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Defining the Problem — Charging of Insulators

Charge accumulation is a problem in many areas

* HV power cabling insulation

* HV devices and switches

Electrostatic charging in accelerators and plasma chambers
Plasma deposition

Thin film dielectrics

Electron microscopy and spectroscopy
Photoconductive devices/sensors
Inferring defect states in materials
Spacecraft charging

Spacecraft Charging

* A majority of space environment-induced
failures are due to spacecraft charging

* Length scales from 1-100’s of um




The Experimental Set-up: What is PEA?

How it works: &
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Measuring Charge Distributions — An Example

Preliminary Data
PEEK 125 um 50 keV Irradiation (incident right)
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Signal Processing

Processing Steps:

e Compute FFT to determine
filter

* Bandpass filter data

* Take difference of DC on — DC
off

* Use system response to
perform deconvolution

Calibration

* Multiply by calibration factor
e Determined by amplitude of
response to DC bias
e Convert time to distance using
thickness of material
* x axis = thickness / time

Amplitude (mV)

Amplitude (mV)

Amplitude (mV)

PEEK 125 um 50 keV Raw Data

PEEK 125 um 50 keV - Reference for Deconvolution
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The Experiment — Electron Irradiation of Polymers

-

Samples

* Polyether-etherketone (PEEK)
* Polytetrafluoroethylene (PTFE)
Thicknesses

125 um

* 250 um

Irradiation Energy

* 50 keV

* 80 keV




The Experiment — Details

Average Flux

* For 80 keV, 210 pA/cm?

* For 50 keV, 220 pA/cm?
Irradiation time

e 150s

e 75sin beam

e 75 s out of beam

* 30 s per rotation (2 RPM)
High spike of flux

* Higher than baseline for ~15 s
* Highest flux for ~5 s

* ~1/2 of samples received hi%her than
baseline irradiation (6 samples)

* ~1/6 of samples received highest flux
(2 samples)

Flux (pA/cmz)

Irradiation Flux at Faraday Cup (peak flux ~1 order of magnitude higher)
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The Mystery — Is there a difference?
PTFE Sample Comparison - 125 um 50 keV
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Uncertainty from PEA System — Relative Error

Reproducibility Measurements Normalized Remove/Replace Measurements
“N hing” PEEK 125 um — 0.5 ns 1 kV Pulse — 1000 waves averaged
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Uncertainty from PEA System — Relative Error

Error in Peak Positions for PEEK 125 um 80 keV
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Uncertainty from Calculations - Absolute Error

Uncertainties in the calibration are introduced
from errors in:

e Sample thickness
* For each sample + 0.5-1 um
e Sample uniformity + 1-3 um
e Speed of sound + 5-10% ?
* Resistance of sample
* Resistance of acoustic coupling layers
* Thickness of acoustic coupling layers + 1-3 ? um
* HVDC Source

* Reflections of pulsed voltage (electrical
impedance mismatches)

* Pulse shape

Determination of uncertainty from these
sources is still in progress

Calibrated Signal = IFFT[R(f)]

R(H) =

VDC €r o < Vmeas (f) )
Vresponse (f)

R(f) is FFT of space charge distribution, V. is DC bias, €, is
relative permittivity of sample, €, is permittivity of free
SPace, Vgmple IS Speed of sound in sample, d is thickness, T is
sampling rate, V., is the PEA measurement, and V, ;o iS
the response function of the PEA system. First term is

calibration factor and second term is deconvolution.

d vsample T

Calibrate (DC On — DC off) and use that
to calibrate the original signal.



Conclusions

e With settings of 0.5 ns 1 kV pulse and 1000 waves averaged, the
relative error is
* + 1-3% of peak amplitude
 + 0.5 um in spatial dimension

* Uncertainty in calibration (absolute error) still needs to be
determined

* More work needs to be done to determine if difference in deposition
depth is significant



Future Work

* |dentify and quantify errors from
* Sample thickness
Resistance of sample
Resistance of acoustic coupling layers
Thickness of acoustic coupling layers
HVDC Source
» Reflections of pulsed voltage (electrical impedance mismatches)

* Solve the mystery!
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Amplitude (arb. units)

All Waves Normalized and Aligned for Comparison
Avgs 100-5000, pulse 0.5 - 5 ns, amplitude 1 - 2 kV
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