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Keeping it classy: classification of live fish and ghost PIT tags
detected with a mobile PIT tag interrogation system using an
innovative analytical approach
J. Benjamin Stout, Mary Conner, Phaedra Budy, Peter Mackinnon, and Mark McKinstry

Abstract: The ability of passive integrated transponder (PIT) tag data to improve demographic parameter estimates has led to the
rapid advancement of PIT tag systems. However, ghost tags create uncertainty about detected tag status (i.e., live fish or ghost tag)
when using mobile interrogation systems. We developed a method to differentiate between live fish and ghost tags using a
random forest classification model with a novel data input structure based on known fate PIT tag detections in the San Juan River
(New Mexico, Colorado, and Utah, USA). We used our model to classify detected tags with an overall error rate of 6.8% (1.6% ghost
tags error rate and 21.8% live fish error rate). The important variables for classification were related to distance moved and
response to monsoonal flood flows; however, habitat variables did not appear to influence model accuracy. Our results and
approach allow the use of mobile detection data with confidence and allow for greater accuracy in movement, distribution,
and habitat use studies, potentially helping identify influential management actions that would improve our ability to conserve
and recover endangered fish.

Résumé : Les données de transpondeurs passifs intégrés (PIT) ont permis d’améliorer les estimations de paramètres dé-
mographiques, ce qui a engendré une progression rapide des systèmes d’étiquettes PIT. Les étiquettes fantômes génèrent
toutefois une incertitude quant au statut des étiquettes détectées (c.-à-d. poisson vivant ou étiquette fantôme) quand des
systèmes d’interrogation mobiles sont utilisés. Nous avons mis au point une méthode pour distinguer les poissons vivants des
étiquettes fantômes qui fait appel à un modèle de classification par arbres décisionnels intégrant une structure d’entrée de
données novatrice basée sur les détections d’étiquettes PIT de destin connu dans la rivière San Juan (au Nouveau-Mexique, au
Colorado et en Utah, États-Unis). Nous avons utilisé le modèle pour classer les étiquettes détectées avec un taux d’erreurs global
de 6,8 % (taux d’erreurs de 1,6 % pour les étiquettes fantômes et de 21,8 % pour les poissons vivants). Les variables importantes
pour la classification sont reliées à la distance parcourue et la réaction aux débits de crue de mousson; les variables associées à
l’habitat ne semblent cependant pas influencer l’exactitude du modèle. Nos résultats et notre approche permettent l’utilisation
fiable de données de détection mobile et une plus grande exactitude dans les études des déplacements, de la répartition et des
habitats, ce qui pourrait aider à cerner des mesures de gestion efficaces pour améliorer la conservation et le rétablissement
d’espèces de poissons menacées. [Traduit par la Rédaction]

Introduction
Successful management of sport fisheries, conservation of na-

tive fish, and endangered species recovery rely on the ability to
accurately assess the effectiveness of focused management ac-
tions (Parma 1998; Pine et al. 2009; Clark et al. 2018). To assess the
impact of management actions, managers often estimate demo-
graphic parameters such as survival and abundance (Gibbs et al.
1998; Maxwell and Jennings 2005; Osmundson and White 2017).
However, the ability to detect population trends depends on both
the accuracy and precision of estimates. Vital rates can be affected
by sampling efforts, methods, gear, and data analysis (e.g., Walther
and Moore 2005). Owing to a lack of accuracy and precision in some
estimates, for many species there is still uncertainty regarding the

processes limiting their viability, probability of persistence or recov-
ery, and the effectiveness of management actions (Al-Chokhachy
et al. 2009; Osmundson and White 2017; Clark et al. 2018).

Currently, one of the most common methods to generate esti-
mates of survival and abundance of fishes is to sample with active
gear (e.g., electrofishing) and perform a mark–recapture analysis
of the collected data (Mesa and Schreck 1989). Active sampling is
expensive and gear-intensive (Schramm et al. 2002; Evans et al.
2017), which can limit the amount of survey effort expended per
survey. In addition to negative impacts on the sampled fishes
when electrofishing (Dwyer and White 1997; Ruppert and Muth
1997; Snyder 2003), netting and handling can have negative effects
on fishes, and all of these effects can be exacerbated by water
temperatures at time of capture (e.g., higher water temperatures
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can cause greater impacts; Paukert et al. 2005; Hunt et al. 2012). In
addition to the potential negative effects of physically capturing
fish, low rates of detection or recapture can be problematic for
estimating demographic parameters (Osmundson and White
2017). Endangered fishes, by definition, have low abundances and
can be difficult to detect in large rivers in general. Desert rivers in
particular also experience high turbidity, which can further re-
duce the capture probability of fishes (Lyon et al. 2014). In some
systems with rare or endangered fish species, low recapture rates
have resulted in poor estimates of demographic parameters
(Hewitt et al. 2010; Dudgeon et al. 2015), potentially exacerbating
factors limiting our conservation efforts.

Collectively, these issues clearly indicate a need for more effec-
tive ways to sample and monitor fish with fewer potential nega-
tive consequences and higher recapture–resight rates. The use of
passive integrated transponder (PIT) tags and passive integrated
antennas (PIAs) can reduce sampling stress because capture and
handling of fish is not required after the initial capture and tag-
ging event (which can also cause stress and mortality) and still
generate large amounts of individual-based movement data. PIAs
can be used singly to answer questions about total numbers of fish
detected at a location (Burke and Jepson 2006) or paired to deter-
mine direction of movement (Fetherman et al. 2015) to answer
questions about fish passage and use of tributaries for spawning
or habitat use (Cathcart et al. 2015; Howell et al. 2016). In addition,
remote sighting data, such as data from PIAs, have substantially
improved estimates of fish vital rates and abundance when added
to data collected with other methods (Pine et al. 2003; Webber
et al. 2012; Webber and Beers 2014). However, PIAs rely on the fish
swimming past a fixed point, which can limit the numbers of fish
detected to fish that are inclined to move (Snook et al. 2016).
Different forms of mobile PIT tag antennas (Fischer et al. 2012;
Hodge et al. 2015; Richer et al. 2017) have been created to address
some of the limitations of PIAs.

While the mobile PIT tag antennas can improve detection prob-
ability, increase spatial coverage of PIT tag sampling, and answer
questions about habitat association, there are limitations and an-
alytical issues to be resolved. In other studies where mobile PIT
tag antennas have been used (Fetherman et al. 2015; Richer et al.
2017), an emerging concern is the prevalence of ghost tags. Ghost
tags are created when tag loss, predation, and natural mortality
leave a PIT tag in the environment (O’Donnell et al. 2010). If not
known or properly accounted for analytically, these ghost tags
would create bias in estimated vital rates due to an inflated num-
ber of fish perceived as alive and detected with mobile passive
gear (O’Donnell et al. 2010).

Importantly, the detection of live fish cannot a priori be differ-
entiated from the detection of ghost tags; yet that knowledge is
critical in order for the mobile techniques to be used effectively.
The objective of this study was to develop a methodology to clas-
sify each detected PIT tag as a live fish or a ghost tag based on tag
location data and build a set of guidelines or rules that could be
adapted for use here and in other systems if the correct data were
available. We built two different random forest models using data
from known fate tags to determine the best data input structure.
The first structure treated all individual movements as indepen-
dent and unrelated to any other movements. The second structure
combined all movements of an individual to account for the re-
latedness of consecutive movements.

Methods

Study site
Our study site encompassed �264 river kilometres (rkm) of the

San Juan River from the Public Service Company of New Mexico
(PNM) diversion near Farmington, New Mexico, at rkm 268.2 to
the Clay Hills takeout near Lake Powell at rkm 4.6 (Fig. 1). The San
Juan River contains federally designated critical habitat for mul-
tiple endangered fish species (US Fish and Wildlife Service 1990,

Fig. 1. The San Juan River study area began at the Public Service Company of New Mexico (PNM) diversion at river kilometre (rkm) 268 and
ended at Clay Hills at rkm 4.6. Horizontal and vertical lines are state boundaries, and state abbreviations are UT (Utah), CO (Colorado), AZ
(Arizona), and NM (New Mexico). Cities are represented by filled circles, and select landmarks are shown with rkm. Map data are from Esri,
National Atlas of the United States, and the US Geological Survey (map produced using ArcMap 10.5.1).
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1998), is a part of the upper Colorado River system, and the basin
also covers �99 200 km2 in Colorado, New Mexico, Utah, and
Arizona. The river is �616 km long with the headwaters located in
the San Juan Mountains of Colorado. The Navajo Dam was com-
pleted in 1962 and is the only major impoundment on the river.
The Animas River, which is the largest tributary of the San Juan
River, is largely unregulated and joins the San Juan River down-
stream of Navajo Dam resulting in a more natural hydrograph
below its confluence. Historically, discharge was snowmelt-driven
(during our study spring runoff discharge peaked at �254 m3·s−1)
with potential for flash floods during monsoonal rain events (dur-
ing our study the monsoonal flood discharge peaked at �566 m3·s−1).
Since 1993, dam operations have also attempted to match flows with
the Animas River to mimic natural flow regimes for native fish con-
servation (Gido and Propst 2012).

The San Juan River supports seven native species: Colorado pikem-
innow (Ptychocheilus lucius), razorback sucker (Xyrauchen texanus), flan-
nelmouth sucker (Catostomus latipinnis), bluehead sucker (Catostomus
discobolus), roundtail chub (Gila robusta), speckled dace (Rhinichthys
osculus), and mottled sculpin (Cottus bairdii). In addition, there are over
20 nonnative fishes in the river, with the most abundant being
channel catfish (Ictalurus punctatus), smallmouth bass (Micropterus
dolomieu), and common carp (Cyprinus carpio). The Colorado pike-
minnow and razorback sucker, two large-bodied and long-lived
(up to 50 years) fishes, endemic to the Colorado River Basin, are
listed as endangered under the US Endangered Species Act. The
decline of these two species is attributed to the effects of instream
diversions and the major impoundment of Navajo Dam, habitat
alteration from nonnative vegetation, and predation by and com-
petition with nonnative species (US Fish and Wildlife Service 1990,
1998). These two species were considered essentially extirpated in
the San Juan River in 1992, and stocking of both species began
soon after. Since 1994, �50 000 Colorado pikeminnow and
150 000 razorback sucker have been PIT-tagged in the San Juan
River (STReaMS 2018). The flannelmouth sucker, the bluehead
sucker, and the roundtail chub, some of which are also PIT-tagged
in the San Juan River, are considered to be Species of Special
Concern in at least two of the following states: Wyoming, Utah,
Colorado, New Mexico, and Arizona (Bezzerides and Bestgen
2002), and in some states they are managed under a range-wide
conservation agreement (Budy et al. 2015). Given the amount of
tagging in the system and elsewhere, ghost tags are a problem of
increasing concern, and the long life-spans of the fishes in the San
Juan River eliminates the possibility of classifying tags as ghosts
based solely on age.

Sampling methods
In a previous study (Stout et al. 2019), we describe the Passive

Integrated Transponder Portable Antenna SystemS (PITPASS, a
raft-based PIT tag antenna system with integrated GPS), our sam-
pling method, the distribution and detection of known ghost tags,
and the data recorded for each detection in greater detail. We
used three PITPASS boats, and each sampling pass varied in length
(115–264 rkm) and river discharge (11.3–130.3 m3·s−1). In total, we
sampled �2233 rkm during 13 passes over the course of two field
seasons. The data recorded or calculated from our detection data
included distance moved between detections, direction moved
relative to flow, metres moved per day, which habitat feature a
tag was detected in (i) riffle — water velocity moderate to rapid,
water surface disturbed, and substrate usually cobble and rabble,
(ii) run — water velocity moderate to rapid, little or no surface
disturbance, and substrate sand and (or) silt in low velocity runs
and gravel or cobble in high velocity runs, (iii) pool — area within
channel, flow either barely or not perceptible, substrate varied,
and usually deeper than 30 cm, (iv) low velocity — all low-velocity
habitats not included in pool, such as backwater, eddy, etc., and
(v) shoal — less than 25 cm deep, laminar flow, and varied sub-
strate), whether a detection occurred in a single thread or an-

abranching channel, whether a detection occurred in a canyon or
unconfined alluvial valley, whether a movement occurred during
the monsoonal flash flood, and whether a movement occurred
during overwinter–spring runoff. Although the area each habitat
type occupied varied with flow level, during our sampling the
following approximate percentages can be used: run = 80%, riffle =
6%, shoal = 10%, pool = 0.1%, low velocity = 4% (Bliesner and Lamarra
2000).

For this study, we divided the data collected during field sam-
pling into three categories: ghost tag, unknown tag, and live fish.
Ghost tag refers to the PIT tags we distributed randomly in the
river to simulate ghost tags. We distributed 5000 total known
ghost tags into two distinct morphological reaches �16 km in
length (a shallow, unconfined alluvial reach and a deeper canyon
reach). Each reach received �1250 tags per year distributed on the
first sampling trip of the season. We randomly distributed one-
third of the tags from each boat at a rate of one tag per minute
across all habitat types (Stout et al. 2019). Unknown tag refers to
any PIT tag implanted in a fish at any time in the San Juan River.
We used data from the STReaMS database, which is the repository
for all PIT tag data collected in the Upper Colorado River Basin and
the San Juan River Basin (STReaMS 2018), to confirm detections as
live fish. A fish was considered live if the fish associated with the
tag was physically captured or detected at a PIA system in the same
field season as our detection or any time after. PIAs in the San Juan
River are overwhelmingly in either fish passage structures or trib-
utaries because of the size of the river and its substrate (sand bed
river up to 100 m wide). In order for a tag to be detected by a PIA in
the San Juan River after being detected in the main channel by the
PITPASS, a tag would have to move upstream into a tributary or a
fish passage structure. Therefore, we considered it appropriate to
consider tags demonstrating these movements as live fish, as it is
unlikely a ghost tag would move this way.

Analysis: random forest
We used random forest analysis to develop and evaluate models

for classifying tags (into two classes: live fish and ghost tags) using
the known fate tag data. We used the randomForest function in
package randomForest in R (Liaw and Wiener 2002) to create our
models using the default parameters (500 trees and four variables
tried per split). Random forest is a method for classification and
regression and was used, in part, because it makes no assump-
tions about the distribution of data and its strength as a statistical
classifier (Cutler et al. 2007). We used the randomForest function
that develops classification trees using a bootstrapping method
leaving out roughly one-third of the data to be used for testing.
The unevaluated third of data is referred to as out-of-bag and is
used to evaluate the accuracy of the constructed model. Since
out-of-bag data are not used for developing the trees, out-of-bag
error estimates serve as cross-validated accuracy estimates (Cutler
et al. 2007). We used the out-of-bag error estimates to assess model
performance.

We structured the input data for the random forest analysis in
two different ways to achieve the most accurate model. Typically
in random forest classification models, each site or individual is
only observed one time (Cutler et al. 2007), and sites or individuals
are considered independent. In our case, we considered each ob-
served movement independent and unrelated to any other move-
ments even if made by the same tag (despite the obvious fact that
a second movement of a tag will begin where the first tag ended,
possibly introducing bias regarding habitat use). We refer to the
models using this data structure as independent and include an
example of the input data structure in the online Supplemental
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materials (Table S.11). The variables used for classification in the
independent model included two variables for distance moved
(total distance and metres moved per day), one variable for direction
moved (direction), six variables for habitat (hab_start, hab_stop,
channel_start, channel_stop, habunit_start, and habunit_stop), and
two variables for flow conditions (monsoon and overwinter; all vari-
ables defined in Table 1).

We developed a novel data input structure that we refer to as
dependent that condensed all movements of a single tag into one
observation to connect all movements of a single PIT tag. In our
study, some tags were resighted up to seven times giving us re-
peated measures of the same individual. An example of this data
structure is included in the online Supplemental materials
(Table S.21). The new variables we used for classification in the
dependent model included the total distance moved in a specific
direction relative to flow: upstream, downstream, left, and right.
We also included two variables encompassing cumulative dis-
tance moved (total and metres moved per day) and two variables
for flow conditions observed during movement (monsoon and
overwinter). For habitat data, we used a count of how many times
a tag was detected in each habitat type (run, riffle, shoal, pool, low
velocity, single thread channel, anabranching channel, canyon,
and unconfined alluvial; variables defined in Table 2). Of the two
data structures, the model with the lowest out-of-bag error rate
was chosen as the most accurate.

Our initial model used all live fish detected for classification,
regardless of species. Then, we limited our input data to a single
species at a time and reanalyzed each data structure to determine
differences among the species, because while the species detected
exhibit similar movement behaviors, the habitat associations may
be different. In each case, the entire ghost tag dataset was used.
The only three species detected and subsequently used for analy-
sis were razorback sucker, flannelmouth sucker, and Colorado
pikeminnow (listed from most to least abundant in our sample);
however, limiting our live fish data to a single species decreased
the number of observations used to construct each model.

We used a backwards stepwise variable selection method to
evaluate the influence of the predictor variables on the best model
(based on the out-of-bag classification error rates; Cutler et al.
2007). We performed this step to determine which variables were
necessary to maintain the accuracy of the model while reducing
its complexity. Random forest models rank variables in order of
importance for correct classification based on the “mean decrease
in accuracy”, which describes the loss in accuracy of the model
when a variable is not used in the analysis (Cutler et al. 2007).
Based on the ranking of variables, we removed the worst perform-
ing variable (i.e., the variable with the lowest mean decrease in

accuracy) in the model and reran the analysis. These steps were
repeated until only one variable remained, and the accuracy of
each version of the model was examined. Then, we examined the
variables identified as important by our variable selection process
(removal from the model led to a decline in accuracy) using partial
dependence plots to determine the differences in live and ghost
tag dynamics. Partial dependence plots display the logit of prob-
ability of belonging to a specific class and all values of the variable
of interest. For partial dependence plots, all other variables are
held to an average value; therefore, partial dependence plots are a
vast simplification of complex data and should be interpreted
with caution.

Results

Tag detections
Our detection data allowed us to describe the movement of 899

known ghost tags over two seasons. Of the 5000 known ghost tags
distributed in the San Juan River, 899 were detected more than
once, for a raw resight rate of 18%. Of those 899 tags, there were
1401 pairs of detections where movement could be measured,
because some tags were detected more than two times (Table 3).

The detection of unknown tags allowed us to describe the move-
ment of 302 confirmed live fish over two seasons. We detected a
total of 3958 unique unknown tags, but only 847 of those tags
were detected a second time, for a raw resight rate of 21%. Of those
847 tags, there were 1190 pairs of detections for which we could
measure movement. However, we were only able to confirm 302 of
those tags as live fish, with 370 pairs of detections where we could
measure movement (Table 3). All of the data from both confirmed
live fish, and the known ghost tags were used in the construction
of the random forest classification models.

Random forest models
The random forest models using the dependent data structure

were more accurate than the independent models. Further, limit-
ing input data by species did not improve either model. With the
independent model, we were able to differentiate the live fish
from the ghost tags with an overall error rate of 7.6% (out-of-bag
estimate of error rate). When examined separately, the two
classes exhibited error rates of 28.9% (live fish incorrectly classi-
fied as ghost tags) and 1.9% (ghost tags incorrectly classified as live
fish; Fig. 2). Our ability to correctly classify was better with the
dependent model than with the independent model, lowering the
overall error rate to 6.8%. The accuracy of both classes improved
and, when examined separately, demonstrated error rates of
21.8% (live fish) and 1.6% (ghost tags; Fig. 2). Separating known live

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0403.

Table 1. Descriptions of variables used to create the model with the independent data structure for random forest analysis of data
from the San Juan River study area in 2016 and 2017.

Variable group Variable name Type Description

Distance moved distance Continuous Distance moved between detections (metres)
m_per_day Continuous Distance divided by number of days between detections (metres)

Direction moved direction Categorical Direction moved relative to flow (up, down, left, and right)

Habitat hab_start Categorical Habitat type of first detection (run, riffle, pool, shoal, low velocity)
hab_stop Categorical Habitat type of second detection (run, riffle, pool, shoal, low velocity)
channel_start Categorical Type of channel of first detection (single thread or anabranching)
channel_stop Categorical Type of channel of second detection (single thread or anabranching)
habunit_start Categorical Habitat unit of first detection (canyon or unconfined alluvial reach)
habunit_stop Categorical Habitat unit of second detection (canyon or unconfined alluvial reach)

Discharge monsoon Binary Whether or not the movement occurred during the monsoonal flood flows
overwinter Binary Whether or not the movement occurred during the spring runoff flows

Stout et al. 1567

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
T

A
H

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
5/

22
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0403


detections by species led to decreases in model accuracy (specifi-
cally of the error rate of the live class) when using either indepen-
dent or dependent data structures. The ranking of models from
best to worst (based on error rate of the live class) for both data
structures were (i) all species combined, (ii) razorback sucker only,
(iii) flannelmouth sucker only, and (iv) Colorado pikeminnow (Fig. 2).

We used the ranking of predictor variables to determine the
five most important variables for correct classification of detected
tags: (i) distance moved up, (ii) total distance moved, (iii) metres
moved per day, (iv) distance moved down, and (v) monsoon (Fig. 3).
These variables were determined to be the most important by our
backwards stepwise variable selection method. Any other vari-
able, other than these five, could be removed without an effect on
the accuracy of the model. When any of these top five variables
were removed from the model, the accuracy of the model declined
(Fig. 4). All of the variables related to habitat use or association
were ranked lower, with regard to importance, as were the vari-
ables describing movement perpendicular to the river’s flow. Hab-
itat features and measures of river complexity did not appear to
influence the accuracy of the models, as the performance of the
model did not change with their removal from the analysis.

When the five most important variables were examined indi-
vidually using partial dependence plots, some patterns emerged
(Fig. 5). We reiterate here that partial dependence plots are sim-
plifications of complex data, where all other variables are held
constant while examining the variable of interest. Larger total
distances and upstream distances moved are more likely to be-
long to a live fish. The probability of being a live fish increased
with larger upstream movements up to �2000 m, at which point
a larger distances moved upstream did not increase the probabil-

ity of classification as a live fish (some ghost tags were observed to
move upstream up to 99 m; Stout et al. 2019). Distance moved
upstream is an example of the limited interpretability of these
plots. It would be expected that any movement upstream should
belong to a live fish, and it would also be expected that the prob-
ability of being classified as a live fish would be higher than the
maximum probability of �75% this variable achieves when a tag
moves more than 2 km in an upstream direction. The probability
of being a live fish increased as the total distance moved increased
up to �8000 m, at which point a further increase in distance no
longer increased the probability of classification as a live fish. The
probability of being a live fish increased as distance moved down-
stream increased until �8000 m, when a larger distance no longer
increased the probability of classification as a live fish. The high-
est probability of indicating a live fish, based on the number of
metres moved per day, occurs around 650 m. Known ghost tags
had a higher probability of having a monsoonal flood affected
movement as demonstrated by the negative relationship shown
on the graph (Fig. 5).

Discussion
Our study is the first to evaluate a classification method for

determining PIT tag status (live versus ghost) when using mobile
interrogation systems. We were successful with a very high degree
of overall accuracy. While we could identify ghost tags with a high
degree of accuracy (only 2% were misclassified as live fish), the
model was less effective with live fish. Using our current error
rates as a guide, �20% were misclassified as a ghost tag. This
degree of error makes our classification of live tags conservative.
However, only �20% of all detected tags were ever resighted,
meaning 80% of tags detected were never classified during our
2-year sampling period. Therefore, these unclassified detections
could not be used for estimating vital rates without introducing
bias. A longer sampling period and more detection passes would
increase detections and subsequent resights, potentially allowing
greater accuracy in classification of live fish.

Our top model used the dependent data structure and com-
bined the data from all detected species. The dependent structure
accounted for the possibility of a tag being detected more than
two times and resulted in a better description of an individual
tag’s movements and a greater ability to classify it correctly.
When the input data were limited to a single species, there was a
lower number of observations to build the model, and the subse-
quent decline in accuracy of the model appeared to correspond to

Table 2. Descriptions of variables used to create a live versus ghost tag classification model with the dependent data structure for random forest
analysis of data from the San Juan River study area in 2016 and 2017.

Variable group Variable name Type Description

Direction up Continuous Sum of movements upstream relative to flow direction (metres)
down Continuous Sum of movements downstream relative to flow direction (metres)
left Continuous Sum of movements towards river left (metres)
right Continuous Sum of movements towards river right (metres)

Cumulative distance total Continuous Sum of all movement regardless of direction (metres)
m_per_day Continuous Total divided by number of days between first and last detection (metres)

Habitat run Discrete Number of times detected in run habitats
riffle Discrete Number of times detected in riffle habitats
shoal Discrete Number of times detected in shoal habitats
pool Discrete Number of times detected in pool habitats
low_velocity Discrete Number of times detected in low velocity habitats
single Discrete Number of times detected in single thread areas of channel
anabranching Discrete Number of times detected in anabranching areas of channel
canyon Discrete Number of times detected in the canyon reach
unconfined Discrete Number of times detected in the unconfined alluvial reach

Discharge monsoon Binary Whether or not the movements observed occurred during the monsoonal flood flows
overwinter Binary Whether or not the movements observed occurred during the spring runoff flows

Table 3. Total number of tags detected, numbers of total movements
observed, and numbers of unique tags detected more than one time
(unique resights) in the San Juan River study area during 2016 and 2017
for known ghost tags, unknown status tags, and live fish.

Total
detected

Unique
resights Movements

Ghost tags 5000 900 1405
Unknown tags 3958 847 1190
Live fish 302 302 370
Razorback sucker 205 205 254
Flannelmouth sucker 70 70 87
Colorado pikeminnow 24 24 26
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the decline in the number of observations. Even when all species
were combined, there was still an imbalance in our classes, which
can cause problems with overfitting. However, random forest mod-
els have been shown to perform well despite class imbalance at
much higher ratios than our situation of �3:1 (ghost tags : live fish;
Khoshgoftaar et al. 2007; Elrahman and Abraham 2013; Muchlinski
et al. 2016). We explore the effects of different methods (up-sampling
and down-sampling to have equal sample sizes) of accounting for

sample size imbalance in Appendix A. Since all three species an-
alyzed exhibit similarities in movement behavior (McKinney et al.
1999; Irving and Modde 2000; Zelasko et al. 2010), we believe com-
bining all species for the analysis was appropriate. Combining all
species might not work in other cases where the species are less
related or exhibit very different movement behaviors.

We expected differences in movement between ghost tags and
live fish would be important in classification. Razorback sucker,
flannelmouth sucker, and Colorado pikeminnow are all known to
move very large distances (McKinney et al. 1999; Irving and Modde
2000; Zelasko et al. 2010), and while ghost tags can move distances
up to 4 km (Bond et al. 2019; Stout et al. 2019), we observed a large
difference between the two classes. Fish carcasses can also move
large distances after death (Havn et al. 2017), but the average time
for a white sucker carcass to shed an abdominally located tag was
only 73.3 h (Muhametsafina et al. 2014). It is perhaps unsurprising
then that, of the five variables identified as influencing the accu-
racy of the model, four were related to the distance moved by a
tag. As expected, live fish generally moved greater distances than
the ghost tags. Also, fish and other organisms exhibit behavioral
changes to minimize the effect of high flows (Lytle and Poff 2004),
and ghost tags respond to higher flows similarly to sediment
(Bond et al. 2019; Stout et al. 2019). Therefore, we expected ghost
tags and live fish to exhibit different responses to changes in
discharge, and this expectation was demonstrated by the fifth
variable influencing classification, monsoonal flows.

Despite our expectation that live fish behavior and ghost tag
deposition would result in differences in habitat association, hab-
itat type did not appear to be important in the correct classifica-
tion of tags. We believe this disconnect between tag location and
habitat might not be true for all river systems. The PIT tags we
used to simulate ghost tags were an artificial addition to the sys-
tem randomly placed in the river in all habitat features. However,
as time passes and these tags move, their distribution tends to
favor riffles over runs (Stout et al. 2019). We believe the signal
from this phenomenon could be masked by the overwhelming
numbers of tags randomly associated with habitat as per our ini-
tial distribution. Additionally, the San Juan River has very few
large pools or deepwater habitat where tags, and possibly even
fish, could accumulate, further reducing the ability to detect dif-
ferences in habitat association.

Fig. 2. Change in accuracy of the random forest model, using the dependent (x axis) and independent data structure (y axes), when all species
of live fish are combined and then limited to a single species. The models are (A) all species combined, (B) only razorback sucker, (C) only
flannelmouth sucker, and (D) only Colorado pikeminnow. “# Obs” is the number of observations of confirmed live fish used to create the
model for each species. The dashed line for the number of observations is drawn only to illustrate the trend of fewer observations as the data
are split into species and does not have any statistical meaning. Data are from the San Juan River study area in 2016 and 2017.

Fig. 3. Variable importance plot of the predictor variables used to
create the classification model ranked from top (most important) to
bottom (least important). The x axis demonstrates the decrease in
accuracy of the model when each variable is removed; higher values
indicate more important variables for classification. Data are from
the San Juan River study area in 2016 and 2017.
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Mobile PIT tag interrogators have been developed to supple-
ment low recapture rates and reduce negative effects of capture
and handling of organisms (Paukert et al. 2005; Hunt et al. 2012;
Reynolds et al. 2012), but the inability to separate ghost tags from
live fish based on detection data are one of the recurring points of
discussion in studies using mobile systems (e.g., O’Donnell et al.
2010; Fetherman et al. 2014; Richer et al. 2017). Extensive use of PIT
tags has led to large numbers of potential ghost tags in aquatic
systems, and in other work, extensive movement of ghost tags has
been observed (from 2.0 km in Bond et al. 2019 to 4.1 km in Stout
et al. 2019), which highlights the need for a classification system.
Our study demonstrates the possibility of classifying detected
tags, yet there is uncertainty associated with the method. In par-
ticular, our system relies on detecting the tag at least twice, which
is not always possible. With limited sampling (i.e., passes), a short
study period, or remote areas or complex habitats that are diffi-
cult to access, this system may be limited in its applicability.

Despite the capabilities of our system, one limitation is the time
required to collect comprehensive data. The small sample size of
confirmed live fish (only 30 individuals) from our first year of
sampling made it difficult to successfully classify detected tags.
However, we were able to achieve a much higher level of model
accuracy with the addition of the second year’s data (272 addi-
tional live fish). However, the low number of redetections for live
fish made it impractical to use mobile detection data to estimate
survival rates without another source of data (i.e., electrofishing
or detections at stationary antenna). We note these limitations to
emphasize this process is iterative, and potential users need to

remember classification techniques will require multiple passes,
ideally within and across years. Once classification models are
devised for a system, they can be continuously improved upon
with the addition of subsequent data.

While we were unable to use individual characteristics of
tagged fish as predictor variables in our classification model
(known ghost tags were never in a fish), this approach could be
useful elsewhere. Potential individual variables that could influ-
ence movement or habitat used by individuals include (i) the age
of the fish or how long the tag has been deployed, (ii) species of
fish tagged, (iii) length and (or) weight at last capture, and (iv) sex.
In the San Juan River, fishes can be extremely long-lived (up to
40–50 years; McCarthy and Minckley 1987; Scoppettone 1988;
Osmundson et al. 1997); therefore, no tags could be classified as
ghosts based on age. However, in systems with shorter-lived fishes
(e.g., Rio Grande silvery minnow (Hybognathus amarus), which
live <4 years), some ghost tags can be classified definitively based
on age and used to model ghost tag movement to calibrate a
classification model. This approach to identifying ghost tags has
been used successfully in streams with coho salmon (Oncorhynchus
kisutch), which have a definitive age or time of mortality (Bond
et al. 2019).

Mobile PIT tag detection systems could be extremely useful in
the future in habitat use and association studies. Habitat restora-
tion is an increasingly popular option for conservation and recov-
ery of fishes, and due to the high cost of restoration (Bernhardt
et al. 2005), plans should be based on accurate response data.
Electrofishing and snorkeling are two methods typically used for

Fig. 4. The change in classification error when predictor variables are removed from the model. The x axis lists which variable has been
removed sequentially from left to right (and in order from least to most important based on the variable importance plot; Fig. 3), beginning
with “none” (no variables have been removed yet; all variables used in the model) and ending with “total”. The variable “up” is never removed
because one predictor variable is required to build the model. The vertical line delineates the beginning of a large increase in classification
error based on our backwards stepwise variable selection process. Data are from the San Juan River study area in 2016 and 2017.
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habitat use and selection studies, but they each have issues that
can bias the results. Electrofishing can sacrifice some accuracy, as
fish are disturbed before capture (Heggenes et al. 1990; Persinger
et al. 2004), and snorkeling is limited by turbidity and cover, lim-
iting visibility (Fausch and White 1981; Pert et al. 1997; Persinger
et al. 2004). With PITPASS, we demonstrated the ability to cover
large areas and detect largely undisturbed fish using mobile PIT
tag detection methods. However, this method still requires the
researcher to determine habitat type, but classification of habitat
type can be both quick and accurate with proper training and
calibration (Roper and Scarnecchia 1995).

Our study was the first to use movement and location data to
classify PIT tags detected by a mobile sampling method. We were
able to build a random forest model with a novel input data structure
accounting for the “relatedness” of a detected tag’s movements and
identified the variables important for correct classification in our
system and most likely other large sand bed rivers. The analytical
framework we describe herein will be useful in developing similar
models for other systems, even though we expect the relative
importance of specific predictor variables to vary with location
and species of interest. Future applications of this method should
examine how the addition of individual characteristics (length,
weight, sex, etc.) of the tagged fish affects the model’s classifica-
tion accuracy. While we believe this methodology can be an ex-
cellent contributor for habitat use studies, to quantify vital rates

(e.g., survival), other data sources or more intensive sampling will
be required.
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Appendix A

Introduction
Imbalance in class size refers to a condition in the data where

one class is represented by a large number of examples and an-
other class is represented by relatively few. Imbalance in class
sizes can cause model overfitting, which results in poor model
generalizability and an inability to predict future observations
accurately. However, random forest models have been shown to
perform well despite imbalance in class sizes (Khoshgoftaar et al.
2007; Elrahman and Abraham 2013; Muchlinski et al. 2016). How-
ever, a few methods have been developed to deal with class size
imbalance. Up-sampling and down-sampling to obtain equal sam-
ple sizes has been used as a solution to mitigate imbalances
(Japkowicz 2000). Down-sampling consists of sampling a subset of
the majority class until it matches the size of the minority class.
Up-sampling consists of sampling with replacement until the mi-
nority class has as many samples as the majority class (Japkowicz
2000). In this appendix, we use our existing dataset and use our
model structure to both up- and down-sample to determine the
effect of an unequal sample size.

Methods
To down-sample, we used our original dataset and the depen-

dent model structure described in the manuscript. We chose a
random sample with replacement for both classes (live and ghost)
to generate a subset with 300 observations for testing our model
using the sample function in R. We used the randomForest func-
tion in package randomForest in R (Liaw and Wiener 2002) to
create our model using the default parameters (500 trees and four
variables tried per split). We used all of the predictor variables to
build our model and then examined the classification error rates.
We repeated the process 100 times and report the mean error
rates and variance of all the model runs.

To up-sample, we used the original dataset and the dependent
model structure described in the manuscript. We used a random
sample with replacement for both classes to generate a subset
with 900 observations in each class for building our model using
the sample function in R. We used the randomForest function in
package randomForest in R (Liaw and Wiener 2002) to create our

models using the default parameters (500 trees and four variables
tried per split). Our model included all of the predictor variables
and was used to determine our classification error rates. We re-
peated the process 100 times and report the mean error rates and
variance of all the model runs.

Results
Down-sampling reduced the mean error rate of the live class

and increased the mean error rate of the ghost class (Table A1)
compared with the original model. The mean overall error rate of
the down-sampled model was very similar to the error rate of the
model with unequal class sizes. Up-sampling also reduced the
mean error rate of the live class and increased the mean error rate
of the ghost class compared with the error rate of the model with
unequal class sizes. However, the mean overall error rate of the
up-sampled models was reduced compared with the error rate of
the model with unequal class sizes. For all comparisons, variance
was higher in the down-sampled models when compared with the
up-sampled models.

Discussion
While error rates changed as a result of up- and down-sampling,

there is still error in the model. Down-sampling resulted in a
similar overall error rate to the original model, suggesting the
error was shifted from the live class to the ghost class, but without
any substantial overall improvement. Up-sampling also shifted
error from the live class to the ghost class, but demonstrated
improvement in the overall error rate. The variance of the up-
sampled models was lower than that of the down-sampled mod-
els, but we believe this is an artifact of a much larger sample size
used to create the models.

Shifting the error between classes can also be done through the
manipulation of the cutoff value in the random forest if it is more
important to correctly classify one specific class. Random forest
assigns a class to specific observations based on a vote tally from all of
the trees created in the forest. The default cutoff value for classifica-
tion of an observation is 1 divided by the number of classes (Liaw and
Wiener 2002), meaning the cutoff is 50% if there are two classes. The
cutoff value can be changed to the user’s specifications, resulting in
greater certainty about correct classification of a specific class, but
since one class was not more important than another in our case, we
left the cutoff value at the default.
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Table A1. Mean error rates and variance for up- and down-sampled
models for the two classes (live and ghost) and the overall rates.

Sample

Mean
ghost
error (%)

Ghost
variance

Mean
live
error (%)

Live
variance

Mean
overall
error (%)

Overall
variance

Down 4.9 1.6 7.9 1.8 6.7 0.8
Up 2.1 0.2 2.1 0.3 2.3 0.1
Unequal 1.6 NA 21.8 NA 6.8 NA

Note: The unequal sample is the original dependent model in the main man-
uscript. In the unequal model, the error rates are not a mean and no variance is
reported, as it is a single model.
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