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ABSTRACT

The effects of recent climate change on spring phenology, with a special focus on

patterns of bee foraging

by

Michael Stemkovski, Doctor of Philosophy

Utah State University, 2023

Major Professor: Dr. Nancy Huntly
Department: Biology

Phenology, the seasonal timing of life-history events, is a major determinant of 

the abiotic environment and ecological interactions that species experience. Phenological 

plasticity, or the responsiveness of phenology to differences in inter-annual climatic 

conditions, is one of the ways that species cope with environmental variability and 

climatic shifts. Shifts in spring plant phenology are one of the clearest biotic signals of 

recent anthropogenic climate change, as temperatures have increased in much of the 

world, and many plant species have been documented to bloom and leaf-out earlier. 

While these patterns have been well documented, much less has been understood about 

the phenological plasticity of pollinators that depend on flowering plants, such as bees. 

Here, I investigate several aspects of bee phenology and the effect of climate change on 

phenological variability broadly.

This dissertation is composed of six chapters, with four manuscripts bookended 

by introductory and concluding chapters. Chapter 2 examines the drivers of bee 

phenology in a subalpine bee community, quantifying the relative effects of inter-annual 
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climate variability, topography, and species traits on the emergence, peak, and 

senescence timing of several dozen bee species over a decade. Using the same dataset 

and a complementary long-term flower phenology monitoring dataset, Chapter 3 

quantifies the degree to which bee and flower phenological distributions are skewed 

toward early- or late-season abundance. Synthesizing work from Chapters 2 and 3, 

Chapter 4 presents a mechanistic model of bee phenology that is based on demographic 

rates and is parameterized using Halictus rubicundus abundance data collected at a fine 

temporal scale. Expanding the scope of inquiry, Chapter 5 investigates the degree to 

which the spring phenology of over a thousand species of plants, insects, and birds is 

becoming more or less variable across years as a result of climate change.

(263 pages)
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PUBLIC ABSTRACT

The effects of recent climate change on spring phenology, with a special focus on

patterns of bee foraging

Michael Stemkovski

The date on which plants flower and on which bees begin to pollinate varies year-

to-year depending on differences in weather. This seasonal timing is known as 

phenology, and it is already clear that climate change has pushed the spring phenology of 

many species earlier by increasing temperatures. This is particularly clear in flowering 

plants, but studying how and why the phenology of pollinators is shifting is more 

difficult. Most flowering plants rely on pollinators such as bees for their reproduction, 

and most bees rely on flowers for their sustenance, so bee and flower phenology has to 

overlap for the crucial interaction of pollination to happen, and understanding the 

phenology of both is important to predicting how climate change will affect pollination in

the future. 

Using new and existing data on bee and flower phenology from the Colorado 

Rocky Mountains, I examined what drives phenology and developed a mathematical 

model to relate bee phenology to basic demographic rates. Taking a global view, I also 

tested whether the phenology of plants, insects, and birds is becoming less predictable 

due to rising temperatures. In general, this dissertation shows that while the drivers of 

phenology are complex and interrelated, we can predict their outcomes as climate change 

progresses.
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CHAPTER 1

GENERAL INTRODUCTION

The global climate has been experiencing noticeable effects of elevated 

anthropogenic greenhouse gas emissions since close to the beginning of the industrial 

revolution (Abram et al., 2016). The most unambiguous, widespread effect has been 

increasing temperatures (IPCC, 2021). In recent decades, this warming has accelerated as

the human population has exploded and greenhouse gas emissions have followed (IPCC, 

2021). In fact, just between when I started working on this dissertation in 2018, and the 

date of the completion of this dissertation, 400 million people were born in the world – a 

number greater than the population of the United States (United Nations, 2022). In the 

same time, global temperatures have continued their alarming rise. These past four years 

have all been in the top ten warmest years ever recorded (NOAA, 2022). Concentrations 

of carbon dioxide have increased by around 10 parts per million during this time, from 

407 ppm in 2018 to 417 ppm in 2022 (Friedlingstein et al., 2022). 

This is a critical time in our history as our society grapples with the implications 

of this rapid climate change and people work to avert its worst outcomes. Ecologists are 

(or aught to be) playing a key role in anticipating and adapting to changes in ecosystems 

in terms of services and biodiversity. The “natural” experiment of changing climate also 

provides an unprecedented opportunity for basic scientific insight for ecologists to 

exploit.

The ecological effects of climate change range in timescale (Williams et al., 

2021). Some will take decades and centuries to play out, while others are observable on a
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annual basis or even faster (i.e. consequences of extreme weather events). Phenological 

plasticity (the phenomenon of species shifting the timing of seasonal life-history events in

response to abiotic conditions) and the phenological shifts (changes in phenology across 

years) that are a result of plasticity are a relatively fast ecological consequence of climate 

change (Badeck et al., 2004). This, together with the fact of many phenological effects 

being conspicuous and easily studied, has led to phenology research becoming one of the 

main areas of investigation for ecologists that focus on global change. Phenological shifts

are one of the clearest biotic indicators of climate change.

Beyond serving as an indicator of abiotic conditions, phenology is worthy of 

study in the context of species interactions. Most of ecology rests on the co-occurrence of

species in space and time. If there are changes in either dimension, ecological 

relationships necessarily change. Much work on phenological shifts has been motivated 

by the match-mismatch hypothesis (Renner et al., 2018). At its core, the idea is that if 

interacting species have different phenological sensitivities, the timing of their activity 

will shift at different rates over time as climate change progresses, and they will become 

temporally decoupled. This possibility is expected to result in some positive fitness 

consequences if antagonistic relationships (e.g. predation, competition) are disrupted, or 

negative consequences if synergistic interactions (e.g. pollination, facilitation) cannot 

occur due to temporal mismatch. The present dissertation examines some of the ways that

climate change is affecting phenology, and focuses particularly on the pollination 

interactions of wild bees and flowering plants.
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Phenological plasticity

What are the fundamental causes of phenological plasticity? On one hand, 

phenological plasticity can be viewed as an adaptive trait, but on the other hand it can be 

viewed as a neutral product of physiology and vital rates that is not a result of natural 

selection. These are extreme cases of a continuum, with reality likely lying somewhere 

between, and phenological plasticity is probably more adaptive in some species than in 

others. To organize this discussion, I will consider the distinct ways in which 

phenological plasticity is adaptive and ways in which it is a neutral process.

Trait plasticity is expected to arise as an adaptive strategy (in place of bet-hedging

strategies or adaptive tracking) in cases when environmental predictability is sufficiently 

high, but the time-scale of environmental variation is short (Botero et al., 2015). In the 

context of phenology, plasticity as an adaptation is expected when conditions early in 

development are predictive of those during the reproductive phase of a species (or those 

periods that influence fecundity) and when there is substantial variation in climate 

conditions year-to-year or in different parts of a species’ range. Practically, the ability for 

species to change the seasonal timing of their activity allows them to track favorable 

abiotic conditions such as periods of water availability (Singh et al., 2005) and light 

availability (Augspurger et al., 2017), and avoid hazards such as frost damage (Pardee et 

al., 2018). Further, species with close interspecific associations, such as obligate 

mutualists, have strong fitness pressures to track their interacting partners’ phenology 

(Rafferty et al., 2015). In summary, there are definite fitness outcomes of phenological 

plasticity, and multiple evolutionary ecology studies support this (Anderson et al., 2012; 
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Gauzere et al., 2020; Kingsolver et al., 2018). While the present research does not 

directly measure fitness outcomes, phenological matching between bees and flowers is 

discussed in Chapters 2 and 3.

To understand the fundamental causes of phenological plasticity, it is important to

remember that even if we can imagine a logical mechanism by which plasticity benefits a

species or even observe plastic responses correlating with fitness outcomes, the trait may 

not be adaptive (Gould et al., 1979). Does a plant leaf-out in the spring to optimize 

photosynthesis, or is it only capable of producing leaves under warm spring conditions? 

The physiological processes that govern phenology are, after all, constrained by 

thermodynamics (Buckley, 2022). In the context of pollination, apparent matching 

between a certain bee species’ foraging phenology and a plant species’ flowering 

phenology does not necessarily imply coevolution, interaction as a source of adaptive 

plasticity, or even sensitivity to the same environmental cues; the temporal match may 

simply be a product of coincidental alignment in developmental schedules. Traits that are 

not directly rated to phenology may nevertheless influence phenology and the degree of 

its sensitivity to climatic variation. This is discussed at length in Chapter 2. Further, 

phenological abundance distributions (the temporal spread of a species abundance over a 

season) are products both of phenological onset plasticity and demographic rates such as 

mortality that are not traditionally thought of as drivers of phenology. Chapter 3 

examines phenological abundance distributions in bees and flowers, and Chapter 4 

presents a model that attempts to synthesize phenological plasticity and demographic 

processes.
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Climate change effects on phenology

Climate change is affecting both temperature and precipitation patterns. While 

temperature is projected to increase almost everywhere in the world, precipitation is 

likely to increase in some areas and decrease in others (IPCC, 2021). Phenology in some 

species is known to respond to precipitation magnitude and timing (e.g., Danforth, 1999),

but temperature is, broadly speaking, the strongest predictor of phenology across taxa 

(Thackeray et al., 2016). Chapter 2 discusses some of the interplay of temperature and 

precipitation sensitivity in bee phenology, but Chapter 5 focus exclusively on temperature

sensitivity. In montane systems with seasonal snowpacks, snowmelt timing is typically a 

strong predictor of phenology (Inouye, 2008), and Chapters 2 and 4 discuss snowmelt 

timing acting on phenology through its control over the temperatures that species 

experience.

There are multiple dimensions and nuances to the general prediction that 

temperatures will rise and precipitation patterns will change. Extreme weather events are 

changing in frequency, intensity, and location due to changes in the water cycle (IPCC, 

2021), and individual weather events can affect regional phenology (Jentsch et al., 2009).

Another dimension of the changing climate is variability. While most public 

attention and research effort goes to overall, mean changes in climate, temperature and 

precipitation variability is also likely to change (IPCC, 2021). And these changes in 

variability have substantial, sometimes unintuitive, ecological effects (Mulder et al., 

2017). It is important to recognize that variability can change in both space and time. For 

example, the spatial variability of precipitation globally is sure to increase because some 
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areas will receive more water and some will receive less (IPCC, 2021). The effect of 

climate change on temporal climate variability is perhaps less certain. At the sub-

continental scale, temperature and precipitation levels have become more variable across 

years in some areas but less variable in other areas (Liu et al., 2020). Further, there are 

multiple timescales of variability changes with different ecological implications. Most 

phenology studies that analyze the effects of temperature variability do so within-seasons,

intra-annually. Chapter 5 is devoted to the question of whether inter-annual temperature 

variability is changing, and how phenology is or is not responding. 

Particulars of bee phenology

Whether and to what degree plant flowering and bee foraging phenology will shift

as a result of climate change is central to anticipating the future of pollination interactions

(Rafferty et al., 2015). The worry that species might decouple in time is partially rooted 

in the observation that different biological mechanisms determine flower and bee 

phenology. The obvious bears emphasizing here: plants and animals are fundamentally 

different. Phenological sensitivities and phenological abundance distributions that appear 

similar across bees and flowers must necessarily arise from distinct mechanisms. Because

most phenology work is done on plants, it is worthwhile here to highlight the ways in 

which bee phenological plasticity differs from that of plants.

First, the vital rates that shape phenological distributions are different between 

flowers and bees. Annual plants produce flowers after a sequence of germination and 

growth, and perennials produce flowers from existing buds with minimal new growth 

needed before reproduction. In contrast, wild bees that are solitary (not forming colonies)
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and univoltine (having a single generation per year), must overwinter in nests and then 

emerge and begin the behavior of foraging. Bee species overwinter in multiple different 

stages of development, nest in a variety of substrates, and have different nest structures, 

all of which may influence phenological sensitivity (Bartomeus et al., 2011). The 

processes that determine phenological cessation are also distinct. Flowers experience 

tissue senescence, while bee foraging phenology ends through mortality, behavior 

switching, or relocation. Chapter 4 examines these vital rates and formalizes their effects 

on phenological distributions using a mathematical model. Finally, the ability to select a 

habitat distinguishes the phenology of plants and bees. While plants are limited to the 

location in which they are rooted, bees may travel sometimes long distances in search of 

floral resources (Greenleaf et al., 2007). While movement in search of floral resources 

poses a challenge for studying bee phenology, it also has consequences for pollination 

and competition in the field (Ogilvie et al., 2016). Chapter 4 also discusses the effect of 

local floral abundance on observed bee abundance via habitat selection.

Dissertation outline

There are countless unanswered questions about the effects of climate change on 

phenology, and the study of bee phenology is only starting to hit its stride. The research 

topics presented in the subsequent chapters were chosen through consideration of interest,

importance, feasibility, and happenstance. Though work on these distinct research 

projects happened often in tandem, the chapters form a progressive sequence. Chapter 2 

inspired the questions that led to Chapters 3 and 4, and Chapter 5 grew out of a desire to 

answer a large-scale question in terms of geography, taxonomy, and time.
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Chapter 2 is a community-level study that explores the drivers of bee phenology 

using a long-term monitoring project at the Rocky Mountain Biological Lab in Colorado, 

USA. Using data from thousands of professionally identified specimens across dozens of 

species, this chapter picks apart the effect of snowmelt timing, precipitation, temperature,

elevation, topography, body size, nest location, and overwintering life stage on 

determining bee phenology. This chapter also investigates whether traits affect 

phenological sensitivity to climate and whether different factors are responsible for 

different parts of bees’ phenological abundance distributions. The next two chapters 

delve into questions about the shape of these abundance distributions.

Chapter 3 examines whether bee phenological abundance distributions tend to be 

skewed in time, testing whether individuals tend to be concentrated in the early or late 

part of species’ active periods. Similar studies have been done on skewness in flower 

phenology, but this chapter expands our understanding by comparing skewness and bee 

and flower phenology. While Chapter 2 used a phenomenological approach (generalized 

additive models) to characterize phenological distributions, Chapter 4 attempts to model 

these distributions mechanistically based on vital rates.

Finally, Chapter 5 looks beyond bees, flowers, and the Colorado Rocky 

Mountains to ask whether climate change is making phenology more or less variable 

across the Northern Hemisphere. This broader scope incurred methodological tradeoffs, 

so this chapter focused just on phenological onset rather than on whole phenological 

distributions.
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CHAPTER 2

BEE PHENOLOGY IS PREDICTED BY CLIMATIC VARIATION AND

FUNCTIONAL TRAITS

Abstract

Climate change is shifting the environmental cues that determine the phenology 

of interacting species. Plant-pollinator systems may be susceptible to temporal mismatch 

if bees and flowering plants differ in their phenological responses to warming 

temperatures. While the cues that trigger flowering are well-understood, little is known 

about what determines bee phenology. Using Generalized Additive Models, we analyzed 

time-series data representing 67 bee species collected over nine years in the Colorado 

Rocky Mountains to perform the first community-wide quantification of the drivers of 

bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier

snowmelt timing, while later phenophases were best explained by functional traits 

including overwintering stage and nest location. Comparison of these findings to a long-

term flower study showed that bee phenology is less sensitive than flower phenology to 

climatic variation, indicating potential for reduced synchrony of flowers and pollinators 

under climate change.

Introduction

Ecological relationships break down when the synchrony of interacting species is 

disrupted. Climate change is altering the phenology (timing of life-history events) of 
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species, with spring events generally happening earlier (Bell et al. 2015, Cohen et al. 

2018) and fall events later (Gallinat et al. 2015). Crucially, the rate of phenological shift 

varies among co-occurring species and guilds (Thackeray et al. 2016, König et al. 2018). 

This is of particular concern for species within cross-guild associations, such as plants 

and their pollinators, because the two groups may have different sensitivities to 

environmental cues (Forrest and Thomson 2011, Rafferty et al. 2015). Positively 

interacting species that experience a phenological mismatch due to different directions or 

rates of response to climate change are likely to suffer reduced fecundity or increased 

mortality (Visser & Gienapp 2018). Mismatches due to climate change have been 

observed in consumer-resource systems (Kharouba et al. 2018) and mutualistic 

interactions (Petanidou et al. 2014). In the short term, mutualist species that experience a 

phenological mismatch are expected to suffer fitness losses, followed by adaptation to 

reestablish synchrony (Visser & Gienapp 2018). If climate change outpaces the rate of 

adaptation, however, mutualists may experience irreparable de-coupling. Thus, it is 

critically important to understand the drivers of phenological shifts and compare their 

magnitudes for interacting species.

In plant-pollinator systems, phenological mismatch due to earlier spring events 

has been reported for early-season flowers and their pollinators (Kudo et al. 2004, Kudo 

& Ida 2013). As spring events such as snowmelt timing are projected to occur earlier 

under climate change (IPCC 2014), these mismatches are expected to become more 

common and pronounced. Phenological mismatch in a pollination system could have 

negative fitness consequences for plants through pollen limitation (Rafferty & Ives 2012, 
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Kudo & Ida 2013), and pollinators through a lack of floral resources (CaraDonna et al. 

2018, Schenk et al. 2018). At the community level, mismatches can lead to a collapse of 

the mutualism (Warren and Bradford 2014), and may reduce crop yield in agricultural 

systems if pollinator species richness is low (Bartomeus et al. 2013). While phenological 

responses to climate change have been well documented for plants (Parmesan & Yohe 

2003, CaraDonna et al. 2014, König et al. 2018), less is known about the responses of 

pollinators, especially insect pollinators such as bees (Bartomeus et al. 2011). Even if bee

and flowering phenologies are both responsive to temperature (Hegland et al. 2009, 

Forrest and Thomson 2011, Renner & Zohner 2018), they may not be equally sensitive to

variation in temperature, potentially leading to a future mismatch under climate change 

(Ellwood et al. 2012, Ovaskainen et al. 2013, Petanidou et al. 2014, Olliff-Yang & 

Mesler 2018). The few studies that have examined the phenological response of bees to 

environmental cues have been limited by practical constraints mostly to small subsets of 

the total bee community (e.g., Kehrberger & Holzschuh 2019, Slominski & Burkle 2019).

To understand the full effects of climate change on plant communities, it is imperative to 

determine the community-level drivers of bee phenology given the role of bees as the 

primary pollinators in most ecosystems (Klein et al. 2007). 

From the perspective of pollination, the most important bee activity is the flight 

period in which adults transfer pollen. The flight period can be described by three points 

in time (hereafter phenophases): emergence from nests (the beginning of adult foraging, 

rather than the time of eclosion), timing of the peak abundance of foragers, and 

senescence (the end of foraging). These phenophases may be driven by different 
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environmental cues, but may also be linked by developmental time (Donnelly et al. 2011,

Keenan & Richardson 2015, Ettinger et al. 2018). Differences in temperature (Forrest & 

Thomson 2011), soil moisture (Danforth 1999, Olliff-Yang & Mesler 2018), and 

snowmelt timing along elevation gradients in montane regions (Pyke et al. 2011) may 

shift bee emergence phenology. Snowmelt timing may be particularly influential in areas 

where the growing season is limited by many months of persistent snowpack. Given these

sensitivities, bee phenology has advanced, on average, due to climate change (Bartomeus 

et al. 2011). Certain functional traits (those that influence fitness) may shape bee 

phenology (Diamond et al. 2011, Forrest 2016), including variable thermal tolerance due 

to body mass (Stone & Wilmer 1989), nest location (Bartomeus et al. 2011), and the life 

stage in which bees overwinter (Fründ et al. 2013). Species that nest above ground are 

expected to be more responsive to climatic variation, as air temperature is more variable 

than soil temperature (Parton & Logan 1981), and the stage in which bees overwinter 

may interact with climate to determine when they can emerge from nests because 

prepupae-overwintering species must undergo additional development before emergence 

(Forrest 2016). While these drivers of phenology have been described in isolation, 

understanding their relative importance and potential interactions is impossible without a 

comprehensive study that examines them simultaneously at the community level.

Here, we present findings on the drivers of bee phenology using nine years of 

time-series data from a study of solitary bees along an elevation gradient. To make 

phenology estimates from a sparse time-series dataset and to avoid the biases of first-

observation dates (Miller-Rushing et al. 2008, Lindén 2018, Inouye et al. 2019), we 
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introduce an approach based on generalized additive models that calculates the first 5%, 

middle, and last 5% of a distribution (van Strein et al. 2008), corresponding to the three 

phenophases of foraging bee populations. We used these estimates to determine the 

drivers of bee phenology at the community level, including climate, topography, and bee 

traits, by comparing phenological variation among years. Specifically, we investigated 

the predictions that earlier phenophases are more strongly affected by climate variation 

compared to late phenophases (Forrest 2016), and that snowmelt timing is the primary 

driver of bee phenology in the sub-alpine ecosystem of this study, as it is for flower 

phenology (Inouye 2008). We also predicted that species that overwinter as adults 

emerge earlier than those that overwinter as pre-pupae, because they are less constrained 

by development time in the early growing season (Fründ et al. 2013). Motivated by the 

idea that species’ phenological plasticity to climatic variation may be mediated by their 

traits (Diamond et al. 2011), we tested for an interaction between two traits (nest location 

and overwintering stage) and snowmelt timing. Finally, to explore whether bee 

phenology will track flower phenology under climate change (Ogilvie et al. 2017), we 

compared rates of advance in bee phenology in response to earlier snowmelt timing to 

published rates in flowering phenology at nearby study sites (CaraDonna et al. 2014). By 

providing the first community-level assessment of the drivers of bee phenology, our 

findings give insight into the future of plant-pollinator systems under forecasted climate 

change.



18

Methods

Study system

We gathered data at 18 sites around the Rocky Mountain Biological Laboratory 

(RMBL) in the Elk Mountains of western Colorado, USA from 2009 to 2017 (Table S2). 

Sites were located along an elevation transect (2456-3438 meters above sea-level) in 

montane and sub-alpine habitats dominated by a diverse mixture of perennial flowering 

species (CaraDonna et al. 2014). The area is highly seasonal, with snowpack typically 

persisting from November until May. The short growing season of only a few summer 

months results in predominantly univoltine bee life cycles, although some bee species 

may exhibit parsivoltine life cycles (Forrest et al. 2019). The European honey bee Apis 

mellifera and other non-native bees were absent during the study period. 

Bee data collection

We sampled bees in habitat types that were representative of dominant vegetation 

types: wet meadows dominated by Veratrum tenuipetalum, those dominated by Salix 

spp., rocky dry meadows, and Artemisia spp. steppe. We conducted biweekly bee 

abundance surveys at each site using pan traps (following LeBuhn et al. 2003). We set 

out 10 each of white, fluorescent yellow, and fluorescent blue pan traps along two 

approx. perpendicular 45-meter transects at intervals of 3 meters, an array that passively 

attracts bees by mimicking a display of flowers. We deployed pan traps between approx. 

0800 and 1700 (the period of maximum bee activity) only on warm, calm, sunny days 

and removed traps when these conditions changed drastically. Further details of the bee 

sampling are provided by Gezon et al. (2015). Specimens were identified to the lowest 
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taxonomic resolution possible using a variety of resources (Michener et al. 1994, 

Michener 2000, Gibbs 2010, Scott et al. 2011). We excluded the pollen-foraging genera 

Anthidium, Ashmeadiella, Atoposmia, Eucera, Diadasia, and Dianthidium and all 

cleptoparasites (Coelioxys, Epeolus, Holcopasites, Nomada, Stelis, Sphecodes, and 

Triepeolus) because we were unable to identify them to species or they were very rare 

(together, individuals from these genera made up 4% of the collection). We were unable 

to identify most species of the diverse genus Andrena, so only four species in this genus 

are included in the analysis (this omission represents 3% of the total collection). The list 

of species included in the analysis is presented in Table S3. The population estimates at 

each sampling date were calculated as bees captured/hour of sampling, to account for 

variable sampling effort, including females and males (with the exception of 

Lasioglossum spp. for which we were only able to identify females). Because pan traps 

over-represent small bees such as halictids and under-represent large bees (Cane 2000), 

we excluded the large-bodied genus Bombus from analyses (3% of pan-collected 

specimens).

Climate, topographic, and trait data

To explain variation in bee phenology, we gathered data on yearly climate 

variation, topographic data associated with sites, and bee functional traits. We selected 

snowmelt timing, summer temperature, and summer rainfall as climate variables, 

elevation and solar incidence as topographic variables, and body mass, nest location, and 

overwintering stage as functional traits. Full details on the methods for gathering these 

data and justifications for their inclusion in the analyses are available in Appendix A.
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Phenophase estimation

To bypass the problems of first-occurrence measures of sparse time-series data for

many taxa including bees, take into account variable uncertainty, and estimate 

emergence, peak, and senescence dates from distributions of unknown form, we 

developed a novel application (validated in Appendix A) of Generalized Additive Models

(GAMs; Wood 2006). For each species/site/year combination, we fit a GAM with day-of-

year as the explanatory variable and abundance as the response using a cubic spline 

smoothing basis with a Gaussian distribution family and performed Generalized Cross-

Validation to avoid over-fitting. We set the dimension of the smoothing basis to 4 when 

there were <5 observations, and 5 for ≥5 observations. For each model fit, we determined

the peak timing by calculating the predicted date of the maximum of the model fit and 

found the first and last occurrence of 5% of the maximum to determine dates of 

emergence and senescence, respectively. We did not record estimates of emergence or 

senescence in cases where sampling began too late or ended too early to observe the tails 

of the distribution below 5% of the maximum. We also did not record estimates of peak 

abundance when we did not unambiguously observe the “crest” of the abundance curve, 

though we were able in some cases to estimate emergence or senescence but not peak by 

identifying the transition from zeroes to positive abundances. Due to this conservative 

approach, we were able to make emergence estimates for 47% of the total time-series, 

40% for peak, and 53% for senescence. We calculated confidence intervals as twice the 

standard error at each phenophase. GAMs were implemented using the mgcv R-package 

(Wood 2012).
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Modeling drivers of phenology

We created three candidate models by modeling emergence, peak, and senescence

timing as functions of climate, topographic, and species trait variables, accounting for 

pseudo-replication at the site and species level by modeling these as random effects 

according to the equation

DOY phase ~ θclim+θ topo+θtrait+esite+esp

where DOYphase is the estimated day-of-year (DOY) of each phenophase, θclim are 

the climate variables (snowmelt date, summer temperature, and summer precipitation), 

θtopo are the topographic variables (elevation and solar incidence), θtrait are species traits 

(body mass, nest location, and overwintering stage), esite are sites, and esp are species. θ 

terms represent fixed effects, while e terms represent random effects, forming a mixed 

effects model (Bates et al. 2014). All terms were modeled as additive effects, with no 

interactions in this top model. Due to heterogeneity in the frequency of sampling, 

population numbers, and shape of the abundance curves, phenophase estimates have 

heterogeneous confidence intervals. To propagate this uncertainty through our analysis, 

we weighted the estimates based on the inverse of their standard errors. To generate 

directly comparable standardized effect sizes, we scaled and centered explanatory 

variables (Gelman & Hill 2007). To make categorical variables comparable to continuous

ones, we scaled the continuous variables by 0.5 standard deviations (Gelman 2008).

Because it is not known which of the proposed variables determine bee phenology

at the community level, we employed a model averaging protocol, following Burnham & 

Anderson (1998), to determine which variables were influential. We fit models with each 
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possible combination of predictor variables and averaged coefficients from models within

4 AIC units of the best one. Because model averaging can bias estimates (Cade 2015), we

compared the averaged coefficients to the coefficients from the top model for each 

phenophase, finding very tight correlations (Pearson r > 0.999 for all three models, 

Figure A.5). Additionally, we tested for multicollinearity, finding sufficiently low 

variance inflation factors for each predictor (Appendix A).

To investigate whether climate would more strongly affect emergence timing, 

while other variables would be more influential for later phenophases, we calculated 

marginal and conditional R2 values based on the single best model in the top model set 

and investigated variance partitioned between climate and trait variables by calculating 

the proportion of variance explained by models fitted with just climate and trait variables 

versus the top model. Due to small sample sizes for some species/predictor variable 

combinations, we were unable to estimate independent parameter values for every 

species, and treated species as a random effect in the full model. To provide a visual aid 

of some species-specific responses to advancing snowmelt and to compare with reported 

flower phenology shifts, we performed a reduced analysis with the most common species 

(those that had ≥10 species/site/year estimates for two or more phenophases), modeling 

species responses as DOY phase ~ θsnowmelt∗ species+esite. This analysis was conducted for 

10 species: three from the Andrenidae, one from the Colletidae, four from the Halictidae, 

and two from the Megachilidae. We did not control for phylogeny in the analyses 

because we did not seek to describe the evolution of the present traits. To investigate 

whether certain traits influence the phenological responsiveness of species to climate, we 
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modeled phenophase estimates as functions of snowmelt (for other climatic variables, see

Appendix A) interacting with nest location and overwintering stage, with variable 

intercepts and slopes, holding all else equal, modeled as

DOY phase ~ θsnowmelt∗θ trait+esp+esite. We did not include interaction terms in the top model 

due to the difficulty of estimating many additional parameters with limited data and 

complications with model averaging (Galipaud et al. 2014). We also tested for the 

presence of phenological sequences (Keenan & Richardson 2015, Ettinger et al. 2018) by

modeling peak and senescence as linear functions of emergence. Model averaging and R2 

calculation (r.squaredGLMM function) were done using the MuMIn package (Barton 

2015). We tested for significance of interactions using the lmerTest package (Kuznetsova

et al. 2017), and all analyses were run in R version 3.4.4 (R core team 2018).

Results

The bee monitoring study yielded 1606 time-series of at least 4 abundance 

measures for 67 species at 18 sites (Table S2) in 9 years (2009-2017), representing 

23,742 collected specimens across 751 sampling periods. The mean maximum species-

specific catch rate across all time-series was 1.48 bees/hour, ranging from 0.11 to 35.14 

bees/hour per sampling period. We were able to estimate 519 emergence, 438 peak, and 

584 senescence dates. The mean emergence day-of-year across all years, sites, and 

species was 24 June ± 25 days, mean peak was 10 July ± 21 days, and mean senescence 

was 30 July ± 23 days. Responses to snowmelt, measured as the slope coefficient, fell 

generally between 0 and 1 days of phenological advance per day of snowmelt advance for

most species (Figure 2.1; Table S4). Five phenophases across four species (Halictus 
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virgatellus emergence and peak, Lasioglossum sedi senescence, Panurginus ineptus 

emergence, and Pseudopanurgus bakeri senescence) delayed in response to advanced 

snowmelt, though these effects were not significant. Hoplitis fulgida exhibited the 

greatest response in emergence to variation in snowmelt timing, while Hoplitis robusta 

had the greatest peak response (Figure 2.1). As an illustrative example, in the severe 

drought year of 2012, snowmelt occurred 25 days earlier than in other years, the median 

emergence phenology advanced by 34 days, peak by 15 days, and senescence by 4 days.

Each candidate predictor variable was represented in the model set (Figure 2.2). 

Bees emerged (11.52 ± 2.68), peaked (12.82 ± 2.42), and senesced (7.81 ± 2.44) later in 

years with later snowmelt date, and snowmelt timing had the largest absolute effect size 

among the climate variables for each phenophase. Elevation had the largest effect of the 

topographic variables, with bees at higher elevations emerging (13.57 ± 3.23) and 

peaking later (7.76 ± 3.65), but senescing earlier (-5.92 ± 4.05). Of the species traits, nest 

location had the largest effect on emergence timing; compared to bees that nest above 

ground, those that nest below ground emerged (11.21 ± 4.30) later but peaked (-4.57 ± 

3.84) and senesced earlier (-9.82 ± 4.29). Overwintering stage had the largest effects on 

peak and senescence timing; bees that overwinter as adults emerged (1.91 ± 3.52), peaked

(11.20 ± 3.23), and senesced earlier (20.91 ± 3.59) than those that overwinter as pre-

pupae. Each phenophase model was roughly equally able to predict the variation in yearly

phenology (Figure 2.3a). When phenophases were predicted with subsets of the predictor 

variables, climate variables explained a higher proportion of the total variation for earlier 

phenophases, while species traits explained more variation in later phenophases (Figure 
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2.3b). Full numerical details including significance are provided in Tables S5-S6.

There was a significant interaction between nest location and snowmelt timing for

emergence (t433=-3.278, p<0.01) and peak phenology (t360=-2.861, p<0.01) (Figure 2.4), 

and the difference in slope decreased across the phenophases. The interaction between 

snowmelt timing and overwintering stage was greatest for peak timing and smallest for 

senescence timing, but these interactions were not statistically significant (emergence: 

t441=-0.867, p>0.05, peak t368=-1.565, p>0.05, senescence t470=-0.481, p>0.05). Lastly, we 

found that emergence significantly predicted peak timing (F1,212=201.2, p<0.0001) and 

senescence timing (F1,104=29.63, p<0.0001) but that emergence described less variation in 

senescence (R2=0.22) than in peak timing (R2=0.49) (Figure A.6).

Discussion

We analyzed time-series abundance data from a nine-year bee monitoring project 

to provide the first community-wide assessment of the main predictors of bee emergence,

peak, and senescence phenology. While yearly climatic variation, topography, and 

species functional traits all shaped bee phenology, the emergence and peak phenophases 

were particularly sensitive to climate. Following patterns in early-season flowering 

phenology (Inouye 2008), the timing of early snowmelt, which is a determinant of how 

much thermal energy is received by bee nests in this montane study area, was particularly

influential in advancing the early phenophases. The later, senescence phenophase was 

determined to a greater extent by functional traits including nest location and the life 

stage in which bees overwinter (Fründ et al. 2013). Nest location also disposed certain 

species to respond more dynamically to climatic variation. Contrary to predictions 
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(Forrest 2016), we did not find that adult-overwintering species responded more 

dynamically to climatic cues despite being less limited by development time prior to 

emergence. These findings lead us to predict that under increasing temperatures and 

earlier snowmelt due to climate change, the bee community foraging season will begin 

earlier and increase in overall duration. However, certain species may be less able to shift

their phenology due to variable responses (Figure 2.1) on the basis of functional traits 

(Figure 2.4).

Bee phenology is determined by climate, topography, and species traits

Snowmelt timing was the main climatic driver of bee phenology, with earlier 

dates of snowmelt advancing emergence and peak in particular (Figure 2.2, panel 1). 

Snowmelt in this system is a major determinant of how much thermal radiation is 

received by bee nests (for species that nest below ground), so this finding supports 

previous work suggesting that adult bee emergence has thermal requirements (Kemp and 

Bosch 2005, White et al. 2009, Forrest and Thomson 2011). Thus, we expect bee species 

in areas without persistent snowpack to similarly adjust their phenology on the basis of 

thermal energy. Higher summer temperatures and lower summer rainfall resulted in 

significantly earlier bee emergence but not peak or senescence, resulting in longer 

community-wide flight periods. Spring events that shape the onset of a phenological 

process can have cascading effects on later phenophases, leading to phenological 

sequences, but this cascade can become less pronounced due to variation in 

developmental time and the influence of other cues (Keenan & Richardson 2015, Ettinger

et al. 2018). We found that emergence timing did predict peak and senescence timing, but
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that emergence timing described less variation in senescence than in peak timing (Figure 

A.6). Thus, the earlier phenophase of bee foraging influences, but does not determine, the

later phenophases. Sites at higher elevations experienced later bee emergence and peak 

times, but earlier senescence time (though the senescence effect was not significant), 

resulting in a shortened foraging season (Figure 2.2, panel 2). These findings support 

studies that found a phenological shift in bumble bee abundance based on elevation (Pyke

et al. 2011) and are in line with findings on flower phenology (Theobald et al. 2017). We 

note that because we calculated climatic variables as constant across sites within each 

year, the elevation effect may be driven by local variation in snowmelt timing, which is 

determined in part by solar incidence and elevation in montane regions.

Turning to species traits, nest location and overwintering stage, but not body 

mass, had significant effects on phenophases (Figure 2.2, panel 3). Ground-nesting bee 

species emerged later than those that nest above ground, but senesced earlier, indicating 

that below-ground nesting bee species have shorter average foraging periods. While our 

finding that adult-overwintering bees have earlier phenology supports the idea that 

overwintering stage has a large effect on insect phenology broadly (Fründ et al. 2013, 

Forrest 2016), we were surprised to find that the effect was larger on peak and senescence

timing than on emergence timing, which deviates from our initial expectation that 

overwintering stage would primarily dictate emergence phenology. It may be that there is

an evolutionary trade-off between adult mortality rate and the fast development rate that 

allows certain species to overwinter as adults (see Wright et al. [2010] for an example in 

plants) or simply that adult-overwintering species have shorter effective foraging 
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lifespans because they spend more time in the adult phase. More long-term studies are 

needed to understand if this is a general trend, and mechanistic studies would provide 

insight on the physiological underpinnings of the pattern.

While climatic variation, topography, and species traits determine the date of bee 

phenophases when viewed separately, bee species’ functional traits mediate their climate 

sensitivities (i.e., our models support an interaction between functional traits and 

environment). Above-ground nesting species are more sensitive to snowmelt timing 

(Figure 2.4, top panel) and average summer temperature (Appendix A) than those that 

nest below ground. This finding is slightly counter-intuitive when we consider that 

ground-nesting bees are buried by snow. The discrepancy may be explained by 

recognizing that snowmelt timing is correlated with other potential phenological cues 

such as spring temperature. We would expect above-ground nesting bees to be more 

sensitive to temperature fluctuations, as above-ground temperature varies more than 

below-ground (Parton and Logan 1981), and their nests are not insulated by snowpack. 

This suggests that above-ground nesters may suffer less phenological mismatch with 

plants under increased variability due to climate change. Surprisingly, we did not find a 

significant interaction between bee overwintering stage and snowmelt timing (Figure 2.4,

bottom panel). Bees that overwinter as adults require less developmental time before 

emerging in the spring, so we expected their phenology to be more responsive to 

snowmelt timing. The finding that adult-overwintering bee species do not take advantage 

of this shorter developmental time suggests that there may not be a benefit to greater 

phenological sensitivity, or that other factors limit their sensitivity.
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Different drivers of emergence and senescence phenology

The effect of snowmelt timing on emergence was nearly 50% greater than it was 

on senescence, and the absolute effects of temperature and rainfall on emergence were 

nearly an order of magnitude higher than on senescence, indicating that the onset of 

foraging is timed by external cues, while the end is less dynamic. These results match 

plant phenology findings that showed a reduction in the effect of snowmelt timing on 

later phenophases (Wipf 2010). Similarly, in butterflies, early phenophases have been 

shown to advance more frequently in response to recent climate change (Roy & Sparks 

2000). Summer temperature and rainfall span the entirety of the active bee foraging 

season and also had larger effects on emergence than on later phenophases (Figure 2.2, 

panel 1), indicating that the pattern of a greater climate influence on early phenology is 

not entirely a byproduct of spring-specific climate variables. Late season phenology may 

be less sensitive to climatic fall events such as the date of first frost because adult bees – 

particularly those that nest below ground – are insulated from cold nights in their nests.

Although the predictive power of our models was similar for all phenophases 

(Figure 2.3a), climate variables explained more variance for early phenophases, and traits

explained more variance for later phenophases (Figure 2.3b, Appendix A). The effect of 

snowmelt on senescence is diluted by inherent inter-specific variation in foraging flight 

period. In other words, the effect of the phenological sequence becomes reduced in later 

phenophases (Figure A.6).  Some plants exhibit stronger climatic control of spring 

phenology (Menzel 2003) but stronger genetic control of autumn phenology (Fracheboud

et al. 2009), and our results hint at a similar pattern in bees. The drivers of senescence 
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phenology in insects may be particularly complex due to variation in life-history 

strategies (Gallinat et al. 2015). For example, univoltine insect species are expected to 

advance their fall senescence in response to warming, while multivoltine species may 

delay the end of their active period by producing additional generations. Lastly, our 

finding that spring and fall phenophases are determined by different drivers points to the 

necessity of studying the whole phenological distributions rather than focusing on the 

onset of an active period.

Climate change implications

Two of the main effects of climate change in montane regions are an advance of 

snowmelt timing and increased temperatures (Ogilvie et al. 2017). Bee phenology at the 

community level is tied to snowmelt but does not precisely track it, and phenophases 

exhibit different responses to climatic variation. As climate explained more variation and 

produced larger shifts in early phenophases (Figure 2.2b), we expect that emergence and 

peak timing in areas of the world with increasing temperatures and decreasing 

precipitation will shift at greater rates than senescence, extending the active flight period 

of adult solitary bees. This could lead to additional generations during the growing season

(Altermatt 2010), or potentially a developmental trap in which species produce a 

maladaptive second generation that is ill-prepared for autumn conditions (Van Dyck et al.

2014). An extended active bee foraging season may have positive pollination outcomes, 

allowing pollen-limited plants to reproduce for longer periods of time, though this effect 

may be tempered by phenological mismatches or declining populations (Hedhly et al. 

2009, Vanbergen et al. 2013).
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Given observed trends and projections for earlier snowmelt timing, it is relevant 

to compare variation in bee phenology to that of flowers. A 39-year study of flowering 

phenology at the RMBL documented that the date of first flowering has advanced by 

0.89±0.083 days per day of snowmelt advance (Caradonna et al. 2014). The flowering 

community in this subalpine region shows two distinct peaks in total floral abundance 

(Aldridge et al. 2011) which have shifted at different rates (first peak: 0.74±0.056 days 

per day of snowmelt; second peak: 0.53±0.095 days). We found that bee emergence 

timing shifted by 0.49±0.11 days per day of snowmelt advance (peak 0.49±0.09 days, and

senescence 0.28±0.1 days). Thus, bee phenophases are potentially less sensitive than 

flowering phenophases to shifts in snowmelt timing, with bee emergence advancing at 

55% the rate of first flowering, and bee peak advancing at 67% and 93% the rate of the 

two flower peaks. The discrepancy in the rates of shift of bee emergence and first 

flowering may be partially due to differences in the metric of onset, as first occurrence 

data may be biased and are inherently different from our measure of the first 5% of the 

foraging population (van Strien et al. 2008). We also note that the flower phenology 

study comprised a narrow elevation band at separate sites in the middle of the present 

study’s roughly 1000m elevation transect, and patterns of phenological shift may vary 

across elevation. Nevertheless, this difference in the sensitivities of bee and flowering 

phenology indicates the potential for a community-wide mismatch in this plant-pollinator

system due to climate change. While the ability of both bees and flowering plants to 

respond to climatic cues is a promising sign for future synchrony under climate warming,

the difference in rates of shift suggests at least short-term mismatches, which may 



32

become chronic if the interacting species are not able to adapt or shift their ranges to 

match the rate of climate change (van Asch et al. 2007).

Conclusions

Community-level bee phenology is shaped primarily by climatic cues, elevation, 

nest location, and overwintering stage. Early phenology is particularly sensitive to 

climatic variation while later phenology is determined more by functional traits, 

suggesting that climate change will affect emergence more than senescence, potentially 

lengthening the active foraging period of bees. And while more long-term and species-

level studies are needed, the present results suggest that the responsiveness of bee 

phenology may lag behind that of flowers.
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Figures

Figure 2.1. Common species vary in their responses to snowmelt timing, with most 

phenophase shifts falling between no response (0, dashed line) and perfect tracking 

(1, dotted line) of snowmelt. Points to the left of zero represent advances in 

response to advanced snowmelt timing, and those to the right represent delays. Blue

points represent emergence shifts, green points represent peak, and brown points 

represent senescence. The width of bars represents twice the standard errors 

around the estimates of response.
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Figure 2.2. Bee phenology is determined by inter-annual climatic variation, 

topography, and several species traits. The drivers vary in their relative effect across

the phenophases, with the effect of climate variables generally lower for later 

phenophases. The first panel shows the standardized effect sizes of climate 

variables, the second topographic variables, and the third species traits on 

emergence (blue), peak (green), and senescence timing (brown) with standard 

errors around the estimates shown as brackets. Values greater than 0 represent 

later phenology, and those less than 0 represent earlier phenology. Standardized 

effect sizes are defined as the slope coefficients derived from scaled and centered 

explanatory variables.
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Figure 2.3. While the models were roughly equal in their ability to predict 

phenological shifts across all phenophases (panel a), early phenophases were 

predicted more strongly by climate variables and late phenophases by species traits 

(panel b). Panel a compares the marginal and conditional R2 values across the top 

models for each phenophase, and panel b shows the ratio of variance explained by 

reduced models of only climate and trait variables versus the variance explained by 

the top model. The ratio of variance in panel b was calculated as R2
subset/R2

total where 

R2
subset  is the marginal R2 of a model containing just climate or just species trait 

variables and R2
total is that of the top model containing all variables.
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Figure 2.4. Bee species that nest above ground and those that overwinter as adults 

are more sensitive to variation in snowmelt timing than species that nest below 

ground and that overwinter as pupae or prepupae. The top three panels show 

predicted phenophase responses to snowmelt based on nesting location, and the 

bottom panels show the same based on overwintering stage. The slope of the lines 

represents the sensitivity of each phenophase to snowmelt timing. P-values are 

presented for the two significant differences in slope at the α=0.05 level.
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CHAPTER 3

SKEWNESS IN BEE AND FLOWER PHENOLOGICAL DISTRIBUTIONS

Abstract

Phenological distributions are characterized by their central tendency, breadth, 

and shape, and all three determine the extent to which interacting species overlap in time.

Pollination mutualisms rely on temporal co-occurrence of pollinators and their floral 

resources, and while much work has been done to characterize the shapes of flower 

phenological distributions, similar studies including pollinators are lacking. Here, we 

provide the first broad assessment of skewness, a component of distribution shape, for a 

bee community. We compare skewness in bees to that in flowers, relate bee and flower 

skewness to other properties of their phenology, and quantify the potential consequences 

of differences in skewness between bees and flowers. Both bee and flower phenologies 

tend to be right-skewed, with a more exaggerated asymmetry in bees. Early-season 

species tend to be the most skewed, and this relationship is also stronger in bees than in 

flowers. Based on a simulation experiment, differences in bee and flower skewness could

account for up to 14% of pair-wise overlap differences. Given the potential for interaction

loss, we argue that difference in skewness of interacting species is an under-appreciated 

property of phenological change.

Introduction

Timings of seasonal life-history events (phenology) are often characterized by 
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single points in time (e.g., first-appearance date), but in reality, these events are typically 

distributed processes (Carter et al., 2018; Inouye et al. 2019). Species phenological 

distributions are characterized by their central tendency, their breadth, and their shape 

(e.g., mean, standard deviation, and skewness) (Rathcke et al., 1985). Ecological 

interactions usually require temporal co-occurrence, where the population performance of

any species is dependent on phenological overlap with resource availability. In the case 

of pollination and other mutualistic interactions, interacting species benefit from 

maximizing temporal overlap with one another, while dealing with the fitness costs of 

changing their phenology (Visser et al., 2012). The degree of overlap between interacting

species is determined by the mean, breadth, and shape of both species’ phenological 

distributions (Fig. 3.1), with differences in any one of the three properties being enough 

to reduce overlap. While the shape of phenological distributions has been recognized as 

an important component of species interactions (Thomson, 1980), studies of phenological

match/mismatch in plants and pollinators have focused primarily on how first or mean 

dates of seasonal activity shift in response to varying cues (Inouye et al., 2019) and how 

the temporal breadth of their activity stretches or contracts. The importance of skewness 

differences in determining mismatch in pollination interactions remains unclear. This is 

in part because there has not been a systemic analysis of skewness in phenological 

distributions across many species of pollinators and flowering plants together.

Flower phenological distributions are often right-skewed, with a long, trailing tail 

after the peak of flowering in prairie (Rabinowitz et al., 1981) and montane (Thomson, 

1980) ecosystems. Within populations, the degree of skewness can vary among years 
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(Blionis et al., 2001; Forrest & Thomson, 2010). Phenological distribution shape may 

also be affected by local resource competition that reduces plant size, which is in turn 

correlated with floral phenology skewness (Schmitt, 1983). It has also been suggested 

that the right-skewness of flowering phenologies may be a product of selective pressure 

for early flowering (Forrest & Thomson, 2010) and that recent climate change has 

affected the shapes of flower phenological distributions (CaraDonna et al., 2014). While 

the typical patterns of flower phenological skewness are well understood, we do not 

know if these patterns are also similar for pollinators. There is reason to suspect that 

phenological sensitivity differs between plants and pollinators and that the seasonal onset 

and end of activity in pollinators (such as bees) shift at different rates (Stemkovski et al., 

2020). Thus, a community-wide assessment to compare bee and flower phenological 

skewness is warranted.

In this study, we quantified phenological skewness for multiple bee and flower 

species within a montane community. We determined the relative prevalence of right-

skewed, left-skewed, and symmetrical distributions, and examined the differences 

between bees and flowers in how skewness relates to other properties of their 

phenological distributions. A priori, we predicted that bee phenologies would be similarly

skewed to those of flowers, but that bees active in the early season would have 

phenologies more strongly right-skewed than those in the late season due to a hard limit 

on activity before snowmelt in the study system. Lastly, we performed a simulation study

to gain perspective on the potential consequences that variation in skewness in this 

community may have on phenological overlap between bees and flowers.
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Methods

Data sources

We used flower phenology data from a long-term monitoring program spanning 

from 1974 to 2019 at the Rocky Mountain Biological Laboratory (RMBL) in Gothic, 

Colorado, USA, a mountainous location with a short summer growing season set ~2890 

m above sea level (CaraDonna et al., 2014; Inouye, 2008). The total number of flowers 

was counted approx. three times per week for the extent of the growing season for all 

flowering species in 4 m2 fixed plots. This dataset includes mainly long-lived perennial 

forb species. Further details on this program are reported by CaraDonna et al. (2014) and 

Inouye (2008), and all data are available through Open Science Framework (Inouye et al.,

2022). For our analysis, we included 35 flower plots aggregated into 8 sites by proximity 

to agree with the spatial scale of the bee phenology sites. We obtained bee phenology 

data from a companion study to the flower phenology project which tracked bee 

abundance from 2009 to 2020 at the RMBL (Ogilvie et al., 2017; Stemkovski et al., 

2020). Bee abundance was measured using pan traps approx. every two weeks across the 

growing season at 18 sites spaced across an elevation gradient (Gezon et al., 2015). 

Because pan traps are biased toward collecting smaller-bodied bees, hand netting was 

used for bumble bees (Bombus spp.). Additional details on bee data collection and all 

data are available through Open Science Framework (Irwin et al., 2018). All data 

processing steps and analyses for this study can be viewed and reproduced using code 

available online (https://doi.org/10.5281/zenodo.6561297; Stemkovski et al., 2022).

https://doi.org/10.5281/zenodo.6561297
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Data processing

We formatted and standardized flower and bee data to make them directly 

comparable. For all data, we excluded records with uncertain identifications and those 

that were identified only to genus. We excluded all grass and sedge species, but included 

shrubs. The bee abundance data were derived from multiple pan traps or netters, so we 

aggregated flower and bee counts across plots/traps/netters per site. For the bee data, we 

included only female bees because female specimen identifications were more fully 

resolved and because combining females and males could lead to inaccurate estimates of 

skewness because males often emerge later than females in social species. We 

distinguished queen and worker castes of bumble bees (Bombus spp.) to avoid biasing 

skewness estimation by confounding an early-season queen peak in abundance and a later

peak in worker abundance. Because bumble bees were sampled explicitly by netting and 

due to difficulties of combining sampling effort between netting and pan traps, we 

excluded pan-trapped Bombus and net-trapped non-Bombus bees. To ensure that we only 

included sampling periods that consistently captured representative samples of 

abundance, we excluded sampling days when traps were deployed for less than three 

hours and excluded netting days with less than one hour of effort (excluding 17 of 778 

trap sampling days and 21 of 809 net sampling days). Lastly, to ensure adequate sample 

size and robust skewness estimation, we only considered time-series with at least 10 

individual bee records per year and at least 100 flower records per year. Thus, we 

excluded 1,932 of 18,710 bee records (10.3%) and 126,659 of 3,943,796 flower records 

(3.2%).
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Skewness calculation and predictors

We calculated skewness as the Fisher-Pearson standardized third-moment 

coefficient of skewness (g1), as implemented in the moments R-package (Komsta et al., 

2015), for each site/year/species phenological abundance distribution (i.e., frequencies of 

bee and flower abundance by date). This approach uses only the data and avoids making 

assumptions about functional form necessary for more complex model fitting. We tested 

whether skewness in individual time-series was different from zero (corresponding to a 

symmetrical distribution) using D’Agostino’s K2 test (D’Agostino, 1970). We used a one-

sample t-test to assess whether skewness across flower time-series was significantly 

different from zero, and a two-sample t-test to test whether bee skewness was 

significantly different from flower skewness.

To examine whether and how skewness in bees and flowers was related to other 

properties of their phenological abundance distributions, we calculated the means and 

standard deviations of each distribution. To test whether the phenological position of 

species (how early or late they are active in a season) predicted their skewness, we 

modeled skewness as a mixed-effects model with phenological mean interacting with 

guild (flowers vs. bees) as fixed effects, and accounted for repeated measures with 

species, site, and year as variable-slope random effects. We note that, statistically, means 

are shifted by skewness, so the two are necessarily linked to a certain extent. To test 

whether species with longer active seasons tended to be more skewed, we modeled 

skewness as a  mixed-effects model with distributions’ standard deviation interacting 

with guild as fixed effects, and the same random effects structure as in the previous 
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model. 

Overlap calculation

To demonstrate the potential phenological match/mismatch consequences of 

skewness differences between bees and flowers, we simulated the maximum possible 

overlap of distributions with different skews. To do this, we repeatedly generated pairs of

skew-normal density distributions (Azzalini, 2020) with two different skewness 

parameters, representing the phenological distributions of one flower species and one bee

species. To find the maximum possible overlap, we perturbed the mean and standard 

deviation of one distribution in 2000 total  parameter combinations. This was a somewhat

coarse discretization, so slightly distorted results are expected at a fine scale of 

comparison. For each pair of perturbed distributions, we then calculated the overlap 

coefficient (Inman et al., 1989) by integrating to find the area encompassed by both 

probability density curves (as illustrated in Fig. 3.1), and recorded the largest of the 

resulting overlap coefficients. We repeated this procedure for every pairwise combination

of 50 skewness values sequenced evenly between -5 and 5, resulting in 2500 (i.e., 502) 

total comparisons. In other words, we calculated the largest possible overlap of paired 

distributions by keeping skewness constant and allowing mean and standard deviation to 

vary freely. A visual representation of this simulation process is provided in Appendix B:

Section B.4. To provide perspective, we calculated the bounds of the middle 95% of 

skewness values from the empirical datasets and overlayed these onto the simulated 

overlap estimates.
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Results

We estimated skewness for 2,754 flower time-series and 480 bee time-series. The 

time-series represented 92 plant species across 71 genera, and 49 bee species/castes 

across 14 genera. In time-series with sufficient data to calculate skewness, the average 

flowering period (across all years, sites, and species) was centered on July 10, and bee 

foraging on July 2. The typical phenological breadth across time-series, measured as one 

standard deviation on either side of center, was 14 days in flowers and 39 days in bees. 

Flower time-series were significantly right-skewed (g1 = 0.33, t3232 = 20.05, p < 0.01), and

bee time-series were also right skewed (g1 = 0.89), significantly more so than flowers (

t3232 = 13.84, p < 0.01). Viewed individually, 48.7% of flower time-series were 

significantly right-skewed, only 13.6% were significantly left-skewed, and 37.7% were 

not significantly different from symmetrical. Of bee time-series, 48.5% were right-

skewed, 9.4% were left-skewed, and 42.1% were not significantly different from 

symmetrical (Fig. 3.2). Skewness was somewhat affected by data truncation, though both 

bees and flower curves were still right-skewed regardless of truncation type (Appendix B:

Section B.1).

Skewness in plants was significantly predicted by how early or late in the season a

species flowered, with early season species being more strongly right-skewed (mean-to-

skew slope significantly different from zero; t= -8.32, p < 0.01). This relationship was 

more pronounced in bees (mean-to-skew slope significantly steeper in bees than in 

flowers; t =-13.01, p < 0.01), with early season bees being right-skewed, and later-season 

bees being left-skewed (Fig. 3.3, top panel). Plants with longer flowering periods tended 
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to be more right-skewed (t = 7.03, p < 0.01), while bees with longer active periods tended

to be more symmetrical (t = -10.06, p < 0.01) (Fig. 3.3, bottom panel). 

 Simulated overlap losses between interacting species ranged from 0% at perfectly

matched skewness values to 25% for distributions where one has g1 = 5 and the other g1 = 

-5 (Fig. 3.4). The maximum overlap loss for the central 95% of bee and flower skewness 

values found in our datasets was 14% overlap loss. We do not directly compare bee and 

flower distribution breadth because the frequency of bee data collection inherently 

discounted species with short active periods. Comprehensive species lists and summary 

statistics are provided in Appendix B: Section B.3.

Discussion

We found that both bee and flower phenological distributions tend to be right-

skewed (Fig. 3.2), suggesting that similar processes are acting on bees and plants to 

determine the shape of their phenological distributions. Multiple explanations have been 

offered for skewness in flowering time, including selection for skewed flowering driven 

by pollinators and resources (Forrest & Thomson, 2010; Thomson, 1980), by-products of 

intraspecific competition (Schmitt, 1983), and simple geometrical necessity because daily

survival probabilities are cumulative and inherently skewed (Blionis et al., 2001). 

Multiple distinct scenarios that may lead to skewed phenological distributions can be 

examined by focusing on onset rates (e.g., flower opening, bee emergence) and cessation 

rates (e.g., floral senescence, bee mortality). First, differences in the intra-annual 

dispersion of onset and cessation rates may produce phenological skewness. Second, 

variable phenology among individuals with unequal representation (e.g., different 
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numbers of flowers per individual plant) may produce skewed aggregate distributions 

even when the component onset and end rates are equally dispersed. Third, onset and/or 

cessation distributions themselves may be skewed. Further, combinations of these 

processes may influence the shapes of phenological distributions in complex ways. In the 

context of our findings, the prevalence of right-skewness in bee phenological 

distributions suggests that, on average, bees emerge with more synchrony than with 

which they cease foraging. Drawing conclusions about the processes behind the observed

skewness in flower phenology is more difficult due to flower counts being aggregated 

across individual plants in our data.

While demographic data (i.e., tracking individual plants and insects) beyond what 

we present here are needed to determine the mechanistic causes of the differences in 

onset/end variance that produce skewed phenology, some information can be gleaned by 

comparing skewness with other phenological properties. We found that bees that were 

active closer to the beginning of the growing season tended to be more right-skewed (Fig.

3.3). For example, the early season sweat bee Lasioglossum sedi, with an average capture

date of June 16 across all sites and years, was strongly right-skewed (g1 = 1.94), while the

later-season masked bee Hylaeus annulatus, with a capture date of August 5 on average, 

tended to be left-skewed (g1 = -0.27). A similar but weaker pattern was seen in flowers, 

though flowers did not tend to flip to left-skewness at the end of the season. In the snowy 

sub-alpine environment of the present study, the onset of activity is strongly limited for 

flowers (Inouye, 2008) and bees (Stemkovski et al., 2020) by the timing of snowmelt. 

Because species closer in time to this unambiguous onset cue tended to be more strongly 
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right-skewed, we can reasonably infer that this cue, or at least the phenological response 

of species to this cue, is less intra-annually variable than the processes that lead to flower 

senescence and the end of bee foraging (e.g., frost events, precipitation, inherent lifespan/

persistence, etc.). By extension, these findings suggest that later-season onset cues, or 

species’ phenological responses to them, are more variable than the early snowmelt cue.

Our finding of right-skewness in flowering phenology was broadly similar to 

previously published results, though we found that average flowering skewness in the 

present study (g1 = 0.33) was less positively skewed than in a previous study in the same 

area (g1 = 0.46; Thomson, 1980) and a prairie community (g1 = 0.41, Rabinowitz et al., 

1981). While this comparison is useful, we caution against over-interpretation due to 

differences between the studies such as frequency and duration of monitoring and size of 

sampling plots. Turning to insects, we lack other studies focused specifically on 

phenological skewness in other insect groups, but individual abundance time-series 

indicate that right-skewness may also be found in univoltine butterflies (Dennis et al., 

2017; Zonneveld, 1991), flies (Haab et al., 2019; Judd et al., 1991), and hemipterans 

(Gamarra et al., 2020; Ma et al., 2008). Comparisons with multi-voltine species in areas 

with longer growing seasons are difficult, and further research is needed to compare uni- 

and multi-modal phenological distributions, especially as climate change creates 

opportunities for additional generations in some insects (Dyck et al., 2015; Hodgson et 

al., 2011). Given the apparent prevalence of skewness in phenological distributions, we 

encourage researchers to use modeling methods that are designed to capture asymmetry 

(Belitz et al., 2020). We advise caution when closely comparing skewness values 
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between bees and flowers because there is inherently more uncertainty in the bee dataset 

due to the methodological challenges of tracking wild insects.

The consequences of variable skewness in flower and pollinator distributions for 

phenological match/mismatch in natural populations are not well understood and require 

further study. When considering simulated pair-wise interactions, the skewness of 

phenological distributions alone has the potential to cause up to 14% loss in overlap in 

the species that we studied (Fig. 3.4). We note that this analysis encompassed only 

phenological differences, and in reality there are other barriers to pollination such as 

specialization or morphological limitations. It is also important to consider that loss of 

overlap does not necessarily translate to fitness losses, as pollen limitation is not 

ubiquitous (Knight et al., 2005) and many bees and flowering plants are generalists 

(Waser et al., 1996). Beyond pollination interactions, differences in skewness have the 

potential to affect other mutualistic interactions, predator-prey and host-parasite 

interactions, and to alter patterns of inter- and intra-specific competition within guilds. As

both flowers and bees tend to be right-skewed, individuals may compete most strongly 

with their conspecifics in the early part of their activity. Future studies should examine 

how phenological skewness translates into fitness consequences through changes in inter-

and intra-specific interactions throughout species’ active periods.
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Figures

Figure 3.1. Conceptual diagram of the causes of phenological mismatch. Differences 

in the phenological mean timing (top panel), breadth (center panel), and skewness 

(bottom panel) of species determine the extent to which interacting species overlap 

in time. The purple and gold curves represent phenological distributions of two 

species, and the hatched areas are times of phenological overlap.
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Figure 3.2. Flower (top panel) and bee (bottom panel) phenological skewness. Both 

flower and bee species tend to have right-skewed phenological distributions, though

there is substantial variation in shape, and many distributions in both groups are 

not significantly different from symmetrical (white shaded bars). Skewed 

distribution icons give the percent of individual time-series that are significantly 

left- and right-

skewed.
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Figure 3.3. Skewness is predicted by mean and breadth. Early-season bees and 

flowers tended to be more heavily right-skewed (top panel), thought the effect was 

more pronounced in bees than in flowers. Flowers with broader phenological 

distributions tended to be more skewed, while bees with broader phenology tended 

to be less skewed in either direction (bottom panel).
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Figure 3.4. Skewness constrains the degree to which phenological distributions can 

overlap. The maximum possible overlap of pair-wise interacting species with 

different hypothetical skewness values is shown as colors, with red depicting the 

lowest overlap, and white depicting perfect overlap. Bounds for 95% of the actual 

observed skewness values are shown with purple lines for flowers, and gold lines 

for bees. The resulting box in the middle of the figure therefore depicts the potential 

loss of phenological overlap in pair-wise interactions between bees and flowers due 

to differences in skewness alone, isolated from the effects of mean and breadth 

changes.
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CHAPTER 4

PREDICTING BEE PHENOLOGICAL DISTRIBUTIONS MECHANISTICALLY

WITH DEMOGRAPHIC RATES

Abstract

The ability of bees to shift the timing of their seasonal activity (phenology) to 

track favorable conditions influences the degree to which bee foraging and flowering 

plant reproduction overlap. While bee phenology in natural settings has been shown to 

shift due to interannual climatic variation, over time as a signal of anthropogenic climate 

change, and in response to experimental temperature manipulation, the underlying causes

of these shifts are poorly understood. Most studies of bee phenology have been 

phenomenological and have only examined shifts of point-estimates such as first-

appearance or peak timing. While such cross-sectional measures are convenient for 

analysis, pollination interactions occur over whole phenological abundance distributions. 

Here, we make simultaneous inferences about interannual shifts in the bee phenology, 

emergence and senescence rates, population size, and the effect of floral abundance on 

observed bee abundance. We accomplish this by developing a mechanistic mathematical 

model implemented in a hierarchical Bayesian framework and parameterizing it with 

fine-scale time-series of the sweat bee Halictus rubicundus in a natural setting. We find 

that H. rubicundus phenological onset cueing was highly sensitive to the timing of 

snowmelt, but that emergence rate, mortality rate, and population size did not differ 
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greatly across years. We discuss the limits of inference about these potentially correlated 

rates and our ability to make predictions about unobservable bee life stages.

Introduction

Phenology (the seasonal timing of life-history events) shifts year-to-year in 

response to climatic variation, with implications for ecology of interacting species. Due 

to the fast (annual) time-scale of phenological sensitivity, advancing spring phenology 

over the past several decades and across many taxa is one of the most conspicuous biotic 

indicators of recent anthropogenic climate change (Parmesan et al., 2003; Pau et al., 

2011; Thackeray et al., 2016). While the trend toward earlier activity in the spring has 

been nearly ubiquitous and largely predictable, the potential mechanistic causes of these 

shifts are numerous and challenging to isolate. Accumulated temperature is usually 

highly predictive of phenological onset (Cayton et al., 2015), though other factors affect 

phenology and limit the degree to which phenology can respond to climate, as some 

species have winter chilling requirements (Fu et al., 2015), photoperiod plays a role (Way

et al., 2015), and some species time their activity to precipitation events (Danforth, 1999).

More generally, the mechanistic causes of observed phenological plasticity can be 

divided into two groups: adaptations to track favorable conditions, and byproducts of 

physiological rates that are not actually adaptive. Species may evolve to delay 

development until a temperature threshold is met, or development rates may be delayed 

by insufficient heat energy. Phenological stages progress in a sequence (Ettinger et al., 

2018), so rate limitation in early stages may result in apparent phenological plasticity 

year-to-year but not serve to match with favorable climate conditions or species 
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interactions later in the season.

While the adaptive and neutral drivers of phenological plasticity have been 

examined extensively in plant flowering and leaf-out, less attention has been given to 

pollinator phenology. It is important to understand if and why phenological sensitivity 

varies among plants and their pollinators so that we can anticipate how cross-guild 

interactions will change (Hegland et al., 2009) and how community interaction networks 

will rewire due to phenological mismatches as climate change progresses (Ibáñez et al., 

2010). Long-term phenology studies of bees – the most important group of animal 

pollinators (Potts et al., 2016) – have only begun to uncover the drivers of their 

phenological sensitivity (Bartomeus et al., 2011). Similarly to plants, temperature is 

predictive of bee phenology both in the winter (Fründ et al., 2013) and spring/summer 

(Pyke et al., 2016).  Species that are active earlier in the season are more sensitive to 

temperature variation than those that are active later in the season (Forrest, 2016). 

Further, inter-annual variation of early-season phenology (such as emergence) is mostly 

predicted by climate variables, while inter-specific variation in the phenology of later 

stages have more to do with species traits such as nest location and the life stage in which

bees overwinter. (Stemkovski et al., 2020). These insights give us a coarse, heuristic 

sense of the drivers of phenological plasticity in wild bee populations, but we lack a 

mechanistic model of bee phenology that incorporates both phenological plasticity and 

variable emergence and mortality rates. For the purposes of this research, phenological 

plasticity can be thought of as the shift in the onset of bee emergence in response to 

variation in the timing of climatic cues. The rate of emergence, on the other hand, 
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determines the time between the onset of emergence and peak abundance. The emergence

rate, together with the rate at which individuals cease foraging, are vital rates that are 

henceforth refered to as demographic rates. Both phenological plasticity and variable 

demographic rates shape the patterns of bee abundance that we see distributed over parts 

of the season. Some studies have explained interspecific differences in phenological 

sensitivity with functional traits, which is a step closer to a mechanistic understanding of 

bee phenology (Diamond et al., 2011; Slominski et al., 2019). But, observable traits often

serve as proxies for more fundamental physiological and demographic processes such as 

emergence and mortality rates.

Bee foraging phenology – the focus of this study – is a process in which 

abundance is distributed over time (Inouye et al., 2019), and the timing of this process, its

duration, and the shape of this distributed abundance (Stemkovski et al., 2023) are 

products of adaptive plasticity and variation in demographic rates that is not necessarily 

adaptive. Most studies have focused on cross-sections of the whole phenological 

abundance distribution, such as onset, peak, or end timing (Belitz et al., 2020). These 

cross-sections make convenient units for comparison, but considering the entirety of 

phenological distributions allows us to more precisely investigate phenological overlap 

(Edwards et al., 2021). Beyond furthering the pursuit of fundamental understanding, there

are practical reasons to move beyond cross-sectional approaches. Bees, like many insects,

have cryptic life stages that cannot, realistically, be observed in natural settings. A 

mechanistic approach to modeling phenology can be used to make inferences about these 

cryptic stages (e.g. unemerged adults and prepupae) from the observable data, greatly 
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expanding the scope of potential inquiry. Also, building a mechanistic model allows us to

generalize across multiple datasets and studies by mathematically formalizing the 

demographic processes that are shared across species.

Here, we take a mechanistic modeling approach to describe the phenological 

abundance distributions of a wild bee species in the Colorado Rocky Mountains. We 

collected fine-scale abundance data for the whole active period of Halictus rubicundus 

over two years to examine the relationships between the adaptive and neutral drivers of 

their phenology which can be inferred from observational data alone. Using a difference 

equation approach in a Bayesian modeling framework, we simultaneously quantify inter-

annual onset phenology shifts, differences in emergence and senescence rates, population

size, and the effect of local floral abundance on the observed abundance of this species 

over time. We find that H. rubicundus phenology is sensitive to snowmelt date, but that 

beyond this other demographic rates and processes are remarkably consistent across the 

two study years. We hope that the model developed here and this general approach will 

enable new work that integrates phenology and demographics.

Methods

In this study, we collected fine-scale time-series data on the abundance of 

Halictus rubicundus in order to parameterize a mechanistic model of its phenological 

abundance distribution. The study was located in a pair of subalpine meadows in the 

Colorado Rocky Mountains and involved non-lethal bee population sampling in the field.

We developed a piecewise, two-compartment difference equation model that 

simultaneously estimates phenological onset shifts and demographic rates. We fit this 
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model to data in a Bayesian framework.

Study system

We collected bee and flower abundance data over two years (2019 and 2021) in 

two subalpine meadows in the East River valley of the Elk Mountains in Colorado, USA. 

The sites – “Trail” and “Waterfall” –  were southwest-facing, located at 2960 m and 2990

m above sea level and were approx. 33,000 m2 and 25,000 m2 in area, respectively, and 

1.3 km apart (Fig 1). We selected the sites for their similar flora and abiotic conditions, 

containing areas of ground-nesting substrate for bees, and delineated their boundaries 

based on natural features (streams, tree stands, and willow thickets). Both meadows 

contained a diversity of flowering plants, but were dominated mainly by Taraxacum 

officinale in the early season and Potentilla pulcherrima in the remainder of the season. 

The growing season in this area is limited by snow with persistent cover from roughly 

November to May each year, meaning that most bee species in the area are univoltine and

solitary. Annual snowmelt timing is a strong predictor of bee and flower phenology 

(Stemkovski et al., 2020). Cattle are driven through much of the area in the early autumn,

disturbing vegetation and maintaining areas of bare trampled ground.

We selected Halictus rubicundus (orange-legged furrow bee) as the focal species 

for its adequate abundance and identifiability in the field without lethal sampling. H. 

rubicundus is a widely-distributed halictid (sweat bee), and is a generalist most often 

observed on plants of the families Asteraceae and Rosaceae (Soucy, 2002); in this study, 

we almost exclusively observed them foraging on Taraxacum officinale. They are 

facultatively social in warm climates, overwinter as emerged adults, and commonly form 
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nest aggregations on south-facing slopes in loose soil (Potts et al., 1997). In cold 

climates, such as the present study area, H. rubicundus is solitary, producing one 

reproductive brood in each season (Eickwort et al., 1996), though they still commonly 

nest in aggregations. H. rubicundus phenology appears to track climatic cues closely, 

with individuals from the same aggregation emerging in close synchrony (Cane, 2021). 

Data collection

To obtain fine-scale time-series data on bee phenological distributions, we 

sampled bee and flower abundances along transects at each site three days per week, 

weather permitting. On each sampling day, we (re)placed 5 randomly located 20m-long 

transects within the boundaries of the site, and placed a sixth transect in an area of 

perceived high floral density to account for bee selective foraging behavior. We walked 

along each transect and scanned for bees for 10 minutes within a 2m band, netted any 

observed bees, identified them using a hand lens, marked them with non-toxic paint on 

the thorax, released them, and recorded floral association. We paused the 10 minutes of 

sampling time while handling insects and recording data. We repeated this procedure at 

each transect once in the morning and once in the afternoon, resulting in 120 minutes of 

netting effort per day. We quantified floral abundance in each transect by counting the 

number of flowering plants and number of flowers on 10 plants in four evenly spaced 

1m-by-1m quadrats along the transect in 2019, and by counting the total number of 

flowers (not distinguishing plants) in the four quadrats in 2021. We also noted flowering 

plants that were found in the transects but outside of the quadrats.

Most bees cannot be reliably identified to species in the field without lethal 
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collection and microscopy. While we recorded taxon information for all bees we caught 

(usually to genus), we focused on H. rubicundus in part because they can be reliably 

identified in the field. To confirm the validity of our field identification, we collected 

reference specimens throughout the season and confirmed their species identities under 

magnification in the lab.

The winter of 2018/19 had a deep snow pack relative to other recent years, with 

967cm of total snowfall and a June 6 date of bare ground at a nearby weather station 

(Barr, 2022). By comparison, the winter of 2020/2021 was much drier, with 561cm of 

total snowfall and a May 8 date of bare ground. This contrast between 2019 and 2021 

provided a natural experiment to examine the phenological consequences of climatic 

variability. In 2019, we continued our sampling campaign for the entirety of the summer 

in order to capture any unexpected late-season population dynamics and track other 

identifiable species, but in 2021 we ended data collection in July. In 2019, we sampled at 

the Trail site 32 times from June 12 to September 4 for a total of 3,360 netting minutes, 

and we sampled the Waterfall site 27 times from June 24 to September 3 for a total of 

2,760 netting minutes. In 2021, we sampled at the Trail site 25 times from May 14 to July

21 for a total of 2,330 netting minutes, and we sampled the Waterfall site 22 times from 

May 15 to July 23 for a total of 2,160 netting minutes. Sampling was not done in the 

summer of 2020 due to the Covid-19 pandemic.

Mathematical modeling

The number of mature bees of a species that are actively foraging at a given time 

is a product of the total number of individuals in that location, the rate at which they 
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appear (through development from earlier life-stages and through emergence), and the 

rate at which they disappear (through mortality or nest reentry). Practically, the number 

of bees observed at a given location is also mediated by the availability of desirable floral

resources, and abiotic factors such as temperature and precipitation. The observed 

population number can thus be modeled as

Ot ,s , y=v (us , y ,a y ,by ,m y ,h y , t )+ f (t , s , y )+ϵ

where O is the observed number of bees foraging at time t, site s, and year y.  The 

underlying phenological trajectory of the species is represented by v, which is a function 

of the total number of individuals before any have emerged us,y , the maximum emergence

rate a, a friction parameter b which influences the actual rate of emergence, and the 

mortality rate m. The parameters a, b, and m are assumed to be fundamental demographic

rates for a species that are constant across sites. The effect of floral abundance on 

observed bee numbers at time t and site s is represented by the linear function f.

Specifically, the function v is a system with two compartments,

v (B t=0, s , y ,a y ,by , my ,h y , t ){ {B t , s , y=us , y

Pt , s , y=0
for t<hy

{ Bt , s , y=Bt − 1 , s , y −a y Bt −1 , s , y+by Bt −1, s , y
2

Pt , s , y=Pt − 1,s , y+a y Bt − 1,s , y− by B t −1, s, y
2− my Pt −1, s, y

for t ≥ hy

with B representing the unobserved bank of yet-to-emerge individuals, and P representing

the observed population of foraging adults. B flows into P as a logistic decay process 

using the original formulation of the logistic growth equation by Verhulst (1838) which –

in contrast to the typical formulation used in ecology that involves a “carrying capacity” 

parameter – allows for negative growth (Gabriel et al., 2005). The flow from B to P 
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depends on the maximum emergence rate a and the friction parameter b. The friction 

parameter (following the nomenclature of Gabriel et al.) controls the shape of the 

emergence curve. Individuals then leave P at the mortality rate m. The system of 

equations is piecewise around the parameter h, which models phenological onset. The 

effect of floral abundance of observed bee abundance f is modeled linearly as

f ( t , s , y )=β F F (t , s , y )

with βF being the slope of flower to bee abundance, and F being the observed number of 

flowers at time t site s, and year y. An intercept term is not included in this equation 

because the baseline abundance count v serves as the intercept. To study the phenological

effects of climate differences between the two study years, we allowed the parameters a, 

b, m, and h to vary by year, denoted with the subscript y. The parameter u was allowed to 

vary for each time-series (across years and sites), and the floral abundance parameter βF 

was assumed to remain consistent over all years and sites.

Model fitting

We implemented the model described above in a Bayesian hierarchical 

framework with Stan in R (version 4.1.1) using the rstan package. We treated a, b, m, and

h as hierarchical parameters by year, u as hierarchical by both year and site (different for 

each timeseries), and βF as a global parameter that is independent of year and site. The 

decision to allow the rate parameters (a, b, and m) to vary by year and not by site reflects 

the assumption that there are not fine spatial-scale differences in phenophase transition 

rates within a given bee species but that those rates might be affected by climatic 

variation. Similarly, we assumed that phenological onset cueing (h) would be the same 
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across sites but would be sensitive to climatic variation across years. Consequently, we 

assumed that the only cause of differences in observed phenological abundance curves 

within years would be different population sizes (u) across sites. Because the 

phenological curve function is modeled using discrete difference equations at a resolution

of 1 day for each timestep, we interpolated the model linearly to generate continuous 

predictions to estimate the onset parameter, h. We implemented non-centered 

reparametrization for the a, b, and m parameters to aid in parameter space exploration and

model convergence. We used uninformative or weakly informative priors for all 

parameters based on prior knowledge about the study system and model dynamics. Full 

model specifications are provided in Appendix C, which we encourage readers to consult 

alongside the model code that is provided in the accompanying data release. We fit the 

model using the NUTS sampling algorithm, 10,000 iterations (5000 for warmup and 5000

for sampling) in 4 Markov chains, with the target acceptance probability in the warmup 

period (the ‘adapt_delta’ argument) set to 0.95. We checked for parameter estimate 

convergence and chain mixing by examining trace plots, checking parallel coordinate 

plots, and ensuring that r̂ values were close to 1. Finally, we performed posterior 

predictive checks to verify that the functional form of the model was appropriate for the 

data.

Results

We caught 110 total Halictus rubicundus females, on 39 sampling days across all 

sites and years, with 31 caught in 2019 and 41 in 2021 at the Trail site, and 18 in 2019 

and 20 in 2021 at the Waterfall site. The onset of flowering and bee foraging phenology 
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shifted markedly between the two years. In 2019 at the Trail site, we observed the first 

open Taraxacum officinale flower and the first foraging H. rubicundus female on June 

20, but in 2021 at the same site we observed the first T. officinale flower nearly a month 

earlier on May 30 and the first H. rubicundus on May 26. The end of flowering and 

foraging phenology was similarly earlier in 2019 than in 2021, with H. rubicundus caught

for the last time on July 19 in 2019 and for the last time on June 18 in 2021. We counted 

a total of 137 T. officinale flower heads at the Trail site and 54 at the Waterfall site in 

2019, and 281 and 84 at those sites in 2021. 

This shift between years is reflected in onset parameter (h) estimates. The mean 

onset estimate for 2019 was 175.93 day-of-year (DOY) (~ June 25) (CI 163.35-180.68) 

and 141.76 DOY (~ May 22) (CI 137.06-145.85) for 2021. Abundance was predicted to 

have peaked on July 4 and July 2 at the Trail and Waterfall sites respectively in 2019, and

on June 1 and May 31 in 2021. Population size parameter estimates were similar across 

sites and years, with mean u estimates of 27.13 (CI 10.97-46.79) and 27.40 (CI 10.36-

47.19) in 2019 and 24.42 (CI 5.02-47.81) and 26.21 (CI 8.31-47.05) in 2021. The 

emergence, mortality and emergence friction rates changed little between years. In 2019, 

mean emergence, mortality, and friction parameter estimates were 0.18 (CI 0.112-0.24), 

0.36 (CI 0.15-0.87), and 0.0041 (CI 0.0017-0.0077) respectively, and in 2021 the 

parameter estimates were 0.16 (CI 0.11-0.24), 0.35 (CI 0.14-0.79), and 0.0046 (CI 

0.0017-0.0077). This resulted in similarly shaped phenological curves between 2019 and 

2021, though shifted and with somewhat different magnitudes (Figure 2). Local flower 

abundance had a slight effect on observed bee abundance, with a mean βf  estimate of 
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0.03 (CI 0.004-0.061) across all timeseries. 

The mean absolute error of the model prediction was similar between the years 

and sites, with 0.58 at the Trail site and 0.65 at the Waterfall site in 2019, and 0.87 at the 

Trail site and 0.50 at the Waterfall site in 2021. r̂ values for all parameter estimates were 

<1.01, indicating mixing across MCMC chains. Examination of parameter trace plots 

indicated model convergence and mixing across chains (Figs. C.1, C.2, C.3, C.4). 

Posterior predictive checks also indicate that the model is appropriate to characterize the 

data (Fig S5). All Bayesian Credible Intervals (CI) represent 95% of the posterior 

parameter distributions.

Discussion

We collected fine-scale abundance time-series of wild Halictus rubicundus 

populations to parameterize a mechanistic model that synthesizes the phenological onset 

plasticity and demographic processes to predict bee phenological abundance 

distributions. In summary, we found that while onset shifted in concert with different 

snowmelt timing between the two study years, emergence and senescence rates did not 

change greatly. This was evidenced by similarly shaped abundance distributions and 

similar inferred population sizes. We argue that out approach avoids some of the pitfalls 

of previous similar modeling efforts and that the present model can be applied beyond the

data to which it was parameterized.

Phenological cueing vs. demographic rates

The difference in climatic conditions between 2019 and 2021 provided a natural 

experiment to examine the patterns and causes of bee phenological plasticity. There was 
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nearly a month disparity in the timing of snowmelt, with the snowpack near our sites 

disappearing on June 6 in 2019 but on May 8 2021. The shift in Halictus rubicundus 

phenology was similarly striking, and was apparent through visual inspection of the data, 

even without mathematical modeling (Fig 2). Was this shift in observed phenology a 

product of plastic phenological onset or of different emergence rates between the two 

years? Our model was able to shed light on the answer to this question. We estimated a 

shift in H. rubicundus foraging phenology onset between the two years that was 

complementary to the shift in snowmelt date, with phenological onset estimated as 

occurring on June 28 in 2019 and on May 23 in 2021, supporting previous observations 

of phenological plasticity in this species (Cane, 2021). By contrast, the rate of emergence 

of overwintering bees did not differ greatly between the two years, with only a 54% 

probability that emergence was faster in 2019 than in 2021 (compared with a >99% 

probability that the onset was earlier in 2021 than in 2019). The other transition rates also

did not differ greatly between the two years, with emergence (55:45 odds that it was 

faster in 2019) and senescence (65:35 odds that it was faster in 2019) rates essentially 

indistinguishable from perfect 50:50 odds (no difference) as calculated from the posterior

probabilities. Therefore, we can conclude that phenological cueing rather than changes in 

distribution shape accounted for the observed shift in H. rubicundus phenology between 

the two years. With the obvious caveat that this is a two-year case-study of a single 

species, our results suggest that bee phenophase transition rates may not be strongly 

affected by climatic variation. Consequently, we propose that this model structure is 

appropriate to use in other contexts without needing to estimate year-specific phenophase
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transition rates. Year-specific demographic rates could, of course, be estimated in the 

future if that is the direct object of study.

The shape of phenological distributions is determined by the interaction of 

emergence and senescence rates (Zonneveld, 1991). Fast emergence relative to 

senescence results in right-skewed distributions, whereas the converse results in left-

skewed distributions (Stemkovski et al. 2022). While the proportional values of these 

rates can be inferred from observational data, this is not the case for every parameter in 

the present model. For example, senescence rate and population size are strongly, 

inherently correlated (Fig 3). A large population that senesces quickly can result in a 

nearly identical phenological abundance distribution to that of small population that 

senesces slowly. This multicollinearity that could impede statistical inference 

(McElreath, 2019) is detected by our Bayesian approach, and may be obscured by models

that do not take into account parameter correlations. Changes in population size have 

been recognized as complicating factors when measuring phenology (Miller-Rushing et 

al., 2008). Our results add another dimension to this difficulty, and we caution against 

inference about population size and mortality/senescence rates in isolation using an 

approach like ours that relies on observation data alone.

Fine-scale spatial variation in floral resource availability appears to play a small 

but significant role in predicting local bee abundance. On average, we observed 2.7 

additional bees per 100 flowers of Taraxacum officinale in a given transect, and there 

was a 95% chance that the relationship between flower and observed bee abundance is 

indeed positive. This finding is evidence that the present study species makes informed 
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foraging decisions at the local scale (within a site), in line with previous findings that 

bees select foraging areas based on flower displays (Heinrich, 1979), and remain in 

resource rich areas longer than in resource poor ones (Waddington, 1980). The present 

data cannot inform estimates of foraging distance or site fidelity, however. Finally, we 

did not observe obvious phenological mismatch between H. rubicundus and floral 

resources in either year because T. officinale shifted its phenology in roughly equal 

measure, providing another example of maintained synchrony between pollinators and 

their floral resources (Renner et al., 2018).

Comparison to existing mechanistic models

This study is not the first that has attempted to model phenological abundance 

distributions mechanistically, though we are not aware of another such model that has 

been applied to bees. Zonneveld (1991) proposed a model to describe the phenological 

abundance curves of butterflies gathered from transect counts. That model jointly 

estimated butterfly maximum emergence rate, dispersion of the emergence rate, mortality

rate, and total population size.  Notably, the formulation of the Zonneveld model is 

similar to what is presented here, and the second piecewise component of Eq. 2 is a 

Eulerian approximation of that model. Though initially proposed and used as a method to

estimate population size after accounting for detection probability (Gross et al., 2007), 

this model has been criticized for not being robust to departures from assumptions about 

emergence and death rates (Calabrese, 2012). The present model departs from and 

advances the Zonneveld model in three crucial ways: estimating phenological onset, 

incorporating covariates, and implementing model fitting in a Bayesian framework which
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addresses some of the earlier criticisms of Zonneveld’s model and provides for flexibility

in parameter estimation (e.g., addressing the colinearities outlined above, and using 

hierarchical estimation to overcome data limitations).

Beyond models applied to insect studies, relevant models have been developed for

unimodal populations in general. Joliceur and Pontier (1989) proposed a model that 

generalizes population growth and decline as a continuum between the exponential and 

logistic cases. While not developed exclusively to describe insect abundance phenology, 

such a model could be applied to cases where mortality (or senescence) rates are not 

exponential. Condit et al. (2007) took a similar approach to ours to characterize elephant 

seal colony size as a function of migratory arrival rates and tenure lengths (though not 

phenological onset), demonstrating the generality of this kind of approach to many study 

systems.

Potential applications

We have demonstrated that our model can describe bee phenological distributions

under different climatic conditions and suggest that phenophase transition rates do not 

vary greatly in response to climatic differences. Given this, our model can be applied to 

other datasets of bee phenology (Gezon et al., 2015; Kammerer et al., 2020; Kazenel et 

al., 2020; Ogilvie et al., 2017) and other taxa (Crimmins et al., 2017; Ovaskainen et al., 

2020; Templ et al., 2018) that have similar onset and senescence dynamics. Future 

studies can exploit the functional form proposed here to extract estimates of phenophase 

transition rates from datasets that do not have the same fine-scale temporal resolution as 

the present time-series. For example, emergence rates could be compared across different
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bee species and different climate regions. Functional traits can be used to explain 

variation in emergence rates. For example, we might expect species that nest above 

ground to have faster emergence rates than those nesting below ground because those 

above ground are not subject to patchy persistent snow cover in the spring. This approach

can help us better understand how climate change is affecting species’ fundamental 

demographic rates, and so improve predictive power as we move into regions of climate 

space where statistical extrapolation from historical patterns may no longer be expected 

to perform well.
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Figures

Figure 4.1. Observations of Halictus rubicundus were made across two sites in the 

East River valley of Colorado, USA. Points denote transect locations across every 

sampling date in the sites. Gray points represent transects in which H. rubicundus 

was not detected, and colored points represent those where H. rubicundus was 

detected in 2019 (orange) and 2021 (blue). In total, we performed 336 transect 

sampling bouts at the Trail site in 2019, 276 at the Waterfall site in 2019, 233 at the 

Trail Site in 2021, and 216 at the Waterfall site in 2021.
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Figure 4.2. The phenological abundance distribution of H. rubicundus at two sites 

over two years is accurately predicted by a mechanistic model based on phenophase

transition rates. Points represent observed bee counts (emerged abundance) in 

2019 (orange) and 2021 (blue). Solid curved represent the mechanistic model 

predictions of emerged abundance, and dashed curves represent predictions about 

unemerged abundance which was not observed directly. Vertical lines on the solid 

curved represent model predictions with the added effect of floral abundance on 

observed bee abundance. Mean parameter estimates are reported in the top right 

corners of both panels and follow the same color scheme as the curves. Day-of-year 

is abbreviated as DOY.
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Figure 4.3. Different combinations of certain parameters yield similar model 

predictions due to parameter non-identifiability. In this example, similar 

phenological abundance curves (orange curved in light blue circles) are predicted 

both when senescence rate and population size are low and when these parameters 

are high. Each point represents a draw from the posterior distribution. This pattern 

is similar across years and sites (panels).
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CHAPTER 5

DISORDER OR A NEW ORDER: HOW CLIMATE CHANGE AFFECTS

PHENOLOGICAL VARIABILITY

Abstract

Advancing spring phenology is a well-documented consequence of anthropogenic

climate change, but it is not well understood how climate change will affect the 

variability of phenology year-to-year. Species’ phenological timings reflect adaptation to 

a broad suite of abiotic needs (e.g. thermal energy) and biotic interactions (e.g. predation 

and pollination), and changes in patterns of variability may disrupt those adaptations and 

interactions. Here, we present a geographically and taxonomically broad analysis of 

phenological shifts, temperature sensitivity, and changes in inter-annual variability 

encompassing nearly 10,000 long-term phenology time-series representing over 1,000 

species across much of the northern hemisphere. We show that the timings of leaf-out, 

flowering, insect first-occurrence, and bird arrival were the most sensitive to temperature 

variation and have advanced at the fastest pace for early-season species in colder and less

seasonal regions. We did not find evidence for changing variability in warmer years in 

any phenophase groups, though leaf-out and flower phenology have become moderately 

but significantly less variable over time. Our findings suggest that climate change has not

to this point fundamentally altered patterns of inter-annual phenological variability.
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Introduction

Shifts in phenology (seasonal timing of life-cycle events) have occurred as a 

result of changes in climate, and while there has been a general trend of species in 

seasonal regions advancing their spring phenology over the last few decades due to 

anthropogenic climate warming (Parmesan & Yohe, 2003), species vary in their 

phenological responses to inter-annual climatic variation. Species’ phenological 

sensitivity varies based on trophic level (Thackeray et al., 2016), and insects are thought 

to be able to track climatic cues more closely than other groups of animals and plant 

(Cohen et al., 2018). Species’ traits can influence phenological sensitivity within 

taxonomic groups including plants (Konig et al., 2018), insects (Diamond et al., 2011), 

and birds (Butler, 2003). Phenological shifts have been more pronounced in early season 

species (CaraDonna et al., 2014; Mulder et al., 2017) occupying colder regions (Roslin et 

al., 2021) and higher latitudes (Parmesan, 2007), likely due to the faster pace of climate 

change in the upper northern hemisphere (Burrows et al., 2011) and stronger selection for

plasticity (Lindestad et al., 2019) in those areas. Some species have also shown decreases

in phenological sensitivity to temperature variation in warmer years as they reach the 

limits of their historical climate conditions, producing non-linear temperature-phenology 

relationships (Iler et al., 2013; Meng et al., 2020; Mulder et al., 2017). While these 

complexities alone make it difficult to predict how species’ phenologies will change in 

the future, it is also unclear whether climate change is making phenology inherently more

or less variable and predictable. Such changes in variability are not just of academic 

concern, particularly if they affect the reliability of species’ interactions that drive key 
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ecosystem services such as pollination for agriculture (Klein et al., 2007).

The majority of phenological research has focused on changes in the mean of 

events such as onset and peak over time (phenological shifts) or in response to yearly 

climatic variation (phenological sensitivity). Some studies have also shown changes in 

within-season (intra-annual) variability due to climate change (Ma et al., 2018; Prevéy et 

al., 2017; Zohner et al., 2018), but few have investigated whether, or in what ways, the 

variability of phenological events across years (inter-annual) is being affected by climate 

change. Most studies have assumed constant inter-annual deviation, and some have 

checked and accounted for heteroscedasticity in time-series residuals (e.g., Bartomeus et 

al., 2011; Wadgymar et al., 2018) but have not made it a focus of study. There is reason 

to think that inter-annual variability in phenology might be changing, as there have been 

recent, geographically heterogeneous changes in inter-annual temperature variability (Liu

et al., 2020). Further, decreased sensitivity to temperature variation (Mulder et al., 2017), 

chilling requirements in plants (Fu et al., 2015; Vitasse et al., 2018), and physiological 

development time requirements between phenophases (Ettinger et al., 2018; Primack, 

1987) may produce patterns of phenological variability that are different from the 

variability of their cues. The studies that have examined inter-annual phenology 

variability on a broad scale, using citizen science data (Pearse et al., 2017) and satellite 

imagery (Liu et al., 2020), have found increases in variance over time, though such 

changes might also be influenced by changes in monitoring schemes or community 

composition over time (de Keyzer et al., 2017).

The relative scarcity of research attention does not reflect a lack of importance, as
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changes in phenological variability can have consequences for the temporal synchrony of 

interacting species. An increase in phenological variability may hamper the ability of 

dependent species to track the moving target of other species’ changing phenology if the 

species track different climatic cues or have different sensitivities to the same cues. 

Variation in phenological overlap affects the strength of interactions between co-

occurring species (Tiusanen et al., 2020), so there might be immediate consequences for 

species’ fitness and coexistence. Extreme inter-annual phenological variation in the 

overlap of interacting species may even lead to local extirpation (Patterson et al., 2020). 

While phenological mismatches resulting in short-term fitness losses may be followed by 

evolutionary adaptation in plasticity that corrects the mismatch (Visser & Gienapp, 

2019), this adaptation may be less likely to occur if the phenological fitness landscape 

becomes less predictable (Leung et al., 2020). If environments become extremely 

unpredictable, species may even adapt bet-hedging strategies rather than maintain 

plasticity (Botero et al., 2015). Beyond predictability, changes in variability can even 

influence mean shifts in phenology by interacting with lagged effects of temperature on 

leaf and flower primordia in previous years (Mulder et al., 2017). From a human 

standpoint, changes in phenological variability could affect foraged (Anderson et al., 

2018) and hunted (Brinkman et al., 2016) food supply and the feasibility of planning for 

cultural events (Allen et al., 2014).

In the present study, we examine nearly 10,000 time-series datasets of plant, 

insect, and bird phenology to determine the general patterns of how climate change is 

affecting both phenological means and variability. To do this, we specify four metrics of 
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change (Fig. 5.1): mean change over many years (mean shift), inter-annual mean changes

due to climate variability (mean sensitivity), variability change over years (deviation 

shift), and inter-annual variability changes due to climate variation (deviation sensitivity).

We compare patterns in shifts in variability to determine how phenology is changing in 

response to climate change and whether it is becoming more or less variable across years.

Further, we identify the regional climatic drivers of shifts and sensitivity, the effect of 

phenological position (how early in the season a phenophase occurs), and differences 

between taxonomic groups. Finally, we examine the influence of functional traits on 

shifts and sensitivity within groups. 

Methods

In order to determine how phenological means and deviations are shifting over 

time and how sensitive they are to inter-annual climate variation, we pooled data from 

eight long-term monitoring schemes, calculated four phenology metrics (Fig. 5.1) for 

individual time-series within these datasets, and modeled the resulting trends using 

regional climate and species characteristics. All analyses were done in R version 3.6.3 (R 

Core Team, 2020). Data management was done using the R-package data.table (Dowle 

& Srinivasan, 2021), quantile regression was done using quantreg (Koenker, 2021), and 

data visualization was aided by visreg (Breheny et al., 2015), rnatualearth (South, 2017), 

sf (Pebesma, 2021), and cowplot (Wilke, 2020). Scripts to reproduce analysis are 

available online (DOI: 10.5281/zenodo.5593484) and in the supplementary materials.

Phenology data

We performed a broad search of long-term phenological datasets across terrestrial
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taxa. We included datasets with time-series spanning longer than 10 years, extending at 

least past the year 2000, and for which measurements were made repeatedly by experts at

fixed locations. We included eight sources: Korean meteorological stations (Ibáñez et al., 

2010; Kim et al., 2021), Japanese meteorological stations (Doi & Katano, 2008; Ibáñez et

al., 2010), the NECTAR network (Cook et al., 2012), the Rocky Mountain Biological 

Lab (RMBL; CaraDonna et al., 2014; Inouye, 2008), the Manomet Observatory bird 

monitoring station (Lloyd-Evans et al., 2004; Stegman et al., 2017), the Rothamsted 

Insect Survey trap network (Bell et al., 2015), the Chronicles of Nature Calendar 

(Ovaskainen et al., 2020), and the Pan-European Phenology network (Templ et al., 2018).

Further details on these data sources are provided in Table S7.1.

We focused our analysis on plant leaf-out, the onset of plant flowering, the first 

appearance of adult insects, and the first arrival of migratory birds. We refer to these four 

groups henceforth as phenophase groups. We used first-observation dates as the measure 

of phenological onset for most datasets due to the unavailability of continuous abundance

records and in most of the datasets. The Manomet and RMBL datasets include seasonal 

abundance time-series, so we were able to more precisely estimate phenological onset 

using a Weibull estimator (Pearse et al., 2017). We note that first-occurrence dates may 

not reflect shifts in the peak or duration of phenophases (Inouye et al., 2019), but we did 

not investigate these due to limitations of the present datasets. We performed systematic 

quality assurance and excluded time-series based on the following five conditions that 

were likely to lead to erroneous shift and sensitivity calculations. Of the 15,930 total 

time-series that we evaluated, we (1) excluded 10 that contained gaps in observations that
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made up more than three quarters of the time-series range. (2) We excluded 30 time-

series that were unusable due to ambiguous data recording schemes in which some 

phenophases were recorded in January and some in December, but the year was unclear. 

(3) 89 time-series were excluded due to potentially unreliable estimates flagged by the 

Weibull method implementation, with estimates not matching up to their confidence 

interval range (see Smith, 1987). (4) Unresolvable data entry errors were identified in 170

time-series when there were extreme outliers or discontinuous data clusters that might 

have been caused by swapping days and months in data entry. These cases were flagged 

using model-based clustering (Fraley et al., 2012) with a conservative model selection 

threshold of BIC=25, and potential cases of clustering were checked visually. Lastly (5), 

618 time-series with a total range of observations greater than three months were 

excluded due to likely aseasonal dynamics. Much of the NECTAR data was removed due

to fewer than 10 years of recent observations at most sites. To avoid problems with 

pseudoreplication due to co-located or spatially clustered sites in the CNC and PEP 

datasets, we picked the co-located CNC sites with the most records, and in the PEP data 

selected the sites with the most records for each decimal coordinate rounded to the 

nearest whole (which is c. 55km apart in Europe). This selection process left 288 of the 

354 sites in the CNC data and 360 of the 15,183 locations in the PEP data.

Climate data

We obtained geographically precise historical climate data from the TerraClimate 

product (Abatzoglou et al., 2018), which provides monthly maximum temperature 

estimates at a ~4km resolution globally from 1958 to 2018. To match this data product, 
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we did not consider data earlier than 1958 or after 2018. To calculate a series of relevant 

yearly temperatures for each species/phenophase/site time-series, we identified the 

median month in which the phenophase occurred across the entire time-series, and 

extracted the mean daily maximum temperature in that month and the one preceding 

across all years of the time-series. We note that using the temperature at these two 

months (median and preceding) may produce conservative estimates compared to 

approaches characterizing entire climate sensitivity profiles (Thackeray et al., 2016), 

though by using a fixed integration period length of two months, we ensure comparability

across datasets (following Keenan et al., 2020). We also note that temperature sensitivity 

is often calculated using degree-day models, though a comparison of these models 

against a simple linear regression approach (similar to what we implemented) showed 

that they provide similar results (Basler, 2016). We summarized the regional climate of 

sites with two metrics: seasonality and mean temperature. We defined seasonality as the 

mean annual temperature range (following Cook et al., 2012) in every year between 1958

and 2018, and mean temperature simply as the mean of monthly temperatures across all 

months in all years.

Trait data

We obtained data on plant traits from the BIEN database (Maitner et al., 2018). 

We limited our selection of plant traits to those for which we had over 50% coverage and 

those which we hypothesized could be influential to leaf or flower phenology (Díaz et al.,

2004): whole plant growth form, height, specific leaf area (SLA), and seed mass. We 

grouped whole plant growth form into five categories: trees, shrubs, herbs, grasses, and 
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dependents. Herbs contained plants classified as forbs, ferns, hemicryptophytes, and 

geophytes, while dependents contained vines, epiphytes, hemiepiphytes, lianas, parasites,

and other climbing plants. We excluded aquatic plants and cacti: rare groups in the 

present datasets. We obtained data on bird body-mass and diet from the EltonTraits 

database (Wilman et al., 2014). In order to maximize the generality of the bird trait 

analysis and to create groups with comparable representation, we grouped herbivores, 

granivores, and frugivores into one “herbivore” group and combined those feeding 

primarily on invertebrates, vertebrates, and scavengers into one “carnivore” group. This 

resulted in three broad diet groups of herbivores, omnivores, and carnivores. We note 

that, in addition to these traits, migration distance may explain trends in bird phenology 

(Butler, 2003; Miller-Rushing et al., 2008) but this is not included in the present study 

due to limited data availability.

Calculation of shifts and sensitivities

We calculated the rates of phenological mean shift for each species/site time-

series by modeling the day-of-year (DOY) on which a phenophase was recorded as a 

linear function of year. Mean sensitivity was similarly calculated with DOY as a linear 

function of the monthly temperature associated with that observation. We calculated 

deviation shifts and sensitivities by estimating the variance function using absolute 

residuals (following Davidian & Carroll, 1987). To estimate change in the standard 

deviation of the error function, we computed the absolute value of the residuals (|Ri|) 

from the mean shift and sensitivity models and modeled the absolute residuals as a 

function of year and temperature, respectively, using quantile regression (Koenker et al., 
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2001) with τ ≈ 0.6827 (corresponding to the proportion of the absolute residual 

distribution found within one standard deviation of zero). Calculation of standard errors 

and significance testing for the quantile regressions were done using bootstrapping with 

the default xy-pairs method and 200 replicates. The calculation of the four metrics is 

visualized in Fig. 5.1, and we performed a simulation study to confirm that the absolute 

residual approach is unbiased at detecting deviation shifts (Appendix D: Section D.1). 

We also tested for the effects of potential non-linearity on mean and deviation change 

calculations (Appendix D: Section D.2).

Analysis of trends

In order to determine the drivers of phenological mean shifts, temperature 

sensitivity, and variability changes, we performed several analyses on the estimated rates 

of shifts. First, we investigated whether regional climate (long-term seasonality and mean

annual temperature) and phenological position (how early in the season a species’ 

phenophase typically occurs relative to others at the same site) predicted the magnitude 

of shifts, and whether different phenophase groups (leaves, flowers, insects, and birds) 

have all shifted similarly. To do this, we constructed four linear mixed effects models 

(Bates et al., 2020) with seasonality, mean temperature, phenological position, and 

phenophase group as additive fixed effects, and species and sites within datasets as 

categorical random effects. To propagate uncertainty of shift estimates due to variable 

time-series lengths and correlation strength, we weighted the regressions by the inverse 

of the standard errors of the μ and σ coefficients. In order to compare the effects of 

continuous and categorical predictors and to assess the relative importance of coefficient 
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estimates, we centered and scaled the predictor variables by 0.5 standard deviations 

(Gelman, 2008), and tested for fixed-effect term statistical significance (i.e., coefficients 

different from 0) using the lmerTest R-package (Kuznetsova et al., 2017).

To determine whether traits played a role in mean or deviation shifts, we 

performed three secondary analyses on subsets of the flower, leaf, and bird data, each 

with the same random effects structure as in the model above. First, we tested whether 

four plant traits predicted shifts in flower phenology, with whole plant growth form, 

height, seed mass, and SLA as additive fixed effects. We conducted this analysis only for 

flowering phenology data because we obtained sparse data on leaf phenology for every 

growth form except shrubs and trees. In this and all subsequent models (Appendix D), we

estimated a reference intercept (dependents in the plant traits model, shrubs in the plant 

phenophase model, and carnivores in the bird traits model) and compared groups as 

contrasts from that intercept because we were interested in whether shifts varied 

significantly between groups. We then investigated whether flower and leaf phenology 

exhibited different shifts and whether there was an interaction with growth form for a 

subset of the data from shrubs, trees, and herbs, with growth form and phenophase as 

interacting fixed effects. Lastly, we analyzed the effect of body-mass and diet type 

(herbivore, omnivore, and carnivore) on phenological trends in birds by modeling the 

four metrics as functions of diet type interacting with the loge body-mass of each bird 

species. 

Results

We analyzed 9,705 time-series with a median length of 36 years, representing 
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349,969 total phenological onset observations. The data were comprised of 2,388 leaf-

out, 5,368 first flowering, 985 bird arrival, and 964 insect first-occurrence time-series. 

These data represented 1,037 species across 423 unique sites, with 790 plant, 168 bird, 

and 79 insect species (Fig. 5.2b). The study sites were widely distributed across 21 

countries in the temperate regions of the Northern Hemisphere and encompassed a wide 

climatic range, with mean annual temperature ranging from -1.9°C to 30.8°C, and the 

strength of seasonality ranging from a 3.5°C to 54.1°C difference between summer and 

winter temperature (Fig. 5.2a).

We observed substantial variability in the strength and direction of mean shifts, 

mean sensitivity, deviation shifts, and deviation sensitivity. Across all phenophase 

groups, phenology advanced by 1.63 day/decade (mean shift; t9704 = -39.65, p < 0.001) 

and phenology was earlier in warmer years by 3.19 days/°C (mean sensitivity; t9704 = -

128.4, p < 0.001; Fig. 5.3a). Phenology was not significantly more or less variable in 

warmer years (deviation sensitivity; 0.01 days/°C, t9704 = -0.556, p = 0.58; Fig. 5.3b) but 

became less variable by 0.24 days/decade overall (deviation shift; t9704 = -9.54, p < 

0.001). There was substantial variation in deviation changes between species, however. 

For example, the deviation of bigleaf hydrangea (Hydrangea macrophylla) flowering 

onset decreased by 0.96 days/°C on average across 86 sites, while that of the black alder 

(Alnus glutinosa) increased by 0.64 days/°C across 50 sites, and the flowering deviation 

of European blueberry (Vaccinium myrtillus) decreased by 1.28 days/decade across 23 

sites. The degree of mean temperature sensitivity significantly predicted the shift in mean

phenology over time (t9703 = 45.144, p < 0.001, R2 = 0.17; Fig. 5.4), with greater mean 
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sensitivity to temperature resulting in greater shifts toward earlier phenology over time.

Variation in mean shifts and mean sensitivities were predicted significantly by 

climatic variables and phenological position (Fig. 5.5 top panel). Early-season species 

(phenological position) and those in colder regions advanced their phenology the most 

over time and in warmer years. Of the continuous variables, seasonality was the strongest

predictor of mean sensitivity, with less seasonal areas showing the greatest effect of 

warm years on advancing phenology. Phenophase groups varied in the degree of their 

means shifts and sensitivities, with insects advancing more than plants, and birds being 

the least sensitive (Fig. 5.5 bottom panel). No phenophase groups showed significant 

deviation sensitivity, though deviation decreased over time in leaves and flowers but not 

in insects and birds. The effects of all predictors were less pronounced on deviation 

changes than they were on the corresponding mean changes. Full model coefficients and 

statistical results are available in Appendix D: Table D.1, and are summarized in Fig. 5.5.

Shifts in first flowering phenology and deviation were not significantly predicted 

by the growth form of plants, height, seed mass, or SLA (Appendix D: Section D.4). 

Rates of shift in flower and leaf phenology also did not differ significantly and did not 

interact with growth form (Appendix D: Fig. D.12). Neither diet nor mass predicted 

phenological shifts or sensitivities in birds (Appendix D: Fig. D.13). Plant trait model 

coefficients and statistical results are available in Appendix D: Table D.2, those for the 

phenophase model are in Appendix D: Table D.3, and those for bird traits are in 

Appendix D: Table D.4. All model results are elaborated and visualized in Appendix D: 

Section D.3.
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Discussion

Climate change has not resulted in a uniform shift of spring phenology across all 

species or all parts of the world. Phenological responses have varied across trophic levels 

(Thackeray et al., 2016) and regional climates (Li et al., 2019; Roslin et al., 2021). Even 

closely related, co-occurring species can differ in their phenological responses based on 

their traits (Bell et al., 2015; Diamond et al., 2011; Konig et al., 2018) and their 

phenological position in the season (Cook et al., 2012; Menzel et al., 2006). While 

numerous factors determine rates of phenological shifts and sensitivity, some trends are 

general and predictable. Making predictions based on these patterns is crucial to 

anticipating phenological mismatches between interacting species (Renner & Zohner, 

2018) and minimizing their negative consequences on ecosystems through management 

(Olliff-Yang et al., 2020). Here, we confirm that even when viewed across major climatic

gradients and monitoring programs in the Northern Hemisphere (Fig. 5.2), there are 

consistent patterns in which species are most responsive to climate change. Moreover, we

did not find evidence that climate change is making phenology inherently more variable 

across years. Rather, we found that the timings of leaf-out and flowering onset have 

actually become modestly but significantly less variable over time, suggesting that the 

novel, warmer conditions presented by climate change may not fundamentally change 

patterns of variability in phenology between years.

Predictors of phenological mean shifts and mean sensitivity

Some places have experienced greater changes in phenology than others due to 

regional climate differences. Mean phenology has advanced most rapidly and is most 
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sensitive to inter-annual temperature variation in colder regions (Fig 5.5 top panel). 

Growing seasons are shorter in areas with colder climates, so plants, insects, and birds 

must time their activity more precisely to occur within favorable abiotic conditions (Pau 

et al., 2011; Roslin et al., 2021). This greater sensitivity in the colder regions of plant 

species distributions may lead to more connectivity and gene flow across climate 

gradients by reducing geographic variability within years (Ma et al., 2018; Prevéy et al., 

2017). In contrast to this pattern, phenology has shifted the least and is the least sensitive 

in the most seasonal areas after accounting for differences in the regional mean climate. 

In areas where temperatures change relatively little between winter and summer, species 

may evolve to be more sensitive to smaller inter-annual temperature differences and to 

track them more precisely. Viewed another way, this may simply be a product of the 

proportionality of phenological advance relative to temperature changes: 1°C of 

additional warming will have a larger relative effect on phenology in areas where the 

difference between winter and summer is just 10°C than in areas where the difference is 

50°C.

Inherently different physiology and life-histories between taxonomic groups also 

determine phenological sensitivity and shifts. While all phenophase groups advanced 

their phenology in warmer years and over time, some were more sensitive than others 

(Fig. 5.3a), with insects being the most sensitive to inter-annual temperature variation. 

This difference supports previous work that has found insect phenology to be more 

sensitive than that of plants and perhaps birds (Cohen et al., 2018; Thackeray et al., 

2016). We emphasize, however, that we present less data on insects and birds than on 
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plant phenophases, and that observed phenological trends of migratory birds are largely 

dependent on conditions in the region from which they are traveling, while insects are 

dependent on the environment at or closer to their location. Despite these differences 

between groups, there are also commonalities, with early-season species being the most 

sensitive and shifting their phenology earlier (Fig. 5.4). This finding supports the idea 

that species on the edge of their environmental tolerance have evolved to more precisely 

track tolerable conditions because plasticity is most consequential on the margins of 

climatic niches (Duputié et al., 2015). The consequences of premature leaf-out, for 

example, are greater in the early season (Inouye, 2008; Pardee et al., 2018) and species 

have evolved mechanisms such as chilling requirements to prevent leafing-out too early 

(Vitasse et al., 2014). 

Mechanisms affecting phenological variability

There are many plausible, potentially conflicting mechanisms that may have led 

to our observation of reduced phenological variability over time in leaf-out and flower 

timing (Fig. 5.5, bottom panel). First and perhaps most obviously, inter-annual 

phenological variation is tied to inter-annual variation in temperature. If spring 

temperatures become more variable between years, spring phenology should also become

more variable (Appendix D: Fig. D.20). But the expectation of more climatic variability 

may not be borne out broadly in observations, as changes in inter-annual temperature 

variance have been geographically heterogeneous (Liu & Zhang, 2020), and we found an 

overall slight reduction in inter-annual spring temperature deviation at the sites 

represented in this study (Appendix D: Fig. D.18). The observation that climate change 
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leads to more extreme weather events within seasons does not necessarily mean that we 

should expect more extreme years when the overall, mean trends of climate change are 

accounted for (Ummenhofer & Meehl, 2017). Population size can also affect 

phenological first-observation dates (Lee et al., 2011; Miller-Rushing et al., 2008), with 

decreasing populations resulting in later and more variable appearance observations 

(Appendix D: Fig. D.16). Many insect populations are declining (Hallmann et al., 2017), 

and birds that depend on insects are following suit (Bowler et al., 2019), so these declines

might have counteracted decreasing inter-annual temperature variability to produce no 

observable deviation shift or change in deviation sensitivity in insects and birds (Fig. 

5.5). We were unable to directly investigate the effects of population declines due to a 

lack of abundance information in most of the present data sources, but we encourage 

future research into the influence of population changes on phenological variability.

Beyond technical considerations, phenological mean shifts themselves may affect 

deviation shifts. When spring phenology shifts earlier in the season, species may become 

subject to novel environmental constraints that affect the shape of their phenological 

distributions and consequently their inter-annual variability. Because the early season 

presents adverse conditions such as frost (Inouye, 2008; Pardee et al., 2018) and may 

increase the dominance of constraining phenological cues such as photoperiod (Meng et 

al., 2021), species’ phenological onset can become more abrupt and less variable year-to-

year (Appendix D: Fig. D.17). These sorts of constraints may also be evidenced by 

nonlinear phenological responses to temperature, with species being more sensitive in 

colder years (Fu et al., 2015; Mulder et al., 2017). In fact, non-linear responses can 
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present themselves with reductions in variance when data are fit with linear models 

(Wolkovich et al., 2021), though we did not find major differences after accounting for 

potential non-linearity (Appendix D). In contrast to observed patterns of no change in 

variation across warmer years, phenological variation between individuals within seasons

has been shown to increase within warmer years (Zohner et al., 2018), suggesting that the

intra-annual variability of phenology does not directly translate into its inter-annual 

variability. Due to these multiple, potentially counteracting mechanisms, patterns of 

phenological variability may change going forward, and further studies are needed to 

investigate the relative strengths of the above mechanisms.

Implications for future phenology

Our findings of little-to-no change in phenological variability over time and in 

warmer years have implications both for the future of biotic interactions that depend on 

temporal overlap and for our ability to forecast phenology as climate change progresses. 

As species are increasingly subjected to the extremes of the historical climate conditions 

to which they are adapted (Butt et al., 2015), we might observe fundamental changes in 

biological processes such as phenological plasticity. While there have been some recent 

indications of species phenological responses approaching the limits of their plasticity 

(Mulder et al., 2017; Vitasse et al., 2018), we did not find evidence of the pronounced 

changes in the inter-annual phenological variability that might result from species failing 

to track climatic variation. We found that, on average, phenological variability did not 

differ between warmer and cooler years (Fig. 5.5, bottom panel). And while there was 

substantial variation in deviation sensitivity and deviation shifts between species (Fig. 
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5.3b), this variation was not well explained by the regional climatic variables (Fig. 5.5, 

top panel) or species traits (Appendix D: Sections D.4-D.6). From a forecasting 

perspective, it is important to know whether the responses to environmental variation that

we have observed in the past will be informative under novel conditions. We have not 

found evidence of broad changes in the inherent predictability of phenology as climate 

change has progressed in the present study period. This is an encouraging sign for 

forecasting and management. If phenological mean shifts due to climate change outpace 

species’ plasticity or abilities to adapt their strategies for phenological synchrony 

(Richardson et al., 2017), active management such as diversifying genotypes by 

relocating individuals (Olliff-Yang et al., 2020) may be needed to avoid the worst 

consequences of phenological mismatches for ecosystem services. The maintenance of 

predictability in inter-annual phenology that we have observed offers hope for mitigation 

efforts that utilize phenological understanding (Enquist et al., 2014). Phenological 

plasticity is, of course, only one way in which species acclimate to environmental 

change; it is one of the many factors shaping species interactions, and inter-annual 

variability is only one component of phenology.

Conclusion

Shifts in phenological means in warmer years and over time are only part of the 

story of how climate change is affecting phenology. In this study, we examined another 

part of the story: whether inter-annual variation in the timing of leaf-out, start of 

flowering, insect first-occurrence, and bird first-arrival has changed over time or in 

response to warmer years. We found that, across all phenophase groups, phenology was 
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not significantly more or less variable in warmer years, and that plant phenophases have 

actually become somewhat less variable over time. While regional climate and the 

phenological position helped explain differences in mean shifts and mean sensitivities 

between timeseries, they did little to explain deviation shifts and deviation sensitivities. 

Taken together, our findings suggest that climate change will not necessarily lead to 

increasingly unpredictable, disorderly inter-annual phenology. Multiple conflicting 

factors including inter-annual temperature variability, population size, environmental 

constraints, non-linear temperature responses, and changing intra-annual variability may 

be shaping phenological variability. We hope that testing the prevalence and relative 

importance of these mechanisms will provide avenues for further investigation and that 

future studies of phenology will examine changes both in inter-annual means and 

deviations.
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Figures

Figure 5.1. Conceptual demonstration of the four phenology shift and sensitivity 

metrics. Phenological mean shift and mean sensitivity (top panels) are defined as 

the slope of the relationship between the day of year on which a phenophase was 

observed and the year or temperature, respectively, associated with that 

observation. Deviation shift and sensitivity (bottom panels) are then computed as 

the slope of the absolute residuals versus the year/temperature. Teal points 

represent yearly data, and orange ones represent data relating to inter-annual 

temperature variation. Red lines indicate positive residuals, blue lines represent 

negative residuals, and dashed lines represent absolute residuals. The middle, pop-

out subfigures highlight the intermediate process of taking the absolute value of the 

residuals from the mean regression in the top panels in order to compute deviation 

changes in the bottom panels. This hypothetical example demonstrates a case in 

which mean phenology is shifting earlier (top-left), is earlier in warmer years (top-

right), deviation is not shifting over time (bottom-left), but deviation is greater in 

warmer years (bottom-right).
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Figure 5.2. Spatial distribution of phenological data sources. Long-term 

phenological observation data has mostly been conducted in the temperate and 

boreal parts of the northern hemisphere, but the data used in this study are widely 

distributed and span a large gradient of regional climates (left panel). Yellow points 

represent sites with the least pronounced seasonal temperature differences, while 

purple ones represent the most seasonal sites. Seasonality is calculated as the 

annual mean temperature (°C) difference between the warmest and coldest months 

at each location. Most of the available phenological data is on plant phenophases, 

but the duration of time-series in the present dataset is roughly equal across 

taxonomic groups (right panel). Vertical bold lines represent the median duration of

time-series for each phenophase group, with horizontal dashes representing the 

median start and end dates. The shaded bars around the horizontal dashes 

represent the first and third quartiles of the start and end years of the time-series.
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Figure 5.3. Phenological onset dates tend to be earlier and less variable in warmer 

years. The majority of all phenophase groups (95% of flowers, 97% of leaves, 78% 

of birds, and 80% of insects) advanced their mean spring phenology in response to 

increased temperature (panel a). By contrast, phenology did not become more or 

less variable in warmer years for any phenophase group (panel b). Time-series with 

individual slope estimates not significantly different from zero are shaded with 

white, and some of the data are obscured due to overlapping histograms. The 

plotting range is narrowed slightly to show the distributions more clearly, so 5 

(<0.1%) points are excluded on the left of panel a, 2 (<0.1%) points on the right of 

panel a, 97 points (1%) on the left of panel b, and 57 points (0.6%) on the right of 

panel b.
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Figure 5.4. The mean sensitivity of phenology to temperature variation predicts 

observed shifts over time. The phenological position of species relative to others at 

the same sites (point and contour color; color legend on the right) is also a strong 

predictor of temperature sensitivity. Species whose phenophases occur on average 

earlier in the spring season (blue points) are more sensitive to temperature than 

those close to the middle (pink points) or end (red points) of spring. Most time-

series exhibited both an advance in spring phenology over time and with increased 

temperature (bottom left), though some delayed over time but advanced with 

increased temperature (top left). Relatively few time-series showed a delay with 

increased temperature (right). Contour lines are colored by the mean phenological 

position of points within 0.5 mean sensitivity units and 0.25 mean shift units around

the contours.
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Figure 5.5. Phenological shifts and sensitivities vary by taxonomic group, regional 

climate, and the phenological position of species. Earlier-season species in the 

coldest and least seasonal areas have advanced their spring phenology and are the 

most sensitive to temperature variation (top panel). All phenophase groups 

advanced their mean phenology over time and in warmer years, with insects being 

the most sensitive (bottom panel). While deviation sensitivity remained unchanged 

in warmer years for all phenophase groups, deviation shifted in flowers and leaves, 

decreasing over time. The standardized effects of each predictor variable on the four

phenological response metrics are grouped together in rows. Orange lines represent

sensitivities with respect to yearly temperature variation, and blue lines represent 

shifts over time. Mean coefficients are represented with a  and deviation μ and deviation 

coefficients with a . For continuous variables, coefficients are slope parameters, σ. For continuous variables, coefficients are slope parameters, 

and for categorical variables, coefficients are contrasts from zero. Asterisks indicate 

significant effects (p < 0.01), and the shaded bars represent 2×standard error 

around the coefficient.
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CHAPTER 6

GENERAL CONCLUSIONS

While this dissertation has at various points delved into specific nuances of 

phenology and their responses to climate change, I have tried to approach every question 

with an eye toward generality and synthesis. Taking a wide view, there are several key 

themes and findings that are worth highlighting and expanding on here. First, 

phenological responses to climate change are predictable once sufficient groundwork is 

done. Second, bee foraging and plant flowering phenology respond similarly to climate 

change. And finally, the field of phenology research is, at present, methodologically 

diverse and may benefit from standardization to improve applicability of findings across 

systems. This research has opened up many new lines of inquiry, and here I discuss some 

potentially fruitful future directions.

Bee/flower mismatch

This dissertation, and much of the recent phenology research, particularly in 

pollination systems, is motivated by the possibility of novel phenological mismatch of 

interacting species due to climate change. Mismatches in plant and insect phenology have

thus far not been documented in many studies (Renner et al., 2018). What does this 

dissertation have to say about the trajectories of bee and flower pollination interactions? 

Chapter 2 showed that bee phenology is sensitive to climatic variables, including 

snowmelt timing, temperature, and precipitation. Further, bee phenology differs based on 

elevation. Broadly speaking, these patterns are similar to what has been observed about 
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flower phenology. Chapter 2 compared the snowmelt timing sensitivity of bee phenology 

to that calculated in a related study of flower phenology (CaraDonna et al., 2014), finding

that bee phenology advances slower than flower phenology. Since Chapter 2 was 

published in 2020, it appears that this particular finding has been one of the main 

takeaways for readers based on citations and press coverage. Here, I would like to caution

against over-interpretation of this particular finding. As noted in the Discussion of 

Chapter 2, the calculated rates of snowmelt sensitivity, while in the same units, may 

differ in substantive ways between the studies. First, the flower phenology study 

comprises data from a narrow elevation band, while the bee phenology study spans a 

broad elevation gradient (though elevation is accounted for in the model). Second, 

phenological onset is calculated differently between the two studies. Third, the other 

climatic variables besides snowmelt timing are calculated differently. Consequently, it is 

unclear how alarmed we should be about the apparent difference in bee and flower 

phenological sensitivity to snowmelt timing.

Chapter 3 showed that bee foraging and plant flowering phenological distributions

are similarly skewed in time. Bees tend to exhibit abundance concentrated in the early 

part of their activity and trail off in abundance more slowly than they appeared, and 

flowers tend to open with more synchrony than they senesce. While Chapter 3 did not 

investigate whether phenological skewness changes substantially due to climate change, 

it does suggest that bee and flower phenology is similar in terms of distribution shape. 

Phenological skewness has the potential to affect temporal overlap, but based on the 

present research, there is not reason to thing that bee and plant species will decouple due 
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to changes in skewness. Overall, I believe that the research presented in this dissertation 

does indicate that phenological mismatch will not be among the main challenges facing 

pollination systems as climate change progresses.

Predictability of phenology

There are many sources of uncertainty that go into predicting the future of 

ecosystems under climate change, ranging from greenhouse gas emission scenarios to the

ability of species to disperse to newly suitable habitats (Felton et al., 2022). How much 

does phenology contribute to this uncertainty? Of the various mechanisms by which 

ecosystems acclimate to novel conditions, I argue that phenology is among the most 

predictable. Phenological plasticity plays out on a fast time-scale relative to processes 

such as natural selection and community turnover. This has allowed ecologists to gain 

deep insights about how phenology responds to climatic variation and how it will respond

in the future. 

With less than a decade of data, Chapter 2 was able to make inferences about not 

only the additive effects of traits, climate, and topography on phenology, but also 

interactive effects. With only two years of data, Chapter 4 was about to make inferences 

about vital rates and unobservable bee life stages. This level of nuanced understanding is 

much more difficult to attain for slower ecological processes.

A critical question about the future under climate change is how informative the 

past will be about the future. Will climate change fundamentally change ecological 

processes so that our accumulated knowledge becomes irrelevant? One way to look at 

this is to test whether variability in a certain process in increasing over time or is greater 
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in warmer years. In terms of phenology, there is evidence based on citizen-science data 

that the inter-annual variability of plant phenology is increasing (Pearse et al., 2017). 

Chapter 5 looked at this question at a larger scale, but found no evidence for variability 

increases over time or in warmer years, and no major differences between taxonomic 

groups or based on regional climate. Of all of the results in this dissertation, this (null) 

result is perhaps the most surprising. When I have presented this work at a MacArthur 

Academy conference in 2022, I polled the audience (mainly late-career, established 

ecologists) for their a-priori expectations about whether phenology is getting more or less

variable over time. The overwhelming majority expected variance increases, and were 

surprised by the null result. While this was not a rigorous poll, I think the results are 

reflective of the dominant narrative about climate change effects. While it is true that 

climate change will make a great many processes less predictable, the present research 

does not suggest that this will be the case for phenological processes.

Methods of phenology estimation

The etymology of “phenology” corresponds to the way in which it has been 

studied by ecologists. The Greek “phaino” (as in “phenomenon”) has to do with light and 

appearance, itself based on the Proto-Indo-European root “*bha-” which means to “to 

shine” (OED Online, 2022). So, phenology can be though of as the study (“-logia”) of the

act of appearance. Correspondingly, ecologists have primarily studied the beginning 

(rather than the end) of seasonal events (Gallinat et al., 2015). But ecological interactions 

happen over the entire range of phenological distributions, and the field is shifting its 

focus from single dates to entire processes (Inouye et al., 2019). This transition is 



142

statistically complicated because there are many ways to go from discrete to continuous. 

Many methods exist that are applicable to phenology datasets, and the phenology 

literature is full of disparate approaches.

Just in this dissertation, I have employed first-observation dates, distribution tail 

estimates, quantile regression, empirical moment calculation, generalized additive 

models, and mechanistic difference equations to characterize different aspects of 

phenology. So perhaps it is hypocritical to call for standardization of statistical methods 

in phenology research, but I believe that the field would benefit from more common 

practices to make studies more comparable. Great work has been done recently to 

compare phenology estimation methods (Belitz et al., 2020; Roberts, 2012), so I have 

hope for coalescence. There will always be a diversity of statistical tools because they 

have different areas of applicability, but we can at least work to use the same tools for the

same purposes.

Future directions

For as much as this dissertation has been motivated by uncertainty about the 

future of pollination and ecosystems under climate change, it is notable that nowhere do I

perform a forecast of future phenological responses. While the inference in these chapters

about phenological drivers is statistical and rigorous, the implications about future 

phenology are heuristic. This should not be surprising, as ecology has always primarily 

been a descriptive rather than a predictive (out of sample; in the future) science. 

Ecological forecasting has only recently emerged as a discipline, and early attempts are 

being made to forecast phenology (Taylor et al., 2020; White et al., 2006). A logical next 



143

step is to apply the knowledge about bee phenology that has been collected here to near- 

and long-term statistical forecasts of bee phenology. Such forecasts would not only give 

concrete estimates about future plant-pollinator interactions complete with uncertainty 

quantification, but would also constructively test our understanding of pollinator systems 

by forcing us to make out-of-sample predictions (Houlahan et al., 2017). Developing 

such forecasts is likely to be more difficult for bees than for plants because real-time or 

automated data collection is much easier to do with plants, but this challenge should not 

stop us from trying.

Another logical next step to take based on this dissertation is to apply the model 

that was developed in Chapter 4 to answer other ecological questions. Most obviously, 

the model can be applied to more temporally coarse bee abundance datasets, such as the 

one used in Chapters 2 and 3. The burden of functional form validation has been done by 

the fine-scale dataset of Chapter 4, so subsequent studies can apply this form more 

confidently. Further, this model is general: nowhere is there a specific “bee” term, 

parameter, or mechanism. So, it can be applied to characterize the phenological 

distributions of other insects or plants that share similar emergence and senescence 

dynamics. Beyond expanding the taxonomic scope, the model can be used to link 

phenophase transition rates to phenological overlap and fitness outcomes. How do bee 

emergence rates vary based on functional traits? Are mortality rates a function of yearly 

variation in floral resource availability? Does the ratio of emergence to senescence rate 

vary by regional climate conditions? These are just some of the questions that could be 

answered using this model.
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Lastly, the bee abundance dataset collected for Chapter 4 could be further 

exploited. While only data on Halictus rubicundus was analyzed for the purpose of 

developing the present model, I collected data on all bees that were caught while 

performing transect counts. The identifications in the rest of the data are almost all genus-

level because species-level bee identification without lethal collection is impossible for 

most groups, but there are plenty of questions that could be answered using the genus-

level data. The data collection scheme would also be conducive to exploring the spatial 

scale-dependence of the effect of floral abundance on observed bee abundance. The 

scheme contains three levels: sites that are spaced about a kilometer apart, transects that 

are spaced between ten and a hundred meters apart, and quadrants within the transects 

that are spaced meters apart. The two lower spatial levels are simply aggregated in the 

present analysis. While the locations of transects are used to visualize the spatial 

distribution of H. rubicundus presences (Figure 4.1), the quadrant level is not used at all. 

Another spatial analysis that should be done is on fine-scale habitat selection within sites.

The precise locations shown in Figure 4.1 could be coupled with landcover data to infer 

where different species or genera tend to forage. Future studies could also explore finer-

scale temporal patterns of bee foraging. I recorded precise timings of each transect 

sampling period and collected hourly air and soil temperature data, but none of these data

made it into the final analysis. These fine temporal- and spatial- analyses would be easy 

pickings for subsequent studies.

Chapter 2 was published in Ecology Letters in 2020 (Stemkovski et al., 2020), 



145

Chapter 3 was published in Ecology in 2022 (Stemkovski et al., 2023), Chapter 4 is in 

preparation to be submitted for review at The American Naturalist, and Chapter 5 was 

published in Ecology in 2022 (Stemkovski et al., 2023)
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2:

BEE PHENOLOGY IS PREDICTED BY CLIMATIC VARIATION AND

FUNCTIONAL TRAITS

Section A.1: Climate, topography, and trait data gathering

Climate data

We used data from a weather station at the RMBL operated by long-time resident,

billy barr. We selected this data source because it was consistently collected throughout 

the duration of our study with no missing days, and because it provides a direct measure 

of snowmelt timing. In addition, this weather station was closer to the majority of our 

study sites than any other weather stations with data available.

For the climate variables, we made a priori selections of snowmelt date (first date

of uncovered ground in a year), average monthly summer rainfall, and average monthly 

summer maximum temperature. We defined summer as the period between April 1 and 

September 30, the typical flight period for the bee community at the RMBL (Gezon et al. 

2015). We did not include total snowfall or snow water content, because they were highly

correlated with snowmelt date (r=0.82 and r=0.86, respectively). We predicted that 

snowmelt date in particular would be a major driver of bee phenology, with earlier 

snowmelt driving earlier occurrences of all phenophases, because the persistent 
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snowpack greatly limits the growing season in the study area and strongly affects 

flowering phenology (Inouye 2008) and bumble bee catch rates (Ogilvie et al., 2017). We

calculated temperature and rainfall values over the entirety of the active bee season 

because bee foraging phenophases are distributed throughout the season. The flight 

periods of individual, univoltine species are thought to be short (just a few weeks), so 

many senescence events are expected to occur before many emergence events, and vice 

versa. 

Topographic data

We assessed the effects of elevation and solar incidence on bee phenology. The 

elevation of our sites ranged from 2456 to 3438 meters above sea level (Table S2). Bee 

phenology has been shown to shift based on elevation in the study area (Pyke et al. 2011).

Solar incidence was calculated as the hourly average angle to the sun from 0900 to 1800 

on July 1 of each year using the insol R-package (Corripio 2014). We included this 

variable on the premise that sites with a more direct angle of incidence to the sun would 

experience warmer temperatures and receive more accumulated solar energy over the 

course of a season, which could advance some phenophases (Jackson 1966, Weiss et al. 

1993, Allen et al. 2014). To calculate the degree of solar incidence, we obtained 

elevation, slope, and aspect data from a digital elevation map, and we verified slope and 

aspect data at each site using a clinometer and compass.
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Species trait data

To examine the role of functional traits in determining bee phenology, we 

assessed the effect of body mass, nest location, and overwintering stage. We did not 

include sociality as a trait in the analysis because we specifically excluded the eusocial 

group Bombus, and some halcitids in our study system have been shown to exhibit 

variable solitary lifestyles at high elevations (Eickwort et al. 1996), while bees of the 

same species may be social at lower elevations. We calculated body mass by measuring 

intertegular distance (ITD) for up to ten individuals of each species and scaling the 

measurements according to an established ITD-to-mass relationship (Cane 1987). We 

chose body mass as a predictor because body mass has been shown to influence thermal 

tolerance (Stone & Willmer 1989). Thus, it may be that smaller bees have evolved more 

conservative phenologies (closer to the middle of the season) in order to avoid 

temperature extremes. We note that the present analysis is limited to smaller bodied bees 

due to the exclusion of Bombus from the analysis. We obtained nest location (above 

ground vs. below ground) and overwintering stage (adult vs. prepupae) for each species 

by compiling existing trait information from primary resources (Pardee 2018; Table S3).
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Section A.2: Power analysis and method validation

In order to validate the phenophase estimation method presented in this paper and 

to explore its performance, we conducted a power analysis using simulated data with 

known parameter values. We drew observations from a normal distribution to generate a 

simulated population time series. The mean was selected from a uniform distribution 

ranging from 50 to 200 days of the year, the standard deviation was varied by ten 

intervals from 7 to 50 days, and points were drawn every 14 days to mirror the actual bee 

monitoring protocol. These parameter values and sampling frequency were selected to 

reflect realistic ranges of bee abundance in our study system. The drawn values were 

rounded to the nearest one-day bin, and true peak timing, emergence, and senescence 

values were calculated as the maximum observed abundance, and the first and last days 

on which 5% of the maximum was observed, respectively. To test the efficacy of the 

phenophase estimation method at different re-sampling regimes, we added different 

levels of error to the observed values. The error terms were picked from a normal 

distribution centered at zero and with a standard deviation equal to the standard deviation 

of the simulated distribution multiplied by a scaling factor. We varied the scaling factor 

by ten intervals from 0 to 1. We then performed the GAM phenophase estimation method

detailed previously on the sampled dataset to estimate phenophase values and generate 

confidence intervals (illustrated in Figure S1). We performed this procedure 500 times 

for each combination of standard deviation and error values, resulting in 50,000 total 

simulations. To test for the effectiveness of the method on skewed distributions, we 
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repeated the above procedure with a skew-normal distribution, generated using the sn R-

package (Azzalini 2020). For the skew-normal distribution, we varied the degree of skew 

from 0 to 1.5, applied error as before, and randomly selected the standard deviation for 

each data simulation.

The power of a statistical test is the probability of rejecting the null hypothesis 

when the alternative is true (Lehmann and Romano 2006). In the context of the present 

analysis, power is the proportion of simulations in which confidence intervals around 

phenophase estimates encompass the true phenophase value. At an α-criterion of 0.05, we

would expect 80% of the true values to fall within the estimated confidence intervals. We

found that the GAM phenophase estimation method consistently provided reliable 

estimates of the true phenophase values, though the power decreased as the proportion of 

added error increased (Figure S2). Power did not decrease as the standard deviation of the

sampling distribution increased. As expected, the width of the confidence intervals 

increased as the proportion of added error and width of the sampling distribution 

increased. Additionally, we found that the power of the GAM method was higher when 

estimating peak timing, and the confidence intervals around the peak estimate were 

smaller than those for emergence and senescence timing across nearly all parameter 

combinations. This is to be expected, as values on the extremes of distributions are harder

to estimate than those toward the center. When comparing actual and estimated 

phenophase values across all simulations with the proportion of error added < 0.5, the 

estimates accounted for 95% of the variation in emergence values, 99% for peak, and 

83% for senescence. We detected slight bias in the phenophase estimates, with median 



153

error in actual versus estimated values being 3.8 days later for emergence, 2 days earlier 

for peak, and 1.7 days later earlier for senescence timing.

In summary, we found that the GAM method had high power when error rates 

were small, but gave reasonable estimates even when error was very high. The estimates 

generated by the method explained the vast majority of the variation in actual values, and 

the biases were small. We conclude that the GAM method adequately estimates actual 

phenophase timing within a set of parameters that is representative of the data within this 

study.
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Figure A.1. An illustration of the proposed phenophase estimation method on a 

simulated dataset where actual phenophase values are known. In this example, 

points (red filled circles) were drawn at an interval of 14 days from a distribution 

(black circles) centered at 170 with a standard deviation of 15, with no error added 

to the observations. The GAM method was applied to the observed time-series 

dataset, and phenophase estimates were made. These estimates (red lines) are 

plotted with confidence intervals (light red bars) and compared against actual 

phenophase values (black lines).
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Figure A.2. The phenophase estimation method effectively estimates the actual 

phenophase values regardless of the spread of the distribution, but is less able to 

make correct estimates as more error is added to observations. The power of the 

GAM method (left panels) decreases for each phenophase estimate as there is more 

error added to sampled points, but not as the standard deviation of the sample 

distribution increases. The width of the confidence intervals (right panels) increases

as more error is added and as the standard deviation of the sample distribution 

increases.
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Figure A.3. The phenophase estimation method is effective at estimating 

phenophases of skewed distributions, though the power decreases as more error is 

added to observations. The width of the confidence intervals (right panels) 

increases as more error is added, and the confidence intervals around the long tail 

of the distribution (senescence) increase at higher levels of skew.
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Section A.3: Additional statistical tests

Variance inflation factors

Multicollinearity in predictor variables can lead to erroneous inference using 

standard linear modeling and model averaging techniques (Cade 2015). To avoid this 

issue, we examined correlations between all predictors before running models. This led 

us to exclude some variables such as snow depth and minimum temperature from our list 

of predictors. As a second step to ensure that our models did not suffer from 

multicollinearity, we calculated variance inflation factors (VIFs) for each of our top 

models using the vif function in the car R-package (Fox et al. 2012). We found that VIFs 

were all near one, with the highest value being 2.18 for temperature in the peak 

phenophase model. These VIF values were well below the threshold of VIF=5 in which 

highly correlated variables lead to problematic inference (James et al. 2013), so we 

concluded that our models did not suffer from mulitcollinearity.

Additional interactions

While we focused on the interactions of snowmelt timing with nest location and 

overwintering stage, we also tested for interactions between the other climatic variables 

(average summer maximum temperature and average summer rainfall) and the two 

functional traits. We found no significant nest location/rainfall or overwintering 

stage/temperature interactions for any phenophases. We did find a significant interaction 

between overwintering stage and rainfall but only for the peak phenophase, with species 
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that overwinter as adults slightly advancing their peak with more rain and those that 

overwinter as prepupae delaying their peak (0.66 ± 0.25, t379 = 2.669, p<0.01). We also 

found that the emergence and peak timing of species that nest above ground was more 

sensitive to temperature (emergence: 7.76 ± 2.88, t453 = 2.694, p<0.01; peak: 8.87 ± 2.83, 

t379 = 3.14, p<0.01), mirroring our earlier findings of a nest location/snowmelt interaction.

Variance of random effects

Another approach to look indirectly at the relative influence of climatic variation, 

topography, and functional traits on bee phenology is to fit a model without fixed effects 

that simply predicts phenophases on the basis of year, site, and species treated as random 

effects. This is represented as the model DOY phase ~ e year+esite+especies, where e represents 

a random effect, and DOYphase represents the estimated day-of-year of a phenophase. This 

results in three models, one for each of emergence, peak, and senescence. Upon fitting 

the model, we calculated the proportion of the variance attributed to each random effect 

by dividing the variance (the square of the standard deviation) by the sum of the 

variances of the other random effects including the residual variance. The raw variance 

values are given in Table S1, and the trends are summarized in Figure S4. We found that 

the variance attributed to years and sites was highest for emergence and decreased with 

later phenophases, while the variance attributed to species was highest for senescence. 

This supports our general finding that different bee phenophases are determined by 

different types of drivers, as well as the specific finding that climate more strongly 

influences emergence and functional traits more strongly influence senescence.
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Table A.1. The variance attributed to each random effect and residual variance.

Phenophase Year variance Site variance Species variance Residual variance

Emergence 221.14 193.01 74.95 39.03

Peak 64.09 36.61 98.45 20.61

Senescence 21.77 46.24 170.66 42.46
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Figure A.4. The proportion of variance attributed to years and sites decreases 

across phenophases, while  it increases across phenophases for species. The 

proportional residual variance increases slightly across phenophases.
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Figure A.5. Model averaging did not bias our calculations of relative effect sizes. The

coefficients derived from model averaging are highly correlated with those from the 

top model for each phenophase. The red lines represent one-to-one relationships, 

and all points fall very close to these lines.
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Figure A.6. Emergence significantly predicted later phenophases, with more 

variation explained in peak timing than in senescence timing.
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Table A.2. Information on the sites used in the analysis.

Site name Elevation (m) Latitude Longitude Aspect Slope

Almont Curve 2456 38.66125 -106.85152 168.69 10.825

Almont 2569 38.65622 -106.86203 111.801 15.07

CDOT 2588 38.78257 -106.87002 243.435 6.37937

Lypps 2639 38.74812 -106.83269 263.66 6.45795

Tuttle 2877 38.954751 -106.988704 243.435 3.1996

Willey 2884 38.955971 -106.988482 261.87 5.05115

Kettle Ponds 2884 38.94435 -106.97174 18.4349 2.26364

Beaver 2921 38.961597 -106.993975 45 5.05115

Seans 2931 38.964099 -106.992616 225 8.04947

Rustlers 2977 38.9885 -107.00512 231.34 9.09464

Davids 2979 38.962124 -106.986896 206.565 12.6044

Gothic 3001 38.963088 -106.994866 71.565 11.18

Little 3061 38.96732 -106.96885 135 8.04947

Hill 3069 38.96677 -106.97009 123.69 19.827

Copper 3072 38.96896 -106.96801 102.529 12.9794

Snodgrass 3224 38.92625 -106.98172 118.74 23.8426

Elko 3230 39.01245 -107.05279 45 1.01275

Mexican Cut 3438 39.02685 -107.06513 51.3402 17.7528
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Table A.3. A list of the species, number of individuals, associated traits, number of 

individuals used in the analysis (#), and the number of phenophase estimates that 

we were able to make from the time-series data. Abbreviations are as follows: ITD is

intertegular distance, Em. is emergence, and Sen. is senescence. Because there have 

not been species-levels trait studies on every species in the analysis, some nest 

location and overwintering stage traits have been inferred from other species in the 

same genera (marked with an * in the references column). We also compared these 

trait values with those reported in papers summarizing traits by genus (Mitchell 

1960, Mitchell 1962, Stephen et al. 1969, Michener 2007, Harmon-Threatt 2020).

Family Species

ITD 

(mm)

Nest 

loc.

Overw. 

stage #

Em. 

points

Peak 

points

Sen. 

points Reference

Andrenidae Andrena algida

Smith 1853 1.91 below adults 44 0 1 6 (LaBerge 1986)

Andrena lawrencei 

Viereck & Cockerell 1914 2.36 below adults 20 0 0 1
(LaBerge and 

Ribble 1975)

Andrena nothocalaidis 

Cockerell 1905 2.15 below adults 5 0 0 1

(Thorp 1969; 

Cane & Love 

2016; Gezon et 

al. 2015)

Andrena transnigra 

Viereck 1904 3.17 below adults 19 0 0 5
(Bouseman and 

LaBerge 1978)

Calliopsis coloradensis 

Cresson 1878 1.65 below prepupae 4 2 1 1

(Mitchell 1960; 

Shinn 1967 

Jackson 1966; 

Miliczky 1991; 

Sheffield et al. 

2014)

Calliopsis teucrii 

Cockerell 1899 1.41 below prepupae 319 5 4 1

(Shinn 1967; 

Hefetz et al. 

1982)

Panurginus cressoniellus

Cockerell 1898 1.3 below prepupae 2269 29 48 29
(Stephen et al. 

1969) *

Panurginus ineptus 1.35 below prepupae 946 36 38 37 (Gezon et al. 
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Cockerell 1922

2015; Stephen 

et al. 1969) *

Pseudopanurgus bakeri 

(Cockerell 1906) 1.12 below prepupae 569 61 29 13

(Gezon et al. 

2015; Stephen 

et al. 1969) *

Pseudopanurgus didirupa 

(Cockerell 1908) 1.3 below prepupae 102 19 6 3

(Gezon et al. 

2015; Stephen 

et al. 1969) *

Apidae Anthophora terminalis 

Cresson 1869 3.17 above prepupae 10 3 3 1 (Medler 1964)

Ceratina neomexicana 

Cockerell 1901 1.37 above adults 67 1 3 5
(Michener 

1936)

Melissodes confusus 

Cresson 1878 3.01 below prepupae 13 5 1 0

(LaBerge 1961;

Clement 1973; 

Hurd et al. 

1980)

Melissodes grindeliae 

Cockerell 1898 2.72 below prepupae 2 1 1 0

(LaBerge 1961;

Clement 1973; 

Hurd et al. 

1980)

Melissodes hymenoxidis 

Cockerell 1906 3.11 below prepupae 2 1 0 0

(LaBerge 1961;

Clement 1973; 

Hurd et al. 

1980)

Melissodes tristis 

Cockerell 1894 3.07 below prepupae 12 0 3 1

(LaBerge 1961;

Clement 1973; 

Hurd et al. 

1980)

Colletidae
Colletes consors 

Cresson 1868 2.19 below adults 2 1 1 1

(Gezon et al. 

2015; Sheffield 

et al. 2014) *

Colletes nigrifrons 

Titus 1900 2.04 below adults 38 6 8 5

(Gezon et al. 

2015; Sheffield 

et al. 2014) *

Hylaeus annulatus 

(L. 1758) 1.28 above prepupae 353 34 14 6

(Gezon et al. 

2015; Stephen 

et al. 1969) *

Hylaeus basalis 

(Smith 1853) 1.85 above prepupae 57 8 10 4 (Scott 1996)

Hylaeus modestus 

Say 1837 1.38 above prepupae 2 1 1 1

(Packer et al. 

2007; Stephen 

et al. 1969)

Hylaeus rudbeckiae 

(Cockerell & Casad 1895) 0.97 above prepupae 12 1 0 0

(Packer et al. 

2007; Stephen 

et al. 1969)

Halictidae Agapostemon texanus 

Cresson 1872 2.22 below adults 170 3 1 0
(Roberts 1973a; 

Eickwort 1981)
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Dufourea fimbriata ^

(Cresson 1878) 1.18 below prepupae 50 8 7 3
Dumesh & 

Sheffield 2012)

Dufourea harveyi ^

(Cockerell 1906) 1.18 below prepupae 221 33 24 7
Dumesh & 

Sheffield 2012)

Dufourea maura 

(Cresson 1878) 1.73 below prepupae 43 11 6 5
Dumesh & 

Sheffield 2012)

Halictus confusus 

Smith 1853 1.32 below adults 38 2 1 1

(Dolphin 1971, 

1978; Eickwort 

et al. 1996; 

Richards et al. 

2010)

Halictus rubicundus 

(Christ 1791) 1.87 below adults 496 25 6 13 (Dolphin 1978)

Halictus tripartitus 

Cockerell 1895 1.24 below adults 231 2 8 7

(Dolphin 1978; 

Gezon et al. 

2015; Roberts 

1973b)

Halictus virgatellus 

Cockerell 1901 1.44 below adults 1722 10 19 26

(Gezon et al. 

2015; Sheffield 

et al. 2014) *

Lasioglossum 

abundipunctum

Gibbs 2010 1.01 below adults 136 3 3 9

(Gezon et al. 

2015; Packer et 

al. 2007)

Lasioglossum ephialtum 

Gibbs 2010 1.01 below adults 4 1 1 1 (Gibbs, 2010)

Lasioglossum inconditum

(Cockerell 1916) 1.25 below adults 980 6 3 45
(Gibbs et al. 

2013)

Lasioglossum nigrum 

(Viereck 1903) 1.28 below adults 1865 4 6 40
(Packer et al. 

2007)

Lasioglossum obnubilum

(Sandhouse 1924) 0.89 below adults 167 5 4 5

(Gibbs 2010; 

Packer et al. 

2007)

Lasioglossum occidentale

(Crawford 1902) 0.96 below adults 46 3 5 4
(Packer et al. 

2007)

Lasioglossum pacatum

(Sandhouse 1924) 1.12 below adults 643 0 1 4

(Gibbs 2010; 

Packer et al. 

2007)

Lasioglossum pavoninum 

(Ellis 1913) 1.06 below adults 51 3 2 3

(Gibbs 2010; 

Packer et al. 

2007)

Lasioglossum 

prasinogaster 

Gibbs 2010 1.14 below adults 806 0 2 5
(Packer et al. 

2007)

Lasioglossum ruidosense

(Cockerell 1897)

1.05 below adults 1273 8 8 27 (Gibbs 2010; 

Packer et al. 

2007)
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Lasioglossum 

sandhousiellum

Gibbs 2010 1.08 below adults 85 13 1 1

(Gibbs 2010; 

Packer et al. 

2007)

Lasioglossum sedi 

(Sandhouse 1924) 0.99 below adults 6161 4 11 63
(Packer et al. 

2007)

Lasioglossum 

semicaeruleum

(Cockerell 1895) 1.03 below adults 41 3 5 2

(Gibbs 2010; 

Packer et al. 

2007)

Lasioglossum tenax 

(Sandhouse 1924) 1.06 below adults 343 5 1 16 (Packer 1994)

Lasioglossum trizonatum 

(Cresson 1874) 2.3 below adults 359 2 0 13
(McGinley 

1986)

Megachilidae
Dianthidium heterulkei 

Schwarz 1940 2.08 above prepupae 49 7 3 0

(Krombein 

1967; Clement 

1976)
Hoplitis albifrons 

(Kirby 1837) 2.43 above prepupae 13 3 2 1 (Fye 1965)

Hoplitis fulgida 

(Cresson 1864) 2.04 above prepupae 88 9 12 4
(Tepedino & 

Parker 1984)

Hoplitis robusta 

(Nylander 1848) 1.39 above prepupae 156 23 21 14

(Clement & 

Rust 1975; 

Müller & 

Richter 2018; 

Müller & 

Mauss 2016)

Megachile frigida 

Smith 1853 3.64 above prepupae 7 2 1 0

(Hobbs & Lilly 

1954; Pengelly 

1955; Stephen 

1956; Jenkins 

& Matthews 

2004)

Megachile inermis 

Provancher 1888 4.43 above prepupae 4 1 1 0

(Stephen 1956; 

Medler 1958; 

Sheffield et al. 

2008)

Megachile melanophaea 

Smith 1853 3.26 below prepupae 22 8 4 3

(Hobbs & Lilly 

1954; Pengelly 

1955)

Megachile montivaga 

Cresson 1878 2.61 above prepupae 15 3 3 2

(Hicks 1926; 

Hobbs & Lilly 

1954; Baker et 

al. 1985)

Megachile perihirta 

Cockerell 1898

3.53 below prepupae 9 2 1 1 (Sladen 1918; 

Hicks 1926; 

Hobbs & Lilly 

1954; Bohart 
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1957)

Megachile pugnata 

Say 1837 3.1 above prepupae 1 1 0 0

(Medler 1964; 

Hobbs & Lilly 

1954; Sheffield 

et al. 2008)

Megachile relativa 

Cresson 1878 2.47 above prepupae 18 6 5 2

(Medler & 

Koerber 1958; 

Sheffield et al. 

2008)

Osmia albolateralis 

Cockerell 1906 2.23 above adults 56 5 7 4
(Rightmyer et 

al. 2013)

Osmia brevis 

Cresson 1864 2.3 above adults 21 2 2 2

(Baker et al. 

1985; Cane 

2014)

Osmia bruneri 

Cockerell 1897 2.1 above adults 5 0 0 1

(Baker et al. 

1985; Cane et 

al. 2007; 

Frohlich 1983)

Osmia bucephala 

Cresson 1864 3.76 above adults 93 3 8 13
(Rightmyer et 

al. 2013) *

Osmia inermis 

(Zetterstedi 1838) 2.35 above adults 5 0 0 1

(Müller 2018; 

Sheffield et al. 

2014)

Osmia longula 

Cresson 1864 3.2 above adults 6 1 1 2

(Cane et al. 

2007; 

Rightmyer et al.

2013)

Osmia phaceliae 

Cockerell 1907 1.78 above adults 8 1 1 1
(Packer et al. 

2007) *

Osmia sculleni 

Sandhouse 18939 2.32 above adults 3 0 1 1

(Cane et al. 

2007; Sheffield 

et al. 2014) *

Osmia simillima 

Smith 1853 2.53 above adults 105 7 6 13

(Cane et al. 

2007; Sheffield 

et al. 2014) *

Osmia tersula 

Cockerell 1912 2.31 above adults 6 1 2 2

(Cane et al. 

2007; Sheffield 

et al. 2008)

Osmia “torchioi”

Griswold ms. name 1.82 above adults 12 0 1 1
(Gezon et al., 

2015)

^ Dufourea harveyi and Dufourea fimbriata may be synonymous in some parts of 

their range, but we found clear morphological differences between specimens in these 

groups in the present study area.
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Table A.4. Coefficients for species-specific shifts in phenophases in response to 

snowmelt timing (Figure 1). The three phenophases (emergence, peak, senescence) 

are separated by commas.

Species Slope SE t
Dufourea harveyi 0.22, 0.18, NA 0.32, 0.30, NA 0.68, 0.59, NA

Halictus rubicundus 0.42, NA, 0.13 0.46, NA, 0.57 0.42, NA, 0.22

Halictus virgatellus -0.01, -0.09, 1.45 1.12, 0.39, 0.66 -0.21,-0.68,  2.01

Hoplitis fulgida 0.86, 0.83, NA 0.63, 0.39, NA 1.02, 1.68, NA

Hoplitis robusta 0.52, 0.84, 0.5 0.61, 0.42, 0.9 0.48, 1.59, 0.41

Hylaeus annulatus 0.65, 0.5, NA 0.38, 0.35, NA 1.13, 0.92, NA

Lasioglossum sedi NA, 0.8, -0.14 NA, 0.51, 0.59 NA, 1.22, -0.45

Panurginus cressoniellus 0.56, 0.29, 0.71 0.46, 0.36, 0.74 0.74, 0.31, 0.79

Panurginus ineptus -0.07, 0.09, 0.19, 0.47, 0.35, 0.66 -0.62, -0.24, 0.1

Pseudopanurgus bakeri 0.53, 0.09, -0.25 0.39, 0.37, 0.73 0.79, -0.24,-0.52 
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Table A.5. Coefficients of standardized effect sizes from the full model of bee 

phenology (Figure 2). The three phenophases (emergence, peak, senescence) are 

separated by commas. Significant effects at the =0.05 level are bold, but all effects α=0.05 level are bold, but all effects 

were determined to be important by the model averaging protocol.

Predictor Slope SE z P
Snowmelt date 11.52,  12.82,  7.81 2.68, 2.42, 

2.44

4.28, 5.26,  

3.19

<0.01, <0.01, 

<0.01
Summer rainfall 10.04, 2.73,  -1.85 2.12, 2.06, 

2.12

4.72, 1.32,  

0.87

<0.01, 0.19, 0.38

Maximum temperature -7.34, 1.40,  -0.90 2.41, 2.22, 

2.47

3.04, 0.63,  

0.36

<0.01, 0.53, 0.72

Elevation 13.57, 7.76, -5.92 3.23, 3.65, 

4.05

4.15, 2.12, 

1.46

<0.01, 0.03, 0.15

Solar Incidence -6.13, -1.68,  4.03 3.40, 3.27, 

4.04

1.80, 0.56, 

1.00

0.07, 0.57, 0.32

Body Mass 2.08, -2.58, -2.79 3.23, 3.26, 

3.57

0.64,  0.79, 

0.78

0.54, 0.43, 0.43

Nest Location (below 

ground)

11.21, -4.57, -9.82 4.30, 3.84, 

4.29

2.60, 1.19, 

2.28

<0.01, 0.24, 0.02

Overwintering stage 

(prepupae)

1.91, 11.20, 20.91 3.52, 3.23, 

3.59

0.54, 3.45, 

5.81

0.59, <0.01, <0.01
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Table A.6. Marginal and conditional R2 values for the three phenology top models, 

as well as the proportion of variance explained by subsetted climate and trait 

models (Figure 3).

Model Phenophase Marginal 

R2

Conditional 

R2

Proportion of 

marginal variance 

explained
Full model Emergence 0.49 0.86

Peak 0.40  0.89

Senescence 0.45 0.84

Climate only Emergence 0.26  0.85 0.53

Peak 0.16 0.88 0.41

Senescence 0.07 0.84 0.16

Traits only Emergence 0.11 0.79 0.22

Peak 0.22 0.85 0.55

Senescence 0.43 0.82 0.95
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3:

SKEWNESS IN BEE AND FLOWER PHENOLOGICAL DISTRIBUTIONS

Section B.1: Data truncation

Because data collection started after the beginning of activity in some species or 

ended before the end of activity in some years due to logistical constraints, some bee and 

flower time-series were truncated. Truncation can artificially bias skewness estimates, so 

we checked for the potential effect of truncation on the main analyses from this study. To

detect potential truncation, we flagged time-series in which the first observation was non-

zero (left-truncated), the last observation was non-zero (right-truncated), or both the first 

and last were non-zero (doubly-truncated). We then examined skewness estimates for 

each of these truncation groups, and compared them to time-series for which it was 

certain that truncation had not occurred. We re-ran the analyses comparing mean and 

standard deviation to skewness for each of the truncation groups. We note that our 

method of detecting truncation necessarily over-represents the degree to which truncation

actually occurred because a lack of a zero-observation does not mean that there would not

have a been a zero-observation at the previous time-step if sampling were done. This is 

especially true for the bee phenology dataset in which sampling was spaced two weeks 

apart. The beginning and end of sampling for both the bee and flower phenology 

monitoring projects were designed to be timed to the beginning and end of the growing 
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season.

We found that of the 3,024 flower time-series, 135 were potentially left-truncated,

153 right-truncated, and 18 doubly-truncated. Of the 480 bee time-series, 129 were 

potentially left-truncated, 105 right-truncated, and 157 doubly-truncated. We found that 

truncation type affected average skewness, but overall skewness was still positive (right-

skewed) for both flowers and bees, regardless of truncation type (Figure S1). The mean-

to-skewness relationship varied slightly by truncation type for bees and flowers, but 

remained negative for all groups with the exception of doubly truncated flower time-

series (though this trend was based on just 18 points) (Figure S2). The standard 

deviation-to-skewness relationship was more variable based on truncation group in bees, 

with left- and doubly-truncated time-series showing a negative relationship and the other 

groups showing a positive relationship (Figure S2).

Because both datasets were not strongly biased to left- versus right-truncation, 

because skewness values were positive despite truncation type, and because the mean-to-

skewness results were not strongly affected, we conclude that the findings of this study 

were not a sole product of data truncation, though truncation may have played some role 

in the bee phenological skewness results.
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Figure B.1. Skewness by truncation type. Frequency refers to the number of time-

series represented in each skewness value bin. The red lines show the mean 

skewness value for each group.
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Figure B.2. Mean and standard deviation version skewness by truncation type. The 

left panels show mean results, and the right panels show standard deviation results. 

The colors correspond to truncation type, with “after” being right-truncation, 

“before” being left-truncation, and “both” being double-truncation. For the flower 

panels, the truncation lines are more transparent because those trends result from a

very small number of points relative to the number of non-truncated points.
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Section B.2. Abundance effects on skewness

We tested for the effects of abundance on skewness because differences in overall

abundance between time-series may artificially influence skewness measures in a number

of ways. The flower phenology data is the summed abundance of flowers within plots, 

sometimes including many individuals. If there are many individual plants grouped into 

one abundance measure, individual skewed phenological distributions may be superseded

by the overall pattern. So, we might expect times-series with lower abundance to show 

greater skewness and higher variance of skewness estimates. In the bee dataset, there is 

potential for lethal sampling to affect observed skewness for very small populations. 

Lethal sampling could have observable consequences for the shape of the abundance 

curve over time if the sampling itself appreciably drew down populations. If this effect 

were to appear, we would expect it to happen in smaller populations, in which lethal 

sampling might have a greater proportional effect. So, if this were happening, we would 

expect bee time-series with lower overall abundance to appear more right-skewed.

Bee and flower abundances varied widely, with middle 50% of bee time-series 

representing 15-45 individuals, and the middle 50% of flower time-series representing 

33-388 individuals (noting that we excluded time-series with less than 10 total 

individuals) (Figure S3). We found that for both bees and flowers, skewness was 

positively correlated with abundance (Figure S4). This is contrary to our predictions that 

lower abundances would be associated with more right-skewed distributions if skewness 

were influenced by aggregated flower abundance measures or lethal sampling. So, while 
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it may be that the above-mentioned effects might have tempered observed skewness, they

were not enough to reverse the patterns. We encourage future studies to look into 

skewness at multiple aggregation levels and to investigate further the proportions of bee 

populations that are removed when lethal sampling is done.
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Figure B.3. Bee and flower abundances. Abundances are shown on a log-scale for 

visualization clarity.
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Figure B.4. Skewness predicted by abundance. Each point represents a single time-

series.
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Section B.3. Species lists and summary statistics

Table B.1. Bee species summary statistics
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Andrenidae Andrena algida 05-29 -0.20 8.71 14 1 1 1

Andrenidae Andrena cyanophila 07-07 -0.80 16.02 11 1 1 1

Andrenidae Andrena lawrencei 05-20 0.81 12.89 18 1 1 1

Andrenidae Andrena medionitens 05-09 2.08 8.79 17 1 1 1

Andrenidae Calliopsis teucrii 07-29 0.27 12.92 85 3 1 3

Andrenidae
Panurginus 

cressoniellus
07-20 0.62 12.19 50 20 6 9

Andrenidae Panurginus ineptus 07-20 0.14 11.98 37 7 6 3

Andrenidae Pseudopanurgus bakeri 08-06 0.21 13.41 14 3 3 2

Andrenidae
Pseudopanurgus 

didirupa
08-20 -1.07 13.94 18 1 1 1

Apidae Bombus appositus Q 07-13 0.45 15.85 14 4 4 3

Apidae Bombus appositus W 08-03 -0.34 9.91 18 10 6 5

Apidae Bombus balteatus W 08-02 -0.17 9.72 23 1 1 1

Apidae Bombus bifarius Q 06-14 0.98 16.48 17 12 8 4

Apidae Bombus bifarius W 07-30 -0.12 11.83 36 41 11 7

Apidae Bombus fervidus W 07-29 0.01 14.50 13 1 1 1

Apidae Bombus flavifrons Q 07-06 0.67 17.54 18 11 5 5

Apidae Bombus flavifrons W 08-03 -0.33 11.98 31 21 9 7

Apidae Bombus frigidus W 08-11 1.00 10.06 23 1 1 1

Apidae Bombus huntii W 07-24 0.09 14.01 13 5 3 3

Apidae Bombus insularis Q 07-15 0.54 12.64 16 1 1 1

Apidae
Bombus rufocinctus 

Q
07-27 1.80 9.74 15 1 1 1

Apidae
Bombus rufocinctus 

W
07-27 -0.44 8.76 16 2 2 2

Apidae Bombus sylvicola W 08-01 0.63 11.06 10 1 1 1

Apidae Ceratina nanula 07-06 0.41 25.50 25 11 4 5
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Colletidae Hylaeus annulatus 08-05 -0.27 13.58 22 10 7 4

Halictidae Agapostemon texanus 06-12 0.97 25.20 50 9 2 5

Halictidae Dufourea fimbriata 07-12 0.01 10.42 10 1 1 1

Halictidae Halictus confusus 06-26 0.33 52.39 24 1 1 1

Halictidae Halictus rubicundus 06-19 0.51 20.17 17 9 7 4

Halictidae Halictus tripartitus 07-10 -0.35 19.55 22 9 3 5

Halictidae Halictus virgatellus 07-04 0.79 25.58 26 51 11 8

Halictidae
Lasioglossum 

abundipunctum
06-06 0.61 22.04 20 5 4 2

Halictidae Lasioglossum cooleyi 05-31 1.93 34.95 14 2 2 1

Halictidae Lasioglossum egregium07-03 -0.16 16.77 14 2 1 2

Halictidae
Lasioglossum 

inconditum
06-08 1.98 16.82 31 16 9 5

Halictidae Lasioglossum nigrum 06-16 2.07 21.44 36 39 13 9

Halictidae
Lasioglossum 

obnubilum
06-28 0.78 26.11 28 5 2 3

Halictidae
Lasioglossum 

occidentale
07-17 1.49 12.57 12 1 1 1

Halictidae Lasioglossum pacatum 06-22 0.69 25.55 155 4 2 3

Halictidae
Lasioglossum 

prasinogaster
06-19 0.97 23.09 98 10 2 7

Halictidae
Lasioglossum 

ruidosense
07-03 0.53 30.20 25 44 14 8

Halictidae Lasioglossum sedi 06-16 1.94 18.26 75 80 17 9

Halictidae
Lasioglossum 

semicaeruleum
07-04 1.13 14.35 12 3 2 2

Halictidae Lasioglossum sisymbrii 07-05 0.90 8.59 10 1 1 1

Halictidae Lasioglossum tenax 06-11 1.73 21.89 29 7 4 4

Halictidae
Lasioglossum 

trizonatum
05-20 2.15 22.83 52 7 4 3

Megachilidae Dianthidium heterulkei 08-13 0.80 18.38 10 1 1 1

Megachilidae Hoplitis fulgida 07-12 0.15 22.28 15 1 1 1

Megachilidae Osmia proxima 06-21 0.62 16.91 12 1 1 1
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Table B.2. Flower species summary statistics.
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Apiaceae Pseudocymopterus montanus07-05 0.01 9.89 150 5 2 4

Asparagaceae Maianthemum stellatum 06-22 0.08 3.40 221 6 1 6

Asteraceae Achillea millefolium 08-17 -0.01 13.09 308 36 3 33

Asteraceae Antennaria pulcherrima 06-22 0.04 4.49 387 9 1 9

Asteraceae Cirsium sp 08-03 -0.20 5.29 146 2 1 2

Asteraceae Dugaldia hoopesii 07-27 0.21 8.37 501 49 5 33

Asteraceae Erigeron coulteri 08-05 0.31 12.10 193 2 1 2

Asteraceae Erigeron elatior 08-15 0.19 9.17 144 3 2 3

Asteraceae Erigeron flagellaris 07-21 0.86 16.07 639 29 1 29

Asteraceae Erigeron speciosus 08-06 0.28 7.08 2,222 113 4 42

Asteraceae Gnaphalium uliginosum 06-23 0.44 2.37 254 1 1 1

Asteraceae Helianthella quinquenervis 07-29 0.18 5.87 334 24 6 12

Asteraceae Heliomeris multiflora 08-20 0.01 7.24 923 30 4 22

Asteraceae Heterotheca villosa 08-09 0.24 12.26 5,823 45 1 45

Asteraceae Ligularia bigelovii 08-11 0.00 5.88 293 33 4 19

Asteraceae Oligosporus dracunculus 08-19 0.04 6.95 539 43 3 36

Asteraceae Packera werneriifolia 06-28 -0.23 4.86 418 3 1 3

Asteraceae Pyrrocoma crocea 08-02 0.43 5.58 264 31 1 31

Asteraceae Senecio integerrimus 06-26 0.21 5.18 345 28 1 28

Asteraceae Senecio serra 08-11 -0.12 6.53 750 1 1 1

Asteraceae Senecio triangularis 07-20 0.34 6.59 126 3 1 3

Asteraceae Seriphidium tridentata 08-22 0.42 4.63 777 42 1 42

Asteraceae Solidago multiradiata 08-08 0.27 6.38 746 59 4 34

Asteraceae Symphyotrichum foliaceum 08-23 0.15 5.85 214 23 4 16

Asteraceae Taraxacum officinale 06-17 1.22 5.64 195 54 4 34

Berberidaceae Mahonia repens 06-06 0.16 4.00 624 36 1 36

Boraginaceae Hackelia floribunda 07-26 0.44 5.67 205 1 1 1

Boraginaceae Mertensia ciliata 07-11 0.28 7.71 1,398 62 2 37

Boraginaceae Mertensia fusiformis 06-08 0.27 5.25 1,445 107 4 45

Brassicaceae Boechera stricta 06-26 1.81 12.85 207 26 3 24
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Brassicaceae Cardamine cordifolia 07-03 0.04 4.45 404 24 2 24

Brassicaceae Draba aurea 06-28 0.33 6.55 2,405 125 3 44

Brassicaceae Draba nemorosa 06-08 0.23 4.19 217 2 2 2

Brassicaceae Erysimum capitatum 07-09 0.55 5.43 320 25 2 24

Brassicaceae Noccaea fendleri 06-09 0.41 4.89 2,089 58 2 42

Campanulaceae Campanula rotundifolia 08-09 0.40 7.71 155 8 2 8

Caprifoliaceae Distegia involucrata 06-28 0.20 4.78 125 1 1 1

Caprifoliaceae Valeriana edulis 07-19 0.15 14.19 185 28 3 24

Caprifoliaceae Valeriana occidentalis 06-21 0.17 8.77 556 89 5 44

Caryophyllaceae Eremogone congesta 07-19 0.85 8.55 7,081 44 1 44

Caryophyllaceae Stellaria longifolia 07-18 0.11 8.06 130 4 1 4

Chenopodiaceae Chenopodium album 08-19 -0.80 6.09 521 1 1 1

Crassulaceae Amerosedum lanceolatum 07-24 0.39 5.22 234 18 1 18

Crassulaceae Tolmachevia integrifolia 06-27 0.13 4.06 532 18 1 18

Fabaceae Lathyrus leucanthus 07-05 0.24 5.24 471 79 4 37

Fabaceae Lupinus argenteus 07-23 0.13 6.05 800 18 2 16

Fabaceae Lupinus bakeri 07-08 0.31 4.64 2,398 45 4 33

Fabaceae Lupinus sp 07-11 0.76 5.32 462 7 3 4

Fabaceae Oxytropis deflexa 06-25 0.71 10.80 167 4 1 4

Fabaceae Vicia americana 07-17 0.80 6.32 338 35 5 21

Gentianaceae Frasera speciosa 06-30 0.49 7.27 715 1 1 1

Gentianaceae Frasera speciosa outside 07-19 0.00 8.58 227 1 1 1

Gentianaceae Gentianella acuta 08-10 -0.15 7.46 149 1 1 1

Gentianaceae Gentianopsis thermalis 08-10 0.75 7.37 152 1 1 1

Gentianaceae Pneumonanthe parryi 08-21 -0.59 5.33 119 4 2 3

Gentianaceae Swertia perennis 08-07 0.20 6.61 686 16 1 16

Geraniaceae Geranium richardsonii 07-24 0.09 9.37 331 43 3 31

HydrophyllaceaeHydrophyllum capitatum 06-13 -0.56 3.47 401 44 2 42

HydrophyllaceaeHydrophyllum fendleri 07-07 0.19 4.62 154 6 1 6

Liliaceae Erythronium grandiflorum 06-04 0.05 2.30 213 44 2 35

Linaceae Adenolinum lewisii 07-20 0.85 8.64 1,064 42 2 40

Melanthiaceae Anticlea elegans 07-22 0.04 5.01 1,443 39 1 39

Montiaceae Claytonia lanceolata 05-29 0.15 3.78 6,137 81 2 42

Orchidaceae Limnorchis hyperborea 07-08 0.12 7.05 1,589 18 2 16

Orobanchaceae Castilleja linariifolia 07-27 0.69 11.87 167 4 1 4

Orobanchaceae Castilleja sulphurea 07-22 0.16 7.06 195 21 2 21
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Orobanchaceae Orthocarpus luteus 08-18 0.15 6.37 254 4 1 4

Orobanchaceae Pedicularis bracteosa 07-04 0.21 4.95 323 18 2 18

Polemoniaceae Collomia linearis 07-28 0.82 12.53 643 28 4 26

Polemoniaceae Ipomopsis aggregata 07-25 0.62 13.55 360 10 1 10

Polygonaceae Eriogonum subalpinum 07-15 0.08 6.55 174 23 2 23

Polygonaceae Eriogonum umbellatum 07-04 0.15 6.27 545 40 1 40

Primulaceae Androsace septentrionalis 06-18 1.30 10.30 2,988 97 5 41

Primulaceae Dodecatheon pulchellum 06-29 0.00 3.63 207 20 1 20

Ranunculaceae Aconitum columbianum 07-28 0.22 6.45 398 59 3 37

Ranunculaceae Delphinium barbeyi 07-26 0.02 6.13 2,444 102 3 41

Ranunculaceae Delphinium nuttallianum 06-19 -0.12 4.74 1,893 44 1 44

Ranunculaceae Ranunculus inamoenus 06-13 1.40 8.54 353 38 3 37

Rosaceae Amelanchier alnifolia 06-20 0.49 3.97 397 32 1 32

Rosaceae Erythrocoma triflorum 06-23 0.89 7.24 146 4 1 4

Rosaceae Fragaria virginiana 06-22 0.99 5.24 315 25 3 16

Rosaceae Pentaphylloides floribunda 07-19 0.54 9.38 216 23 2 23

Rosaceae Potentilla hippiana 07-26 -0.04 11.67 387 27 1 27

Rosaceae Potentilla pulcherrima 07-21 0.17 9.32 1,316 122 6 44

Rubiaceae Galium septentrionale 08-07 0.02 7.40 263 28 5 21

Salicaceae Salix brachycarpa 06-08 0.25 2.71 307 11 2 11

Salicaceae Salix drummondiana 06-04 1.20 3.05 674 1 1 1

Salicaceae Salix geyeriana 05-28 -0.07 2.88 700 11 1 11

Salicaceae Salix monticola 06-05 0.35 3.22 5,146 22 1 22

Salicaceae Salix sp 06-11 -0.06 3.21 739 8 2 8

Salicaceae Salix wolfii 06-17 0.37 2.93 1,023 9 2 6

Violaceae Viola praemorsa 06-11 0.25 2.90 355 43 2 41
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Section B.4. Additional figures

Figure B.5. Several example phenological distributions on individual time-series. 

Two examples of negatively and positively skewed distributions are given for 

different species of bees and plants. The top four panels correspond to bee time-

series and the bottom four correspond to flower time-series.
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Figure B.6. Illustration of one matched up pair of skewed distributions used to 

calculate maximum possible overlap in the simulation experiment. The solid black 

curve represents a distribution with a skewness of -5, and the solid blue curve 

represents one with skewness of 2. The mean and standard deviation of the blue 

distribution are perturbed to be higher and lower in 2000 combinations, and the 

resulting distribution with the greatest overlap with the black distribution is 

selected (blue dashed curve). Each of the 2500 pixels in Figure 4 from the main text 

corresponds to one such calculation.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4:

BEE PHENOLOGICAL DISTRIBUTIONS PREDICTED MECHANISTICALLY BY

PHENOPHASE TRANSITION RATES

Section C.1: Model specifications and fitting diagnostics

We specified weakly informative prior parameter distributions based on 

biological knowledge about the system and model constraints. The prior formulas and 

justifications are listed here.

Phenology hyperparameters – The center of the μ hyperparameter was set to 160 

as the average expected day-of-year (DOY) of the beginning of the growing season at the

study location, corresponding to early June. A lognormal distribution was used for the σ 

hyperparameter, as it was for all standard deviations in the model, because phenology 

dispersion terms cannot be negative.

μh∼Normal (160,40 )

σh∼Lognormal (1,1 )

h∼Normal (μh ,σh )

Population size hyperparameters – The center of the μ hyperprior was set to the 

expected location population size based on prior knowledge bee populations around the 
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sampling location. The dispersion of this hypoerprior was set to 10 to avoid a truncated 

distributions, as B0 must be greater than 0.

μu∼Normal ( 40,10 )

σ u∼ Lognormal (0,1 )

u∼ Normal (μu ,σ u)

Emergence rate – To aid model convergence, non-centered reparametrization 

(a.k.a. “the Matt trick”) was implemented as follows, implying an emergence prior with 

mean of 0.2 and dispersion of 0.1.

μ~a∼Normal ( 0,1)

σ~a∼Lognormal (0,1 )
~a∼ Normal ( μ~a , σ~a)

a=0.2+0.1~a

Emergence friction – Non-centered reparametrization was implemented as 

follows, implying an emergence prior with mean of 0.004 and dispersion of 0.001. This is

perhaps the most informative prior because the model predictions quickly go to infinity 

for b values greater than 0.01 (depending somewhat on the corresponding combination of

a and u parameters), greatly reducing fitting efficiency. 

μ~
b∼Normal ( 0,1 )

σ~b∼Lognormal (0,1 )
~
b∼Normal ( μ~

b , σ~
b)

b=0.004+0.001
~
b

Mortality rate – Non-centered reparametrization was implemented as follows, 
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implying an emergence prior with mean of 0.2 and dispersion of 0.1.

μ~m∼ Normal ( 0,1 )

σ~m∼ Lognormal ( 0,1 )
~m∼Normal (μ~m ,σ~m )

m=0.2+0.1~m

Flower covariate slope – This prior is wide, reflecting our ignorance of its value, 

and centered at zero to be unbiased.

βF∼ Normal (0,5 )

Error – A lognormal distribution was used because error cannot be less than 0.

ϵ ∼Lognormal ( 0,1 )
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Figure C.1. Trace plots for the population size parameter, u. The left panels 

represent estimates for 2019, and the right panels represent estimates for 2021. 

The top panels represent represent estimates for the Trail site, and the bottom 

panels represent estimates for the Waterfall site. Each color represents one of the 

four MCMC chains. Parameter values are on the vertical axis, and iterations are on 

the horizontal axis.
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Figure C.2. Trace plots for the demographic rate parameters. The top panels show 

estimates of the a parameter, the middle panels show estimates of the b parameter, 

and the bottom panels show estimates of the m parameter. The left panels 

correspond to 2019, and the right panels correspond to 2021. Each color represents 

one of the four MCMC chains. Parameter values are on the vertical axis, and 

iterations are on the horizontal axis.
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Figure C.3. Trace plots for the onset parameter, h. The top panel shows onset 

estimates for 2019, and the bottom panel shows estimates for 2021. Each color 

represents one of the four MCMC chains. Parameter values are on the vertical axis, 

and iterations are on the horizontal axis.



204

Figure C.4. Trace plots for the flower covariate, βF (top panel), and error,  ϵ (bottom 

panel), parameters. Each color represents one of the four MCMC chains. Parameter 

values are on the vertical axis, and iterations are on the horizontal axis.



205

Figure C.5. Posterior predictive checks of model fits to data. For each timeseries, 

3000 draws of the posterior are taken to simulate the verhulst function (red lines), 

not including the flower covariate function. The left panels represent data (black 

circles) from 2019, and the right panels represent data from 2021. The top panels 

represent data from the Trail site, and the bottom panels represent data from the 

Waterfall site.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5:

DISORDER OR A NEW ORDER: HOW CLIMATE CHANGE AFFECTS

PHENOLOGICAL VARIABILITY

Section D.1: Power analysis

We performed a power analysis in order to determine the efficacy of the residual 

method in identifying changes in variance. We simulated time-series data by generating 

10,000 sequences of 32 years, with the phenological trends varying uniformly within 40 

days around the baseline phenology occurring at 100 days-of-year. For each time-series, 

we added normally distributed error to each time point with a baseline standard deviation 

of 12 days. We then increased the error term standard deviation by ten increments 

between -10 and +10 days, resulting in a total error standard deviation range between 2 

and 22 days and 1000 replicated per variance change increment. We then performed the 

residual method test on each time-series and assessed success of the method by testing 

whether the actual variance change fell within 2 standard errors of the predicted variance 

change. Actual variance change was calculated as the increase/decrease in the total error 

SD divided by the number of data points, and the predicted variance change was the slop 

of the absolute residuals. We then calculated the percentage of successes in each of the 

1000 variance change replicates.

We found that the residual method was over 90% successful in correctly detecting

variance changes for every variance shift scenario (Fig. S1). We investigated potential 
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biases in the estimation of mean and variance changes, but found that our method 

accurately predicted both metrics one-to-one. The residual method was equally likely to 

over-estimate variance change as it was to under-estimate it. We conclude that the 

residual method of fitting a quantile regression with τ ≈ 0.6827 to the absolute residuals 

accurately predicts the change in the standard deviation of the error term under the 

present assumptions.
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Figure D.1. The power of the residual method for different rates of variance change.

Black point indicate simulations for which the method successfully predicted the 

rate of variance change, and red circles represent those for which it didn’t. The ideal 

1:1 line is solid black, the actual performance of the residual method is dashed 

black, and zero variance change is highlighted by the red line.
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Section D.2: Accounting for potential non-linearity

It is possible that if phenological responses to increasing temperature are 

non-linear, as is predicted by a thermal threshold model, that fitting linear models and 

estimating variance from their residuals might result in biased measures of variance 

change (Wolkovich et al., 2021). One way to account for the expected non-linearity of a 

thermal threshold phenological process is to log-transform the response variable when 

making sensitivity calculations. So, to check whether and to what extend assumptions 

about linear temperature responses affected our estimates of variance shifts and 

sensitivity, we loge-transformed the response variable DOY before calculating the mean 

and variance metrics. Compared to the effects when DOY was not transformed (Fig. S3), 

we found that mean shifts and mean sensitivity were still clearly negative overall after 

this transformation (Fig. S2). There were still overall trends toward modestly negative 

variance shift, but variance sensitivity became positive with a very small effect size. This 

indicates that the statistical assumption of a linear relationship between inter-annual 

temperature and phenology may in part explain the observed variance patterns, but that 

the results would not change dramatically if the assumption is faulty.
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Figure D.2. Overall trends distributions for all phenophase groups when day-of-

year is log-transformed to account for potentially non-linear relationships between 

phenology and temperature. The plotting range is reduced to show detail of the 

center of the distributions, so some points are not plotted.
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Section D.3: Trend visualizations

Figure D.3. Overall trends distributions for all phenophase groups. The plotting 

range is reduced to show detail of the center of the distributions, so some points are 

not plotted.
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Figure D.4. The drivers of phenology mean shifts over time. Lines are model 

predictions and points are residuals.
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Figure D.5. The drivers of the temperature sensitivity of phenological means. Lines 

are model predictions and points are residuals.
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Figure D.6. The drivers of variance shifts over time. Lines are model predictions 

and points are residuals.
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Figure D.7. The drivers of variance temperature sensitivity. Lines are model 

predictions and points are residuals.
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Section D.4: Plant trait analyses

Figure D.8. The drivers of first flowering phenology mean shifts over time. No 

effects were significant. Lines are model predictions and points are residuals.
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Figure D.9.The drivers of first flowering mean temperature sensitivity. Dependents 

were significantly less sensitive than the other growth forms. Lines are model 

predictions and points are residuals.
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Figure D.10. The drivers of variance changes in first flowering over time. No effects 

were significant. Lines are model predictions and points are residuals.
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Figure D.11. The drivers of the temperature sensitivity of variance changes in first 

flowering. No effects were significant. Lines are model predictions and points are 

residuals.
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Figure D.12. Neither mean phenological shifts over time, temperature sensitivity, 

nor changes in variance varied significantly between leaf and flower phenology. The 

patterns also did not significantly differ between trees, shrubs, and herbs, and there 

were no significant interactions between growth form and phenophase. Red lines 

and points are model predictions and residuals for shrubs, and blue ones are those 

for trees.
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Section D.5: Bird trait analyses

Figure D.13. Bird diet did not significantly predict mean phenological shifts over 

years, temperature sensitivity, or variance changes. Lines are model predictions and

points are residuals.
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Section D.6: Additional analyses

Figure D.14. Sites within datasets were regionally clustered and spanned different 

segments of the seasonality gradient.
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Figure D.15. No one dataset was responsible for the positive relationship of 

seasonality and mean sensitivity. Each point represents a time-series, colored by the

dataset from which it was taken. Lines represent a linear model of mean sensitivity 

predicted by seasonality with each dataset sequentially withheld. The color of the 

line corresponds to the dataset that was withheld from the model. Excluding the 

Rothamsted dataset results in the smallest slope (gray line), and excluding the 

Chronicles of Nature Calendar dataset (ussr) results in the greatest slope (pink line).
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Figure D.16. Changes in population size can artificially shift phenology mean and 

variance estimates when first-occurrence data is used. As population size increases, 

the observed first-occurrence advances and variance decreases. For each population

size level (n=10, n=1000, n=100000), n draws were made from normal distributions

with mean 100 and standard deviation 10, the minimum observation was recorded 

(points shown) and the procedure was performed 1000 times.
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Figure D.17. Seasonal environmental filters may change the skewness of 

phenological distributions and therefore the inter-annual variance of first-

observation dates. In this hypothetical example, there is an environmental filter (red

line) in the early season that interacts with the underlying phenological distribution 

(light blue solid line) to produce a filtered, realized distribution (light blue dashed 

line). The influence of the environmental filter only comes out when the 

phenological distribution shifts into its time window; historic, unadvanced 

phenology (dark blue line) is effectively not influenced by the environmental filter.
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Figure D.18. Spring temperatures have increased markedly at the site locations of 

this study (left panel), but inter-annual variance has decreased slightly on average 

(right panel).
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Figure D.19. Histograms showing mean (a) and variance (b) shifts. Color and 

shading are the same as in Figure 3 in the main text.
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Figure D.20. Changes in the variance of temperatures at sites significantly predicted

observed phenology variance shifts, explaining around 5% of the variance in 

phenology variance shifts.
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Section D.7: Data summary and model coefficient tables

Table D.1. Data summary table

dataset
n

time-
series

sitesspecies n obs.

mean
time-
series

length

mean
lat.

mean
lon.

mean
annual

max.
temp.

mean
seaslty

data 
range

pheno. 
groups

PEP 3,188 134 38 129,278 41 50.3 12.6 13.0 22.9
1958-

2018

leaves, 

flowers

CNC 2,278 76 586 69,817 31 55.5 57.8 6.8 33.7
1958-

2017
all

Japan 1,674 97 39 73,824 44 35.7 136.4 18.5 22.9
1958-

2011
all

Korea 1,391 68 15 44,150 32 36.1 127.8 17.5 26.0
1958-

2006
all

RMBL 521 30 91 11,706 22 39.0 -107.0 8.9 25.3
1973-

2017
flowers

Rothamsted317 13 49 10,893 34 53.3 -1.4 13.2 15.0
1976-

2016
insects

NECTAR 283 4 257 8,441 30 49.7 -14.3 13.8 18.8
1958-

2009

leaves, 

flowers

Manomet 53 1 53 1,860 35 41.9 -70.5 14.7 25.0
1970-

2018
birds
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Table D.2. Main model coefficients. Estimates are standardized effect sizes.

Metric Coefficient Estimate Std. Error df t-value p-value

μ shift

leaf -0.163 0.011 1,027.100 -14.938 < 0.001

flower -0.166 0.010 680.524 -17.140 < 0.001

insect -0.135 0.021 647.651 -6.329 < 0.001

bird -0.050 0.017 1,019.960 -2.919 0.004

seasonality 0.153 0.019 324.071 7.874 < 0.001

mean_temp 0.167 0.019 435.558 8.918 < 0.001

pheno_position 0.025 0.009 1,537.239 2.732 0.006

μ sensitivity

leaf -3.109 0.070 1,214.518 -44.155 < 0.001

flower -3.318 0.065 903.497 -51.064 < 0.001

insect -3.991 0.150 773.493 -26.560 < 0.001

bird -1.666 0.109 1,025.837 -15.232 < 0.001

seasonality 1.875 0.126 366.330 14.852 < 0.001

mean_temp 1.446 0.123 533.333 11.752 < 0.001

pheno_position 1.119 0.060 2,632.439 18.758 < 0.001

σ shift

leaf -0.022 0.005 458.632 -4.588 < 0.001

flower -0.022 0.004 284.810 -5.673 < 0.001

insect -0.004 0.008 234.678 -0.501 0.617

bird -0.015 0.007 390.310 -2.049 0.041

seasonality -0.012 0.008 223.339 -1.374 0.171

mean_temp 0.007 0.008 265.393 0.914 0.362

pheno_position -0.006 0.004 260.399 -1.364 0.174

σ sensitivity

leaf 0.010 0.031 666.876 0.321 0.748

flower 0.001 0.025 396.720 0.060 0.952

insect 0.031 0.060 497.831 0.520 0.604

bird -0.051 0.048 650.527 -1.059 0.29

seasonality -0.032 0.049 340.975 -0.658 0.511

mean_temp 0.011 0.050 504.088 0.228 0.82

pheno_position -0.028 0.032 567.712 -0.885 0.377
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Table D.3. Plant traits model coefficients. Estimates are standardized effect sizes.

Metric Coefficient Estimate Std. Error df t-value p-value

μ shift

(Intercept) -0.528 0.195 2,899.778 -2.707 0.007

dependant 0.357 0.204 2,631.835 1.750 0.08

grass 0.230 0.198 2,817.303 1.163 0.245

herb 0.316 0.195 2,877.204 1.617 0.106

shrub 0.325 0.196 2,864.746 1.661 0.097

tree 0.342 0.196 2,845.628 1.740 0.082

height -0.063 0.031 300.914 -2.006 0.046

seed_mass -0.028 0.018 140.573 -1.543 0.125

μ shift

SLA -0.039 0.021 245.590 -1.881 0.061

(Intercept) -1.636 1.175 2,325.933 -1.393 0.164

dependant -1.232 1.260 1,793.902 -0.978 0.328

grass -1.026 1.198 2,142.623 -0.857 0.392

herb -1.517 1.174 2,298.541 -1.292 0.196

shrub -1.771 1.179 2,250.150 -1.502 0.133

tree -1.950 1.187 2,192.715 -1.642 0.101

height 0.093 0.230 355.208 0.404 0.686

μ sensitivity

seed_mass -0.365 0.148 276.098 -2.459 0.015

SLA -0.219 0.152 345.495 -1.439 0.151

(Intercept) 0.172 0.127 2,904.826 1.354 0.176

dependant -0.217 0.132 2,569.310 -1.643 0.1

grass -0.181 0.128 2,804.939 -1.410 0.159

herb -0.205 0.127 2,880.956 -1.620 0.105

shrub -0.202 0.127 2,868.089 -1.587 0.113

tree -0.201 0.128 2,847.273 -1.572 0.116

σ shift

height 0.006 0.020 240.151 0.281 0.779

seed_mass 0.004 0.012 112.835 0.373 0.71

SLA 0.004 0.014 195.586 0.327 0.744

(Intercept) 0.915 0.711 3,115.869 1.286 0.198

dependant -0.851 0.741 2,981.127 -1.149 0.251

grass -1.079 0.718 3,056.521 -1.502 0.133

herb -0.956 0.712 3,101.397 -1.344 0.179

shrub -0.776 0.712 3,103.907 -1.089 0.276

σ sensitivity
tree -0.828 0.714 3,094.650 -1.159 0.247

height -0.097 0.093 125.268 -1.047 0.297

seed_mass 0.023 0.049 47.709 0.458 0.649

SLA 0.104 0.060 104.195 1.728 0.087



233

Table D.4. Plant phenophase model coefficients. Estimates are standardized effect 

sizes.

Metric Coefficient Estimate Std. Error df t-value p-value

μ shift

(Intercept) -0.170 0.012 448.328 -14.042 < 0.001

shrub -0.019 0.014 393.017 -1.386 0.167

tree -0.041 0.013 293.610 -3.073 0.002

first_leaf -0.033 0.016 2,226.633 -2.037 0.042

μ shift

shrub:first_leaf 0.028 0.023 3,756.175 1.259 0.208

tree:first_leaf 0.056 0.018 2,574.400 3.112 0.002

(Intercept) -3.200 0.083 794.642 -38.369 < 0.001

shrub -0.236 0.106 508.994 -2.221 0.027

μ sensitivity

tree -0.457 0.110 433.528 -4.141 < 0.001

first_leaf 0.106 0.086 5,904.757 1.232 0.218

shrub:first_leaf 0.022 0.120 5,908.542 0.185 0.853

tree:first_leaf 0.205 0.098 5,938.300 2.099 0.036

σ shift

(Intercept) -0.037 0.007 310.355 -5.599 < 0.001

shrub -0.001 0.008 276.135 -0.145 0.885

tree 0.021 0.008 214.137 2.619 0.009

first_leaf 0.018 0.010 1,251.689 1.755 0.08

σ shift shrub:first_leaf -0.017 0.014 2,565.694 -1.153 0.249

σ shift tree:first_leaf -0.025 0.012 1,468.193 -2.149 0.032

σ sensitivity (Intercept) -0.005 0.035 483.361 -0.151 0.88

σ sensitivity shrub 0.070 0.047 299.705 1.485 0.139

σ sensitivity tree -0.002 0.045 225.870 -0.038 0.969

σ sensitivity first_leaf -0.176 0.055 2,221.437 -3.197 0.001

σ sensitivity shrub:first_leaf 0.147 0.080 3,710.289 1.839 0.066

σ sensitivity tree:first_leaf 0.239 0.064 2,527.327 3.728 < 0.001
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Table D.5. Bird traits model coefficients. Estimates are standardized effect sizes.

Metric Coefficient Estimate Std. Error df t-value p-value

μ shift

(Intercept) 0.048 0.027 100.555 1.784 0.077

Herbivore 0.064 0.035 111.821 1.833 0.069

Omnivore 0.010 0.030 93.272 0.330 0.742

log(mass) -0.055 0.026 124.441 -2.086 0.039

μ sensitivity

(Intercept) -0.756 0.168 122.018 -4.497 < 0.001

Herbivore -0.096 0.206 158.507 -0.466 0.642

Omnivore -0.111 0.183 145.824 -0.607 0.545

log(mass) -0.196 0.150 159.318 -1.304 0.194

σ shift

(Intercept) -0.012 0.007 64.201 -1.753 0.084

Herbivore -0.034 0.016 823.627 -2.081 0.038

Omnivore 0.002 0.013 819.642 0.125 0.901

log(mass) -0.003 0.011 284.518 -0.290 0.772

σ sensitivity

(Intercept) -0.061 0.045 825.000 -1.363 0.173

Herbivore -0.096 0.102 825.000 -0.948 0.344

Omnivore -0.028 0.085 825.000 -0.334 0.738

log(mass) 0.239 0.069 825.000 3.484 0.001
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