Utah State University DigitalCommons@USU

**Physics Student Research** 

**Physics Student Research** 

10-9-2021

#### Embedded Charge Distributions in Electron Irradiated Polymers – Pulsed Electroacoustic Method Reproducibility and Calibration

Zachary Gibson Utah State University

JR Dennison Utah State Univesity

Ryan Hoffmann Air Force Research Lab

Follow this and additional works at: https://digitalcommons.usu.edu/phys\_stures

Part of the Physics Commons

#### **Recommended Citation**

Zachary Gibson, JR Dennison, and Ryan Hoffmann, "Embedded Charge Distributions in Electron Irradiated Polymers – Pulsed Electroacoustic Method Reproducibility and Calibration" American Physical Society Four Corners Meeting, The University of Colorado Boulder, Boulder, CO, October 8-9, 2021.

This Presentation is brought to you for free and open access by the Physics Student Research at DigitalCommons@USU. It has been accepted for inclusion in Physics Student Research by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



# Embedded Charge Distributions in Electron Irradiated Polymers – Pulsed Electroacoustic Method Reproducibility and Calibration

Zachary Gibson, JR Dennison, and Ryan Hoffmann

**APS 4CS Virtual Meeting** 

October 9<sup>th</sup>, 2021







# Outline

- Motivation
- Pulsed Electroacoustic (PEA) Method
  - Signal Processing
- The Experiment
- Uncertainties
  - Relative
  - Absolute
- Conclusions

# Defining the Problem – Charging of Insulators

### Charge accumulation is a problem in many areas

- HV power cabling insulation
- HV devices and switches
- Electrostatic charging in accelerators and plasma chambers
- Plasma deposition
- Thin film dielectrics
- Electron microscopy and spectroscopy
- Photoconductive devices/sensors
- Inferring defect states in materials
- Spacecraft charging

### **Spacecraft Charging**

- A majority of space environment-induced failures are due to spacecraft charging
- Length scales from 1-100's of  $\mu m$

# The Experimental Set-up: What is PEA?

How it works:

- Pulsed voltage probes embedded charge
- Time of flight indicates position of charge

Benefits:

- Nondestructive measurement
- Low cost

Limitations:

- Hard to increase resolution
  - High cost electronics
  - Difficult sensor fabrication



### Measuring Charge Distributions – An Example

Preliminary Data



# Signal Processing

Processing Steps:

- Compute FFT to determine filter
- Bandpass filter data
- Take difference of DC on DC off
- Use system response to perform deconvolution

### Calibration

- Multiply by calibration factor
  - Determined by amplitude of response to DC bias
- Convert time to distance using thickness of material
  - x axis = thickness / time



# The Experiment – Electron Irradiation of Polymers

### Samples

- Polyether-etherketone (PEEK)
- Polytetrafluoroethylene (PTFE)
  Thicknesses
- 125 µm
- 250 µm
- Irradiation Energy
- 50 keV
- 80 keV



## The Experiment – Details

#### Average Flux

- For 80 keV, 210 pA/cm<sup>2</sup>
- For 50 keV, 220 pA/cm<sup>2</sup>

#### Irradiation time

- 150 s
- 75 s in beam
- 75 s out of beam
- 30 s per rotation (2 RPM)

#### High spike of flux

- Higher than baseline for ~15 s
- Highest flux for ~5 s
- ~1/2 of samples received higher than baseline irradiation (6 samples)
- ~1/6 of samples received highest flux (2 samples)



## The Mystery – Is there a difference?



## Uncertainty from PEA System – Relative Error

### **Reproducibility Measurements**

- "No touching"
- Removing and replacing sample
- Pulse width and amplitude
- # of measurements averaged

# Relative error $\pm$ 1-3% of the peak amplitude

- For typical settings
  - 0.5 ns 1 kV pulse
  - 1000 waves averaged

Normalized Remove/Replace Measurements PEEK 125 um – 0.5 ns 1 kV Pulse – 1000 waves averaged  $70 \times 10^{-3}$ 1.0 -0.5 60 Amplitude (arb. units) Std. Dev. (arb. units 0.0 50 -0.5 40 -1.0 30 -1.5 20 -2.0 10 -2.5 160 40 60 80 180 0 100 120 140 Data Points (1 pt = 0.4e-9 s)Sample (PEEK

## Uncertainty from PEA System – Relative Error

- 3 Peak Positions found
- Interfaces (2)
- Deposited charge

### Calculations

- Compute average
- Compute standard deviation

# Relative error $\pm$ 0.5 $\mu m$ for peak position



11

## **Uncertainty from Calculations - Absolute Error**

Uncertainties in the calibration are introduced from errors in:

- Sample thickness
  - + For each sample  $\pm$  0.5-1  $\mu m$
  - Sample uniformity  $\pm$  1-3  $\mu$ m
- Speed of sound  $\pm$  5-10% ?
- Resistance of sample
- Resistance of acoustic coupling layers
- Thickness of acoustic coupling layers  $\pm$  1-3 ?  $\mu$ m
- HVDC Source
- Reflections of pulsed voltage (electrical impedance mismatches)
- Pulse shape

Determination of uncertainty from these sources is still in progress

Calibrated Signal = IFFT[R(f)]

$$R(f) = \frac{V_{DC} \varepsilon_r \varepsilon_o}{d v_{sample} \tau} \left( \frac{V_{meas}(f)}{V_{response}(f)} \right)$$

R(f) is FFT of space charge distribution,  $V_{DC}$  is DC bias,  $\varepsilon_r$  is relative permittivity of sample,  $\varepsilon_o$  is permittivity of free space,  $v_{sample}$  is speed of sound in sample, d is thickness,  $\tau$  is sampling rate,  $V_{meas}$  is the PEA measurement, and  $V_{response}$  is the response function of the PEA system. First term is calibration factor and second term is deconvolution.

Calibrate (DC On – DC off) and use that to calibrate the original signal.

## Conclusions

- With settings of 0.5 ns 1 kV pulse and 1000 waves averaged, the relative error is
  - $\pm$  1-3% of peak amplitude
  - $\pm$  0.5 um in spatial dimension
- Uncertainty in calibration (absolute error) still needs to be determined
- More work needs to be done to determine if difference in deposition depth is significant

## Future Work

- Identify and quantify errors from
  - Sample thickness
  - Resistance of sample
  - Resistance of acoustic coupling layers
  - Thickness of acoustic coupling layers
  - HVDC Source
  - Reflections of pulsed voltage (electrical impedance mismatches)
- Solve the mystery!

### References

 Pearson, L. H., Dennison, J. R., Griffiths, E. W., & Pearson, A. C. (2017). PEA System Modeling and Signal Processing for Measurement of Volume Charge Distributions in Thin Dielectric Films. *IEEE Transactions on Plasma Science*, 45(8), 1955-1964. doi:10.1109/tps.2016.2632627

## Back up slides



