
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2023 

Augmented State Linear Covariance Applications for Nonlinear Augmented State Linear Covariance Applications for Nonlinear 

Missile Engagements Missile Engagements 

Jeffrey Scott Clawson 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Aerospace Engineering Commons 

Recommended Citation Recommended Citation 
Clawson, Jeffrey Scott, "Augmented State Linear Covariance Applications for Nonlinear Missile 
Engagements" (2023). All Graduate Theses and Dissertations. 8728. 
https://digitalcommons.usu.edu/etd/8728 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.usu.edu%2Fetd%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8728?utm_source=digitalcommons.usu.edu%2Fetd%2F8728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


AUGMENTED STATE LINEAR COVARIANCE APPLICATIONS FOR NONLINEAR

MISSILE ENGAGEMENTS

by

Jeffrey Scott Clawson

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Aerospace Engineering

Approved:

David Geller, Ph.D. Randy Christensen, Ph.D.
Major Professor Committee Member

Matt Harris, Ph.D. Stephen Whitmore, Ph.D.
Committee Member Committee Member

Greg Droge, Ph.D. Doug Hunsaker, Ph.D.
Committee Member Committee Member

     D. Richard Cutler, Ph.D.
Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023



ii

Copyright © Jeffrey Scott Clawson 2023

All Rights Reserved



iii

ABSTRACT

Augmented State Linear Covariance Applications for Nonlinear Missile Engagements

by

Jeffrey Scott Clawson, Doctor of Philosophy

Utah State University, 2023

Major Professor: David Geller, Ph.D.
Department: Mechanical and Aerospace Engineering

Sustained actuator saturation is a common nonlinearity for the terminal homing phase of

a missile engagement. This nonlinearity creates some difficulty for high-fidelity linear analysis

methods. This dissertation investigates three methods of modeling actuator saturation in an

augmented state linear covariance simulation. In contrast with sample-based methods, the

augmented state linear covariance tools from this dissertation can calculate the truth state

dispersion covariance and the estimation error covariance throughout the engagement in a

single run. They also provide several advantages over other linear missile engagement analysis

methods such as the adjoint technique or traditional covariance analysis. First, a linear

covariance simulation framework is developed and validated for a target engagement scenario

without actuator saturation. The engagement comprises a single interceptor equipped

with an inertial navigation system aided by absolute position measurements, as well as

range, angle, and range rate measurements relative to the incoming target. The interceptor

uses a proportional navigation guidance law to engage the target. The linear covariance

framework is developed by linearizing the differential and measurement equations about

the nominal trajectory and forming an augmented system comprising truth and navigation

state dispersions. Next, saturations are introduced to the problem, along with the first

analysis method: statistical linear covariance analysis. This method combines the augmented

state linear covariance framework with the statistical linearization technique. The second

method considered is tunable linear covariance analysis. Tunable linear covariance analysis

utilizes a switching parameter to determine when to switch the dynamics of the problem
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from unsaturated mode to saturated mode. The final method is called event trigger linear

covariance analysis. This method involves switching GN&C modes using a constraint

equation and a covariance shaping matrix. All three analysis methods are validated using

Monte Carlo methods, and statistical linear covariance analysis is found to be the most

robust and accurate of the three methods. The computational efficiency of this method

is exploited to rapidly analyze missile engagement performance under varying levels of

saturation. The parameters of the analysis include guidance laws, sensor accuracy levels,

target evasive maneuvers, and actuator responsiveness levels.

(219 pages)
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PUBLIC ABSTRACT

Augmented State Linear Covariance Applications for Nonlinear Missile Engagements

Jeffrey Scott Clawson

Sustained actuator saturation is a common occurrence for missile engagements. The

saturation nonlinearity creates some difficulty for high-fidelity linear analysis methods. This

dissertation investigates three methods of modeling actuator saturation in an advanced

linear analysis. The linear covariance tools from this dissertation run extremely fast and

provide several advantages over other linear missile engagement analysis methods. First, a

simulation is developed and validated for a target engagement scenario without actuator

saturation. Next, saturations are introduced to the problem, along with the first analysis

method: statistical linear covariance analysis. This method combines the augmented state

linear covariance framework with the statistical linearization technique. The second method

considered is tunable linear covariance analysis. Tunable linear covariance analysis utilizes a

switching parameter to determine when to switch the dynamics of the problem. The final

method is called event trigger linear covariance analysis. This method involves switching

GN&C modes using a constraint equation and a covariance shaping matrix. All three

analysis methods are validated using Monte Carlo methods, and statistical linear covariance

analysis is found to be the most robust and accurate of the three methods. This method is

utilized to rapidly analyze missile engagement performance under varying levels of saturation.

The parameters of the analysis include guidance laws, sensor accuracy levels, target evasive

maneuvers, and actuator responsiveness.
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CHAPTER 1

INTRODUCTION

“It is a characteristic of the engineering profession that there are always

new problems waiting in the wings to replace the old ones as they are

solved. The constant element is the challenge itself, which demands that we

do our utmost and rewards us only when we do.”

-Mike W. Fossier

Trajectory error analysis is an important aspect of closed-loop guidance, navigation,

and control (GN&C) problems. For a target engagement problem, it is critical to know

how uncertainties in the initial state, dynamics, sensor models, and actuator models affect

the knowledge of where the pursuing vehicle is and how far it deviates from its desired

path, especially at the time of closest approach. For high fidelity analysis, this complex

problem is often analyzed with the Monte Carlo method: running a simulation thousands

of times and calculating the ensemble statistics of the truth dispersions and estimation

errors. For analyzing a target engagement in a single run there are two fundamental

methods: the adjoint technique [1] and traditional covariance analysis [2, 3]. There are

also variations on these methods, including the Covariance Analysis Describing Function

Technique (CADET) [4,5], and the Statistical Linearization Adjoint Method (SLAM) [6].

This research presents an extension of traditional covariance analysis called augmented state

linear covariance analysis [7] and applies it to the target engagement problem. Augmented

state linear covariance analysis, referred to as LinCov in this research, provides several

advantages to traditional covariance analysis methods.

Monte Carlo analysis is an important tool for closed-loop target engagement problems

because it accurately simulates nonlinear, time-varying, noise driven systems. The disadvan-

tage to Monte Carlo analysis is the extensive computing time. If a quick assessment of the

preliminary system performance is desired, an adjoint analysis is effective (See ch. 3 of [8]).

This technique utilizes the impulse response of the system to calculate the final miss distance

of the engagement. However, adjoint analysis is limited because it does not track vehicle
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state uncertainty throughout the flight and it cannot incorporate an extended Kalman filter

(EKF). The CADET method is useful for target engagement simulations because it employs

statistical linearization (SL), which is well-suited for actuator saturation [9]. The SLAM

method combines this SL technique with the adjoint method to analyze nonlinear systems

and compute miss distance error budgets.

Traditional covariance analysis addresses the gaps of adjoint analysis by calculating

statistical performance for every system state throughout the flight and allowing EKFs in

the system. Traditional covariance analysis is accomplished by propagating and updating

a state covariance matrix for the duration of the flight. One drawback to traditional

covariance analysis is that it does not model the effect of state estimation errors on truth

trajectory dispersions. Nor does it account for continuous inertial measurements (gyro

and accelerometer) [10]. These effects are critical for accurate analysis of modern target

engagement systems. The linear covariance (LinCov) method used in this research successfully

addresses these limitations.

A missile engagement has three main phases: launch phase, mid-course guidance phase,

and terminal homing phase. Figure 1.1 illustrates the different phases of flight. The estimated

path of flight of the target is shown in a blue dotted line. This figure assumes a nominal

constant velocity (NCV) target flight. The launch phase refers to the process of launching

the interceptor missile from a vehicle or from the ground, stabilizing the flight, and activating

the sensors. This phase is shown in orange. It may include time to characterize the system

biases, and confirm communication with external systems as well. The mid-course guidance

phase of flight, shown in red, is the longest phase and it may have several segments. The

general idea of this phase is to guide the interceptor toward the target by conducting a path

following strategy for the desired approach angle. The interceptor maintains course and

heading knowledge using gyros, accelerometers, and GPS measurements.

A common strategy for mid-course guidance is to set up a coarse “zero-effort miss”

(ZEM) engagement, meaning that the vehicles will collide if they continue to fly without

accelerating. This method minimizes the amount of actuation needed at the end of the
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Missile

Target

Estimated Target Trajectory

Terminal Homing

Mid-course Guidance

Launch Phase

Fig. 1.1: Missile Engagement Phases

engagement. Any misalignment that remains at the end of this phase can then be eliminated

during terminal homing. Another common strategy is to set up a direct head-on or tail-

aligned engagement. Figure 1.1 shows a head-on engagement. This approach simplifies the

dynamics of the missile flight by decoupling the actuation direction from the target velocity

direction. A missile generally steers by actuating tail fins, which causes an acceleration

perpendicular to the velocity vector of the missile. This acceleration input into the system

is small compared to the velocity of the missile. If the engagement is a head-on engagement,

the fins only have to overcome cross-track movements, which are much slower than along

track movements. The mid-course guidance phase ends when the interceptor is “close” to an

engagement. This can occur at a specified “time-to-go” in the engagement, when it enters a

specified range to the target, or when it enters the range of a specific sensor.

The final phase of flight, terminal homing, is shown in green. It is short in length

(often less than 15 seconds [11]), however, this phase is where the GN&C performance of

the interceptor is the most crucial. In this phase, all parts of the GN&C hardware are

actively being used, and must be working together for a successful intercept. The terminal
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guidance law is activated in the system, guiding the interceptor toward a collision. The

interceptor also relies on estimating the relative states of the vehicles. The accelerometers,

gyros, and GPS measurements inform the interceptor state, while relative measurements

like range, range rate or line-of-sight angle inform the relative states. The actuation of the

interceptor must react quickly and be well characterized for a successful intercept. Figure

1.1 shows a non-maneuvering target, however, it is common for a target to implement an

evasive maneuver close to the time of intercept. Figure 1.2 shows an example of an evasive

maneuver by the target.

Missile Target

Initial NCV Target Trajectory

Target Evasive Maneuver

Initial Interceptor ZEM Trajectory

Interceptor Engagement Trajectory

Fig. 1.2: Terminal Homing Example

Figure 1.3 illustrates the times when various GN&C sensors and processes are active

during each portion of an engagement. The solid lines represent different phases of flight,

while the dotted lines represent a specific sensor or process and when it is active. For example,

the Extended Kalman Filter, inertial measurement unit (IMU), and GPS measurements are

assumed to be running the entire flight. Note that this is just an example problem, and each

engagement problem has its own GN&C configuration. This example shows two flight phases
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for the target: nominal constant velocity (NCV) at first, and an evasive maneuver at the end.

The interceptor has the same phases of flight as listed previously: launch, mid-course, and

terminal homing. The terminal homing phase is broken up into three segments: the initial

sensor phase, the full sensor phase, and the “chase maneuver” response to the target evasive

maneuver. This is to simulate relative sensors being activated at different ranges or coming

from different sources. In this example problem, the range and range rate measurements are

available before the line-of-sight measurements.

During the launch phase, the vehicle undergoes its initial acceleration, and the Kalman

Filter begins to estimate the system biases. This can include GPS bias, and IMU bi-

ases/misalignments. Launch phase also might include test maneuvers by the vehicle to

characterize the actuator behavior and calculate trim conditions. It is assumed that once

the interceptor reaches maximum speed, it continues at the same velocity for the duration

of the flight. During the mid-course phase, the interceptor has an accurate estimate of its

position, velocity, orientation, and angular velocity from the inertial sensors. The vehicle

follows a specified path to align itself with the velocity vector of the target, setting up a

head-on collision. The interceptor missile steers by actuating fins on the rear of the vehicle.

This is a called a “bank to turn” or “skid to turn” vehicle steering system [12,13]. Figure

1.3 also shows several times that the actuator fins are “saturated”. This means that the rear

fins are moved to the maximum range, creating the maximum angle of attack or turning

at maximum g’s. This can happen immediately following guidance mode changes or if the

target performs an evasive maneuver. GN&C behavior before, during, and after actuator

fin saturation is a crucial element of this dissertation. At the beginning of the mid-course

phase, the figure shows that a maximum g turn can occur as the interceptor begins its path

following trajectory.

Terminal homing is the most complex phase of the target engagement. The biggest

changes are that the relative measurements are added to the filter, and the engagement

guidance law is activated. These are active until the end of the engagement. It is also

possible to tune the filter specifically for terminal homing performance by over-weighting or
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under-weighting certain measurements. When the new measurements are activated in the

system, there is a time when the filter is estimating the biases of the measurement. This

might lead to decreased performance at initial implementation, but will increase if the filter

can successfully estimate the bias. This is indicated by the light green dotted line at the

beginning of the terminal homing phase.

The first segment of the terminal homing phase begins when relative range and range-

rate measurements are activated. The engagement guidance law for terminal homing is

typically some form of proportional navigation guidance law, meaning that it is dependent

on the flight computer’s estimate of the relative states. More advanced guidance laws include

optimal terminal guidance (see [14], ch. 5 of [15] and ch. 26 of [8]) and modified proportional

guidance (see ch. 5 of [16]). An actuator fin saturation can also happen at the beginning of

terminal homing.

Segment two of terminal homing begins when the line-of-sight measurement is activated

in the simulation. There is a short time of bias characterization at the start of this segment.

The engagement guidance law is still active, but should be set up for a ZEM if the target is

not maneuvering.

Segment three of the terminal homing phase, labeled the “chase maneuver” in fig. 1.3,

happens as the target initiates an evasive maneuver right before impact. During this chase

maneuver, the missile has all measurement systems active and calibrated. The engagement

guidance commands a maximum g turn to maintain the intercept, saturating the fin actuator.

Depending on the timing of the maneuver and the maneuverability of the interceptor, the

target may or may not be able to escape lethal range at the time of closest approach. This

final segment of flight is difficult to model with linear methods, and is discussed at length in

this dissertation.

Figure 1.4 is a graphical representation of a 2-D missile/target scenario, and gives more

insight into what the Monte Carlo and LinCov simulations are analyzing. The target vehicle

on the right travels with a nominally-constant velocity, perturbed by accelerations, toward

some desired final location. The nominal path of the target is represented by the blue curve
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Missile

Target

Fig. 1.4: Linear Covariance Target Engagement

on the right, while the 3σ position dispersion lines are shown in red. The position of the

target is defined to have initial uncertainty, so the trajectory dispersion envelope of the

target does not start at zero. The acceleration disturbances can be modeled by zero mean

white noise with a specified power spectral density, which is why the position dispersions

of the target grow with time. By definition, 99.7% of the target trajectories lie within the

3σ bounds. The objective of the missile on the left is to disable or destroy the target by

intercepting it. The interceptor has greater maneuverability than the target and is aided by

IMUs, inertial sensors, and relative sensors. Approximately midway through the flight, the

missile changes to terminal homing mode, and has a short period of re-calibration before

continuing to the end of the engagement. The nominal path of the interceptor is represented

by the blue line on the left. This line is not affected by the mode change because the

mid-course guidance puts the missile into a ZEM trajectory such that it will collide with the

target.

The missile truth dispersion covariance lines are shown in red. The gray “hair lines” for

both vehicles represent multiple runs of a Monte Carlo simulation. Each realization of the

target follows one particular path, and the corresponding realizations of missile motion are

illustrated as the gray lines on the left. The black lines represent the true estimation error

covariance. The final relative position dispersions and estimation errors of the two vehicles

are represented with the red and black ellipses, respectively. The ideal engagement scenario



9

results in small truth dispersions and small estimation errors. This corresponds to low miss

distances and a higher probability of intercept. For example, a system with highly accurate

measurements but low-fidelity dynamic models and low capability actuators will have small

estimation error and large truth dispersions. Alternatively, a high fidelity dynamic model

and high capability actuator coupled with bad sensors will have large estimation error.

During a typical Monte Carlo simulation, thousands of runs are simulated, and the

end result is to calculate the covariance of the truth dispersions and true estimation error

of the system throughout the engagement. By linearizing the entire closed-loop GN&C

system about the nominal trajectory, an analysis tool like LinCov is able to calculate the

same results with one simulation run. Among single run analysis tools, LinCov analysis is

uniquely capable of analyzing how highly-coupled models, sensors, actuators, and GN&C

algorithms will affect trajectories during flight.
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CHAPTER 2

OVERVIEW AND THESIS STATEMENT

2.1 Research Objectives

The goal of the proposed research is to extend the application of augmented state linear

covariance theory and event triggers to a saturated actuator missile engagement problem.

The research objectives are as follows:

1. Show that augmented state linear covariance theory (LinCov) can effectively model

actuator saturation using event triggers for missile engagement problems by:

(a) Building and validating a missile engagement LinCov simulation

(b) Comparing LinCov results to statistical linearization results

(c) Investigating LinCov performance under varying levels of saturation

2.2 Scope

The research will be conducted by creating a Monte Carlo and Linear Covariance

simulation of a missile engagement with actuator saturation and appropriate event triggers.

The type of actuator saturation under consideration is a sustained saturation close to the

intercept time. An evasive maneuver by the target triggers the missile actuator satura-

tion. The model will incorporate process noise to model random accelerations, discrete

measurement noise, continuous inertial measurement noise, and linearized dynamics and

measurements for covariance propagation and updates. The event triggers will allow the

system to switch acceleration modes at non-fixed times. The event trigger will be a change

in the dynamics of the problem, not a change in the guidance law. For example, during an

actuator saturation, the missile acceleration will become a constant instead of proportional

guidance. The LinCov results will be compared to statistical linearization, which is a common

approach to analyzing this type of problem.
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2.3 Thesis Statement

Linear Covariance techniques can be applied to nonlinear target engagement problems

to accurately model truth trajectory dispersions and miss distances, including situations

where the interceptor experiences GN&C mode changes and actuator saturation.

2.4 Dissertation Overview

The dissertation is laid out as follows: Chapter 3 provides a literature survey of relevant

research and briefly describes how it applies to nonlinear target engagement problems.

Chapters 4-5 develop the general theory used for LinCov, event triggers, statistical lin-

earization, and CADET models. This theory is for a general GN&C problem, and can be

applied to any aerospace GN&C architecture. Chapter 6 introduces a missile engagement

LinCov simulation without saturations. Chapters 7 and 8 define and validate three LinCov

simulation methods for dealing with saturations in a missile engagement problem. These

chapters define the dynamics, sensors, linearization technique, system partial derivatives,

and validation methods for the nonlinear target engagement problem. The three LinCov

simulations are called Statistical LinCov, Tunable LinCov, and Trigger LinCov. Chapter 9

utilizes the newly developed Statistical LinCov to perform a trade study of various missile

engagement scenarios. The final conclusions of the research are summarized in Chapter 10,

and Chapter 11 lists a few potential research applications for Statistical LinCov
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CHAPTER 3

LITERATURE SURVEY AND RELATED WORK

3.1 Linear Covariance

Augmented State Linear Covariance theory (LinCov) as it is presented in this paper

was developed and published by Dr. David Geller in the early 2000s [10, 17]. Since that

time, LinCov theory has been applied to various aerospace systems for analysis. This section

will review a few precursors to LinCov, discuss relevant LinCov literature, and describe how

it can be applied to missile engagements.

3.1.1 Basic Linear Covariance Analysis

Basic linear covariance analysis (Basic LinCov) methods have been consistently used

in space programs since the 1960s [18, 19]. The term “covariance analysis” however, may

refer to several different analysis methods. In the literature, the names for each method are

inconsistent and the differences between the various methods are not always explained. The

following paragraphs will review the most common covariance analysis types and how they

are used for aerospace GN&C problems.

The most straightforward application of covariance analysis, dispersion analysis, is

accomplished by studying the effect of environmental disturbances on trajectory dispersions.

The foundation for this method was established by Norbert Wiener in the 1940s [20]. He

showed that the statistical properties of a stochastic process disturbance can be quantified

by using the power spectral density (PSD) of the signal. The basic steps of this method are

characterizing the disturbances, and propagating the growth of the dispersions forward in

time [21]. A common starting point for this method is to assume the disturbance is zero-mean

Gaussian white noise and calculate the power spectral density of the noise. Depending on

the fidelity required, a first-order or second-order Markov process may also be used (see ch.

4 of [22]).
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Another routine application of covariance analysis, estimation error analysis, is to

investigate the estimation error covariance created in the state space by imperfect system

measurements. The estimate of the state vector and its associated covariance is propagated

forward in time, and updated each time a measurement is processed. This process is

derived and explained extensively in [22] and [3]. Both the dispersion analysis method

and the estimation error method are considered “open loop” methods, as they do not take

into account the effect of closed-loop guidance and control on the system. A common

implementation of estimation error analysis is the Kalman Filter for linear systems or the

Extended Kalman Filter for nonlinear systems.

In the early 1960s Kalman and Bucy expanded on Wiener’s research [18,20] by developing

a linear state space formulation in the discrete time domain [23] and in the continuous time

domain [24]. The optimal estimation filter they created, called the Kalman Filter, was able

to give the optimal state estimate and covariance of a linear system. Around the same

time, Stanley Schmidt from NASA Ames Research Center was working on the nonlinear

circumlunar mid-course navigation and guidance problem for the Apollo program. Schmidt

was able to see a connection between linear perturbation theory and Kalman’s linear filtering

theory [25]. By linearizing a system about a nominal trajectory, his team was able to apply

the Kalman filter to a nonlinear system. This approach is called an extended Kalman filter.

Using Monte Carlo tests to validate the results, Schmidt and his team were able to show

that the extended Kalman filter state estimate converged to the truth state, even with large

initial state uncertainty. The extended Kalman filter, EKF variations, and Monte Carlo

validation method are still vital tools in the aerospace GN&C field today.

Unmodeled disturbances or bad measurements can cause a Kalman Filter to diverge

in its state estimation, therefore filter tuning is another important category of covariance

analysis. The art of filter tuning is a balance of maximizing filter performance and avoiding

filter divergence/smugness. This method can be used both for simulated truth problems, or

real-world hardware problems. In a simulated truth problem, the truth dynamics are usually

higher fidelity than the design model dynamics so the Kalman filter will face unmodeled
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disturbances. In a real-world hardware test, the system does not have access to truth data,

only state estimates, so it will face unmodeled disturbances as well. Common tactics for

filter tuning are adjusting the PSD of additive noise, adding states to the state vector,

rejecting bad measurements, or over/under weighting measurements [2, 26].

It is often useful to conduct sensitivity studies in GN&C problems to discover how

variations in parameters, sensor quality, navigation errors, or actuator execution will affect

the trajectory dispersions. There are a few additional Basic LinCov analysis methods that

can be categorized as sensitivity studies. One example is called consider analysis. Consider

analysis involves evaluating the effect of uncertainty in unestimated system states, and

increasing the state covariance to account for it [27,28]. Sensor trade studies are a commonly

conducted to decide which sensors meet budget and performance requirements [7]. Another

extension of filter tuning is called true covariance analysis. True covariance analysis evaluates

the sensitivity of the EKF to reduced order design models [29]. If the true estimation error

of a system lines up well with the filter covariance, the lower order model is tuned properly.

Finally, Battin developed a covariance method which studies the coupling of position and

velocity estimation error to final time position dispersions (See ch. 14 of [30]).

The Basic LinCov analysis methods mentioned in this section are not able to fully

evaluate the behavior of a closed-loop GN&C system. Recent publications show that for many

aerospace systems, augmented state linear covariance analysis (LinCov) can accurately model

the cumulative effects of navigation error, actuator error, sensor uncertainty, unmodeled

disturbances, and inertial measurement errors on trajectory dispersions [10].

3.1.2 Applications of Augmented State Linear Covariance Analysis

LinCov theory can be summarized as follows: define the nonlinear system, linearize the

system using perturbation theory and a first-order Taylor series approximation, define an

augmented state vector containing truth dispersions and navigation dispersions, and finally,

formulate the linear equations into the augmented state covariance equations [7]. By keeping

both truth information and navigation information in the augmented system, LinCov is able

to accurately model the cross correlation between navigation error and truth dispersions. It
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fills a gap between time-consuming Monte Carlo methods and traditional simplified “single

run” analysis methods. Although there is a significant amount of up front work to set up

LinCov, it is a very powerful tool for modeling complex systems.

Over the past fifteen years, LinCov has been applied to many different types of space

systems. LinCov is well suited to spacecraft navigation problems because these systems rely

heavily on measurements when ground updates are not available. Geller’s first LinCov paper

shows that a flight computer can use LinCov to autonomously calculate and execute mid-

course maneuvers while still maintaining dispersion requirements [10]. This led to papers on

angles-only navigation orbital rendezvous [31], cislunar navigation [32], and interplanetary

navigation [33]. Additional space related research topics include lunar GN&C [34–37],

atmospheric entry [38], and precision pointing spacecraft systems [39].

Historically, missile engagements have been analyzed using Basic LinCov techniques,

adjoint method, and Monte Carlo methods. This dissertation research extends the applica-

tions of LinCov analysis to the missile engagement scenario. The LinCov statistics can be

used for error analysis throughout the flight, and miss distance analysis at the end of the

flight [40,41].

3.2 Missile Engagements

Guided missiles as we know them today originated around the time of the second world

war. Early missiles were not very accurate, as they lacked sufficient sensors. They did not

rely on the traditional GN&C algorithms we see today, but rather on predetermined flight

programs for velocity direction and engine cutoff. The development of inertial navigation

sensors from the 1920s to the 1950s spurred the advancement of missile flight and their ability

to fly accurately. Walter Haeussermann, a German-born scientist who was instrumental in the

development of rockets in the U.S., wrote an auto-biographical history of the developments

that led to automatic missile guidance [42]. At first, there were two schools of thought on

how to guide a missile: radio sensors or internal inertial sensors. Inertial sensors were less

accurate than radio sensors at the time, but they eventually won out over radio sensors since

they were self-contained, and not prone to signal jamming. It is notable that every missile
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system relies heavily on inertial measurements, but many of the common missile analysis

methods are not capable of modeling these sensors correctly [10]. Inertial sensor modeling is

a strength of LinCov, and would address this oddity.

Around 1950, accelerometers and 3-axis gyros were developed enough for accurate

missile guidance. The next challenge for guided missiles was to intercept maneuvering

targets using homing guidance. A paper by Fossier [43] outlines the developments that led to

radar homing missiles. Two important developments discussed in the paper are an internal

continuous wave radar sensor and the proportional navigation guidance law.

It was a challenge for a missile to simultaneously transmit radar signals to bounce off

the target and receive them back, especially with ground cluttering the signal. Additionally,

an on-board radar sensor is very sensitive to “radome error”, a signal disruption from the

nosecone of the vehicle. Eventually, technology was developed to overcome these hurdles.

Missile guidance laws are strongly linked to line-of-sight rate between two vehicles.

Figure 3.1 shows the line-of-sight angle λ. If the line-of-sight angle is not changing with

Fig. 3.1: Target Engagement Geometry

time, the interceptor is on a collision course with the target. The concept is put into practice

with the following equation:

nc = kpVcλ̇ (3.1)
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This equation is the basic proportional navigation missile guidance law and is still used

today in homing missile systems. The effective navigation ratio, kp, represents the ratio of

interceptor acceleration capability to the target acceleration capability. This value should

be at least three or four in order to prevent saturation at the end of flight. The other terms

in equation 3.1 are related to the sensor outputs of the interceptor, line-of-sight rate λ̇ and

closing velocity Vc.

While the goal of the guidance equations is a direct hit on the target, in missile vs.

missile engagements, a collision is a rare event [44]. Rather, a detonation is triggered when

the missile passes within a specified distance of the target, and an ordnance is used to damage

the threat. Lethal damage is inflicted on the target provided the missile is close enough and

the geometry is appropriate for the fragmentation pattern of the ordnance. Probability of

Kill (Pk) is the desired end metric, which is a function of miss distance covariance. The focus

of this LinCov research is to provide an efficient means for calculating the miss distance

covariance. Aerospace engagement problems have many different vehicle configurations

and terminal constraints. Common vehicle configurations include single-pursuer/single-

evader [45], multiple-pursuer/single-evader [46–48], and multiple-pursuer/multiple-evader

[49]. The focus of this research is the statistical analysis of a single missile and single target

system in the terminal homing phase of the engagement [50]. (In this dissertation, the term

‘interceptor’ and ‘missile’ are used interchangeably.) The mid-course maneuvers [51] are

assumed to be finished as the simulation begins. The two vehicles are traveling toward each

other on a near-collision course, with the missile maneuvering to intercept the target [52,53]

and the target maneuvering evasively [54]. The interceptor is equipped with an inertial

navigation system aided by absolute position measurements, as well as range, angle, and

range rate measurements relative to the target [55, 56]. The missile uses a proportional

navigation guidance law to engage the target [57, 58]. Some examples of this might be a

missile attempting to pursue a moving target [59–61], or an unmanned aerial vehicle (UAV)

attempting to intercept another UAV [62–64]. A complex target engagement may include

terminal constraints on the miss distance, crossing angle of the trajectories, and the body
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pointing angle. References [65–70] provide suitable simulation equations to model these

constraints.

3.3 Event Triggers

Mode changes based on state estimates are an important aspect of many GN&C systems.

For missile engagements, actuator saturation is an important mode change to consider. A

journal paper by Dr. Geller et al. incorporates these mode changes into LinCov by using

event triggers [71]. This dissertation will refer to this type of analysis as Trigger LinCov.

The example problem used in Geller’s research is a terminal phase initiation maneuver for

an orbital rendezvous. The maneuvering vehicle and the resident space object (RSO) are

in coelliptic orbits, and the vehicle is below and behind the RSO. When the estimated

elevation angle reaches the threshold value, a maneuver is executed to put the chaser on

the v-bar of the RSO orbit. This type of maneuver trigger has been used in many space

missions, including the Gemini and Apollo programs. The reason that mode changes can

be difficult for any covariance analysis is that they do not happen at a fixed point in time.

Depending on the disturbances for a given run, the trigger may happen slightly early or

slightly late. For a Monte Carlo analysis, the state covariance will start to balloon once the

earliest trajectory begins to change modes but the others haven’t yet. It is more informative

to “reset” the Monte Carlo clock to zero at the time of the mode change. A Trigger LinCov

sim doesn’t run multiple instances of the trajectory, so the event trigger theory linearizes

the effect of resetting the clock by using a “covariance shaping matrix.” The shaping matrix

is calculated using the partial derivatives of the system and the constraint equation. These

partial derivatives are also used to calculate the difference between nominal trigger time and

specific run trigger time, and the variance of when the event could occur. For a complex

system with multiple mode changes, it is possible to cascade multiple event triggers as long

as the shaping matrix is applied at each event [72]. Geller’s initial derivation for the event

trigger equations makes the assumption that the truth state vector and the navigation state

vector are the same size. Dr. Rose shows a more generic derivation of the event trigger

equations in his dissertation that does not make this same assumption [36].
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3.4 Basic Statistical Linear Covariance Analysis

One current method for approximating the statistics of nonlinear stochastic systems

is the Covariance Analysis Describing Function Technique (CADET), which utilizes the

principles of statistical linearization. Since CADET uses statistical linearization, but not an

augmented state vector, it is categorized as Basic Statistical LinCov for this dissertation.

Taylor’s CADET handbook provides a comprehensive guide to applying the CADET method

to missile guidance systems [73]. Basic Statistical LinCov methods provide a valuable

comparison to Basic LinCov methods. This section summarizes statistical linearization and

the CADET analysis method and the related literature.

A common nonlinearity in missile guidance problems is actuator saturation. (See fig.

3.2) One method for approximating a saturation operator is to use statistical linearization.

y

x

lim

lim

Fig. 3.2: Saturation Operator

The basic idea behind statistical linearization is to replace a nonlinearity in a system with

an equivalent gain. Since the approximation still depends on properties of the input signal,

it is sometimes call quasi-linearization [4]. This process is accomplished by minimizing the

mean-squared error signal. A Booton paper on nonlinear control [74] derives the equations

for statistical linearization, and the derivation is shown below.

Consider a nonlinear system with input x(t) and output y(t). It is desired to linearize

the nonlinear portion of the system by replacing nonlinear equations with an equivalent gain
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Keq. An error equation can be defined as follows:

e = y −Keqx (3.2)

The next step is to solve for the gainKeq to minimize the error. First, define the mean-squared

value of the error equation in order to minimize the magnitude of the error:

e2 = (y −Keqx)
2 = y2 − 2Keqxy +K2

eqx
2 (3.3)

The value of Keq that minimizes e2(t) is found by taking the derivative of e2 with respect to

Keq and setting it equal zero.

∂e2

∂Keq
= 2xy + 2Keqx

2 = 0 (3.4)

Keq =
xy

x2
(3.5)

Assuming a probability density function (PDF) of p(x), the expected value of Keq is:

E[Keq] =

∫∞
−∞ xyp dx∫∞
−∞ x2p dx

(3.6)

Assuming that the input x(t) is zero-mean Gaussian, the PDF is:

p(x) =
1

σx
√
2π

exp

[
−x2

2σ2x

]
(3.7)

If σx is defined as the rms value of x, then the denominator of equation 3.6 is simplified as:

1

σx
√
2π

∫ ∞

−∞
x2 exp

[
−x2

2σ2x

]
dx = σ2x (3.8)

Plugging this result into equation 3.6:

Keq =
1

σ3x
√
2π

∫ ∞

−∞
xy exp

[
−x2

2σ2x

]
dx (3.9)
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Equation 3.9 is an important result because it represents the equivalent gain of a Gaussian

input to a nonlinear function. It will approximate the behavior of the nonlinear function.

This type of linearized gain equation is called a random input describing function (RIDF) [75].

RIDFs for many common nonlinearities are listed in [76].

Now that the general gain function has been derived, it is possible to plug in a specific

nonlinear function. Zarchan shows the step-by-step process to calculating the RIDF for a

limiter or saturation operator in [6]. The resultant equivalent gain equation is:

Keq = 2

[
1

σx
√
2π

∫ lim

−∞
exp

[
−x2

2σ2x

]
dx

]
− 1 (3.10)

Equation 3.10 can be approximated by the following equations:

Keq = 1− 2√
2π

exp
[−lim2

2σ2x

][
c1ω − c2ω

2 + c3ω
3

]
(3.11)

where

c1 = .4361836 c2 = .1201676 c3 = .937298

and

ω =
1

1 + .33267lim
σx

Note that ‘lim’ refers to the limit of the saturation operator, shown in Fig. 3.2. Equations

3.11 and 3.10 show that the statistical linearization is dependent on the value of the limit,

and the standard deviation of the input. Fig. 3.3 shows the behavior of the limiter RIDF:

as the normalized standard deviation of the input σx
lim goes to zero, the equivalent gain Keq

goes to one, with a roll off as the standard deviation increases.

One benefit of SL is that it does not require the derivatives of the nonlinear function [9].

This is very useful for discontinuous functions. The drawback is that PDF of the input must

be known. This form of linearization is different than the LinCov linearization method,

which uses a 1st-order Taylor series approximation.
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Keq

σx

lim

1-

Fig. 3.3: Saturation Equivalent Gain Function

Basic Statistical LinCov, combines statistical linearization with Basic LinCov analysis.

This method can also be called CADET [4]. The linearized system is fed into the covariance

propagation and update equations. The CADET method is compared to the Monte Carlo

method in [77], and used to estimate the Pk for an engagement in [78]. CADET can also be

used in uncertainty propagation in orbital mechanics [79].
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CHAPTER 4

LINCOV THEORETICAL DEVELOPMENT

This dissertation uses a Monte Carlo simulation to validate the LinCov simulations.

The trajectories being studied in the target engagement problem have small dynamic

uncertainties, making them impossible to model perfectly. A common way to simulate these

uncertainties is to add disturbance accelerations to the dynamics, which limits the ability to

analyze the scenario deterministically. Hence, sample-based (e.g., Monte Carlo) methods are

employed for computing the statistics of the vehicle dispersion about the nominal trajectory.

Figure 4.1 illustrates the flow diagram for a typical Monte Carlo system architecture. The
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Fig. 4.1: Monte Carlo Simulation Architecture

truth state, x, is simulated by the computer by adding noise to measurements and dynamics.

The navigation state, x̂, is the flight computers’ best estimate of the truth state, and is

calculated by the flight computer using the output from the sensors. The truth or navigation

dispersions are calculated by subtracting the truth state or navigation state from the nominal

reference trajectory (NRT). The navigation errors are calculated by subtracting the truth

state from the navigation state or the truth dispersions from the navigation dispersions.

Note that this dissertation uses navigation error and navigation error interchangeably. If
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the truth state vector has different states than the navigation state vector, the truth state

is transformed to the true-navigation state, xn, using the mapping function xn = m(x).

This allows a direct subtraction of the vectors. In the literature, the navigation error is

also sometimes called the “true navigation error,” indicating that the calculation directly

accounts for the truth data. The flight computer maintains its own calculation of the

navigation error called the filter covariance. This is calculated with an EKF, which has

access to truth data through imperfect measurements. If the flight computer has an accurate

model of the system dynamics and accurate measurements, the true navigation error and

the filter covariance statistics are very similar. The subsystems in Figure 4.1 are further

defined in this section and Chapter 6.

4.1 Nonlinear Modeling

In this research, the nonlinear equations are run in a Monte Carlo simulation and

compared to a linear covariance simulation to show that the linearization of the problem is

accurate. The general equations are shown below, and the specific models for the missile

engagement problem are defined in Chapter 6. The dynamics are a function of the state, x,

actuator input, û, and disturbance accelerations, w in the form of process noise.

ẋ = f(x,û) +Bw (4.1)

Including process noise in the differential equations allows the simulation to model perturba-

tions due to uncertainty in the dynamics. In general, the noise driving the system dynamics

is zero-mean Gaussian white noise with PSD Sw.

E [w(t)] = 0 (4.2)

E
[
w(t)w(t′)T

]
= Swδ(t− t′) (4.3)

where δ(t− t′) is the Dirac delta function.
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The Kalman filter has access to continuous inertial measurements (accelerometers and

gyros) corrupted by zero-mean Gaussian white noise with Power Spectral Density Sη. A

generic continuous inertial measurement equation is written as:

ỹ = c(x, û) + η (4.4)

With noise characteristics:

E [η(t)] = 0 (4.5)

E
[
η(t)ηT (t′)

]
= Sηδ(t− t′) (4.6)

where δ(t− t′) is the Dirac delta function.

The discrete measurements are composed of two parts: the measurement function h(x),

and the measurement noise. The measurement noise ν is zero-mean Gaussian white noise

with covariance Rν . The general discrete measurement equations are:

z̃k = h(xk) + νk (4.7)

E [νk] = 0 (4.8)

E
[
νkν

T
k′
]
= Rνδ(k − k′) (4.9)

where δ(t− t′) is the Kronecker delta function.

The acceleration of the chaser is created by an actuator that is following a specific

control law. The control law is a function of the estimated navigation state vector.

û = ĝ(x̂) (4.10)
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4.1.1 Kalman Filter Equations

The navigation state vector propagation equation is a function of the navigation state

vector and the continuous inertial measurements as is known as model replacement. The

true navigation state xn is the representation of the navigation state using the truth values.

The function m(x) maps the truth state to the true navigation state.

˙̂x = f̂(x̂,ỹ) (4.11)

xn = m(x) (4.12)

The filter covariance is propagated with the following equation.

˙̂
P = [F̂x̂ + F̂ỹĈx̂]P̂ + P̂ [F̂x̂ + F̂ỹĈx̂]

T + F̂ỹŜηF̂
T
ỹ + B̂ŜwB̂

T (4.13)

Where F̂x̂ is the partial derivative of the navigation state dynamics ˙̂x with respect to the

navigation state x̂ and F̂ỹ is the partial derivative of the navigation state dynamics ˙̂x with

respect to the inertial measurements ỹ . The state estimate update equation is:

x̂+k = x̂−k + K̂k[z̃k − ĥ(x̂k)] (4.14)

The state covariance is updated after a measurement using the Joseph form (Eq. 5-82

in [22]).

P+
k = [I − K̂kĤk]P̂

−
k [I − K̂kĤk]

T + K̂kR̂νK̂
T
k (4.15)

K̂k = P̂−
k Ĥ

T
k [ĤkP̂

−
k Ĥ

T
k + R̂ν ]

−1 (4.16)

Where K is the Kalman gain and R represents the measurement noise covariance matrix of

the measurement being processed.
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4.2 Linear Modeling

The procedure used for linearizing a function about a nominal trajectory is defined as

follows:

Define the input to a function as the sum of the nominal input plus a perturbation.

Substitute the input (nominal plus perturbation) into the function and linearize using a first-

order Taylor series expansion. The result is Jacobian derivatives multiplied by perturbation

values. Note that the perturbations in the truth state vector and the navigation state vector

are called dispersions.

The results of the linearization provide information about how perturbations in the

input of a function affect the output.

4.2.1 Nominal Reference Trajectory Definition

The nominal truth state x represents the nominal trajectory, or the trajectory that

occurs during a simulation run without disturbance accelerations or measurement noise.

The nominal continuous inertial measurement y is an accelerometer reading without any

uncertainty. This is the same as the true specific force on the vehicle. The nominal discrete

measurement z is a measurement that is not corrupted by noise. The nominal navigation

state x̂ is equal to the nominal truth state if the vectors contain the same elements. If

not, the nominal navigation state is equal to navigation state calculated with the nominal

truth values. This is called the nominal true navigation state, or xn. The nominal actuator

command u is the command profile that would be used during the nominal trajectory.

4.2.2 Control Linearization

This section shows the linearization process for the control law. All the subsequent

subsystems use this same technique.

First, define the perturbations:

û = u+ δû x̂ = x̂+ δx̂ (4.17)
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To linearize the control, let

u ≡ ĝ(x̂) (4.18)

Substitute equation 4.18 and equation 4.17 into equation 4.10.

u+ δû = ĝ(x̂+ δx̂) (4.19)

Expand to first-order using a Taylor series expansion.

u+ δû ≈ ĝ(x̂) +
∂ĝ

∂x̂

∣∣∣∣∣
x̂

(x̂− x̂) (4.20)

Canceling like terms and simplifying:

δû = Ĝx̂δx̂ (4.21)

Equation 4.21 is the control linearization equation.

4.2.3 Linearization of Truth State Dynamics

The truth dynamics are a function of the truth state vector and the actuator.

ẋ = f(x, û) (4.22)

Defining these perturbations:

x = x+ δx û = u+ δû (4.23)

The nominal dynamics are a function of the nominal truth state and the nominal control

equation:

ẋ = ẋ+ δẋ (4.24)
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where

ẋ ≡ f(x,u) (4.25)

Substitute this into equation 4.1

ẋ+ δẋ = f(x+ δx,u+ δû) + Bw (4.26)

The first-order Taylor series expansion is written as

ẋ+ δẋ ≈ f(x,u) +
∂f

∂x

∣∣∣∣∣
x,u

(x− x) +
∂f

∂û

∣∣∣∣∣
x,u

(û− u) +Bw (4.27)

Canceling like terms and simplifying

δẋ = Fxδx+ Fûδû+ Bw (4.28)

Substituting equation 4.21 into this result yields the linearized truth dynamics.

δẋ = Fxδx+ FûĜx̂δx̂+Bw (4.29)

4.2.4 Inertial Measurements

Defining the perturbations:

ỹ = y + δỹ û = u+ dû x = x+ δx (4.30)

Next, linearize the inertial measurements. Let

y ≡ c(x,u) (4.31)

Following the linearization process in the previous sections,

y + δỹ = c(x+ δx,u+ δû)+η (4.32)
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The first-order Taylor series expansion is as follows,

y + δỹ ≈ c(x,u) +
∂c

∂u

∣∣∣∣∣
u

(u− u) +
∂c

∂x

∣∣∣∣∣
x

(x− x) + η (4.33)

Canceling like terms and simplifying:

δỹ = Cûδû+ Cxδx+ η (4.34)

δỹ = CûĜx̂δx̂+ Cxδx+ η (4.35)

4.2.5 Discrete Measurements

The measurements are linearized and measurement noise is added:

z̃ = h(x) + ν (4.36)

Defining the perturbations:

x = x+ δx (4.37)

z̃ = z+ δz (4.38)

Defining the nominal measurement:

z = h(x) (4.39)

Substituting these into the discrete measurement equation 4.36 yields

z+ δz = h(x+ δx) + ν (4.40)

This equation is expanded with a first-order Taylor series approximation.

h(x) + δz ≈ h(x)+
∂h

∂x

∣∣∣∣∣
x

(x− x) + ν (4.41)
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Hx =
∂h

∂x

∣∣∣∣∣
x

(4.42)

δz = Hxδx+ ν (4.43)

Equation 4.43 is the form that is needed to linearize the measurements about a nominal

trajectory.

4.2.6 Navigation State Dynamics

The navigation state dynamics are a function of the navigation state vector and the

continuous inertial measurement vector. In other words, the navigation filter uses model

replacement to estimate the dynamics of the states.

˙̂x = f̂(x̂, ỹ) (4.44)

Defining these perturbations:

x̂ = x̂+ δx̂ ỹ = y + δỹ (4.45)

The nominal navigation state dynamics are a function of the nominal navigation state vector

and the nominal continuous inertial measurement vector.

˙̂x = ẋ+ δ ˙̂x (4.46)

where

ˆ̇x = ẋn ≡ f̂(x̂,y) (4.47)

Now linearize the navigation dynamics following the linearization process in the previous

sections:

ẋn + δ ˙̂x = f̂(x̂+ δx̂,y + δỹ) (4.48)
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The first-order Taylor series expansion is:

ẋn + δ ˙̂x≈ f̂(x̂,y) +
∂ f̂

∂x̂

∣∣∣∣∣
x,y

(x̂− x̂) +
∂ f̂

∂ỹ

∣∣∣∣∣
x,y

(ỹ − y) (4.49)

Canceling like terms,

δ ˙̂x≈ ∂ f̂

∂x̂

∣∣∣∣∣
x,y

(x̂− x̂) +
∂ f̂

∂ỹ

∣∣∣∣∣
x,y

(ỹ − y) (4.50)

Simplifying,

δ ˙̂x= F̂x̂δx̂+ F̂ỹδỹ (4.51)

Substituting in equation 4.35 and simplifying,

δ ˙̂x = F̂x̂δx̂+ F̂ỹ(CûĜx̂δx̂+ Cxδx+ η) (4.52)

δ ˙̂x = F̂x̂δx̂+ F̂ỹCûĜx̂δx̂+ F̂ỹCxδx+ F̂ỹη (4.53)

Combining like terms yields

δ ˙̂x = (F̂x̂ + F̂ỹCûĜx̂)δx̂+ F̂ỹCxδx+ F̂ỹη (4.54)

4.2.7 Measurement Update Equations

The truth states and nominal truth states are unaffected by discrete measurements. In

equation form, this is written as

x+ = x− (4.55)

Expanding this,

x+ + δx+ = x− + δx− (4.56)

Thus, the truth state dispersion is unchanged as well

δx+ =δx− (4.57)
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The navigation state dispersions are changed by a discrete measurement update.

Introducing truth and navigation state dispersions:

xk = xk + δxk (4.58)

x̂k = x̂k + δx̂k (4.59)

Substituting these equations into equations 4.14 and 4.36, and noting that x+
n,k = xn,k = x−

n,k

xn,k + δx̂+
k = xn,k + δx̂−

k + K̂k

(
h(xk + δxk) + νk − ĥ(xn,k + δx̂k)

)
(4.60)

The first-order Taylor series expansion is:

xn,k + δx̂+
k ≈ xn,k + δx̂−

k + K̂k

(
h(xk ) +

∂h

∂x

∣∣∣∣∣
x

(x− x)) + νk − ĥ(xn,k ) +
∂ĥ

∂x̂

∣∣∣∣∣
xn

(x̂− x̂)

)
(4.61)

Canceling like terms and simplifying (assuming h(xk) = ĥ(xn,k))

δx̂+
k = [I − K̂kĤx̂,k]δx̂

−
k + K̂kHx,kδx

−
k + K̂kνk

(4.62)

4.2.8 True Navigation Errors

The true navigation state mapping function is linearized with equation 4.12.

xn = m(x) (4.63)

Defining the perturbations:

xn = xn + δxn x = x+ δx (4.64)

Substituting the equations from 4.64 into 4.63:

xn + δxn = m(x+ δx) (4.65)



34

The first-order Taylor series expansion is written as:

xn + δxn≈ m(x) +
∂m

∂x

∣∣∣∣∣
x

δx (4.66)

Simplifying:

δxn=Mxδx (4.67)

Rearranging:

Mx =
δxn

δx
(4.68)

The true navigation error is defined as

e = x̂−m(x) (4.69)

Adding in the nominal values and dispersions:

e+ δe = xn + δx̂−m(x+ δx) (4.70)

The first-order Taylor series expansion

e+ δe = xn + δx̂−m(x)−Mxδx (4.71)

Simplifying

δe = δx̂−Mxδx (4.72)

4.3 Augmented State Linear Covariance Theory

The control, dynamics, and measurement equations are linearized about the NRT

to calculate the truth and navigation dispersion from the NRT. The truth dispersion δx

is the difference between the state values of the NRT and the actual truth values. The

position dispersion indicates how far away the vehicle is from the nominal position. The

navigation state dispersion δx̂ is the difference between the estimated state and the nominal
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estimated state. Equations 4.1, 4.4, 4.10, and 4.11 are linearized using a 1st-order Taylor

series approximation to produce the following propagation equations:

δẋ = Fxδx+ FûĜx̂δx̂+ Bw (4.73)

δ ˙̂x =
[
F̂x̂ + F̂ỹCûĜx̂

]
δx̂+ F̂ỹCxδx+ F̂ỹη (4.74)

The upper case letters represent a partial derivative taken with respect to the subscript

vector and evaluated at the nominal trajectory. For example, Fx = ∂f
∂x

∣∣
x
, Ĝx̂ = ∂ĝ

∂x̂

∣∣
x
, and

F̂ỹ = ∂f̂
∂ỹ

∣∣
y
.

The linear discrete update equations are the following:

δx+
k = δx−

k (4.75)

δx̂+
k = [I − K̂kĤx̂,k]δx̂

−
k + K̂kHx ,kδx

−
k + K̂kν (4.76)

Note that the truth dispersions are not changed by a measurement update.

4.3.1 Augmented State Covariance Equations

With the linearized system defined, it is possible to write the truth and navigation state

propagation and update equations in a compact form using the augmented state vector.

The augmented state vector and associated differential equations allow the simulation to

efficiently propagate and update the estimation error covariance and the truth dispersion

covariance.

X =

 δx

δx̂

 (4.77)

The augmented state vector X is zero mean with covariance CA:

E[X] = 0 E[XXT ] = CA (4.78)
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The dynamics and update equations for the augmented state vector X are shown below.

Ẋ = FX+ Gη +Ww (4.79)

Xk
+ = AkX

−
k + Bkνk (4.80)

where

F =


Fx FûĜx̂

F̂ỹCx F̂x̂ + F̂ỹCûĜx̂


m×m

G =

 0n×ny

F̂ỹ


m×ny

W =

 Bn×nw

0n̂×nw


m×nw

(4.81)

Ak =


In×n 0n×n̂

K̂kHx,k In̂×n̂ − K̂kĤx̂,k


m×m

Bk =

 0n×nz

K̂k, n̂×nz


m×nz

(4.82)

The CA matrix contains the information needed for performance evaluation of the simulation.

Note that the propagation and update equations below have a similar form to the Kalman

filter covariance equations.

ĊA = FCA + CAFT + GSηGT +WSwWT (4.83)

CA(t
+
i ) = AiCA(t

−
i )A

T
i + BiRνBT

i (4.84)

4.3.2 Performance Evaluation

The truth dispersion covariance Dtrue and the true estimation error covariance Ptrue

equations are used to evaluate the overall performance of the closed-loop system. These

quantities are obtained from the augmented state covariance matrix using identity matrices,

zero matrices, and the Mx matrix. The Mx matrix is the partial derivative of the mapping

functionm(x) that maps the truth states to the true-navigation states. Dtrue is the covariance
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of the truth state dispersions.

Dtrue = E[δxδxT ] = [In×n 0n×n̂]CA[In×n 0n×n̂]
T (4.85)

The covariance of the true estimation errors is given by the following equations.

Ptrue = E[eeT ]

Ptrue = E[{δx̂−Mxδx} {δx̂−Mxδx}T ]

Ptrue = [−Mx In̂×n̂]CA[−Mx In̂×n̂]
T (4.86)

4.4 Event Trigger Theory

The goal of event trigger theory is to incorporate the effect of a discrete event into the

LinCov computed statistics. The theory relies on a constraint equation that is a function of

the navigation state vector x̂. This equation is linearized along with truth and navigation

state dynamics to calculate the time dispersion δte of the event, the variance of the event

time σ2te, and the covariance shaping matrix Φ. The augmented state covariance matrix

is pre- and post- multiplied by the shaping matrix to incorporate the discrete event into

the LinCov simulation. This section will derive the general event trigger equations for an

augmented state linear covariance simulation.

The constraint of the event trigger Ψ is a function of the navigation state at event time

te.

Ψ[x̂(te)] = 0 (4.87)

The nominal event time t̄e is the simulation time when the constraint equation is met for

the NRT. At this nominal event time t̄e, the truth state and navigation state for a given

Monte Carlo run is different than the reference trajectory state. The truth and navigation

states at time t̄e are written as follows:

x(t̄e) = x̄(t̄e) + δx(t̄e) (4.88)
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x̂(t̄e) = m
(
x̄(t̄e)

)
+ δx̂(t̄e) (4.89)

The derivative of equation 4.88 with respect to time is written as:

ẋ(t̄e) = ˙̄x(t̄e) + δẋ(t̄e) (4.90)

Using the chain rule, the time derivative of equation 4.89 is:

˙̂x(t̄e) =Mx(t̄e) ˙̄x(t̄e) + δ ˙̂x(t̄e) (4.91)

Since the discrete event constraint equation will not be met at the nominal time t̄e, it is

useful to know what the truth and navigation states is at the actual event time te. Utilizing

a first-order Taylor series approximation, the truth and navigation states at the time of the

event is by written with the following equations:

x(te) ≈ x(t̄e) + ẋ(t̄e)[te − t̄e] = x(t̄e) + ẋ(t̄e)δte (4.92)

x̂(te) ≈ x̂(t̄e) + ˙̂x(t̄e)[te − t̄e] = x̂(t̄e) + ˙̂x(t̄e)δte (4.93)

The time dispersion equation represents the difference between the nominal event time and

the truth event time:

δte = te − t̄e (4.94)

Combining equations 4.94, 4.90, and 4.88 with equation 4.92:

x(te) ≈ x̄(t̄e) + δx(t̄e) + ˙̄x(t̄e)δte + δẋ(t̄e)δte (4.95)

Dropping the second order term yields:

x(te) ≈ x̄(t̄e) + δx(t̄e) + ˙̄x(t̄e)δte (4.96)
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The navigation state at the time of the event is approximated similarly:

x̂(te) ≈ m
(
x̄(t̄e)

)
+ δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e)δte (4.97)

This navigation state equation is substituted back into the original constraint equation,

equation 4.87.

Ψ[x̂(te)] = Ψ
[
m
(
x̄(t̄e)

)
+ δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e)δte

]
= 0 (4.98)

Linearizing this with a first-order Taylor series approximation:

Ψ
[
m
(
x̄(t̄e)

)
+ δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e)δte

]
≈

Ψ
[
m
(
x̄(t̄e)

)]
+
∂Ψ[x̂(te)]

∂x̂(te)

∣∣∣
x̄

[
δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e)δte

]
(4.99)

Note that this linearization includes the non-contemporaneous term and the contemporaneous

term (See Fig. 1 of [80]).

By definition, the constraint equation of the nominal trajectory is zero at the nominal

event time:

Ψ
[
m
(
x̄(t̄e)

)]
= 0 (4.100)

Applying this to equation 4.99:

Ψx̂(t̄e)δx̂(t̄e) + Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)δte = 0 (4.101)

Solving for the time dispersion δte:

δte = −
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e) (4.102)

Since the constraint equation, i.e. the event is always a scalar, this inverse is just a

scalar inversion. This time dispersion equation is important because it is the first-order
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approximation of the difference between the NRT event time and the actual event time in a

given Monte Carlo run. Rewriting the time dispersion equation in terms of the augmented

state vector form and substituting it into the expectation operator will yield the variance of

the time dispersions. The augmented state form of the time dispersion equation is written

as:

δte =

[
01×n −

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

] δx(t̄e)

δx̂(t̄e)

 (4.103)

Or,

δte = Ω(t̄e)X(t̄e) (4.104)

Substituting in δteδt
T
e into the expectation operator yields:

E[(δte)
2] = E[{Ω(t̄e)X(t̄e)}{Ω(t̄e)X(t̄e)}T ] (4.105)

Simplify this expression by removing the non-stochastic elements from the expectation

operator:

E[(δte)(δte)
T ] = Ω(t̄e)E[X(t̄e)X(t̄e)

T ]Ω(t̄e)
T (4.106)

LinCov Equation 4.78 states that the covariance of augmented state vector at the nominal

event time is CA(t̄e) :

CA(t̄e) = E[X(t̄e)X(t̄e)
T ] (4.107)

Therefore, to first-order, the time variance of a defined discrete event is written as:

σ2δte = Ω(t̄e)CA(t̄e)Ω(t̄e)
T (4.108)

Note that the variance in event time is a function of the constraint partial derivative, the

dynamics partial derivative, and the augmented state vector covariance, all evaluated at

time t̄e.

Next, the covariance shaping matrix Φ is derived. The first step is to find the truth

and navigation state at the time of the event by substituting equation 4.102 into equations
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4.96 and 4.97.

x(te) = x̄(t̄e) + δx(t̄e)− ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e) (4.109)

x̂(te) = m
(
x̄(t̄e)

)
+ δx̂(t̄e)−Mx(t̄e) ˙̄x(t̄e)

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e) (4.110)

Note that by definition the expected value of the truth and navigation states at the event

time are equal to the expected values of the nominal states at the nominal event time:

E[x(te)] = E[x̄(t̄e)] (4.111)

E[x̂(te)] = E[m(x̄(t̄e))] (4.112)

Breaking down the augmented state vector:

X(te) =

 δx(te)

δx̂(te)

 =

 x(te)− x̄(t̄e)

x̂(te)−m(x̄(t̄e))

 (4.113)

Equations 4.109 and 4.110 are arranged into augmented state space form by substituting

them into equation 4.113:

X(te) =

=

 x̄(t̄e) + δx(t̄e)− ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e)− x̄(t̄e)

m(x̄(t̄e)) + δx̂(t̄e)−Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e)−m(x̄(t̄e))


(4.114)

Cancelling like terms:

X(te) =

 δx(t̄e)− ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e)

δx̂(t̄e)−Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e)

 (4.115)
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Each term is multiplied by δx or δx̂, therefore, X(te) is expressed in state space form:

X(te) = Φ(t̄e)X(t̄e) (4.116)

Where Φ is the covariance shaping matrix

Φ(t̄e) =

 In×n − ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

0n̂×n In̂×n̂ −Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

 (4.117)

In summary:

X(te) =

 In×n − ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

0n̂×n In̂×n̂ −Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)


 δx(t̄e)

δx̂(t̄e)

 (4.118)

This expression is important because is shows that the augmented state vector at the

event time is a function of the partial derivatives of the system, evaluated at the nominal

event time. This covariance shaping matrix is used to update the LinCov simulation at the

time of the discrete event. The augmented state covariance Ca is updated by Φ at the time

of the NRT event time t̄e with the following equation:

C+
a (t̄e) = Φ(t̄e)C

−
a (t̄e)Φ(t̄e)

T (4.119)

Trigger LinCov is a powerful LinCov tool: it is used to fully incorporate the effects of

navigation based discrete events into a LinCov simulation.
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CHAPTER 5

STATISTICAL LINEARIZATION THEORETICAL DEVELOPMENT

We can see one distinct advantage that statistical linearization has over the

Taylor series expansion; it does not require the existence of derivatives of

f(x). Thus, a large number of nonlinearities–relays, saturation, threshold,

etc. can be treated by this method without having to approximate

discontinuities at corners in f(x) by smooth functions. ... The resulting

statistical approximation for f(x) is considerably more accurate than the

Taylor series, from a statistical point of view.

-Price [9]

Estimation of a strictly linear system is a straightforward and well documented process.

Assuming the probability density function (PDF) of the input is known, an optimal estimator

can be derived [22] and the performance statistics of the system can be calculated exactly.

Corporeal systems, however, often have nonlinear elements. Thus, for a GN&C problem, it is

often necessary to use Monte Carlo analysis methods to calculate performance statistics, or

approximate the behavior of a nonlinear system by linearizing it. This chapter first defines

the traditional linearization process used in LinCov analysis, then defines the process for

statistical linearization. An example problem is then developed where a nonlinear saturation

equation is linearized using both methods.

Statistical linearization, also sometimes called “quasi-linearization” [4], is sometimes

confused with unscented Kalman filtering or particle filtering, as these methods both provide

statistical data by approximating nonlinear systems with methodically chosen data points.

The Unscented Kalman Filter is well suited for systems with nonlinear dynamics [81] and

the particle filter is well suited for nonlinear systems with non-Gaussian inputs [82]. Both of

these nonlinear analysis techniques are computation heavy [83]. This dissertation is focused

on computation efficient linear covariance applications, therefore the Unscented Kalman

Filter and the particle filter will not be considered.
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5.1 Probability Theory

Before developing the linearization process traditionally used in covariance analysis,

it is important to review the role that random variables and probability density functions

play in statistical analysis. According to Maybeck, a random variable is a real-valued point

function which assigns a real scalar value to each point in the domain of the function (ch.

3.2 of [22]). This dissertation focuses on Gaussian random variable inputs, as they provide a

suitable model for many random processes found in nature, and they provide manageable

models upon which to base estimators and controllers (pg. 101 of [22]). This assumption is

not particularly restrictive for most missile engagement problems. While it is true that the

output of a nonlinear function with non-Gaussian random variable inputs is not Gaussian, it

is often approximately valid to make this assumption (ch. 1 of [73]). According to the central

limit theorem, a random variable becomes more Gaussian as it passes through a low-pass

filter. Therefore, by filtering the nonlinear dynamics of the system, it can be assumed that

the Gaussian input assumption is valid. Additionally, if a system output is a sum of random

variables, its distribution approaches a Gaussian distribution, regardless of the PDFs of the

inputs (ch. 3.9 of [22]). This is often true for systems with as few as three additive random

variables [84].

Gaussian random variable inputs are frequently used in aerospace GN&C problems

to represent uncertainty, disturbances, or biases in the system dynamics, control, or mea-

surements. The random variable x is governed by a probability density function fx that

specifies the probability that the random variable will take a given range of values. One

notable property of a PDF is:

prob[x1 < x < x2] =

∫ x2

x1

fx(ξ) dξ (5.1)

This calculation is important for missile engagement analysis, as it can used to calculate

probability of a successful engagement based on the miss distance statistics of the engagement.

The expectation operator is used with the PDF of a random variable to calculate the mean

and variance of the output of the random variable. The expectation operator returns the
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average value of a function of the random variable. The expectation operator is defined as:

E[g(x)] =

∫ ∞

−∞
g(ξ)fx(ξ) dξ (5.2)

One reason Gaussian random variables are useful is that specifying the first two moments

completely describes the PDF. The first moment of a random variable, also called the mean,

is written as

µx = E[x] =

∫ ∞

−∞
ξfx(ξ) dξ (5.3)

The second moment, or variance of a random variable is

Px = σ2x = E[(x− µx)
2] =

∫ ∞

−∞
(ξ − µx)

2fx(ξ) dξ (5.4)

Figure 5.1 illustrates the PDF for a Gaussian random variable with mean value µx and

variance σ2x. Note that the total area under the curve of a PDF is 1. The equation for the

PDF of a Gaussian random variable is:

fx(ξ) =
1

σx
√
2π
e
− 1

2σ2
x
(ξ−µx)2

(5.5)

ξ

fx(ξ)

µx

σx

Fig. 5.1: Gaussian Probability Density Function
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Nonlinear differential equations govern the motion of many types of aerospace vehicles.

Examining the effect linear operators have on Gaussian random variables gives insight into

how nonlinear operators affect them. If H(x) is a linear transformation of random variable

input x with mean µx and variance Px, the output y is written as

y = H(x) = A+Bx (5.6)

Note that a linear transformation of a Gaussian random variable x outputs a Gaussian

random variable y (ch. 3.10 of [22]). The statistics of y can be computed with the following

equations

µy = E[y] =

∫ ∞

−∞
(A+Bξ)fx(ξ) dξ = A+Bµx (5.7)

Py = E[(y − µy)
2] =

∫ ∞

−∞
(A+Bξ −A−Bµx)

2fx(ξ) dξ =

∫ ∞

−∞
(Bξ −Bµx)

2fx(ξ) dξ

Py = B2Px (5.8)

If a nonlinear operation is performed on a Gaussian random variable x, the output y

is not strictly Gaussian. The statistics of y can be computed with Monte Carlo methods,

or approximated with linear methods. If the nonlinearity does not dominate the system

dynamics, it is common to calculate a 1st-order Taylor series approximation to the function.

As long as the linearization is performed in a somewhat linear region, then the statistics

of the output y are still accurate. However, if the derivative of the nonlinear function is

discontinuous, a more robust linearization technique called statistical linearization can be

used.
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5.2 Traditional Linearization

Previous LinCov research utilizes a 1st-Order Taylor series approximation for linearizing

the dynamics, control, and measurements of a system [7,10,36]. This linearization can be

demonstrated with the following equations:

y = f(x) ≈ f(µx) +
∂f

∂x

∣∣∣∣
µx

(x− µx)

y ≈ f(µx) + Fx(x− µx) (5.9)

where f(x) is a nonlinear function of the Gaussian random variable x and Fx is the partial

derivative of the function f(x) with respect to x evaluated at the mean value of x, µx.

Substituting this result into equations 5.3 and 5.4 yields the approximated mean and variance

of the output y.

µy = E[y] ≈
∫ ∞

−∞
[f(µx) + Fx(ξ − µx)]fx(ξ) dξ

= f(µx)

∫ ∞

−∞
fx(ξ) dξ + Fx

∫ ∞

−∞
(ξ − µx)fx(ξ) dξ

= f(µx)

∫ ∞

−∞
fx(ξ) dξ + Fxµx − Fxµx

µy ≈ f(µx) (5.10)

The second moment, or variance of a y is approximated as:

Py = E[(y − µy)
2] ≈

∫ ∞

−∞
[f(µx) + Fx(ξ − µx)− f(µx)]

2fx(ξ) dξ

=

∫ ∞

−∞
[Fx(ξ − µx)]

2fx(ξ) dξ = F 2
x

∫ ∞

−∞
[(ξ − µx)]

2fx(ξ) dξ

Py ≈ F 2
xPx (5.11)
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5.3 Statistical Linearization

Statistical linearization is the process of calculating the optimal linear coefficients that

approximate a nonlinear function with a random variable input. The goal of the optimization

is to calculate the linear function that most accurately approximates the nonlinear function

statistically. This process is derived and explained in [9,73,74,85,86]. It is called “statistical”

linearization because in addition to relying on the behavior of the nonlinear function, it also

relies on the PDF of the random variable input (and thereby its statistical quantities mean

and variance). A traditional linearization only takes into account the slope of the nonlinear

function.

The statistical linearization equations are derived in Section 3.4 of this dissertation.

However, a more general derivation is shown in this section. The derivation in Section 3.4

assumed that the input to the nonlinear function is zero-mean, and that the nonlinearity is

anti-symmetric, i.e., f(−x) = −f(x). In this specific case, one of the nonlinear coefficients

cancelled out to zero. The derivation in this section applies to any nonlinear function. Since

different reference documents for Statistical Linearization use different notations, table 5.1

lists a few of the different notations styles according to the document author.

Table 5.1: Statistical Linearization Gain Nomenclature Reference

Reference Expectation Gain Expectation Vector RIDF Gain QLSDM

Clawson f̌ f̌ n N

Taylor [73] f̂ f̂ n N

Gelb [4] Nmm Nr

Zarchan [6] Keq

Booten [74] Keq

Price [9] f̂ f̂ n1 Nf

Example Problem a a b B

As an example to show where the statistical linearization gains/coefficients fit into the

linearized equations, consider the generic nonlinear system y = f(x) which is approximated
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with statistical linearization by the scalar equation

y ≈ a+ b(x− µx) (5.12)

or the vector form

y ≈ a+B(x− µx) (5.13)

In the vector form, a is a vector, and B is a partial derivative matrix that is multiplied

by the vector (x − µx). In statistical linearization, the first term a is a vector called the

expectation vector (or expectation gain a if it is a scalar). It represents the expected value

of the nonlinear function. The second term B is a multiplicative term called the quasi-linear

system dynamics matrix (QLSDM) (or describing function gain b for a scalar [9, 73]). The

B term represents the partial derivative of a with respect to µx (See Eq. 1.2-10 of [73]).

This dissertation uses a modified version of Taylor’s notation [73]. Note that the statistical

linearization equations 5.12 and 5.13 are similar in form to the traditional linearization

equation 5.9.

In this dissertation, the expectation vector is written as f̌ , or f̌ for a scalar. The

quasi-linear system dynamics matrix is referred to as N , and the scalar describing function

gain is referred to as n. For a state vector x with multiple elements, this distinction between

scalar form and vector form is made because not every element of a system is driven by

nonlinear dynamics. The statistical linearization derivations in this chapter assume the

scalar form, and Section 5.5 will address the vector form.

The process for deriving the statistical linearization equations is as follows: define

a nonlinear equation y = f(x), set a linear approximation function fa(x), combine them

into an error function e(x), minimize the error function e given fa, and then solve for the

coefficients of fa.

Consider the nonlinear function y = f(x) and its approximation fa(x)

y = f(x) ≈ fa(x) = f̌ + n(x− µx) (5.14)
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It is desired to calculate the values of f̌ and n that minimize the error with the nonlinear

function f(x), therefore the error function is proposed:

e = f(x)− fa(x) = f(x)− f̌ − n(x− µx) (5.15)

The cost function J to minimize is

J = E[e2] = E

[(
f(x)− f̌ − n(x− µx)

)2]
(5.16)

Expanding terms and simplifying:

J = E[f(x)2] +E[f̌2] +E[n2(x− µx)
2]−E[2f(x)f̌ ]−E[2f(x)n(x− µx)] +E[2f̌n(x− µx)]

J = E[f(x)2]+f̌2+n2E[(x−µx)2]−2f̌E[f(x)]−2nE[f(x)(x−µx)]+2f̌nE[(x−µx)] (5.17)

The following conditions must be met for J to be a minimum: the Hessian matrix JH must

be positive definite and the following equations must be true:

∂J

∂f̌
= 0 (5.18)

∂J

∂n
= 0 (5.19)

Noting that E[(x− µx)]=0 and utilizing the variance equation 5.4, the partial derivatives of

5.17 are

∂J

∂f̌
= 2f̌ − 2E[f(x)] = 0 (5.20)

∂J

∂n
= 2nPx − 2E[f(x)(x− µx)] = 0 (5.21)

JH =

 ∂2J
∂f̌2

∂2J
∂f̌∂n

∂2J
∂n∂f̌

∂2J
∂n2

 =

 2 0

0 2Px

 (5.22)
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Since the Hessian matrix JH is positive definite, and the first derivatives are set to zero, it

is assured that the system of equations is at a minimum. Solving 5.20 and 5.21 for f̌ and n,

f̌ = E[f(x)] (5.23)

nPx = E[f(x)(x− µx)]

n = E[f(x)(x− µx)]P
−1
x (5.24)

These results agree with the results from [87]. In summary, y is approximated by fa(x)

y = f(x) ≈ fa(x) = f̌ + n(x− µx) (5.25)

and the approximate statistics of y are (compare with equations 5.7 and 5.8)

µy ≈ E[f(x)] = f̌ (5.26)

Py ≈ n2Px =

(
E[f(x)(x− µx)]

)2

P−1
x (5.27)

Equations 5.23-5.27 are the general equations for statistical linearization. They show

that the linearization of the nonlinear function y depends on the mean, variance, and PDF

of the random variable input x. Solving these equations using a specific PDF and nonlinear

function yields the random input describing function, or RIDF. Tables of RIDFs for common

nonlinearities can be found in [76].

5.4 Statistical Linearization Example: The Saturation Function

This section derives the statistical linearization equations for the saturation function

shown in Figure 5.2. This function is also called a limiter function. The variable ac represents

the commanded acceleration, and am represents the realized acceleration. The saturation
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am

ac

amax

amax

Fig. 5.2: Saturation Function

equation is written as

y = f(x) =

 x, if |x| ≤ amax

amaxsgn(x), if |x| > amax

 (5.28)

Gaussian random variable theory has been extensively developed, and it is common

to use the probability function PF (x), the probability integral PI(x), and a third function

G(x) as auxiliary functions for Gaussian random variables (See ch. 4 of [73]). The equation

for the probability function PF (x), illustrated in Figure 5.3a, is:

PF (x) =
1√
2π
e−

x2

2 (5.29)

The probability integral PI(x) is shown in Figure 5.3b and is written as:

PI(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ =
1

2

(
1 + erf(

x√
2
)
)

(5.30)

The third auxiliary function G(x), illustrated in Figure 5.4, is defined as:

G(x) = xPI(x) + PF (x) =

∫ x

−∞
PI(ξ) dξ (5.31)

The function G(x) goes to zero as x→ −∞ and approaches the line y = x as x→ ∞.
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x

PF (x)

0a)
x

PI(x)

0

1

b)

Fig. 5.3: Probability Function And Probability Integral

x

G(x)

0

y = x

Fig. 5.4: Probability Auxiliary Function G(x)

Properties of the Gaussian auxiliary functions include:

PF (−x) = PF (x) (5.32)

PI(−x) = 1− PI(x) (5.33)

G(−x) = G(x)− x (5.34)

erf(x) = 2PI(
√
2x)− 1) =

2√
π

∫ x

0
e

−ξ2

2 dξ (5.35)
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5.4.1 Saturation Statistical Linearization Derivation

The statistical linearization equations from Section 5.3 are:

y ≈ f̌ + n(x− µx) (5.36)

f̌ = E[f(x)] (5.37)

n = E[f(x)(x− µx)]P
−1
x (5.38)

Substituting equations 5.2 and 5.5 into equation 5.37:

f̌ = E[f(x)] =

∫ ∞

−∞
f(ξ)

1

σx
√
2π
e

−(ξ−µx)2

2σ2
x dξ (5.39)

Substituting equation 5.28 into equation 5.39 and separating into three integral terms:

f̌ =
1

σx
√
2π

{∫ −amax

−∞
−amaxe

−(ξ−µx)2

2σ2
x dξ +

∫ amax

−amax

ξe
−(ξ−µx)2

2σ2
x dξ +

∫ ∞

amax

amaxe
−(ξ−µx)2

2σ2
x dξ

}

=
−amax

σx
√
2π

∫ −amax

−∞
e

−(ξ−µx)2

2σ2
x dξ +

1

σx
√
2π

∫ amax

−amax

ξe
−(ξ−µx)2

2σ2
x dξ +

amax

σx
√
2π

∫ ∞

amax

e
−(ξ−µx)2

2σ2
x dξ

(5.40)

Next, utilize the following substitution:

u =
x− µx
σx

(5.41)

Calculating the integration limits of 5.40 with the substitution yields

x1 = −amax → u1 = −amax + µx
σx

(5.42)

x2 = amax → u2 =
amax − µx

σx
(5.43)
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Substitute equations 5.41-5.43 into equation 5.40:

f̌ =
−amax√

2π

∫ u1

−∞
e−

u2

2 du+
1√
2π

∫ u2

u1

(uσx + µx)e
−u2

2 du+
amax√
2π

∫ ∞

u2

e−
u2

2 du (5.44)

Substituting equation 5.30 into 5.44 and utilizing property 5.32 yields

f̌ = −amaxPI(u1) +
1√
2π

∫ u2

u1

(uσx + µx)e
−u2

2 du+ amaxPI(−u2) (5.45)

Breaking up the integral term:

= amaxPI(−u2)− amaxPI(u1) +
σx√
2π

∫ u2

u1

ue
−u2

2 du+
µx√
2π

∫ u2

u1

e
−u2

2 du (5.46)

Evaluating the integrals:

f̌ = amaxPI(−u2)− amaxPI(u1)−
σx√
2π

[
e

−u22
2

]
+

σx√
2π

[
e

−u21
2

]

+
µx
2

[
erf(

u2√
2
)

]
− µx

2

[
erf(

u1√
2
)

]
(5.47)

Utilizing properties 5.35 and 5.33:

f̌ = amax − amaxPI(u2)− amaxPI(u1)− σxPF (u2) + σxPF (u1) + µxPI(u2)− µxPI(u1)

=
amax

σx
+G(u1)−G(u2) (5.48)

Applying property 5.34 and simplifying yields the final result for f̌

f̌ =
amax

σx
+G(−u1) + u1 −G(u2) (5.49)

f̌ = σx

[
G

(
amax + µx

σx

)
−G

(
amax − µx

σx

)]
− µx (5.50)
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Next, the describing function gain n is calculated using Corollary 1.2-10 from [73]. The

corollary is written as:

n =
∂f̌

∂µx
(5.51)

This simplifies the process of calculating the expectation operator in equation 5.24. According

to equation 5.31,

∂G(x)

∂x
= PI(x) (5.52)

Substituting equation 5.52 and the corollary from 5.51 into equation 5.50:

n =

[
PI

(
amax + µx

σx

)
+ PI

(
amax − µx

σx

)]
− 1 (5.53)

Equations 5.50 and 5.53 match the results from Taylor chapter 4 [73] and the RIDF table

found in Gelb Appendix E [76]. The gains are used to approximate equation 5.28 with the

linear function

y ≈ f̌ + n(x− µx) (5.54)

Although the derivations for these RIDFs can be extensive, they are very powerful once

they are computed. They do not require the derivatives of the nonlinear function, which

means that they can handle functions with discontinuous derivatives and periodic functions.

Statistical linearization yields similar results to traditional linearization in linear regions,

and provides a minimum error linearization in regions with a sharp corner, discontinuity,

or otherwise strong nonlinearity (e.g. trigonometric functions). Nonlinearities such as a

relay, saturation, or dead zone, are particularly well suited to statistical linearization. For

these functions, the statistical linearization is significantly more accurate than traditional

linearization.
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5.5 CADET Theoretical Development

The Covariance Analysis Describing Function Technique (CADET) is a method of

analysis that was developed at The Analytic Sciences Corporation in the 1970s. CADET

utilizes statistical linearization to perform traditional covariance analysis on a system. The

purpose of CADET is to efficiently calculate the output statistics of nonlinear systems that

have stochastic inputs. CADET was originally developed for analyzing missile engagement

problems, but it is applicable for any nonlinear system. This chapter reviews the traditional

linear and nonlinear system analysis equations, and develops the general CADET equations.

The equations in this chapter can be found in [4, 73,77,85].

5.5.1 Traditional Linear Analysis

Consider the general linear system where x is the state vector and ẋ is sufficient to

represent the system behavior.

ẋ = Fx+ Bw (5.55)

The vector w is assumed to be a zero-mean Gaussian white noise vector with power spectral

density (PSD) Q. The differential equation for the state covariance of the system is

Ṗ = FP + PF T +BQB (5.56)

Equation 5.56 represents a direct method of analysis, meaning the results can be calculated

without simulating multiple trajectories and computing ensemble statistics. Since the system

is linear, the exact statistics of the system are computed. This form of analysis is the basis

for approximating the statistics of nonlinear systems.
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5.5.2 Nonlinear Analysis and CADET Equations

The fundamental idea of CADET is similar to other covariance analysis methods (See

Section 3.1.1). Using linearization methods, the mean and covariance of a state vector with

random variable inputs are propagated. CADET is different than other methods because it

uses statistical linearization methods rather than traditional linearization methods. With

the statistical linearization coefficients f̌ and n already derived in Chapter 5, the CADET

equations are straightforward. The CADET technique assumes the state variables are

approximately jointly normal [73], and usually assumes a Gaussian input.

Consider the general nonlinear system where x is the state vector and ẋ is sufficient to

represent the system behavior.

ẋ = f(x) +Bw (5.57)

where f(x) contains a linear component and a nonlinear component

f(x) = Flinx+Afnl(x) (5.58)

In this example, Flin is the partial derivative of the linear dynamics with respect to the

state vector and is called the linear dynamics matrix. The function fnl(x) is the nonlinear

function in the state, and the matrix A assigns the nonlinear function to the correct state

values. Note that the noise vector w is a zero mean Gaussian white noise process with PSD

Q. This system is approximated using statistical linearization with the equation

f(x) ≈ f̌ +N(x− µ) (5.59)

where µ is the mean value of the state vector and f̌ contains the linear and nonlinear

expected values:

f̌ = E[f(x)] = Flinµ+Af̌ (5.60)

The matrix N , which also contains linear and nonlinear information, is used in the function

approximation in equation 5.57, as well as in the covariance propagation. N is called the



59

quasi-linear system dynamics matrix (QLSDM), and it represents the linearized version of

the system. N is comparable in a linear system to the partial derivative of the dynamics with

respect to the state vector (e.g., F from equation 5.55). The QLSDM is formally defined as

(see equation 1.2-6 of [73]):

N = E[f(x)(x− µ)T ]P−1 (5.61)

The matrix N identical to Flin, but with the scalar describing function gain n substituted in

for the element with the nonlinearity. Or in other words, the scalar statistical linearization

coefficient n is an element of the matrix N , and N contains linearized dynamics from the

nonlinear function f(x). The coefficients f̌ and n are calculated using the random input

describing function for the nonlinearity (see equations 5.50 and 5.53).

Using the statistically linearized dynamics, the differential equations for the mean and

state covariance are given by equations 5.62 and 5.63 below.

µ̇ = f̌ (5.62)

Ṗ = NP + PNT +BQBT (5.63)

Implementing equations 5.62 and 5.63 in a simulation is similar to traditional covariance

analysis, with the extra step of calculating f̌ and n prior to calculating ṁ and Ṗ . Extra

care must be taken to apply f̌ and n to the correct elements of the state vector x. A flow

chart for implementing CADET is shown in Figure 5.5.

5.5.3 CADET Example: Missile Engagement Problem

This section provides a step-by-step walk through of implementing CADET into a

missile engagement covariance analysis. The example under consideration is from the original

CADET journal paper by Gelb and Warren [2]. (See also ch. 2 of [73]) This problem is

a dispersion analysis problem, without any measurements or navigation states. The state
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5.50, 5.53

Fig. 5.5: CADET Flow Chart

vector for this problem is

x =



y

ẏ

am,un

at


4×1

(5.64)

where y is the lateral relative separation, ẏ is the lateral relative velocity, am,un is the

unlimited lateral missile acceleration, and at is the target lateral acceleration. The dynamics

of the system are:

ẋ =



ẏ

ÿ

ȧm,un

ȧt


=



ẏ

at − am

ac−am,un

τm

− 1
τt
+ wt


(5.65)

The realized missile acceleration am has a maximum value of amax. This is implemented

with a saturation function on am,un. The realized missile acceleration am is related to the
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unlimited missile acceleration am,un with the equation

am =

 am,un, if |am,un| ≤ amax

amaxsgn(am,un), if |am,un| > amax

 (5.66)

The missile guidance law is defined as

ac =
k

tgo

(
ẏ +

y

tgo

)
(5.67)

where the time remaining in the engagement is tgo. The missile acceleration is driven by a

low pass filter on the acceleration command ac, and the target acceleration is driven by an

exponentially correlated random variable (ECRV). The noise input for the target random

walk wt is zero mean Gaussian white noise with PSD Q. The time-constant of the missile

actuator is τm, and the time-constant of the target acceleration is τt. The parameters for

this example problem are defined in table 5.2.

Table 5.2: Example Problem Parameter Values

Parameter Value Units Description

tf 10 s length of simulation

τm 1 s missile acceleration time-constant

τt 1 s target acceleration time-constant

σss,at 15g m
s2

3σ steady state target ECRV acceleration

k 3 control law gain

amax 10g m
s2

missile max acceleration

The first step for the simulation is to define the initial mean µ0 and covariance P0 of

the state vector (See Figure 5.3). The next step for CADET is to begin the integration loop

of the simulation. Each subsequent step is repeated until t = tf . First, the scalar statistical

linearization coefficients f̌ and n are calculated using equations 5.50 and 5.53. Next, the

vector f̌ and matrix N are calculated with equations 5.60 and 5.61. Then, µ̇ and Ṗ are



62

Table 5.3: Example Problem Initial Values

State m0 Units 3σx

y 0 m 1

ẏ 0 m
s 0.1

am,un 0 m
s2

0.01

am 0 m
s2

0.01

computed with equations 5.62 and 5.63. The equation substitutions are shown below:

f̌ = Flinµ+Af̌

f̌ =



0 1 0 0

0 0 0 1

k
t2goτm

k
tgoτm

− 1
τm

0

0 0 0 − 1
τt


µ+



0

−1

0

0


f̌ (5.68)

The matrix Flin is the 4× 4 linear dynamics matrix and the 4× 1 matrix A is the nonlinear

gain assignment matrix. The combined expectation vector f̌ represents the linearized system,

with both linear and approximated nonlinear elements included. The mean propagation

equation µ̇ is:

µ̇ = f̌ (5.69)

The state covariance is propagated with the quasi-linear system dynamics matrix N .

Note the similarity between the QLSDM N and the system dynamics matrix Fideal for a

system without the saturation.

N =



0 1 0 0

0 0 −n 1

k
t2goτm

k
tgoτm

− 1
τm

0

0 0 0 − 1
τt


(5.70)
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Fideal =



0 1 0 0

0 0 −1 1

k
t2goτm

k
tgoτm

− 1
τm

0

0 0 0 − 1
τt


(5.71)

The state covariance propagation equation is:

Ṗ = NP + PNT +BQBT (5.72)

With µ̇ and Ṗ calculated, the mean and covariance are propagated forward using an rk4

integrator.

The results of the CADET simulation are shown in Figure 5.6. The CADET results

are compared to a 1000 run Monte Carlo simulation and to traditional covariance analysis

(TCA). The figure illustrates the 3σ relative position dispersions of the engagement. The

dispersions grow in the first few seconds as the target accelerates, and shrink toward the end

as the missile attempts to engage. The 3σ dispersions at tf represent the 3σ miss distance of

the engagement. The amax value chosen for this problem was chosen to represent a moderate

saturation, therefore, the 3σ miss distance for this engagement is somewhat high. The TCA

results in Figure 5.6 show that traditional linearization does not account for the missile

saturation, and is overly-optimistic on the final miss distance. The CADET results line up

well with the Monte Carlo results.

An extension to this example problem is to examine the performance of CADET under

varying levels of saturation. The results of this analysis are shown in Figure 5.7. The missile

maximum acceleration amax is varied from 1g to 40g. The statistical linearization results

agree with the Monte Carlo results, highlighting the accuracy of the statistical linearization

for the full domain of acceleration inputs. The TCA results show that traditional linearization

is not able to handle saturations, predicting a low miss distance even during high saturation

runs. The Monte Carlo simulation takes about 2 hours to run while the CADET simulation

runs in about 8 seconds.
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Fig. 5.7: CADET Miss Distance Vs. amax

This chapter defined the statistical linearization method for approximating a nonlinear

system, and showed the process for calculating the linear coefficients. Next, the Covariance

Analysis Describing Function Technique (CADET) for applying statistical linearization to

traditional covariance analysis was described. For a simple missile engagement problem, the

CADET method replicates nonlinear Monte Carlo simulation results with a fraction of the
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computing time. In Chapter 7 of this dissertation, this method will be applied to augmented

state linear covariance analysis.
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CHAPTER 6

LINCOV FOR MISSILE ENGAGEMENTS

The missile engagement problem is a new application for augmented state linear

covariance analysis (LinCov). Therefore, it is important to establish a baseline simulation

upon which future research can expand from. Once it is shown that the LinCov framework

can accurately model the standard setup of sensors and dynamics in the missile engagement

problem, it is possible to conduct further LinCov research on the actuator saturation

problem, advanced guidance laws, game theory, cluttered environment target assessment,

or numerous other areas of interest. This chapter introduces the specifics of the missile

engagement problem and how to model it for analysis. In Section 6.1, the engagement

problem is introduced, and a few characteristic parameters of missile engagements, crossing

angle and closest approach distance (miss distance), are defined. Next, in sections 6.2-6.4,

the equations and models used in the Monte Carlo and the LinCov simulation are defined.

Section 6.5 details the steps required to validate a LinCov simulation against a Monte Carlo

simulation, and shows the validation results for the LinCov simulation. Finally, Section 6.6

presents the results of an error budget study that investigates the sensitivity of the miss

distance to sensor parameters and initial conditions.

6.1 Engagement Problem Introduction

As discussed in Chapter 3, the goal of an engagement is usually not a direct collision,

but to pass within a certain distance of the target with the correct crossing angle and body

angle. The maximum range that will still result in lethal damage to the target depends on

the vulnerabilities of the target and fragmentation pattern of the ordnance, which properties

are not publicly available. For purposes of demonstration, this chapter uses 10 meters

as the threshold for lethality. Therefore, in order to meet the design requirement of a

successful engagement, the 3σ miss distance of the Monte Carlo simulation must remain

under 10 meters. Figure 6.1 illustrates the crossing angle γ of the engagement. The blue

arrow represents the interceptor velocity vector v, while the red arrow represents the target
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Interceptor

Target

v

vt

−vt

γ

Fig. 6.1: Crossing Angle Of An Engagement

velocity vector vt. The crossing angle γ is defined as the angle between the interceptor

velocity vector and the negative target velocity vector. In this dissertation, the crossing

angle γ is always acute for near head-on engagements, and a direct head-on engagement has

a crossing angle of 0 degrees. The equation for crossing angle is written as follows:

| sin γ| = ∥vt × (−v)∥
∥vt∥∥v∥

−π
2

≤ γ ≤ π

2
(6.1)

The time of closest approach (TOCA) happens when the magnitude of the relative

position vector starts increasing. This happens when the relative position vector rrel is

perpendicular to the relative velocity vector vrel. This is written in equation form as

rrel · vrel = 0. This concept is illustrated in figures 6.2 and 6.3. Figure 6.2 shows the

engagement before TOCA. The yellow arrow represents the current relative position vector,

and the purple arrow represents the current relative velocity vector. The green line shows

what the miss distance will be if both vehicles remain on the same trajectory. As the

engagement progresses to TOCA, it transitions to look like Figure 6.3, where rrel and vrel

are perpendicular. Mathematically, the closest approach distance, or miss distance, is defined

as the magnitude of the relative position vector at TOCA. The equation for miss distance is

written as

dmiss = ∥rt(tf )− r(tf )∥ (6.2)
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Interceptor

Target

rreldmiss

vrel

vt

v

Fig. 6.2: Missile Configuration Before Time Of Closest Approach

Interceptor

Target

rrel

dmissvrel

vt

−v

Fig. 6.3: Missile Configuration At Time Of Closest Approach

where tf is the time of closest approach.

6.2 Simulation Assumptions

This simulation in this chapter relies on several assumptions that simplify the engagement

problem. The first major assumption is that the engagement is a 2D point mass problem.

The 2D assumption is not unrealistic, as most modern guidance laws are implemented in a

single maneuver plane at a time [57]. Additionally, a point mass assumption is sufficient to

present most missile engagement theory [8]. For examples of 6DOF LinCov applications,

see [34,36,37]. Gravity is neglected for this simulation, as it is assumed that by the time the
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interceptor reaches homing phase, it has found trim conditions to fly horizontally. Drag is

also neglected for this simulation, which is representative of missile engagement dynamics

during terminal homing (see page 3-3 of [73]). By design, this chapter assumes unlimited

actuator acceleration capability for the missile, as actuator saturation is the subject of

interest in upcoming chapters.

6.3 Monte Carlo Simulation

This section defines the analytical models for the Monte Carlo simulation, which are

used to validate the LinCov simulation.

6.3.1 Truth State

The truth state vector contains position and velocity states for both vehicles, acceleration

for the target, and bias states for the sensors. The bold font indicates a column vector, the

length of which is described for clarity. For this 2-D problem, each position, velocity, and

acceleration vector has two elements. The state vector has a total of 19 elements. The state

vector is defined as:

x =



r2×1

v2×1

rt2×1

vt2×1

at2×1

b7×1


17×1

(6.3)
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where b is the sensor bias vector with the following elements (see Section 6.3.3):

b =



bacc2×2

bgps2×2

br

brr

blos


7×1

(6.4)

6.3.2 Truth State Dynamics

The state vector dynamics are generalized with the following nonlinear function:

ẋ = f(x,û) +Bw

The dynamics are a function of the state x, the actuator commands û, and the noise vector

w. The time derivative equations of the state are:

ṙ = v (6.5)

v̇ = û+wm (6.6)

ṙt = vt (6.7)

v̇t = at (6.8)

ȧt = −αat +ws (6.9)

ḃacc = −bacc

τacc
+wacc (6.10)

ḃgps = −bgps

τgps
+wgps (6.11)

ḃr = −br
τr

+ wr (6.12)
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ḃrr = −brr
τrr

+ wrr (6.13)

ḃlos = −blos
τlos

+ wlos (6.14)

The missile acceleration dynamics are modeled as the guidance law acceleration û with

added disturbance acceleration noise wm. The sensors biases are modeled as exponentially

correlated random variables (ECRVs) [22]. The target acceleration is modeled as Singer

motion [88]. Singer motion is similar to an ECRV, but with a different PDF. It relies on

a time-constant τα and the acceleration maneuver variance σsing. Note that the original

Singer paper [88] uses the reciprocal of the time-constant, α = 1
τα
. The time-constant τα

corresponds with the amount of time a typical maneuver would take. This can vary from

τα = 2 seconds to τα = 60 seconds or more depending on whether the evasive maneuver

is modeling high frequency turbulence, a quick maneuver, or a slow turn (in this case,

1
2 > α > 1

60). The target can accelerate at maximum acceleration amax in either direction

with probability pmax, or it can encounter zero acceleration with probability p0. Additionally,

it can accelerate at a level between +amax and −amax according to a uniform probability

distribution. The probability density function of the Singer acceleration is shown in Fig.

6.4. The acceleration maneuver variance σsing is calculated with the following equation.

a
amax

pmax

amax

pmax

p(a)

p0

Fig. 6.4: Singer Noise Probability Density Function

σ2sing =
a2max

3

(
1 + 4pmax − p0

)
(6.15)
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The noise vector of the full system is written as:

w =



wm2×1

ws2×1

wacc2×1

wgps2×1

wr

wrr

wlos


11×1

(6.16)

The noise is modeled as zero-mean Gaussian white noise, except for the target acceleration

maneuver noise, which is non-Gaussian zero-mean white noise. The power spectral density

values of the noise vector are found in equation 6.17 below.

Sw11×11 = blkdiag
(
SwpI2×2, 2ασ

2
singI2×2,

2σ2acc,ss
τacc

I2×2,
2σ2gps,ss
τgps

I2×2, ...

2σ2r,ss
τr

,
2σ2rr,ss
τrr

,
2σ2los,ss
τlos

)
(6.17)

The steady state covariance of each sensor is σss, and the acceleration maneuver variance of

the target is σsing. The ‘blkdiag’ function creates an 11× 11 diagonal matrix with the input

matrices. The noise assignment matrix B is

B =



02×2 02×2 02×7

I2×2 02×2 02×7

04×2 04×2 04×7

02×2 I2×2 02×7

07×2 07×2 I7×7


17×11

(6.18)
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The guidance law for the simulation û is the standard proportional navigation law [8]

and is computed with the navigation state vector x̂. The law calculates n̂c, the magnitude

of the acceleration perpendicular to the line of sight vector that is needed for the interceptor

to maintain a collision course with the target. The guidance law equation is:

û =n̂c

 −sin(λ̂)

cos(λ̂)


2×1

where n̂c = k̂pV̂c
ˆ̇
λ (6.19)

Target

Missile Inertial Frame

AT Frame

y
at

x
at

x
i

y
i

v

v
t

n
c

r
rel

Fig. 6.5: Target Engagement Geometry

The scalar k̂p is a unit-less gain, V̂c is the scalar closing velocity, λ̂ is the line-of-sight

angle, and
ˆ̇
λ is the scalar line-of-sight angle rate. Figure 6.5 illustrates the target engagement

geometry.

6.3.3 Sensor Truth Models

The flight computer has access to an accelerometer that measures the true specific force

on the vehicle v̇ corrupted by a first-order Markov process bias bacc and zero-mean Gaussian

white noise η. The accelerometer is modeled as a continuous measurement. The Gaussian

white noise in the sensor model η has a power spectral density (PSD) Sη.

ỹ = û+wm + bacc + η (6.20)



74

The remaining measurements update the state vector at discrete time intervals. In

general, the measurement z̃k = h(xk) + bk + νk represents a discrete measurement at time tk

corrupted by by a first-order Markov process bias bk and a zero-mean Gaussian white noise

νk. The GPS measurement gives the 2-D inertial position of the interceptor.

z̃gps = r+ bgps + νgps (6.21)

The range measurement provides the distance from the interceptor to the target.

z̃r = ||(rt − r)||+ br + νr (6.22)

The range rate measurement provides the time rate of change of the range from the interceptor

to the target.

z̃rr =
∂

∂t
||(rt − r)|| = irel · (vt − v) + brr + νrr (6.23)

where irel is the unit relative position vector. The line-of-sight angle measurement is the

angle from the inertial x-axis to the line-of-sight vector from the interceptor to the target.

z̃los =arctan
( irely
irelx

)
+ blos + νlos (6.24)

where components of the unit relative position vector from the interceptor to the target are

irelx and irely . The noise covariance for each sensor is found in the following equation:

Rν5x5 = diag
(
Rνgpsx , Rνgpsy , Rνr , Rνrr , Rνlos

)
(6.25)
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6.3.4 Navigation Filter Design Model

The navigation filter design model provides the basis for the filter propagation equations.

The design model is often simpler than the truth model, and the noise parameters of the

filter are sometimes different from the truth model as well. In this problem, the design

model differs from the truth model in several areas. The design model lacks a interceptor

or target acceleration state, and models the target velocity dynamics with Gaussian white

noise. Additionally, the design model uses model replacement for the interceptor velocity

dynamics instead of traditional dynamics [89,90].

xdm =



rdm2×1

vdm
2×1

rdmt2×1

vdm
t2×1

bdm
7×1


15×1

(6.26)

where

bdm =



bdm
acc

bdm
gps

bdmr

bdmrr

bdmlos


7×1

(6.27)

The design model dynamics are generalized with the nonlinear function

ẋdm = fdm(xdm, ỹdm) +Bdmwdm

Breaking down the design model dynamics:

ṙdm = vdm (6.28)
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v̇dm = ỹdm − bdm
acc − ηdm (6.29)

ṙdmt = vdm
t (6.30)

v̇dm
t = wdm

t (6.31)

ḃdm
acc = −bdm

acc

τdmacc
+wdm

acc (6.32)

ḃdm
gps = −

bdm
gps

τdmgps
+wdm

gps (6.33)

ḃdmr = − bdmr
τdmr

+ wdm
r (6.34)

ḃdmrr = − bdmrr
τdmrr

+ wdm
rr (6.35)

ḃdmlos = −
bdmlos
τdmlos

+ wdm
los (6.36)

The design model noise vector includes white noise from the sensor biases and disturbance

accelerations in the velocity dynamics. The design model noise vector is:

wdm =



wdm
t2×1

wdm
acc2×1

wdm
gps2×1

wdm
r

wdm
rr

wdm
los


9×1

(6.37)

The noise characteristics are as follows:

E
[
wdm(t)

]
= 0 (6.38)

E
[
wdm(t)wdm(t′)T

]
= Sdm

w δ(t− t′) (6.39)
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Sdm
w 9×9 = blkdiag

(
Sdm
wt
I2×2,

2σdm
2

acc,ss

τdmacc
I2×2,

2σdm
2

gps,ss

τdmgps
τdmgpsI2×2,

2σdm
2

r,ss

τdmr
,
2σdm

2

rr,ss

τdmrr
,
2σdm

2

los,ss

τdmlos

)
(6.40)

The design model noise mapping matrix Bdm is

Bdm =

 06×9

I9×9


15×9

(6.41)

The design model continuous accelerometer measurement is

ỹdm = v̇dm + bdmacc + ηdm (6.42)

The design model accelerometer noise ηdm has the following noise characteristics:

E[ηdm(t)] = 0 (6.43)

E[ηdm(t)ηdm(t′)] = Sdm
η δ(t− t′) (6.44)

6.3.5 Navigation State and Dynamics

The navigation state and dynamics equations are used by the flight computer to

propagate the navigation state. The navigation states include estimates of the position and

velocity of each vehicle, and the sensor biases.

x̂ =



r̂2×1

v̂2×1

r̂t2×1

v̂t2×1

b̂7×1


15×1

(6.45)
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where

b̂ =



b̂acc

b̂gps

b̂r

b̂rr

b̂los


7×1

(6.46)

The dynamics of the navigation states are equal to the design model dynamic equations

without the noise.

ˆ̇r = v̂ (6.47)

ˆ̇v = ỹ − b̂acc (6.48)

ˆ̇rt = v̂t (6.49)

ˆ̇vt = 0 (6.50)

ˆ̇
bacc = − b̂acc

τ̂acc
(6.51)

ˆ̇
bgps = − b̂gps

τ̂gps
(6.52)

ˆ̇
br = − b̂r

τ̂r
(6.53)

ˆ̇
brr = − b̂rr

τ̂rr
(6.54)

ˆ̇
blos = − b̂los

τ̂los
(6.55)
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6.3.6 Relative Position Covariance

For a target engagement, the final miss distance and crossing angle depend on the relative

states of the vehicles. The relative position covariance is calculated from inertial position

covariance using a linear transformation matrix A (See Section 3.10 of [22]). Equations 6.56

and 6.57 illustrate how to transform the navigation state vector into the relative position

vector, and the state covariance matrix into the relative position covariance matrix.

r̂rel2×1 = Arelx̂n̂×1 (6.56)

P̂rel2×2 = ArelP̂n̂×n̂A
T
rel (6.57)

where Arel is:

Arel =

[
−I2×2 02×2 I2×2 02×9

]
2×15

(6.58)

and P̂n̂×n̂ is the state error covariance matrix described in Section 4.1.1

6.3.7 Along-track Coordinate Frame

The along-track/cross-track coordinate frame informs the final engagement results more

effectively than the inertial frame. The x-axis of the along-track frame is in the direction of

the interceptor velocity vector (See Fig. 6.5). This is referred to as the along-track direction.

The y-axis of the along-track frame is perpendicular to the interceptor velocity vector, and

is called the cross-track direction. The relative position vector (Eq. 6.60) and the relative

position covariance matrix (Eq. 6.61) are rotated to the along-track/cross-track frame with

a direction cosine matrix T̂ a
i . Note that θ represents the counter-clockwise angle from the

inertial x-axis to the interceptor velocity vector.

T̂ a
i =

 cosθ̂ sinθ̂

−sinθ̂ cosθ̂

 (6.59)

r̂rel,a = T̂ a
i r̂rel (6.60)
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P̂rel,a = T̂ a
i P̂rel(T̂

a
i )

T =T̂ a
i AP̂A

T (T̂ a
i )

T (6.61)

6.3.8 Measurement Partial Derivatives

The Ĥ matrix for the measurements is the partial derivative of the measurement

equation ĥ with respect to the navigation state vector x̂. For example, Ĥgps is the partial

derivative of a 2× 1 measurement vector with respect to a 15× 1 state, therefore the result

is a 2× 15 matrix.

Ĥgps =

[
I2×2 02×8 I2×2 02×3

]
2×15 (6.62)

Hrange and Hrange-rate are computed in a similar manner

Ĥrange =
1

||(rt − r)||

[
−(rt − r)T 01×2 (rt − r)T 01×6 1 01×2

]
1×15 (6.63)

Ĥrr =

[
∂z̃rr
∂r

∂z̃rr
∂v

∂z̃rr
∂rt

∂z̃rr
∂vt

01×5 1 0

]
1×15 (6.64)

where

∂z̃rr
∂r

=
−(vt − v)T

||(rt − r)||
[
I2×2 − irel (irel )

T
]

(6.65)

∂z̃rr
∂v

= −iTrel (6.66)

∂z̃rr
∂rt

=
(vt − v)T

||(rt − r)||
[
I2×2 − irel (irel )

T
]

(6.67)

∂z̃rr
∂vt

= iTrel (6.68)

Ĥlos =
1

||(rt − r)||2

[
∂z̃los
∂r 01×2

∂z̃los
∂rt

01×8 1

]
1×15 (6.69)

where

∂z̃los
∂r

=

[
B(rt − r) −C(rt − r)

]
(6.70)

∂z̃los
∂rt

=

[
−B(rt − r) C(rt − r)

]
(6.71)

B = [ 0 1 ] (6.72)
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C = [ 1 0 ] (6.73)

These equations and partial derivatives are substituted into equations 4.13-4.15 to update

the state and covariance in the EKF.

6.3.9 EKF Covariance Propagation Partial Derivatives

The partial derivative of the navigation state dynamics equation f̂ with respect to the

navigation state x̂ is

F̂x̂ =



∂ ˙̂r
∂x̂2×15

∂ ˙̂v
∂x̂2×15

∂ ˙̂rt
∂x̂ 2×15

∂ ˙̂vt
∂x̂ 2×15

∂ ˙̂b
∂x̂ 7×15


=



02×2 I2×2 02×11

02×8 −I2×2 02×5

02×6 I2×2 02×7

02×15

07×8 I7×7Aτ̂


15×15

(6.74)

where

Aτ̂ = diag(− 1

τ̂acc1
,− 1

τ̂acc2
,− 1

τ̂gps1
,− 1

τ̂gps2
,− 1

τ̂r
,− 1

τ̂rr
,− 1

τ̂los
)

The partial derivative of the navigation state dynamics equation f̂ with respect to the inertial

measurement state ỹ is

F̂ỹ =



∂ ˙̂r
∂ỹ 2×2

∂ ˙̂v
∂ỹ 2×2

∂ ˙̂vt
∂ỹ 2×2

∂ ˙̂vt
∂ỹ 2×2

∂ ˙̂b
∂x̂ 7×2


=



02×2

I2×2

02×2

02×2

07×2


15×2

(6.75)
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The partial derivative of the design model inertial sensor with respect to the navigation

state vector is Ĉx̂:

Ĉx̂ =

[
∂ĉ

∂x̂

]
2×15

=

[
02×8 I2×2 02×5

]
(6.76)

The navigation noise assignment matrix B̂ is

B̂ =

 06×9

I9×9


15×9

(6.77)

The equations for F̂x̂, F̂ỹ,Ĉx̂, and B̂ are substituted into equation 4.13 to propagate the

EKF covariance:

˙̂
P = [F̂x̂ + F̂ỹĈx̂]P̂ + P̂ [F̂x̂ + F̂ỹĈx̂]

T + F̂ỹŜηF̂
T
ỹ + B̂ŜwB̂

T (6.78)

In the Monte Carlo simulation, the EKF covariance is used in the Kalman gain equation for

the navigation state measurement update (see Eq. 4.14).

6.4 LinCov Simulation

Augmented state linear covariance analysis utilizes an augmented state vector to

calculate statistics of truth dispersions and true estimation error. The augmented state

vector X is written as:

X =

 δx

δx̂

 (6.79)

The linearized dynamics from Chapter 4, equations 4.74 and 4.74, are restated for convenience:

δẋ = Fxδx+ FûĜx̂δx̂+ Bw (6.80)

δ ˙̂x =
[
F̂x̂ + F̂ỹCûĜx̂

]
δx̂+ F̂ỹCxδx+ F̂ỹη (6.81)
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In order for the simulation to calculate the statistics of the augmented state vector (see

equations 4.79-4.86), the partial derivatives from equations 6.80 and 6.81 are calculated at

each time step along the nominal trajectory. The equations for F̂x̂, F̂ỹ,Ĉx̂, and B are the

same as the Monte Carlo simulation equations 6.74-6.76 and 6.18. The remaining partial

derivatives are shown below:

Fx =



∂ṙ
∂x2×19

∂v̇
∂x2×19

∂ṙt
∂x 2×19

∂v̇t
∂x 2×19

∂ȧt
∂x 2×19

∂ḃ
∂x 7×19


=



02×2 I2×2 02×13

02×17

02×6 I2×2 02×9

02×8 I2×2 02×7

02×8 −αI2×2 02×7

07×10 I7×7Aτ


17×17

(6.82)

where

Aτ = diag(− 1

τacc1
,− 1

τacc2
,− 1

τgps1
,− 1

τgps2
,− 1

τr
,− 1

τrr
,− 1

τlos
)

Fû =


02×2

I2×2

013×2


17×2

(6.83)

Cx =

[
∂c

∂x

]
2×17

=

[
02×10 I2×2 02×5

]
(6.84)

Cû =

[
∂c

∂u

]
2×2

= [I2×2] (6.85)

Mx =

 I8×8 08×2 08×7

07×8 07×2 I7×7


15×17

(6.86)



84

The partial derivative of the guidance law û with respect to the navigation state vector

x̂ is Ĝx̂. The derivation is found in Appendix B.

Ĝx̂ =

 − sin (λ̂)

cos (λ̂)

 ∂
[
k̂pV̂c

˙̂
λ
]

∂x̂
+ k̂pV̂c

˙̂
λ
∂

∂x̂

 − sin (λ̂)

cos (λ̂)

 (6.87)

where

∂
[
k̂pV̂c

˙̂
λ
]

∂x̂
= k̂pV̂c

∂
˙̂
λ

∂x̂
+ k̂p

˙̂
λ
∂V̂c
∂x̂

(6.88)

and

∂

∂x̂

 − sin(λ̂)

cos(λ̂)

 =

 ∂ĝ1
∂x̂

∂ĥ1
∂x̂


2×15

(6.89)

The following substitutions are utilized for equations 6.87-6.89:

∂
˙̂
λ

∂x̂
=

1

||(r̂t − r̂)||2

[
−(v̂t − v̂)TAT −(r̂t − r̂)TA (v̂t − v̂)TAT (r̂t − r̂)TA 02×7

]
1×15

− (r̂t − r̂)TA(v̂t − v̂)

||(r̂t − r̂)||4

[
−2(r̂t − r̂)T 01×2 2(r̂t − r̂)T 01×9

]
1×15

(6.90)

∂V̂c
∂x̂

=
1

||(r̂t − r̂)||

[
(v̂t − v̂)T (r̂t − r̂)T −(v̂t − v̂)T −(r̂t − r̂)T 01×7

]
1×15

+
(r̂t − r̂)T (v̂t − v̂)

||(r̂t − r̂)||3

[
−(r̂t − r̂)T 01×2 (r̂t − r̂)T 01×9

]
1×15

(6.91)

∂ĝ1
∂x̂

= − cos(λ̂)
∂λ̂

∂f̂1

[C(r̂t − r̂)]

[
−B 01×2 B 01×9

]
[C(r̂t − r̂)]2

+ cos(λ̂)
∂λ̂

∂f̂1

[B(r̂t − r̂)]

[
−C 01×2 C 01×9

]
[C(r̂t − r̂)]2

(6.92)
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∂ĥ1
∂x̂

= − sin(λ̂)
∂λ̂

∂f̂1

[C(r̂t − r̂)]

[
−B 01×2 B 01×9

]
[C(r̂t − r̂)]2

+ sin(λ̂)
∂λ̂

∂f̂1

[B(r̂t − r̂)]

[
−C 01×2 C 01×9

]
[C(r̂t − r̂)]2

(6.93)

∂λ̂

∂f̂1
=

[C(r̂t − r̂)]2

[C(r̂t − r̂)]2 + [B(r̂t − r̂)]2
(6.94)

A =

 0 1

−1 0

 (6.95)

B =

[
0 1

]
, C =

[
1 0

]
(6.96)

With the partial derivatives calculated, it is possible to run equations 4.79-4.86.

Sections 6.3-6.4 serve as a template for implementing LinCov in a missile engagement

problem. These sections develop the equations for a missile engagement LinCov simulation,

and the Monte Carlo simulation that is used to validate it. They also define the state vector,

guidance law, sensor models, and partial derivatives needed for the simulation. The next

step is to validate the LinCov simulation with the Monte Carlo simulation.

6.5 LinCov Simulation Validation

Sections 6.5 and 6.6 contain a LinCov analysis for a missile engagement. When

developing a LinCov simulation, it is important to first validate the simulation by comparing

the results to a trusted nonlinear simulation method, usually the Monte Carlo method.

Once the LinCov is validated, it can replicate a full system analysis in a fraction of the

time. The LinCov simulation can be utilized to quantify system behavior in a variety of

ways: sensor trade studies, sensitivity analysis, guidance law analysis, etc. The computation

speed of LinCov enables full-domain study of system inputs in a way that is not possible

with sample based methods due to time constraints. This section proceeds as follows:
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sections 6.5.1-6.5.2 detail the steps needed to validate the LinCov covariance propagation

and update equations against a Monte Carlo simulation. The propagation and update

results for the LinCov simulation are then shown. Next, Section 6.5.3 defines the complex-

step derivative approximation method for validating partial derivatives, and employs the

method to numerically validate the LinCov partial derivatives. In Section 6.5.5, the full

LinCov simulation is run and compared to the Monte Carlo simulation. Finally, Section

6.6 presents an error budget study that investigates the sensitivity of the miss distance to

sensor parameters and initial conditions.

6.5.1 State Vector and Covariance Propagation Validation

In this section, the implementation of the differential equations for the system are

checked by plotting the nominal reference trajectories based on truth state dynamics and

filter state dynamics with all sources of error turned off [39]. The implementation of the

covariance propagation equations are validated by comparing them to Monte Carlo statistics.

For the state vector propagation comparison, the guidance law and actuator are active, but

the discrete measurement noise, accelerometer noise, and disturbance acceleration noise

sources are all disabled. This setup is also called the nominal reference trajectory. Figure 6.6

shows the position nominal reference trajectory for the missile and the target. It shows that
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the difference between the truth state and the navigation state is zero, as expected. This

indicates that the Monte Carlo equations for propagating the truth state and the navigation

state with all error sources turned off are working correctly.

Next, the target is initialized farther away, allowing the simulation to run longer. This

makes it easier to analyze the covariance propagation equations. The navigation state

covariance matrix is propagated using equation 4.13 with the specified x̂0 and P̂0. In this

validation setup, there are no measurements, and the initial conditions of the state for each

run vary according to the initial covariance values. Figure 6.7 illustrates a few example

plots of the covariance propagation and ensemble variance of the estimation error for each

state. The Monte Carlo simulation results should show that the ±3σ range contains the
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Fig. 6.7: Covariance Propagation Validation Plots

data 99.7% of the time. The covariance values are validated by comparing the ensemble

variance statistics of all the runs with the linearized covariance propagation results. The

plots in Figure 6.7 show that the implementation of the covariance propagation equation is

correct, as the ensemble statistics match up well with the filter covariance.
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6.5.2 Measurement Update Validation

The plots in this section show the results after implementing the measurement update

equations. The range, range rate and line-of-sight measurements are taken every 0.1 seconds

and the GPS measurement is taken every 1.0 seconds. The same checks used in the

propagation step can also be used here. In Figure 6.8, the covariance update appears to be

working correctly, as the ensemble statistics match up well with the filter covariance. The

saw tooth appearance of the plots shows that the system is updating at the correct rate.
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Fig. 6.8: Covariance Update Validation Plots

The residual [z̃i − Ĥ(ti)x̂(t
−
i )] is useful for validating the implementation of the discrete

measurement equations. The first term z̃i is the measurement from the sensor and the

Ĥ(ti)x̂(t
−
i ) term is the predicted measurement from the navigation state based on the first

term Taylor Series approximation of the measurement from equation 4.36. The residual has

a mean of zero and a covariance of HPHT +R (see section 5.4 of [22]). Figure 6.9 shows

that the residuals behave as expected and stay within the 3 sigma bounds. This is a good

check on the measurement implementation in the filter.
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Fig. 6.9: Measurement Residual Validation Plots

6.5.3 Partial Derivative Validation

The LinCov propagation and update equations rely on the partial derivatives of the

dynamics, control, and measurements. It is important to calculate them analytically where

possible and validate them numerically. The derivatives are shown in section 6.3.8. The

validation method that is used for the partial derivatives is the complex-step derivative

approximation (CSDA) approach described in [91]. In this method, complex variables are

used to calculate the first derivative using the following equation:

∂f

∂x
≈ Im[f(x+ ih)]

h
(6.97)

where f is the function, x is the independent variable, and h is the finite difference interval.

The CSDA method is more robust than other numerical methods because it does not use
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the subtration operation. This prevents subtractive cancellation errors and gives nearly

exact results when the step size is below 10−16. This method is also useful for equations

where the analytic derivatives are difficult or impossible to find. In this case, an accurate

derivative can be found numerically and used for the covariance equations. The following

section shows an example of CSDA method.

Complex-Step Derivative Approximation Example: Range Rate

The measurement equation for the range rate measurement is as follows:

zrr =
∂

∂t
||(rt − r)|| = (rt − r)

||(rt − r)||
· (vt − v) (6.98)

It is desirable to validate the partial derivative of the measurement with respect to the state

vector x. The measurement is a scalar therefore the derivative is a 1× 15 matrix:

Hrr =

[
∂zrr
∂r

∂zrr
∂v

∂zrr
∂rt

∂zrr
∂vt

01×5 1 0

]
1x15 (6.99)

The individual partials in equation 6.99 are defined in section 6.3.8.

The steps to complete the approximation are as follows: set the measurement to be a

complex variable, define functions to work with complex arguments, and finally, add a small

complex increment step, h, to the desired state and substitute it into equation 6.97.

The coding for this example is done in Matlab, and accordingly, a few functions in

equation 6.98 need to be defined or redefined. The default Matlab norm function calculates

the Euclidean norm using the complex conjugate of the input. This creates a scalar output,

which does not work for this problem. The ‘cnorm’ function from [36] is used instead. This

function keeps the output in complex form. The same issue is found in the Matlab ‘dot’

function. The ‘complex dot product’ can be found by manually multiplying the individual

elements together and adding them instead. With these two sub-function routines in place,

the measurement equation is ready to handle complex numbers.
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Substituting in different step sizes into the CSDA equation 6.97 and subtracting it from

the analytic partial derivative yields the results from Figure 6.10. The results are consistent
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Fig. 6.10: CSDA Validation for Range Rate Measurement

with the results from [91]. There is a linear decrease in the error as the step size starts

decreasing from 0.1 to 10−5. Once the step size is below 10−5, the normalized error levels

off at about 10−18. These results validate the analytic calculation of the first element of the

Jacobian Hrr, which is the partial derivative of the range rate measurement with respect to

the x-direction position of the interceptor. Each element of the Jacobian Hrr is validated

using this same process.

For the LinCov simulation, the CSDA method is applied to validate the analytical

partial derivatives in sections 6.3.8, 6.3.9, and 6.4. The analytical derivatives are satisfactory

for use in the LinCov simulation. See Appendix A for a code example of the CSDA process.
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Table 6.1: Simulation Initial Conditions

State Value Units 3σ Uncertainty Description

r(t0) [0;0] m 14.1 initial missile position vector

v(t0) [1000;0] m/s 0.25 initial missile velocity vector

rt(t0) [9000;50] m 14.8 initial target position vector

vt(t0) [-500;0] m/s 0.65 initial target velocity vector

at(t0) [0;0] g 5 initial target acceleration vector

bacc(t0) [0;0] mg 1 initial accelerometer bias vector

bgps(t0) [0;0] m 14.1 initial GPS bias vector

br(t0) 0 m 3 initial range bias

brr(t0) 0 m/s 0.4 initial range rate bias

blos(t0) 0 mrad 6 initial line-of-sight bias

6.5.4 Simulation Parameters

Figure 6.6 illustrates a single engagement run with the controller enabled, and the

measurement noise and all sources of error and uncertainty disabled. This trajectory is called

the nominal reference trajectory. For each step in the LinCov simulation, the measurements,

control law, and dynamics are linearized about the corresponding point in the reference

trajectory. Table 6.1 contains the state initial conditions and Table 6.2 contains the noise

values of the simulation and other simulation parameters. The initial position and velocity

conditions are modeled after examples in [57] and [8] with typical GPS sensor uncertainties.

The target and missile maximum acceleration values can be found in [92]. The target vehicle

does not have a GPS sensor, so its initial position and velocity uncertainties are found

by combining GPS measurement error with range or range rate measurement error. The

initial target acceleration is nominally zero with the uncertainty falling within the range

of the maximum acceleration. The sensor parameters are from the following references:

GPS [63], range and range rate [56], LOS angle measurement [93], accelerometer [94, 95].

Relative measurement sensor biases are not often considered in missile state estimation

publications [96], therefore these biases are modeled as follows: the time-constants are long

compared to the engagement time and the missile will need to accurately estimate the biases

in order to have a successful engagement. These biases will have a nominal value of zero.

The target Singer motion parameters are identical to the maneuvering target in [97].
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Table 6.2: Simulation Parameters

Parameter Value Units Description

Sη 0.03 (m/s)/sqrt(hr) 3σ accelerometer random walk

Sw 0.3 (m/s)/sqrt(hr) 3σ missile dynamics random walk

Swt 10 (m/s)/sqrt(sec) 3σ target design model random walk

νrange 0.75 m 3σ range measurement noise std dev

νrr 0.1 m/s 3σ range rate measurement noise std dev

νlos 1.5 mrad 3σ line-of-sight measurement noise std dev

σacc,ss 1 mg 3σ steady state accelerometer bias

σgps,ss 14.1 m 3σ steady state GPS bias

σr,ss 3 m 3σ steady state range bias

σrr,ss 0.4 m/s 3σ steady state range rate bias

σlos,ss 6 mrad 3σ steady state line-of-sight bias

τacc 1000 s accelerometer bias time-constant

τgps 1100 s GPS bias time-constant

τr 500 s range bias time-constant

τrr 500 s range rate bias time-constant

τlos 500 s line-of-sight bias time-constant

α 5 s target acceleration time-constant

amax 10 g target max acceleration

pmax 0.05 target probability of max acceleration

p0 0.1 target probability of no acceleration
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6.5.5 Simulation Validation Results

The models from this chapter have been implemented into a Monte Carlo simulation

and a LinCov simulation. The Monte Carlo simulation is run with 1000 runs and provides

truth data to validate the linear covariance results. If the system is implemented properly,

the LinCov generated statistics are equal to the ensemble statistics of the Monte Carlo

runs. The hair plots from the Monte Carlo should create a normal distribution inside the 3σ

covariance envelope, and the LinCov results should lie within the confidence interval of the

Monte Carlo results. The plots in this section contain the results of the Monte Carlo and

LinCov simulation comparison. The simulation is run with the control law, measurements,

and all sources of error and uncertainty enabled.

The estimation error plots in Figure 6.11 contain the ±3σ Linear Covariance estimation

error Ptrue, the individual Monte Carlo samples (hair plots), the ±3σ EKF covariance, the

±3σ Monte Carlo estimation error, and the 95% confidence interval for the 3σ Monte Carlo

estimation error. In general, the Lincov statistics fall within the confidence interval of the

Monte Carlo statistics and the hair plots stay within the 3σ bounds. This suggests that the

LinCov simulation can accurately calculate the system estimation error. In summary, the

LinCov simulation estimation error is validated for this system.

Figure 6.12 shows the relative position estimation error plots. These plots give further

insight to the engagement, as the end goal of the engagement is to drive relative position

to zero. The 3σ along track relative position error stays somewhat constant throughout

the engagement, while the cross-track error is driven down as the engagement progresses.

This is consistent with the geometry of the missile engagement problem. An error budget

study may be performed to quantify the contribution of each error source to the overall

relative position error [39]. Figure 6.13 illustrates the state vector truth dispersions. The

truth dispersion covariance indicates how far the trajectories stray from the nominal path.

The Figure 6.13 plots contain the individual Monte Carlo runs, the the ±3σ Monte Carlo

covariance with the 95% confidence interval, and the ±3σ linear covariance. For all the truth
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Fig. 6.11: LinCov Estimation Error Validation Plots

states, the LinCov statistics fall within the confidence interval of the Monte Carlo statistics

and the hair plots stay within the 3σ bounds. This validates the LinCov truth dispersions.



96

A
lo
n
g-
T
ra
ck

R
el
.
P
os
.
E
rr
o
r,

m

Time (s) C
ro
ss
-T
ra
ck

R
el
.
P
o
s.

E
rr
or
,
m

Time (s)

Fig. 6.12: Linear Covariance Simulation Relative Position Estimation Error

The relative position truth dispersions in the along track coordinate frame are presented

in Figure 6.14. The relative position dispersions are important to consider because a missile

engagement is a terminal constraint problem with the desired final relative position of zero.

The covariance of the relative cross-track position at the final time is a direct measure of the

engagement success. The cross-track dispersions go toward zero at the end of the flight as

the missile maneuvers to ensure an intercept. Figure 6.14b shows that the LinCov accurately

computes the statistics of the relative cross-track position at the final time, which is a good

approximation of miss distance for crossing angles below forty-five degrees [41].
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Fig. 6.13: LinCov Truth Dispersion Validation Plots
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6.6 Miss Distance Error Budget Study

Linear covariance analysis can quickly run through trade studies of simulation parame-

ters. This section contains an example miss distance error budget analysis. The error budget

study quantifies how much each error source contributes to the relative position dispersions

throughout the flight and at the final time. The simulation parameter values are listed in

6.5.4.

An error budget study is performed by running the LinCov simulation multiple times

with only one error source active at a time [8]. At the end, the simulation is run with all

error sources active. A combined plot illustrates how each error source contributes to the

total error throughout the flight. The root sum squared of the errors for each run adds up

to the total error for any time step. Relative cross-track position is the important metric in

this simulation, therefore the following plots include the relative position covariance in the

along-track frame.

Figure 6.15 contains an error budget for relative position dispersions. The main error
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sources are shown in color, and include the target evasive Singer accelerations, the line-

of-sight measurement noise, the line-of-sight sensor bias, and the initial state uncertainty.

The solid black line near zero represents the sum of all the minor error sources. The minor

error sources include the accelerometer sensor white noise , the range measurement bias and

noise, the range rate measurement bias and noise, and the GPS measurement bias and noise.

The contributions of the minor error sources to the relative position truth dispersions are so

small that they barely register on the graph. On the other hand, the engagement dispersions

are heavily influenced by the initial state uncertainty, the target evasive acceleration, and

the line-of-sight sensor. It takes about 1.5 seconds for the target acceleration to become the

largest source of dispersion, and this is not overcome until the final second of the flight.

Figure 6.16 illustrates the dispersion covariance at the final time step. It shows how much
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Fig. 6.16: Final Time Relative Position Truth Dispersion Error Budget

of the final miss distance can be attributed to each source of error, and which ones do not

contribute much at all. The engagement miss distance is most sensitive to the line-of-sight

measurement noise, as this contributes about 1 meter of the total 1.5 meter final miss

distance. Other major contributors to the miss distance are target accelerations, initial state

uncertainty, and the line-of-sight sensor bias.
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Based on the results of this error budget study, a few modifications will be made to the

engagement model going forward. Since the inertial GPS position measurement noise and

bias do not contribute to the total relative position truth dispersions, the GPS measurement

will be removed from the sensor suite and the GPS bias will no longer be estimated. This is

not to say that a GPS sensor is not important for launch phase or mid-course phase of missile

flight, just that it is not a major factor for the terminal homing phase of air-to-air targeting.

(A missile with an inertially fixed target would certainly benefit from GPS measurements

during terminal homing.)

Similarly, the measurement noise/biases from the range measurement and the range

rate measurement are not significant contributors to the final miss distance. This is a result

of the distinct geometry and dynamics of the terminal homing missile engagement problem.

Many missiles steer with fins or divert thrusters, which initiates a lateral acceleration [16,98].

During terminal homing, missiles do not undergo significant axial accelerations, and therefore

it is common to assume constant closing velocity between missile and target (see page 3-3

of [73]). In fact, for many tactical IR missile applications of proportional navigation guidance,

the closing velocity is not measured, but rather guessed (see chapter 2 of [8]). Consequently,

the range and range rate sensors will be removed from the missile engagement model in

subsequent chapters, and the along track dynamics of the engagement will be assumed to be

deterministic.

This chapter defined a missile engagement LinCov simulation, and outlined various

methods for validating elements of a LinCov simulation. The LinCov simulation was

validated using the defined methods, and found to be an accurate approximation for the

missile engagement system. An error budget study was performed, allowing insight into

the significant error contributions to the engagement miss distance. In this chapter, the

interceptor missile is assumed to have a significant acceleration advantage over the target,

an assumption that will be removed in the upcoming chapters.
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CHAPTER 7

STATISTICAL LINCOV AND TUNABLE LINCOV

The LinCov analysis presented in Chapter 6 demonstrated that augmented state linear

covariance can be successfully applied to missile engagement problems for statistical system

analysis. This implementation assumed that the missile had much larger (greater than 3x)

maximum acceleration capability than the target. During many engagements, the missile

does not have such a large acceleration advantage, therefore it is important to investigate

the effect of sustained actuator saturation on system behavior. This chapter presents two

methods for dealing with saturations in a missile engagement simulation. The first method is

LinCov with statistical linearization and is henceforth referred to as Statistical LinCov. This

method utilizes the augmented state linear covariance framework, while adding in statistical

linearization for the nonlinear elements. This is a new feature for augmented state LinCov

with many potential GN&C applications. The second method is called Tunable LinCov,

and it involves switching modes to a saturated system once the 3σ acceleration dispersions

have grown to a specified magnitude. Both simulations are developed and validated in this

chapter.

Section 7.1 provides the simulation assumptions for this chapter, and Section 7.2 presents

the nonlinear models used for the Monte Carlo analysis. Then, in Section 7.3, the linearized

models are defined for the Statistical LinCov analysis. Following this, Section 7.4 provides

the validation results of the Statistical LinCov. Section 7.5 defines the Tunable LinCov

simulation, which is validated in Section 7.6.

7.1 Simulation Assumptions

The simulation assumptions in this chapter are similar to the LinCov assumptions in

Section 6.2, with a few key differences. The problem is still assumed to be a 2D point mass

problem that is trimmed to horizontal flight by the time it reaches terminal homing. In

addition to the assumptions from LinCov simulation, this chapter assumes that the along

track dynamics of the engagement are deterministic. This is because during terminal homing,
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missiles do not undergo significant axial accelerations, and therefore it is common to assume

constant closing velocity between missile and target [16,73]. This assumption is frequently

used for missile engagement analysis [8, 57], and aligns with the results from the study in

Section 6.6. One effect of this assumption is that the guidance law is only applied in the

cross-track plane. Finally, the pursuing missile acceleration advantage assumption is relaxed

in this chapter, as the missile parameter amax is now a varying system input.

7.2 Nonlinear Models for Monte Carlo Analysis

Statistical LinCov constitutes an augmented state linear covariance algorithm with

statistical linearization implemented for the nonlinear elements. This section presents the

Monte Carlo validation model for Statistical LinCov. It defines the truth and navigation

states, truth dynamics, actuator and sensor design models, control and guidance laws, and

navigation dynamics models.

7.2.1 Truth States

The truth state vector focuses on the lateral dynamics of the intercept. Figure 7.1

shows the engagement geometry of the state vector. The state vector contains a relative

Missile

Targety

xr

am

at

Fig. 7.1: Target Engagement Geometry

lateral position state y, a relative lateral velocity state ẏ, an unlimited missile acceleration

state am,un, a target acceleration state at, and bias states for the sensors. A key element

of nomenclature for this chapter is the unlimited missile acceleration am,un. This term is

different than the actual realized acceleration of the missile am, which is not an element of the

truth state vector. The two elements are related by the saturation function am = sat(am,un).
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Note that the along-track range xr is assumed to be deterministic, and is not an element of

the state vector. The state vector has a total of 8 elements and is defined as:

x =



y

ẏ

am,un

at

ba

sa

ϵa

blos


8×1

(7.1)

where ba is an accelerometer bias, blos is the line-of-sight measurement bias, sa is the

accelerometer scale factor, and ϵa is the accelerometer misalignment angle.

7.2.2 Truth State Dynamics

The state dynamics are generalized with the nonlinear function ẋ = f (x,û) + Bw. The

dynamics are a function of the state x, the actuator commands û, and the process noise

vector w. The scale factor, misalignment angle, and biases are modeled as first-order Markov

processes [22]. The missile acceleration is modeled as the commanded acceleration with a

1st-order lag and a saturation limiter. The truth state dynamics are:

ÿ = at − sat(am,un) (7.2)

ȧm,un =
âc − am,un

τm
(7.3)

ȧt = −at
τt

+ wt (7.4)

ḃa = −ba
τb

+ wb (7.5)
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ṡa = −sa
τs

+ ws (7.6)

ϵ̇a = − ϵ

τϵ
+ wϵ (7.7)

ḃlos = −blos
τlos

+ wlos (7.8)

where âc is the commanded acceleration from the flight computer. The saturation function

sat(x) in Equation 7.2 is shown in Figure 7.2. The saturation equation is written as

sat(x)

x

amax

amax

Fig. 7.2: Saturation Operator

sat(x) =

 x, if |x| ≤ amax

amaxsgn(x), if |x| > amax

 (7.9)

The process noise vector is:

w =



wt

wb

ws

wϵ

wlos


5×1

(7.10)
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The noise is modeled as zero-mean Gaussian white noise. The element wt represents the

random evasive acceleration maneuvers by the target and the remaining elements represent

process noise in the bias dynamics. The PSD values of the noise vector are found in equations

7.12 and 7.11 below. The steady state covariance of each exponentially correlated random

variable (ECRV) is written as σss, with time-constant τ .

E
[
w(t)w(t′)T

]
= Swδ(t− t′) (7.11)

Sw5×5 = diag
(2σ2t,ss

τt
,
2σ2b,ss
τb

,
2σ2s,ss
τs

,
2σ2ϵ, ss

τϵ
,
2σ2los,ss
τlos

)
(7.12)

7.2.3 Guidance Law

The guidance law û calculates the lateral acceleration that is needed for the missile to

maintain a collision course with the target. The variable û has an overhat, indicating that

the guidance command is computed using the flight computers estimate of the states. The

guidance law equation from Chapter 6 is:

û = k̂pV̂c
˙̂
λ (7.13)

where k̂p is the controller gain, V̂c is the closing velocity, and
ˆ̇
λ is the line-of-sight rate. In

order to write this guidance law in terms of the state vector elements, an alternate form is

derived.

Figure 7.3 shows a visualization of the time of closest approach. The missile and target

are initially separated by a relative position of rrel, and the missile is approaching the target

with a relative velocity vrel. The magnitude of the relative position at the final time is

labeled as rtf , and represents the closest approach distance (see also Figures 6.2 and 6.3).

The angles λ and θl represent the line-of-sight angle and the lead angle of the engagement.

The line-of-sight coordinate frame and the inertial frame are also pictured. Suppose the
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Fig. 7.3: Final Time Relative Position In LOS Frame

relative position and velocity vectors in the inertial frame are defined as follows:

rrel =

 r1

r2

 (7.14)

vrel =

 v1

v2

 (7.15)

Then, the relative position vector in the LOS frame is:

rlosrel = T los
i rrel (7.16)

where T los
i is the DCM from equation 6.59

T los
i =

 cosλ sinλ

−sinλ cosλ

 (7.17)

and λ is the line-of-sight angle

λ = arctan
r2
r1

(7.18)

The line-of-sight rate equation is the time derivative of equation 7.18

λ̇ =
δλ

δt
=
r1v2 − r2v1
||rrel||2

(7.19)
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Utilizing rectilinear dynamics, and assuming constant velocity, the final time relative position

vector is written as

rrel,tf = rrel + vreltgo =

 rtf1

rtf2

 (7.20)

The final time relative position vector in the LOS frame is a function of the current relative

position elements r1 and r2 and the current relative velocity elements v1 and v2, rotated by

the direction cosine matrix T los
i .

rlosrel,tf = T los
i rrel,tf =

 (r1 + v1tgo) cosλ+ (r2 + v2tgo) sinλ

−(r1 + v1tgo) sinλ+ (r2 + v2tgo) cosλ

 (7.21)

The closest approach distance rtf from Figure 7.3 is the second element of equation 7.21.

Substituting in the values for sinλ and cosλ:

rtf = −(r1 + v1tgo)
r2

||rrel||
+ (r2 + v2tgo)

r2
||rrel||

(7.22)

Expanding and simplifying:

rtf = tgo
r1v2 − r2v1

||rrel||
(7.23)

Substituting equation 7.23 into equation 7.19

λ̇ =
1

tgo

rtf
||rrel||

(7.24)

Assuming Vc = xr
tgo

, substituting equation 7.24 into the guidance law from equation

6.19, and substituting in the state vector values from Figure 7.1 yields the guidance law:

û = ĝ(x̂) = âc = k̂V̂c
˙̂
λ = k̂

(
xr
tgo

)(
1

tgo

rtf
||rrel||

)
(7.25)

Substituting in Equation 7.23

âc = k̂

(
xr
tgo

)
1

tgo

tgo
||rrel||

(
r1v2 − r2v1

||rrel||

)
(7.26)
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Assuming r1 = x̂r, r2 = ŷ, v1 = −V̂c = − x̂r

t̂go
, and v2 = ˙̂y, Equation 7.26 becomes:

âc = k̂

(
x̂r

t̂go

)
1

t̂go

t̂go
||rrel||

(
x̂r

t̂go

(
˙̂ytgo + ŷ

)
||rrel||

)
(7.27)

Substituting in ||rrel|| =
√
x̂2r + ŷ2 and simplifying yields the final form of the guidance law:

âc =
k̂x̂2r
t̂2go

( ˙̂yt̂go + ŷ)

(x̂2r + ŷ2)
(7.28)

This is the guidance law used by the Monte Carlo simulation. Note that the simplified form

of this guidance law is used elsewhere, e.g. see [5, 73].

7.2.4 Sensor Truth Models

The accelerometer sensor measures the true specific force am on the vehicle corrupted

by a first-order Markov process bias ba and zero-mean Gaussian white noise η. The sensor

also has a misalignment angle ϵ and a scale factor s.

ỹ = (1 + sa)

(
am + ba + η

)
cos ϵa (7.29)

The accelerometer measurement ỹ is modeled as a continuous inertial measurement (see

Section 4.1). The symbol ỹ is used to be consistent with the material developed in Chapter

4 and is not to be confused with the lateral position y. The Gaussian white noise in the

sensor model η has a PSD Sη.

The discrete line-of-sight measurement includes a bias and white measurement noise.

The bias blos is modeled as a first-order Markov process and the measurement noise is a

zero-mean Gaussian white noise νk with variance Rlos. The line-of-sight angle measurement

equation is:

z̃los =λ̃ = arctan
( y
xr

)
+ blos + νlos (7.30)

where the components of the relative position vector from the missile to the target are xr

and y (see Figure 7.1). The variable y is the lateral relative position and is an element of the
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state vector. Since the along track range of the target xr is deterministic, it is proportional

to tgo and the constant closing velocity Vc.

xr = Vctgo (7.31)

7.2.5 Navigation Filter Design Model

The navigation filter design model is used to design the navigation filter presented

in the next section. The design model provides the models used to develop the extended

Kalman filter (EKF) state and state covariance propagation and update equations. In this

problem, the design model uses model replacement [90] for the missile velocity dynamics,

therefore the design model does not contain the am,un state or the guidance law.

xdm =



ydm

ẏdm

admt

bdma

sdma

ϵdma

bdmlos


7×1

(7.32)

The design model dynamics are generalized with the nonlinear function

ẋdm = fdm(xdm, ỹdm) +Bdmwdm (7.33)

The design model accelerometer measurement is modeled with the following equation:

ỹdm = (1 + sdm)

(
admm + bdmacc + ηdm

)
cos ϵdm (7.34)
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The design model accelerometer noise ηdm has the following noise characteristics:

E[ηdm(t)] = 0 (7.35)

E[ηdm(t)ηdm(t′)] = Sdm
η δ(t− t′) (7.36)

The design model dynamics are:

ÿdm = admt −
(

ỹdm

(1 + sdma ) cos ϵdma
− bdma − ηdm

)
(7.37)

ȧdmt = −a
dm
t

τdmt
+ wdm

t (7.38)

ḃdma = − bdma
τdmb

+ wdm
b (7.39)

ṡdma = − s
dm
a

τdms
+ wdm

s (7.40)

ϵ̇dma = − ϵdma
τdmϵ

+ wdm
ϵ (7.41)

ḃdmlos = −
bdmlos
τdmlos

+ wdm
los (7.42)

Note that second term in equation 7.37 represents a model for the ”compensated” accelerom-

eter measurements. Or in other words, the bias estimates are used to estimate the true

vehicle acceleration based on the current accelerometer measurement reading.

The design model process noise vector is identical to the truth state process noise vector.

The design model process noise vector is:

wdm =



wdm
t

wdm
b

wdm
s

wdm
ϵ

wdm
los


5×1

(7.43)
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with noise characteristics:

E
[
wdm(t)wdm(t′)T

]
= Sdm

w δ(t− t′) (7.44)

Sdm
w 5×5 = diag

(2σdm2

t,ss

τdma
,
2σdm

2

b,ss

τdma
,
2σdm

2

s,ss

τdms
,
2σdm

2

ϵ,ss

τdmϵ
,
2σdm

2

los,ss

τdmlos

)
(7.45)

7.2.6 EKF State Propagation

Based on the design model, the navigation state is propagated by integrating the state

dynamics ˙̂x = f̂(x̂, ỹ) where ỹ represents the accelerometer measurements in Equation 7.29.

The navigation state vector includes estimates of the lateral position and velocity, target

acceleration, and sensor parameters.

x̂ =



ŷ

ˆ̇y

ât

b̂a

ŝa

ϵ̂a

b̂los


7×1

(7.46)

The dynamics of the navigation state vector are written as:

ˆ̈y = ât −
(

ỹ

(1 + ŝ) cos ϵ̂
− b̂a

)
(7.47)

ˆ̇at = − ât
τ̂t

(7.48)

ˆ̇
ba = − b̂a

τ̂b
(7.49)

ˆ̇sa = − ŝa
τ̂s

(7.50)
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ˆ̇ϵa = − ϵ̂a
τ̂ϵ

(7.51)

ˆ̇
blos = − b̂los

τ̂los
(7.52)

7.2.7 EKF State Update

The partial derivative of the line-of-sight measurement equation with respect to the

state vector is:

Hlos =

[
xr

ŷ2+x2
r

01×5 1

]
1×7

(7.53)

Using this partial derivative, the state update equation is

x̂+k = x̂−k + K̂k[z̃k − ĥ(x̂k)] (7.54)

where the Kalman Gain is:

K̂k = P̂−
k Ĥ

T
k [ĤkP̂

−
k Ĥ

T
k + R̂ν ]

−1 (7.55)

The equations for state covariance P are provided in the next two sections.

7.2.8 EKF Covariance Propagation

To setup the state covariance propagation equations, the partial derivatives of the design

model state dynamics with respect to the state and the process noise is required. The partial

derivative of the navigation state dynamics equation f̂ with respect to the navigation state

x̂ is

F̂x̂ =


0 1 01×5

01×2 1 1 ỹ
(1+ŝa)2 cos ϵ̂a

− ỹ tan ϵ̂a
(1+ŝa) cos ϵ̂a

0

05×2 I5×5Aτ̂


7×7

(7.56)

where

Aτ̂ = diag(− 1

τ̂t
,− 1

τ̂b
,− 1

τ̂s
,− 1

τ̂ϵ
,− 1

τ̂los
)
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The accelerometer measurement ỹ is also a function of the state, so the partial derivative of the

dynamics with respect to the state needs to be carried into the accelerometer measurements

(via the chain rule). The partial derivative of the navigation state dynamics equation f̂ with

respect to the accelerometer measurement ỹ is

F̂ỹ =


0

− 1
(1+ŝa) cos ϵ̂a

05×1


7×1

(7.57)

Since the navigation model of the accelerometer measurement is:

ĉ(x̂) = (1 + ŝa)

(
am + b̂a

)
cos ϵ̂a (7.58)

The partial derivative of ĉ with respect to x̂ is Ĉx̂:

Ĉx̂ =

[
∂ĉ

∂x̂

]
1×7

=

[
0 0 0 ∂ĉ

∂b̂a

∂ĉ
∂ŝ

∂ĉ
∂ϵ̂ 0

]
1×7

(7.59)

where

∂ĉ

∂b̂a
= (1 + ŝa) cos ϵ̂a

∂ĉ

∂ŝ a
=

(
am + b̂a

)
cos ϵ̂a

∂ĉ

∂ϵ̂a
= −(1 + ŝa)

(
am + b̂a

)
sin ϵ̂a

The matrix B̂ that maps the navigation process noise into the state dynamics is given by

B̂ =

 02×5

I5×5


7×5

(7.60)

Using the generic covariance propagation equation in 4.13 and Equations 7.56-7.60, the

differential equations for the EKF covariance propagation are given by
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Equations 7.56-7.60 are substituted into equation 4.13 to propagate the EKF covariance:

˙̂
P = (F̂x̂ + F̂ỹĈx̂)P̂ + P̂ (F̂x̂ + F̂ỹĈx̂)

T + F̂ỹŜηF̂
T
ỹ + B̂ŜwB̂

T (7.61)

7.2.9 EKF Covariance Update

The state covariance is updated after a measurement using the equation

P+
k = [I − K̂kĤk]P̂

−
k [I − K̂kĤk]

T + K̂kR̂νK̂
T
k (7.62)

Where K is the Kalman gain from Equation 7.55 and R represents the discrete measurement

noise covariance matrix of the measurement being processed. The measurement partial

derivative Ĥ is defined in the next section.

7.3 Statistical LinCov Model

This section presents the equations for the augmented state linear covariance simulation

with statistical linearization. The general setup of the problem is the same; the states,

measurements, and parameters are the same as the Monte Carlo setup. The difference

however is that the Statistical LinCov simulation does not propagate individual trajectories,

just the overall system statistics. In order to propagate only the statistics, the nonlinear

models for the truth and navigation states need to be linearized. This section contains all the

partial derivatives and statistical linearization equations needed to develop the Statistical

LinCov simulation.

With a traditional linearization of a nonlinear system, the dynamics are generalized with

the nonlinear function ẋ = f (x,û) + Bw (see Section 6.3.2). For statistical linearization,

the nonlinear elements of the dynamics are separated from the linear elements with the

following general equation:

ẋ = Flinx+Glinû+ fnonlin(x) +Bw (7.63)
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where Flin is the partial derivative of the linear portion of the dynamics with respect to the

state vector x and Glin is the partial derivative of the linear portion of the dynamics with

respect to the guidance law û. Flin and Glin are defined in Section 7.3.1. The nonlinear

portion of the system is defined as:

fnonlin(x) = Ansat(am,un) (7.64)

An =

[
0 −1 01×6

]T
1×8

(7.65)

Equations 7.64 and 7.65 indicate that out of 8 state vector elements, the second element is

the one with the saturation in the dynamics.

Since the truth dynamics are nonlinear, the statistical linearization techniques from

Chapter 5 are utilized for the Statistical LinCov simulation. This involves propagating a mean

value trajectory (otherwise called a nominal reference trajectory) and propagating/updating

the system covariance matrix. Note that the mean value trajectory is not affected by

measurement updates, so it does not need an update equation.

The mean value of the state vector ẋ, is propagated with equation 7.66, which is found

by substituting equations 7.63 and 5.62 into equation 5.60:

ẋ = f̌ = Flinx+Glinu+Anf̌ (7.66)

where f̌ is the random input describing function (RIDF) for the saturation function from

equation 5.50:

f̌ = σx

[
G

(
amax + µx

σx

)
−G

(
amax − mux

σx

)]
− µx (7.67)

The statistical linearization augmented state covariance propagate and update equations

are found by combining the augmented state covariance framework from Section 4.3.1 with

the CADET method from Section 5.5.2. First, the linearized system is defined as:

δẋ = Nδx+ FûĜx̂δx̂+ Bw (7.68)
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δ ˙̂x =
[
F̂x̂ + F̂ỹCûĜx̂

]
δx̂+ F̂ỹCxδx+ F̂ỹη (7.69)

where the partial derivatives in Equations 7.68 and 7.69 are fully defined in Section 7.3.1.

Next, the development of the LinCov proceeds in a similar way to Chapter 4. The augmented

state vector is defined as:

X =

 δx

δx̂

 (7.70)

The augmented state vector X is zero mean with covariance CA:

E[X] = 0 E[XXT ] = CA (7.71)

The dynamics and update equations for the augmented state vector X are:

Ẋ = NX+ Gη +Ww (7.72)

Xk
+ = AkX

−
k + Bkνk (7.73)

where

N =


N FûĜx̂

F̂ỹCx F̂x̂ + F̂ỹCûĜx̂


m×m

G =

 0n×ny

F̂ỹ


m×ny

W =

 Bn×nw

0n̂×nw


m×nw

(7.74)

Ak =


In×n 0n×n̂

K̂kHx,k In̂×n̂ − K̂kĤx̂,k


m×m

Bk =

 0n×nz

K̂k, n̂×nz


m×nz

(7.75)

The Kalman gain K̂k from Equation 7.75 is given by Equation 7.55, and the measurement

partial Ĥx̂ is defined in the next section.
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The statistical augmented state covariance matrix CA is propagated and updated with

the following equations:

ĊA = NCA + CAN T + GSηGT +WSwWT (7.76)

CA(t
+
i ) = AiCA(t

−
i )A

T
i + BiRνBT

i (7.77)

The truth dispersion covariance equation is:

Dtrue = E[δxδxT ] = [In×n 0n×n̂]CA[In×n 0n×n̂]
T (7.78)

The covariance of the true estimation errors is given by the following equations:

Ptrue = [−Mx In̂×n̂]CA[−Mx In̂×n̂]
T (7.79)

where

Mx =

 I2×2 0 02×5

05×2 0 I5×5


7×8

(7.80)

7.3.1 Statistical LinCov Partial Derivatives

This section contains the partial derivatives for the Statistical LinCov simulation. The

partial derivatives in this section follow the partial derivative nomenclature from Chapter 6,

with the addition of Flin and Glin, which are used to separate the linear elements of the

model from the nonlinear elements of the model. The partial derivatives from equation 7.66

are defined as:

Flin =



0 1 0 0 01×4

0 0 0 1 01×4

0 0 − 1
τm

0 01×4

0 0 0 − 1
τt

01×4

0 0 0 0 I4×4Aτ


8×8

(7.81)
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where

Aτ = diag(− 1

τb
,− 1

τs
,− 1

τϵ
,− 1

τlos
)

and

Glin =



0

0

1
τ̂m

05×1


8×1

(7.82)

The equations for F̂x̂, F̂ỹ, and B are the same the Monte Carlo simulation equations

7.56, 7.57, and 7.60. The matrix N represents the quasi-linear system dynamics matrix

(QLSDM). N is similar to the partial derivative Fx from Equation 6.82, however, N also

includes the statistical derivative of the saturation function. In other words, N represents

a system dynamics matrix with the appropriate RIDF substituted in for the nonlinear

saturation element. The remaining partial derivatives are defined below:

N =



0 1 0 0 01×4

0 0 −n 1 01×4

0 0 − 1
τm

0 01×4

0 0 0 − 1
τt

01×4

0 0 0 0 I4×4Aτ


8×8

(7.83)

where n is the RIDF from Equation 5.53:

n =

[
PI

(
amax + µx

σx

)
+ PI

(
amax − µx

σx

)]
− 1 (7.84)

Note that statistical linearization approximates the partial derivative of the saturation

nonlinearity with respect to the acceleration input as the RIDF n:

∂[sat(am,un)]

∂am,un
≈ n (7.85)
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The RIDF n is also used in the Cx partial derivative:

Cx =

[
0 0 ∂c

∂am,un

∣∣∣
x

0 ∂c
∂ba

∣∣∣
x

∂c
∂s

∣∣∣
x

∂c
∂ϵ

∣∣∣
x

0

]
1×8

(7.86)

where

∂c

∂am,un

∣∣∣
x
= n(1 + sa) cos ϵa

∂c

∂ba

∣∣∣
x
= (1 + sa) cos ϵa

∂c

∂s

∣∣∣
x
=

(
sat(am,un) + ba + η

)
cos ϵa

∂c

∂ϵ

∣∣∣
x
= −(1 + sa)

(
sat(am,un) + ba + η

)
sin ϵa

The guidance law partial derivatives are:

Ĝx̂ =

[
∂âc
∂ŷ

∣∣∣
x

∂âc
∂ ˆ̇y

∣∣∣
x

01×5

]
1×7

(7.87)

where

∂âc
∂ŷ

∣∣∣
x
=
kx2r
t2go

[
x2r − y(2ẏtgo + y)

(x2r + y2)2

]
∂âc

∂ ˆ̇y

∣∣∣
x
=

kx2r
tgo(x2r + y2)

Fû =



0

0

1
τ̂m

05×1


8×1

(7.88)

Cû = 0 (7.89)
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The measurement equation used by the LinCov is:

z̃los =
y

xr
+ blos + νlos (7.90)

The partial derivative with respect to the state vector is:

Hlos =

[
1
xr

01×5 1

]
1×7

(7.91)

It is noteworthy that the statistical linearization gain n appears multiple times in the

linearization, specifically in the Cx and Fx partial derivatives. Basic Statistical LinCov

and Basic LinCov do not incorporate the correlation between navigation errors and truth

state dispersions, and its effect on overall closed-loop performance. Now that statistical

linearization has been added to augmented state linear covariance analysis, it is possible to

calculate the effect of the nonlinearity on the full closed-loop system performance. This is

a very useful implementation of LinCov which expands its application to a wider range of

GN&C systems!

7.4 Statistical LinCov Validation

With the LinCov and Monte Carlo models defined, the next step is validating the

LinCov simulation. Table 7.1 outlines the initial conditions and initial uncertainty of the

state vector. The units for the accelerometer bias are milli-g’s (mg), which represent the

Table 7.1: Statistical LinCov Initial Conditions

State Mean Value Units 3σ Uncertainty Description

y(t0) 0 m 10 initial relative lateral position

ẏ(t0) 0 m/s 1 initial relative lateral velocity

am,un(t0) 0 m/s2 0.1 initial unlimited missile lat. accel.

at(t0) 0 m/s2 0.1 initial target acceleration

ba(t0) 0 mg 1 initial accelerometer bias

sa(t0) 0 ppm 300 initial accelerometer scale factor

ϵa(t0) 0 mrad 0.5 initial aclmtr. misalignment

blos(t0) 0 mrad 3 initial line-of-sight bias
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acceleration due to gravity times 10−3. The units for the accelerometer scale factor are

parts per million (ppm), which multiplies the scale factor by 1× 106. Table 7.2 contains the

system process noise parameters and other parameters needed to run the simulation

Table 7.2: Statistical LinCov Parameters

Parameter Value Units Description

Sη 0.03 (m/s)/sqrt(hr) 3σ accelerometer random walk

νlos 1.5 mrad 3σ line-of-sight measurement noise std dev

σwt,ss 15 g 3σ target steady state 3σ acceleration

σa,ss 1 mg 3σ steady state accelerometer bias

σs,ss 1000 ppm 3σ steady state scale factor

σϵ,ss 0.5 mrad 3σ steady state accelerometer misalignment

σlos,ss 3 mrad 3σ steady state line-of-sight bias

τm 1 s missile acceleration low pass filter time-constant

τt 1 s target acceleration time-constant

τb 1000 s accelerometer bias time-constant

τs 500 s scale factor time-constant

τϵ 500 s misalignment bias time-constant

τlos 500 s line-of-sight bias time-constant

k 4 control law gain

Vc 1500 m/s engagement closing velocity

amax 10 g maximum lateral acceleration of the missile

tmeas 10 Hz discrete measurement rate

Statistical LinCov is validated using the same process as Section 6.5.5. The Monte

Carlo simulates 1000 trajectories and provides truth data statistics to validate the linear

covariance results. The LinCov generated statistics should be within the confidence interval

of the Monte Carlo statistics, and the ±3σ covariance bounds should contain 99.7% of

the data from the Monte Carlo trajectories. The simulation is run with the guidance law,

measurements, and all noise sources activated.

Figure 7.4 illustrates the true estimation error of the state variables. The plot lines

are defined as follows: the gray lines represent individual Monte Carlo runs, the black lines

represent the ±3σ Monte Carlo estimation error covariance, the black error bars represent

the 95% confidence interval for the Monte Carlo estimation error covariance based on the
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number of simulated runs, the blue lines represent the Kalman Filter covariance from the

Monte Carlo, and the red dashed lines represent the Statistical LinCov estimation error

covariance. For clarity, the confidence interval error bars are shown in discrete intervals

on the plots. The measurements drive down the lateral position estimation error down

throughout the engagement, as expected. The error initialization fits the expected values

from table 7.1, and the ±3σ LinCov covariance bounds are a satisfactory approximation of

the Monte Carlo ensemble statistics.
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Fig. 7.4: Statistical LinCov Estimation Error Validation Plots
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The truth dispersion validation plots are exhibited in Figure 7.5. Each plot contains

the Monte Carlo trajectories and statistics, and two different LinCov bounds. The red lines

represent the LinCov results with traditional linearization, while the blue lines represent

the LinCov results with statistical linearization. For all the truth states, the statistical

linearization LinCov accurately approximates the Monte Carlo results. States 1-3 in Figure

7.5 show that the traditional linearization does not capture the effect of the saturation, and

overestimates the ability of the missile to drive down the miss distance on the target. The

other state vector elements from Figure 7.5 are target states or sensor states, and therefore

are not affected by the missile actuator saturation. The final cross-track position dispersions

in plot 7.5.1 represents the 3σ miss distance of the engagement. With the acceleration

bounds and sensors parameters from Table 7.2, the 3σ miss distance of the engagement is

about 375 meters.
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Fig. 7.5: Statistical LinCov Truth Dispersion Validation Plots
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Figure 7.6 shows the Monte Carlo and LinCov results for a wide range of maximum

missile acceleration values. The statistical linearization LinCov matches up well with the
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Fig. 7.6: Statistical LinCov Miss Distance With Varying Acceleration Limits

Monte Carlo for the full range of inputs. Different missile engagements operate with different

saturation conditions, so it is beneficial to have an accurate linearization for all the operating

conditions.

The computation time that goes into generating data for a parameter-varying Monte

Carlo study is significant and highlights the benefits of statistical LinCov. Each data point

on the blue line in Figure 7.6 represents 1000 Monte Carlo runs, while each data point on

the yellow line represents 1 Statistical LinCov run. The Monte Carlo simulation took about

12 hours to run this study, while the Statistical LinCov simulation did the same analysis in

less than 1 minute.

Statistical LinCov utilizes statistical linearization to approximate the saturation function

in the state vector dynamics of a missile engagement problem. The statistical linearization

is dependent on the probability density function (PDF) of the input. This method does

not rely on mode switches in the GN&C algorithm, but rather a more robust linearization

technique. The next approach, Tunable LinCov, will utilize GN&C mode switching to model

actuator saturation system behavior.
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7.5 Tunable LinCov

Another method for approximating nonlinear behavior in a LinCov simulation is called

Tunable LinCov. This method is also new to augmented state linear covariance analysis. The

basic idea of Tunable LinCov is to use traditional linearization techniques to create multiple

system models, and switch between them using pre-defined mode switching criterion. It

is called ‘Tunable’ LinCov because the mode switching parameters need to be tuned for a

given problem. This section will demonstrate Tunable LinCov for the missile engagement

problem.

A LinCov simulation does not simulate individual trajectories to determine when

a saturation will occur, but rather a single nominal trajectory, along with the system

performance statistics. For a missile engagement problem with a saturated actuator, the

critical state element to monitor is the missile acceleration. For Tunable LinCov, the critical

state element is the 1σ value of the missile acceleration.

The truth state vector and navigation state vectors for the Tunable Lincov are identical

to the Statistical LinCov simulation. The Monte Carlo model used for validation of the

Tunable LinCov simulation is the same as the model defined in Section 7.2. The LinCov

simulation has two different modes, and switches modes according to the following condition:

mode =

 unsaturated, if σdisp,am ≤ aswitch

saturated, if σdisp,am > aswitch

 (7.92)

where aswitch is the tuned switching acceleration value, and σdisp,am is defined as the standard

deviation of the missile acceleration truth dispersion covariance:

The partial derivatives required for the Tunable LinCov are obtained relatively easily

from the Statistical LinCov partial derivatives in Section 7.3. In the Unsaturated Mode, all

occurrences of sat(am,un) and n in the Statistical LinCov partial derivatives are replaced

by am and 1, respectively, to obtain the corresponding partial derivatives for the Tunable

LinCov. It can be seen that only Fx, Cx are affected. In the Saturated Mode all occurrences

of sat(am,un) and n are replaced by amax and 0, respectively.
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7.6 Tunable LinCov Validation

This section contains the validation for Tunable LinCov, utilizing the same simulation

parameters as Section 7.4. The first guess for the switching parameter is aswitch = amax.

This produces the dispersion plots in Figure 7.7. Note that Figure 7.7 does not contain the

Fig. 7.7: Tunable LinCov- Step 1 Results

truth dispersion plots for the target acceleration or the sensor biases, as these elements are

not significantly affected by the actuator saturation. The Tunable LinCov switches modes

from unsaturated mode to saturated mode around 8.5 seconds into the simulation. The plots

also show the result from traditional linearization LinCov. For this engagement example,

the Tunable LinCov follows traditional linearization until the switching condition is met,

and then behaves more like the statistical linearization thereafter.
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The next step for tuning the LinCov is to vary switching parameter aswitch and find the

value that best approximates the Monte Carlo results. The evaluation criteria for deciding

the optimal value for aswitch is the 3σ Monte Carlo miss distance. Figure 7.8 shows the ratio

between the LinCov 3σ miss distance and the Monte Carlo 3σ miss distance for varying

values of aswitch. The Monte Carlo and LinCov miss distances match when aswitch/amax
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Fig. 7.8: Tunable LinCov Miss Distance Ratios Vs. aswitch/amax

equals 1.2. Substituting in this value into the Tunable LinCov yields the best performance

of the Tunable LinCov for these parameters.

Figure 7.9 shows how this value of aswitch affects the truth state dispersions. The

LinCov changes modes at about 9 seconds into the simulation instead of at 8.5 seconds,

and the final miss distance matches the Monte Carlo miss distance. The final value of the

position dispersion ends up being correct, but the LinCov position dispersion statistics don’t

match the Monte Carlo statistics from t = 6 seconds to t = 9.9 seconds. Similarly, the

cross-track velocity and unlimited acceleration statistics do not match the Monte Carlo

statistics after approximately 6 seconds. These results suggest that the scope of Tunable

LinCov is limited to the parameter it is optimized for. In the case of a terminal condition

missile engagement, Tunable LinCov is accurate for the final miss distance statistics, but

not necessarily for error budget analysis during the flight or velocity/acceleration analysis.
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Fig. 7.9: Tunable LinCov- Step 2 Results

The remainder of the validation plots for the initial set of parameters are shown in

Figures 7.10 and 7.11. Figure 7.10 shows the estimation error covariance for the Tunable

LinCov. The estimation error for y, ẏ, and am,un still match the Monte Carlo results, as the

mode switching affects the truth dispersion statistics estimate more so than the estimation

error statistics. Figure 7.11 contains the truth dispersion statistics for the sensor bias states.

These states are not affected by the actuator saturation, and the Tunable LinCov matches

the Monte Carlo truth dispersion statistics.
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Fig. 7.10: Tunable LinCov Estimation Error Validation Plots
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Fig. 7.11: Tunable LinCov Truth Dispersion Validation Plots
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The final step for tuning the LinCov is to find the best value of aswitch for each value of

amax. The results of this step are found in Figure 7.12 for control gain values of 3,4, and 5.

The data is then fitted to a curve to use when running the simulation.
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Fig. 7.12: Tunable LinCov Tuning Curve

For example, if it is desired to investigate a heavy saturation engagement scenario, a

maximum missile acceleration value of 7.5g is chosen. Since the maximum target acceleration

is 15g, the am,max/at,max ratio to use for Figure 7.12 is 0.5. According to the tuning curve,

the LinCov should use the switching parameter aswitch = 9.2g. The results from this example

are shown in Figure 7.13. The Tunable LinCov miss distance values match the Monte Carlo

values.

Figure 7.14 compares the miss distance results for Monte Carlo and Tunable LinCov for

varying maximum acceleration values. The Tunable LinCov produces accurate miss distance

statistics for the full range or acceleration inputs.

Tunable LinCov provides a viable solution for problems with GN&C mode switching.

However, there are some limitations for Tunable LinCov. It gives accurate results for the

states it is tuned for, but not necessarily all the states. For the missile engagement problem,

Tunable LinCov provides accurate miss distances, and true estimation error statistics,

but does not provide accurate position dispersions statistics for the entire flight. Another

drawback to Tunable LinCov is that it requires extra testing to create a tuning curve.
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Fig. 7.13: Tunable LinCov Example Problem Results
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Fig. 7.14: Tunable LinCov Miss Distance With Varying Acceleration Limits
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CHAPTER 8

LINCOV WITH EVENT TRIGGERS

Chapter 7 focused on building and validating LinCov tools that incorporate the effect

of saturations in the actuator on system performance. Since the saturation of the missile

actuator represents a change in the truth dynamics of the missile, it can also be modeled

using event triggers. Historically, event triggers have been used in LinCov theory to

model navigation based mode changes. Examples of this include terminal phase initiation

maneuvers for orbital rendezvous based on relative angle estimates [71], or lunar ascent

guidance mode changes based on estimated “time-to-go” until main engine cutoff [36]. The

missile engagement saturation “event” is different than these other examples because it is

does not represent a guidance mode change, but rather, a truth dynamics change. This

chapter will review the navigation based event trigger equations and methods, introduce the

new truth based event trigger equations, and incorporate them into a missile engagement

LinCov simulation. This simulation will be referred to as Trigger LinCov. The simulation

will be validated using the same Monte Carlo methods as Chapter 7.

8.1 Review of Navigation Based Event Triggers

The purpose of adding navigation based event triggers to augmented state linear

covariance analysis is to incorporate the effect of a navigation based discrete event into the

system performance statistics. A navigation event trigger utilizes the truth state dynamics

equations, the navigation state dynamics equations, and a constraint equation Ψ that is a

function of the navigation state vector x̂ at event time te. The constraint equation is written

as:

Ψ[x̂(te)] = 0 (8.1)

The constraint equation, truth state dynamics, and navigation state dynamics are linearized

to quantify the effect of the discrete event on the augmented state covariance matrix CA.
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The three important metrics of event trigger theory are the time dispersion δte of the

event, the variance of the event time σ2te, and the covariance shaping matrix Φ. Since the

dynamics of the problem are stochastic in nature, the discrete event happens at a different

time in each trajectory. The time dispersion δte is the difference in the nominal event time

t̄e and the event time for a specific trajectory te. The variance of the time dispersion σ2te

reveals the time window during which the event can be expected to happen. Typically, the

noisier the environment, the wider the discrete event window is. The discrete event often

changes the covariance of the system. This is incorporated into the LinCov by pre- and

post- multiplying the augmented state covariance matrix CA by the shaping matrix Φ. The

equations for δte, σ
2
te, and Φ are derived in Section 4.4. The equations are summarized as

follows:

δte = −
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)δx̂(t̄e) (8.2)

Ω(t̄e) =

[
01×n −

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

]
(8.3)

σ2δte = Ω(t̄e)CA(t̄e)Ω(t̄e)
T (8.4)

Φ(t̄e) =

 In×n − ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

0n̂×n In̂×n̂ −Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

 (8.5)

C+
a (t̄e) = Φ(t̄e)C

−
a (t̄e)Φ(t̄e)

T (8.6)

The following example problem shows a missile engagement problem with navigation

based event trigger used to model a guidance mode change. Suppose a missile is attempting

to intercept a non-maneuvering target, and it is desired for the guidance law to be activated

with a specified “time-to-go” before impact. The missile flies at constant velocity toward

the target until the t̂go threshold is reached, at which point the intercept guidance law is

activated. This example is illustrated in Fig. 8.1. As is the case with any LinCov analysis,

it is important to validate the simulation with Monte Carlo analysis. For the Monte Carlo

simulation, the guidance law for each trajectory is enabled when the t̂go threshold is reached.

The Monte Carlo state vector truth dispersion statistics are then calculated as normal. For
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Fig. 8.1: Time-To-Go Missile Engagement Example Trajectory

the LinCov simulation, the augmented state covariance matrix is shaped by the shaping

matrix Φ at the nominal time-to-go tgo. Figure 8.2 illustrates the results of the mode change

on the Y component of the velocity truth dispersion. The gray lines represent individual

Monte Carlo trajectories, the blue dotted lines represent the Monte Carlo 3σ truth dispersion

covariance and the black dotted lines represent the event trigger LinCov 3σ truth dispersions.

The Event Trigger LinCov results align with the Monte Carlo results, indicating that the

event trigger equations accurately model the mode change, even though it happens at a

different time in each trajectory. Note that if the simulation time is not a fixed value, there

is a period of time near the mode change where the Monte Carlo statistics are lost, as each

trajectory runs for a different length of time.

8.2 Trigger LinCov: LinCov With Truth Based Event Triggers

For the missile engagement with actuator saturation problem, the discrete event con-

straint equation Ψ is a function of the truth state vector x at event time te. This is different

than traditional applications of LinCov event triggers. In this case, the navigation based

guidance law stays the same whether or not the actuator is saturated, but the truth dynamics

are changed at the mode switch. The constraint equation for this type of problem is written

as:

Ψ[x(te)] = 0 (8.7)
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Fig. 8.2: Missile Engagement Event Trigger Example: Y Component Of The Velocity Truth
Dispersion

The event trigger equations for a truth based discrete event are derived using a similar

process as Section 4.4. The equations are shown below:

δte = −
[
Ψx(t̄e) ˙̄x(t̄e)

]−1
Ψx(t̄e)δx(t̄e) (8.8)

Ω(t̄e) =

[
−
[
Ψx(t̄e) ˙̄x(t̄e)

]−1
Ψx(t̄e) 01×n̂

]
(8.9)

σ2δte = Ω(t̄e)CA(t̄e)Ω(t̄e)
T (8.10)

Φ(t̄e) =

 In×n − ˙̄x(t̄e)
[
Ψx(t̄e) ˙̄x(t̄e)

]−1
Ψx(t̄e) 0n×n̂

−Mx(t̄e) ˙̄x(t̄e)
[
Ψx(t̄e) ˙̄x(t̄e)

]−1
Ψx(t̄e) In̂×n̂

 (8.11)

C+
A (t̄e) = Φ(t̄e)C

−
A (t̄e)Φ(t̄e)

T (8.12)

Equation 8.11 defines the covariance shaping matrix Φ that is used to incorporate the

effect of the mode change into the augmented covariance matrix CA. This equation has

partial derivatives Ψx and ˙̄x that are evaluated at the nominal event time t̄e. If the nominal

trajectory dynamics equations ˙̄x(t) are zero, as was the case in Chapter 7 with a nominal

head-on intercept, then equation 8.11 reduces to the identity matrix. This means that the

shaping matrix will not change the augmented state covariance matrix CA at all, and any

mode changes will not be modeled in the LinCov. Conceptually, this indicates that for
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the missile engagement problem, event triggers are not suited to model a nominal head-on

engagement with zero-mean random target evasive accelerations. Accordingly, this chapter

will introduce a step input evasive maneuver similar to example problems from Chapter

4 of [8]. The simulation will begin with the defined simulation parameters, and at time

t = tevasive, the target will begin a constant acceleration evasive maneuver.

With the event trigger equations defined, the Trigger LinCov simulation model and

Monte Carlo validation model can now also be defined. The Monte Carlo model for validation

is the same as the model from Section 7.2, except for the following changes: the state vector

will now have a “true missile acceleration” element am rather than an “unlimited missile

acceleration” element am,un, an additional constant acceleration evasive maneuver is added,

and the random evasive maneuvers by the target are smaller. The dynamics of the state

vector are the same as equations 7.2-7.8 with the following differences:

ÿ = at + a∗ref − sat(am,un) (8.13)

ȧm =


âc−am
τm

, if mode = unsaturated

sgn(am) ∗ amax, if mode = saturated

 (8.14)

where a∗ref = 0 when t < tevasive, and a
∗
ref = at,evasive = constant when t >= tevasive. The

LinCov switches modes from unsaturated mode to saturated mode when the event trigger

constraint is met.

The target evasive maneuver from Chapter 7 was modeled as a zero mean exponentially

correlated random variable (ECRV) with a steady state 3σ value of 15g. For this chapter,

the target realizes a large step input acceleration that is deterministic, as well as a small

ECRV acceleration. Conceptually, this is saying that for t < tevasive the target acceleration

is somewhat constant and close to zero, and when t > tevasive, the target acceleration

is somewhat constant and close to at = at,evasive. The initial conditions and simulation

parameters are defined in the next section. A visual representation of this maneuver is

shown in Figure 8.3.
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Fig. 8.3: Target Step Evasive Maneuver

The LinCov partial derivatives for the unsaturated mode are identical to the unsaturated

mode partial derivatives from Section 7.5. The LinCov partial derivatives for the saturated

mode are identical to the saturated mode partial derivatives from Section 7.5. The event

trigger constraint equation is:

Ψ[x(te)] = sat(am,un)− amax (8.15)

When this constraint equation is zero, the event triggers the mode change, and the augmented

state covariance matrix CA is shaped by the covariance shaping matrix Φ from equations

8.11 and 8.12. The LinCov utilizes the nominal reference trajectory (NRT) to calculate the

nominal event time t̄e.

The partial derivative of the constraint equation Ψ with respect to the truth state

vector x is:

∂Ψ

∂x
=

[
0 0 1 01×5

]
1×8

(8.16)
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8.3 Trigger LinCov Validation

This section contains the validation of the Trigger LinCov model. The NRT for the

validation is shown in Figure 8.4. The blue lines represent the NRT and the red dotted
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Fig. 8.4: Event Trigger LinCov Nominal Reference Trajectory

line in the missile acceleration plot represents the nominal trajectory guidance command.

The target evasive step maneuver acceleration is initialized to at,evasive = 6.5g, and the

maneuver time is tevasive = 1s. This scenario represents a fairly heavy saturation, as the

missile actuator saturates at 10g starting at about t = 5s. The nominal relative position plot

shows that missile does not begin to reduce the lateral relative position until about t = 7.5s,

and the miss distance from the engagement is about 375 meters. The initial conditions of

the simulation are the same as Table 7.1. The simulation parameters are identical to Table

7.2, with the following difference:

σwt,ss = 0.1g (8.17)
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The Monte Carlo runs 1000 trajectories and computes truth data statistics to validate

the Trigger LinCov results. The Trigger LinCov statistics should be within the confidence

interval of the Monte Carlo statistics, and the ±3σ covariance bounds should contain 99.7%

of the data from the Monte Carlo trajectories.

The estimation error validation plots are shown in Figure 8.5. The plot lines are defined

as follows: the gray lines represent individual Monte Carlo runs, the black lines represent

the ±3σ Monte Carlo estimation error covariance, the black error bars represent the 95%

confidence interval for the Monte Carlo estimation error covariance based on the number

of simulated runs, the blue lines represent the Kalman Filter covariance from the Monte

Carlo, and the red dashed lines represent the Trigger LinCov estimation error covariance.

The confidence interval error bars are shown in discrete intervals on the plots. There is no

noticeable jump in the true estimation error plots at t = 5s when the actuator saturation

occurs. This is as expected, as the even trigger equations do not affect the true estimation

error [36]. Since the event trigger equations do not affect the true estimation error, there is

not gap in the Monte Carlo statistics. The error initialization fits the expected values from

table 7.1, and the ±3σ LinCov covariance bounds are a satisfactory approximation of the

Monte Carlo ensemble statistics.
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Fig. 8.5: Event Trigger LinCov Estimation Error Validation Plots
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Figure 8.6 shows the truth dispersion validation plots. Each plot has the Monte Carlo

trajectories and statistics, and two different LinCov results. The green lines represent the

Statistical LinCov results, which are shown for reference, while the blue lines represent the

Trigger LinCov results. Note that the lateral acceleration dispersion plot does not have

Statistical LinCov results. The black lines represent the Monte Carlo truth dispersions,

with 95% confidence interval error bars. States 1-3 are the states that are affected by the

event trigger, and have small gaps in Monte Carlo statistics near the event time. This is

because the saturation happens at a slightly different time for each run. The other truth

states are not affected by the event trigger, and therefore do not have any gaps in Monte

Carlo statistics.

At the event time, about t = 5s, the position and velocity dispersions start to grow a

little faster since the actuator is saturated. Every trajectory has a saturation, so the lateral

acceleration dispersions jump to zero at the event time. These changes are predicted by

the Trigger LinCov, and match up with the Monte Carlo results. Keep in mind that since

the NRT no longer has a miss distance of zero, the final time position dispersions do not

represent the engagement miss distance. The 3σ miss distance in this case is equal to the

nominal miss distance 375m ±45m, (45 m is the final 3σ position truth dispersion). The

final five states represent ECRV dispersion plots, and are accurately modeled by the Trigger

LinCov. Overall, the event trigger equations have enabled the Trigger LinCov to switch

modes, and the results are all within 5% of the Monte Carlo results. The Statistical LinCov

results from Figure 8.6 all match the Monte Carlo results as well. This is another validation

for Statistical LinCov using a different type of evasive maneuver.
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Fig. 8.6: Event Trigger LinCov Truth Dispersion Validation Plots
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Now that a heavy saturation scenario has been validated, further insight can be gained

by varying the levels of actuator saturation. The values for tevasive and at,evasive will remain

the same, but the value for amax will vary from amax = 1g to amax = 20g. This represents

the full range from a heavy saturation to no saturation at all. For reference, Figure 8.7

shows the nominal miss distance for these values of amax. The heavy saturation scenarios

have high miss distances in the hundreds of meters, while the light saturation scenarios have

miss distances close to zero.
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Fig. 8.7: Event Trigger LinCov Nominal Miss Distance With Varying Missile Acceleration
Limits

Figure 8.8 shows the final position dispersions for varying values of amax. The black

represents the Monte Carlo results and 95% confidence intervals. The blue represents the

Trigger LinCov results and the green represents the Statistical LinCov results. The Statistical

LinCov and the Trigger LinCov accurately model the final position dispersions for varying

levels of saturation.
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8.4 Conclusion

This chapter defined the equations for truth based event triggers and the equations

for Trigger LinCov. The equations were applied to the missile engagement problem, and

compared to a Monte Carlo simulation. The Trigger LinCov simulation was able to accurately

model the saturation nonlinearity in the missile engagement problem. This chapter also

validated Statistical LinCov for evasive target step maneuvers.
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CHAPTER 9

STATISTICAL LINCOV ENGAGEMENT ANALYSIS

Chapters 7 and 8 of this dissertation presented three different methods for incorporating

a saturated actuator into a missile engagement problem: Statistical LinCov, Tunable LinCov,

and Trigger LinCov. Each of these methods was incorporated into the augmented state

linear covariance framework and tested against varying levels of actuator saturation. In

general, the Statistical LinCov was shown to be the more robust of the three methods. It

proved effective for engagements with random target maneuvers (modeled as ECRVs) and

for engagements with step input target maneuvers. Although Tunable LinCov provided

accurate miss distance statistics, it did not compute accurate truth dispersions for the entire

length of the engagement. Trigger LinCov performed acceptably for target evasive step

maneuvers, but not for random evasive maneuvers. Since Statistical LinCov does not have

the limitations of Tunable LinCov and Trigger LinCov, this chapter will focus on Statistical

LinCov analysis. The goal of this chapter is to show different analyses that can be done with

Statistical LinCov. The analyses will cover varying control laws, sensor accuracy, target

evasive maneuvers, and actuator responsiveness.

9.1 Guidance Laws: Proportional, Augmented, and Optimal Guidance

This section defines three different guidance laws for missile engagements: proportional

navigation (PN) guidance, augmented proportional navigation (APN) guidance, and optimal

navigation (ON) guidance.

The PN guidance law is the standard guidance law that is the basis for many missile

engagement simulations. It utilizes the flight computer estimate of the relative lateral

position and velocity between the missile and the target. This guidance law is derived using

linear quadratic terminal control theory in Chapter 5 of [15]. PN guidance is optimized for

a non-maneuvering target, no actuator delay, and a constant control gain. The equation for
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the PN guidance law is:

âc =
k̂

t̂2go

(
ŷ + ˙̂yt̂go

)
(9.1)

where the control gain k̂ for the PN guidance is generally 3 <= k̂ <= 5. Note that this is

similar to, but not exactly a traditional PD controller, due to the t̂−1
go terms.

The APN guidance law adds a feed-forward target acceleration term to the PN guidance

law. This law is derived in Chapter 8 of [8] (see also page 116 of [99]). APN guidance is

optimized for a target with constant acceleration, no actuator delay, and a constant control

gain. The APN guidance law equation is:

âc =
k̂

t̂2go

(
ŷ + ˙̂yt̂go + 0.5âtt̂

2
go

)
(9.2)

where the values for the constant k̂ are the same as for PN guidance, 3 <= k̂ <= 5.

The ON guidance law appends a time-varying gain and a feed-forward missile acceleration

term to the APN guidance law [57]. It also accounts for a missile acceleration first-order lag

by including a missile acceleration time-constant. ON guidance is optimized for a constant

target acceleration. The equation for ON guidance is:

âc =
k̂′

t̂2go

[
ŷ + ˙̂yt̂go + .5âtt̂

2
go − âmτ̂

2
m(e−ζ̂ + ζ̂ − 1)

]
(9.3)

where k̂′ is the time-varying gain

k̂′ =
6ζ̂2(e−ζ̂ + ζ̂ − 1)

2ζ̂3 + 3 + 6ζ̂ − 6ζ̂2 − 12ζ̂e−ζ̂ − 3e−2ζ̂
(9.4)

and ζ̂ is the time ratio

ζ̂ =
t̂go
τ̂m

(9.5)

In this chapter, there are total of 7 guidance schemes that are considered: PN with

k = 3, 4, 5, APN with k = 3, 4, 5, and ON. In general, a higher gain value yields a faster

response of the guidance command, but is also more susceptible to overshoot or chatter. It
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is important to remember that the missile engagement problem has various disturbances

and navigation errors, which means that when the PN, APN, and ON guidance laws are

implemented, they are not completely optimal, but rather “near optimal”. However, if the

trajectories remain in the immediate vicinity of the nominal reference trajectory (NRT),

then “near optimal” guidance remains an effective solution [11,15].

9.2 Guidance Law Performance Study

The first study introduces the behavior of the guidance laws against the random target

maneuver from Chapter 7. This scenario is meant to represent a moderate saturation of

the missile, with accurate sensors, and a moderately fast actuator response. The simulation

parameters match Tables 7.1 and 7.2. Figure 9.1 shows the relative position truth dispersions

of each guidance law. Each color in the plot represents a different guidance law, with different
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Fig. 9.1: Lateral Relative 3σ Dispersion for 7 Different Guidance Schemes

gains represented by different line tyeps. For example, the PN guidance law with a gain of 4

is shown with the blue dashed line. For reference, the PN guidance with kgain = 4 is the
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same result as the position dispersion plot from Figure 7.5. Note that because the random

target maneuver is zero mean, the final time relative position truth dispersion is equal to

the 3σ miss distance. In general, the APN and ON guidance laws perform much better than

the PN guidance. Of all the guidance laws, the ON achieves the lowest 3σ miss distance.

For the PN and APN guidance, the higher the gain, the faster the missile responds. It is

noteworthy that the higher gain APN guidance laws respond a little faster to the target

maneuvers than the ON. This makes sense, as the variable gain k̂′ from the ON guidance

law starts around 3.5 for this scenario, and eventually rises up above 10.

The next example shows how each guidance law performs against a target step maneuver,

similar to the scenario from Section 8.3. The simulation parameters are identical to that

engagement: a 6.5g target step evasive maneuver with a random component of σt,ss = 0.1g.

The maneuver start time for this study is tevasive = 3s. The ±3σ target evasive maneuver

trajectory envelope is illustrated in Figure 9.2. The solid line represents the NRT, and the

shaded area represents the ±3σ truth dispersions, or the area where 99.7% of the trajectories

are expected to be. This scenario represents a light saturation for some guidance laws, and

a heavy saturation for others.

Fig. 9.2: Target Step Evasive Maneuver

The results for this example problem are shown in Figures 9.3 and 9.4. In Figure 9.3,

the PN guidance law performance is shown with the color blue indicating a gain of 3, orange
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a gain of 4, and yellow a gain of 5. For the left side of Figure 9.3, the solid line represents

the NRT, and the shaded area represents the ±3σ truth dispersions for the corresponding

line. For example, with PN k = 3 guidance, the relative lateral position at t = 10s has a

mean value of 394m ± 32m. The right side of Figure 9.3 contains the corresponding nominal

acceleration profiles for each guidance law. In general, all three PN guidance laws saturate

around t = 6s. The k = 5 trajectory is a little more responsive early in the engagement, and

is only able to drive the final miss distance down to about 175m. The other two PN guidance

laws have even higher miss distances. The miss distance results of this example, along with

the final time 3σ truth dispersions, and the maximum realized missile acceleration values

are summarized in Table 9.1.

Table 9.1: Guidance Law Miss Distances For A Target Step Evasive Maneuver

Guidance Law Miss Distance (m) 3σ Truth Dispersion (m) Max Missile Accel. (g)

PN k = 3 394 32 10

PN k = 4 274 32 10

PN k = 5 184 33 10

APN k = 3 15.0 2.6 9.8

APN k = 4 3.3 1.2 10

APN k = 5 0.4 1.8 10

ON 3 0.25 8.9
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The APN and ON guidance law performances are shown in Figure 9.4 with each color

representing a different guidance scheme. These guidance laws perform much better than

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

M
is

s
ile

 A
c
c
e
le

ra
ti
o
n
 (

g
)

APN k=3

APN k=4

APN k=5

ON

Fig. 9.4: APN/ON Guidance Law Trajectories For A Target Step Evasive Maneuver: (left)
Nominal Trajectory ±3σ Position Dispersion, (right) Nominal Missile Acceleration

the PN guidance. The miss distance is under 20m for all cases, and under 5m for APN

k = 4, 5 and ON guidance (see Table 9.1). The truth dispersions are very small for the ON

guidance. The ON also requires the least amount of actuator acceleration, having a maximum

acceleration of 8.9g for this intercept. Figure 9.4 also shows the nominal acceleration profile

for these guidance laws. The APN k = 4, 5 are the most aggressive to respond to the evasive

maneuver, but they are also more prone to overshoot. In general, the higher the gain, the

more responsive the missile is, and the lower the miss distance. Additionally, the guidance

laws with more feed-forward terms have significantly better general performance.

9.3 Evasive Maneuver Study

Now that the guidance laws have been defined, the next study of interest is to the

evasive maneuver times. For the random evasive maneuver, there is no specific start time, so

the total engagement length is varied. For example, in Chapter 7, the total engagement time

(initial tgo value) was 10 seconds, but in this study, the total engagement time varies from

1-10s. The initial conditions are held constant for this study. For the target step evasive
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maneuver, step evasive maneuver start time varies from 0-10s. All the other parameters of

the study stay the same as the previous section.

Figure 9.5 contains the 3σ miss distances for the random maneuvers. Each color
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Fig. 9.5: Guidance Law Miss Distances Vs. Various Engagement Times For A Random
Target Maneuver

represents a different guidance law tested. The x-axis of the plot indicates the total

engagement time, and the y-axis the 3σ miss distance. The ON guidance performs best,

followed by the APN guidance, and then the PN guidance. The higher gain guidance laws

perform better than the lower gain ones. The miss distances in this scenario are somewhat

high due to the high target acceleration.

The target step evasive maneuver scenario from the Section 9.2 is not quite as stressing

as the random maneuver scenario. The evasive maneuver is 6.5g ±0.3g. Using the PN

guidance law, the missile almost always saturates. Using the APN guidance the missile

saturate some of the time, and using the ON guidance law, the missile never saturates.

Figure 9.6 shows the results for the PN guidance law. The color schemes are the same as

for the previous section. The 3σ miss distances are all over 100m if the step maneuver
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Fig. 9.6: PN Guidance Law Miss Distance as A Function Of Target Step Evasive Maneuver

begins with more than 4 seconds left in the engagement, and grow larger from there. This

shows that the PN guidance laws can’t keep up with this evasive maneuver. In general,

PN guidance laws do not perform well against step maneuvers, as the PN guidance law is

derived for a constant target velocity [57].

Figure 9.7 shows the results for the APN and ON guidance laws. The 3σ miss distances
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are under 25m for APN guidance, and under 5m for ON guidance. The largest miss distances
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happen when the evasive maneuver begins about 8s into the scenario. The APN k = 4, 5

laws are very responsive and they saturate no matter when the maneuver begins. The ON

guidance only saturates if the evasive maneuver begins after 9s, and even in this case, the

miss distance remains small.

Since the ON guidance law doesn’t saturate the actuator with at,evasive = 6.5g, a

study is now conducted to investigate the performance of the guidance law as the target

acceleration increases. Figure 9.8 shows the results of this study. Each color of the plot
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Fig. 9.8: ON Guidance Law Miss Distance Vs. Maneuver Start Time For Various Target
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represents a different target acceleration magnitude. The solid lines represent the nominal

trajectory miss distance, while the shaded areas represent the 3σ envelope of miss distances.

The target acceleration values vary from at,evasive = 7.5g to at,evasive = 9g. Note that the

missile maximum acceleration is 10g, so if the target evasive maneuver exceeds 10g, the

missile will not be able to close any distance. The right side of Figure 9.8 shows that the ON

guidance reaches saturation for any target maneuvers above 7.5g. For target accelerations

of 8g and 8.5g, the ON guidance law starts seeing stronger saturations with maneuvers

beginning after t = 5s. For target accelerations of 9g, the stronger saturations occur with

maneuvers beginning after t = 3s.
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The performance of the ON guidance law is very strong for all the cases studied so

far. It is important to note however, that the sensors used so far have been very accurate.

Not every system has accurate sensors, therefore a study to investigate the effect of sensor

quality on system performance will be done in Section 9.5.

9.4 Actuator Responsiveness Study

Another variable that can significantly affect the outcome of an engagement is the

responsiveness of the missile actuator. If there is a lag in implementing the acceleration

commands, it can decrease the performance of the missile. This will be tested by varying

the actuator time-constant parameter τm. So far in the chapter, this parameter has been

constant at τm = 1s. For this study, the time-constant τm will vary from a fast response

of 0.25 seconds, to a slow response of 4.0 seconds. This actuator response will be tested

against the random target maneuver and the step evasive maneuver from Section 9.3.

The results of the actuator responsiveness study for a random target maneuver are

illustrated in Figure 9.9. The line colors are associated with the same guidance laws as the
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Fig. 9.9: Miss Distance Vs. Time-Constant Ratio For Random Target Maneuver

previous section. The results along the x-axis are normalized against the target maneuver

time-constant τt. The y-axis shows the 3σ miss distance of the engagement for each time-
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constant ratio. For a very responsive actuator, the APN guidance and the ON guidance

all perform well, with 3σ miss distances under 25m. This is significant, as the steady state

3σ the target acceleration of 15g is higher than the maximum acceleration capability of

missile, 10g. This shows that a missile with an acceleration disadvantage can still perform

well against a target maneuver, as long as it is has a faster actuator time-constant and an

advanced guidance law. In general, the 3σ miss distance decreases by approximately a factor

of 3 as the τm
τt

ratio decreases from 1 to 0.25.

For part two of the actuator responsiveness study, the target evasive maneuver from

Section 9.3 is considered, with the maneuver starting time ranging from 0-10s. The time-

constant ratios vary from τm
τt

= 0.25− 4. The results of this study are illustrated in Figures

9.10-9.12. The left-side plots show the miss distances for the evasive maneuver start times.

Each color represents a different time-constant ratio τm
τt
, with the solid line designating the

nominal miss distance, and the shaded area designating the 3σ truth dispersion trajectory

envelope. The right-side plots show the maximum missile acceleration required for each

trajectory. For Figures 9.10-9.12, there are multiple rows of plots, with each row indicating

a different guidance law. The guidance law is written in bold at the top of each plot.

Figure 9.10 shows the PN guidance law performance. All the trajectories saturate the

actuator, no matter when they start, and the earlier the maneuver, the larger the miss

distance. The faster response actuators with ratios τm
τt

= 0.25 and τm
τt

= 0.5 show significant

improvement for the PN guidance laws.
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Figure 9.11 shows the APN guidance law performance. The higher gain APN guidance

laws saturate more easily than the k = 3 guidance does. For long engagements, the k = 3, 4

guidance laws start to significantly decrease in performance for τm
τt

ratios above 1.5. For τm
τt

ratios of 0.5 and 0.25, the APN guidance law still has miss distances below 25m. This shows

that a missile with an acceleration disadvantage can still perform well against a target step

maneuver, as long as it is has a faster actuator time-constant and an advanced guidance law.

For k = 3, the largest miss distances happen for early maneuver times and slower actuators.

In general, with the slower actuators, there seems to be an oscillating behavior, almost like

an actuator windup/overshoot cycle, due to the acceleration lag.

The ON guidance law performance is shown in Figure 9.12. This law performs exceed-

ingly well, even with slow actuators. The acceleration plot in Figure 9.12 shows that the

missile actuator is not saturating much for this guidance law. All the 3σ miss distances with

τm
τt

= 0.25− 4 stay below 10m.
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Fig. 9.11: APN Guidance Law Performance For Various Actuator Time-Constants
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9.5 Sensor Quality Study

The studies so far in this chapter have focused on engagements with very accurate

sensors. In general, missiles use very accurate tactical grade sensors, as performance is

more important than cost. However, Statistical LinCov is the perfect tool run a trade

study and investigate what type of performance drop off there is with lower grade sensors.

For this section, there are be 3 levels of sensors considered. The “high” grade sensors are

tactical grade sensors for military applications, the “low” grade sensors are the cheaper

“common off the shelf” (COTS) sensors, and the “medium” grade sensors are somewhere in

between. The sensor specifications for each level are found in Table 9.2. The accelerometer

Table 9.2: Sensor Specifications: High, Medium, And Low Accuracy

Symbol High Medium Low Units Description

Sη 0.015 0.17 0.60 (m/s)/sqrt(hr) 3σ aclmtr. random walk

νlos 0.2 2.0 10 mrad 3σ line-of-sight meas. noise std dev

σa,ss 1.2 2.1 42 mg 3σ steady state aclmtr. bias

σs,ss 300 750 5400 ppm 3σ steady state aclmtr. scale factor

σϵ,ss 0.4 4 40 mrad 3σ steady st. aclmtr. misalignment

σlos,ss 0.05 0.5 2.5 mrad 3σ steady state line-of-sight bias

specifications for random walk, bias repeatability, and scale factor are from an Inertial Labs

IMU spec sheet [100], and from two Collins Aerospace IMU spec sheets [101,102]. The angle

measurement specifications are from [103], and the accelerometer misalignment specifications

are from [36].

This study is similar to the random maneuver study from Section 9.2. The target

undergoes a zero mean random evasive maneuver with time-constant τt, and σt,ss = 5g. This

maneuver creates a moderate actuator saturation for the missile. The simulation parameters

for this study are found in Tables 7.1 and 7.2, with the specified sensor changes, and with a

varying maximum missile acceleration capability.

Figure 9.13 shows the results of the sensor study for each of the guidance laws. The

plots show the 3σ miss distances for varying levels of amax
at,max

. Each plot represents a different
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guidance law, and each color represents a different sensor configuration. The lower amax
at,max

ratios represent higher saturations. PN guidance is not affected much by the lower grade

sensors, but for APN and ON guidance, the sensor grade has a pronounced effect. For high

saturation APN/ON guidance, when amax
at,max

< 1, the 3σ miss distance jumps from about

100m with high quality sensors to 600m with low quality sensors. For lower saturation

scenarios, the ON guidance benefits the most from high accuracy sensors.

Another way of arranging the data is to sort the results by sensor quality instead of by

guidance law. This is shown in Figure 9.14. The x-axes and y-axes for these plots are the

same as Figure 9.13, with one plot for each sensor grade. Each color represents a different

guidance law, with the PN guidance laws shown as dashed lines. In these plots, it is clear

that for higher actuator saturation and low accuracy sensors, the performance of the more

advanced guidance laws is worse than PN guidance. For lower saturation scenarios, when

amax
at,max

> 1, ON guidance still performs the best, no matter what the sensor grade is.

The Figure 9.14 plots are combined into one plot in Figure 9.15 to show more detail on

the lower saturation region. This plot shows PN k = 4 in yellow, APN k = 4 in orange, and

ON guidance in blue, and three sensor grades for each guidance law. This plot shows that

as amax
at,max

approaches 2, PN guidance approaches the performance of APN guidance, with

ON guidance outperforming them both.
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9.6 Trade Study Summary

In this chapter, Statistical LinCov was utilized to test a few common guidance laws

against random target maneuvers and target evasive step maneuvers. The trade study

investigated many parameter variations, such as engagement time, saturation levels, actuator

responsiveness, and sensor grade. The Statistical LinCov simulation made the testing very

straightforward and fast. The simulations from this chapter take about 40 minutes to run,

while a Monte Carlo simulation running the same studies would take 200+ hours. This is a

significant upgrade in computation time.

The trade studies found that PN guidance is inferior in most cases to APN and ON

guidance. The exception to this is in high saturation engagements with low accuracy sensors.

PN guidance performs better against random target maneuvers than step maneuvers, and if

the actuator has a faster response time than the target maneuvers, can still maintain small

miss distances.

APN guidance was shown to perform well against target step maneuvers and random

maneuvers, and outperformed PN guidance in most cases. For low saturation engagements,

the APN and PN guidance laws have similar performance. APN guidance has a significant

drop off in performance if the actuator time-constant is slower than the target maneuver

time-constant.

ON guidance proved to be the best performing guidance law in most cases. The most

striking improvement over PN and APN guidance occurs in engagements with target step

maneuvers and slow actuator time-constants. The ON guidance was able to keep miss

distances under 10m for time-constant ratios up to τm
τt

= 4, whereas APN guidance for the

same case had miss distances over 150m, and PN guidance had miss distances over 200m. In

general, ON does not saturate as easily as PN and APN guidance. For many of the scenarios

is this chapter, PN and APN guidance laws showed high levels of saturation, while the ON

guidance hardly saturated at all. The study also showed that in most cases ON guidance

with low accuracy sensors outperforms APN and PN guidance with high accuracy sensors.
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CHAPTER 10

SUMMARY AND CONCLUSIONS

This dissertation examined the customary methods of GN&C linear covariance analysis

for the missile engagement problem. Missile engagements have traditionally been addressed

by lower fidelity covariance analysis techniques such as basic linear covariance methods or

basic statistical linear covariance methods. In order to bring a higher fidelity linear analysis

to missile engagements, this dissertation investigated the application of augmented state

linear covariance analysis to missile engagements. Augmented state linear covariance theory

historically has relied on a 1st-order Taylor series approximation linearization technique,

which is not very accurate for certain nonlinearities, such as saturation limiters. Missile

flight dynamics frequently involve actuator saturation, thus eliminating the usefulness of

traditional linearization for this problem. Monte Carlo analysis is also often used in missile

engagement problems, but it is prohibitively expensive computationally for many studies.

Chapter 1 provided an introduction to the missile engagement phases of flight, and

current analysis methods. Terminal homing, the final phase of flight for a missile engagement,

was the main focus of this dissertation. The second chapter gives an overview of the research

and defines the thesis statement. The literature survey in Chapter 3 discussed the different

types of covariance analysis and an alternative linearization technique called statistical

linearization. Statistical linearization is better suited to problems with sustained actuator

saturation than traditional linearization methods. Chapter 3 categorized the most common

linear covariance analysis methods into the following categories: Basic LinCov, Basic

Statistical LinCov, and Augmented State LinCov (referred to as just “LinCov”).

Chapters 4 and 5, developed in detail all the LinCov theory and statistical linearization

theory needed to incorporate LinCov into missile engagements. This included defining the

augmented state linear covariance framework, deriving the event trigger equations, and

deriving the statistical linearization equations for the saturation nonlinearity. Chapter

6 applied LinCov to an unsaturated missile engagement problem, a new GN&C field for
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LinCov. This chapter was recently published by the author in a journal paper [41], and laid

the groundwork for Chapters 7 and 8.

Chapter 7 developed and validated a new application of LinCov called Statistical

LinCov, which can incorporate nonlinearities. Basic Statistical LinCov and Basic LinCov

do not incorporate the effect of navigation errors on truth state dispersions, and are not

able to evaluate the overall GN&C closed-loop performance. Augmented State LinCov does

incorporate this effect, but is limited by traditional linearization. Statistical LinCov bridges

the gap by including the correlation effects of navigation errors on truth dispersions, while

also utilizing statistical linearization. This is a very useful application of LinCov which

expands its use to a wider range of GN&C systems.

Part 2 of Chapter 7 defined and validated another application of LinCov called Tunable

LinCov. Tunable LinCov uses Augmented State LinCov theory and traditional linearization,

but incorporates a nonlinearity by tuning the timing of GN&C mode changes. Between

Statistical LinCov, and Tunable LinCov, Statistical LinCov was more accurate for modeling

missile actuator saturation.

A third type of LinCov analysis was defined and validated in Chapter 8, called Trigger

LinCov. This is Augmented State LinCov with an event trigger to incorporate a mode change

or nonlinearity. The initial investigation into Trigger LinCov showed that it is capable of

modeling step input evasive target maneuvers, but not a random evasive maneuver.

In order to demonstrate the effectiveness of Statistical LinCov, Chapter 9 presented a

series of missile engagement trade studies. The studies investigated various target maneuvers,

missile guidance laws, saturation levels, actuator responsiveness levels, and sensor suites.

The trade studies found that proportional navigation (PN) guidance is inferior in most

cases to augmented proportional navigation (APN) guidance and optimal navigation (ON)

guidance, with an exception being a high saturation engagement with low accuracy sensors.

APN guidance was shown to perform well against target step maneuvers and target ECRV

maneuvers, but had a significant drop off in performance for any sort of actuator lag. This

is the situation where the ON guidance shined the most. With ON guidance, the missile
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engagement miss distances were mostly unaffected by actuator lag, even significant ones. In

general, the ON guidance is the best performing of the three guidance laws in just about

every scenario. The Statistical LinCov simulation made the testing very straightforward

and fast. The simulations from this chapter took about 40 minutes to run, while a Monte

Carlo simulation running the same studies would take 200+ hours.
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CHAPTER 11

FUTURE WORK

This dissertation has laid out the theory and equations for Statistical LinCov, and tested

it out in a few example problems. In general, it can be just as useful to know the limitations

of a research tool as it is to know the good use cases. The limitations of Statistical LinCov

could be found by relaxing some of the assumptions of the problem, such as the Gaussian

input assumption. The Gaussian assumption used in this dissertation is not particularly

limiting (see Chapter 1 of [73]), but one way to validate this assertion would be to test out

non-Gaussian inputs to the nonlinear functions. A further validation of Statistical LinCov

could also be done by implementing it in a full 6DOF missile engagement simulation.

Another way to test out the limitations of Statistical LinCov is to apply it to other

GN&C problems. There are numerous applications of statistical linearization that have

future research potential. Utilizing Statistical LinCov, any nonlinearity from Appendix E

of [76] can be applied to LinCov, including limiters, relays, and deadbands. If it is desired

to use Statistical LinCov for a nonlinear function that has not been previously tabulated,

then the random input describing function (RIDF) would have to be derived.

One potential research application is attitude deadband control for satellites. Instead

of continuously executing attitude corrections, it is common for satellites to wait until the

attitude error meets the error threshold before correcting. This prevents the momentum

wheels from running more than they need to. This type of attitude maneuver would be easily

modeled by Statistical Linearization. Another deadband application would involve position

control deadbands for satellite rendezvous and proximity operations (RPO). If a satellite

wanted to stay on the v-bar within a certain distance of a resident space object (RSO), a

deadband controller could activate once the estimated range reaches the threshold. Another

nonlinearity that could be addressed by Statistical LinCov is minimum impulse control.

For satellites flying in formation, it is important to run frequent station keeping/orbit

maintenance maneuvers. However, satellite thrusters have a minimum impulse acceleration
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they can impart, preventing the execution of very small accelerations. Statistical LinCov

would be able to model this minimum impulse control effect.

Statistical LinCov also has potential application for nonlinear measurement equations.

It could be applied to quantized measurements, or to measurements with nonlinear trigono-

metric functions. For example, with angles-only navigation between two satellites, the

angle measurement equation is nonlinear and traditional linearization methods are not very

accurate. This would require a derivation of the RIDFs for the measurement, which can be

quite complex. Developing an Extended Kalman Filter that is capable of using statistical

linearization for this measurement could dramatically improve the performance of angles-only

navigation for satellites.
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APPENDIX A

Complex Step Derivative Approximation Code Example

For reference to this code, see the Martins et al. paper [91] and the Rose dissertation [36].

%% Complex Step Derivative Approximation Script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code will evaluate the complex step derivative approximation

% with varying time steps for a given function. It will plot the

% results against the analytic derivative results.

% See Martins et al. paper [91] and Rose dissertation [36].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%719%%%%%%%

%% Clear Command Window, Figures, and Variables

clc; close all; clearvars

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Initialize variables

hVals=zeros(30,1);

for ind=1:30

hVals(ind,1)=10^-ind;

end

h=10^-10; n_states=8; n_timeSteps=1; n_funcStates=1;

df=zeros(n_funcStates,n_states,n_timeSteps);

x=[1;1;1;10;100;100;-10;0];

z0=CSDA_rangeRate(x);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Calculate the derivative at the given state with varying time steps

for j=1:length(hVals)

for i=1:n_states

y=zeros(n_states,1);
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h=hVals(j);

y(i,1)=h;

z=complex(x,y);

z1=CSDA_rangeRate(z);

df(1:n_funcStates,i,j)=imag(z1)/h;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Calculate the analytic partial derivative at x0

r = [ x(1);x(2) ];

v= [ x(3);x(4) ];

rt = [ x(5);x(6) ];

vt= [ x(7);x(8) ];

rtm=rt-r;

i_rtm=rtm/norm(rtm);

vtm=vt-v;

dz_dr= -vtm’/norm(rtm)*( eye(2)-i_rtm*i_rtm’ );

dz_drt= vtm’/norm(rtm)*( eye(2)-i_rtm*i_rtm’ );

H = [ dz_dr, -i_rtm’,dz_drt, i_rtm’];

an_df=zeros(n_funcStates,n_states,length(hVals));

diff_abs=zeros(n_funcStates,n_states,length(hVals));

for i=1:length(hVals)

an_df(:,:,i)= H;

end
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for i=1:length(an_df)

diff_abs(:,:,i)=abs(df(:,:,i)-an_df(:,:,i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Plot the difference between the two different methods

plotIndex=1;

for i=1:n_states

for j=1:n_funcStates

figure;hold on;

loglog(hVals,squeeze(diff_abs(j,i,:))/abs(z0(j)));

str=sprintf(’H_{rangeRate} Jacobian Error: dz_%i/dx_%i’,j,i);

title(str)

set(gca, ’XScale’, ’log’)

if abs(mean(diff_abs(j,i,:))) > 1e-12

set(gca, ’YScale’, ’log’)

end

ylabel(’Normalized Error’)

xlabel(’Step Size, h ’)

plotIndex=plotIndex+1;

end

end

function f = CSDA_rangeRate(x)

r = [ x(1);x(2) ];

v= [ x(3);x(4) ];

rt = [ x(5);x(6) ];

vt= [ x(7);x(8) ];
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rtm=rt-r;

vtm=vt-v;

f=(rtm(1)*vtm(1)+rtm(2)*vtm(2))/cnorm(rtm);

end

function xmag = cnorm(x)

% CNORM(X) is the Euclidean norm (i.e., length or magnitude)

% of a vector X, where X is comprised of real or complex elements.

% Compute Euclidean norm

xmag = sqrt(x.’*x);

end



189

APPENDIX B

Derivation Of Prop. Nav. Guidance Law Partial Derivatives

B.1 System Model

State Vector

The state vector is written as:

x =



r2×1

v2×1

rt2×1

vt2×1


8×1

(B.1)

Dynamics

The dynamics of the state vector are:

ṙ = v (B.2)

v̇ = u2×1 (B.3)

ṙt = vt (B.4)

v̇t = 02×1 (B.5)
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Guidance Law

The proportional navigation guidance law in a 2D frame is written as:

u = g(x) =nc

 − sinλ

cosλ

 (B.6)

where

nc = nVcλ̇ (B.7)

λ = atan(

[
B(rt − r)

C(rt − r)

]
) (B.8)

B = [ 0 1 ] (B.9)

C = [ 1 0 ] (B.10)

Vc = −(rt − r)T (vt − v)

||(rt − r)||
(B.11)

λ̇ =
(rt − r)TA(vt − v)

||(rt − r)||2
(B.12)

A =

 0 1

−1 0

 (B.13)

Partial Derivative

The derivative of the guidance law with respect to the state vector is:

∂u

∂x
= Gx =

∂
[
nVcλ̇

]
∂x

 − sinλ

cosλ

+ nVcλ̇



∂

 − sinλ

cosλ


∂x


(B.14)
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This will be derived in three parts: the closing velocity partial derivative, the line-of-sight

rate partial derivative, and the inertial frame rotation partial derivative.

B.2 Guidance Law Partial Derivative

∂
[
nVcλ̇

]
∂x

= nVc
∂λ̇

∂x
+ nλ̇

∂Vc
∂x

(B.15)

where

∂Vc
∂x

=

[
∂Vc
∂r

∂Vc
∂v

∂Vc
∂rt

∂Vc
∂vt

]
1×8

(B.16)

∂λ̇

∂x
=

[
∂λ̇
∂r

∂λ̇
∂v

∂λ̇
∂rt

∂λ̇
∂vt

]
1×8

(B.17)

B.3 Closing Velocity Partial Derivative

The derivative of the closing velocity Vc with respect to the state vector x is:

∂Vc
∂x

=
∂
[
− (rt−r)T (vt−v)

||(rt−r)||

]
∂x

(B.18)

Using the Quotient Rule:

∂
[
a
b

]
∂x

=
∂a
∂xb− a ∂b

∂x

b2
(B.19)

with substitutions

a = −(rt − r)T (vt − v) (B.20)

b =||(rt − r)|| =
√

(rt − r)T (rt − r) =
√
c (B.21)

c = (rt − r)T (rt − r) (B.22)

Simplifying and rearranging:

∂a

∂x
=
∂
[
−(rt − r)T (vt − v)

]
∂x

= −(rt − r)T
∂[(vt − v)]

∂x
−(vt − v)T

∂[(rt − r)]

∂x
(B.23)
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∂[(vt − v)]

∂x
=

[
02×2 −I2×2 02×2 I2×2

]
2×8

(B.24)

∂[(rt − r)]

∂x
=

[
−I2×2 02×2 I2×2 02×2

]
2×8

(B.25)

∂a

∂x
=−(rt − r)T

[
02×2 −I2×2 02×2 I2×2

]
2×8

−(vt − v)T
[
−I2×2 02×2 I2×2 02×2

]
2×8

(B.26)

∂a

∂x
=

[
(vt − v)T (rt − r)T −(vt − v)T −(rt − r)T

]
1×8

(B.27)

∂b

∂x
=
∂b

∂c

∂c

∂x
(B.28)

∂b

∂c
=

1

2
√
c
=

1

2||(rt − r)||
(B.29)

∂c

∂x
=
∂
[
(rt − r)T (rt − r)

]
∂x

= (rt − r)T
∂[(rt − r)]

∂x
+(rt − r)T

∂[(rt − r)]

∂x
(B.30)

∂c

∂x
=

[
−2(rt − r)T 01×2 2(rt − r)T 01×2

]
1×8

(B.31)

∂b

∂x
=
∂b

∂c

∂c

∂x
(B.32)

∂b

∂x
=

1

||(rt − r)||

[
−(rt − r)T 01×2 (rt − r)T 01×2

]
1×8

(B.33)

Substituting (B.27) and (B.33) into (B.19)

∂Vc
∂x

=
1

||(rt − r)||

[
(vt − v)T (rt − r)T −(vt − v)T −(rt − r)T

]
1×8

+
(rt − r)T (vt − v)

||(rt − r)||3

[
−(rt − r)T 01×2 (rt − r)T 01×2

]
1×8

(B.34)



193

B.4 Line-Of-Sight Rate Partial Derivative

The derivative of the line-of-sight angle rate λ̇ with respect to the state vector is:

∂λ̇

∂x
=
∂
[
(rt−r)TA(vt−v)

||(rt−r)||2

]
∂x

(B.35)

Use the Quotient Rule (Eq. B.19) with the following substitutions:

a =(rt − r)TA(vt − v) (B.36)

b =||(rt − r)||2 = (rt − r)T (rt − r) (B.37)

∂a

∂x
=
∂
[
(rt − r)TA(vt − v)

]
∂x

= (rt − r)TA
∂[(vt − v)]

∂x
+(vt − v)TAT ∂[(rt − r)]

∂x
(B.38)

Substitute Equation B.24 and B.25 into Equation B.38:

∂a

∂x
=(rt − r)T

[
02×2 −A2×2 02×2 A2×2

]
2×8

+ (vt − v)T
[
−AT

2×2 02×2 AT
2×2 02×2

]
2×8

(B.39)

∂a

∂x
=

[
−(vt − v)TAT −(rt − r)TA (vt − v)TAT (rt − r)TA

]
1×8

(B.40)

∂b

∂x
=
∂
[
(rt − r)T (rt − r)

]
∂x

= 2(rt − r)T
∂[(rt − r)]

∂x
(B.41)

∂b

∂x
=

[
−2(rt − r)T 01×2 2(rt − r)T 01×2

]
1×8

(B.42)

Applying the quotient rule

∂λ̇

∂x
=

1

||(rt − r)||2

[
−(vt − v)TAT −(rt − r)TA (vt − v)TAT (rt − r)TA

]
1×8

(B.43)
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−(rt − r)TA(vt − v)

||(rt − r)||4

[
−2(rt − r)T 01×2 2(rt − r)T 01×2

]
1×8

Combine the results from Equation B.34 and Equation B.43 into Equation B.15

B.5 Frame Rotation Partial Derivative

Find

∂

 − sinλ

cosλ


∂x

(B.44)

where λ is the line-of-sight angle given by:

λ = atan(

[
B(rt − r)

C(rt − r)

]
) (B.45)

The following substitutions are utilized:

B = [ 0 1 ] (B.46)

C = [ 1 0 ] (B.47)

d =B(rt − r) (B.48)

e =C(rt − r) (B.49)

f =
d

e
(B.50)

g =− sinλ (B.51)

h =cosλ (B.52)
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The expanded partial derivative is:

∂

 g

h


∂x

=


∂g
∂x

∂h
∂x

 =


∂g
∂r

∂g
∂v

∂g
∂rt

∂g
∂vt

∂h
∂r

∂h
∂v

∂h
∂rt

∂h
∂vt


2×8

(B.53)

where

∂g

∂x
=
∂g

∂λ

∂λ

∂f

∂f

∂x
(B.54)

∂h

∂x
=
∂h

∂λ

∂λ

∂f

∂f

∂x
(B.55)

Developing Equations B.54 and B.55:

∂g

∂λ
= − cosλ (B.56)

∂h

∂λ
= − sinλ (B.57)

∂λ

∂f
=

1

1 + f2
=

1

1 +
[
d
e

]2 =
1

1 +
[
B(rt−r)
C(rt−r)

]2 =
1

1 + [B(rt−r)]2

[C(rt−r)]2

(B.58)

∂λ

∂f
=

[C(rt − r)]2

[C(rt − r)]2 + [B(rt − r)]2
(B.59)

∂f

∂x
=
∂
[
d
e

]
∂x

=
∂d
∂xe− d ∂e

∂x

e2
(B.60)

∂d

∂x
=

[
−B1×2 01×2 B1×2 01×2

]
1×8

(B.61)

∂e

∂x
=

[
−C1×2 01×2 C1×2 01×2

]
1×8

(B.62)

Substituting Equations B.61 and B.62 into Equation B.60:

∂f

∂x
=

[C(rt − r)]

[
−B1×2 01×2 B1×2 01×2

]
[C(rt − r)]2
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−[B(rt − r)]

[
−C1×2 01×2 C1×2 01×2

]
[C(rt − r)]2

(B.63)

Substituting Equations B.56, B.57, B.59, and B.63 into Equations B.54 and B.55.

∂g

∂x
= − cosλ

∂λ

∂f

[C(rt − r)]

[
−B1×2 01×2 B1×2 01×2

]
[C(rt − r)]2

+ cosλ
∂λ

∂f

[B(rt − r)]

[
−C1×2 01×2 C1×2 01×2

]
[C(rt − r)]2

(B.64)

∂h

∂x
= − sinλ

∂λ

∂f

[C(rt − r)]

[
−B1×2 01×2 B1×2 01×2

]
[C(rt − r)]2

+ sinλ
∂λ

∂f

[B(rt − r)]

[
−C1×2 01×2 C1×2 01×2

]
[C(rt − r)]2

(B.65)

Substituting Equations B.64 and B.65 into B.53:

∂

 − sinλ

cosλ


∂x

=


∂g
∂x

∂h
∂x


2×8

(B.66)

B.6 Combined Partial Derivative Results

Substitute the results from Equations B.15, B.34, B.43, B.59, and B.64-B.66 into

Equation B.14:
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∂u

∂x
= Gx =

 − sinλ

cosλ

 ∂
[
nVcλ̇

]
∂x

+ nVcλ̇



∂

 − sinλ

cosλ


∂x


(B.67)
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