorable from a
biophysical point of view and a biological system would need to be operated rather at a large
ratio ' close to the bifurcation. In this regime of large ', the iterative map constitutes an
accurate description of the process. Increasing the parameter d makes the curves flatter and
hence increases the robustness of cs to variations in '. The trigger waves then maintain their
compact form in a large range of ' and thus the general quality of the fit improves drastically.

In conclusion, we find that increasing cooperativity in inhibition (parameter d) enhances
robustness of the counting mechanism and extends the parameter regime in which the system
can operate. By increasing d, the system becomes widely insensitive to variations in the ratio
' between the inhibition and activation rate. On the other hand, increasing cooperativity in
activation (parameter b) enhances robustness of the system to noise in the particle numbers
by generating an activation barrier which prevents the wave from accidental release. The
speed v of the gene wave can be controlled independently of its other properties by varying
the activation rate ↵ while keeping the ratio ' = ⇢/↵ constant.

These findings suggest that the proposed mechanism could indeed be a viable way for cells
or artificial systems to produce a bunch of constituents in specific numbers, which assemble
into heterogeneous structures. The constituents are thereby delivered in a temporal sequence,
which can enhance the e�ciency and the fidelity of the self-assembly process as discussed in
previous chapters of this thesis. The gene-expression mechanism discussed here is a hypo-
thetical model and we are not aware of any specific biological system which realizes such a
travelling wave of gene activity. However, intriguingly, as we discuss as a last point, some
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Figure 8.5 | Gene-regulation in flagellum assembly. A Flagellar components of Salmonella
enterica serovar Typhimurium. Figure taken from [24]. B Regulatory network that controls gene-
expression of the components FliG and M of the C ring. Identifying the corresponding components
as the activator Ai, constituent Ci+1 and inhibitor Ii+1, (indicated in red), the network can be
considered as a single gene-segment in our proposed cascade (see main text for details).

striking similarities of our system can be found with the gene network that regulates expression
of the flagellar motor proteins FliG and FliM in Shewanella putrefaciens. This suggests that
expression of these motor proteins could be described as a single segment in the gene-cascade
of our model.

Expression of flagellar motor proteins as biological example for our proposed mechanism?

The bacterial flagellum poses a formidable example of a self-assembling system. The flagellum
together with the motor socket is assembled out of roughly 30 thousand proteins of almost
30 di↵erent species [126]. Unique molecular mechanisms have evolved in order to coordinate
the assembly of this highly complex, functional structure. In particular, recent discoveries
describe mechanisms that couple temporal gene-expression of the constituents to specific
stages of the organelle-assembly process [23, 172, 24, 173, 170]. Flagellar proteins are thereby
organized into three classes which are expressed sequentially in a temporal sequence [23, 24].
Discussing the details of this hierarchy is beyond the scope of this chapter but our focus here
lies on the regulatory subnetwork that controls expression of the proteins FliG and FliM,
which form part of the C-ring of the basal body, see Fig. 8.5A. The regulatory network in
Shewanella putrefaciens is depicted in Fig. 8.5B, following [170]. A Master regulator FlrA
(A) thereby activates the expression of FliG, FliM (M ) and FlhG (G). FliG and M are the
constituents which form part of the C-ring. Association of FliG with M into a complex M-
FliG is catalyzed by G which dimerizes with M in order to facilitate the reaction. Afterwards,
G acts as an inhibitor of A. To this end, G forms a homodimer, which binds the activator
A. Expression of the proteins that form the complex M-FliG can therefore be regarded as a
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single segment in the gene regulatory cascade described by our model: A thereby plays the
role of the activator Ai, M and FliG are the constituents Ci+1, and G represents the inhibitor
Ii+1. The cooperativity coe�cient for inhibition is identified as d = 2, because the inhibitor
G first dimerizes before binding A. Consequently, in order for an activation barrier to exist,
according to our analysis, a Hill coe�cient of at least b  d+ 2 = 4 is required. Indeed, it is
known that the activator binds to the promoter that regulates the expression of FliG, M and
G as a hexamer, implying a Hill coe�cient of b = 6. Even though there are no evidence so
far of a new activator Ai+1 which propagates the wave to a subsequent segment of genes, the
depicted regulatory subnetwork appears to correspond to a single step as described by the
iterative map above. In particular, our results regarding the influence of the cooperativity
coe�cients b and d on the robustness of the counting mechanism still seem to apply.

8.4 Key points

The deepest understanding of a thing can often be gained trying to (re)invent that thing. This
is because by (re)inventing something, one also learns about the many pitfalls that lie on the
road and how these pitfalls can be circumvented. In this spirit, here we tried to reinvent a
small piece of biology by finding a solution to the problem of how to couple self-assembly
with temporal gene-expression. The key insights gained from this analysis are the following:

• With simple regulatory functions, gene-expression of the constituents can be coordi-
nated so that the building blocks are produced in specified numbers and in a temporal
sequence.

• The implementation of the inhibitory feedback thereby seems to play an essential role in
order to achieve robust counting and a propagating wave in gene activity. For example,
one possibility stipulates that the inhibitor catalyzes the degradation of the activator
without being consumed itself in this reaction.

• The cooperativity coe�cients (Hill coe�cients) for activation and inhibition are crucial
determinants for the robustness of the mechanism to noise in the particle numbers and
noise in the rate constants. In particular, the existence of an activation barrier that
prevents the wave from accidental release requires a large Hill coe�cient for activation.

• Although there is no known biological system that our model describes in detail, some
analogies with the network that regulates expression of the flagellar motor proteins can
be found and similar criteria for robustness seem to apply.

• Furthermore, we hope that our results may guide synthetic biology and artificial self-
assembly in the attempt to generate self-assembling constituents that form macromolec-
ular structures by artificial in vitro gene-expression.

8.5 Outlook

In our model, we only considered transcriptional regulation of the genes and we neglected the
step of translation of the mRNA into proteins. A more detailed version of the model could
therefore take translation explicitly into account. An explicit translational step will induce a
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temporal delay between transcriptional regulation and its e↵ect on the rate of protein produc-
tion. Furthermore, translation will add an additional source of noise to the system, which can
disturb the accuracy of counting. On the other hand, translation o↵ers additional possibilities
for regulation. In order to deal with the delay induced by the additional translational step,
it might be favorable for the genes to interact on a larger range, e.g. assuming that a gene
does not (only) activate its nearest neighbor but (also) its next nearest neighbor etc. (and
similarly for inhibition). In this way, additional regulatory interactions could average out the
e↵ect of noise and premature activation/inhibition could counteract the delay induced by the
translational step.
Moreover, until now, we have only simulated the system deterministically by integrating
chemical rate equations. In order to fully specify the robustness of the system with respect
to noise it would thus be a natural next step to simulate the system stochastically and verify
if our conclusions remain valid also for stochastic systems with low particle numbers.
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The goal of this final chapter is to summarize the most important results of this thesis and to
formulate a concise and hopefully useful theory of non-equilibrium self-assembly processes.

We start this chapter with a little anecdote by Suárez Miranda [183] that demonstrates
the importance of reductionism in science and describes the unfortunate fate of a scientific
discipline that did not follow this idea of reductionism:

... In that Empire, the Art of Cartography attained such Perfection that the map of a single
Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province.
In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck
a Map of the Empire whose size was that of the Empire, and which coincided point for point
with it. The following Generations, who were not so fond of the Study of Cartography as their
Forebears had been, saw that that vast Map was Useless, and not without some Pitilessness
was it, that they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the
West, still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars;
in all the Land there is no other Relic of the Disciplines of Geography.

In my opinion, this story tells us two things. First, it shows us how important it is that
a model of a physical system be reductionist. If a model is too extensive and contains too
many details of the system, like the huge 1:1 map of the empire, it is unhandy and use-
less (except from serving as a housing for animals and beggars) and way too complicated
to be appreciated by anyone except its own creators. Thus, for a model to be truly useful,
it needs to be reductionist and focus on the essential aspects of a system: There might not
always be agreement as to which aspects are essential. For example, geographers, geologists,
meteorologists, politicians, militaries, ... all deal with very di↵erent kinds of problems and
thus will have di↵erent ideas as to what is essential. Consequently, these di↵erent groups of
professions typically will use di↵erent kinds of maps containing the information they rely on.
Analogously, there might also be di↵erent kinds of models to the same physical system, which
focus on di↵erent aspects of the system and idealize or simplify other parts of it.
The second lesson that we can learn from the story comes by interpreting the map as knowl-
edge in general. Also a simplified, reductionist model can give rise to complex and complicated
behavior. The theory that we develop from such a model, however, should likewise be useful,
understandable and as simple as possible in order to be applicable by a large community
of scientists, engineers, medical experts, etc. This reductionism of knowledge into a concise
theory usually comes along with some kind of abstraction or generalization of the ‘knowledge’
that was first acquired in independent projects and is subsequently condensed into a more
comprehensive and abstract theory. It is needless to say that this step of formulating a the-
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ory might also comprise a decision as to which aspects are important on a broader perspective.

Throughout this thesis, we have studied simple, conceptual models of self-assembling systems,
which idealize certain aspects that did not seem crucial to us (or could even be shown to be not
important for the behavior of the system). Still, the analyses of these idealized model systems
filled so many pages that one could tile an entire room with it and that barely anyone will
ever have the time to read in detail. The goal of this last chapter is therefore to formulate a
kinetic theory of ideal self-assembly that concisely summarizes the central findings and results
of this thesis. We hope that in this concise form our theory will be memorizable and useful
for the study as well as the experimental realization of self-assembling systems.

9.1 Kinetic theory of self-assembly

In the following we will formulate a kinetic theory of ideal self-assembly, which concisely
summarizes the central results of this thesis. Denoting our theory as a kinetic theory, we
want to contrast it with the equilibrium or thermodynamic theory of self-assembly, which
assumes that the final state of the self-assembly system can be characterized as a free energy
minimum. In contrast, our theory builds upon the slow nucleation principle and considers
self-assembly as a kinetic process which may or may not end up in an equilibrium state.
Both theories may thus be useful in di↵erent contexts like the various kinds of maps used
by geologists, meteorologists and militaries as discussed in the motivation of this chapter. A
central advantage of the kinetic theory is that, as a core element, it predicts the time assembly
processes will take.

Specifically, our theory describes di↵erent ways how self-assembly processes can kinetically
be controlled by distinguishing four self-assembly control scenarios. It specifies how the con-
trol parameters of these scenarios should be adapted in correspondence with the size of the
target structure and how the observables (yield and assembly time) will behave in response
to such control. To this end, the theory describes scaling relations (scaling theory) between
the control parameters or the observables and the size of the target structures. However, the
theory does not specify the proportionality constants for these scaling relations. The reason
is that, as we have seen, the proportionality factors depend on various details of the system,
whereas the scaling exponents are invariant to such details and therefore promise to achieve
a reliable, robust and universally valid description of self-assembly processes.

Scenarios and control parameters

The theory assumes that there are four di↵erent scenarios or ’driving forces’ for self-assembly,
which, by their regulation, allow to ’drive’ the assembled structures towards larger sizes.
These driving forces are: (slow) activation (act), (slow) dimerization (dim), reversible bind-
ing (rev) and just-in-sequence supply (jis) (see Fig. 9.1 and model description in chapter 2
for details). Each scenario is characterized by a (dimensionless) control parameter, which
we generically call P , as well as a set of exponents. The control parameter describes the
regulation of the driving force and, to define a dimensionless quantity, is measured relative
either to the typical reaction constant ⌫ or the (inverse) reactive time scale C⌫ of the system
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The kinetic theory of self-assembly

four driving forces (scenarios) of self-assembly:
(slow) Activation, (slow) Dimerization, Just-in-sequence supply, Reversible binding;

Self-Assembly

irreversible SA reversible SA 

Act

Dim

Jis

Revexchange 
symmetry 

Figure 9.1 | Four di↵erent scenarios for self-assembly. We distinguish three irreversible
and one reversible scenario (control strategy) for self-assembly. Each strategy can be used in order
to retard the nucleation of new structures relative to the grow of existing structures and hence
to increase the size of the resulting assemblies. Three of the four scenarios are invariant to the
exchange or relabelling of species in the dynamic equations. As a consequence, these scenarios can
be used to control both homogeneous as well as heterogeneous self-assembly processes. In contrast,
the just-in-sequence scenario does not exhibit this symmetry and, thus, requires the constituents to
be heterogeneous.

(where C denotes the initial concentration of monomers).
For the activation scenario, the control parameter is the activation rate ↵ relative to C⌫. In
the dimerization scenario, the control parameter is the ratio between the dimerization rate µ

and the reaction rate ⌫. The reversible binding scenario is controlled by the ratio between
the detachment rate �1 and C⌫ and the JIS scenario is controlled by the time interval �T

between successive batches relative to (C⌫)�1 for a suitably chosen supply protocol. Alterna-
tively, the Jis scenario can also be controlled by the activation rate ↵ relative to C⌫ if there
is inhibitory feedback between the constituent species (see chapter 7). Here we describe pri-
marily the former realization of the Jis scenario, in which the supply is controlled externally.
The corresponding scaling exponents are, however, the same in both cases.
Each scenario describes a distinct mechanism which allows to retard the rate of nucleation
of new structures relative to the growth of existing structures and hence to increase the size
of the resulting assemblies (see description in chapter 2). The activation, dimerization and
reversible binding scenario do not discriminate between the di↵erent species (their dynamic
equations are invariant to the exchange of species) and hence can be used to control both ho-
mogeneous as well as heterogeneous self-assembly processes. In contrast, the just-in-sequence
scenario requires the constituents of the system to be heterogeneous.

Growth exponent !

The scaling exponents are expressed as functions of the growth exponent ! (see chapter 4).
The growth exponent describes how the (average) rate with which a cluster grows by one unit
scales with its size. Thus, for irreversible systems, the growth exponent typically equals the
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Table 9.1 | Scaling exponents. Each of the four scenarios is controlled by a dimensionless control
parameter P and its scaling behavior is determined by three exponents �, ✓ and ⇠. Specifically, the
three exponents describe how the control parameter, the assembly time and the minimal particle
number scale with of the size of the target structure S, see Eqs. (9.1) and (9.2). The exponents are
expressed in terms of the growth exponent !, which determines the scaling of the growth rate with
structure size and depends primarily on the dimensionality of the assembled structure (see paragraph
‘growth exponent’). Furthermore, in the reversible binding scenario, � denotes the nucleation size
(minimal number of monomers that can form a stable arrangement) and � the leading e↵ective
order of attachment reactions (see chapter 4 for details). In the reversible binding scenario, we
distinguish the two cases � = � � 1 and � > � � 1, which typically correspond to the assembly
of one-dimensional and higher-dimensional structures, respectively. The underlying mechanisms
in both cases are di↵erent (see chapter 2). The just-in-sequence scenario can also be controlled
with inhibitory feedback and a slow activation rate, in which case the control parameter would be
P = ↵/(C⌫) instead of �TC⌫ (see chapter 7) but the exponents are the same in both cases.

           

act -1 1

dim 0 0 0

jis 0 / -1 0 / 1 0

�c �c �c

1
� � � � 1

� � 1
� � � � 1

�1 1
(� > � + 1)
(� = � + 1)

rev 0
0

Table 9.2 | Complementary exponents. To each of the three exponents, we can associate a
complementary exponent which likewise describes the dependence of the control parameter, assem-
bly time and particle number on the dimerization barrier µ/⌫, see Eq. (9.3). In the just-in-sequence
scenario, the complementary exponents distinguish the two cases when the supply is controlled ex-
ternally (first value) or internally with inhibitory feedback and a slow activation rate (second value).
In the activation, dimerization and reversible binding scenario in the case � = � + 1, the exponents
and complementary exponents fulfil a simple relation, see Eqs. (9.4) and (9.5).
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exponent at which the boundary of a cluster scales with its size and is approximately given
by ! = 0 for 1D; ! = 1/2 for 2D and ! = 2/3 for 3D structures.
However, if binding is reversible, the growth exponent must also take the e↵ective order of
attachment reactions into account. More specifically, the growth exponent takes into account
if the average e↵ective order of attachment reactions depends on the size of a cluster. Typi-
cally, this will be the case if larger structures on average grow more frequently through fast,
lower order reactions compared to smaller structures (see chapter 4 for details). As a conse-
quence, the growth exponent for reversible binding therefore depends on the morphology of the
building blocks. Relative to the estimates for irreversible systems, the growth exponent will
typically either remains the same (e.g. for hexagonal building blocks) or increase by a factor
of 2 (! = 1 for 2D and ! = 4/3 for 3D structures; e.g. for square- or trigonal building blocks).

Control parameter exponent � and time complexity exponent ✓

The first two scaling exponents are the control parameter exponent � and the time complexity
exponent ✓. The exponent ✓ describes how the required assembly time scales with the target
structure size, provided that the respective control parameter P is regulated such that it
scales with the target structure size to the exponent �:

P ⇠ S
� ) TxC⌫ ⇠ S

✓
. (9.1)

Here, 0 < x < 1 is the demanded yield (resource e�ciency) for which the assembly time is
measured. The scaling relation is independent of the value of x at least as long as x is not
too close to 0 or 1. The validity of the relation in this general form can be shown by plotting
Tx/S

✓ against P/S
� for di↵erent target structure sizes S and di↵erent values of the yield x

and demonstrating that the curves collapse onto a master curve; see Figure 2.2 in chapter
2. In particular, from this general relation it follows that the minimal assembly time that
can be achieved also scales like ⇠ S

✓. Hence, the exponent ✓ allows to e↵ectively compare
the time e�ciency of the scenarios (cf. chapter 2) as well as of di↵erent implementations of
the scenarios (cf. chapter 3) or morphologies of the building blocks (cf. chapter 4), which we
used extensively throughout the first part of this thesis.

Stochastic exponent ⇠

The relation in Equation (9.1) holds under the condition that the particle number N is large
enough so that stochastic e↵ects do not a↵ect the yield. For the dimerization and reversible
binding scenario, the particle number is irrelevant to realize a specified yield. However, for the
supply control scenarios, i.e. the activation and Jis scenario, stochastic e↵ects can severely
limit the yield that can maximally be achieved (for the Jis scenario these stochastic e↵ects
are rather discreteness e↵ects arising from the discreteness of particle numbers which are
unable to represent the required nonstoichiometric ratios with su�cient accuracy if N is too
small). This requirement of a minimal particle number N

min
x in order to realize a yield x is

captured by the stochastic exponent ⇠, which describes how N
min
x scales with S. Hence, we

can summarize the theory as:

P ⇠ S
� ) TxC⌫ ⇠ S

✓ if N � N
min
x ⇠ S

⇠
. (9.2)

For the dimerization and reversible binding scenario, the stochastic exponent is 0. For the
activation scenario, the value for ⇠ given in table 9.1 is a rough estimate that has been de-



288 9. Summary: A kinetic theory of self-assembly

termined numerically. Presumably, the value will further decrease if it is measured for larger
target structure sizes and its asymptotic value remains elusive. For structures up to a size
of at least S = 1000, however, a presumed power law with the exponent given in table 9.1
provides a good approximation for the dependence of Nmin

x on S.

Complementary exponents �c, ✓c and ⇠c

The exponents �, ✓ and ⇠ describe the dependence of P, Tx and N
min
x on the size S of the

target structure. We can go one step further and define for each exponent a complementary
exponent �c, ✓c and ⇠c which analogously describes the dependence of P, Tx and N

min
x on the

dimerization barrier µ/⌫. The full theory then reads:

P ⇠ S
�
⇣
µ

⌫

⌘�c

) TxC⌫ ⇠ S
✓
⇣
µ

⌫

⌘✓c

if N � N
min
x ⇠ S

⇠
⇣
µ

⌫

⌘⇠c

. (9.3)

The relation holds under the condition that µ/⌫ is not too small. For example, it is clear that
by decreasing the dimerization rate µ/⌫, the assembly time (Tx) cannot be reduced below
the assembly time of the dimerization scenario. Hence, the scaling laws described by the
complementary exponents are valid only in some range around µ/⌫ = 1.
Note that in chapter 2, in the activation and dimerization scenario, we related the parameter-
and time complexity exponents for higher dimensional target structures to the one-dimensional
case (corresponding to ! = 0) by rescaling the reaction rate ⌫ ! ⌫S

! (where ! = (d� 1)/d).
The transformation thereby maps the higher-dimensional growth processes to an e↵ective
one-dimensional process along the radial coordinate. Performing this transformation requires
knowledge of the complementary exponents. On the other hand, using this transformation
in Eq. (9.3) (note that also the parameter P bears a factor of ⌫ which must also be trans-
formed), it follows that for the activation, dimerization, and reversible binding scenario in
the case � = � + 1, the parameter- and time complexity exponent and their complementary
exponents obey a simple relation1:

�+ (�c � 1)! = �(! = 0) =: �0 , (9.4)

as well as
✓ + (✓c + 1)! = ✓(! = 0) =: ✓0 . (9.5)

The exponents �0 and ✓0 (which are the exponents evaluated at ! = 0 and thus correspond
to the assembly of one-dimensional structures), are also called the bare exponents. Inciden-
tally, the bare time complexity exponents for the dimerization-, Jis-, activation- and reversible
binding scenario in the case � = � + 1 are the integer numbers 1,2, 3 and 4.

The complementary exponents are interesting because they describe the e↵ect of a simul-
taneous regulation by the dimerization rate additionally with another control parameter.
Hence, the complementary exponents allow to describe mixed-type scenarios for combina-
tions between the dimerization scenario and the other scenarios. It might be possible that

1A similar relation does not hold for the reversible binding scenario in the case � > � + 1, because in this
case e↵ective rates for nucleation and attachment must be considered, both of which depend on ⌫, whereas
the nucleation rate should actually not be a↵ected by altering !, which is why the rescaling argument does
not work. In the Jis scenario, the relation does not hold either for the parameter exponent but it holds for
the time complexity exponent in the case in which the supply is controlled externally.
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further combinations, for example between the activation and the reversible binding scenario
(a mixed-type scenario which appears to be highly relevant, for instance, for virus capsid
assembly) can be described in a similar way and could thus be an interesting starting point
for future research.

Caveats

The exponents displayed in table 9.1 and 9.2 (with exception of the stochastic exponents)
represent analytic estimates for the exponents. Their simulated values may slightly deviate
from the analytic estimates. However, in most cases studied in this thesis, we found that the
analytic values yield good approximations of the simulated exponents. Only in the reversible
binding scenario for three-dimensional target structures, deviations between the theoretic and
the measured exponents were found to be slightly more pronounced. It is possible that this
discrepancy is due to an inaccurate estimation of the growth exponent ! and it would be
interesting to investigate this more in depth by (numerically) determining a more accurate
estimate for !.

Furthermore, the exponents for the reversible binding scenario were derived under the simpli-
fying assumption that only single-bonded one-mers can detach again from a structure (‘first
order reversibility’, see chapter 4). We have evidence that the exponents remain approxi-
mately the same if higher order detachment processes are additionally taken into account,
provided that the ratio between detachment rates of consecutive order (‘reversibility ratio’,
see chapter 4) remains constant2. However, it would be sensible to test this again carefully
and also to investigate how the exponents behave if the reversibility ratio is not constant (for
example if the temperature is used as the experimental control parameter).

Analytic methods to derive the parameter- and time complexity exponents

Note that we described two di↵erent ways in order to derive the analytic estimates for the
parameter- and time complexity exponents3. One way starts from the slow nucleation prin-
ciple: total nucleation rate

total attachment rate ⇠ S
�1, and then uses scaling arguments in order to identify the

dependence of the total rates at the left hand side for each scenario. This approach was used
in chapter 2, see [2].
Another possibility to derive the exponents in the activation, dimerization and reversible bind-
ing scenario in higher dimensions is by exploiting that, asymptotically, the optimal parameter
value scales identically as the threshold value of the parameter to obtain non-zero yield. This
enabled us to reduce the dynamics to an e↵ective two-variable-system, with one variable
representing the concentration of (active) monomers and the other one the concentration of
incomplete structures. In some cases, the two-variable system could be solved analytically
(see chapter 5, [1]), while in other cases the exponents could be derived from the simplified
system with a scaling ansatz (see chapter 4). A similar approach of reducing the dynamics

2A constant reversibility ratio would require the binding energy (and temperature) to be constant. This
would correspond, for example, to an experimental control scenario in which the monomer concentration
is used as the control parameter (see chapter 4).

3here we refer to the irreversible scenarios and the reversible binding scenario for higher dimensional struc-
tures. For reversible binding in the case of one-dimensional structures, which describes a profoundly
di↵erent mechanism, another analytic approach was used in order to derive the exponents, see chapter 2.
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to a low-dimensional system with the help of an e↵ective model was also applied in chapters
3 and 7 in order to derive the exponents of di↵erent implementations of the just-in-sequence
scenario. In all cases studied, both analytic methods yielded exactly the same estimates for
the exponents and can therefore be considered equivalent.
We have not yet found a way to derive an analytic estimate for the stochastic exponent. The
value given in table 9.1 relies on an estimation of the stochastic exponent from numerical
simulations.

Robustness of the exponents

A central result and an important pillar for the applicability of the scaling theory is the finding
that the exponents are highly robust to various modifications of the model, the parameters
or the assembly protocols. For example, in chapter 2, we showed that the exponents remain
the same if we consider varying attachment rates for the di↵erent species or whether the
structures are simulated with periodic or open boundary conditions. Furthermore, for large
enough particle numbers, the heterogeneity (distinguishability) of the building blocks can be
shown mathematically to be irrelevant except for the just-in-sequence scenario.
In the activation scenario, we could show mathematically and verify numerically that the
exponents do not depend on the form of the monomer input as long as there is no discrimina-
tion between species (chapter 2). Moreover, in the reversible binding scenario, the exponents
remain invariant if advanced protocols like annealing are used, in which the temperature is
gradually decreased as the reservoir of monomers gets depleted (chapter 2); and the just-
in-sequence scenario exhibits the same exponents whether supply regulation is controlled
externally (‘batches’ of monomers that are supplied at distinct time points) or internally with
the help of inhibitory feedback (see chapter 7).
This robustness property of the exponents suggests that the classification of self-assembly
processes into the four categories or control scenarios is reasonable and informative as the
scenarios broadly determine the scaling properties of the assembly processes. The robustness
of the exponents furthermore could enable a ‘scaling approach’ to artificial self-assembly as
a simple way to determine the optimal parameter values in an experiment, as we elaborate
below.
In order to further probe the robustness of the exponents, it might be interesting to analyze
more mixed-type scenarios in which the assembly processes are controlled by two ore more
di↵erent control parameters simultaneously. The complementary exponents describe super-
positions of the dimerization scenario with another scenario and the theory suggests that the
scaling exponent for the other parameter and the assembly time thereby remain una↵ected.
The question that arises is whether other combinations of scenarios follow a similar logic and
whether the scaling exponents thereby remain una↵ected as well.

Conclusions from the scaling theory

The exponents allow us to draw a number of immediate conclusions. For example, comparing
the exponents of the di↵erent scenarios allows one to draw conclusions on the time e�ciency of
the di↵erent control strategies and to extrapolate these trends to arbitrarily large sizes of the
target structure (chapter 2). We thereby found that the dimerization scenario is particularly
time e�cient, while the activation scenario and reversible binding for one-dimensional target
structures are ine�cient strategies in order to control the assembly of large objects; In con-
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trast, reversible binding for higher-dimensional target structures as well as just-in-sequence
supply are typically significantly more time e�cient.
The exponents furthermore reveal that the time e�ciency of the reversible binding scenario
strongly depends on the morphology of the constituents (chapter 4): In the optimal case (for
example in the case of a hexagonal morphology of the monomers), reversible binding can be
as e�cient as the dimerization scenario while in the worst case, it will be less e�cient by
several orders of magnitude.
Moreover, we applied the scaling theory in order to determine the e�ciency of di↵erent im-
plementations of the just-in-sequence scenario by calculating and comparing their time com-
plexity exponents (see chapters 3 and 7). The analysis shows that the method in which the
constituents are supplied in increasing, non-stoichiometric concentrations defines the most e�-
cient way to realize just-in-sequence supply for higher-dimensional target structures. Whether
the supply is thereby controlled externally or with the help of inhibitory feedback (maybe
even coupled directly with gene-expression, see chapter 8) yields the same time complexity
exponent, whereby external supply control is more e�cient by roughly 1.5 orders of magni-
tude (see chapter 7).
The stochastic exponent furthermore gives information about the strength of stochastic ef-
fects. For example, the stochastic exponent reveals that stochasticity in the activation scenario
strongly decreases with the dimensionality of the target structure and that the dimerization
and reversible binding scenario are largely una↵ected by stochastic e↵ects. As a subject for
future research, it would be interesting to quantify the stochastic exponents for the diverse
mitigation strategies that we described in chapter 6, in order to see whether their mitigating
e↵ect is quantified by the pertinent stochastic exponent. Furthermore, as the stochastic expo-
nents in table 9.1 have been determined numerically, a future goal for the e↵ective stochastic
theory would be to also find analytic estimates for these exponents.
Furthermore, in chapter 7, we investigated the proneness of the di↵erent scenarios to assem-
bly errors and defects. An interesting question for future research would thus be whether
the susceptibility to errors can be incorporated into the scaling theory in a meaningful way,
for example by introducing an additional exponent that quantifies the expected number of
defects/errors in a structure in dependence of its size. To this end, it would primarily be
necessary to quantify the susceptibility of the reversible binding scenario to errors and study
the error proneness for higher-dimensional target structures. As we have seen in chapter 7,
assembly errors can be a substantial threat to the system. Including error susceptibility into
the theory could thus be an important next step.

Scaling approach to artificial self-assembly

Because the exponents of our kinetic scaling theory can be characterized robustly and could
be shown not to depend on many details of the system, this suggests a ‘scaling approach’ to
artificial self-assembly: Specifically, the idea is that the experimentalist first tries to realize
the self-assembly of small structures, thereby optimizing the time e�ciency in the experiment
by regulating the pertinent control parameter(s). Subsequently, the experiment will be ‘scaled
up’ to larger structure sizes, whereby the knowledge of the theoretic scaling exponents can
help significantly in order to find the correct adjustment of the control parameter(s). Possible
experimental control parameter could be, for example, the temperature or the monomer- or
salt concentration in the reversible binding senario; the light intensity which induces a switch
from an assembly-inactive to an active configuration in the activation scenario; or the time in-
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terval between successive time points at which monomers are provided in the just-in-sequence
scenario. If the time e�ciency of the self-assembly of the larger structures is still far below
the time e�ciency obtained for the smaller system scaled with the pertinent time complexity
exponent, the control parameter can be readjusted before the system is possibly scaled up
again to an even larger structure size.
Such an approach could be pursued, for example, in typical experiments like those of the
group of Hendrik Dietz [110]. In this concrete experiment, artificial virus shells of di↵erent
sizes were built from similar types of building blocks (see introduction to part I) and the
scaling approach could be a useful strategy in order to enhance the time e�ciency of the
self-assembly of the larger capsids (which took roughly two weeks in their experiments, while
the smaller capsids self-assembled in only a few minutes).
Our theory furthermore suggests a number of very concrete possibilities how the assembly time
in experiments could be reduced: For example, by changing the morphology of the building
blocks, by implementing a hierarchical assembly step (see chapter 4) or by applying a di↵erent
control scenario like the just-in-sequence scenario instead of reversible binding (see chapter
2). We furthermore provided an idea of how self-assembly could be coupled with (artificial)
gene-expression, such that the assembling constituents are produced directly in the system
itself (see chapter 8), which is considered a very promising route to nanotechnology [177, 178].

Final conclusion

The essential conclusion of this thesis and the kinetic scaling theory is that stochasticity and
poor time e�ciency can be severely limiting factors for self-assembly systems, both of which,
however, can be overcome in various ways. It is therefore crucial that both these factors are
taken into account when studying biological self-assembly processes or when implementing
artificial self-assembly systems. Considering that biological self-assembly processes will likely
have evolved in a way to bypass these limiting factors, these insights could help to improve
our understanding of biological self-assembly systems. In a similar way, nanotechnology can
profit from these insights, for example, by allowing to speed up experiments, which, in the
best case, could even lead to new technological or medical applications. I deeply wish that this
kinetic theory of self-assembly will be useful for the good, help to advance our understanding
of biology and contribute to the progress of nanotechnology and medicine.
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[98] P. C. Nickels, B. Wünsch, P. Holzmeister, W. Bae, L. M. Kneer, D. Grohmann,
P. Tinnefeld, and T. Liedl, “Molecular force spectroscopy with a DNA-origami – based
nanoscopic force clamp,” Science, vol. 354, no. 6310, pp. 305–307, 2016.

[99] R. Jia, T. Wang, Q. Jiang, Z. Wang, C. Song, and B. Ding, “Self-Assembled DNA
Nanostructures for Drug Delivery,” Chinese Journal of Chemistry, vol. 34, no. 3,
pp. 265–272, 2016.

[100] P. Wang, T. A. Meyer, V. Pan, P. K. Dutta, and Y. Ke, “The Beauty and Utility of
DNA Origami,” Chem, vol. 2, no. 3, pp. 359–382, 2017.

[101] N. C. Seeman, “Nucleic acid junctions and lattices,” Journal of Theoretical Biology,
vol. 99, no. 2, pp. 237–247, 1982.

[102] F. C. Simmel, “DNA-based assembly lines and nanofactories,” Current Opinion in
Biotechnology, vol. 23, no. 4, pp. 516–521, 2012.

[103] I. Saaem and T. H. LaBean, “Overview of DNA origami for molecular self-assembly,”
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 5, pp. 150–
162, 2013.

[104] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature,
vol. 440, pp. 297–302, 2006.

[105] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-assembly
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