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ABSTRACT 

Connections Between Mathematics and Computational Thinking: Kindergarten Students’ 

Demonstration of Mathematics Knowledge in a Computational Thinking Assessment 

by 

Lise E. Welch Bond, Doctor of Philosophy 

Utah State University, 2023 

Major Professor: Jessica F. Shumway, Ph.D. 
Department: Mathematics Education and Leadership 
 

Research has shown that computational thinking and kindergarten mathematics 

instruction can be integrated; however, evidence of how specific mathematical 

knowledge relates to computational thinking remains scarce. Additionally, we do not 

know if and how children’s mathematical knowledge co-occurs with computational 

thinking and how these knowledges relate to students’ performance on computational 

thinking assessments. This qualitative study sought to fill this knowledge gap by 

examining the following research questions through a joint embodied cognition and 

enactivist lens: (1) How are kindergarten students’ mathematical knowledge (MK) and 

computational thinking (CT) operationalized during a CT assessment? In what ways, if 

any, do MK and CT co-occur, and (2) How do students’ mathematical knowledge and co-

occurring mathematical knowledge and computational thinking relate to their 

performance on individual assessment items? 
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Using a dataset collected for a larger research study (NSF project award #DRL-

1842116), I analyzed video of 60 kindergarten students engaging with 14 items in an 

interview-based, computational thinking assessment. I coded and memoed the data to 

operationalize how students demonstrate mathematical knowledge and computational 

thinking, then analyzed the coded data to identify co-occurring knowledge. Lastly, I 

developed case studies to describe how students’ knowledge related to their assessment 

item performance. 

Results indicate that students demonstrate varying levels of mathematical 

knowledge and computational thinking multi-modally through their gestures, language, 

and actions with the assessment materials. Students’ spatial and unit measurement 

knowledge most frequently co-occurred with computational thinking, occurring most 

often when students built and read/enacted programs. These co-occurrences were 

categorized as independent or dependent, depending on the nature of their relationship to 

the computational thinking outcomes. These findings illustrate the intricate connections 

between mathematical knowledge and computational thinking and that students’ 

mathematical knowledge relates to their performance on computational thinking tasks. 

These findings have implications for computational thinking curriculum and assessment 

design, mathematics curriculum design, and theory. Based on the results of this present 

study, I recommend that mathematics curriculum developers leverage the spatial and unit 

measurement connections in computational thinking tasks to design experiences for 

children to grow their spatial reasoning and measurement knowledge. 

(228 pages) 
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PUBLIC ABSTRACT 

Connections Between Mathematics and Computational Thinking: Kindergarten Students’ 

Demonstration of Mathematics Knowledge in a Computational Thinking Assessment 

Lise E. Welch Bond  

Research shows that computational thinking can be used with kindergarten 

mathematics instruction, however we still do not know much about how specific math 

knowledge is related to computational thinking and if (and if so, how) children’s 

mathematical knowledge is related to students’ performance on computational thinking 

assessments. This student fills this knowledge gap by examining the following research 

questions: (1) How are kindergarten students’ mathematical knowledge (MK) and 

computational thinking (CT)MK and CT operationalized during a CT assessment? In 

what ways, if any, do MK and CT co-occur, and (2) How do students’ mathematical 

knowledge and co-occurring mathematical knowledge and computational thinking relate 

to their performance on individual assessment items? 

To answer these questions, I analyzed video data that was originally collected for 

a larger research study (NSF project award #DRL-1842116), which showed 60 

kindergarten students taking an interview-based, computational thinking assessment. I 

coded and notated the data to describe how students demonstrate their mathematical 

knowledge and computational thinking, then analyzed the coded data to identify how 

students’ mathematical knowledge and computational thinking co-occurred. Lastly, I 

described how, for four assessment items, students’ co-occurring knowledge related to 
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their assessment item performance.  

The results show that students demonstrated different levels of mathematical 

knowledge and computational thinking through their gestures, language, and interactions 

with the assessment materials. Students’ spatial and unit measurement knowledge most 

frequently co-occurred with computational thinking, and most often when students built 

and read/enacted programs. I categorized the co-occurrences as independent or 

dependent, depending on if the co-occurrence related to the students’ correct or incorrect 

response to the assessment items. These findings show that mathematical knowledge and 

computational thinking are strongly connected, and that students’ mathematical 

knowledge is related to how they performed on the assessment. These findings have 

implications for computational thinking curriculum and assessment design, mathematics 

curriculum design, and theory. Based on the results of this present study, I recommend 

that mathematics curriculum developers take advantage of the particularly strong 

connections of spatial and unit measurement knowledge with computational thinking to 

design experiences for children develop their spatial reasoning and measurement 

knowledge. 
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CHAPTER I 

INTRODUCTION 

 
Extensive effort has been made within the U.S. to increase computer science 

education opportunities for K–12 students (Smith, 2016). One avenue of integrating 

computer science education is teaching computational thinking (CT) skills, a thinking 

process foundational to computer science (Wing, 2006). A potential benefit of integrating 

CT in K–12 classrooms is growing evidence that CT holds deep connections and co-

occurrences with mathematical knowledge (MK; e.g., Pérez, 2018; Rich et al., 2019; 

Shumway et al., 2021). Coding is one instructional medium used to explore young 

children’s engagement with CT and MK (Angeli & Valanides, 2020).  

Contemporary research has examined young children’s engagement in curricular-

based coding activities with joint MK and CT objectives (e.g., Angeli & Valanides, 2020; 

Città et al., 2019; Palmér, 2017; Shumway et al., 2021; Strawhacker & Bers, 2019; Welch 

et al., 2022). While these studies describe general commonalities and co-occurrences 

between MK and CT, fine-grained research exploring how specific MK co-occurs with 

and/or supports CT in kindergarten is limited. Research groups have only recently 

explored how specific MK is exhibited by young students in curricular CT robot coding 

tasks (Shumway et al., 2021). The present study extends on Shumway and colleagues’ 

work by investigating how kindergarten students use MK with CT in an individual 

assessment-interview setting with unplugged (i.e., no robot coding toys or online coding 

tools) materials. The purpose of the present study was to understand how kindergarten 

students’ MK relates to their CT. I investigated these MK CT connections and 
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relationships by identifying specific MK that kindergarten students demonstrated while 

solving CT assessment items and how the students’ MK and the co-occurrences of MK 

CT knowledge related to their CT assessment performance.  

Background to the Problem 

Computational Thinking’s Origins in  
Mathematics Education 

While CT is typically associated with computer science, CT’s roots are steeped in 

mathematics education. CT was first defined by Wing in 2006 as “solving problems, 

designing systems, and understanding human behavior, by drawing on the concepts 

fundamental to computer science” (p. 33). CT’s origins as a potential literacy, however, 

date back to Papert (1972), who described algorithmic thinking, debugging, 

decomposition, and abstraction (classified today as CT components) as ways of 

mathematical thinking. Papert (1980) expanded on these ideas in his seminal book 

Mindstorms and introduced constructionism, a computational theory. Papert used 

constructionism to describe how children can learn mathematics using Logo, a simplified 

computer programming language in which an individual can code a digital turtle’s two-

dimensional movement. He described Logo as an object-to-think-with, and—while 

acknowledging the limitations of 1970s technology—envisioned technologies that would 

evolve to provide increasingly rich environments to engage children in mathematical 

problem solving. Papert informally coined the term computational thinking in 

Mindstorms, and again in a 1996 paper discussing mathematics education using Logo 

(Papert, 1996). 
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Defining Computational Thinking  

CT has been defined in different ways based on the context in which it is used. 

Many researchers draw on the original definition proposed by Wing (2006), however 

more recent definitions and frameworks have evolved through efforts to further 

understand and define CT (e.g., Ehsan & Cardella, 2017; Weintrop et al., 2016; Yadav et 

al., 2014). For the present study, I adopted a definition proposed by Shute et al. (2017), 

defining CT as “the conceptual foundation required to solve problems effectively and 

efficiently (i.e., algorithmically, with or without the assistance of computers) with 

solutions that are reusable in different contexts” (p. 151).  

While Shute et al. (2017) provide an adequately generalized definition, it is 

important to acknowledge that CT is conceptualized uniquely across age groups and 

contexts (e.g., Bers et al., 2019; Lye & Koh, 2014; Shute et al., 2017; Yadav et al., 2014). 

This necessitates adopting a description of CT specific to the present study’s interest in 

early childhood mathematics. The data for this study draws on existing data from a larger 

study called Coding in Kindergarten (CiK; Grant no. NSF #1842116). One of CiK’s 

primary objectives is to operationalize CT in the context of children’s mathematics and 

programming in kindergarten curriculum and assessments (Clarke-Midura, Shumway, et 

al., 2021). CiK’s efforts to fulfill this objective remain ongoing, however preliminary 

findings indicate that CT constructs central to kindergarten CT coding tasks include 

algorithmic thinking, debugging, and decomposition with strong spatial reasoning 

influences (Clarke-Midura, Shumway, et al., 2021; Clarke-Midura, Silvis et al., 2021; 

Shumway et al., 2021). So, in addition to Shute et al.’s (2017) definition, I will adopt the 
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aforementioned constructs to describe CT in kindergarten.  

 
Re-Rooting Computational Thinking in  
Present Mathematics Education Research  

Early childhood research extending on Papert’s vision of mathematics education 

using Logo through the late 1990s yielded mixed results on Logo’s impact for general 

mathematics instruction, however Logo-integrated instruction in geometry and spatial 

sense—specifically—had positive results (Clements & Sarama, 1997). While researchers 

during this period did not have the benefit of CT definitions and competencies, students 

still had to engage with CT to successfully use Logo. For example, using Logo requires 

students to sequence and enter programming code into a computer to achieve an 

objective. Sequencing and writing code are an important part of the CT skill algorithmic 

thinking. Students also use CT skills to break apart tasks (decomposition) and fix 

problems that arise (debugging). So, while Logo-era mathematics education researchers 

did not explicitly examine CT, CT ideas and constructs were an undercurrent of Logo-era 

research and likely influenced children’s engagement with Logo.  

Increased access to technology such as concrete coding toys (Hamilton et al., 

2020) as well as a recent emphasis on implementing CS instruction in K–12 (Smith, 

2016) have revived research interests in mathematics education through coding. The 

increasingly available technologies of today could, arguably, fulfill Papert’s (1980) vision 

of more effective objects-to-think-with to engage children in mathematics problem 

solving. 

Recent research on CT integration with early childhood mathematics instruction 
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has examined the mathematical concepts of patterning (Miller, 2019; Saxena et al., 2020), 

sequencing (Angeli & Valanides, 2020; Città et al., 2019), decomposition (Lavigne et al., 

2020; Rijke et al., 2018), measurement units (Solomon et al., 2015; Sung et al., 2017; 

Welch et al., 2022), and spatial skills (Moore et al., 2020; Palmér, 2017; Strawhacker & 

Bers, 2019). While these research examples paint an important picture of how CT 

integration with mathematics can manifest in early childhood classrooms, these studies 

provide very broad perspectives of how MK and CT might be integrated and support each 

other. What is lacking is an improved understanding of the deep connections between 

MK and CT that can support a meaningful integration of these two domains. Deep 

connections between MK and CT refer to how these domains’ constructs and skills 

emerge independently and in tandem and can be observed via intentional and empirical 

evidence-based examination. While research has recently begun to unearth these MK CT 

connections (Shumway et al., 2021), these efforts are still in their infancy. A recent 

review of CT studies in K–12 confirms that studies explicitly linking MK and CT is 

lacking, more specifically research conducted by education researchers (Hickmott et al., 

2018). Identifying and understanding the specific connections between MK and CT from 

an educational research standpoint can provide important direction for future curricular 

integration.  

Additionally, methods for measuring CT in kindergarten are still evolving, as the 

field is still operationalizing how CT emerges in this population (Clarke-Midura, 

Shumway et al., 2021). Very few validated CT assessments are currently available. In a 

review of empirical research on CT assessments, Tang et al. (2020) reported that only 
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45% of the studies reported on reliability measures, and only 18% on evidence of 

validity. Since assessment is a way of operationalizing domains, and surface connections 

have been repeatedly made between CT and MK, it would be prudent that CT 

assessments for kindergarten consider the MK characteristics of early childhood 

populations to accurately measure a student’s CT ability while attending to related MK 

appropriate for kindergarten-aged students.  

Given that the deeper connections between MK and CT are still unknown and that 

operationalizing CT within an assessment context is still emerging, I argue that a 

necessary step towards understanding the connections between CT and mathematics 

education is to explore the relationship between MK and CT constructs within a CT 

assessment context where children independently demonstrate their knowledge of 

algorithmic thinking, decomposition, debugging, and spatial reasoning.  

Problem Statement 

While research has documented how CT can be integrated in kindergarten 

mathematics instruction, the evidence informing the field of how specific MK relates to 

CT is still scant. Further, we do not know if, and if so how, children’s MK and MK CT 

co-occurrences might relate to their performance on CT tasks.  

The present study sought to fill this gap by identifying children’s use of specific 

MK while engaging in CT tasks. Knowing the specific MK that children indicate in 

interview-based CT assessments can contribute to an understanding of how specific MK 

relates to their CT knowledge, skills, and performance. 
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Study Purpose and Research Questions 

The purpose of this study was to identify specific MK and CT that kindergarten 

students use during a CT assessment and to describe how MK and MK CT co-

occurrences might relate to students’ CT assessment performance. Two questions guided 

this study. 

1. How are kindergarten students’ MK and CT operationalized during a CT 
assessment? In what ways, if any, do MK and CT co-occur? 

2. How do students’ MK and MK CT co-occurrences relate to their performance 
on individual CT assessment items? 

 

Significance of the Study 

The present study’s results have implications for both CT assessment and CT 

curricular design as well as early mathematics and computer science pedagogy. 

Awareness of how the specific MK that students demonstrate during CT tasks will assist 

researchers and curriculum developers addressing CT concepts to develop age-

appropriate tasks for kindergarten-aged students. Researchers developing CT activities 

should be informed of the MK that the target demographic uses while completing CT 

tasks and consider how the expected MK might influence the demographic’s access to CT 

tasks. 

Mathematics pedagogy could likewise be informed by this study. These findings 

could inform mathematics teachers of the MK students will likely apply in CT coding 

tasks and how educators might integrate CT into regular instruction and capitalize on the 

opportunity to leverage the common threads connecting MK and CT. 
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Scope of this Study and Assumptions 

This study’s context was an unplugged, grid-based, agent-oriented CT assessment 

developed for kindergarten students. The assessment items directed students to use a 

coding system (i.e., arrows that represent directions to move the agent: forward, 

backward, right rotation, left rotation) to build and enact programs to direct an agent’s 

movement in a grid space. This study assumed that, within the described context, MK 

and CT are made up of complex constructs that are observable—via an embodied and 

enactivist lens—through students’ gestures, language, and actions on objects. 

Additionally, this study recognized that MK and CT co-occur in foundational ways which 

can impact students’ task access and performance. Each CT assessment item was unique 

and required differing combinations of MK and CT skills to successfully complete it, and 

I anticipated that the variation of MK and CT skills would relate to students’ assessment 

performance.  

Definition of Terms 

Mathematical Knowledge (MK): “A systematic and well-interconnected web of 

mathematical concepts and skills” (Purpura et al., 2013, p. 453). In other words, the 

knowledge part of this is emphasizing broadly the concepts and skills that an individual 

carries and exhibits through language, gestures, and actions on objects. 

Computational Thinking (CT): “The conceptual foundation required to solve 

problems effectively and efficiently (i.e., algorithmically, with or without the assistance 

of computers) with solutions that are reusable in different contexts” (Shute et al., 2017, p. 
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151).  

Algorithmic Thinking: “Developing and using ordered sequences of instructions,” 

(Clarke-Midura, Shumway et al., 2021, p. 18). 

Coding: The act of writing sequential instructions to achieve an objective. 

Debugging: “Recognizing bugs/errors that exist, locating the specific error or bug, 

proposing a fix, and correcting the bug,” (Clarke-Midura, Shumway et al., 2021, p. 18). 

Decomposition: “Recognizing parts in part-whole relationships, building a whole 

from parts, and breaking a whole into parts,” (Clarke-Midura, Shumway et al., 2021, p. 

18).  

Spatial Reasoning: “The ability to recognize and (mentally) manipulate the spatial 

properties of objects and the spatial relations among objects” (Bruce et al., 2017, p. 146).  
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CHAPTER II 

LITERATURE REVIEW 

This study’s query is positioned in kindergarten students’ MK as performed in a 

CT assessment, so this literature review reflects this context. First, I broadly summarize 

the empirical research on kindergarten MK and define and describe the mathematics that 

kindergarten students are expected to know and do. The MK section will also outline 

validated mathematics assessments to measure kindergarteners’ MK, providing further 

evidence of how research operationalizes kindergarten MK. An overview of these 

assessments will provide a context for current mathematics assessment availability and 

practices in kindergarten. 

Next, the research on CT in early childhood settings (preschool, kindergarten, first 

grade; ages 3–7) will be discussed. In this section, I will broadly consider early childhood 

beyond this study’s kindergarten context, as research in this area is still new and reporting 

is limited. This section of the literature review will include the research on assessments of 

early-childhood CT, which will highlight the disparity in validated early-childhood CT 

assessments, providing a case for exploring these assessments as they are being 

developed.  

The subsequent section will describe early-childhood research examining both 

MK and CT across early childhood settings (preschool, kindergarten, first grade; ages 3–

7). This section will also bring attention to the lack of assessments for joint MK CT 

assessment. 

This chapter’s final sections describe the theoretical perspectives of embodied 
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cognition and enactivism and present a conceptual framework highlighting documented 

MK and CT constructs. The presented conceptual framework guided the context for this 

study to examine the MK, CT, and MK CT co-occurrences that kindergarten students 

demonstrate during a CT assessment and how students’ MK might relate to their CT 

assessment item performance.  

Mathematical Knowledge in Kindergarten Classrooms 

Mathematical knowledge is “a systematic and well-interconnected web of 

mathematical concepts and skills” (Purpura et al., 2013, p. 453). Children bring informal 

mathematics knowledge with them when they begin formal schooling which can 

influence children’s integration and perception of formally presented mathematics 

concepts and skills (Purpura et al., 2013). Two generally recognized forms of MK are 

procedural knowledge and conceptual knowledge (Crooks & Alibali, 2014; Kadijevich, 

2018). Procedural knowledge is “the knowledge of procedures… [that are a] series of 

steps, or actions, done to accomplish a goal” (Rittle-Johnson et al., 2015, p. 588). On the 

other hand, conceptual knowledge is understood as “knowledge of concepts, which are 

abstract and general principles” (Rittle-Johnson et al., 2015, p. 588). Supporting earlier 

arguments that procedural and conceptual knowledge are entangled (Baroody et al., 2007; 

Star, 2005), researchers are finding that these knowledge types can influence each other 

(Crooks & Alibali, 2014; Rittle-Johnson et al., 2015).  

The MK that children are anticipated to develop in formal schooling is outlined in 

curriculum standards based in MK research (e.g., Common Core State Standards 
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Initiative [CCSSI], 2010; National Research Council [NRC], 1990). The most recent 

curriculum standards applied by schools across the U.S. are the Common Core State 

Standards of Mathematics (CCSSM; CCSSI, 2010). The CCSSM outlines curriculum 

standards for each grade, levels K–12. The kindergarten standards provide conceptual and 

procedural knowledge goals for students aged 5 and 6 years old. While the extent of these 

standards is outside the scope of this literature review, I focus, instead, on the two critical 

areas (main grade level objectives) outlined by the CCSSM kindergarten standards. 

These include “(1) representing and comparing whole numbers, initially with sets of 

objects; (2) describing shapes and space” (CCSSI, 2010, Kindergarten – Introduction 

section, para. 1). I also summarize the literature on kindergarten measurement learning as 

measurement can serve as an application to connect number, shapes, and space (Battista 

et al., 2017). 

Representing and Comparing Whole Numbers 

The first critical area in kindergarten is centered around understanding and 

operating with whole numbers. Kindergarteners are expected to count objects, compare 

values, and perform basic addition and subtraction operations (CCSSI, 2010). Counting is 

the process of listing number words in a sequence (National Research Council [NRC], 

2009) and “is the first and most basic and important algorithm” (Clements & Sarama, 

2009, p. 22). Many children enter kindergarten being able to count, having developed this 

skill either in preschool or informally in natural environments (Purpura & Baroody, 

2013). Around ages 3 and 4, children demonstrate the ability to coordinate between 

number word lists and counting correspondence when coordinating each number word 
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with a raised finger (Crollen & Noël, 2015) or counting with fingers by pointing to 

objects (Clements & Sarama, 2021). This process is a prime example of conceptual and 

procedural knowledge working in tandem. Counting with fingers and synchronizing 

counting with pointing to objects coordinates the procedural knowledge of a number 

word list with the conceptual and procedural understanding that one number word links 

with each object.  

Research indicates that individual differences in children’s counting predict later 

mathematics achievement (Nguyen et al., 2016) as does children’s ability to count on 

(Wilkins et al., 2021) and represent quantities with numerals (Geary et al., 2018; Vanbinst 

& De Smedt, 2016). By the time children reach kindergarten, children extend upon their 

counting abilities to count and compare larger sets (accurately to 10; Clements & Sarama, 

2021). In addition to representing quantities with number words and numerals, empirical 

studies show the importance of comparing quantities and numbers (Booth & Siegler, 

2008; Clements & Sarama, 2021; De Smedt et al., 2009; Libertus et al., 2011). For 

example, De Smedt et al. conducted a 1-year study to explore the association between 

young children’s number comparison and math achievement. In this longitudinal study of 

47 children (mean age = 6.3 years) in a Belgium school, students were asked to identify 

the larger of two numbers. The number pair shown to students included possibilities 

ranging from 1 to 9. DeSmedt’s research team concluded that students’ number 

comparison abilities, and the speed in which the students compared numbers, predictively 

correlated with students’ later mathematics achievement. Similar to De Smedt et al., 

Libertus et al. verified an association between quantity comparison and children’s math 
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ability. In Libertus et al.’s study examining 3- to 5-year-old children’s (N = 174) quantity 

comparison knowledge, the researchers asked participants to compare two sets of dots 

and identify which set had the most. Study results revealed a correlation between the 

children’s ability to compare quantities and their mathematical abilities.  

Overall, kindergarten students in the U.S. are expected to be able to represent 

quantities symbolically (words and numerals) and compare values both pictorially and 

symbolically (Clements & Sarama, 2021; CCSSI, 2010). Further, children’s counting, 

abstraction of quantity with numerals, and number/quantity comparison are important 

foundations for future mathematical achievement.  

Describing Shapes and Space 

Kindergarten curriculum attends to geometric ideas including shape and spatial 

reasoning (CCSSI, 2010). By the end of kindergarten, children should be able to identify 

two-dimensional (i.e., circle, square, triangle, rectangle) and three-dimensional (i.e., 

cone, cylinder, cube) shapes (Clements & Sarama, 2021) and begin to recognize shapes’ 

intrinsic attributes (i.e., corner, edge, side, orientation) and extrinsic attributes (location 

relative to other objects; CCSSI, 2010; Newcombe & Shipley, 2015). Kindergarteners 

also combine shapes to construct more complex shapes (Clements & Sarama, 2021; 

CCSSI, 2010), which combines students’ understanding of how intrinsic attributes and 

extrinsic attributes can interact.  

Intrinsic and extrinsic characteristics of shapes and other objects entail aspects of 

spatial reasoning, an important thinking process in geometry (Battista et al., 2017). 

Spatial reasoning is “the ability to recognize and (mentally) manipulate the spatial 
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properties of objects and the spatial relations among objects” (Bruce et al., 2017, p. 146). 

Spatial reasoning skills include spatial orientation (situating objects, points, and oneself 

within a space) and spatial visualization (mentally manipulating images). Spatial 

reasoning is considered an essential human skill (Clements & Sarama, 2021) and a 

fundamental element in mathematics (Clements & Sarama, 2011; Davis & the Spatial 

Reasoning Study Group, 2015; Mix et al., 2016).  

Mix et al. (2016) conducted an extensive study of students in kindergarten (N = 

275), third (N = 291), and sixth grade (N = 288) to examine spatial and mathematical 

skills among children in nine communities located in the Midwestern U.S. Results 

indicate that mental rotation was a reliable predictor of kindergarteners’ mathematical 

performance, but mental rotation’s value as a predictor appears to decline at third, and 

then sixth grade. Additionally, spatial skills were a predictor for kindergarten students’ 

performance on new mathematical content, such as calculation. This suggests that, 

particularly in early childhood, spatial skills have a meaningful relationship with 

students’ mathematical performance. 

The CCSSM advises that a majority of instruction time be allocated toward 

number (CCSSI, 2010), however some researchers argue that spatial reasoning, part of 

kindergarten’s second critical area, is under-emphasized in the U.S. (Clements & Sarama, 

2011; Davis & the Spatial Reasoning Study Group, 2015; Resnick et al., 2020; Woolcott 

et al., 2020). The CCSSM standards encourage spatial orientation by calling for 

kindergarteners to use relational language (e.g., above, below, next to, in front of) to 

describe objects’ positioning in the environment. A spatial orientation learning trajectory 
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developed and validated by Clements and Sarama (2009) corroborates the 

appropriateness of relational language for 5- and 6-year-old children and add that 

children at this age can also use relational language in contexts such as referencing basic 

maps. Further, the spatial orientation trajectory indicates that by age 6, children should 

also be able to discuss distance on maps. 

Kindergarten-aged children often use gesture to accompany spatial language 

(Davis & the Spatial Reasoning Study Group, 2015; Ferrara et al., 2011; Yang & Pan, 

2021). A recent study by Yang and Pan examined how young children (ages 3–7) use 

spatial language while playing with blocks. Yang and Pan observed that most of the 

children (N = 228) used gesture in tandem with spatial language and that spatial language 

use increases with age.  

In an extensive meta-analysis, Uttal et al. (2013) reported on 217 vetted research 

studies investigating spatial reasoning training effects. Statistical results conclude that 

spatial skills can be improved through training at any age regardless of gender. Spatial 

reasoning’s malleability has promising implications, as children’s spatial reasoning 

abilities have reliably predicted future STEM achievement (Sorby et al., 2018; Uttal et 

al., 2013).  

Measurement Learning 

Curricular activities exploring measurement in kindergarten include comparing 

objects side by side to describe and compare objects’ measurable attributes (i.e., height, 

size, weight) using comparison language such as more/less or taller/shorter (Clements & 

Sarama, 2021; CCSSI, 2010). Comparing a common attribute of two objects side by side 
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to identify which object has more/less of the attribute extends the whole-number skill of 

comparing quantities. For example, children might compare a set of three triangles to a 

set of six squares and conclude that the set of triangles is the smaller set as three is fewer 

than six. Similarly, students might compare a purple pencil and blue pencil that have been 

aligned side by side with matching endpoints (see Figure 1) and conclude that the purple 

pencil is longer than the blue because the purple pencil extends past the blue pencil. 

Preschool-aged children often recognize that alignment is important to compare objects’ 

lengths but may not be able to explain why (Szilágyi, 2013).  

Figure 1 

Aligned and Misaligned Length Comparison 

 

When presented with misaligned pencils (see Figure 1), children in preschool and 

kindergarten might instead indicate that both pencils are long—thus attributing length as 

a feature of the objects rather than a comparable attribute—or state that one of the pencils 

are longer than the other using either vague explanations or stating that they just know 

(Szilágyi et al., 2013). 

Students later learn to quantitize length measurement by iterating (repeating 

without gaps or overlaps) identical units of measure along the length of an object to be 

measured. Curricular standards (CCSSI, 2010) indicate that students should first measure 
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using non-standard units of measurement (e.g., paperclips, tiles) in first grade then 

standard units (i.e., inches, feet) in second grade. Contrary to current curricular standards, 

recent research indicates that many students enter kindergarten with a basic 

understanding of length measurement (Kotsopoulos et al., 2017; MacDonald & Lowrie, 

2011) and should be taught how to measure using standard units as early as kindergarten 

(Clements & Sarama, 2021; Kotsopoulos et al., 2017). Measurement requires students to 

consider continuous quantities (a unit that can be infinitely divided; e.g., a meter) instead 

of discrete quantities (distinct pieces of a whole; e.g., 5 chairs), which students typically 

begin working with. Working with continuous quantities in measurement is a similar skill 

to working on a number line, as rulers mark whole units equidistant from each other the 

same as number lines do (see Figure 2). Further, rulers and number lines represent 

continuous units, which allow students to consider operations such as addition and 

subtraction as distances from 0, which is typically included on rulers. 

Figure 2 

Ruler and Number Lines as Continuous Quantities 

 

Alternatively, some advocate for a curriculum based in continuous quantities 

rather than beginning with discrete quantities (Davydov, 1975; Doughtry, 2008), which 

would forefront measurement and introduce students to measurement comparison before 
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building toward discrete quantities. This reverse-approach to current practice positions 

mathematical structures (via qualitative measurement comparisons) above discrete 

numeracy as foundational to MK (Venenciano & Dougherty, 2014). Further, this 

approach coincides with number line instruction (Baroody & Purpura, 2017), which is a 

frequent tool used in U.S. mathematics instruction (e.g., Gunderson et al., 2012; 

Obersteiner et al., 2013; Simms et al., 2016). 

 
Assessing Mathematical Knowledge in  
Kindergarten Classrooms 

Mathematics assessments—whether developed by teachers for formative use or 

researchers for mathematics education research—provide insights into how the critical 

areas described above (number, spatial reasoning/geometry, measurement) are 

operationalized. Mathematics assessments informed this study in terms of the 

mathematics knowledge might be observed during the data analysis phase. This section 

will provide a brief overview of validated mathematics assessment for kindergarteners. 

Assessment validity is “the degree to which evidence and theory support the 

interpretations of test scores for proposed uses of tests” (American Educational Research 

Association, American Psychological Association & National Council on Measurement in 

Education [AERA, APA, NCME], 2014, p. 11). An assessment is valid if it has undergone 

rigorous evaluation to prove that it meets the above criteria. The types of mathematics 

assessments discussed in this section include assessments for classroom use and 

mathematics education research. I will provide examples of validated classroom and 

research assessments, then briefly describe the characteristics of these assessments and 
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the mathematical concepts that these assessments measure. This will provide a context for 

current mathematics assessment availability and practices in kindergarten. 

Mathematics Assessments for Classroom Use 

Assessments can be used to inform teachers and education specialists of 

children’s conceptual knowledge for the purpose of mathematics instruction and 

interventions. Some of these validated assessments include the Tools for Early 

Assessment in Mathematics (TEAM; Clements et al., 2011), the Curriculum-Based 

Measurement for Math (CBM; Fuchs et al., 2008), the Number Sense Screener (NSS; 

Jordan et al., 2010), and Individual Growth and Development Indicators (myIGDIs-EN; 

Hojnoski et al., 2009). The CBM and myIGDIs-EN can be used regularly in classrooms 

(e.g., once a week, every other week, quarterly) to track children’s number knowledge to 

inform instruction and intervention design. The TEAM and NSS can be used as 

diagnostic or formative assessments. As is typical of early childhood assessments, all 

these assessments are interview-based, meaning that each assessment is conducted one-

on-one between an instructor and a student. All four assessments use images for question 

items, however only the TEAM uses manipulatives (small movable objects; e.g., plastic 

discs, blocks), for students to respond with. These assessments primarily measure 

children’s performance in comparing quantities, counting, and identifying numbers. Only 

the TEAM assesses spatial reasoning and geometric measurement.  

Mathematics Assessments for Research Use 

Whereas classroom assessments take relatively little time to administer (less than 
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20 minutes) and can be administered by any adult, mathematics assessments for research 

often take longer to give (20 minutes or more) and often have administration 

requirements. For example, the Research-Based Early Maths Assessment (REMA; 

Clements et al., 2019) requires potential administrators to complete and pass 

administration training. The Woodcock-Johnson IV Tests of Early Cognitive and 

Academic Development (ECAD; Schrank et al., 2014) also encourages formal training 

but additionally requires each administrator to hold a bachelors or advanced degree in an 

education-related field (e.g., speech therapy, education, counseling).  

In addition to the REMA and ECAD, other validated assessments for kindergarten 

mathematics education research include the Child Math Assessment (CMA; Klein & 

Starkey, 2006) and Test of Early Mathematics Ability–Third Edition (TEMA-3; Ginsburg 

& Baroody, 2003; Hoffman & Grialou, 2005). Similar to the classroom assessments, 

these assessments are structured as one-on-one interviews between the administrator and 

student. The CMA only uses pictures in administration, whereas the REMA, ECAD, and 

TEMA-3 use both pictures and manipulatives for assessment. All four assessments 

heavily emphasize number skills such as counting, comparing, sequencing, and 

composing/decomposing number. The REMA and CMA assessments address geometric 

measurement. REMA has one item that directly assesses spatial reasoning.  

 
Themes Across Kindergarten Mathematics  
Assessments for Classroom and Research Use 
 

All the assessments adopt an interview-based approach, likely to account for a 

pre-literate population. Additionally, all the assessments use images periodically to 
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support assessment items and half of these assessments use manipulatives (TEAM, 

REMA, TEMA-3, CMA). A common theme across classroom and research assessments 

is the focus on number concepts (see Table 1). This focus mirrors the CCSSM’s emphasis 

of number, but does not fully address spatial reasoning and shape, which are also critical 

areas in kindergarten mathematics (CCSSI, 2010). While spatial reasoning is touched on 

in four of the six assessments, there are very few spatial reasoning assessment items, and 

these items assess spatial reasoning indirectly. For example, the CMA and REMA assess 

length concepts and patterning, however these are limited applications of spatial concepts 

and only address spatial orientation and neglect spatial visualizing, which is only 

measured by the ECAD. One research group is currently working to fill this gap by 

developing a spatial reasoning assessment (Sparks et al., 2021).  

Table 1 summarizes how eight MK kindergarten assessments operationalize 

number, shape, and space. The MK listed in Table 1 provides a summary of what students 

are expected to learn and do in kindergarten and includes skills that were expected to 

emerge in this study’s analysis. 

The table shows that these assessments measure students’ number understanding 

using quantity comparison (e.g., showing two sets of objects and asking which is the 

larger/smaller set), number comparison (e.g., displaying two numbers and asking which 

is larger/smaller), and counting (e.g., asking a child to count a set of objects or images). 

Shape is assessed through shape identification (e.g., asking a child to name a given 

shape) and shape composition (e.g., asking which two shapes when combined will make 

another shape). Space is measured by these assessments using length (e.g., identifying the  
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Table 1 

Skills Assessed by Kindergarten Mathematics Assessments 

 Skills assessed 
──────────────────────────────────────────── 

Assessment Number Shape Space 

Classroom     

Curriculum-Based 
Measurement for 
Math (CBM) 

Counting  
Missing number 
Number identification 
Quantity Comparison 

  

Individual Growth 
and Development 
Indicators 
(myIGDIS) 

1:1 correspondence 
Counting  
Oral counting 
Number naming 
Quantity comparison 

  

Number Sense 
Screener (NSS) 

Counting 
Number combinations  
Number comparison 
Number recognition 
Nonverbal calculation 
Story problems 

  

Tools for Early 
Assessment in 
Mathematics 
(TEAM) 

1:1 correspondence  
Base 10 
Counting 
Form of a number 
Number connections to 

the real world 

 Proportional reasoning 

Research     

Child Math 
Assessment (CMA) 

*Basic operations 
Constructing equivalent 

sets 
Counting 
Number order 
Ordinal number 
Quantity comparison 

Shape identification 
 

Length measurement 
Pattern duplication 
Pattern extension  
Shape transformation 

Research-Based Early 
Maths Assessment 
(REMA) 

*Basic operations 
Counting 
Number composition 
Number decomposition 
Number recognition 
Quantity comparison 
Subitizing 

Shape composition 
Shape identification 
 

Patterning  
Length comparison 
Length measurement  
 

(table continues) 
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 Skills assessed 
──────────────────────────────────────────── 

Assessment Number Shape Space 

Test of Early 
Mathematics 
Ability—Third 
Edition (TEMA-3) 

*Basic operations 
Number comparison 

  

Woodcock-Johnson 
IV Tests of Early 
Cognitive and 
Academic 
Development 
(ECAD) 

Counting 
Magnitude 

representation  
Number line estimation 
Number recognition 
Number sequencing 

  Mental rotation 
Shape size comparison 
Visual patterning 

Note. *Basic operations indicate addition with sums of 20 or less and subtraction from numbers 10 or less. 

 

longer/shorter length, measuring with standard or nonstandard units), patterning (e.g., 

extending or replicating a given pattern), and proportional reasoning (e.g., comparing 

shapes and objects’ sizes). The ECAD assessment is the only assessment to measure 

spatial visualization using mental rotation.  

Computational Thinking in Kindergarten and Connections to Mathematics 

Computational thinking definitions vary widely. As mentioned previously, in the 

present study, I use Shute et al.’s (2017) broad definition of CT as “the conceptual 

foundation required to solve problems effectively and efficiently (i.e., algorithmically, 

with or without the assistance of computers) with solutions that are reusable in different 

contexts” (p. 151). However, in terms of a specific CT model specific to kindergarten-

aged children, I will use the Early Childhood Computational Thinking (ECCT) 

competency model (see Figure 3; Clarke-Midura, Shumway et al., 2021; Clarke-Midura, 

Silvis et al., 2021; Shumway et al., 2021). This is model being developed by a larger  
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Figure 3 

Early Childhood Computational Thinking (ECCT) Competency Model 

 

research project (Coding in Kindergarten [CiK]; Grant no. NSF #1842116) and 

summarizes their operationalization of CT within a kindergarten CT coding context.  

The ECCT (Figure 3) describes the MK (Spatial reasoning, Sequencing, Linear 

units, Rotation on a point, Counting on) and CT (Debugging, Algorithmic Thinking, 

Decomposition) that kindergarten students demonstrate when engaging with CT tasks 

using screen-free robot coding toys. The ECCT was developed within a coding robot toy 

context, which resulted in specific Context Proficiencies (Space-symbol coordination, 

Spatial code meanings, Spatial orientation, correspondence of 1 code : 1 move) that are 

important to students’ success in engaging with the robot coding toys. This model’s 
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circular design highlights the interrelated relationship between—and entanglement of—

the MK, CT, and Context Proficiencies.  

The CT constructs within the ECCT model—algorithmic thinking, 

decomposition, debugging, and spatial reasoning—are summarized in the following 

sections along with a summary of research on each construct and their relation to MK.  

Algorithmic Thinking 

Algorithmic thinking is a problem-solving process of developing a sequence of 

logical steps (Città et al., 2019). This requires an individual to flexibly adapt problem 

solving techniques to a specific problem (Stephens, 2018), which may involve applying 

previously developed algorithms. For example, in mathematics, an algorithm to find the 

area of a square might be (1) measure the length of one side of the square and (2) 

multiply the length of one side by 2. This algorithm could be represented by the formula, 

side x 2 = area. Similarly, in CT coding contexts, an algorithm for instructing a robot 

coding toy to travel around a blocked item might be represented as a sequence of codes 

(see Figure 4). The sequenced codes shown in Figure 4 would instruct a robot to (1) 

travel forward two spaces, (2) rotate 90 degrees right, (3) travel forward two spaces.  

Figure 4 

Coded Directions 
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Children as young as 4-years-old have displayed CT algorithmic thinking skills 

(Lavigne et al., 2020), and evidence suggests that algorithmic thinking skills may be 

developmentally related (Saxena et al., 2020). Saxena et al. developed unplugged CT 

activities for preschool children aged 3–6 to build children’s CT skills in sequencing and 

pattern recognition, which are often associated with algorithmic thinking skills. One 

pattern recognition activity asked students to use differently sized and colored building 

blocks to continue a set pattern. An activity designed to build sequencing skills asked 

students to use a set of pictures depicting story events to order the events by how they 

occurred in the story. The older students performed better in patterning and sequencing 

skills—which are regularly categorized as algorithmic thinking skill—than their younger 

peers. Additionally, Boticki et al. (2018) described a correlation between children with 

stronger mathematics skills and the children’s ability to solve algorithmic CT tasks. In 

this study, Boticki et al. examined 23 first-grader’s performance on CT programming 

tasks and found that not only did students with better mathematics skills perform better 

on CT tasks, but the students also complete the tasks more quickly and with fewer errors 

along the way. 

As a problem-solving process, algorithmic thinking relies heavily on sequencing 

skills (Lavigne et al., 2020; Nam et al., 2019; Saxena et al., 2020), an extensively 

researched connection within MK and CT algorithmic thinking contexts (i.e., Angeli & 

Valanides, 2020; Città et al., 2019; Lavigne et al., 2020; Nam et al., 2019; Saxena et al., 

2020; Sullivan et al., 2017). CT coding tasks have been shown to improve children’s 

sequencing abilities (Kazakoff et al., 2013; Nam et al., 2019; Strawhacker et al., 2013) 
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with evidence of transfer to contexts outside of coding activities, such as sequencing 

events in a story (Sullivan et al., 2017). For example, Nam et al. conducted a quasi-

experimental design and found that kindergarteners who participated in a 12-lesson CT 

coding robotics curriculum (N = 25) outperformed kindergarteners in a comparison group 

(N = 28) in sequencing and problem solving. The treatment group performance showed a 

large effect size for sequencing (p < 0.01; η2 = 0.15) and problem solving (p < 0.01; η2 = 

0.171), indicating that the CT coding curriculum effectively and positively influenced 

students’ sequencing and problem-solving abilities. Another research group exploring 

kindergarteners’ performance in CT coding tasks (Strawhacker et al., 2013), found that 

children using a tangible, screen-free robot toy (N = 15) outperformed students in 

sequencing performance compared to students who used either a strictly digital interface 

(N = 12) or a hybrid digital and tangible interface (N = 7). The findings of both studies 

(Nam et al., 2019; Strawhacker et al., 2013) highlight the positive effects that sequencing, 

which is both an aspect of algorithmic thinking and MK, have on children’s CT 

performance.  

Another important aspect of algorithmic thinking that connects MK and CT is 

abstraction (e.g., Cetin & Dubinsky, 2017; Rich et al., 2019; Rijke, 2018). Abstraction is, 

in essence, a “process of reducing complexity by ignoring irrelevant details in order to 

focus attention on important elements of a problem, situation, or phenomenon” (Rich et 

al., 2019, p. 269). While abstraction has been specifically linked with mathematics-based 

sequencing and patterning (Pasnak et al., 2015; Sung et al., 2017), sequencing and 

patterning skills are equally valued in CT contexts as a part of algorithmic thinking. An 
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example of the most basic, yet foundational MK abstraction, is representing quantities 

with words and digits (Geary et al., 2018). A picture of six apples could be abstracted 

with the statement “6 apples.” A child’s ability to perform this abstraction requires the 

student to not only count the number of apples, but to abstract the quantity of apples with 

the word six and the digit 6. 

An example of abstraction in a CT coding task is representing a sequence of steps 

with syntax aligned to the mechanism being enacted upon. For example, a coding toy 

may abstract (or represent) physical actions (i.e., movements, turns) with arrows, each 

arrow representing an action. In this case, arrows are an abstracted representation of an 

action. This is represented in Figure 4, which shows a sequence of arrows to represent 

movements by an agent. The example algorithm (or set of instructions) pictured in Figure 

4 is abstracted with arrows, each arrow representing a movement. As illustrated in this 

section, abstraction, as well as problem solving and sequencing, have strong similarities 

between CT’s algorithmic thinking and MK.  

Decomposition 

Decomposition takes form in both mathematics and CT as a method to simplify 

tasks by breaking the tasks into manageable portions and work on one portion at a time 

(Wang et al., 2021). Wing (2006) listed decomposition as one of five CT cognitive 

processes, and it remains an essential aspect of current CT practices and frameworks 

(e.g., Shute et al., 2017; Wang et al., 2021).  

Recent research has used CT as a mechanism to support and build upon natural 

experiences of embodiment by exploring repeating units (represented by program codes) 
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in CT coding tasks. Young children have decomposed CT programming tasks into smaller 

subtasks (i.e., Angeli & Valanides, 2020; Lavigne et al., 2020; Rijke et al., 2018), 

demonstrating that children can use decomposition as a problem-solving tool for complex 

tasks. Students have also used decomposition to self-scaffold in CT coding tasks by 

coding one movement or action (a unit) at a time (Angeli & Valanides, 2020; Sung et al., 

2017) rather than multiple codes at a time. Angeli and Valanides studied 50 kindergarten 

students’ interactions with CT coding tasks and observed students frequently 

programming a robot one movement at a time. Angeli and Valanides contend that coding 

one movement at a time provides evidence of students’ abilities to decompose a complex 

task into smaller pieces to achieve the larger objective.  

While decomposing to the individual unit is a less efficient strategy, this 

decomposition method is a logical starting point when constructing more efficient 

decomposition strategies, such as chunks of similar steps. For example, if a CT coding 

task requires a child to program a coding toy to travel in the shape of a square, the child 

might recognize the pattern of linear and rotational movements so that, rather than coding 

each forward and rotate movement at a time, the child can consider a forward and 

rotation as one chunk, then repeatedly code that chunk as many times as is necessary to 

accomplish the task.  

Debugging 

An important CT skill in coding contexts is identifying and fixing developed or 

existing errors (Città et al., 2019). CT’s term for this process is debugging. Debugging 

can be accomplished by working forward or backward from specific points in a problem 
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to distinguish the correct from incorrect to identify and fix the “bug” or error (Lavigne et 

al., 2020). The Computer Science Teachers Association (CSTA; 2017) developed 

computer science standards for the U.S. The CSTA highlight debugging as part of their 

sixth core practice, testing and refining computational artifacts. This practice is written to 

span K–12, with note that younger students may first exercise debugging practices using 

trial and error.  

Research engaging early childhood populations in CT suggest that children can 

improve their abilities to debug. For example, García-Valcárcel-Muñoz-Repiso & 

Caballero-González (2019) conducted a quasi-experimental study with 3- to 6-year-old 

students (N = 131) in which the treatment group received six CT coding robotics lessons. 

While the control group made limited gains in every other area, this group did not make 

gains in debugging. The treatment group, however, made statistically significant gains in 

every area, including debugging. This indicates that the students improved their 

debugging capabilities after engaging in coding robotics lessons.  

Additionally, an instructor can provide debugging scaffolds to increase young 

children’s debugging efficiency and success (Silvis et al., 2021). Silvis et al. analyzed 48 

kindergarteners at three different schools engaging in CT coding lessons using robot toys. 

This group observed 472 bugs presented across the 30 hours of video. They concluded 

that tangible, screen-free coding toys lend themselves toward opportunities to debug not 

only as authentically arising programming errors as student sequence code, but also bugs 

due, in part, to the mechanical nature of the robot toys. Silvis et al. illustrated how 

teachers scaffolded programming debugging situations with guiding questions and 
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scaffolded mechanically influenced bugs by guiding students on how to use and maintain 

the coding toys correctly.  

Spatial Reasoning 

While spatial reasoning is rooted in early Logo work (e.g., Clements & Sarama, 

1997; Papert, 1980), spatial reasoning was not included as a construct in the first CT 

definition (Wing, 2006). Recent empirical studies link CT coding tasks with improved 

spatial skills, including children’s improved use of directional language and ability to 

abstract directional movement with corresponding symbols (Palmér, 2017; Rijke et al., 

2018). Research evidence also indicates that spatial skills, such as using relational 

language, can be difficult for children as young as ages 3 and 4, however these skills 

noticeably improve by ages 5 and 6 (Saxena et al., 2020). Another study observed age-

specific errors, suggesting that levels of cognitive development may be a factor in 

children’s spatial reasoning abilities (Strawhacker & Bers, 2019). This evidence suggests 

that spatial reasoning is, in part, developmental and correlates with research suggesting 

that mental rotation (a spatial visualization skill) is also developmental factor in young 

children (Città et al., 2019). Given this evidence that spatial reasoning is developmentally 

influenced, it follows that it would impact children’s performance on similar tasks.  

For example, researchers have used maps and grids in joint MK CT research 

(Moore et al., 2020; Palmér, 2017; Rijki et al., 2018; Saxena et al., 2020). Second graders 

and preschoolers have transferred paths from a small paper map to a larger representation 

of the map on which a coding toy would travel (Moore et al., 2020; Rijki et al., 2018). 

The preschoolers struggled with the translating across maps compared to the second-
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grade students (Moore et al., 2020), however the preschoolers improved their success 

rates by adapting the task. Children adapted tasks by reorienting themselves, using 

gestures, and physically moving objects to help themselves translate between a smaller 

and larger map (Moore et al., 2020). This suggests that while spatially-situated map tasks 

can be difficult for younger children, these children can improve their performance by 

scaffolding tasks independent of teacher intervention.  

Saxena et al. (2020) explored young children’s activities with coding toy robots 

on grids and found that while students aged 4- to 6-years-old struggled with precise 

spatial language (i.e., turn right, forward, turn left) when using the robot, the students 

could represent spatial thinking using pictures of directional arrows, which helped the 

students sequence the arrow codes and solve complex tasks. Further, by manipulating 

directional arrow cards, students mediated their developing understanding of spatial 

directional language with pictorial representations.  

Assessing Computational Thinking 

Attempts to measure CT constructs in early childhood have taken form in rubrics 

(Angeli & Valanides, 2020; Dickes et al., 2020; Lavigne et al., 2020; Miller, 2019; 

Saxena et al., 2020) and pre- and post-assessments (Angeli & Valanides, 2020; Miller, 

2019), however few of these measures have been validated using a large population 

(Tang et al., 2020). One CT assessment—TechCheck—has been extensively validated for 

early childhood populations (Relkin et al., 2020). TechCheck is a an unplugged, 15-item 

interview-based CT assessment designed for 5- to 9-year-old children. Each item shows 

students a main image with four multiple-choice options. The items are designed to 
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measure students’ understanding of algorithms, debugging, representation (abstraction), 

modularity (decomposition), control structures, and programmable objects. My proposed 

dissertation study on the CT components of algorithms, debugging, and decomposition 

with the inclusion of abstraction as part of algorithmic thinking, so the following section 

will describe how TechCheck operationalizes these constructs.  

TechCheck operationalizes algorithms using items to measure students’ ability to 

extend a six-item pattern, sequence four events, and identify the shortest path in a grid-

based puzzle. Decomposition is measured by asking students to identify which collection 

of shapes could be used to recreate a simple image. An item measuring abstraction 

provides students with a key for what each symbol represents, then asks students to 

interpret what a string of symbols would represent. A debugging item asks students to 

problem-solve how to make a see-saw work by positioning the fulcrum and riders 

symmetrically.  

As a part of the Coding in Kindergarten research team, I assisted the development 

of a CT assessment for kindergarten-aged students (Clarke-Midura, Silvis, et al., 2021). 

To assess algorithmic thinking, we developed assessment items in which children used 

paper arrows to program a moveable agent to move across a paper-based grid (Clarke-

Midura, Silvis, et al., 2021). For example, the assessor asks the child to use the arrows to 

show how to direct the movable agent (i.e., a bug) from a start square on the grid to an 

indicated end square. We used an Evidence Centered Design approach to develop the CT 

assessment (Clarke-Midura, Silvis, et al., 2021) and found that—because of the 

assessment’s tangible and unplugged design—spatial reasoning is a key component of the 



35 
 
algorithmic thinking assessment items.  

While there has been a recent call for domain-specific CT assessments such as CT 

within science or mathematics (Tang et al., 2020), these have yet to be developed. This is 

likely due to the field’s emerging understanding of how to measure CT and how specific 

domains support CT. This study attempted to partially address this gap by identifying 

how kindergarteners’ MK might relate to their CT assessment performance. In doing so, 

the present study informs the field about how specific MK is associated with CT tasks 

and constructs as well as how MK and CT constructs co-occur.  

Summary: Mathematical Knowledge Computational Thinking Connections and 

Co-Occurring Concepts in Kindergarten 

While decades of research on early childhood MK exist, research on early 

childhood CT is still emerging. Even more nascent is the theoretical and empirical 

research on connections and co-occurring concepts between MK and CT (e.g., Rich et al, 

2019; Miller, 2019; Shute et al., 2017). The MK literature provided an overview of how 

number, shape, space, and measurement are operationalized in kindergarten classrooms. 

According to the MK literature, students’ ability to represent number abstractly in symbol 

and words, as well as comparing values, is an important predictor of later achievement 

(Booth & Siegler, 2008; De Smedt et al., 2009; Libertus et al., 2011). In kindergarten, 

students experience geometry by naming, classifying, and constructing shapes while 

attending to shape attributes (Clements & Sarama, 2021). While geometry and spatial 

skills appear to be underrepresented in MK instruction (Battista et al., 2017), spatial skills 
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are a predictor of early childhood mathematical performance (Mix et al., 2016). 

Kindergarten children can use spatial relational language (i.e., next to, behind) and maps 

to build spatial orientation and visualization abilities (Clements & Sarama, 2021). 

Kindergarten students engage with measurement by using comparison language (i.e., 

longer/shorter, heavier/lighter) to describe objects’ measurable attributes (i.e., weight, 

distance, length). Measurement comparison and description is treated as a precursor skill 

to formal measurement instruction in first and second grade, wherein students learn to 

iterate standardized units of length measurement (CCSSI, 2010). It has been argued, 

however, that kindergarten students are capable and eager for formal measurement 

instruction (e.g., Kotsopoulos et al., 2017; Szilágyi et al., 2013). Similar to space and 

shape, measurement instruction takes a backseat to number instruction in U.S. 

kindergarten classrooms, however some argue that space, shape, and measurement could 

be used as a foundational element in early childhood MK instruction (e.g., Doughtery, 

2008; Venenciano & Daughtery, 2014).  

The CT literature describes how algorithmic thinking, decomposition, debugging, 

and spatial reasoning are operationalized in kindergarten and early childhood classrooms. 

The CT algorithmic thinking literature highlights how patterning, sequencing, 

abstraction, and spatial reasoning are used within a CT coding context (Clarke-Midura. 

Shumway, et al., 2021; Relkin et al., 2020). In this vein, algorithmic thinking and MK 

share similar features, which is where I anticipated to find deep MK and CT connections. 

For example, abstracting robot movements to signs and symbols, such as representing 

one forward movement with a picture of a straight arrow, is similar to kindergarteners 
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abstracting quantities with number words and digits. Additionally, students associating a 

robot’s linear movement in space with a corresponding symbol expands on students’ 

development of spatial language and spatial representational skills, another early 

childhood skill.  

Decomposition in CT coding tasks is likewise connected with MK. For example, 

kindergarten students sequencing programming code might code individual units of 

movement at a time to achieve an objective (Angeli & Valanides, 2020). This requires 

students to recognize that the individual parts, when combined, create the whole program. 

Understanding that a whole is made up of parts is an important component of 

kindergarten number sense (Hunting, 2003).  

The CT literature section also highlighted how spatial skills are particularly 

relevant to CT coding contexts, especially within a physical space. Using spatial 

directional (i.e., forward, turn right) and sequencing (i.e., first, then, next) language 

expands on kindergarten curriculum standards which encourage students to use spatial 

relational language (i.e., next to, in front of) to express objects’ relative location 

(K.G.A.1; CCSSI, 2010) 

The CT literature suggests that algorithmic thinking, decomposition, and spatial 

skills may have the most synergistic connections with MK, and these domains are where 

I hypothesized that algorithmic thinking, decomposition, and spatial skills play especially 

significant roles in early childhood MK CT research.  
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Theoretical Perspectives in Mathematical Knowledge Computational  

Thinking Research 

Commonly utilized theories exploring young children’s MK CT connections 

include embodied cognition, Bruner’s (1961) modes of representation theory, and 

sociocultural theory. Following with previous MK CT research adopting embodied 

perspectives (Città et al., 2019; Moore et al., 2020; Sung et al., 2017) and enactivism 

(Francis et al., 2016), this study applies a joint embodied cognition and enactivism 

theoretical perspective. Embodied cognition and enactivism are described below with 

rationales of how these theories informed the present study.  

Embodied Cognition 

In describing human cognition, Campbell (2010) states that “every subjective 

sensation, memory, thought, and emotion—anything at all that any human being can ever 

experience—is in principle enacted in some objective, observable way as embodied 

behavior” (p. 313). Embodied cognition theory views a person’s biological body and 

brain (cognition) as separate yet interconnected within an environmental context (Davis 

& Francis, 2020). By viewing cognition as an independent entity of the body, one is 

thereby viewing knowledge in isolation and seeing knowledge as something that can then 

be applied through gesture and environment. Of particular relevance is an embodied 

cognition perspective that views cognition as grounded in bodily systems and situated 

activity (Núñez et al., 1999). An embodied cognition perspective considers cognition as 

grounded in bodily systems and situated activity.  
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Three threads of embodied cognition theory are applicable to in mathematics 

education research (Reid, 2014). These threads include neuroscientific approaches 

(applying tools such as brain scans and eye-tracking technology; e.g., Kiefer et al., 2017; 

Kucian et al., 2011; Sprenger & Bez, 2020), mathematical metaphors (understanding 

concepts through embodied metaphors; e.g., Arnoux & Soto-Andrade, 2019; Gallagher & 

Lindren, 2015), and gesture (bodily movements; e.g., Congdon et al., 2018; Cooperrider 

et al., 2016; Walkington et al., 2019). The gesture thread is most pertinent to the present 

study. This thread of research uses embodied cognition theory in mathematics education 

research and typically involves investigations about how children use gestures and how 

gesturing can impact learning.  

In a study investigating how gesture-based instruction influences length-

measurement learning compared to instruction favoring interaction with objects, 

Congdon et al. (2018) discovered that young children’s preexisting levels of length 

understanding was a factor in the student’s ability to learn from gesture-based instruction. 

Students with a more advanced understanding of length measurement outperformed 

students with a rudimentary understanding of length measurement in gesture-based 

instruction. The research team hypothesized that this is due to an increased level of 

abstraction required for interpreting gestures as opposed to action-on-objects based 

lessons.  

Another study about gesture within an embodied cognition framework explored 

children’s engagement with CT coding tasks using maps (Moore et al., 2020). This 

research team observed second-grade students using gesture, object manipulation, and 
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language simultaneously to solve the tasks. As the tasks increased in difficulty, the 

students appeared to increasingly rely on gesture, object manipulation, and language to 

reduce extraneous cognitive load. 

Both studies emphasize the connection between spatial reasoning and gesture 

(Congdon et al., 2018; Moore et al., 2020). Moore et al. suggested that gesture and 

movement might support students’ spatial reasoning development. Abstraction is also a 

common theme as each study situated gesture as a high-level form of abstraction and tool 

to assist students’ sense-making.  

Similar to these studies, the present study on students’ use of MK during a CT 

assessment necessitated an embodied cognition perspective as gesture is a spatial 

abstraction of knowledge and informed my interpretation of students’ gesture, language, 

and actions on objects as MK indicators. The research questions in this study were 

addressed by observing children’s mathematical behaviors (i.e., gestures, language, 

actions on objects) as the students interact with CT assessment items. Embodied 

cognition theory informed my interpretation of children’s enactment of assessment items 

and permitted me to interpret the participants’ actions as their MK embodied. However, 

because this research query investigated children’s engagement in a novel context (one-

on-one with administration with an assessor; unique CT assessment materials) and 

embodied cognition focuses on knowledge through previous actions (Khan et al., 2015), 

an additional theory was necessary to account for the novel context of students’ 

interactions with assessment materials and situations that the students have not previously 

encountered. Enactivism was used to address the study’s novel context. 
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Enactivism 

Similar to embodied cognition theorists, enactivists view cognition as biological, 

nested within and inseparable from the knower’s biological body (Li et al., 2010). This 

assertion draws, in part, from biological science which reports that learning produces 

physical changes in the brain (Doidge, 2007). Whereas embodied cognition is the 

enaction of learned knowledge, enactivism is “learning in action” (Khan et al., 2015, p. 

272) or knowledge-as-action (Davis, 1996). What a person perceives is what is known, 

and enactivism sees knowledge as performative. Thus, knowledge is inseparable from 

doing (Brown & Coles, 2011). Further, enactivism considers the environment as not just 

an extension of cognition, but a part of it. This nondualistic theory holds that cognition, 

the body, and one’s environment are inseparable.  

Enactivism positions the knower as inseparable from the known; the known being 

the makeup of knowledge an individual can enact within an environment (Maheux & 

Proulx, 2015). Enaction itself, however, is a transformative process of embodied 

understanding (Davis & Francis, 2020), so the very act of enacting knowledge will 

further transform the knower and the known. Enaction is likewise transformative to the 

environment as the environment is inseparable from the knower (Li et al., 2010). 

Enaction is observable through a person’s “facial expression, posture, movement, [and] 

gestures” within an environment (Gallagher, 2017, p. 42). As such, an observer watching 

a child enact an assessment item is not seeing a product of the child’s knowledge, but the 

child actively knowing in their actions (Maheux & Proulx, 2015). 

Enactivism considers learning as an active exercise of experiences and 
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exploration rather than knowledge acquisition (Li et al., 2010). The enactivist 

interpretation of learning as action highlights enactivism’s positioning of the knower as a 

dynamic vessel of cognition, body, and environment rather than centralizing knowledge 

in cognition. For example, an enactivist-minded instructor teaching a pair of 

kindergarteners how to code a robot to navigate to a destination three spaces forward 

might organize a play-based opportunity wherein the students attempt the task through 

exploration with a robot and its coding mechanisms. The teacher would expect the 

students to learn that one forward code correlates with the robot moving forward one 

space (a one-to-one code/movement relationship) by engaging with the robot, its coding 

mechanisms, and discussing observations with each other (cognition/body/environment). 

An enactivist observer would interpret an individual’s actions as a transformative 

coordination of the individual’s cognition and body within an environment, so the 

enactivist-minded teacher would monitor the students’ discussions and enactions to 

interpret each student’s knowledge of a forward code’s relationship with the robot’s 

movement. The teacher would also understand that individuals are dynamic, so 

knowledge observed in the moment will change with additional experiences. In response 

to this, the teacher would engage the class in similar activities to further develop the 

children’s knowledge of equality through engaging learning experiences.  

In an assessment setting, such as this study’s context, an enactivist observer would 

consider all assessments as formative in that, according to enactivist theory, knowledge is 

dynamic and never stagnant. Further, an enactivist would interpret a student’s action 

within an assessment as indicative of the student’s evolving knowledge being expressed. 
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For example, when asked to select a directional arrow to make a movable agent rotate 

right a student might look at the agent before selecting an arrow. An enactivist might 

interpret the student’s gaze before selecting an arrow as an indication of the student 

learning how to interpret the assessment instruction within the assessment space.  

Enactivism is rooted in Merleau-Ponty’s (1964) phenomenological work and 

Bateson’s (1972) biological perspectives. Enactivism was formally conceived by Varela 

et al. (1991) in The Embodied Mind, in which the authors contend, in part, that our 

consciousness is a developing relationship with our environment so that our bodies are 

fluid products of our joint biology and lived experiences. Later work by Davis (1996) 

applied enactivism to mathematics education. Using an enactivism perspective, Davis 

urges a reduction in dichotomic thinking so far as it is pragmatic to do so. For example, 

he argues that separating the mind/body, knower/known, thinking/doing, or self/other is 

not always in the learners’ best interests, and urges readers to acknowledge the 

connections among these seemingly unique constructs (i.e., knower/known). An example 

of enactivism framing MK research related to this review is Città et al.’s (2019) work 

exploring mental rotation within a CT coding context. This study examined 6- to 10-year-

old students (N = 92) as they engaged in CT coding curriculum. Città et al.’s curriculum 

reflected an enactivist approach using interactive activities and social experiences that 

sought to actively engage the mind-body-environment connection highlighted in 

enactivism. This study, however, did not frame the results within an enactivism 

perspective, which could have reinforced the study’s theoretical positioning.  

Francis et al. (2016) applied enactivism to a explore spatial reasoning within a CT 
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coding context. Their study examined 9- and 10-year-old students (N = 18) as they 

programmed robots. Conversely with the Città et al. (2019) study, Francis et al. used 

enactivism to interpret how students employed spatial reasoning to engage with and learn 

coding concepts. For example, the researchers described how, while programming on a 

computer, a student curls her fingers, swings her legs in, and leans forward while adding 

a code to a programming sequence. The researchers gave additional descriptions of how 

student positioning, gestures, and movement coincided with programming activities. In 

this way, the authors effectively used enactivism to describe how students engaged their 

mind-body-environment connection to accomplish CT coding tasks using spatial 

reasoning. 

While the present study’s context is situated in CT assessment, and enactivism 

centralizes learning as doing, I used an enactivist lens to account for novel context of an 

assessment, for which embodied cognition does not provide. Because the CT assessment 

uses tools and activities different from what students had previously engaged with in 

curriculum activities, the assessment context required an enactivist lens to account for the 

novel nature of the assessment. Thus, embodied cognition informed my interpretation of 

students’ gesture, language, and interaction with the CT assessment as evidence of 

existing MK while enactivism accounts for the unique context of an assessment wherein 

the student is actively learning how to engage in novel tasks. Embodied cognition 

provides a useful lens for understanding the kindergarteners’ knowledge as performed, 

while enactivism views knowledge as performative. This dual-lens is particularly 

important in kindergarten, as much of students’ knowledge is in transition, hence using 
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two theoretical lenses accounted for both knowledge as performed and knowledge-in-

action. These perspectives informed my interpretation of students’ performance on CT 

assessment items.  

Conceptual Framework 

The CT Assessment Item Performance Conceptual Framework (CT-AP; see 

Figure 5) is based in evidence connecting MK and CT (i.e., Clarke-Midura, Shumway, et 

al., 2021; Miller, 2019; Rich et al., 2019; Shumway et al., 2021; Weintrop et al., 2016) 

and depicts a child’s application of MK, and CT skills to solve CT assessment items. This 

framework is specific to kindergarteners’ assessment item performance within a CT 

coding context. The literature review situated this study in current literature by 

synthesizing recent research within MK and CT early childhood research and related 

assessment methods. The literature review also drew connections between MK and CT to 

inform this study as to how MK and CT might co-occur within a CT assessment context. 

The CT-AP depicts the MK, CT, and co-occurring MK CT knowledge that a 

kindergartener was expected to indicate as the student interacted with the CT assessment 

items. 

The framework constructs (shown in Figure 5) include MK, CT, the expected MK 

CT co-occurrences, and the environment. Each construct is informed by embodied 

cognition, enactivism, and early childhood research in MK and CT. The triangle’s wide 

base represents the entirety of a student’s MK and CT knowledge. The narrowing at the 

top represents the knowledge that the child finds relevant and demonstrates while  



46 
 
Figure 5 

Computational Thinking Assessment Item Performance Conceptual Framework (CT-AP) 

 

interacting with a CT assessment item. The yellow shaded area (left section of the 

triangle) represents a child’s possible MK (CCSSI, 2010; Clements & Sarama, 2021) and 

the blue shaded area (right section of the triangle) represents the anticipated CT skills that 

students would indicate (Clarke-Midura, Shumway, et al., 2021; Shute et al., 2017). The 

present study was situated in the framework’s yellow (MK) and green (MK CT) sections, 

in considering the connections and relationships between MK and MK CT that students 
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use when solving CT assessment items (building from Shumway et al., 2021). Using a 

dual embodied and enactivist perspective I examined the MK and CT that students 

indicated during an assessment and how students’ MK and MK CT co-occurrences might 

relate to students’ CT assessment item performance. In Chapter III, I outline the methods 

used to conduct this study.  
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CHAPTER III 

METHODS 

The purpose of this study was to operationalize kindergarten students’ use of MK 

and CT during a CT assessment and understand how kindergarten students’ MK and MK 

CT co-occurrences might relate to their CT assessment performance through the 

theoretical lenses of Embodied Cognition and Enactivism. This study employed 

qualitative methods across three sequential phases:  

Phase 1. Identified the mathematical knowledge (MK) and computational thinking 
(CT) that kindergarten students demonstrated during a CT assessment;  

Phase 2. Explored the co-occurrences of MK and CT; and  

Phase 3. Developed case studies of assessment items and conducted a subsequent 
cross-case analysis to examine in what ways students’ MK and MK CT 
co-occurrences related to their CT assessment item performance.  

I used existing video data of kindergarten students engaging with CT assessment 

items and the students’ subsequent assessment results during all three phases of the study. 

Research Context for Existing Data: Coding in Kindergarten 

This study drew on existing data from a larger study called Coding in 

Kindergarten (CiK; National Science Foundation Grant #1842116). The CiK research 

team developed and piloted curriculum tasks and assessment items with kindergarten 

students at Title I elementary schools in the western U.S. to investigate early childhood 

computational and mathematical thinking using commercially available robot coding toys 

(Clarke-Midura, Shumway, et al., 2021). Coding lessons engaged small groups of 

students in programming tangible robot coding toys (e.g., Cubetto and Botley toys) to 
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travel to and from various locations on large floor grids. The design-based research 

around these curriculum tasks served to operationalize CT in early childhood and develop 

an early childhood CT assessment. While the curriculum was developed to use coding 

toys in small-group settings in the classroom, the assessment was not connected to coding 

toys and was designed to assess CT more broadly using similar activities in a 

standardized one-on-one interview-style settings with unplugged coding materials (i.e., 

paper arrow codes and non-robot moveable agents). As a Graduate Research Assistant for 

the CiK research team, I participated in all aspects of this research: developing and 

testing curriculum, operationalizing CT, and designing and piloting the assessment. 

One of CiK’s primary objectives is to develop a CT assessment for kindergarten-

aged students (Clarke-Midura, Silvis, et al., 2021), and it is this assessment that served as 

the context for this study. Figure 6 depicts the CT assessment development piloting 

process from conception until the data set used for this study. We designed the assessment 

using evidenced-centered design and piloted and tested using it using design-based 

research methods (Clarke-Midura, Silvis, et al., 2021).  

I examined the video data and score sheets collected for pilot assessment C 

(highlighted in blue in Figure 6), the most recently piloted version available at the time 

the present study began. This data set was chosen as it was, at the time, the most 

developed version of the CT assessment. The data set included 15 hours of video data 

documenting 60 students and their accompanying score sheets. These sources will be 

described in the Data Sources section. 
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Figure 6 

Computational Thinking Assessment Pilot Process 

 

Justification for Use of an Existing Dataset 

I selected this dataset since I had collected the data with the CiK team and, in 

collaboration with the CiK project’s Principal Investigators, determined a reanalysis of 

the dataset would support the project broadly, yet be unique to the dataset’s initial 

assessment-development purpose. While the CiK team also used this dataset for grant-

related research, the research objectives and theoretical perspectives of the CiK research 

and the present study are distinct. According to the American Psychological Association 

(APA, 2019) “it is not considered duplicate publication to reanalyze already published 

data in light of new theories or methodologies, if the reanalysis is clearly labeled as such 

and provides new insights into the phenomena being studied” (p. 18). The remainder of 

this section will detail how the present study met the APA guidelines for reanalyzing 

already-published data.  

This study examined students’ MK and CT separately and together within an 

assessment context. Examining MK and CT within an assessment environment provided 
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a better understanding of MK and CT in early childhood, as the interview-based 

assessment video data provided a rich look into students’ independent interaction with CT 

tasks (compared with collaborative interaction during the small-group lessons with robot 

toys in curriculum tasks in other components of the CiK project). The assessment video 

data also permitted me to document how the students interacted with CT tasks, thus 

moving beyond the correct/incorrect assessment outcomes to witness how students 

indicated MK and CT.  

My use of existent data is also different from the CiK project’s use as I interpreted 

the data using a unique theoretical lens (enactivism) and generated new insights into the 

mathematical aspects of students’ engagement in the CT assessment. Analyzing this 

dataset with a joint embodied cognition and enactivist lens expanded the CiK team’s use 

of embodied interpretations while an enactivist lens provided a unique perspective of how 

students interacted with the assessment as a tool for which students had no previous 

instruction. An enactivist lens contributes to the field’s theoretical understanding of how 

young children indicate MK and CT knowledge through gesture, language, and 

interaction with the environment through actions on objects. 

Whereas our CiK team used the assessment video dataset for assessment-

development purposes using an Evidence-Based Design approach (Clarke-Midura, Silvis, 

et al., 2021), I used the video data in this study to examine the content connections 

between MK and CT. This study builds on the CiK team’s previous work with a 

curriculum video dataset that investigated students’ application of MK and CT in a small-

group collaborative problem-solving context (Shumway et al., 2021). My study extends 
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this work by focusing on how students’ MK and CT knowledge are connected when 

students engage with CT tasks independently. This further appropriated using the 

intended dataset as outlined in this study.  

Research Design with Existing Data 

To examine how kindergarten students indicated MK and CT and examine how 

their MK and MK CT co-occurrences might relate to their CT assessment item 

performance, I used a sequential, three-phase qualitative design in which the findings of 

research question 1 informed the subsequent analysis of research question 2. A qualitative 

design was appropriate as I conducted an inductive exploration to build a greater 

understanding of MK and CT connections. The three analysis phases will be discussed in 

more detail in the subsequent sections.  

The focus of this design was to observe students’ interactions with the assessment 

items as well as students’ assessment outcomes. The CT assessment’s highly interactive 

design permitted me to observe how individual students indicated specific MK and CT. 

This study’s units of analysis included the student being assessed and the CT assessment 

items. Data analysis at the student level addressed research question 1, while analysis of 

data at the assessment item level addressed research question 2. The following sections 

describe the participants and setting, data sources, acquisition of the dataset, and data 

collection procedures before describing the data analysis. 

Participants and Setting 

The assessment video data for this study included 60 kindergarten students (33 
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females, 27 males) from four classes located at one Title I public school in a semi-rural 

community in the western U.S. The majority of students (33) were Caucasian. Other 

ethnicities represented include Asian/Pacific Islander (2), Hispanic/Latinx (3), Native 

American (1), and mixed/other ethnicities (2). Nineteen of the parents chose not to report 

their child’s ethnicity. These demographics were similar to the school’s demographics, as 

71% of the school’s student population identified as white and 29% identified as from a 

minoritized group, 77% of whom were Hispanic/Latinx.  

The students attended one of four classes at this school. One teacher taught half-

time to an afternoon group, another taught two half-day kindergarten sessions, and the 

third teacher taught a full-day kindergarten class. The students at this school participated 

in the three rounds of assessment, not the curriculum portion of CiK’s research. The 

classroom teachers, however, taught CT on their own using unplugged activities such as 

the Turtle Robots board game and used coding robot toy activities similar to those in our 

curriculum research.  

We worked closely with all three kindergarten teachers to coordinate three pilot 

testing iterations, each spaced about two months apart. We administered the assessment 

to the same students for each round. We did not provide performance feedback to 

students either during or after the assessment. A few of the assessment items were similar 

across assessment iterations.  

Data Sources and Collection Instruments 

This study’s two data sources were collected concurrently and included 

audio/video footage of kindergarten students engaging with the CT assessment (Pilot 
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Assessment C in Figure 6, N = 60) and the assessment results from the same students (N 

= 60). Each video was about 15 minutes long and depicted a CiK researcher 

administering the CT assessment to a kindergarten student. Both the administrator and 

student sat at a table as the student manipulated assessment materials (i.e., arrow cards, a 

movable agent, pencil) in response to each assessment item.  

Materials used for data collection included video cameras and assessment scoring 

sheets (see Appendix B). Additional items for data collection included the assessment 

materials (Clarke-Midura, Silvis, et al., 2021), tripods, backup batteries, battery chargers, 

memory cards, and extension cords.  

The two data collection instruments for this study were a pilot CT assessment and 

its accompanying score sheets. The data sources (audio/video footage, assessment results) 

and collection instruments (CT assessment, assessment scoring sheets) were 

interconnected in such a way that they will be described in tandem below.  

Computational Thinking Assessment  

The assessment consisted of 27 items assessing the CT skills of spatial reasoning, 

algorithmic thinking, debugging, and decomposition (see Appendix C for Pilot 

Assessment C; Clarke-Midura, Silvis, et al., 2021). Our CiK research team constructed 

the assessment items for the purpose of examining young children’s computational 

thinking. We made assumptions that spatial reasoning and other mathematics knowledge 

and practices were implicit in the assessment tasks due to the spatial nature of the 

environment (i.e., moving an agent within a grid space) and the need to count movements 

and codes. Our CiK team developed the CT assessment while simultaneously 
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operationalizing CT, however the assessment items I examined measure the CT 

subcomponents described in the Data Analysis Section. 

Materials used for assessment administration are pictured in Figure 7. The CT 

assessment materials include a program organizer for students to build programs (Figure 

7, a), programing codes represented as arrows (b), a movable agent (c), paper grids 

specific to each task (d), an administration script (e), program sequences for specific 

items (f), and a scoring sheet (g).  

Figure 7 

Assessment Materials 

 

Note: A researcher administering the CT pilot assessment with the labeled assessment materials. Image 
adapted from Clarke-Midura, Silvis, et al., 2021, Figure 3.  

 

Figure 7 contains a screenshot of actual assessment administration on the left and 

a larger, pictorial representation of specific assessment materials on the right. Figure 8 

shows a sample item script used by the assessor (a description of the administration is in 

the Data Collection Section). 
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Figure 8 

Sample Administration Item 

 

The grid pictured on the right side of Figure 8 shows the assessment item’s 

associated grid from the administrator’s perspective with an arrow indicating which 

direction the movable agent should be facing at the start of the task. Additional student 

materials required for the item are pictured below the grid. The first yellow arrow on the 

figure’s left provides setup and administration instructions. The second yellow arrow 

indicates the administration script. The administrator is meant to read the blue, bolded 

prompt while enacting the italicized directions. The prompt provides verbiage to prompt 

the student to engage with the assessment item, if needed. The final yellow arrow 

indicates the anticipated answer and assessment coding for the score sheet. 

Of the original 27-item assessment, I analyzed 14 items—four contextual 

proficiency (CP) items and 10 CT items. I selected only 14 items as that the remaining 13 

items had been dropped or flagged for redesign by the CiK research team. The CP items 

were the first four assessment items and were intended to measure students’ ability to 



57 
 
manipulate an agent in the grid space in response to a given program code and the agent’s 

starting orientation. For example, assessment item CP1 asked the student to move the 

agent as if the agent began facing the same direction as the student and was programmed 

with one forward code (see Figure 9, CP1).  

Figure 9 

Sample Context Proficiency Items 

 

 CP2 asked students to move the agent as if the agent were programmed with a 

forward code, this time when the agent started facing the child’s left (Figure 9, CP2). 

Items CP3 and CP4 reflect CP1 and CP2’s design, but with rotation codes instead of 

forward codes. Analyzing these CP assessment items provided a baseline for students’ 

context proficiencies.  
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 The 10 CT items that I analyzed were the assessment items retained in CiK’s final 

assessment. Concentrating my analysis on these items allowed me to analyze patterns 

more deeply among and within these items. In all, the 14 items (4 context proficiency 

items + 10 CT items) constituted about eight of the 15 hours of video across 60 students.  

Assessment Scoring Sheet 

The scoring sheet (see Appendix B) organization reflected the assessment item 

progression with one row for each item. Each item row included the item number, the 

correct response, a section to code student responses (correct, incorrect, no response), and 

general notes. To score the assessment, a point was awarded for each item the student 

answered correctly. Each item was worth one point, so the highest score possible for the 

27-item assessment was 27. Since this study focused on 14 of the 27 items, the highest 

possible score was 14.  

Acquiring the Data Set 

 I requested to use this dataset from the CiK primary investigators (Drs. Jody 

Clarke-Midura, Jessica Shumway, Victor Lee). All primary investigators (two of whom 

are on my dissertation committee) approved my request. Additionally, Utah State 

University’s Institutional Review Board approved the use of CiK’s NSF-funded project 

data for this dissertation research (see Appendix A). After successfully defending my 

dissertation proposal, I submitted amendments – which were subsequently approved – to 

the existing CiK Institutional Review Board certification to use this dataset for my 

dissertation research.  
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Data Collection Procedures in the Larger Project 

We, the CiK research team, recruited classes from the Title 1 school and then 

collected informed consent forms from the teachers and assent from the student 

participants in English and Spanish. The assessment administration for this dataset 

spanned six days over the course of two weeks in January 2020. All researchers 

administrating the assessment had prior teaching experience and advanced degrees in 

education or other related fields.  

We set up as many as three assessment stations at a time in the students’ 

classrooms and distanced each from distractions as much as feasibly possible. Each 

station included a table to organize materials, chairs positioned so that the student faced 

the administrator and away from other potential distractions, the assessment materials, an 

audio/video camera positioned to capture students’ actions and expressions, and a 

researcher acting as assessment administrator. We collected audio/video data for future 

analysis and to free the assessor to focus on assessment administration rather than taking 

detailed field notes (Blikstad-Balas, 2017). As schedules permitted, additional researchers 

attended the assessment to serve as second exam coders. The students were accustomed 

to interventions and assessments set away from regular classroom activities, so students 

were rarely hesitant to leave classroom activities during the assessment. When such 

concerns arose, the researchers rescheduled the student’s assessment for a later time.  

The assessment administrators followed standardized facilitation procedures and 

used the items’ scripted prompts with fidelity (see Appendix C). To administer the 

assessment, the assessor read the student an introduction script to explain that the student 
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would answer questions about a “robot” (the agent) moving around on a grid. The 

administrator introduced all assessment materials and demonstrated how each program 

code instructed the agent to move. If the student needed assessment item instructions 

repeated, the administrator was permitted to repeat the instructions once. Once the 

student completed an item, the administrator transitioned to the next item without 

providing performance feedback. This was often done by the administrator saying, 

“Thank you.” 

Many students completed the assessment within 15 minutes while a few took up 

to 18 minutes. This time frame is consistent with other interview-based, early childhood 

assessments (Hojnoski et al., 2009; Jordan et al., 2010). Fifty-three of the 60 students 

completed the entire assessment.  

We uploaded the video memory card data after each assessment day to an external 

hard drive and Box, an institutionally funded and secure cloud-storage platform. The 

video memory card was wiped immediately after we confirmed the file transfer. The hard 

drive was password protected and housed in a locked office. Box is an encrypted, cloud-

based storage platform. Access to the CiK files on Box are limited to researchers listed on 

the CiK institutional review board protocol. We named each video with a standardized 

file-naming format to anonymize the student and for future reference: 

(1-digit location #)(1-digit teacher #)(2-digit student #)_(assessor initials)_(four-
digit year)(2-digit month)(2-digit day)_(Uploader’s initials)_(assessment version)  

Example: 

1101_AI_20200101_UI_Version3 
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Data Analysis 

Table 2 summarizes the present study’s research questions, data sources, and 

analysis methods. I will first explain how I cleaned and organized the data and then 

describe the three sequential phases of data analysis: (1) identification of MK and CT, (2) 

analysis of ways MK and CT co-occur, and (3) case study and cross-case analysis. 

Table 2 

Research Questions, Data Sources, and Data Analysis 

Questions Data sources Analyses 

1.  How are kindergarten 
students’ MK and CT 
operationalized during a CT 
assessment? In what ways, if 
any, do MK and CT co-occur? 

Video of CT assessment 
administration 

Co-occurrence frequency report 
Qualitative memos 

A priori coding and open coding 
(Saldaña, 2021) 

Memos (Saldaña, 2021) 
Frequency tables (Christopher, 

2017) 

2. How do students’ MK and 
MK CT co-occurrences relate 
to their performance on 
individual CT assessment 
items? 

Video of CT assessment 
administration 

CT assessment item scores 

Visualizations (Christopher, 
2017) 

Multiple-case studies (Yin, 
2018) 

 

Preparing and Cleaning the Data 

I prepared the video data for analysis in MAXQDA 2020, a video analysis 

software, by isolating each assessment item’s occurrence within the video data and 

indicated if the student answered the item correctly or incorrectly (see Table 3).  

Table 3 depicts each assessment item code with its corresponding meaning. These 

codes served two organizational purposes. The first purpose was to isolate the occurrence 

of students’ engagement with the assessment items to indicate where in the video each  
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Table 3 

Assessment Item Codes 

Item code Code meaning 

Contextual Proficiency (CP) Items 

CP1 Contextual Proficiency Question 1 – answered correctly 

-CP1 Contextual Proficiency Question 1 – answered incorrectly 

CP2 Contextual Proficiency Question 2 – answered correctly 

-CP2 Contextual Proficiency Question 2 – answered incorrectly 

CP3 Contextual Proficiency Question 3 – answered correctly 

-CP3 Contextual Proficiency Question 3 – answered incorrectly 

CP4 Contextual Proficiency Question 4 – answered correctly 

-CP4 Contextual Proficiency Question 4 – answered incorrectly 

Computational Thinking (CT) Items 

CT1 CT Question 1 – answer correctly 

-CT1 CT Question 1 – answer incorrectly 

CT2 CT Question 2 – answer correctly 

-CT2 CT Question 2 – answer incorrectly 

CT3 CT Question 3 – answer correctly 

-CT3 CT Question 3 – answer incorrectly 

CT4 CT Question 4 – answer correctly 

-CT4 CT Question 4 – answer incorrectly 

CT5 CT Question 5 – answer correctly 

-CT5 CT Question 5 – answer incorrectly 

CT6 CT Question 6 – answer correctly 

-CT6 CT Question 6 – answer incorrectly 

CT7 CT Question 7 – answer correctly 

-CT7 CT Question 7 – answer incorrectly 

CT8 CT Question 8 – answer correctly 

-CT8 CT Question 8 – answer incorrectly 

CT9 CT Question 9 – answer correctly 

-CT9 CT Question 9 – answer incorrectly 

CT10 CT Question 10 – answer correctly 

-CT10 CT Question 10 – answer incorrectly 
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item began and ended. Each video had 14 occurrences or—as was the case for seven of 

the 60 students—as many items as the students completed. The second purpose was to 

label each engagement as the student answering correctly or incorrectly. Organizing the 

data to include the students’ correct/incorrect responses supported the Phase 3 analysis, 

when I examined how students’ MK and MK CT co-occurrences might relate to their 

performance on individual CT assessment items. This will be discussed further in the 

Phase 3 analysis section. 

I cleaned the data by isolating the students’ interactions with each assessment item 

across all videos by attaching the timestamps indicating students’ interaction with each 

assessment item with a corresponding assessment item code to indicate which assessment 

item is being administered and if the student answered correctly or incorrectly (see Figure 

10). Correct and incorrect responses were drawn from assessment item scores, which 

were previously double coded by CiK researchers. Examples of these codes are shown on 

the left side of Figure 10 under the heading “Questions.”  

In the example pictured in Figure 10, the student correctly answered CP1, CP2, 

and CP3, so these items were coded with the assessment item codes CP1, CP2, and CP3, 

respectively. The student answered CP4 incorrectly, so the item was coded as -CP4.  

The assessment item codes isolated the unit of analysis for this study’s research 

question 1. Further identifying if the student responded correctly or incorrectly to the 

assessment item supported question 2’s analysis, which examined how students’ MK and 

MK CT co-occurrences relate to students’ CT assessment performance on individual 

assessment items. 
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Figure 10 

Data Preparation Example 

 
Note. Screenshot depicting how I prepared the video data by isolating units of analysis in MAXQDA 2020 
with assessment item codes. 

Phase 1 Analysis 

Question 1: How are kindergarten students’ MK and CT operationalized during a 
CT assessment? In what ways, if any, do MK and CT co-occur? 
 
To answer question 1, I coded the video data using MK, CT, and MK CT co-

occurrence a priori codes and open coding (Saldaña, 2021). MK a priori codes originated 

from a study exploring the co-occurrences of MK and CT skills demonstrated by 

kindergarten students in small-group coding activities with coding robot toys (Shumway 

et al., 2021). Shumway and colleagues observed and developed codes for three MK 

categories: Spatial, Measurement, and Number (see Table 4). MK codes were developed 

in the context of curriculum tasks; hence, I also applied open coding to account for other 

MK categories that might have emerged in this study’s CT assessment context. 
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Table 4 

Mathematical Knowledge A Priori Codes Adapted from Shumway et al. (2021) 

MK Definition 
Spatial   

Spatial orientation Understands and operates on relationships between different positions in 
space (e.g., rotating an agent to face the direction of travel) 

Spatial visualization Understands and performs imagined transformations of objects (e.g., mental 
images of movement in space such as a 90-degree rotation) 

Spatial language Describes movement of an agent using spatial language accurately (e.g., 
forward, backward, rotate left) or intuitively (e.g., straight, down, turn) 
or position of the agent relative to locations or objects (e.g., next to) 

Spatial knowledge in 
codes 

Connects spatial orientation, spatial movement, and spatial language to a 
representational system (e.g., codes for the program represented as 
arrows) 

Measurement   
Units of measure Understands and operates with a unit of measure, usually one linear 

forward movement or one 90-degree rotation 
Distance measurement Understands that distance can be measured by units of linear movement 

either by counting the units of measure or describing or showing a 
distance between two points. Additional applications include comparing 
actuated and intended distances with number and codes (e.g., expressing 
a distance of linear movement with the total number of linear codes) 

Number  
Counting Counts movements, objects, or codes  
Counting on Counts on from a space on the grid (e.g., agent’s starting point) which 

involves understanding that we are counting the movements of the 
agent, not the squares on the grid 

Coordinating counts Coordinates the totals of two quantities and/or matches 1-to-1 counting 
with movements or codes 

Operations Uses addition or subtraction to operate on quantities, including operative 
language (e.g., one more, one less) 

Note. This table reflects minor modifications in the examples to Shumway et al.’s original code 
descriptions. This was done to better describe the codes’ application to an assessment context.  

 

 Each of the three MK categories (Spatial, Measurement, Number) in Table 4 is 

broken into more specific categories, listed in the table’s left column. The table’s right 

column characterizes each category in relation to a grid-based CT assessment item. 
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Consistent with embodied cognition theory, I anticipated that the indicators for each MK 

code would be evident through students’ gestures, language, and actions on objects, as 

this theory affords an interpretation of students’ actions/language/interactions as evidence 

of existing knowledge. My interpretation of these codes was grounded in an enactivist 

perspective in that the students’ engagement with the assessment materials was novel, 

meaning that the students had not previously engaged with the assessment materials. 

While the students had participated in classroom CT coding activities, the coding 

activities used different materials than the assessment. Interacting with the assessment 

materials required the students to respond to assessment tasks using novel assessment 

materials, thus demonstrating “learning in action” (Khan et al., 2015, p. 272). Further, 

embodied cognition informed my interpretation of students’ gesture, language, and 

actions as evidence of students’ existing MK and CT knowledge, permitting me to 

qualitatively code students’ indicated MK and CT as existing knowledge.  

 The CT a priori codes were drawn from the CiK research team’s Early Childhood 

Computational Thinking (ECCT) competency model (see Figure 3 in Chapter II; Clarke-

Midura, Shumway, et al., 2021). The ECCT was informed by extensive empirical 

research conducted by the CiK research team and a CT domain analysis (how the field 

currently operationalizes CT). The ECCT describes the MK (Spatial reasoning, 

Sequencing, Linear units, Rotation on a point, Counting on) and CT (Debugging, 

Algorithmic Thinking, Decomposition) that kindergarten students demonstrate when 

engaging with CT tasks using screen-free robot coding toys. I used the ECCT’s CT 

subcomponents as a priori codes to identify the CT that kindergarten students indicated 
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during the CT assessment. These subcomponents (defined in Table 5) operationalize how 

students use algorithmic thinking, debugging, and decomposition.  

Table 5 

Computational Thinking A Priori Codes and Definitions 

CT Subcomponents Definition 

Algorithmic thinking   
Sequence codes Ordering and arranging codes based on knowledge of syntax and semantics  
Plan program Determining instructions required to successfully reach goal 
Read/enact program Interpreting (reading) and executing (enacting) sequence of codes 

Debugging   
Recognize bug Noticing that instructions do not work as expected, or anticipating a 

problem before executing the program (i.e., knowing that there is a bug) 
Locate bug Finding the part in the program that caused the problem (i.e., knowing 

where the bug is)  
Propose solution Making a plan or suggestion for how the program could change (i.e., 

knowing how to fix it) 
Fix bug Implementing a successful repair strategy (i.e., resolving the bug) 

Decomposition  
Break whole into parts Recognize how whole programs can be broken down into units or segments 

of code to simplify the problem  
Build whole from 

parts 
Writing program by combining chunks or sequencing codes one-by-one 

Relate parts to whole Coordinating units or segments of code with one another as well as with 
whole program 

 

 Each CT component is italicized in Table 5 (Algorithmic Thinking, Debugging, 

Decomposition). The subcomponents (listed below each component) describe how the 

components are operationalized within a coding toy context. The subcomponents were 

developed via empirical, curriculum-based research and informed the CT assessment item 

development.  



68 
 
 Based on the MK CT section of the literature review in Chapter II, I identified 

additional MK CT codes that might have emerged in open coding (see Table 6). These 

codes were explored as MK CT codes in Phase 2 of the analysis if they appeared to co-

occur as MK and CT.  

Table 6 

Possible Mathematical Knowledge Computational Thinking Codes and Definitions 

MK and CT Code Definition 

Abstraction 

Abstraction in CT: “to conceptualize and then represent an idea or a process in 
more general terms by foregrounding the important aspects of the idea while 
backgrounding less important features” (Weintrop et al., 2016). 

Abstraction in Math: a “process of reducing complexity by ignoring irrelevant 
details in order to focus attention on important elements of a problem, 
situation, or phenomenon” (Rich et al., 2019, p. 269). 

Decomposition Decomposition in CT: a method to simplify tasks by breaking the tasks into 
manageable portions and work on one portion at a time (Wang et al., 2021) 
and “recognizing parts in part-whole relationships, building a whole from 
parts, and breaking a whole into part” (Clarke-Midura, Shumway, et al., 2021, 
p. 20).  

Decomposition in Math: breaking apart quantities, space, and problems while 
considering part-whole relationships (Shumway et al., 2021).  

Develop and apply 
algorithms 

Algorithms in CT and Math: “creating a set of ordered steps…and then 
performing them in a particular order to accomplish a task in a way that could 
be repeated by others” (Lavigne et al., 2020, p. 63). 

Patterning Patterning in CT and Math: a set of objects, rules, or actions determined by an 
underlying structure so that the set’s structure may be accurately generalized 
and extended upon 

Sequencing Sequencing in Math: Attending to the order of objects, actions, and/or processes.  
Sequencing in CT: “Knowing how to sort and arrange codes and also how to use 

number sequencing to determine how many movements or codes are needed” 
(Clarke-Midura, Shumway, et al., 2021, p. 19). 

Spatial reasoning Spatial reasoning in CT and Math: “the ability to recognize and (mentally) 
manipulate the spatial properties of objects and the spatial relations among 
objects,” (Bruce et al., 2017, p. 146).  
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Each MK or CT code is listed in Table 6’s left column, while each code’s 

definition from existing literature is listed on the right. As these codes emerge, I memoed 

about how each coded event exhibited MK CT co-occurrences. These memos supported 

Phases 2 and 3 of the analysis and this study’s second research question, which inquired 

how students’ MK and MK CT co-occurrences relate to their performance on individual 

CT assessment items.  

I coded each assessment item occurrence (which was isolated during data 

preparation) with the a priori codes and open codes. The MK a priori codes represent MK 

that, according to curriculum standards (CCSSI, 2010) and learning trajectories 

(Clements & Sarama, 2021), kindergarten-aged students may still be developing. To 

account for the likely possibility that students may have indicated MK with varying 

levels of understanding, I coded each a priori code as either indicated knowledge or 

developing knowledge. Students’ gestures (e.g., hand movements, pointing, head bobs), 

language (e.g., verbal counting, verbal responses, sound-making), and actions on the 

assessment material (e.g., moving the agent, manipulating coding cards) informed this 

coding and the results of this coding based on these behaviors are discussed in Chapter 

IV of this dissertation. When students indicated developing knowledge, I attached a 

memo to the coded instance describing how the student’s language, gesture, and/or 

actions on the assessment material(s) indicated the student’s knowledge as developing. I 

also memoed specific language and gestures that students used to indicate MK and CT.  

An example of a student who indicated counting knowledge (coded as Counting) 

used a correct counting sequence to identify the total number of codes in a program. 
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Conversely, a student who indicated developing counting (coded as -C to distinguish it 

from the indicated code Counting) also counted all the program codes in a program but 

counted one of the codes twice. Figure 11 illustrates how the final codes appeared when 

coded in MAXQDA.  

Figure 11 

Phase 1 Coding Example 

 
Note. Screenshot coding in MAXQDA 2020. The codes for developing knowledge are indicated by a “-“.  
For example, the code Counting on was attached to instances as indicated knowledge and -Counting on was 
attached to instances of developing knowledge. For ease of reading this document, developing knowledge 
codes will be abbreviated to further distinguish them from their indicated counterparts. 
 

 As shown in Figure 11, I input the coding schemes in MAXQDA (left column) 

and attached corresponding codes to the student’s engagement with each assessment item. 

During the data preparation stage, each assessment item was isolated using assessment 
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item codes (indicated by black bars below the video data). MK, CT, and MK CT codes 

were then attached to each item, as highlighted in Figure 11. 

For example, Figure 12 isolates, more specifically, how CP3 and CP4 were coded 

for one student’s engagement with the items.  

Figure 12 

CP3 and CP4 Isolated Coding in MAXQDA 

 

Figure 12 shows that the student answered CP3 correctly and indicated 

knowledge of spatial orientation, units of measure, spatial knowledge in codes, and 

reading/enacting the program. Conversely, the student answered CP4 incorrectly and 

indicated spatial orientation knowledge but also a developing knowledge of spatial 

knowledge in codes, units, and enacting the program. To further illustrate this process, 

Table 7 describes specifically how each code was attached to a student’s engagement with 

CP4. 



72 
 
Table 7 

Example of Coding for CP4 

Transcript Codes and justification Image 
Teacher: With bumblebee facing 

this way ((points to 
agent/bee)), could you 
tell me what this code 
((points to right-turn 
arrow)) would make it 
do? 

 

 
Student: ((rotates the agent 

counter-clockwise 180 
degrees, then briefly 
pauses)) 

Spatial orientation: 
Student matches the agent’s 
orientation with the arrow’s 
direction. 

- SK: 
The right-turn arrow requires 
one 90-degree rotation to the 
agent’s right  

Student: ((moves the agent one 
square to the right)) 

- SK: 
The right-turn arrow does not 
require linear movement 

- UM: 
The student modeled two 
distinct units (one 180-degree 
rotation, one linear movement) 
for one code  

- REP: 
The student incorrectly 
enacted the program (one right 
turn) 

 

 
Note. The student is positioned at the top of each picture, sitting directly across from the teacher. All 
directions are written to the child’s perspective, so the right-turn arrow appears to the student as such, 
whereas in the teacher’s perspective the right-turn arrow appears to be pointing left. -SK = Developing 
Spatial knowledge in codes; -UM = Developing Units of measure; -REP = Developing Read/enact 
program. 
 
 
 

In Table 7, the first column contains the transcript of teacher and student 

language, gesture, and movement during the administration of CP4. The middle column 

lists the attached codes with justification for their application and are examples of how 
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these items were memoed. The right column includes screenshots for further illustration.  

The output for Phase 1 was the coding frequencies for the MK and CT 

demonstrated by all students in the data set. To respond to the first part of research 

question 1’s objective (identifying how MK and CT are operationalized during a CT 

assessment) I used a joint embodied and enactivist lens to operationalize students’ 

language, gesture, and actions on objects within the three MK categories (spatial, 

measurement, and number) and the three CT components (algorithmic thinking, 

debugging, and decomposition). I also attached memos to instances when students 

indicated developing MK and CT knowledge to describe how students’ indications of 

accurate and developing MK were interpreted.  

Using language, gestures, and actions on objects to interpret how students 

operationalize MK and CT reflected this study’s embodied perspective as the students 

using existing knowledge. An enactivist perspective further supported this analysis by 

considering students’ developing abilities and was used to describe how students’ actions 

were indicative of knowledge development, or knowledge in transition.  

Phase 2 Analysis 

Question 1: How are kindergarten students’ MK and CT operationalized during a 
CT assessment? In what ways, if any, do MK and CT co-occur? 
 
The second objective for question 1 was to identify if, and if so what ways, MK 

and CT co-occur during a CT assessment. To do this, I generated a MAXQDA co-

occurrence frequency report (see Appendix E). A portion of this report is shown in Table 

8 for illustrative purposes.  
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Table 8 

Mathematical Knowledge Computational Thinking Co-Occurrence Frequency Report 
Excerpt 
 

 CT codes 
────────────────────────────────── 

MK Codes Builds an intended 
algorithm - BIA 

Read/enact 
program - REP 

Spatial visualization 10 12 9 6 

- SV 0 1 0 0 

Spatial language 24 37 31 30 

- SL 0 3 0 3 

Spatial knowledge in codes 129 5 133 4 

- SK 0 154 3 135 

Units of measure 60 25 133 43 

- UM  0 58 1 87 

 

The report (see Table 8) is organized in a table with the MK codes listed vertically 

in the left column and the CT codes listed horizontally at the top. To easily differentiate 

indicated from developing knowledge codes, indicated knowledge codes are spelled out 

(i.e., Spatial language, Read/enact program) and codes to indicate knowledge in 

development are abbreviated with a dash in front (i.e., - SL, - REP). For coding purposes, 

I retained the entire code description for all developing knowledge codes in MAXQDA. 

The values reported within the table indicate the frequency of specific MK CT co-

occurrences across all students. For example, in Table 8 the row for “Units of measure” 

and column for “Read/enact program” intersect to show 133 instances of co-occurrences. 

This report responded to question 1’s inquiry by identifying which MK and CT students 

demonstrate while interacting with the CT assessment items, and further operationalized 

how students indicate MK and CT knowledge within a CT assessment. To report on these 
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co-occurrences, I identified the most frequent co-occurrences and analyzed video clips of 

students who indicated these co-occurrences and reviewed attached memos to generalize 

the conditions of the co-occurrences. This was done to ascertain why each co-occurrence 

so frequently appears.  

Phase 3 Analysis 

Question 2: How do students’ MK and MK CT co-occurrences relate to their 
performance on individual CT assessment item?  
 

 I used the results for research question 1 to develop multiple-case studies (Yin, 

2018) to describe how students’ MK and MK CT co-occurrences might relate to their CT 

assessment item performance, then synthesized the case studies in a cross-case report. 

These cases further described the connections and relationships between MK and CT in a 

CT assessment context and described how MK CT co-occurrences might relate to 

students’ CT assessment item performance. The unit of analysis for each case study was 

an assessment item. I conducted four case studies, each of a different CT assessment 

item. Each case described how either a different MK or MK CT co-occurrence 

relationship manifested in students’ assessment item performance and how the MK or 

MK CT co-occurrence might relate to students’ performance on the item.  

I selected case studies by drawing on findings for question 1 and generating visual 

case models for each CT assessment item in MAXQDA (see Appendix D). Each case 

model depicts the MK and MK CT co-occurrence exhibited by students who completed 

the respective assessment item correctly and incorrectly (see Figure 13).  

For example, Figure 13 depicts the visual case model for assessment item CT1.  
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Figure 13 

Mathematical Knowledge/Mathematical Knowledge Computational Thinking Case Model 
of Student Performance on Item CT1 
 

 

The model’s central points (CT1, -CT1) represent instances when students responded 

correctly (labeled CT1) and incorrectly (-CT1) to item CT1. The model’s nodes connect 

the central points with the MK and MK CT co-occurrences students indicated when 

responding correctly (CT1) and incorrectly (-CT1) to the assessment item. Since the 

analysis codes were attached to the span of time that each student engaged with the 

relative assessment item, some nodes indicated a frequency less than or equal to the 

number of times that an assessment item was administered across the entire data set. The 

specifics of these diagrams and an explanation of how to read them are discussed in more 

detail in the Results for Research Question 2… section in Chapter IV. 

An enactivist lens permitted me to theorize how students’ gestures, movements, 

and language might support MK and CT development simultaneously and contribute to 

the field’s theory of how we view MK and CT knowledge at this age and how children 
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express their thinking and learning. 

Validity and Trustworthiness 

 Validity and trustworthiness considerations were embedded throughout each 

phase of this study. For phase 1, I used a priori and open coding to operationalize 

students’ MK and CT when interacting with the CT assessment items. Using a priori 

codes situated this research within existing work and extended upon prior research 

findings. Additionally, I helped to develop the a priori codes developed in a previous 

study, so I have a deep understanding of their meaning and how these codes were 

previously used. This strengthened the coding validity as I applied the a priori codes to 

data set.  

 For phase 2, I attended to trustworthiness by identifying MK CT co-occurrences 

based on code frequencies rather than anecdotal evidence. This helped me distance my 

personal biases by relying on the coding results rather than personal interests in specific 

MK. 

 Finally, in phase 3 I chose cases based on evidence that emerged in phase 2. This 

extended the trustworthiness considerations in place for research question 2 as I selected 

cases that accurately represent the MK and MK CT co-occurring knowledge that students 

indicated and their subsequent assessment item performance. 

Summary 

I used existing data to conduct a sequential, three-phase qualitative design to 
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operationalize kindergarten students’ MK and CT during a CT assessment and how 

students’ MK and MK CT co-occurrences might relate to their CT assessment 

performance. The unit of analysis for question 1 was the student, whereas question 2’s 

unit of analysis was individual assessment items. I addressed question 1 by using a priori 

and open coding to identify how 60 students indicated MK, CT, and MK CT co-

occurrences during a CT assessment, then used a subsequent frequency report to identify 

MK and CT co-occurrences. I coded the dataset using an embodied cognition and 

enactivist lens to interpret students’ language, gestures, and actions on objects as 

knowledge in action and knowledge as action respectively. Question 2 was answered 

using multiple-case studies with an embodied cognition and enactivist lens to further 

understand the role of MK and MK CT co-occurring knowledge in kindergarten students’ 

CT assessment item performance. This analysis contributes empirically to the field by 

describing the deep connections between MK and CT and how they might relate to each 

other, as well as theoretically by describing how students’ language, gesture, and actions 

indicate their MK, CT, and MK CT co-occurring knowledge within a CT assessment 

context.  
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CHAPTER IV 

RESULTS 

The purpose of this study was to operationalize how kindergarten students 

indicated MK and CT while solving CT assessment items and to understand how the MK 

and MK CT co-occurrences might relate to the students’ assessment performance. The 

research questions guiding this study include the following.  

1. How are kindergarten students’ MK and CT operationalized during a CT 
assessment? In what ways, if any, do MK and CT co-occur? 

2. How do students’ MK and MK CT co-occurrences relate to their performance 
on individual CT assessment items? 

The findings presented in this chapter are a result of applying qualitative methods 

to analyze video data of 60 kindergarten students engaging with a CT assessment. First, I 

will present findings for research question 1 detailing the fine-grain analysis of students’ 

demonstration of mathematical and CT knowledge and how I operationalized students’ 

MK and CT as they engaged with a CT assessment. Next, I describe the emergent themes 

related to how MK and CT co-occur during kindergartners’ engagement with the 

assessment. Finally, I present the results for research question 2 with four case studies 

(and subsequent cross-case conclusions) that describe the MK and MK CT co-occurring 

knowledge that might relate to students’ performance on individual assessment items.  

Results for Research Question 1 

Students’ Demonstration of Mathematical  
Knowledge and Computational Thinking  
During a Computational Thinking Assessment 

In this section, I present the results for Research Question 1, How are 
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kindergarten students’ MK and CT operationalized during a CT assessment? In what 

ways, if any, do MK and CT co-occur? To answer Research Question 1, I used a priori 

and open coding methods to code video data of 60 kindergarten students engaging with 

14 items in a pilot CT assessment. Before reporting how kindergarten students’ MK and 

CT were operationalized during the CT assessment, I first present the overall frequencies 

of students’ demonstration of accurate and developing mathematical and CT knowledge. 

Table 9 summarizes the overall frequencies of MK and CT knowledge codes.  

The first column of Table 9 categorizes the codes as MK or CT. The second 

column labels the categories of MK (Spatial Knowledge, Measurement Knowledge, 

Number Knowledge) and CT (Algorithmic Thinking, Debugging, Decomposition). The 

third column lists the codes used to evidence knowledge in their respective category as 

either indicators of knowledge or indicators of developing knowledge. For example, 

coded indicators of the MK category Measurement include units of measure and 

measurement distance. When a student displayed indicators of units of measure 

knowledge such as moving the assessment agent in linear units consistent with the 

assessment’s rules, the Units of measure code was applied. However, when a student 

indicated developing units of measure knowledge, such as when a student moved the 

agent in linear units of different lengths, the -UM code was used. As described in Chapter  

III, indicated knowledge codes are spelled out (i.e., Units of measure, Decomposition) 

and the codes indicating knowledge in development are abbreviated with a dash in front 

(i.e., - UM, - DC). The fourth column in Table 9 lists the frequencies of each code’s 

occurrence across all 60 students’ engagement with 14 assessment items. Finally, the fifth  
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Table 9 

Mathematical Knowledge and Computational Thinking Code Frequencies 

MK/ 
CT 

Knowledge 
category Knowledge skill code Frequency 

Ratio of developing knowledge to 
total indicators of knowledge 

MK Spatial  Spatial visualization 35 0.03 

  - SV 1 

  Spatial language 121 0.03 

  - SL 4 

  Spatial knowledge in codes 449 0.43 

  - SK 344 

 Measurement  Units of measure 393 0.30 

  - UM 167 

  Distance 41 0.16 

  -D 8 

 Number  Coordinating counts: Space 453 0.13 

  -CC:S 65 

  Coordinating counts: Number 34 0.08 

  -CC:N 3 

  Counting 91 0.05 

  -C 5 

  Counting on 416 0.02 

  -CO 8 

  Operations 22 0.00 

  -O 0 

CT Algorithmic 
Thinking 

Plans program 4 0.00 

 -PP 0 

  Builds intended algorithm 129 0.55 

  -BIA 160 

  Read/enact program 138 0.50 

  -REP 138 

 Debugging Recognize bug 31 0.30 

  -RB 13 

  Fix bug 26 0.26 

  -FB 9 

 Decomposition Decomposition 53 0.15 

  -DC 9 

 



82 
 
column presents the ratio of indicators of developing knowledge for each skill. To use 

units of measure knowledge as an example, the ratio of developing units of measure 

knowledge (-UM; N = 167) to all indicators of units of measure knowledge (N = 560) is 

0.30. Stated otherwise, of the 560 instances that students indicated units of measure 

knowledge or units of measure developing knowledge, 30% of the instances indicated 

developing knowledge.  

Table 9 shows Spatial knowledge in codes as the most frequently coded skill. 

Spatial knowledge in codes’ high frequency suggests it is an important skill in students’ 

CT assessment performance. Spatial knowledge in codes also has the highest ratio of 

developing knowledge suggesting that it may be the more difficult mathematics skill in 

the CT assessment. Operations has the lowest MK frequency, which is consistent with the 

CT assessment items’ design. The assessment items do not require students to conduct 

numerical operations, so operation knowledge and developing knowledge indicators 

would likely have been student motivated. Notably, knowledge from all MK categories is 

represented, suggesting that CT assessment performance requires students to draw on 

varied MK skills.  

Among the CT knowledge, Builds intended algorithm and Read/enact program 

were the most frequently coded. Additionally, Builds intended algorithm and Read/enact 

program are the only knowledge types with a ratio of developing knowledge to indicated 

knowledge equal to or greater than 0.5. This may be the case because students are being 

introduced to a new process. When considered alongside the ratio for MK’s Spatial 

knowledge in codes, the related component is that the assessment items ask students to 
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operate a new coding system by using a set of codes (Spatial knowledge in codes) to 

build (Builds intended programs) and enact or describe (Read/enact programs) programs. 

These three CT codes represent the assessment’s primary tasks as well as the novel 

knowledge that students encounter while engaging with each item. 

Operationalizing Mathematical Knowledge 
and Computational Thinking Through 
Gestures, Language, and Action on Objects 

As shown in Table 9, students who engaged in the CT assessment exhibited 

knowledge indicators and developing knowledge indicators of MK and CT. An embodied 

cognition lens allowed me to interpret knowledge and developing knowledge indicators 

as existing knowledge, whereas enactivism provided a lens to interpret knowledge and 

developing knowledge indicators as evidence of evolving knowledge. Students indicated 

knowledge and developing knowledge while engaging in the CT assessment items 

through gesture, language, and actions on objects. These behaviors as indicators align 

with enactivism’s perspective of knowledge as fluid and housed jointly in the mind-body-

environment. All three indicators (gestures, language, actions on objects) engage the 

student’s thoughts (mind) and biological self (body) within the assessment context 

(environment). This section describes how MK and CT knowledge and developing 

knowledge were operationalized through students’ multimodal and specific gestures, 

language, and actions on objects (i.e., interactions with materials). While the following 

sections describe how students demonstrated knowledge using each modality in isolation, 

the three modalities regularly co-occurred.  

In accordance with this study’s methodology (described in Chapter III), I coded 
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the data to identify when students indicated knowledge or developing knowledge for each 

code. This was done to account for students’ varying levels of MK and CT 

understandings. Distinguishing students’ developed and developing knowledge allowed 

me to operationalize how students indicated their MK and CT at varying levels of 

development. Operationalizing students’ developing knowledge provides a more detailed 

perspective of how students utilize MK and CT in this context. While a thorough 

examination of finite knowledge levels is outside the scope of the present study, 

operationalizing students’ knowledge as indicated or developing is within this study’s 

scope and could inform related work. First, students’ indicators of spatial knowledge will 

be presented, followed by measurement knowledge, number knowledge, and, lastly, CT 

knowledge.  

How Students Demonstrated Spatial Thinking 

Students’ spatial knowledge was observed in students’ evidence of spatial 

visualization, spatial language, and spatial knowledge in codes. Table 10 summarizes the 

ways students indicated spatial knowledge and developing spatial knowledge. All 

indicators presented in this table, and subsequent MK and CT indicator tables, were 

generalized from memos taken during the qualitative coding analysis. The first column in 

Table 10 lists the codes associated with spatial knowledge, the second column lists the 

knowledge indicators used to operationalize each respective code, and the final column 

lists the indicators of developing knowledge for each code. Similarly organized tables 

will be presented later for measurement knowledge, number knowledge, and CT 

knowledge. 
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Table 10  

Spatial Knowledge Indicators and Indicators of Developing Knowledge 

MK Indicators Indicators of developing knowledge 

Spatial 
visualization 

 

Traces finger along grid path 
Points with finger to indicate linear or 

rotational direction 
Gestures while describing movement 
Taps/touches grid squares 
Compares robot’s perspective compared 

with rotation options 
Holds a turn code up to grid 

Only outward indicators evidencing 
students engaging with spatial 
visualization were recorded, so there 
were no observable behaviors 
indicating students’ developing 
visualization knowledge.  

Spatial 
language 

 

Says: 
Here/Over here/Right here 
There/Over there 
Over 
This way/That way 
Turn/Turn around 
Straight 
Forward/Up 
Go back/Backward 
Down 
Forward 
Left 
Right 
Rotate 
Diagonal 

Incorrectly uses the terms right and left  
Names codes with incorrect spatial 

language (i.e., stating “forward” for 
an R code) 

 

Spatial 
knowledge in 
codes 
 

Builds a program correctly 
Successfully fixes a programming error 
Enacts code units correctly 
Correctly names a code 
Correctly states what a code does 

Builds a program incorrectly  
States that a code does something other 

than it is designed to do 
Enacts a code with the wrong unit (i.e., 

F as two forwards, R/L=180° 
rotation, R/L= rotate and move) 

Enacts a code incorrectly  
Note. Program codes are abbreviated within this table and throughout the chapter as follows: F = forward, 
B = backward, R = rotate 90° right, L = rotate 90° left. 

As shown in Table 10, students generally indicated spatial visualization 

knowledge with gestures (i.e., taps, points), spatial language knowledge with language 

(i.e., down, diagonal, up), and spatial knowledge in codes with actions on objects (i.e., 

building programs, enacting codes/programs). While these specific spatial knowledge 

types can be generalized by modality, they are not exclusive. For example, students who 
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indicated spatial visualization by gesturing on the grid to describe an agent’s movement 

combined gesture and language modalities. While students indicated knowledge 

multimodally, presenting knowledge indicators by modality provides insight into how 

students’ knowledge is embodied.  

Gesture indicating spatial knowledge. Students indicated spatial knowledge 

when they gestured with their hands and arms directly in front of them or over the grid. 

Some students gestured directly in front of them by pointing their fingers in various 

directions, which evidenced spatial visualization. Students also gestured over the grid 

space by tracing or touching grid squares along the agent’s path or anticipated path. 

Students sometimes combined gestures over the grid space with spatial language by 

describing the movements that each gesture represents (see the Language Indicating 

Spatial Knowledge section). Gestures indicating developing spatial knowledge were not 

observed. This may be because most gestures indicated spatial visualization and students’ 

spatial visualization behaviors were broad and did not require precision.  

Language indicating spatial knowledge. Only assessment item CT1 required 

students to verbally respond, which asks students how many forwards the agent needs to 

reach a destination. Students’ language use outside of assessment item CT1 was 

unprompted. For CT1 students responded either verbally by stating a quantity, 

nonverbally with fingers or program codes, or a combination of verbal and nonverbal 

response methods.  

Three categories of spatial language types emerged from the code memos. I 

termed these categories as referential language, general directional language, and precise 
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directional language. Students used referential language (this way, that way, here, there) 

when indicating a location (here, there) and to indicate a direction or movement specific 

to the student’s referent such as the agent or position on the grid (this way, that way). 

General directional language (turn, straight, up, down) included directional language not 

specific to the assessment, whereas precise directional language included language 

specific to the assessment and the programming codes (forward, backward, left, right, 

rotate). Students used general directional language to describe agent movements on the 

grid from the student’s perspective. For example, students used “up” or “straight” to 

indicate the robot moving north on the grid, whereas students used “down” or “straight” 

to indicate the robot moving south on the grid. Students also used straight to indicate the 

agent’s linear movement east or west. The precise directional language for up, down, or 

straight would have been “forward.” Students used “turn” to describe the agent rotating in 

place on the grid or rotating and moving to a new location on the grid. Precise directional 

language includes spatial language specific to the assessment and attends to the agent’s 

orientation. For example, students described the agent’s movements as “forward” and 

“backward” with respect to the agent’s orientation, as well as “left” and “right” rotations. 

When using the word “rotate,” the students demonstrated the agent rotating in place 

without traveling to another square. These spatial language categories were also observed 

in students’ indicators of number language and are discussed in the subsequent Language 

Indicating Number Knowledge section. 

Students used language from each category in isolation or in combination. For 

example, one student used referential language while enacting the program FFF for 
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assessment item CT2. He moved the agent one linear length at a time, stating “this way, 

this way, this way.” Another student engaged with assessment item CT9 (see Figure 14) 

by first using precise language, then a combination of precise and general spatial 

language. The student first enacted the program FFRFFF by naming each code as 

“forward, forward, forward, rotate right, forward, forward, forward” respectively while 

enacting the program (Figure 14a). Next, the student combined precise directional 

language with general directional language while attempting to fix the given program by 

building the program FFFFFF, naming the first three F codes as forwards and the final 

three F codes as downs (Figure 14b).  

The student in Figure 14 indicated spatial language knowledge by using general 

and precise directional language while moving the agent and building a program. 

Although the student used the F program codes to indicate both forward and “down” 

directions, the spatial language used indicates that the student can attach correct spatial 

language to her intent for the agent to move “down” (south) on the grid according to her 

perspective. 

Language indicators of developing spatial knowledge. Indicators of developing 

spatial knowledge emerged when students used the vocabulary “right” and “left” 

incorrectly or attached precise language incorrectly to program codes. For example, one 

student built the program RRRBBB to debug item CT9. The student read the program as 

“forward, forward, forward, down, down, down.” This student indicated developing 

spatial knowledge via language by attaching the precise directional word “forward” to the 

R program code. The student’s incorrect use of language indicated that they recognized  
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Figure 14 
 
A Student Engaging with Assessment Task CT 9 
 

 
Note. The student enacted the given program (a) and attached each action with 
precise directional language. Next, the student coded a debugging solution (b) 
and placed each program code while using a combination of precise and general 
directional language. 

 

that each program code represented a directional movement, but that the student was still 

learning each program code’s precise language and meaning.  

Actions on objects indicating spatial knowledge. This section describes how 

students indicated spatial knowledge while manipulating the assessment agent and 

program codes. Students used the assessment agent to model program code meanings in 

assessment items CP1–CP4 then used the agent to enact given and written programs for 

the remainder of the assessment. Knowledge indicators of spatial knowledge of program 

a 

b 
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code meanings occurred when students used the agent to correctly enact program codes 

as incremental linear or rotational movements while attending to the agent’s orientation. 

For example, assessment item CT2 asked students to enact the program FFF with the 

agent beginning in an east-facing orientation on the grid. Students who correctly 

answered assessment item CT2 demonstrated an understanding that each F program code 

is enacted as one unit of forward linear movement with respect to the agent’s starting 

orientation.  

Students also attended to the agent’s starting orientation when indicating spatial 

knowledge of the R and L rotation program codes. For example, assessment item CT9 

requires students to debug a given program (FFRFFF; correct program FFFRFFF) with 

the agent starting in an east-facing direction on the grid (see Figure 15).  

Figure 15 

Correctly Enacting a Right Rotation from an East-Facing Orientation 

  
Note. A student demonstrates spatial knowledge in codes by enacting a given program’s 
right rotation as a 90°, clockwise rotation. This image is from the assessor’s perspective.  

As shown in Figure 15, students who correctly enacted the program’s right 

rotation rotated the agent 90° clockwise so that the agent, which initially faced east on the 

grid, rotated in place to face south on the grid. In doing so, the student demonstrated 

attention to the program code’s incremental nature as a 90° turn with respect to the 
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robot’s beginning orientation. 

Indicators of spatial knowledge also occurred when students manipulated the 

assessment program codes. Students interacted with the program codes to sequence 

programs and to identify which program code is required for a task. The two ways 

students sequenced programs with program codes was in a horizontal row below the grid 

and along the agent’s path on the grid. To build a program, students laid program codes in 

a desired sequence from left to right below the grid or from start to end along the agent’s 

path on the grid. Students sometimes held a program code up to the grid to identify if the 

program code was needed. This most often occurred when a student was determining if a 

right rotation or left rotation was required. For example, assessment item CT3 provides 

students with an incomplete program and asks students to fill in the missing program 

code (missing code is L). Students who recognized that the missing code was a rotation 

sometimes held up a R or L program code to the grid space before either selecting the 

chosen program code as the missing code or swapping it for the opposite rotation code.  

Students also combined their actions on the agent and program codes by placing a 

program code down then enacting the program code with the agent, then repeated the 

process until an entire program was built. This method of building a program by adding a 

program code and testing it indicated students’ knowledge of spatial code meanings as 

students enacted each code on the grid.  

Another way students used actions on objects to indicate spatial knowledge was 

by orienting program codes in the cardinal direction that the student intended the agent to 

travel. For example, one student built a program for CT7 (correct response FFLFF) by 
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first sequencing FF, then adding three more F codes positioned to face west on program 

organizer (see Figure 16).  

Figure 16 

Student Cardinally Orienting Program Codes 
 

  
Note. A student demonstrating spatial knowledge by positioning arrows in the cardinal 
direction of the agent’s travel. The student builds a program by orienting the first two F 
codes north on the program organizer and the final three F codes west. 
 

By orientating the program codes in the cardinal direction of the agent’s intended 

movement along the path, the student pictured in Figure 16 indicated a spatial 

understanding of how the agent should move in space. The first two codes (FF) point 

north to indicate that the agent moves north according to the agent and student 

perspective. By positioning the final F codes facing west, the student indicated an 

understanding that the agent should travel in a left direction according to the student’s 

perspective. This indicates that the student understands how the agent should move in 

space to reach the destination, but that the student is favoring their own perspective rather 

than adopting the agent’s perspective. If the student had adopted the agent’s perspective, 

the student would have sequenced all F codes facing north. Positioning all F codes facing 

north would have indicated that the student adopted the agent’s perspective and 
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recognized that the code’s cardinal position does not impact the agent’s travel, as 

“forward” will translate as forward movement in the direction the agent is facing.  

Actions on objects indicators of developing spatial knowledge. Indicators of 

spatial knowledge in development emerged in instances of spatial knowledge in codes 

and spatial language. Similar to gestures indicators, I categorized all instances of spatial 

visualization as indicators of knowledge since outward indicators only evidenced students 

engaging with spatial visualization with no distinction of students’ visualization in 

development. For example, students’ gestures while describing movements indicated 

outwardly that the students are visualizing how the agent will move in space, however it 

is unclear what the student was specifically visualizing. As such, it was not possible to 

distinguish spatial visualization indicators as evidence of indicated knowledge or 

developing knowledge.  

Students’ actions with the assessment agent indicated developing spatial 

knowledge when they enacted program codes incorrectly or reoriented the agent to face a 

program code’s cardinal direction regardless of the agent’s original orientation. Students 

incorrectly enacted the F program code in a variety of ways (see Table 11). By enacting 

the F program code incorrectly, these students indicated developing spatial knowledge in 

codes knowledge and their interpretation of the program codes at the time of enactment. 

Identifying how students interpreted the program codes furthers this study’s objective of 

operationalizing students’ MK of spatial knowledge when applied to a CT context.  

Table 11 describes the correct and incorrect ways that students enacted the F and 

L codes with the assessment agent. The first column categorizes each corresponding row  
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Table 11 

Students’ Correct and Incorrect Enactions of Program Codes in Relation to the Agent’s 
Starting Orientation 
 

Code enacted as 
correct/incorrect 

Agent’s starting orientation 
─────────────────────────────────────────────────── 

North East West South 

Forward code 
enacted correctly 
(Spatial 
knowledge in 
codes) 

One linear forward 
unit north 

One linear forward 
unit east 

One linear forward 
unit west 

One linear forward 
unit south 

Forward code 
enacted incorrectly 
(- SK) 

Forward two or 
more units 

Forward to the end 
of the grid 

Forward two or 
more units 

Sidestep one unit to 
the north so that 
the agent remains 
facing east 

Rotate 90° 
counterclockwise 
to face north 

Rotate 90° 
counterclockwise 
to face north and 
forward one unit 

Sidestep one unit to 
the north so that 
the agent remains 
facing west 

Rotate 90° 
clockwise to face 
north 

Rotate 90° 
clockwise to face 
north and 
forward one unit 

Rotate 180° to face 
north 

Rotate 180° to face 
north and 
forward one unit 

Left rotation code 
enacted correctly 
(- SK) 

One 90° 
counterclockwise 
rotation to face 
west 

One 90° 
counterclockwise 
rotation to face 
north 

One 90° 
counterclockwise 
rotation to face 
south 

One 90° 
counterclockwise 
rotation to face 
east 

Left rotation code 
enacted incorrectly 
(- SK) 

Rotate 90° 
counterclockwise 
to face west and 
forward one unit 

Forward one unit 
Rotate 180° to face 

west  
Rotate 180° to face 

west and forward 
one unit 

 

Forward one unit 
 
 

Rotate 90° 
clockwise to face 
west  

Rotate 90° 
clockwise to face 
west and forward 
one unit  

Note. Right rotations have the same indicators as left rotations with opposite rotation directions.  

as descriptors of students’ enaction of a specific program code (F, L) and if the 

descriptors reflect a correct or incorrect enactment of the program code. The remaining 

four columns describe how students demonstrated the F and L program codes correctly 

and incorrectly with the assessment agent when the agent’s beginning orientation faced to 

the assessment grid’s north, south, east, or west.  

When the agent began with an east-, west-, or south-facing orientation, students 



95 
 
who displayed indicators of developing spatial knowledge enacted the program code F by 

moving the agent forward two or more spaces, sidestepping the agent north while 

maintaining the agent’s perspective, or rotating the agent to face north. By rotating the 

robot to face north, students aligned the agent with the program code’s cardinal direction. 

Students similarly attended to the cardinal directions of the program codes R and L when 

enacting R and L with the agent (see Table 11). 

When enacting either the R or L program codes, students who indicated 

developing spatial knowledge enacted the rotation by facing the agent in the program 

code’s cardinal direction with or without a forward linear unit. The students who enacted 

program codes R or L as a forward linear unit in the opposite direction of the arrows 

cardinal direction did so only near the beginning of the assessment for items CP2 and 

CP4. Observed through an enactivist lens, students enacted R and L in opposite directions 

of the arrows’ cardinal direction near the assessment’s beginning and learned over the 

course of the assessment to enact R and L correctly or in the program code’s cardinal 

direction.  

How Students Demonstrated Measurement Knowledge 

Measurement knowledge was operationalized through students’ indicators of units 

of measure and distance measurement knowledge. The assessment’s F and B program 

code units are one linear movement horizontally or vertically from the center of one 

square to an adjacent square. The R and L rotation program code units are 90° rotations in 

the code’s respective direction (R=clockwise, L=counterclockwise). Table 12 summarizes 

the analysis memos that described how students indicated measurement knowledge in the  
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Table 12 

Measurement Knowledge Indictors and Indicators of Development 

MK Indicators Indicators of development 

Units of 
measure 

Enacts agent movements incrementally 
Names an action or makes a sound for each 

agent movement 
Counts individual agent movements to 

determine number of F arrows needed  
Moves the agent one unit at a time or 

coordinates a code with one unit at a time 

Enacts the agent with units different than 
indicated in the assessment 

Enacts one code as a continuous linear 
movement  

Enacts one code with two or more 
movements (e.g., R = turn and move) 

Enacts a rotation as 180°  
Moves the agent diagonally 
Includes the start space when enacting a 

program 
Includes start space when counting the 

number of F codes needed 

Distance 
measurement 

States the correct number of F codes needed 
to travel from one point to another 

States how many forward codes are 
needed but enacts a different number 

States the incorrect number of F codes 
needed 

 

assessment through indicators of units of measure and distance measurement knowledge.  

As shown in Table 12, students indicated units of measure (abbreviated as 

UnitsM) knowledge and developing knowledge in multiple ways while fewer distance 

measurement indicators emerged. UnitsM knowledge was coded for more frequently than 

distance measurement knowledge (see Table 9). Also, students indicated UnitsM 

knowledge in a greater variety of ways than other measurement knowledge. The higher 

occurrence of UnitsM knowledge in the data might explain why more indicators of this 

knowledge type manifested than distance measurement indicators. Students indicated 

measurement knowledge most frequently through language (e.g., “states the correct 

number of F codes…”) and actions on objects (e.g., “enacts agent movement 

incrementally”) while gestures indicators were not frequently observed. The following 
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sections will discuss how students used these modalities to indicate measurement 

knowledge and developing knowledge. 

Gesture indicating measurement knowledge and developing measurement 

knowledge. As described in this chapter’s spatial knowledge section, students tapped 

grid spaces to indicate the agent’s path and movement, however these gestures only 

indicated where students expected the agent to travel. These gestures did not indicate 

precisely measured units nor distinguish how the students perceived the agent’s path from 

the agent’s units. To indicate measurement knowledge and developing knowledge with 

gesture, the student would have needed to demonstrate surrogate embodiment of the 

agent by tracing their finger along the path with noticeable pauses between units. 

Alternatively, students would have needed to combine gesture with language to show the 

distance between two points and describe it as a total length or gesture over the grid to 

compare the length between two distances.  

Language indicating measurement knowledge. Language indicators of UnitsM 

knowledge emerged when students moved an agent and named each movement unit or 

made a sound for each movement. For example, a student enacted the program FFLFF 

(item CT7) while naming each movement as “straight, straight, turn, straight, straight.” 

Another student enacted FFLFF while making a “beep” sound for each movement. 

Associating sounds and language with each unit movement was an auditory indicator that 

the student associated each movement as a singular unit.  

Distance measurement knowledge indicators arose when students stated the 

number of forward codes needed to direct the agent from one location to another either 
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by counting the number of movements the agent requires and stating the total, or simply 

stated the number of forward codes needed. One student verbally compared the distance 

of the program for item CT4 with the program for CT5 by stating that, “it’s three again, 

they’re both three!”  

Language indicators of developing measurement knowledge. As described in 

Table 12, students indicated developing measurement knowledge with language when 

stating the incorrect number of forward codes needed and in their multi-modal use of 

language with actions on objects (language was incongruous with agent enactions) and 

language with gestures (counting grid squares to identify the number of forward units 

needed). For instance, some students answering item CT1 stated that the agent required 1 

or 3 forward units to travel to a destination (correct answer 2) but moved the agent two 

incremental units to the destination without changing their initial answer or appearing to 

rethink their answer.  

Some students also indicated developing measurement knowledge by counting the 

number of squares along a linear path to determine the number of forward arrows 

required by the agent to reach a destination. For example, one student counted the 

number squares along a path to answer item CT5. The student included the agent’s start 

square so the written program was FFFF, whereas the correct program was FFF. This 

indicated that the student considered each grid square as the unit rather than the forward 

linear movement from the middle of one square to the next. These instances were also 

coded with the number knowledge code -Counting on, which will be discussed in the 

upcoming How Students Demonstrate Number Knowledge section. 
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Actions on objects indicating measurement knowledge. Units of measure 

knowledge emerged as a necessary component of students’ spatial knowledge in codes 

when students enacted program codes with the assessment agent. This is because students 

must attend the program code’s unit to correctly enact a program code. The spatial 

knowledge indicators described in the Actions on Objects Indicating Spatial Knowledge 

section in which students manipulated the assessment agent also describe measurement 

knowledge indicators because spatial knowledge in codes indicators also indicated units 

of measure knowledge when students enacted program codes (action on objects). 

The distinction between unit measurement knowledge indicators and spatial 

knowledge in codes indicators is that unit measurement knowledge indicators occurred 

when students used assessment-specified units to enact programs, regardless of if the 

student attached the unit to a program code correctly. For example, assessment item CT5 

asks students to build a program for the agent to reach a patch of grass located three 

squares east of the agent’s start position. One student built the program RRF (correct 

program is FFF). Next, they enacted the program by moving the agent forward three 

distinct units. While this student demonstrated developing spatial knowledge by 

incorrectly enacting their built program, the student demonstrated measurement 

knowledge indicators by enacting each code with the assessment-designated forward unit. 

Actions on objects indicators of developing measurement knowledge. 

Indicators of developing measurement knowledge are similar to those described in the 

Actions on Objects Indicating Developing Spatial Knowledge section for the same 

reasons described in the Actions on Objects Indicating Measurement Knowledge section. 



100 
 
Students indicated developing measurement knowledge by enacting single program codes 

as a combination of two or more unit movements, which I will refer to as compound 

units. For example, if the agent began facing west (CP4), some students enacted a R 

program code by compounding two right rotations (RR) to turn the agent 180° to face 

east.  

One student used action on objects to move the agent while counting the total 

number of forward codes needed, but when asked how many total codes, the student 

repeated the process of moving the agent while counting each movement. In this way, the 

student indicated an understanding of the agent’s units, but a developing understanding of 

distance by counting each unit rather than stating the total number of unit iterations 

required. 

How Students Demonstrated Number Knowledge 

Table 13 summarizes how students indicated number knowledge and developing 

knowledge through their gestures (e.g., “uses number words while tapping…”), language 

(e.g., “uses spatial language…”), and actions on objects (e.g., “physically adds or 

subtracts from a quantity of codes”). Notice that many of these indicators have 

overlapping modes for demonstrating knowledge (e.g., “Uses spatial language while 

enacting each associated movement”), especially the coordinating knowledges. 

Coordinating counts manifested in two ways; (1) when students coordinated counting 

with gestures or material use (coded as Coordinating counts: Number), and (2) when 

students moved the agent or gestured in a one-to-one relationship with program codes 

(coded as Coordinating counts: Space). 
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Table 13 

Number Knowledge Indictors and Indicators of Development 

MK Indicators Indicators of development 

Counting Counts objects or an agent’s movements 
Names the correct number of codes or agent’s 

movements 
Uses number words while tapping or pointing 

along on the grid or moving the agent 

Mismatches counts with codes/objects/ 
movements 

Counting on Counts on from starting space when enacting a 
program or counting spaces 

Enacts the first program code by moving the agent 
forward one or more space 

Enacts the first program code by rotating the agent 
then moving the agent forward one space 

Includes the starting square when enacting a 
program or counting spaces 

Coordinating 
counts: 
Number  

Connects the number of movements along a path 
with the number of program codes needed to 
build the path (through a verbal explanation or 
gestures) 

Connects the number of movements of the agent 
with number of codes (through a verbal 
explanation or gestures) 

Uses number words (e.g., three forwards) instead 
of spatial language (e.g., forward, forward, 
forward) for counting movements or codes 

Does not coordinate counts with 
codes/objects/movements 

 

Coordinating 
counts: Space  

Uses spatial language (e.g., forward, forward, 
forward) while enacting each associated 
movement 

Enacts a program with one movement unit per 
code 

Connects each agent movement with an 
associated code (through a verbal explanation 
or gestures) 

Does not coordinate movements with codes 
or objects  

Operations Physically adds or subtracts from a quantity of 
codes 

Verbalizes the need to add or subtract from a 
quantity of movements (e.g., “we need one 
more F”) 

 

 

As shown in Table 13, there were more indicators of number knowledge than 

developing number knowledge. Similar to measurement knowledge, students indicated 

number knowledge most frequently with language and actions on objects than with 

gestures. The following sections will describe how students used indicated knowledge 

and developing knowledge through gesture, language, and actions on objects.  
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Gesture indicating number knowledge and developing number knowledge. 

The most common gesture students used to demonstrate number knowledge was tapping 

grid squares along an intended path while counting. This indicated students’ counting and 

coordinating counts with number knowledge. By coordinating each tap with a counting 

number, the students indicated an understanding that each tap represented a discrete unit 

(coordinating counts: number knowledge) and that the collection of units could be 

quantitized by counting (counting knowledge). Students also used gestures to indicate 

developing knowledge of counting on, for example, students included the start square 

when they tapped and counted grid squares along an intended path. The tapping gesture 

allowed me to see that these students were still developing a knowledge of the distinction 

between counting on to identify units and counting discrete quantities.  

Language indicating number knowledge. Students used number words, 

counting sequences, words indicating operations (which I termed operational language) 

as they enacted programs with the assessment items. Students also coordinated language 

with gesture, material use, and counts. Operational language indicated students’ ability to 

apply addition knowledge to codes, movements, or spaces (e.g., “another one,” “one 

more,” “this and this,” “three more”). For example, one student built a program by 

placing three F program codes on the program organizer saying “straight, straight, one 

more straight.” By stating that the program needs “one more” code, the student indicated 

operations knowledge of adding. Another student used operational language to indicate 

repeated addition knowledge by tapping a F program code and stating “again, this one” 

before moving the agent. 
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Use of referential language (e.g., “here,” “there”; described in this chapter’s 

Language Indicating Spatial Knowledge section) and general/precise directional language 

(e.g., “straight,” “right,” “up”; described in this chapter’s Language Indicating Spatial 

Knowledge section) indicated coordinating counts with space knowledge when the 

students used language one-to-one while enacting a program and/or coding a program. 

For example, one student built the program FFF moved the agent forward one space 

while saying “one,” then added a F code to the program, then moved the agent forward 

another space saying “here,” then added a F code to the program. Finally, the student 

moved the agent one final forward movement while saying “then here” and placed the 

final F code on the program. This student demonstrated coordination between number, 

space, and materials. Additionally, the student indicated sequencing knowledge by using 

the word “then” between each movement.  

Language indicators of developing number knowledge. Language indicators of 

developing knowledge occurred when students incorrectly quantitized codes, such as for 

item CT1 when students incorrectly stated the number of F program codes required for 

the agent to reach a destination (correct answer 2). When students stated that the agent 

required 3 F program codes, they indicated developing knowledge of counting on since 3 

would have included the start square. Students who responded that the agent required 1 F 

program may have considered only the number of squares between the start and end 

locations rather than the number of unit movements required to land on the destination.  

Actions on objects indicating number knowledge. Students demonstrated 

number knowledge of operations, counting on, and coordinating counts with space and 
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number while engaging with the assessment’s movable agent and program codes. 

Students indicated operations knowledge when they added or removed program codes to 

fix a program. One student demonstrated subtraction knowledge during item CT4 by 

sequencing all the available forward program codes on the program organizer to build 

FFFFF (correct answer FFF) then checked the robot’s intended path and removed three 

forward codes leaving his answer FF. Other times, students used the agent to inform their 

program sequencing such as when they sequenced program codes then tested the program 

with the agent. These students demonstrated coordinating counts by associating one 

movement with each program code while enacting the agent. If the sequenced program 

sent the agent too far or not far enough, students adjusted the program accordingly by 

adding or removing a program code, most commonly a forward. 

Students indicated counting on knowledge when they enacted a program’s first 

forward code by moving the agent forward from the start space. For example, one student 

correctly enacted the intended path for assessment item CT4 by moving the agent FFF. To 

enact it again, she placed the agent back on the start space with a brief pause before 

enacting FFF. The brief pause seemed to “reset” the agent at the start from which she 

could then re-enact the intended path.  

Actions on objects indicators of developing number knowledge. As shown in 

Table 13, a majority of developing number knowledge indicators emerged in students’ 

actions on objects. One way that students’ actions on objects to indicated developing 

number knowledge was when they did not coordinate actions or codes with movements. 

For example, one student built the program RRRRB for item CT9 (correct response 
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FFFRFFF). After building the program, she enacted it as FFRFFF. Although the program 

she built consisted of five codes, she enacted it with six movements. This indicated that 

she did not coordinate the number of codes in her program with the number of 

movements she enacted with the agent.  

While the previous example highlighted an indicator of coordinating counts in 

space, other students indicated a developing knowledge of coordinating counts with 

number when they stated a quantity but modeled a different quantity without changing 

their answer. For example, one student who engaged with item CT1 stated that the agent 

required one “up,” or forward code, to reach the destination (correct answer FF; see 

Figure 17a). Next, the student (Figure 17b) placed a forward program code on the agent’s 

path between the start and end spaces and hopped the agent from the start space to the 

program code and then to the end space (Figure 17c) while making a noise for each 

movement. 

Figure 17 

Stating One Forward Needed but Models Three 
 

  
Note. Student indicates the agent needs one forward code (a), places one forward program 
code on the agent’s path, (b) then hops the agent three times to the end of the path (c). 
 

The student pictured in Figure 17 indicated knowledge of language/space 

a b c 
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coordination by coordinating each hop with a sound, however the student demonstrated a 

developing understanding of coordinating movements with program codes by stating and 

programing one forward arrow but enacting two forward commands. 

How Students Demonstrated Computational Thinking 

This section will describe how students’ gesture, language, and actions on objects 

indicated their CT knowledge and developing knowledge. I operationalized CT 

knowledge by coding instances when students exhibited one or more of the early 

childhood CT components, which are algorithmic thinking, debugging, and 

decomposition. Algorithmic thinking was the most prevalent CT component and occurred 

almost exclusively when students built and read/enacted programs (see Table 9). Students 

indicated debugging knowledge when they recognized and fixed program errors and 

decomposition knowledge when they built wholes from parts and related parts to wholes. 

Possible wholes considered in the assessment include the agent’s intended path and a 

sequenced program, while the parts included unit movements along a path and program 

codes. Table 14 summarizes the CT knowledge and developing knowledge indicators. 

Like the MK knowledge tables, Table 14’s indicators were generalized from memos taken 

during the qualitative coding process. Table 14 follows a similar structure to the MK  

indicators and indicators of development tables (see Tables 10, 12, 13) and shows how 

students indicated knowledge of CT via the knowledge categories algorithmic thinking, 

debugging, and decomposition. The CT knowledge categories are listed in the table’s first 

column. Category knowledge indicator codes for algorithmic thinking (Plans program, 

Builds intended program, Read/enact program) and debugging (Recognize bug, Fix bug)  



107 
 
Table 14 

Computational Thinking Knowledge Indictors and Indicators of Development 

CT Indicators Indicators of development 

Algorithmic thinking    

Plan program Gestures on grid, describes or indicates a 
path 

Uses terms such as starts, ends, travels, goes 
Taps codes to indicate order 

Says, “It needs to go there" (pointing to 
destination) without indicating a path or 
sequence of steps 

Plans a path but may not show understanding 
of spatial ordering 

Build an Intended 
Program 

Builds programs left to right  
Uses language such as first, next, after, last  
Orders codes to accomplish a goal 
Applies codes correctly  
Builds/taps codes to show order  

Builds an incorrect program 
Sequences a program’s correct codes out of 

order (e.g., “FFR” instead of “FRF”) 
Places codes without reason, indicating a 

developing understanding of how codes 
are sequenced or which codes to use 

Read/enact Program Enacts a program in the proper sequence 
Alternatingly taps a program code and enacts 

the code with the agent 

Enacts program code(s) incorrectly (i.e., 
incorrect units, not from agent’s 
perspective) 

Enacts program incorrectly 
Enacts agent in a way that is not perceptibly 

related to the program codes 

Debugging    

Recognize bug Verbalizes or otherwise indicates that there is 
an error  

Stops an agent on an incorrect location and 
recognizes it as incorrect 

Does not recognize an error in a student-built 
program 

Does not recognize an error in a presented 
program 

Fix Bug Fixes a bug by adjusting or rebuilding the 
program  

Adjusts a program in a way that does not fix 
the error 

Uses a strategy that does not fix the error 

Decomposition   

 Takes multiple codes at once and places them 
in program 

Codes and tests a program unit by unit  
Reuses a chunk of code (two or more codes)  
Enacts a portion of a program to code the 

next part  
Enacts a program then checks where the 

agent is in relation to goal; makes change 
when the program doesn’t work 

Describes a path or program with sequencing 
or spatial language  

Traces a path while describing it with 
sequencing or spatial language 

Describes how each code/chunk of code 
relate to the whole after building/enacting 
a program 

Uses a F arrow to indicate continuous linear 
movement 

Identifies the whole as the number of path 
squares, not movements  

Places codes out of order or without reason, 
not indicating an understanding what the 
whole is or how codes contribute to the 
whole  

Enacts a program without reference to 
program codes 

Moves an agent twice but states that it only 
requires one code 
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are listed in the first column below each category. Although decomposition was originally 

broken into specific knowledge indicator codes, it was difficult to distinguish instances as 

primarily one form of decomposition or another. For this reason, general decomposition 

indicators are reported in Table 14 and are not attached to specific knowledge codes. 

Further research would be required to analyze instances of students’ decomposition to 

disaggregate the forms of decomposition that students indicate. 

As shown in Table 14, many of the algorithmic thinking indicators related to 

sequencing (e.g., “Builds/taps codes…,” “places codes…”, “orders…”). Considering also 

that algorithmic thinking was also the most frequently coded CT knowledge category (see 

Table 9), sequencing appears, transitively, to be an important factor in students’ CT 

knowledge. Table 14 also shows that students used gesture primarily to indicate 

algorithmic thinking knowledge with one exception in decomposition (“Traces a 

path…”).  

Students indicated CT knowledge and developing knowledge via all three 

modalities (gesture, language, actions on objects). Like students’ MK knowledge, 

students’ CT knowledge indicators overlapped among the three modalities, so each 

knowledge indicator is not exclusive to a specific modality. Operationalizing how 

students indicate CT knowledge via each modality, however, provides insight into how 

students embodied CT knowledge. For this reason, I will first describe how students 

indicated CT knowledge and developing knowledge through gestures and language. Next, 

I will describe how students indicated CT knowledge through actions on objects. To 

account for the higher instances of students indicating CT through actions on objects, the 
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actions on objects section will be disaggregated by CT category to describe how students 

indicated algorithmic thinking, debugging, and decomposition knowledge and developing 

knowledge.  

Gesture indicators of computational thinking knowledge. Overall, students 

gestured by tapping, sliding, and sweeping their fingers on paths and programs. These 

forms of gesture indicated algorithmic thinking knowledge when students tapped grid 

squares, slid their finger along the agent’s intended path, tapped each code in a program 

before enacting the code, or while building a program. These knowledge behaviors 

related to decomposition when students used them to indicate portions of a path at a time. 

For example, in item CT9, students were given a program (FFRFFF, correct answer 

FFFRFFF) and asked to fix the program so that the agent follows a marked path to the 

destination. To solve the task, students’ gestures indicated algorithmic thinking and 

decomposition knowledge by tapping or sweeping the squares along the first part of the 

path, then sequencing the corresponding program codes (FFF), before building the 

reminder of the program using various strategies. By gesturing along the first part of the 

path, students decomposed the path at the rotation and built the program’s first string of 

linear movement (FFF) before tackling the remainder of the program (RFFF).  

Gesture indicators of developing computational thinking knowledge. Gestures 

indicating developing knowledge were only observed when combined with language 

and/or actions on objects. For example, one student combined language and gesture in 

item CT9 to describe how the agent might reach the destination without following the 

indicated path. She stated that “if [the agent] wanted to go off the path he could go one 
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more forward and one more right turn” while gesturing her finger south over the grid then 

east over the grid (see Figure 18). 

Figure 18 

Student Using Gesture and Language to Describe an Alternate Path 

 
Note. Student suggests and gestures that if the agent were to reach the 
destination by going off the path it would “go one more forward” (1a, 1b) 
then make a “right turn” (2a, 2b). 

The student in Figure 18 used a combination of gestures and language to indicate 

knowledge of precise programming language and the correct use of the forward code, 

however her sweeping gesture representing a right turn (pictured in 2a and 2b) indicated 

that she anticipated a right turn would direct the agent to rotate right and move forward 

one square. Her interpretation of a right turn indicated a developing understanding of 

program building. Hence, her gesture allowed me to see that her knowledge of program 

building was developing because her gesture indicated an incorrect application of the R 

1a 1b 

2a 2b 
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program code.  

Language indicators of computational thinking knowledge. I categorized the 

types of language students used into four categories: (1) process language (starts, ends, 

travels, goes), (2) sequencing language indicating algorithmic thinking (first, next, after, 

then, last), (3) language indicating decomposition (i.e., “two, because one, two,” “three 

steps”), and (4) language indicating debugging (i.e., “that’s not right,” “this is wrong”).  

Process language (start, end, travels, goes) indicated knowledge of the program 

and path conventions such that the program and path have beginnings and ends and that 

the start and end are reached by the agent moving from one to the other. Process language 

also related to sequencing knowledge, as the sequenced programs and indicated paths 

contained a beginning and end.  

Students used sequencing language while building and reading/enacting 

programs, both of which require the student to attend to the left-to-right sequencing 

convention dictated by the CT context. Sequencing language also indicated CT 

decomposition knowledge. Some students built programs code by code while stating the 

code name and separating each with the sequencing word “then,” (i.e., “forward, then 

forward, then forward).” In this example, the sequencing word “then” separates each 

code from the next so that the student indicates an understanding that the whole (the 

program) is intentionally built by a collection of sequenced units (each program code).  

When using decomposition language, students related how a whole program is 

composed of what I termed “chunks” of movements (a sequence of two or more units). 

For example, one student described why the L program code completes CT4’s program 
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(FLFF). The student explained that the agent “moves” while enacting the first F code, 

“then turns this way” while rotating the agent L, and “then moves like this” while moving 

the agent FF. This student demonstrated decomposition knowledge by relating the units 

and chunks of the path (F, L, and FF) to the whole program and path. 

Debugging knowledge language indicators arose when students correctly stated 

that a program contained an error, such as stating that there is something “wrong” or “not 

right” in a coded program.  

Language indicators of developing computational thinking knowledge. 

Students indicated developing CT knowledge when they incorrectly stated that a program 

contained a bug, that a program directed the agent to a destination other than the actual 

destination or interchanged the terms right or left. For example, item CT10 required 

students identify the missing code in a program (given: F_FFLF; missing code: F). 

Students who responded correctly sometimes enacted the program to test it and 

misinterpret the L program code so that they incorrectly stated that the program contained 

a bug. Although these students responded correctly, their incorrect program code 

interpretation indicated a developing knowledge algorithmic thinking, and their incorrect 

assertion that the program needed to be debugged indicated a developing knowledge of 

debugging.  

Actions on objects indicating computational thinking knowledge and 

developing knowledge. Actions on the assessment agent and program codes is required 

for assessment completion, so students frequently indicated CT knowledge and 

developing knowledge through their actions on objects. This section will discuss each CT 
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knowledge domain (algorithmic thinking, debugging, and decomposition) and how the 

students indicated knowledge and developing knowledge through their actions with the 

assessment’s agent and program codes.  

Indicators of algorithmic thinking knowledge. Students indicated algorithmic 

thinking knowledge when they enacted a program correctly with the agent, correctly 

sequenced program codes, and attended to the agent’s perspective. An example of 

students attending to the agent’s perspective occurred in assessment item CT5. 

Assessment item CT5 presented the student with the agent facing east on the grid and 

asked the student to build a program for the agent to land on the “grass,” a grid square 

picturing grass three spaces east of the agent (correct response FFF). Students who 

indicated algorithmic thinking knowledge in item CT5 recognized that the program code 

F—which appears to face north on the grid from the students’ perspective—directs the 

agent to move forward according to the agent’s orientation, not the cardinal direction of 

the program code’s apparent north orientation. Students who indicated this algorithmic 

thinking knowledge responded to CT5 sequenced three F codes, indicating that they 

applied the F code to the agent’s perspective.  

Other students used the agent and program codes using program-building 

strategies which I call move-code and code-test. For the move-code strategy, students 

moved the agent one unit along the path then placed the movement’s corresponding code 

in the program, repeating the move-code action until the program was complete. This 

actions-on-objects indicator showed students’ algorithmic thinking knowledge of relating 

one program code to one movement to build a program unit by unit. By moving the agent 
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first, the student indicated a unit movement along the path, then selecting and sequencing 

the associated program code revealed which code the student associated with the 

movement. Alternately, students would first add a code to the program then test the code 

by moving the agent. Students repeated this code-test program-building strategy until the 

program was complete.  

In contrast to the move-code strategy, students indicated algorithmic thinking 

knowledge with the code-test strategy by selecting the anticipated code first, then testing 

the program code with the agent. This strategy allowed me to see students’ interpretation 

of the code in the grid space. Students using this strategy would sometimes test the code 

and realize that the code did not have the intended outcome. Students would then 

reposition the agent and select a different code to test. In this way, the code-test strategy 

sometimes led to debugging knowledge indicators. These two different, but related, 

actions-on-objects strategies (move-code, code-test) were generally effective unit-by-unit 

programming strategies so long as students accurately interpreted the program codes. 

Indicators of developing algorithmic thinking knowledge. Students indicated 

developing algorithmic thinking knowledge in various ways (see Table 14), however this 

section will highlight only two of these indicators: sequencing difficulties (i.e., losing 

track of what parts of the program had and had not been built), and not attending to the 

agent’s perspective. 

Sequencing difficulties emerged most often when students built longer programs 

(five or more codes) in items CT7 (FFLFF) and CT9 (FFFRFFF). In addition to being 

longer programs, items CT7 and CT9 each required a rotation mid-program. When 
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programming CT7, students indicated developing knowledge by programming the first 

two forwards correctly and account for a rotation, but then incorrectly coded the final two 

F codes as one F. For CT9, students who debugged the program by rewriting it correctly 

built the length of the path up until the rotation (FFF), then appeared to have lost track of 

what they had already coded and either left out a rotation entirely or added an extra F, 

resulting in the program FFFFFF or FFFRFFFF. Students who indicated developing 

knowledge in this way built the program one code at a time, enacting each code with the 

agent before adding another code to the program.  

A common indicator of developing algorithmic thinking knowledge was when 

students attended to the program codes’ cardinal directions rather than applying the 

program code to the agent’s perspective. To contrast an example given in the Indicators 

of Algorithmic Thinking section wherein students responded to item CT5 (correct 

response FFF) by building a program with F codes, students who indicated developing 

algorithmic thinking knowledge in CT5 built a program with R codes. The R program 

codes, from the student perspective, point west on the grid, which is the direction the 

agent needs to travel for item CT5. So instead of building FFF, students built the program 

RRR. 

Indicators of debugging knowledge. Debugging knowledge indicated by 

students’ actions on objects occurred when: (1) students correctly enacted a buggy 

program with the agent and recognized that the program was incorrect and (2) students 

successfully fixed a bug by sequencing program codes or adjusting a program’s existing 

codes. Students indicated debugging knowledge even if they could not fix the bug. For 
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example, one student successfully identified the bug in item CT9 (given: FFRFFF; 

debugged: FFFRFFF) by observing that the agent needed to go further forward before 

rotating. The student, however, did not know how to complete the program after the turn. 

Because the student correctly identified the error, the student indicated debugging 

knowledge. The student’s inability to build the remainder of the program indicated 

developing algorithmic thinking knowledge as their difficulty was in coding the 

remainder of the program rather than debugging.  

Indicators of developing debugging knowledge. Students indicated developing 

debugging knowledge primarily when they interacted with the program codes. This 

occurred when students adjusted a program by removing, replacing, or reorganizing a 

program’s codes without fixing the bug or when students incorrectly identified a bug’s 

location in a program and attempted to fix it by adjusting the codes.  

Indicators of decomposition knowledge. Decomposition knowledge was 

indicated when students sequenced or enacted programs with chunks (two or more 

sequenced program codes). To build programs with chunks, students sometimes selected 

two or more program codes at a time before sequencing them in a program rather than 

selecting one code at a time and sequencing them individually. Other students enacted a 

program in chunks by referencing the program, enacting two or more program codes with 

the agent, then referencing the program again to enact the next program code individually 

or as part of the next chunk. For example, item CT3 asks students to complete a program 

by filling in the missing code (F_FF) for the agent to travel along a marked path (correct 

response FLFF). Some students indicated decomposition knowledge with the agent by 
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enacting the program up to the missing code (F) before identifying which program code 

was missing. By enacting the given part of the program before selecting the missing 

program code, these students indicated an understanding that the program’s whole can 

decomposed into parts. The parts in this instance were the program’s beginning code (F), 

the missing code, and the remainder of the program. Some students who demonstrated 

this method for completing item CT3 finished enacting the program after placing the 

missing program code in the program while others did not. Students who enacted the 

remainder of the program used the actions-on-objects to indicate their knowledge of the 

program’s final part and, in turn, the program’s whole.  

Indicators of developing decomposition knowledge. Students indicated 

developing decomposition knowledge when building and using wholes, which in this 

context include the path (by moving the agent) and the program (by manipulating the 

codes). Some students indicated a developing understanding of a program’s whole by 

interacting with the number of squares along a path rather than interacting with the units 

of movement that the agent takes to move along the path. For instance, students 

responding to CT1 (correct response FF) sometimes stated that the agent required three F 

codes and enacted this by hopping the agent on the start, middle, and end square. These 

students indicated a developing understanding of the whole by decomposing it into 

incorrect units (each grid square) rather than correct units (units of linear movement). 

Another interpretation of the whole was that it did not include the end space, only 

the squares between the start and end locations. These students regularly sequenced the 

program’s codes so that the agent stopped one grid space shy of the intended destination. 
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In this way, the students demonstrated a different interpretation of the whole than was 

indicated by the assessment.  

 
Mathematical Knowledge and Computational  
Thinking Co-Occurrences  

In this section, I report on how students’ MK and CT knowledge co-occurred as 

they completed CT assessment items. I ran a co-occurrence frequency report to determine 

which MK and CT codes co-occurred and the frequencies of each MK CT co-occurrence. 

According to the resulting co-occurrence report (see Appendix E), the most common MK 

codes to overlap with CT codes were Spatial knowledge in codes (SK), Units of measure 

(UnitsM), Counting on, and Coordinating counts: Space (CSpace). These MK codes most 

frequently co-occurred with the CT codes Builds an intended algorithm (Build) and 

Read/enact program (Read) (see Table 15). As indicated in Table 9, students 

demonstrated CT knowledge most frequently when they built and read/enacted programs, 

so it follows that the most frequent MK CT co-occurrences would occur with Build and 

Read.  

Table 15 highlights MK and CT codes that co-occurred most frequently (referred 

to as MK CT codes) and the frequency of each co-occurrence. The first column lists the 

MK codes while the top row lists the CT codes. The intersections of each row (MK code) 

and column (CT code) quantify how many times the respective MK and CT codes co-

occurred. Each MK CT co-occurrence represents one instance when a student indicated 

both knowledge types while completing an assessment item. For instance, Table 15 

indicates that the MK code UnitsM and CT code Builds co-occurred 60 times. This 



119 
 
means that of the 822 instances within the data set students enacted assessment items, 60 

instances were coded with UnitsM and Builds.  

Table 15 

Frequencies of the Most Common MK CT Code Co-Occurrences 

 CT codes 
──────────────────────────────────────────── 

MK Codes 
Builds an intended 

algorithm - BIA 
Read/enact 

program - REP 

Spatial knowledge 
in codes 

129 5 133 4 

- SK 0 154 3 135 

Units of measure 60 25 133 43 

- UM 0 58 1 87 

Counting on 60 71 135 115 

- CO 0 2 0 3 

Coordinating 
counts: Space 

54 55 119 76 

- CC:S 1 19 2 39 

 

Table 15 reveals two main patterns. Firstly, students who indicated SK and 

UnitsM knowledge generally indicated Build and Read knowledge as well (SK/Build = 

129, SK/Read = 133; UnitsM/Build = 60, UnitsM/Read = 133). Similarly, students who 

indicated developing SK (-SK) and Units (-UM) also indicated developing Build and 

Read knowledge (-SK/-BIA = 154, -SK/-REP = 135; -UM/-BIA = 58, -UM/-REP = 87). 

This pattern suggests that students’ SK and UnitsM knowledge might relate to students’ 

CT knowledge output, or that students’ CT knowledge might relate to their MK 

knowledge.  

Second, unlike the relationships between SK and UnitsM with Build and Read, 
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CT knowledge output has an unclear relationship with students’ Counting on and CSpace 

knowledge. A majority of Counting on and CSpace co-occurrences with -BIA and -REP 

were with indicated MK knowledge (Counting on, CSpace) rather than developing MK 

knowledge (-CO, -CC:S). This shows that students could demonstrate accurate CT 

knowledge and developing MK or could demonstrate developing CT knowledge even if 

they were using accurate MK. In total, indicated Counting on co-occurred with Build/-

BIA and Read/-REP 381 times (60+71+135+115; see Table 15), compared with only five 

co-occurrences of -CO with Build and Read (0+2+0+3; Table 15). The same pattern 

emerged with CSpace, wherein students’ CSpace knowledge co-occurred with 

Build/Read and -BIA/-REP. This pattern suggests that – in contrast with SK and UnitM’s 

apparent relationship with students’ CT knowledge output – Counting on and CSpace 

knowledge have an unclear relationship with students’ CT knowledge output when 

building and reading/enacting programs.  

While building and reading/enacting programs are different practices, they are 

similar in that students frequently engaged in both by manipulating the agent and 

program codes. Both practices also require students to use similar skills by interpreting 

program codes in a grid-based context. For these reasons, and to speak more broadly to 

CT, Build and Read will be discussed in tandem with the indicated MK co-occurrences.  

To generalize the nature of these themes, I reviewed video clips of students 

exhibiting these MK CT co-occurrences and associated memos. Findings for each of the 

major MK CT co-occurrences will be discussed next: SK and Build/Read, UnitsM and 

Build/Read, Counting on and /Build/Read, and CSpace and Build/Read.  
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Spatial Knowledge in Codes with Building and  
Reading/Enacting Programs 

One of the conditions in which students’ SK knowledge co-occurred with Build 

and Read was when they used the program building strategies code-test and move-code. 

These strategies (discussed in the Indicators of Algorithmic Thinking Knowledge section) 

made students’ program code interpretations visible as students paired agent movements 

with program codes. Students who correctly interpreted the program codes indicated SK 

knowledge and most frequently correctly built and read/enacted programs. Students who 

incorrectly or inconsistently interpreted the program codes indicated developing SK 

knowledge and most frequently built and read/enacted programs incorrectly. 

 
Units of Measure with Building and Reading/ 
Enacting Programs 

UnitsM frequently co-occurred with Build/Read and was observed when students 

enacted a program code with the agent. Students indicated UnitsM knowledge by moving 

the agent in unit movements specified by the assessment (see the Actions on Objects 

Indicating Measurement Knowledge section of this chapter). Assessors who allowed more 

time for students to build programs early on set the standard that students can build then 

test their programs, providing opportunities for students to demonstrate UnitsM 

knowledge. Assessors also elicited students’ UnitsM knowledge when they reminded the 

student that students could move the agent if needed. Students also indicated UnitsM 

knowledge with -BIA and -REP, although with less frequency than with Build and Read 

knowledge. For example, a student might move the agent one unit at a time, but not 

correctly attend to the program codes’ directionality. These types of occurrences might 
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explain the frequency counts of UnitsM/-BIA (25) and UnitsM/-REP (42) in Table 15.  

 
Counting On with Building and Reading/ 
Enacting Programs 

Students exhibited Counting on when enacting the first program code with an 

agent. In indicating Counting on knowledge, students used the starting point on the grid 

as “zero” and counted on from the starting point. This occurred when students enacted, 

built, and tested programs. Counting on likely co-occurred frequently with Build and 

Read because students were instructed throughout the assessment to manipulate the agent 

in the grid space. All assessment items ask students to consider the agent’s movement in 

space, and all assessment items but two (CP3, CP4) require at least one forward 

movement from a starting point. Any time students enact a F program code from an 

agent’s start space they indicate knowledge, or developing knowledge, of Counting on. 

Unlike SK and UnitsM, Counting on had an unclear relationship with students’ 

CT knowledge. Students demonstrated counting on knowledge 416 times in the data. Of 

the 416 instances, students indicated -CO only eight times (see Table 9). Of the 379 

instances in which Counting on and -CO co-occurred with indicated and developing 

Read/Enact, only five co-occurred with -CO (see Table 15). The remaining 374 co-

occurrences with Counting on were nearly evenly divided among Build/Read (N = 189) 

and -BIA/-REP (N = 185). This indicates an unclear relationship between students’ 

counting on knowledge and their CT knowledge output.  
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Coordinating Counts: Space and Building  
and Reading/Enacting Programs 

Coordinating counts most frequently occurred when students built programs using 

the code-test and move-code strategies and when students coordinated language with 

each enacted movement. When using these strategies, students indicated their knowledge 

(or developing knowledge) of the one-to-one relationship between a movement in space 

and a program code or sound. There is an unclear relationship between students’ CSpace 

knowledge and their program code interpretations. This may explain why there is not as 

drastic of a difference between the number of CSpace co-occurrences with CT’s 

Build/Read and -BIA/-REP. Whereas SK is required for students to build programs, 

CSpace is not. 

The CSpace and Build/Read co-occurrence is likely frequent because the 

assessment is performance-based, so students are instructed and expected to interact with 

the agent and program codes. The assessment’s interactive design allowed students to 

demonstrate knowledge of coordinating relationships between program codes and an 

agent’s movement in space while building and reading/enacting programs.  

Like counting on, CSpace had an unclear relationship with students’ CT 

knowledge output. As depicted in Table 15, students can indicate CSpace knowledge with 

Build/Read and -BIA/-REP. Co-occurrences with -CC:S knowledge, however, more often 

occur with -BIA/-REP, which indicates that – while there is an unclear relationship 

between indicated CSpace knowledge and CT knowledge output – a relationship exists 

between CSpace knowledge (-CC:S) and students’ CT knowledge output. Additional 

investigation from a larger data set would be required to explore this further and verify 
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the presence of such a relationship. 

 
Deleted Codes in the Operationalization of  
Mathematical Knowledge and Mathematical  
Knowledge Computational Thinking Co-Occurrences 

Chapter IV described the a priori coding-scheme used for this study. This section 

details why some of the a priori codes were dropped. The codes deleted from the analysis 

include Spatial orientation, Abstraction, Decomposition (MK), Develop and apply 

algorithms, Patterning, Sequencing, and Spatial reasoning. Spatial orientation 

knowledge was originally coded as part of this analysis; however, it was coded so 

frequently that it became superfluous, rendering its use white noise. Further research 

specifically exploring spatial knowledge would be useful to disaggregate how spatial 

orientation plays a part in other spatial knowledge categories. Other codes were also 

coded excessively and subsequently dropped as they appeared as overarching concepts to 

other codes that described the ideas more specifically (see Table 16). Table 16’s first 

column lists a priori codes dropped because they were represented more specifically by 

other related codes. The related codes for each of the dropped a priori codes is listed in 

the table’s second column. 

For example, Table 16 indicates that the original a priori code Develop and apply 

algorithms was dropped since other codes (Builds intended algorithm, Read/enact 

program) described coded instances more specifically. As another example, abstraction 

was originally coded every time students abstracted meaning from a code by 

reading/enacting a program, stating a code’s name or function, or building a program. 

Abstraction was also applied when students abstracted quantities by counting or using  
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Table 16 

A Priori Codes Represented More Specifically by Other Codes 

Original code Related codes used instead 

Abstraction Building intended algorithm, Read/enact program, Counting, 
Operations, Distance, Coordinating counts: Space, Coordinating 
counts: Number 

Develop and apply algorithms Builds intended algorithm, Read/enact program 

Sequencing Builds intended algorithm, Read/enact program, Counting, 
Coordinating counts: Number, Coordinating counts: Space 

Spatial reasoning Spatial visualization, Spatial language, Spatial knowledge in codes 

 

number words. In this way, while abstraction appeared as a salient aspect of students’ 

engagement with the assessment, other codes were better at dissecting how students 

abstracted in the assessment.  

Patterning and Decomposition as MK were also original a priori codes. Patterning 

was dropped since the assessment did not assess the coding system’s underlying structure 

in a way that was visible in students’ responses. Decomposition as MK was dropped since 

it was difficult to distinguish students’ decomposition strategies as evidence of MK or CT 

knowledge. Additional analysis would be required to further distinguish how students 

indicate forms of MK and CT decomposition knowledge. 

Summary of Research Question 1’s Results 

The results for Research Question 1 reveal that students demonstrate MK and CT 

knowledge and developing knowledge multi-modally through gestures, language, and 

actions on objects. Operationalizing MK and CT revealed that indicators of knowledge 

and developing knowledge provide insights into the mathematical skills and thinking that 
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students engage with during a CT assessment. Indicated and developing knowledge were 

not exclusive, meaning that students sometimes indicated MK or CT knowledge and 

developing knowledge at the same time (e.g., Units measurement and -D). Results for 

Research Question 1 also revealed that the MK spatial knowledge, units, counting on, and 

coordinating counts with space most frequently co-occurred with the CT knowledge build 

and read/enact programs. Further, this section reported that some MK (SK, UnitsM) 

might relate to students’ CT knowledge output, while other MK have an unclear 

relationship with CT knowledge output (Counting on, CSpace).  

Results for Research Question 2  

In this section, I present the results for Research Question 2, How do students’ MK 

and MK CT co-occurrences relate to their performance on individual CT assessment 

items? To answer this question, I provide descriptive case studies of four assessment 

items describing how MK and MK CT co-occurrences might relate to assessment item 

performance. Question 1’s analysis and the co-occurrence models informed my final case 

study selection. Case studies will be presented for assessment items CT1, CT2, CT5, and 

CT6. These cases were selected based on the mathematics made visible in students’ 

enaction of each assessment item. For each case study I first describe the assessment item 

and why it was selected as a case, then how an MK or MK CT co-occurrence manifested 

in students’ performance of the item and how the MK or MK CT co-occurrence might 

relate to students’ performance of the item. Following the four case studies, I draw cross-

case conclusions to generalize how students’ MK and MK CT co-occurrences might 
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relate to students’ performance on individual CT assessment items.  

The images in this section include case models that are described in Chapter III’s 

Phase 3 Analysis section. Each case model was generated from code frequencies in 

MAXQDA to represent the MK and MK CT co-occurrences that students exhibited when 

they engaged with each CT assessment item (see Figure 19). Each case model includes 

the MK and MK CT co-occurrence codes that occurred three or more times in each 

assessment item.  

For example, Figure 19 depicts the visual case model for assessment item CT1. 

The model’s two central points are CT1 and -CT1, which represent instances when 

students responded to CT1 correctly (labeled CT1) and incorrectly (-CT1). The nodes 

extending from CT1 and -CT1 connect with MK and MK CT indicated by students who 

answered correctly (CT1) and incorrectly (-CT1). For example, the top left node 

extending from CT1 is “S knowledge in codes” and indicates the code’s frequency (22). 

The described node indicates that of all the instances that students responded to CT1 

correctly, 22 of the instances indicated S knowledge in codes. The N Counting on code in 

Figure CT1 (center, top), however, has two nodes connecting it to both CT1 and -CT1. 

The nodes connecting N Counting with CT1 and -CT1 show that there 17 instances 

wherein students used Counting on and answered correctly while in three instances 

students indicated Counting on answered incorrectly. Four CT assessment item case 

models are depicted in this section with the remaining models available in Appendix D. 

Assessment Item CT1 Case Study: Distance Measurement 

The grid on the left of Figure 20 depicts the CT1 assessment grid. The grid square  
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Figure 19 

Case Model Example 

 
Note. The case model icons resembling Venn Diagrams (colored yellow, green, and blue) indicate MK CT 
co-occurrences and all other icons except those labeled as CT1 and -CT1 indicate MK codes. The 
abbreviations used in this diagram are as follows: S (Spatial; colored green), N (Number; colored purple), 
M (Measurement; colored orange), S knowledge in codes (SK), Counting on: Space (CSpace), BR (Build 
and read/enact programs). The labels with red text indicate developing-knowledge codes (i.e., -M Distance) 
and an incorrect response (-CT1). 

 

Figure 20 

CT1 MK/MK CT Case Model and Assessment Materials  

 

 



129 
 
outlined in green indicates the start location with the agent starting orientation marked 

with a green arrow. The end/destination square is outlined in red with a picture of grass. 

To administer CT1, facilitators placed the agent on the starting square facing north and 

asked students how many forward arrows the agent would need to reach the destination 

(correct response “2” or “FF”). This item assessed students’ algorithmic thinking, in 

particular their knowledge of codes and planning codes for a program. Students could use 

the agent or program codes to respond, but using the materials was not necessary.  

The case model on the right of Figure 20 represents students’ CT1 responses and 

corresponding codes. Item CT1 was unique in that it elicited students’ demonstration of 

distance measurement knowledge (M Distance in Figure 20), a knowledge that was 

uncommonly indicated by students in other assessment items. All but one instance of 

Distance knowledge and all -D occurred during CT1, so this assessment item was 

selected as a case study. Of the 60 students who responded to this item, 47 responded 

correctly (78%) and 13 responded incorrectly (22%). Students who responded to CT1 

correctly indicated distance knowledge 40 times (see Figure 20) by stating that the agent 

required two forward codes, whereas students who responded incorrectly to CT1 

indicated -D knowledge 8 times. In instances of -D, students stated the incorrect distance 

(one or three). Two students who answered incorrectly stated that the agent required one, 

but then moved the agent forward twice to reach the destination. 

Students who indicated distance knowledge identified the total number of units 

(i.e., two F program codes) the agent needed to travel from a start to an endpoint. This 

necessitated that students consider how many linear unit iterations were required in the 
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space and state the total number of iterations, or distance. By stating the distance as a 

quantity of forward units, the students also indicated spatial visualization knowledge, as 

they would have had to visualize how many unit iterations. Students who answered “one” 

but moved the agent twice indicated that they understood how the agent moved in unit 

movements. However, they did not yet connect this knowledge with the concept of 

distance being a sum of the unit iterations required to reach the destination. In this way, 

distance measurement knowledge related to students’ performance on item CT1, which 

assessed students’ algorithmic thinking. 

Assessment Item CT2 Case Study: Units of Measure  

For item CT2 (see Figure 21), the assessor positioned the agent on the grass 

facing east, gave the students a program strip with the program FFF, and instructed the 

student to move the agent according to the program. This item assessed students’ 

algorithmic thinking, in particular, their reading and enacting of a given program. Item 

CT2 was the only assessment item administered a portion of the time (12 of 60 instances) 

incorrectly. When administered incorrectly, the assessor incorrectly positioned the agent 

in a north-facing direction rather than an east-facing direction. The purpose of the east-

facing start orientation was to assess students’ knowledge of forward codes when the 

agent was oriented in a direction that did not match the students’ orientation (i.e., agent’s 

east-facing versus the student’s north-facing), which involves the CT skill of interpreting 

codes as well as the MK knowledge of spatial orientation. Item CT2 was selected as a 

case study to understand better the assertation made in this chapter’s co-occurrence 

section that UnitsM knowledge might relate to students’ CT knowledge output in this 
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assessment context.  

Figure 21 

CT2 MK/MK CT Case Model and Assessment Materials 

 

Additionally, UnitsM knowledge (M Units in Figure 21) was frequently coded in 

item CT2 as 46 of the 48 students who responded to this assessment item indicated 

UnitsM knowledge or developing knowledge. The case model on the right of Figure 21 

represents the 48 times item CT2 was administered correctly. Of the 48 students, 23 

students responded to the item correctly (48%) and 25 students responded incorrectly 

(52%). 

As represented in the case model in Figure 21, all students who responded to CT2 

correctly (N = 23) indicated UnitsM knowledge (M Units), SK (S knowledge in codes), 

and counting on (N Counting on). This means that UnitsM co-occurred with the MK 

codes for SK and Counting on. The students with accurate responses to CT2 also 

indicated coordinating counts knowledge in either space (N = 20; N Coordinating: Space) 

or number (N = 3; N Coordinating: Number). Likewise, the MK CT co-occurrence codes 

(shown as Venn Diagrams) indicate MK co-occurrences with the CT knowledge 
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Build/Read (SK/BR, UnitsM/BR, Counting on/BR, and CSpace/BR). This means that the 

students who indicated units, space, counting on, and coordinating counts with number 

knowledge also indicated CT building and reading knowledge. Students who responded 

to CT2 manifested UnitsM when they moved the agent according to the assessment-

established units. Correct units included linear movements from the center of one square 

to another (for F and B codes) and 90-degree rotational movements in place (for R and L 

codes). I coded UnitsM regardless of whether the demonstrated unit coincided correctly 

with an enacted program code’s meaning. For example, when students enacted CT2’s 

given program (FFF) as LFF, I coded the instance as UnitsM and -SK. Coding UnitsM 

knowledge separate from spatial knowledge in codes allowed me to see students’ unit and 

spatial knowledge interplay. As described earlier, spatial orientation was dropped as a 

code; however, CT2 provides an example of how it became difficult to account for 

students’ unit knowledge without understanding how their spatial orientation knowledge 

affected their program code interpretation. It was difficult to identify whether students 

enacted their interpretation of program codes were simply reorienting the agent to face 

the F program code’s cardinal direction. This difficulty brings to question how (and if) 

students’ spatial orientation knowledge affects their UnitsM knowledge application, if 

their UnitsM knowledge affects their spatial orientation knowledge, or if there is no 

relationship between the two and they are co-occurring knowledge. 

Of the 23 students represented in the node connecting -CT2 with -SK, 15 

indicated UnitsM knowledge (M Units) and 8 indicated developing UnitsM knowledge (-

M Units). This suggests that students may have developed unit knowledge but that their 
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spatial knowledge is still developing.  

The students who indicated developing UnitsM knowledge (-M Units) used a 

combination of correct and imprecise linear unit lengths (1.5 squares, two or more 

squares), rotated the agent 180 degrees, or counted a hop on the start square as a forward 

unit length. A lack of unit length precision caused the students to end the agent on the 

wrong square so that the intended and actual end points did not match. Hence, it appears 

that students’ unit length precision was important for correctly responding to item CT2.  

As shown in the model in Figure 21, 15 students indicated UnitsM knowledge but 

answered item CT2 incorrectly. Students who answered incorrectly most often rotated the 

agent left 90 degrees to face north, matching the program arrow’s cardinal-facing 

direction. After rotating the agent, most students moved the agent forward twice for a 

completed enaction of LFF or three times for a completed enaction of LFFF. Students 

who moved the agent LFF indicated three units of movement, the same number of 

movements indicated by the given program (FFF), suggesting that these students 

interpreted the program code F two different ways. The students interpreted the first F as 

a left rotation to face north and the final two F codes as F. In other words, the students 

who enacted LFF maintained a one-to-one coordinating relationship between the program 

codes and agent movements, whereas those who enacted LFFF did not. Students who 

enacted LFF indicated a coordination knowledge of program code and movement, which 

is a contextual CT and mathematical coordination skill.  

However, students who enacted CT2 as LFFF used four-unit movements to enact 

a three-code program. Students who enacted LFFF did not indicate the same coordination 
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knowledge, though it is unclear if these students: 

• interpreted the first F code as a left-forward movement, 

• did not consider the first rotation unit part of the program enactment and 
reorientated the agent, or  

• reoriented the agent for another reason, such as thinking that the administrator 
incorrectly placed the agent.  

If students interpreted the first F program code as a left-forward movement, this would 

indicate that they interpreted the F program code in more than one way and that their unit 

knowledge is developing. If a student did not consider the first rotation unit part of the 

program enactment, then the student likely oriented the agent north to face the F program 

code’s cardinal direction. The student may have unintentionally applied a rotation unit to 

reposition the agent in this case. A similar conclusion might be drawn for the third LFFF 

rotation interpretation that the administrator incorrectly placed the agent. By rotating the 

agent to face north before enacting the F program codes, students attended to the cardinal 

direction of the program arrows rather than applying program codes to the agent’s 

perspective. Conversely, one student demonstrated his ability to apply program codes to 

the agent’s orientation by rotating the program strip 90-degres right so that the F program 

codes matched the agent’s east-facing perspective. When students demonstrated this type 

of action on the objects, it showed their ability to translate the program codes to the 

agent’s spatial orientation. Translating program codes according to the agent’s orientation 

is another MK spatial skill that might relate to students’ CT item performance and will be 

discussed further in a case study of item CT5.  

Two students enacted FFF by keeping the agent in an east-facing orientation and 

moving the agent north on the grid three units, essentially side-stepping the agent FFF. 
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While these students indicated unit knowledge, they did not attend to the agent’s 

orientation when applying the units, so their responses were incorrect. 

 
Assessment Item CT5 Case Study: Spatial  
Knowledge in Codes with Build and Read/ 
Enact Program 

Assessment item CT5 asked students to build a program. The assessor placed the 

agent on the start square facing east on the assessment grid and asked the student to build 

a program so that the agent would land on the grass (see the grid in Figure 22). Students 

who responded correctly built the program FFF. Item CT5 differed from CT2 in that 

students built the program with codes rather than read and enact a given program. Of the 

60 students who responded to CT5, 33 answered correctly (55%) and 27 answered 

incorrectly (45%). This item was selected as a case study to understand better the co-

occurrences between spatial knowledge in codes and building and reading/enacting 

programs. 

Figure 22 

CT5 MK/MK CT Case Model and Assessment Materials 

 

As shown in the CT5 case model (see Figure 22), all students who responded 
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correctly to CT5 indicated co-occurring spatial knowledge and building/reading 

knowledge (SK/BR; N = 33), while all students who responded incorrectly indicated  

-SK/-BR (N = 27). Of the students who responded incorrectly, 13 built the program RRR 

and four constructed other three-code programs (FFB, FRF, RRF, LLL) with the program 

codes positioned to face the agent’s direction of travel. All but three of these students 

enacted their written programs, and those that enacted their program enacted it as FFF. 

Although none of these students built the correct program, they indicated counting on (N 

Counting on), coordinating counts in space (N Coordinating: Space), and units (M Units) 

knowledge when enacting their programs. By enacting the programs, these students also 

indicated their interpretations of each program code. The commonality of these students’ 

programs was that all the program codes were positioned so that they pointed in the 

agent’s direction of travel. These students showed that they were still developing 

knowledge of spatial orientation because they were not yet able to spatially apply a 

program code’s meaning to the agent’s perspective. This developing spatial orientation 

knowledge impacted their building and reading/enacting CT performance.  

Conversely, three students who responded correctly built the program FFF but 

positioned the F program codes to face the agent’s direction of travel. By orienting the 

program codes to face the direction of travel, these students indicated an understanding of 

the program codes’ meaning applied to the agent’s spatial orientation, but a developing 

CT understanding that the agent would enact the program code regardless of the code’s 

orientation.  
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Assessment Item CT6 Case Study: Counting On 

Assessment item CT6 asked students to read and enact the program FLF. The 

assessor placed the agent on the start square facing north on the assessment grid and 

asked the student to move the agent according to the given program (see the grid in 

Figure 23). Of the 59 students who responded to CT6, 22 answered correctly (37%). This 

item meant to assess students’ ability to read and enact a program with a rotation, so the 

agent’s beginning orientation matched the student’s orientation. This item was selected as 

a case study to examine the unclear relationship between counting on knowledge and 

students’ correct and incorrect responses to this item. 

Students indicated counting on knowledge when they moved the agent away from 

the start space to enact the first code. The case model in Figure 23 shows that all students 

who responded to CT6 correctly indicated counting on knowledge (N Counting on; N = 

22), as did 35 students who responded incorrectly. This means that, although counting on 

emerged as an accessible knowledge type for the students, it has an unclear relationship 

with students’ CT knowledge. This is to say that counting on was necessary for students  

Figure 23 

CT6 MK/MK CT Case Model and Assessment Materials 
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to accurately respond to this item (as indicated by its use by all students who responded 

correctly), it is unclear if counting on relates to CT knowledge output. For example, 

students who responded incorrectly to CT6 counted on correctly, but often made an error 

when enacting the L program code by enacting it as a compound LF movement. In this 

way, students enacted the F program code correctly, but the L program code incorrectly 

for an incorrect response. The unclear relationship between students’ counting on 

knowledge and their assessment responses reflects the findings reported in the co-

occurrence section of this chapter that reported the co-occurrence of counting on and 

building/reading programs (Counting on/BR) as having an unclear relationship with 

students’ CT assessment output.  

 
Cross-Case Conclusions of Case Studies for  
Items CT1, CT2, CT5, and CT6 

The case studies presented in this section reported on how students used types of 

measurement (case study CT1, CT2), co-occurring spatial building/reading programs 

(CT5), and number (CT6) knowledge to indicate CT knowledge and how these MK 

might relate to students’ assessment performance. The models and analysis showed that 

some MK and MK CT co-occurring knowledge might relate to students’ CT knowledge. 

In contrast, other MK and MK CT co-occurring knowledge suggest an unclear 

relationship with students’ CT knowledge. The MK and MK CT co-occurring knowledge 

that might relate to students’ CT knowledge is present when students correctly respond to 

a CT assessment item. Case studies CT1 and CT5 illustrated this relationship. Distance 

measurement knowledge was necessary for correctly responding with a total number of 
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unit iterations in CT1. As shown in case study CT5, the co-occurring knowledge SK with 

Build/Read was likewise present when students correctly built the FFF program when the 

agent’s orientation did not match the student’s orientation.  

On the other hand, case studies CT2 and CT6 described how other knowledge 

types have an unclear relationship with students’ CT knowledge output. These knowledge 

types appear necessary for students to respond correctly to CT assessment items; 

however, students’ CT knowledge is not contingent upon these types of MK knowledge. 

In these cases, the MK was important but already well developed (i.e., not co-occurring 

with the CT knowledge) or not as intricately co-occurring with the CT knowledge as 

knowledge types that might relate to students’ CT knowledge. For instance, in CT6, 

counting on was a well-developed skill among the students, and students responded 

incorrectly to CT6 for reasons other than counting on knowledge. 

The case models and analysis also showed interconnections between and within 

MK and CT knowledge, the most prominent interconnections being (1) units of measure 

knowledge as foundational to successful coding, and (2) spatial concepts as foundational 

to reading, interpreting, and enacting program codes. These themes emerged across all 

case studies, as shown in Table 17.  

Table 17 cites evidence from the case studies supporting this chapter’s themes. 

The table’s first column lists the case studies. The second and third columns list the 

evidence presented in each case that supports each corresponding theme. For example, 

one of the supporting evidences of Units as a Foundation to Early Coding from case 

study CT5 is that “Most students wrote a three-code program, which reflects the required  
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Table 17 

Case Study Evidence Supporting Overarching Themes 

Case 
study 

Themes 
────────────────────────────────────────────────────── 

Units as foundational to early coding 
Spatial concepts in program codes and agent 

enactments 

CT1 Units of measure knowledge necessary to 
identify distance; Enacted units correctly 
when counting on from the start; Units 
represented parts of the whole (distance); 
Some indicated developing knowledge of 
distance as the sum of unit iterations 

Visualized units to state total distance without 
enacting 

CT2 Units co-occurred with spatial knowledge in 
codes, coordinating counts, and counting 
on; Unit length precision was necessary 
for correct responses; Some students 
attached unit enactment one-to-one with 
program codes, others enacted with more 
units than program codes 

Attended to program code’s cardinal direction 
rather than agent orientation; Did not attend 
to agent’s perspective when side-stepping 
agent; Students’ spatial orientation 
knowledge was not immediately visible, 
making it difficult to draw decisive 
conclusions 

CT5 Most students wrote a three-code program, 
which reflects the required number of 
units (FFF); Most students enacted the 
correct units regardless of the program 
that they wrote  

Spatial knowledge in codes was necessary to 
correct program enactment; Students 
positioned program codes to face the 
agent’s direction of travel; Coordinating 
spatial knowledge in codes with agent’s 
east-facing perspective was more difficult 
than when the agent faced north 

CT6 Enacted rotation incorrectly as a compound 
unit (L and F units) 

Spatial knowledge in codes (a dependent 
knowledge type) impacted students’ 
response accuracy rather than counting on 
knowledge 

 

number of units.” One piece of evidence from CT5 of the theme Spatial Concepts in 

Program Codes and Agent Enactments is that “Students positioned program codes to face 

the agent’s direction of travel.”  

While distance measurement was the focus of the item CT1 case study and units 

the focus of the item CT2 case study, the concept of a unit of measure was implicit and 

foundational in this analysis. It also appeared important for understanding codes in item 



141 
 
CT5 and as an underlying concept in counting on to successfully enact a program in CT6. 

Spatial concepts as an important interconnection were not surprising due to the 

assessment’s three-dimensional design (i.e., the grid, agent movements), but the nature of 

spatial knowledge–in particular, representing space in the form of an arrow code and 

understanding one’s orientation in relation to the robot and the start/stop points on the 

grid–was salient across the case studies. Spatial knowledge overlapped within other MK, 

specifically measurement units and counting on, because of the spatial nature of these 

mathematics concepts in this grid- and movement-oriented context. The particulars of 

spatial orientation emerged as a key idea in analyzing the case studies and, although not 

coded for in this study, will be discussed further as an area for future research in Chapter 

V.  

Summary of Research Question 2 Results 

The results for research question 2 indicate that MK and MK CT co-occurrences 

primarily occur when students build and read/enact programs. The MK and MK CT co-

occurrences were identified as relating to or having an unclear relationship with students’ 

CT knowledge output, or assessment item performance. Additionally, a cross-case 

analysis revealed that the connections between MK and CT were more prominent in the 

ways that units of measure knowledge and spatial knowledge might relate to CT 

outcomes. 

Summary 

The results reported in this chapter operationalize how kindergarten students 
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indicated MK and CT knowledge and developing knowledge during a CT assessment 

through multi-modal means, more specifically via their gestures, language, and actions on 

objects. This chapter reports on specific indicators that students exhibited to indicate their 

knowledge and developing knowledge. These results reveal that students indicate various 

knowledge types via the three modalities and that some knowledge category indicators 

were more prevalent in certain modalities than others.  

The results also indicate that meaningful MK CT co-occurrences exist, primarily 

MK with building and reading/enacting programs. Further, these co-occurrences revealed 

patterns that suggest that certain MK might relate to students’ CT assessment item 

performance and other MK has an unclear relationship with students’ CT assessment item 

performance. The MK that might relate to students’ CT assessment item performance 

emerge as indicated knowledge when students respond correctly to assessment items 

(Spatial knowledge in codes, Units of measure). MK with an unclear relationship with 

CT assessment item performance may be present as indicated or developing knowledge 

whether a student responds correctly or incorrectly to a CT assessment item.  

Finally, the case studies presented in this chapter generalize specific MK and MK 

CT co-occurrences that might relate to students’ CT assessment performance on specific 

assessment items. These case studies also highlighted specifically how measurement, 

space, and number might relate to students’ item responses. Two themes emerged across 

the case studies: (1) units of measure knowledge as foundational to successful coding, 

and (2) spatial concepts as foundational to reading, interpreting, and enacting program 

codes.   
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CHAPTER V 

DISCUSSION 

The purpose of this study was to operationalize how kindergarten students 

indicated MK and CT while engaging with CT assessment items, to understand how 

students’ MK and CT co-occur, and to describe how students’ MK and MK CT co-

occurrences might relate to their performance on individual CT assessment items. Results 

showed that students used gesture, language, and actions with the assessment materials to 

indicate measurement, spatial, and number knowledge while solving CT assessment 

items and that specific MK might relate to students’ CT item responses. This study's 

results also indicate that deep interconnections exist between (and within) MK and CT 

knowledge. Two primary interconnections (referred to hereafter as themes) arose as 

particularly prominent in students’ engagement with the CT assessment and their 

assessment responses. These themes include (1) units as foundational to early coding and 

(2) spatial concepts in program codes and agent enactment.  

This chapter is organized into five sections. In the first two sections, I will discuss 

the themes within the context of related literature and describe recommendations for 

future research. The final three sections of this chapter contain this study’s implications, 

limitations, and a subsequent conclusion.  

Units as Foundational to Early Coding 

One important theme from this study’s results is that units of measure knowledge 

is foundational to early coding skills. This theme was made particularly apparent by this 
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study’s identification of units of measure knowledge as having as having a possible 

relationship with students’ CT knowledge output. Stated otherwise, unit knowledge was 

related to students’ accurate CT assessment item responses. This means that in this 

assessment context, students’ knowledge of the agent’s units of movement through space 

appears to be related to their performance on – and engagement with – the assessment. 

Based on this study’s results, students’ units of measure knowledge in this CT context 

necessitated three distinct understandings.  

• Linear and rotational units are distinct with fixed magnitudes. 
• Units are continuous and dynamic in nature. 
• Units are iterated.  

 
For example, correctly enacting the program for assessment item CT5 (forward, 

rotate left, forward; FLF) necessitated the knowledge that (1) the linear unit length of one 

forward program code and the rotational magnitude of one L program code, (2) each unit 

is a dynamic continuous movement rather than a discrete quantity, and (3) each unit is 

iterated by enacting one after the other continuing from where the agent began and where 

the previous unit left off. This section will discuss this theme by describing these distinct 

understandings within the context of related literature. 

 
Linear and Rotation Units Are Unique and  
Distinct with Fixed Magnitudes 

A foundational element of measurement knowledge is that units are identical 

copies of a measurable attribute used to measure the same attribute of a larger object 

(Clements & Sarama, 2021; Smith & Barrett, 2019). This foundation of measurement 

knowledge translates to this study’s context via length and angle units. Length and angle 
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measurement knowledge particularly apply to this study’s context as the assessment’s 

program code units are linear (forward, F; backward, B) and rotational (rotate right, R; 

rotate left, L) within a three-dimensional grid space.  

This study’s joint embodied and enactivist perspectives allowed me to observe 

how students’ gestures and actions on objects indicated their existing knowledge and 

knowledge-in-development of linear and rotational units. Students in this study indicated 

rotational knowledge when they enacted rotations with the agent and gestured with their 

hands. Clements et al. (1996) similarly found that students used embodiment to make 

sense of rotations by rotating their trunks to face different directions to assign a quantity 

to a rotation. Relatedly, Shumway et al. (2021) found in a study of kindergarteners 

engaging with tangible robot toys that students made sense of rotations by physically 

rotating the robot (actions on objects) and embodying rotations via body movement (i.e., 

rotating their heads and bodies) and hand gestures.  

One of the difficulties students encountered when making sense of the 

assessment’s program codes to build and enact programs was interpreting the left (L) and 

right (R) rotation program codes. Students in this study attended to length units more 

intuitively than rotational units, which Clements et al. (1996) also found in a case study 

examining four 9-year-old students engaging with digital programming activities. 

Students in the present study indicated developing knowledge of rotational units when 

they enacted the R and L program codes as linear units with varying rotational 

magnitudes (45, 90, or 180 degrees) and as compound rotation+linear movement units. 

By enacting the R and L program codes with differing magnitudes, students indicated 



146 
 
their developing understanding of the coding system and a burgeoning understanding of 

the rotational unit’s fixed magnitude and that linear and rotational units are distinct units 

of movement and unique attributes. While U.S. students do not precisely measure angles 

until fourth grade (CCSSI, 2010), kindergarten students are expected to compare 

measurable attributes (CCSSI, 2010) and can implicitly use angle concepts (Clements & 

Sarama, 2021). Understanding that length and rotation are unique attributes could support 

students’ ability to differentiate linear and rotational codes from one another. This means 

that students’ varying precision with linear and rotation units relates to their performance 

on CT assessment items. This early unit measurement knowledge overlapped with CT 

when students used actions on objects to build programs with codes and enacted 

programs with the agent. 

Units are Continuous and Dynamic  

Another foundational understanding of units that is necessary for students to 

respond correctly to the assessment items within this context was that the program code 

units were continuous and dynamic; continuous meaning that the units can be infinitely 

divided (Thompson & Carlson, 2017), and dynamic in that each unit movement is 

enacted rather than existing as a static representation of magnitude (Welch et al., 2022). 

Understanding that the linear and rotational units represented by program codes are 

continuous and dynamic was necessary for students to build and read/enact programs 

accurately. For example, students indicated developing knowledge of the program code’s 

units’ continuous properties when they counted discrete grid squares to plan and build 

programs. This strategy was unsuccessful when students included the starting square in 
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their count (indicating developing counting on knowledge) or when a program required a 

rotation, as a rotation unit was to be enacted in place without the agent traveling to 

another square. In this way, students with a developing knowledge of the units’ 

continuous properties inaccurately associated each unit as a discrete quantity (in this case, 

a grid square) rather than a continuous, dynamic movement within space. These findings 

resemble Shumway et al.’s (2021) findings, which described how students in a small 

group setting indicated knowledge of a robot’s units as continuous and dynamic by 

gesturing along a grid path with their hands and intentionally pausing between each unit. 

The findings of the present study and Shumway et al.’s study both indicate how students’ 

gestures in a grid space indicate their knowledge of the respective agents’ continuous and 

dynamic properties. 

The continuous properties of linear and rotational units used by students in the 

study are closely related to linear measurement, number lines, and research exploring 

children’s readiness to work with discrete and continuous units (Boyer & Levine, 2015; 

Friso-van den Bos et al., 2018; Solomon et al., 2015). Number lines and measurements 

are composed of continuous units. Within this study’s context, students who enacted 

programs with the agent by counting on from the start square with linear units (indicating 

the units’ continuous properties) are similar to students’ actions on number lines. For 

example, research indicates that students frequently include the start number on a number 

line rather than counting on from the start number (Baroody & Purpura, 2017) and 

similarly include the start number on the ruler by counting the hash marks to identify a 

length. In a study examining students’ linear measurement using rulers and broken rulers, 
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Solomon et al. (2015) observed that students incorrectly counted hash marks rather than 

the spaces between, which could have been interpreted as the students interpreting hash 

marks as discrete units of measure rather than the spaces between the hash marks as 

continuous units of measure. Solomon et al. posited that students did not perceive spatial 

intervals as countable units. Similarly, students in the present study indicated discrete unit 

interpretation when they counted each square along a path rather than the linear/rotational 

movements required of the agent to travel from one square to the next, which would have 

indicated a continuous unit interpretation.  

A grid-based CT instructional context may be an entry point for practitioners and 

curriculum developers to connect the continuous attributes of rulers and number lines 

with an agent’s continuous units. The units used in a grid-based CT context are dynamic 

(Welch et al., 2022), which might bridge students’ understanding of the abstract idea of 

linear units on a ruler as spaces rather than concrete hash marks. One article describes 

how this might be achieved by positioning a screen-free robot coding toy along a number 

line and programming it with forward and backward codes to add and subtract (Welch et 

al., 2021). These types of interventions may also be effective since, as reported in the 

present study, students who engaged in these CT tasks frequently used gesture, and 

gesture has been shown to support students as they learn measurement concepts 

(Congdon et al., 2018).  

While some students enter formal schooling with an understanding of rulers, not 

all understand how to use them correctly or understand how units are represented on 

rulers (Barrett et al., 2011). Future research would be required to identify if a correlation 
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exists between students who interpreted an agent’s movements as discrete or continuous 

and students’ understanding of ruler units. Further, the effectiveness of interventions for 

students to develop unit understandings with coding toys in a CT context could inform 

the field if a CT context could support students’ measurement knowledge development.  

In summation, knowledge of units as continuous and dynamic was important for 

students to respond correctly to the CT assessment items. This understanding of the 

assessment contexts’ linear and rotational units is closely related to length measurement 

and students’ work with number lines and rulers, where students indicate similar 

developing knowledge of measurement units as discrete, rather than continuous, units. 

Additionally, learning tasks situated in a CT context may support students’ further 

development of number line and measurement unit concepts. 

Units are Iterated 

The third understanding necessary for students to respond accurately to 

assessment items is that the program code units were iterated. This necessary 

understanding translates to mathematics and holds that all measurement units are iterated. 

Beginning in first grade, students are taught that units are iterated (CCSSM, 2010); 

however, the results of this study indicate that students in this context intuitively iterated 

the agent’s movements when building and reading/enacting programs. This finding is 

supported by Clements and Sarama (2021) length measurement learning trajectory, which 

states that children ages 4–5 can iterate units to measure lengths. Students’ intuitive unit 

iteration may have occurred in the present study because the units were dynamic and 

embodied by the student with the agent acting as surrogate. Students indicated unit 
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iteration knowledge when they moved the agent along a path with pauses between each 

unit. Shumway et al. (2021) also observed students indicating unit knowledge in this way 

when students gestured over a grid in a small-group curricular context. In the example, 

Shumway’s research group described how one student punctuated each gestured unit with 

the word “drive.” Shumway et al.’s description of how the student indicated linear unit 

knowledge mirrors how, in this study, students used actions on the agent to enact 

programs by sliding or hoping the agent along a path with pauses between units while 

sometimes punctuating each unit movement with language (i.e., directional language, 

sounds).  

The present study also observed this punctuation when students coordinated 

words or sounds with each enacted unit movement. Angeli and Valanides (2020) likewise 

observed students exhibiting unit-coordination practices when programming screen-free 

coding toys. According to Angeli and Valanides, students built and tested programs unit 

by unit. Students used this same program-building strategy in the present study, 

elaborated in Chapter IV, and identified these strategies as code-test or move-code 

strategies. For example, students used the move-code strategy by moving the agent one 

unit forward, then sequencing the related program code in a program. The student would 

repeat this move-then-code strategy until the agent reached the destination and the 

program was built. This method indicated unit iteration knowledge as students paused 

between each new enactment and associated one code with one enacted movement. 

Students who used the code-test or move-code strategies indicated knowledge of the one-

to-one relationship between movement and program code, which is an important 
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component of CT knowledge (Clarke-Midura, Shumway, et al., 2021). 

Students who indicated unit iteration knowledge also indicated decomposition 

knowledge at the finite level of a unit. Other studies also observed students coding unit 

by unit while coding screen-free coding toys in CT tasks (Angeli & Valanides, 2020; 

Sung et al., 2017). Whereas Angeli and Valanides primarily interpreted decomposition 

from a CT perspective (decomposing a task into small pieces), the present study 

examined students’ decomposition knowledge indicators from both an MK and CT 

perspective. Although the present study categorized decomposition indicators as CT, 

students mathematically decomposed whenever they exhibited understandings of spatial 

(continuous quantities) or numerical parts and wholes. When students paused between 

each unit enactment, they indicated an understanding that each unit was a part. Each unit 

iteration represented a part of the whole, the whole being the entire path or program being 

enacted. Students indicated the whole by continuing to iterate units to the end of a given 

path. Identifying parts and wholes is both an MK and CT skill. From a mathematical 

measurement perspective, units of measure are used to represent measurable attributes 

quantitatively. In this mathematical context, each unit is a part and the attribute of a 

specific object is the whole. In this study’s CT context, the whole being considered was a 

path in the grid space or a given program and the parts were the program codes and the 

linear and rotational movements that the program codes represent. The ability to 

decompose mathematically (as linear and rotational unit movements) was necessary for 

students to represent the contextual whole (a program or path represented with program 

codes).  
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There is also a literature base describing children’s unit construction (e.g., Olive, 

2000; Ulrich, 2015, 2016) that may also relate to students’ unit construction in coding. 

Future research should explore possible connections between students’ arithmetical unit 

construction and units of measure within a CT coding context. 

These findings are relevant for assessment and curricular designers seeking to 

integrate specific mathematics into CT assessments and curricula. These designers should 

consider the MK they seek to integrate and how the MK components would translate to a 

CT context. This section described how this study’s assessment context highlighted the 

iterative nature of units, which could be connected to early math learning in number and 

measurement. As another example, in the CT1 case study presented in Chapter IV, the 

CT1 item design elicited students’ understanding of distance as a set of unit iterations 

represented as a total quantity.  

Spatial Concepts in Program Codes and Agent Enactment 

The second theme that emerged from this study’s results is that students’ spatial 

knowledge was related to their assessment item performance, specifically when they built 

and enacted programs. The relationship between the MK and CT in this theme can be 

described as a useful or hindering co-occurrence of spatial knowledge and 

building/reading programs. This means that students who correctly interpreted the 

program codes and most frequently correctly built and read/enacted programs also 

indicated spatial knowledge, while students who incorrectly or inconsistently interpreted 

the program codes most frequently built and read/enacted programs incorrectly and 
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indicated developing spatial knowledge. One skill related to this MK CT co-occurrence 

was symbolizing spatial knowledge (via an arrow or code). This might be a key skill in 

being able to engage in Building and Reading programs, much like learning to symbolize 

quantities with a numeral (Levine et al., 2010; Lipton & Spelke, 2006). Another skill 

related to this MK CT co-occurrence of students’ spatial knowledge and building and 

reading/enacting programs could mean that they were able to correctly interpret program 

codes and this was necessary to predictably build and read/enact programs correctly on 

the assessment. This section will describe how students indicated spatial knowledge and 

how these indicators related to students’ CT item performance through orienting program 

codes while building programs and selecting and enacting program codes.  

Spatial Knowledge When Orienting Program Codes  

 The theme of spatial concepts in program codes speaks to students’ spatial 

orientation knowledge. While this study attempted to fully describe students’ MK while 

engaging with CT assessment tasks, coding for spatial orientation became meaningless as 

the Spatial orientation code was applicable to all instances of students building and 

enacting programs. While this section discusses spatial orientation, additional research 

would be required to describe more fully how students’ spatial orientation knowledge is 

operationalized in a CT assessment context and how specific spatial orientation 

knowledge relates to students’ CT assessment performance. However, what I describe in 

this section is specific to students’ orientation of program codes and what their actions on 

these objects showed about their spatial orientation knowledge and how it related to 

building programs. 
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Some students indicated developing spatial knowledge in codes by orienting 

program codes in the cardinal direction that the student intended the agent to travel. 

Positioning the program codes to face the intended direction of travel indicated that the 

student attended to their own perspective rather than the agent’s. The Common Core State 

Standards of Mathematics (CCSSM) for kindergarten addresses spatial orientation solely 

from student perspectives, although research shows that children begin developing 

mental rotation capabilities as early as 3 years old (Krüger, 2018). According to the 

CCSSM standards, kindergarten students are only required to respond from their 

perspective, not take up the perspective of another person or object. By operating from 

their own perspective, students attend to the MK requirements set by the CCSSM; 

however, to have responded correctly to most of the CT assessment items, students 

needed to adopt the agent’s perspective through visualization or by repositioning 

themselves to take the agent’s perspective (Clarke-Midura, Kozlowski, et al., 2021). As 

such, students who correctly oriented the program codes indicated spatial orientation 

knowledge addressed in the CCSSM standards and spatial orientation knowledge 

required for the CT task.  

Orienting program codes to match the student’s perspective rather than the agent’s 

did not always relate to the students’ assessment performance as the correct codes could 

be used, just oriented differently. Recording students’ code orientation is an important 

insight, however, into the students’ spatial orientation knowledge. For example, the CT5 

case study presented in Chapter IV described how some students built the program with 

the correct program codes (FFF); however, they positioned the program codes to face east 
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in alignment with the agent’s beginning orientation. These students applied CCSSM 

spatial orientation knowledge by pointing the program code in the agent’s relative 

direction of travel, but not the CT spatial orientation knowledge that the agent will enact 

the F program code from its perspective, regardless of the program code’s orientation. 

Students who indicated both MK and CT spatial orientation knowledge interpreted the F 

program code to indicate that the agent moves one square forward from the agent’s 

perspective.  

Early childhood research shows that students have difficulties interpreting 

rotational arrows (Cuneo, 1985), which may explain why students repositioned rotational 

arrows. Students may have oriented rotational arrows to scaffold their understanding of 

the arrows’ meaning. Another reason students may choose the correct program codes but 

orient them according to their own perspective is that research suggests that students’ 

cognitive development is a factor in their spatial reasoning abilities (Strawhacker & Bers, 

2019). I hypothesized in this study that spatial reasoning would impact students’ 

performance since kindergarten is a highly developmental period. This study confirmed 

that students’ spatial knowledge is related to their performance, and that mathematical 

and CT spatial knowledge emerged in different ways, as described in this section.  

Knowing that students’ ability to apply the agent's perspective relates to their 

interpretation of program codes has implications for CT curriculum designers. Early 

childhood CT curriculum designers should be aware of students’ developing ability to 

apply an agent’s perspective to program code selection and develop tasks to build this 

skill. This finding also suggests to mathematics curriculum designers the value of 
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expanding spatial orientation learning opportunities from first-person and relational 

perspectives to the perspectives of others (Clarke-Midura, Kozlowski, et al., 2021). Since 

spatial skills are malleable (Uttal et al., 2013) and a fundamental element of mathematics 

(Clements & Sarama, 2011; Davis & the Spatial Reasoning Study Group, 2015; Mix et 

al., 2016), purposefully integrating spatial skill-developing opportunities into 

mathematics instruction could support students’ overall mathematics learning.  

 
Spatial Knowledge When Selecting and  
Enacting Program Codes 

One of the ways students’ spatial knowledge related to their assessment item 

performance was when they sequenced programs with codes that, when oriented correctly 

in the program organizer, faced the agent’s intended direction of travel from the student’s 

perspective. This placement of program codes is unique to when students positioned 

program codes to match the student’s perspective, since students selected program codes 

based on the program code’s cardinal arrow direction rather than the meaning of the code. 

For example, the CT5 case study described that, of the 60 students who responded to 

CT5, 13 (22%) students incorrectly built the program RRR instead of FFF but enacted 

their built program as FFF. This may be because, as observed by Rijke and colleagues 

(2018), who examined students from ages 6–12 engaging with CT robot tasks, younger 

children are not as readily able to abstract CT symbols as older children. The students’ 

program code selection in the present study may be related to their developmentally-

influenced abstraction skills. To use students’ CT5 responses for context, the students 

who built the program RRR abstracted at a level in line with the CCSSM spatial 
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knowledge standards by abstracting the program code arrows to mean directional 

movements from the students’ perspective. 

In contrast, students who correctly abstracted the program code arrows movement 

from the agent’s perspective applied CCSSM and CT spatial knowledge. This finding 

aligns with Moore et al.’s (2020) observation that second-grade students had difficulty 

with spatial orientation when programming coding robot toys on a grid. The students in 

their study frequently changed their position around the grid to select the required 

program codes. Another study (Clarke-Midura, Kozlowski, et al., 2021) also observed 

students shifting positions to adopt the agent’s perspective. Clarke-Midura, Kozlowski, et 

al. explored children’s reference frames and perspective-taking while interacting with a 

coding robot toy on the floor. Similar to Moore et al.’s (2020) findings, Clarke-Midura, 

Kozlowski’s research team also observed that students aligned their perspective with the 

robot’s by moving around the floor. The robot used in Clarke-Midura, Kozlowski’s study 

was positioned on a large grid that students could easily walk along. Students took 

advantage of the grid’s size a position on the floor to embody the robot’s movements by 

walking, scooting, and crawling along the grid. In contrast, students in the present study 

were seated at a table, and none of them attempted to stand to change their orientation, 

which may have scaffolded their ability to select program codes from the agent’s 

perspective. Assessment designers might consider administering the assessment on the 

floor or otherwise to encourage student movement around the grid, thus allowing the 

student to scaffold the task by aligning their perspective with the agent’s. 

The agent’s starting orientation for CT5 brought to light students’ difficulty in 
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applying program code meaning to the agent’s perspective when compared to assessment 

item CT4. Item CT4 also asked students to build a linear program (correct response FFF), 

the difference being the agent’s starting orientation as north-facing to match the student’s 

orientation. Students responded correctly to CT4 48 times, 15 more correct responses 

than CT5. The difference in correct responses between CT4 and CT5 suggests that the 

agent’s east-facing staring orientation for CT5 increased the item’s difficulty and 

showcased students’ difficulty in applying program code meanings when an agent’s 

orientation is different from their own. Further, the difference in correct responses 

between CT4 and CT5 suggests that students’ SK is not enough; students must coordinate 

SK with their own orientation, the agent’s orientation in space, and the item’s start/stop 

positions. While this was shown in the model as spatial knowledge in codes, a closer 

analysis indicated the importance of students’ developing knowledge of spatial 

orientation. 

Students also indicated spatial abstraction knowledge of the program code when 

they enacted it with the assessment agent. For example, the CT2 case study in Chapter IV 

described how some students enacted the program FFF by first rotating the agent left 

from its east-facing starting orientation to face the agent north on the grid (final enaction: 

LFFF). Other students might have considered the first F code in the program as a left 

rotation and finished by enacting FF (final enaction: LFF). Students’ enaction on the 

agent embodied their interpretation of abstract symbols. While embodying program code 

interpretations through agent enactment was required for this assessment, other studies 

reported that embodying program codes with external agents supported students’ sense-
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making (Moore et al., 2020; Shumway et al., 2021). Teachers and curriculum developers 

should design CT experiences to allow students to embody agent movements to scaffold 

students’ spatial orientation knowledge as they develop an abstract understanding of CT 

program codes.  

Learning to abstract is foundational to mathematics learning (Benis-Sinaceur, 

2014; Clements & Sarama, 2021) and future achievement (Geary et al., 2018). 

Abstraction also has roots in CT (Papert, 1972), so it is not surprising that abstraction 

arose in this study in the context of Spatial knowledge in codes, as expected, and relates 

to students’ CT assessment performance. Awareness of abstraction as having shared 

importance for young children’s developing MK and CT knowledge is important for 

teachers and curriculum developers when designing, assessing, and carrying out CT 

activities. As described in this section, spatial knowledge and development is related to 

students’ program code abstractions. Teachers and curriculum developers should not 

assume that students are able to immediately abstract program codes and symbols based 

on a cursory introduction and be aware that different students will demonstrate varying 

levels of abstraction. To further inform the field’s understanding of students’ MK and CT 

abstraction knowledge, additional research should be conducted to determine if students’ 

ability to abstract CT directional program codes (i.e., arrows) relates to their ability to 

abstract quantities and age-appropriate mathematical symbols (i.e., +, -, =).  

Implications 

This study’s results have implications related to CT curriculum and assessment 
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design, CT assessment practices, mathematics curriculum design, and theory. This section 

will discuss each of these respectively. 

 The plethora of MK and MK CT co-occurring knowledge that students indicated 

with the CT assessment items evidences the intricate and married connections of MK 

within CT, grid-based tasks in early childhood. These connections have implications for 

CT curriculum and assessment design. Designers should be aware of the MK connections 

with CT and plan for them to develop curriculum and assessments appropriate for the 

target ages. For example, the study showed that many students’ spatial language precision 

was still developing. Being aware of this developing knowledge informs designers of the 

language students are expected to use to indicate directionality. 

 This study also has implications for CT assessment practices in early childhood to 

consider which specific skills the assessment is designed to measure. For example, 

assessment designers and administrators should be aware of students’ varied abilities to 

adopt an agent’s perspective. Coupled with related literature’s findings that students 

might reorient themselves to adopt an agent’s perspective, the findings of the present 

study suggest that grid-based assessments might be administered on the floor, so students 

feel free to move around if the assessments are not specifically measuring students’ 

ability to adopt an agent’s perspective.  

 The present study’s documentation of the space, measurement, and number 

concepts knowledge the students use when engaging with CT tasks also has implications 

for mathematics curriculum designers. Being aware of the specific mathematics 

knowledge that different tasks elicit can inform designers of how students can build 
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mathematics knowledge in hands-on ways within a CT context. For example, this study 

found that students decomposed paths and programs in chunks and units when building 

and enacting programs. Mathematics curriculum designers could use this finding to guide 

students to connect how decomposing paths and programs is related to decomposing 

numbers.  

 Finally, this study also has theoretical implications in its use of an enactivist lens 

to examine assessment data. Assessment is used to measure what an individual knows, 

whereas a tenet of enactivism is that knowledge is dynamic and in a constant state of 

flux. This study, however, utilized enactivism uniquely to operationalize students’ 

indicated and developing knowledge within an assessment context. An enactivist lens was 

necessary to make sense of students’ knowledge while engaging with an assessment that 

used materials and practices different than they had used before.  

Limitations 

 The primary limitations of this study include (a) sample size, (b) this study’s 

narrow context, and (c) this study utilized an existing data set that was collected for 

different research objectives.  

 This data was drawn from one geographical location with a small population (N = 

60) with limited demographic variability. A narrow geographic context limits the 

transferability of this study’s results, however—as discussed in this chapter—many of 

this study’s findings coincide with related research. Additional research is recommended 

to explore if the specific findings reported in this study translate to other populations with 
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larger sample sizes. Additionally, disaggregating the findings by student demographics 

would further inform the field of how students show MK and MK CT co-occurrences and 

how this knowledge relates to their CT assessment item performance. 

The context for the study was narrowly situated in an unplugged, grid-based, and 

interview-based assessment. While much of early-childhood CT research is conducted in 

grid-based contexts, this study is limited in its generalizability to other CT assessment 

contexts. Additional research would be required to identify if this study's results translate 

to other assessment contexts and mediums, such as independent and digital assessments. 

Finally, this study was conducted using existing data collected for a larger, related 

research project. As such, the data collection procedures of the data set used for the 

present study were not specifically designed to address this study’s research questions. 

Were the data collected for this study’s purpose, additional protocols would have 

integrated interview questions for the assessor to derive students’ thinking as they 

engaged with the assessment items. Doing so would have provided additional evidence to 

discern students' specific MK and CT knowledge.  

Conclusion 

This study identified the MK, CT, and co-occurring MK CT that kindergarten 

students indicated during an interview-based CT assessment and described how students’ 

MK and MK CT co-occurring knowledge related to their assessment item performance. 

Using the dual lens of embodied cognition and enactivism, I operationalized students’ 

existent and developing MK and CT knowledge through students’ use of language, 
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gestures, and actions on objects while engaging with the assessment items. Results of the 

study showed that students’ assessment performance was dependent on some MK skills 

(i.e., spatial knowledge, units), while other MK skills (i.e., counting on, coordinating 

counts) were independent of students’ performance on CT assessment items. Results also 

indicated that most MK CT co-occurrences emerged while students built and read/ 

enacted programs and that students' unit and spatial knowledge were related to students’ 

assessment item performance. Future research is required to examine if there is a 

directional relationship between these MK and students’ CT knowledge output. These 

findings have implications for practitioner practices, CT assessment design, and 

curriculum design. 

I updated CT Assessment Item Performance conceptual framework (CT-AP) in 

accordance with the process for obtaining the results (shown in Figure 24). The updates 

to the CT-AP include distinct categories of Knowledge, Observable Knowledge, and 

Outcomes which reflects the process of operationalizing MK, CT, and MK CT co-

occurrences and ways students showed that knowledge and its connections to CT 

assessment performance.  

Figure 24 is divided laterally into those three distinct categories (i.e., gray 

sections of the figure). The bottom section (labeled Knowledge) depicts the specific MK, 

CT, and co-occurring MK CT that I observed students indicate across the breadth of the 

CT assessment. The knowledge concepts in the bottom section are contained within the 

base of a triangle, indicating the knowledge is housed in the mind and body. The 

triangle’s dashed lines, however, indicate the fluid and intermingling nature of the  
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Figure 24 

Reconceptualized Computational Thinking Assessment Item Performance Conceptual 
Framework (CT-AP) 
 

 

 

knowledge and that this knowledge is also housed in students’ environment (labeled as 

Environment). The framework’s middle section (labeled Observable Knowledge) 

represents the specific knowledge that I observed students indicate while engaging 

enacting with each assessment item through their language, gestures, and actions on 

objects. Finally, the top section of the framework (labeled Outcome) represents a 

student’s performance on an assessment item. The story told by this framework is that a 

student begins a CT assessment with existing and developing MK, CT, and MK CT co-

occurring knowledge (section Knowledge), makes their knowledge visible by engaging 

with an assessment item (section Observable Knowledge), to which their enaction of 
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knowledge is reflected in their assessment item performance (section Outcome).  

The revised CT-AP framework reflects this study’s results within an embodied 

cognition perspective in that it represents knowledge as housed in students’ mind, body, 

and environment. The framework further reflects a joint embodied and enactivist 

perspective by indicating that students’ knowledge is observable in their language, 

gestures, and actions on objects.   
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Figure B.1 

Assessment Scoring Sheet 1 

 



185 
 
Figure B.2 

Assessment Scoring Sheet 2 
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Figure B.3 

Assessment Scoring Sheet 3 
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Figure B.4 

Assessment Scoring Sheet 4 
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Figure B.5 

Assessment Scoring Sheet 5 
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Figure C.1 

Items CP1 and CP2 

 

Note. Item 1 in this image depicts CP1. Item 2 depicts CP2. 
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Figure C.2 

Items CP3 and CP4 

 

Note. Item 3 in this image depicts CP3. Item 3 depicts CP4. 

Figure C.3 

Item CT1 
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Figure C.4 

Item CT2 

 

Figure C.5 

Item CT3 
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Figure C.6 

Item CT4 

 

Figure C.7 

Item CT5 
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Figure C.8 

Item CT6 

 

Figure C.9 

Item CT7 
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Figure C.10 

Item CT8

 

Figure C.11 

Item CT9 
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Figure C.12 

Item CT10 
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Figure D.1 

CT1 Co-Occurrence Model 

 

 

Figure D.2 

CT2 Co-Occurrence Model 
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Figure D.3 

CT3 Co-Occurrence Model 

 

 

Figure D.4 

CT4 Co-Occurrence Model 
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Figure D.5 

CT5 Co-Occurrence Model 

 

 

Figure D.6 

CT6 Co-Occurrence Model 
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Figure D.7 

CT7 Co-Occurrence Model 

 

 

Figure D.8 

CT8 Co-Occurrence Model 
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Figure D.9 

CT9 Co-Occurrence Model 

 

 

Figure D.10 

CT10 Co-Occurrence Model 
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Mathematical Knowledge Computational Thinking Co-Occurrence Table 
 

 

  



204 

Table E.1 

Mathematical Knowledge Computational Thinking Co-Occurrence 

CT codes 
──────────────────────────────────────────────────────────────────────────── 

MK codes 
Plans 

program - PP

Builds an 
intended 
algorithm - BIA

Read/enact 
program - REP

Recognize 
bug - RB Fix bug - FB Decomposition - DC

Spatial visualization 1 0 10 12 9 6 7 2 6 1 6 2 

- SV 0 0 0 1 0 0 0 0 0 0 0 1 

Spatial language 2 0 24 37 31 30 15 6 13 4 21 4 

- SL 0 0 0 3 0 3 0 0 0 0 0 0 

Spatial knowledge in codes 4 0 129 5 133 4 21 1 20 1 34 2 

- SK 0 0 0 154 3 135 9 13 5 8 16 7 

Units of measure 3 0 60 25 133 43 21 4 19 3 36 3 

- UM 0 0 0 58 1 87 5 4 3 3 12 5 

Distance 0 0 5 1 2 1 2 1 2 0 3 0 

- D 0 0 0 2 0 2 0 0 0 0 0 2 

Counting 1 0 23 15 21 13 11 2 10 2 16 0 

- C 0 0 0 1 0 2 0 0 0 0 0 2 

Counting on 3 0 60 71 135 115 25 7 21 6 47 7 

- CO 0 0 0 2 0 3 0 1 0 0 0 0 

(table continues) 
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CT codes 
──────────────────────────────────────────────────────────────────────────── 

MK codes 
Plans 

program - PP

Builds an 
intended 
algorithm - BIA

Read/enact 
program - REP

Recognize 
bug - RB Fix bug - FB Decomposition - DC

Coordinating counts: Space 3 0 54 55 119 76 18 4 15 5 41 4 

- CC:S 0 0 1 19 2 39 4 4 3 1 2 4 

Coordinating counts: Number 1 0 14 4 16 67 5 1 4 1 8 0 

- CC:N 0 0 0 1 0 2 0 0 1 0 1 0 

Operations 1 0 9 9 7 3 10 0 9 1 6 2 

- O 0 0 0 0 0 0 0 0 0 0 0 0 

Note. N = 822 item enactments. The table’s left column lists the MK codes, and the top row lists the CT codes. As described in Chapter III, the MK and CT codes include 
codes to identify specific knowledge as indicated or developing. Indicated (or existing) knowledge codes are spelled out (i.e., Spatial knowledge in codes, Read/enact 
program). Codes to indicate knowledge in development are abbreviated with a dash in front (i.e., - SK, - REP). For example, in an instance where a student correctly 
counted on but did not correctly build an intended algorithm, the student’s enactment would be coded as Counting on, and - BIP.
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