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1  | INTRODUC TION

New technologies (e.g. improved Global Positioning System [GPS] 
collars) and advances in remote sensing have made it possible to 
collect animal location data on unprecedented spatial and tem-
poral scales (Kays et al., 2015; Robinson et al., 2020), which in turn 
has fuelled the development of new methods for modelling ani-
mal movement and for linking individuals to their environments  

(Guisan et al., 2017; Hooten et al., 2017). Two of the most popular 
approaches for analysing telemetry data, habitat-selection functions 
(HSFs; Box 1) and step-selection functions (SSFs), compare environmental 
covariates at locations visited by an animal (‘used locations’) to environ-
mental covariates at a set of locations assumed available to the animal 
(‘available locations’) using logistic and conditional logistic regression re-
spectively (Boyce & McDonald, 1999; Fortin et al., 2005; Thurfjell et al., 
2014). These methods are widely available in most statistical software 
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Abstract
1.	 Habitat-selection analyses allow researchers to link animals to their environ-

ment via habitat-selection or step-selection functions, and are commonly used 
to address questions related to wildlife management and conservation efforts. 
Habitat-selection analyses that incorporate movement characteristics, referred to 
as integrated step-selection analyses, are particularly appealing because they allow 
modelling of both movement and habitat-selection processes.

2.	 Despite their popularity, many users struggle with interpreting parameters in 
habitat-selection and step-selection functions. Integrated step-selection analy-
ses also require several additional steps to translate model parameters into a full-
fledged movement model, and the mathematics supporting this approach can be 
challenging for many to understand.

3.	 Using simple examples, we demonstrate how weighted distribution theory and the 
inhomogeneous Poisson point process can facilitate parameter interpretation in 
habitat-selection analyses. Furthermore, we provide a ‘how to’ guide illustrating the 
steps required to implement integrated step-selection analyses using the amt package

4.	 By providing clear examples with open-source code, we hope to make habitat-
selection analyses more understandable and accessible to end users.
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packages, and thus, they provide a robust and easy-to-implement 
framework for analysing habitat-selection patterns. Note, here and 
throughout, we use the term habitat-selection function rather than the 
traditional resource-selection function to highlight our broader interest 
in modelling the effects of a diverse set of environmental variables 
(e.g. those capturing risks and environmental conditions in addition 
to resources). Habitat-selection functions are used to identify habitat 
features that are preferentially used or avoided by a species, and thus, 
to infer ecological needs and limitations, generate expected distribu-
tion maps and inform demographic projections across space and time 
in support of species and landscape management (Boyce & McDonald, 
1999; Matthiopoulos et al., 2015, 2019). Step-selection functions are 
further used to identify fine-scale behavioural interactions between 
animals and their biotic and abiotic environment (e.g. Dickie et al., 
2020). Despite their popularity, our collective experience has been 
that many users struggle to interpret parameters in HSFs and SSFs. 
Furthermore, it seems that papers attempting to address this issue 
have had limited success, and in some aspects may have increased con-
fusion (see e.g. Avgar et al., 2017; Chamaille-Jammes, 2019; Johnson 
et al., 2006; Keating & Cherry, 2004; Lele et al., 2013).

Here, we highlight how point process models and weighted dis-
tribution theory provide simple and effective frameworks for inter-
preting regression parameters in habitat-selection and step-selection 
functions. In the sections that follow, we begin by reviewing recent 
research connecting habitat-selection functions to point process 
models and weighted distribution theory. Using these connections, 
we demonstrate correct interpretation of parameters using simple ex-
amples of models fit to GPS locations of fisher Pekania pennanti from 
upstate New York (LaPoint et al., 2013a, 2013b). We then provide a 
short review of step-selection functions, including their history and 
methods for parameter estimation. Step-selection analyses (Box 2) are 
particularly appealing because: (a) they provide an objective method 
for defining habitat availability in terms of movement constraints; (b) 
they relax the assumption that locations are statistically independent; 
and (c) by including movement characteristics (e.g. functions of step 
length and turn angle) as predictors, they provide a means to model 
both movement and habitat-selection processes (termed an integrated 
step-selection analysis by Avgar et al., 2016). Recognizing that many 
may find the mathematics supporting integrated step-selection anal-
yses intimidating, we aim to provide a ‘how to’ guide demonstrating 
the steps required to implement the approach using the amt package 
(Signer et al., 2019). This demonstration is expanded upon using coded 
examples in the Supporting Information, which we encourage the 
reader to explore. We end with a short discussion highlighting chal-
lenges related to statistical dependencies and model transferability.

2  | HABITAT-SELEC TION FUNC TIONS

2.1 | Logistic regression

Much of the confusion surrounding the interpretation of param-
eters in habitat-selection functions can be attributed to the use of 

logistic regression to model use-availability data (Keating & Cherry, 
2004). Logistic regression is most easily understood as a model for 
binary random variables that can take on one of two values (0 or 1) 
with probability that depends on one or more explanatory variables 
(Hosmer, Lemeshow, & Sturdivant, 2013).

Consider, for example, a study designed to infer how various en-
vironmental characteristics influence whether a habitat patch (e.g. a 
contiguous area of forest) will be used by one or more animals. In this 
case, we may randomly select n habitat patches and monitor them 
to determine if they are used (yi = 1) or not (yi = 0) for i = 1,2,…,n.  
Logistic regression allows us to model the probability that each 

BOX 1 Overview of habitat-selection functions 
(HSFs) 

•	 Habitat-selection functions (HSFs; historically referred 
to as ‘resource-selection functions’; Boyce & McDonald, 
1999) provide a framework for linking locations of in-
dividual animals to important features of their environ-
ment (i.e. resources, risks and environmental conditions).

•	 Exponential HSFs, the most common HSF in the litera-
ture, take the form w(X(s);�) = exp(X1(s)�1 + ⋯Xk(s)�k); 
where the X1(s),…,Xk(s) are k environmental predictors 
associated with location s, and the �1, . . . ,�k  are param-
eters to be estimated.

•	 Parameters in HSFs are typically estimated using logis-
tic regression, but with use-availability data rather than 
presence–absence data. The use of logistic regression to 
model use-availability data has created significant con-
fusion in the literature.

•	 Inhomogeneous Poisson Point process (IPP) Models and 
Weighted Distribution Theory provide suitable frame-
works for interpreting HSF parameters estimated using 
logistic regression (Aarts et al., 2012; Fithian & Hastie, 
2013; Matthiopoulos, Fieberg, & Aarts, 2020; Warton & 
Shepherd, 2010). These frameworks require that users 
include sufficient available points to ensure parameter 
estimates converge to stable values (Figure 2; Warton & 
Shepherd, 2010). In addition, available points should be 
assigned large weights when fitting logistic regression 
models (Fithian & Hastie, 2013).

•	 For continuous predictors, Xj, exponentiated HSF coeffi-
cients, exp(� j), quantify the relative intensity of use of loca-
tions that differ by 1 unit of Xj, but are otherwise equivalent 
(i.e. they are assumed to be equally available and to have 
equivalent values for all other predictor variables).

•	 For categorical predictors, Xj, exponentiated HSF coeffi
cients, exp(� j), quantify the relative intensity of use of 
locations in category j relative to locations in a reference cat-
egory, assuming both categories are equally available and that 
the locations do not differ with respect to other predictors.
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patch will be used, P(yi = 1) = pi, as a logit-linear function of k patch-
level predictors (Xi1,…,Xik ) and regression parameters (�0,�1,…,�k):

After having fit a model, we can exponentiate the regression coeffi-
cients, exp(� j) for (j = 1,…,k), to quantify how the odds of patch i  being 
used, pi∕(1 − pi), change as we increase the jth predictor by 1 unit while 
holding all other predictors constant. We can also use the inverse-logit 
transformation (Equation 1) to estimate the probability that patch i  will 
be used, given its set of spatial predictors:

The logit transformation ensures that pi will be constrained between 0 
and 1 for all values of the predictor variables.

Contrast this approach with how logistic regression is used to 
study habitat selection. In a typical habitat-selection study, logistic 
regression models are fit to separate samples of used and available 
sample units, usually points; these groups are not mutually exclusive 
(i.e. available habitat may also be used). In this case, yi is no longer a 
Bernoulli random variable since pi depends on the ratio of used to avail-
able points (which is under control of the analyst). That is, the probabil-
ity that a location will be a ‘used point’ decreases with the number of 
user-generated ‘available’ locations. Furthermore, despite the fact that 
most analyses of telemetry data quantify environmental covariates in 
discrete space (i.e. pixels in a raster), the sampling itself is point level 
and in continuous space. Thus, it is perhaps not surprising that there 
has been considerable confusion and controversy surrounding the use 
of logistic regression with use-availability data (e.g. Chamaille-Jammes, 
2019; Johnson et al., 2006; Keating & Cherry, 2004).

Various arguments have been constructed to justify the use of 
logistic regression when analysing use-availability data (Aarts et al., 
2008; Johnson et al., 2006; Manly et al., 2002), but a significant 
breakthrough came when Warton and Shepherd (2010) made a con-
nection between logistic regression and a spatial inhomogeneous 
Poisson point process (IPP). A spatial IPP is a model for random lo-
cations in space, where the expected spatial density of the locations 
depends on spatial predictors (see next Section 2.2). Warton and 
Shepherd (2010) showed that as the number of available points is 
increased towards infinity, the slope parameters in logistic regres-
sion models will converge to the slope parameters in an IPP model. 
Interestingly, several other popular approaches for analysing spe-
cies distribution data, including MaxEnt (Elith et al., 2011; Phillips & 
Dudík, 2008), weighted distribution theory with an exponential form 
(Lele & Keim, 2006) and resource utilization functions (Millspaugh 
et al., 2006), have been shown to be equivalent to fitting a spatial 
IPP model (Aarts et al., 2012; Fithian & Hastie, 2013; Hooten et al., 
2013; Renner et al., 2015; Warton & Shepherd, 2010).

Instead of focusing on pi, as is typical in applications to presence–
absence data, logistic regression applied to use-availability data should 
simply be viewed as a convenient tool for estimating coefficients in a 
habitat-selection function, w(X(s);�) = exp(X1(s)�1 + ⋯Xk(s)�k) (Boyce 
& McDonald, 1999; Boyce et al., 2002), where we have written X(s) to 
highlight that the predictors correspond to measurements at specific 
point locations in geographical space, s. As we will see in the next sec-
tion, this expression is equivalent to the intensity function of an IPP 
model but with the intercept (the log of the baseline intensity) removed; 
the baseline intensity gives the expected density of points when all co-
variates are 0. Because habitat-selection functions do not include this 
baseline intensity, they are said to measure ‘relative probabilities of 
use’, or alternatively, said to be ‘proportional to the probability of use’ 
(Manly et al., 2002). Although the term probability of use sounds appeal-
ing, probability in continuous space can only be assigned to areas, not 
points. Furthermore, although probability of use is easily defined for 
discrete sample units (e.g. grid cells), these probabilities should increase 
with the size of the spatial unit and also with the study duration (Lele 
& Keim, 2006; Lele et al., 2013). Thus, with telemetry studies, it seems 
more natural to model spatial (or spatio-temporal) intensity functions or 
rates of use in continuous space (and time). Subsequently, ‘probabilities 
of use’ can be determined by integrating these intensity functions over 
whatever spatial (and temporal) unit is deemed appropriate. Point pro-
cess models allow us to do just that.

2.2 | Inhomogeneous Poisson point process model

The IPP model provides a simple framework for modelling the den-
sity of points in space as a loglinear function of spatial predictors 
through a spatially varying intensity function, �(s) :

where s is a location in geographical space, and X1(s),…,Xk(s) are k spatial 
predictors associated with location s. The intercept, �0, determines the 
log density of points (within a small homogeneous area around s) when 
all Xj(s) (j = 1,…,k) are 0, and the slopes, �1,…,�k, describe the effect of 
spatial covariates on the log density of points in space. The IPP model 
can be understood by listing its key features and assumptions, namely:

1.	 The number of points in an area G, yG, is a Poisson random 
variable with mean E [yG ] = ∫

G
�(s)ds (the spatial integral of �(s) 

over G).
2.	 Locations are independent (any clustering can be explained by 

spatial covariates).

If all available spatial predictors are measured only at a 
coarse scale (e.g. at a set of gridded or rasterized cells), then fit-
ting the IPP model is equivalent to fitting a Poisson regression 
model (Aarts et al., 2012). Specifically, one may treat the counts, yi,  
in n discrete spatial units (i = 1,…,n), as a set of independent 
Poisson random variables with means = �(si) |Gi | where �(si) 

yi ∼ Bernoulli(pi),

logit(pi) = log

[
pi

(1 − pi)

]
= �0 + Xi1�1 + … Xik�k.

(1)pi =
exp

(
�0 + Xi1�1 + … Xik�k

)

1 + exp
(
�0 + Xi1�1 + … Xik�k

) .

(2)log
[
�(s)

]
= �0 + X1(s)�1 + ⋯Xk(s)�k,
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is given by Equation (2) and ||Gi
|| is the area of unit i . Note that 

log[E(yi) ] = log[�(si) |Gi | ] = log[�(si) ] + log(|Gi | ). Thus, the log-link 
used in Poisson regression implies the area, ||Gi

||, should be included 
as an offset (a predictor variable with regression coefficient fixed 
at a value of 1).

When spatial predictors are available at the point level, as will be 
the case whenever constructing ‘distance to’ predictors (e.g. distance 
to nearest road, water source, etc.), it will be advantageous to model 
the locations in continuous space. In telemetry studies, the density 
of points will be determined by the frequency and duration of data 
collection. Thus, �0 will not be of biological interest, and it will be ap-
propriate to focus efforts on estimating and interpreting the slope co-
efficients, �1,…,�k, which determine relationships between the spatial 
covariates and the relative density of locations throughout the study 
area (Fithian & Hastie, 2013). As is the case with linear and generalized 
linear models (e.g. Poisson regression), we can estimate parameters 
using maximum likelihood or Bayesian methods. Both approaches re-
quire writing down an expression, called the likelihood, that captures 
the data-generating mechanism in terms of one or more parameters. 
With telemetry data, it makes sense to work with the conditional like-
lihood of the IPP model (Aarts et al., 2012), that is, the likelihood of 
the observed locations in space, conditional on there being yG total 
observed locations. The conditional likelihood is given by:

where the product is over the yG observed locations, �(si) is the in-
tensity function evaluated at observation i , and the integral in 
the denominator evaluates the intensity function over the spa-
tial domain of interest (Aarts et al., 2012; Cressie, 1992). If we plug 
�(si) = exp

(
�0 + X1(si)�1 + …Xk(si)�k

)
 into Equation (3), �0 will cancel 

from the numerator and denominator, leaving us with:

where w(X(s);�) = exp(�1X1(s) + …�kXk(s)) is our habitat-selection 
function.

The binomial likelihood associated with logistic regression differs 
from Equation (4), but Warton and Shepherd (2010) showed that lo-
gistic regression estimators of slope coefficients converge to the those 
of the IPP model as the number of available points increases towards 
infinity. Thus, the connection to the IPP model addresses a common 
question that arises when estimating habitat-selection functions, 
namely, ‘how many available points do I need?’ The exact answer de-
pends on how difficult it is to estimate the integral in the denominator 
of Equation (4); the recommendation we offer is to increase the num-
ber of available points until the estimated slope coefficients no longer 
change much. Fithian and Hastie (2013) later showed that the conver-
gence results of Warton and Shepherd (2010) hold only if the model is 

correctly specified, but assigning ‘infinite weights’ to available points 
ensures the results hold more generally. Therefore, when fitting logis-
tic regression or other binary response models (e.g. boosted regression 
trees) to use-availability data, we also suggest assigning a large weight 
(say 5,000 or more) to each available location and a weight of 1 to all 
observed locations (larger weights can be used to verify that results are 
robust to this choice). For a coded example in R (R Core Team, 2019), 
see Section 2.4 and Supporting Information Appendix A.

2.3 | Weighted distributions

Weighted distribution theory provides another way to interpret pa-
rameters in habitat-selection functions (Johnson et al., 2008; Lele & 
Keim, 2006). Let:

•	 u(X) = the frequency distribution of habitat covariates, X, at loca-
tions used by our study animals.

•	 a(X) = the frequency distribution of habitat covariates, X, at loca-
tions assumed to be available to our study animals.

We can think of the habitat-selection function, w(X;�), as provid-
ing a set of weights that takes us from the distribution of available 
habitat to the distribution of used habitat:

The denominator of Equation (5) ensures that the right-hand side in-
tegrates to 1, and thus, u(X) is a proper probability distribution; the 
variable Z here is just a dummy variable used to allow integration 
over the frequency distribution of our environmental covariates. 
Because these distributions are written in terms of the habitat co-
variates, X, instead of geographical locations, we say that model is 
parameterized in environmental space (E) (Elith & Leathwick, 2009; 
Hirzel & Le Lay, 2008; Matthiopoulos, Fieberg, Aarts, Barraquand, 
et al., 2020).

To show that weighted distribution theory is consistent with the 
IPP formulation discussed above, we can rewrite Equations (5) in 
geographical space (G):

where the denominator integrates over a geographical area, G, that is 
assumed to be available to the animal and g is a dummy variable for 
integration. Here u(s)  is equivalent to the utilization distribution en-
countered in the literature on probabilistic estimators of animal home 
ranges (Signer & Fieberg, 2020; Van Winkle, 1975; Worton, 1989) and 
tells us how likely we are to find an individual at location s in geograph-
ical space. The utilization distribution, u(s), depends on the environ-
mental covariates associated with location s, through w(X(s);�), and 
the distribution of available locations in geographical space, a(s). When 

(3)L(�1,…,�k | s1,…, syG ) =

yG∏
i=1

�(si)

∫
s∈G

�(s)ds
,

(4)
L
(
�; s1,…, syG

)
=

yG∏
i=1

exp
(
X1(si)�1+…Xk(si)�k

)

∫
s∈G

exp(X1(s)�1+…Xk(s)�k)ds

=

yG∏
i=1

w
(
X(si);�

)

∫
s∈G

w
(
X(s);�

)
ds

,

(5)u(X) =
w(X,�)a(X)

∫
Z∈E

w(Z,�)a(Z)dZ
.

(6)u(s) =
w(X(s),�)a(s)

∫
g∈G

w(X(g),�)a(g)dg
,
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fitting HSFs, a(s) is typically assumed to be a uniform distribution within 
the geographical domain of availability, G (e.g. the individual's home 
range, the population's range or the species range depending on the hi-
erarchical level of habitat selection of interest; Johnson, 1980), with all 
areas within G assumed to be equally available to the organism. Hence, 
a(s) is typically a constant, 1∕ |G |, that cancels from the numerator 
and denominator. Then, if we let w(X(s);�) = exp(X1(s)�1 + ⋯ Xk(s)�k),  
we end up with the conditional likelihood of the IPP model (Equation 
4; Aarts et al., 2012). In summary, the IPP model and weighted distri-
bution theory with an exponential form provide equivalent, suitable 
frameworks for interpreting parameters in logistic regression models 
fit to use-availability data.

2.4 | Interpreting parameters in habitat-selection  
functions

To demonstrate how the IPP and weighted distribution theory 
frameworks help with interpreting parameters in fitted habitat-
selection functions, we now consider a simple example using 3,004 
locations of a fisher named Lupe tracked as part of a larger telemetry 
study (LaPoint et al., 2013a, 2013b). These data are publicly avail-
able and have been featured in a workshop highlighting Movebank's 
Env-DATA system for annotating locations with environmental co-
variates (Dodge et al., 2013; Fieberg, Bohrer, et al., 2018). The lo-
cation data were combined with available points sampled randomly 
from within a minimum convex polygon (MCP) formed using Lupe's 
locations. The used and available locations were then transformed 
to a projected coordinate reference system (NAD83/Conus Albers) 
and annotated with environmental variables measuring human pop-
ulation density (Center for International Earth Science Information 
Network (CIESIN) Columbia University, & CIAT, Centro Internacional 
de Agricultura Tropical, 2005), elevation (U.S./Japan ASTER Science 

Team, 2009) and landcover class (Defourny et al., 2009). The origi-
nal landcover data were grouped to form a variable named landuseC 
with the following categories: forest, grass and wet (Figure 1). We 
created centred (mean = 0) and scaled (SD = 1) variables labelled el-
evation and popden from the original elevation and population den-
sity variables. We also created an indicator variable, case_, taking on 
a value of 1 for all used points and 0 for all available points (later, we 
discuss how to choose the number of available points).

For ease of interpretation, we will begin by assuming the effects 
of elevation, population density and landcover class are additive and 
linear (on the log scale; Equation 2). Later, we will discuss how we 
can relax these assumptions using interactions to allow the effect 
of covariates to depend on the value of other habitat covariates and 
polynomials or splines to relax the assumption of linearity. We as-
sign a weight of 5,000 to the available locations and a weight of 1 
to all observed locations (Fithian & Hastie, 2013). We can then fit a 
weighted logistic regression model using the glm function in R:

Lupe.dat$w <– ifelse(Lupe.dat$case_==1, 1, 5000)  
HSF.Lupe <– glm(case_ ~ elevation + popden + landuseC,  
                             data = Lupe.dat,  
                             weight = w,  
                             family = binomial)

Before interpreting the coefficients, it is important to make sure we 
have included a sufficient number of available points to allow param-
eter estimates to converge to stable values. To evaluate parameter 
stability, we fit logistic regression models to datasets with increasing 
numbers of available points (from 1 available point per used point 
to 100 available points per used point; see Supporting Information 
Appendix A for the code). The intercept decreased as we increased 
the number of available points (as it is roughly proportional to the 
log difference between the numbers of used and available points), 

F I G U R E  1   FDistribution of used 
and available locations among different 
landscape cover classes for a fisher in 
upstate New York (LaPoint et al., 2013a, 
2013b)
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but the slope parameter estimates, on average, did not change 
much once we included at least 10 available points per used point 
(Figure 2). Furthermore, as expected, estimates varied less from sam-
ple to sample as we increased the number of available points. Thus, 
we conclude that, in this particular case, having 10 available points 
per used point is sufficient for interpreting the slope coefficients. 
The only downside to including even more available points is that it 
may slow down computations, which is not an issue here. Increasing 
the number of available points also further reduces Monte Carlo 
error, so we proceed with the largest sample size we explored (100 
available points per used point).

Let us consider the interpretation of the continuous covari-
ates reflecting elevation and population density (Table 1, Model 1). 
Qualitatively, we might infer from the positive coefficient for eleva-
tion and negative coefficient for popden that, all other things being 
equal, Lupe is likely to select locations at higher elevations and in 
areas of lower population density. But, how do we interpret these 
coefficients quantitatively? Consider the following two locations, 
both in the same landcover class and with the same associated pop-
ulation density, but differing by 1 unit in elevation (since we have 
scaled this variable, a difference of 1 implies that the two observa-
tions differ by 1 SD in the original units of elevation):

•	 location s1: elevation = 3, popden = 1.5, landuseC = wet
•	 location s2: elevation = 2, popden = 1.5, landuseC = wet

Using Equation (6), we can calculate Lupe's relative use of loca-
tion 1 versus location 2:

where we have dropped the integral from Equation (6) because it appears 
in both the numerator and denominator (and thus, cancels out). Now, if 
both locations are equally available, then a(s1) = a(s2), and we have:

Thus, we see that this ratio also provides an estimate of the relative 
intensity of use of the two locations (i.e. �(s1)∕�(s2)), assuming the lo-
cations are equally available. In the context of habitat-selection anal-
yses, Avgar et al. (2017) refer to exp(�) as quantifying relative selection 
strength (RSS).

Note that we would arrive at the exact same expression if we 
chose any two locations that differed by 1 unit of elevation and 
had the same values for popden and landuseC. Thus, exp(�elevation) 
quantifies the relative intensity of use of two locations that differ 
by 1 SD unit of elevation but are otherwise equivalent (i.e. they are 
equally available and have the same values of all other habitat co-
variates). If Lupe were to be presented with two such hypothet-
ical locations, the model suggests she would be 1.35 times more 
likely to choose the one with the higher elevation. A similar inter-
pretation can be ascribed to popden. Given two observations that 

(7)
u(s1)

u(s2)
=

exp
(
3�elevation + 1.5�pop_den + 0�grass + 1�wet

)
a(s1)

exp
(
2�elevation + 1.5�pop_den + 0�grass + 1�wet

)
a(s2)

,

(8)

u(s1)

u(s2)
=
exp

(
3�elevation

)
exp

(
1.5�pop_den+�wet

)

exp
(
2�elevation

)
exp

(
1.5�pop_den+�wet

)

=
�(s1)

�(s2)

=exp
(
�elevation

)
=exp(0.303)=1.35.

F I G U R E  2   Estimated parameters in fitted habitat-selection functions using increasing numbers of available points. Each dot represents 
an estimate from fitting a logistic regression model to 3004 GPS telemetry locations combined with a random sample of available points, 
with sample size given by the x-axis (where 1 means 3,004 available points and 100 means 300,400 available points)
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differ by 1 SD unit of popden but are otherwise equal, Lupe would 
be exp( − 0.183) = 0.833 times as likely to choose the location 
with higher population density (or, equivalently, exp(0.183) = 1.20 
times more likely to choose the location with the lower population 
density).

What about the coefficients for the landcover categories? Looking 
again at the regression output (Table 1, Model 1), we see that grass has 
a negative coefficient and wet has a positive coefficient. It is tempt-
ing to infer that Lupe spends most of her time in wet areas and rarely 
spends time in grassy habitats. As Figure 1 makes it clear, however, 
these inferences are not exactly correct. First, it is important to under-
stand how categorical predictors are encoded in regression models. 
There are a number of different ways to parameterize the effect of 
categorical variables and unfamiliar readers may want to work through 
an introductory regression text (e.g. Chapter 6 of Kéry, 2010). The de-
fault coding in R is to treat one of the levels (whichever comes first al-
phanumerically) as a reference level and then to create a set of dummy 
variables that contrast the remaining levels of the categorical variable 
with this reference level. In our case, forest is the reference level. The 
coefficients associated with grass and wet represent contrasts be-
tween these land cover classes and the forest class. Qualitatively, we 
can use the signs and absolute magnitude of the coefficients for grass 
and wet to rank the landcover classes in terms of their relative selec-
tion strength, with grass <  forest < wet. But again, how should we 
interpret the coefficients for grass and wet quantitatively?

Let us again consider two locations, this time assuming they have 
the same elevation and population densities, but with one location 
in wet and the other location in forest:

•	 location s1: elevation = 2, popden = 1.5, landuseC = wet.
•	 location s2: elevation = 2, popden = 1.5, landuseC = forest.

Lupe's relative use of location 1 relative to location 2 is given by 
(Equation 6):

Thus, assuming the two locations are equally available, we might infer 
that Lupe would be exp(0.250) = 1.28  times more likely to choose 
the wet location than the location in forest. Of course, we know from 
Figure 1 that forest and wet are not equally available on the landscape. 
The higher availability of forest habitat implies that Lupe is more likely 
to be in forest than wet. We could attempt to correct for differences in 
availability within the MCP surrounding Lupe's locations by multiplying 
our result by the ratio of habitat availability for wet relative to forest 
habitats (2.3% vs. 95.7%; Figure 1). This gives us an adjusted ratio equal 
to exp(0.250)(0.023)/(0.957) = 0.03, suggesting we are (1∕0.03) = 33  
times more likely to find Lupe in forest than wet habitat. With this cal-
culation, we had to assume, perhaps naively, that the availability distri-
butions for popden and elevation were the same in both wet and forest 
cover classes. In reality, if Lupe decides to move from forest to wet, it is 
likely that she will experience a change in elevation and popden too (i.e. 
these factors will not be held constant). To quantify Lupe's relative use 
of forest versus wet habitat, while also accounting for the effects other 
environmental characteristics that are associated with these habitat 
types, we can use integrated intensities—that is, we can integrate the 
spatial utilization distribution, u(s), over all forest and wet habitats:

where I(s ∈ forest) and I(s ∈ wet) are indicator functions equal to 1 
when location s is in forest or wet respectively (and 0 otherwise). We 
can estimate this ratio using estimated HSF values, ŵ

(
X(si); �̂

)
, at our 

set of na available points drawn from within G. Specifically, we sum the 
HSF values at all available points that fall in forest and them divide by 
the sum of HSF values for all available points falling in wet:

This ratio is also equal to 33, which agrees with the observed data; 
Lupe was found in forest habitat 33 times more often than in wet hab-
itat (see Supporting Information Appendix A for code demonstrating 

(9)

u(s1)

u(s2)
=
exp

(
2�elevation+1.5�pop_den+0�grass+1�wet

)
a(s1)

exp
(
2�elevation+1.5�pop_den+0�grass+0�wet

)
a(s2)

=exp(�wet)
a(s1)

a(s2)
.

(10)u(s, s ∈ forest)

u(s, s ∈ wet)
=

∫
G
u(s)I(s ∈ forest)ds

∫
G
u(s)I(s ∈ wet)ds

,

(11)û(s, s ∈ forest)

û(s, s ∈ wet)
=

∑ na
i= 1

ŵ
�
X(si); �̂

�
I(si ∈ forest)

∑ na
i= 1

ŵ
�
X(si); �̂

�
I(si ∈ wet)

,

TA B L E  1   Regression coefficients (SE) in fitted habitat-selection 
functions fit to data from Lupe the fisher. Models 1 and 3 use forest 
as the reference level, Model 2 uses wet as the reference level. 
Model 3 includes interactions between elevation and landcover 
classes

Model 1 Model 2 Model 3

(Intercept) −13.168 −12.918 −13.171

(0.019) (0.107) (0.020)

elevation 0.303 0.303 0.313

(0.017) (0.017) (0.017)

popden −0.183 −0.183 −0.186

(0.021) (0.021) (0.021)

landuseCgrass −1.477 −1.471

(0.278) (0.278)

landuseCwet 0.250 0.183

(0.108) (0.116)

landuseC1forest −0.250

(0.108)

landuseC1grass −1.727

(0.297)

elevation:landuseCgrass 0.112

(0.380)

elevation:landuseCwet −0.498

(0.127)
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how to calculate these quantities in R). Thus, we conclude Lupe is 33 
times more likely to be found in forest than wet habitat (despite pre-
ferring wet over forest), assuming she restricts her movements to the 
MCP surrounding her observed locations and all of this MCP is equally 
available to her.

Before moving on, it is important to note that naively adjusted 
ratios (multiplying by availability of wet and forest habitats) and inte-
grated intensities will not always agree. In fact, we find that they dif-
fer when comparing Lupe's relative use of wet versus grass habitat, 
with the integrated intensity better agreeing with the observed data 
(see Supporting Information Appendix A). Somewhat related, Avgar 
et al. (2017) suggested calculating average effects for continuous 
predictors, X, by comparing the change in relative intensities from 
increasing X by 1 unit (to X = x + 1) to the average value of w(X(s);�) 
for all locations s with X(s) = x. These average effects will also be 
influenced by cross-correlations among predictor variables included 
in the model.

Instead of integrating u(s)  over discrete cover types, we could 
integrate over specific geographical areas. For example, we could 
use integrated intensities to compare two areas in space, replacing 
the ‘landcover class’ indicator variables, I(si ∈ forest) and I(si ∈ wet) 
in Equation (11), with indicator variables for whether available loca-
tions fall in particular spatial regions. In addition, we could choose 
to change the area of interest (and thus, area of integration) from G 
to G̃, and then use the fitted model and Equation (6) to project how 
Lupe would spend her time in a novel environment (referred to as an 
‘out-of-sample’ prediction). Despite the common reliance on HSFs 
as predictive models, out-of-sample predictions often suffer from 
poor accuracy, especially when compared to ‘in sample’ predictions, 
that is, predictions for the same area and time frame from which the 
original data were collected (Torres et al., 2015; Yates et al., 2018). 
We return to this important point in the discussion section.

Let's next consider what happens if we change the reference 
level of the land cover variable from forest to wet (Table 1, Model 2).

Lupe.dat <- within(Lupe.dat,  
 landuseC1 <- relevel(landuseC, ref = "wet"))  
 HSF.Lupe2 <- glm(case_ ~ elevation + popden + landuseC1,  
                               data = Lupe.dat,  
                               weight = w,  
                               family = binomial)

The coefficients for elevation and popden do not change. Note, how-
ever, that the coefficient for forest is negative despite Lupe using 
forest more than its availability (i.e. u(s, s ∈ forest) > a(s, s ∈ forest)) 
and Lupe spending more than 95% of her time in the forest! What 
is going on? Remember, the coefficients for categorical predictors 
reflect use:availability ratios for each level of the predictor rela-
tive to the use:availability ratio for the reference class. The coef-
ficient for forest is negative because the use:availability ratio for 
forest is less than the use:availability ratio for the reference class, 
wet (see Figure 1). Depending on the reference level, it is possible 
to have a positive (negative) coefficient even when that landcover 

class is used more (less) than its availability. Furthermore, it is 
possible for a landcover class to be used frequently but have a 
negative coefficient. We have seen many ecologists, including 
some that are very quantitatively skilled and familiar with habitat-
selection models, make mistakes when interpreting coefficients 
associated with categorical predictors. This example also high-
lights the importance of plotting one's data (e.g. Figure  1) and 
considering habitat availability when interpreting regression co-
efficients. Plotting distributions of covariates for both used and 
available locations is one of the best ways to understand fitted 
habitat-selection models, and is a good strategy to use for both 
continuous and categorical predictors (Fieberg, Forester, et al., 
2018; Merow et al., 2013).

2.5 | Interactions between environmental  
predictors

Consider the distribution of elevation at used and available loca-
tions across the different habitat classes (Figure  3). We see that 
there is a wider range of elevation in forest and wet habitat com-
pared to grass habitat, and there is a clear association between 
elevation and landuseC, with higher median elevation at used loca-
tions in forest and grass habitat relative to wet habitat. Perhaps 
more importantly, we also see that values of elevation are higher, 
on average, for used locations (compared to available locations) 
in forest and grass, whereas the opposite is true in wet habitat. 
Although we should be skeptical of interactions that we discover 
while exploring our data (i.e. interactions that were not specified 
a priori), an analyst may be tempted to include an interaction be-
tween elevation and landuseC. In Model 3 (Table 1), we revert to 
having forest as the reference level and include the interaction be-
tween elevation and landuseC.

Lupe.dat <- within(Lupe.dat, landuseC <- relevel(landuseC, ref = 
"forest"))  
HSF.Lupe3 <- glm(case_ ~ elevation + popden + landuseC + 
                              elevation:landuseC,  
                              data = Lupe.dat,  
                              weight = w,  
                              family = binomial)

Using this syntax, R creates two new variables elevation:landuseC-
grass equal to elevation when landuseC is grass and is 0 otherwise, 
and elevation:landuseCwet equal to elevation when landuseC is wet 
and is 0 otherwise. The coefficients associated with these predictors 
quantify the change in slope (i.e. change in the effect of elevation) 
when the locations fall in grass or wet, relative to the slope when 
the locations fall in forest. Starting from Equation (6) and using the 
estimates for Model 3 in Table 1, we can easily derive that the rela-
tive intensity of use of two equally available locations that differ by 
1 SD unit of elevation is equal to exp(0.313) = 1.37 when the two lo-
cations are in forest, exp(0.313 + 0.112) = 1.53 when the locations 
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are in grass, and exp(0.313 − 0.499) = 0.83 when the locations are 
in wet habitat. Thus, we might conclude that Lupe would select 
for higher elevations when in forest or grass, but avoid higher ele-
vations when in wet. Alternatively, we can consider how elevation 
changes Lupe's view of the different landcover categories, noting that 
�grass = −1.471 + 0.112 elevation and �wet = 0.183 − 0.499 elevation. 
Thus, we see that Lupe's relative avoidance of grass (relative to forest) 
and selection for wet (relative to forest) both decline with elevation, 
and Lupe's inherent ranking of these three habitat types will change 
as elevation increases. Both interpretations are statistically correct; 
the analyst chooses which one to use based on the ecological moti-
vations for the analysis (the narrative sensu Otto & Rosales, 2020).

2.6 | Nonlinear effects and other considerations

When building models, it is important to consider the functional 
relationships between different environmental characteristics 
and habitat use. For example, we may classify available predic-
tors based on whether they represent resources (higher values are 
generally preferable), risks (lower values are generally preferable) 
or conditions (values that are not too high or too low are prefer-
able; e.g. Matthiopoulos et al., 2015; Matthiopoulos, Fieberg, & 
Aarts, 2020). It is often useful to allow for nonlinear effects of 
conditions by including quadratic terms or using a set of spline 
basis functions. In either case, we end up requiring multiple co-
efficients to capture how the intensity of use changes with the 
environmental predictor. Consider, for example, that we could in-
clude a quadratic term to model the effect of elevation, with the 
expectation of a unimodal habitat-selection function with respect 
to elevation. Estimating the relative use of locations s1 and s2 that 
differ in their values of elevation but are otherwise equivalent 
would be straightforward using Equation (6)—we would just need 

to calculate the ratio of relative intensities using coefficients for 
elevation and elevation2:

Avgar et al. (2017) provide simple formulas for calculating relative 
intensities under a number of different scenarios (e.g. models with 
quadratic polynomials, log-transformed covariates and models with in-
teractions). The log_rss function in the amt package (Signer et al., 2019) 
relies on R's generic predict function to aid the user in calculating the 
log relative intensity for any combination of model structure and two 
alternative locations; its use is illustrated in Supporting Information 
Appendix B. Understanding how these formulas are derived, however, 
helps build intuition and frees the user to construct estimators and 
estimation targets that capture relevant quantities of specific interest.

2.7 | Statistical independence

An important assumption of the IPP model, and hence, habitat-selection 
functions fitted to use-availability data via logistic regression, is that 
any clustering of spatial locations can be explained solely by spatial co-
variates. Strictly speaking, this assumption will almost never be met, 
particularly with modern-day telemetry studies that allow several loca-
tions to be collected on the same day. Telemetry observations close 
in time tend to also be close in space—that is, telemetry observations 
exhibit serial dependence (Fleming et al., 2014). This serial dependence 
is likely to manifest itself in residual spatial autocorrelation that could 
be modelled using a spatial random effect or a spatial predictor con-
structed to account for the effects of movement constraints on habitat 
availability (Johnson et al., 2013). Models with spatial random effects 
are, however, more complicated and difficult to fit.

(12)u(s1)

u(s2)
=

exp(elevation(s1)�elevation + elevation(s1)
2�elevation2 )

exp(elevation(s2)�elevation + elevation(s2)
2�elevation2 )

.

F I G U R E  3   Distribution of elevation at 
used and available locations within each 
of three landcover types
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Alternatively, if telemetry observations are collected at regular 
time intervals, then the locations may be argued to provide a repre-
sentative sample of habitat use from a specific observation window 
(Fieberg, 2007; Otis & White, 1999). In these cases, it may be help-
ful to view our estimates of the parameters in our habitat-selection 
function, �̂, as useful summaries of habitat use for tagged individ-
uals during these fixed time periods. Nevertheless, the assumption 
of independence of our locations is clearly problematic and will 
lead to estimates of uncertainty that are on average too small. If 
we are primarily interested in population-level inferences, then we 
may choose to ignore within-individual autocorrelation when esti-
mating individual-specific coefficients but use a robust form of SE 
that treats individuals as independent when describing uncertainty 
in population-level parameters (e.g. using a bootstrap; Fieberg et al., 
2020) or generalized estimating equations approach (e.g. Fieberg 
et al., 2009, 2010; Koper & Manseau, 2009).

3  | STEP-SELEC TION FUNC TIONS

Step-selection functions were developed to deal with serial depend-
ence as well as temporally varying availability distributions result-
ing from movement constraints (Fortin et al., 2005; Thurfjell et al., 
2014). Rather than treat locations as independent and identically 
distributed (with availability that does not depend on time), step-
selection functions model transitions, or ‘steps’, connecting sequen-
tial locations (Δt units apart) in geographical space. The resulting 
redistribution kernel takes the general form: 

where u(s, t + Δt) |u(s�,t) gives the conditional probability of finding 
the individual at location s at time t + Δt given it was at location s′  at 
time t, w

(
X(s);�(Δt)

)
 is referred to as a step-selection function, and 

�(s, s�;�(Δt)) is a selection-free movement kernel that describes how 
the animal would move in homogeneous habitat or in the absence of 
habitat selection (i.e. when w

(
X(s);�(Δt)

)
 = a constant for all s). Note 

that we represent the parameter vectors (� and �) as functions of the 
step duration (Δt). This notation reflects the fact that step-selection 
parameters are scale dependent (i.e. different Δt's will result in differ-
ent estimates of � and �; see Avgar et al., 2016 for more details). Thus, 
we generally require observations to be equally spaced in time (but 
see Munden et al., 2020), and care must be taken when comparing 
inference from models fitted at different temporal resolution. When 
animals are observed at irregular time intervals, as with many marine 
species, it is possible to first fit a continuous-time movement model to 
the location data and then use this model to provide multiply imputed 
datasets that are regularly spaced in time (see e.g. McClintock, 2017).

As with habitat-selection functions, it is typical to model 
w
(
X(s);�(Δt)

)
 as a loglinear function of spatial covariates and regres-

sion parameters, w
(
X(s);�(Δt)

)
= exp

(
X1(s)�1 + ⋯Xk(s)�k

)
. A key 

difference between habitat-selection functions and step-selection 

functions, however, is that the latter allow the available distribution 
to be time dependent and equal to a (s, t + Δt) |u ( s � , t ) = � ( s, s � , � (Δt )).   
Consequently, step-selection functions allow explicit consider-
ation of temporally dynamic environmental covariates, X(s′, t) and 
X (s, t + Δt)  (and, possibly, environmental covariates measured along 

(13)u (s, t + Δt) |u(s�, t) = w
(
X(s);�(Δt)

)
�(s, s�; �(Δt))

∫
s̃∈G

w
(
X(%s̃, s�);�(Δt)

)
�( s̃, s�; �(Δt))d s̃

,

BOX 2 Overview of step-selection analyses

•	 Step-selection analyses model transitions or ‘steps’ con-
necting sequential locations in geographical space using 
a selection-free movement kernel, �, multiplied by a 
habitat-selection kernel, w (Avgar et al., 2016; Forester 
et al., 2009). Available locations are dynamic in space and 
time, with availability determined by the previous loca-
tion and the animal's selection-free movement kernel.

•	 The selection-free movement kernel describes how the 
animal would move in homogeneous habitat or in the 
absence of habitat selection.

•	 Movement and habitat-selection parameters are typi-
cally estimated in a multi-step process:
1.	preliminary movement parameters are estimated 

using observed step lengths and turn angles;
2.	time-dependent availability distributions are gener-

ated by simulating potential movements from the pre-
viously observed location;

3.	habitat-selection parameters are estimated using con-
ditional logistic regression, with strata formed by com-
bining time-dependent used and available locations;

4.	if movement characteristics (e.g. log step length, co-
sine of the turn angle) are included in the model, pa-
rameters associated with these characteristics can be 
used to update the preliminary movement parameters 
from step 1. Including movement characteristics in the 
model can reduce bias in the habitat-selection param-
eters (Forester et al., 2009) and improve estimates of 
movement parameters (Avgar et al., 2016).

•	 Interactions between movement characteristics (e.g. log 
step length, cosine of the turn angle) and environmental co-
variates may be included in the conditional logistic regres-
sion model to allow the movement kernel to depend on the 
environment (Avgar et al., 2016; Duchesne et al., 2015).

•	 Habitat-selection parameters can be interpreted in terms 
of relative intensities of use, assuming locations are 
equally available and differing in terms of a single habitat 
covariate. However, parameters that describe habitat-
selection at local and macro scales may differ, and extra 
steps may be required to translate movement dynamics 
captured by integrated step-selection analyses to the 
courser scales typically modelled with HSFs (e.g. Potts, 
Bastille-Rousseau, et al., 2014; Potts, Mokross, et al., 
2014; Potts & Schlägel, 2020; Signer et al., 2017).
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the path between these two locations). One option that often per-
forms well and enhances interpretability is to include habitat co-
variates at the start of the movement step in the model for �, and 
habitat covariates at the end of the movement step in the model 
for w; we provide an example in Supporting Information Appendix 
B. This approach allows us to separately model the effect of habitat 
on accessibility (through the model for �) and selection (through the 
model for w; Matthiopoulos, 2003), and results in a more general 
formulation: w(X(s, t + Δt);�(Δt))�(s, s�; �(Δt,X(s�, t))). We recognize, 
however, that there may be covariates, often measured along a 
movement path (e.g. crossing of a road or passing over an extremely 
steep slope), that also influence accessibility but that may be best 
included in the model for w. In general, we recommend including 
covariates in the model for � when they are likely to influence gen-
eral movement characteristics and in the model for w when they are 
likely to influence the overall attractiveness of a more limited region 
of geographical space.

3.1 | Models for ϕ(s, s′; γ(Δt))

Step-selection functions build on an early idea by Arthur et al. 
(1996) to model time-dependent availability via a circular buffer 
with radius R centred on the previous location. Rhodes et al. (2015) 
showed that this model is equivalent to assuming: 

where ||s − s�|| is the Euclidean distance between locations s and s′ , 
referred to as the step length. Rhodes et al. (2015) also demonstrated 
that circular buffers imply that individuals are more likely to move large 
distances than short distances since there is more area, and thus prob-
ability, associated with outer rings of the circle. Instead, they suggested 
using an exponential distribution to accommodate right-skewed step-
length distributions and a tendency for animals to make shorter rather 
than longer movements: 

Rather than specify a model directly in terms of �(s, s�; �(Δt)), it is more 
common to see movement kernels specified in terms of the distribu-
tion of step lengths, d = ||s − s�||, and turn angles (changes in direction 
from the previous bearing), �. In the sections that follow, we will let 
g(d; �d(Δt)) and f(�; ��(Δt)) represent step-length and turn-angle dis-
tributions respectively. Step-selection analyses frequently use either 
an exponential or gamma distribution for g(d; �d(Δt)). Turn angles may 
be assumed to be uniformly distributed as in Arthur et al. (1996) and 
Rhodes et al. (2015). Alternatively, circular distributions, such as the 
von Mises distribution or wrapped Cauchy or Weibull distributions, 
allow for a mode at 0 and can thus accommodate correlated move-
ments (i.e. sequential steps are assumed, on average, to follow in the 
same direction as the previous step).

Although step-length and turn-angle distributions are typ-
ically assumed to be independent, animals commonly exhibit a mix 
of temporally persistent movement behaviours, ranging between 
high-displacement movements (e.g. when travelling between habitat 
patches, migrating, or dispersing) and low-displacement movements 
(e.g. during foraging or resting bouts). If positional data are collected 
more frequently than the occurrence of behavioural switches, we 
might expect a negative cross-correlation between step lengths and 
turn angles (moving far is likely to coincide with moving straight) and 
a positive autocorrelation between the current and previous step 
lengths and turn angles. Moreover, as implied by the more flexible for-
mulation, w(X(s, t + ΔT);�(Δt))�(s, s�; �(Δt,X(s�, t))), both step-length and 
turn-angle distribution may shift as a function of spatial and/or tem-
poral covariates such as habitat permeability (e.g. terrain ruggedness, 
snow depth or vegetation density), time of day, season and predation 
risk (Avgar et al., 2013, 2016). Thus, although � is a ‘selection-free’ 
movement kernel, it may still depend on environmental or temporal 
covariates, and hence, may vary through space and time, resulting in 
both auto- and cross-correlations in step attributes.

Cross-correlation between step lengths and turn angles is diffi-
cult to model with common statistical distributions, but could be ac-
commodated using copulae (Durante & Sempi, 2010). Alternatively, 
one could resample (i.e. bootstrap) step length and turn angle pairs, (
dt,�t

)
, to preserve any correlation that is present in the data (Fortin 

et al., 2005). Although we generally find the bootstrap appealing 
(Fieberg et al., 2020), it has limitations in this context. In particular, 
the observed distribution of step lengths and turn angles will reflect 
both inherent movement characteristics of the species (captured by 
�) as well as habitat selection (captured by w). Using the observed 
steps as a nonparametric model for � without adjustment for the ef-
fect of w can result in biased estimates of � (Forester, Im, & Rathouz, 
2009). We will return to this point in the next section. As mentioned 
previously (see Section 3), and regardless of the source of correla-
tion, it may be preferable to calculate robust SEs by treating individ-
uals as the relevant sampling unit when performing population-level 
inference (e.g. Prima et al., 2017). Lastly, cross- and autocorrelations 
in step lengths and turn angles, as well as their dependencies on var-
ious temporal or environmental characteristics, could be modelled 
parametrically using an integrated step-selection function (Avgar 
et al., 2016). To do so, we need to include appropriate statistical 
interactions (e.g. between concurrent and previous step lengths/
turn angles and between these step attributes and environmental 
or temporal covariates). We discuss this process further below, and 
provide examples in the Supporting Information Appendix B. See 
also Prokopenko et al. (2017), Scrafford et al. (2018) and Dickie et al. 
(2020).

3.2 | Estimation of movement and habitat-
selection parameters

Although it is possible to simultaneously estimate movement (�) 
and habitat-selection (�) parameters using maximum likelihood (e.g. 

(14)�(s, s�; �(Δt)) =

⎛⎜⎜⎝

1

�R2
, if ���s−s����≤R

0, otherwise

,

(15)�(s, s�; �(Δt)) =
� exp

(
−� ||s − s�||)

2� ||s − s�|| .
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Rhodes et al., 2015) or Bayesian methods (e.g. Johnson et al., 2008), 
this is rarely done in practice as it would require custom-written code. 
Instead, it is common to use the following approach: 

1.	 Estimate or approximate �(s, s�; �(Δt)) using observed step lengths 
and turn angles, giving �̂(s, s�; �̂(Δt)).

2.	 Generate time-dependent available locations by simulating po-
tential movements from the previously observed location, u(t, s′).  
Similar to applications of HSFs, it is up to the user to decide how 
many available locations to sample for each used location, and, 
due to similar considerations (properly approximating the avail-
ability domain: a(s, t + Δt) |u(s�,t) = �(s, s�; �(Δt)), the more points 
the merrier).

3.	 Estimate � using conditional logistic regression, with strata formed 
by combining time-dependent used and available locations.

If we knew �(s, s�, �(Δt)) and could simulate directly from it (skip-
ping step 1), then this approach would provide unbiased estimates 
of � (Forester et al., 2009). However, as mentioned in the previous 
section, estimating the selection-free movement kernel, �(s, s�; �(Δt)),   
from observed steps without adjusting for habitat selection, via 
w(X(s);�(Δt)), can lead to biased estimates of � and �.

Forester et al. (2009) considered the case where the step-length 
distribution, g

(
d, �d

)
, is given by an exponential distribution with un-

known parameter, �. They showed that estimating � directly from the 
observed distribution of step lengths (without adjusting for the ef-
fect of w(X(s);�(Δt)), and then proceeding with steps 2 and 3 results 
in a biased estimators of �. Forester et al. (2009) also showed that the 
bias (if g

(
d, �d

)
 is given by an exponential distribution) is eliminated 

if log(dt) is included as a predictor in the model. Avgar et al. (2016) 
further showed that the coefficient associated with log(dt) could be 
used to modify �̂, leading to an unbiased estimator of � and thus, 
g(d, �d). In addition, they showed how similar adjustments could be 
used to obtain unbiased estimators of step-length (�d) and habitat-
selection (�) parameters when the distribution of step lengths is 
given by a gamma, half-normal or log-normal distribution. Similarly, 
Duchesne et al. (2015) showed that including cos (�) as a predictor 
can lead to unbiased estimators of turn angle parameters (��) when 
the distribution of turn angles follows a von Mises distribution. All 
of these adjustments are available in the amtpackage (Signer et al., 
2019). Avgar et al. (2016) coined the term integrated step-selection 
analysis to emphasize that these results provide new opportunities 
to model both movement and habitat selection via tried and true 
statistical software for fitting conditional logistic regression models.

In Supporting Information Appendix B, we provide a ‘How 
to’ guide for implementing an integrated step-selection analysis 
using the amt package in R (R Core Team, 2019; Signer et al., 2019). 
Conducting an integrated step-selection analysis requires, in addition 
to the three steps outlined in this section, that we add a fourth step 
that re-estimates the movement parameters in �(s, s�; �(Δt)) using re-
gression coefficients associated with movement characteristics (e.g. 
log(dt), cos(�)). This last step adjusts the parameters in �(s, s�; �(Δt)) 
to account for the effect of habitat selection when estimating the 

movement kernel (Avgar et al., 2016), and is hence unnecessary if 
no inference about movement is being made. The details of how to 
carry on these adjustments are provided in Supporting Information 
Appendix C and in Avgar et al. (2016). Importantly, interactions may 
be included between movement characteristics (e.g. log(dt), cos(�))   
and environmental covariates, X(s′, t), to allow the movement kernel 
to depend on the environment. When interactions are included, step 
4 results in a movement kernel, �(s, s�; �(Δt,X(s�, t))), that depends 
on the habitat the animal is in at the start of the movement step 
(Figure 4).

3.3 | Interpretation of parameters in an integrated 
step-selection analysis

The habitat-selection parameters in an SSF can be interpreted in 
the same way as habitat-selection parameters in HSFs (i.e. as rela-
tive intensities, assuming locations are equally available and dif-
fering in terms of a single habitat covariate). Hence, the ln(RSS) 
expressions in Avgar et al. (2017), and the log_rss function in amt, 
are suitable for calculating and interpreting the effects of the vari-
ous habitat covariates. However, it is important to recognize that 
the used and available distributions in step-selection analyses are 
dynamic and non-uniform in space. In particular, they depend on 
an individual's current location and movement tendencies (as well 
as the observed time-scale determined by Δt; Barnett & Moorcroft, 
2008; Signer et al., 2017). Thus, questions that require integrating 
intensities over space (e.g. Equation 10) are more difficult to ad-
dress. Possible solutions include using simulation modelling (Signer 
et al., 2017), solving the master equation (formed by multiplying the 
right-hand side of Equation (13) by u(s′, t) and then integrating over 
G with respect to s′ ) for its steady state (Potts, Bastille-Rousseau, 
et al., 2014; Potts, Mokross, et al., 2014), or in some cases, translat-
ing the fitted model into a partial differential equation model with 
analytical steady-state distribution (Potts & Schlägel, 2020). We 
also note that alternative modelling frameworks exist with parame-
ters that directly describe relative intensities of use at both fine and 
coarse scales (e.g. Michelot, Blackwell, et al., 2019, 2020; Michelot, 
Gloaguen, et al., 2019). These new analytical developments hold 
exciting promises to bridge the micro scale of animal movement be-
haviour with the macro scale of animal spatial distribution but are 
more computationally challenging to implement. Most importantly, 
biologists need to be aware that parameters that describe habitat 
selection at local and macro scales may differ, and thus, extra steps 
may be required to translate movement dynamics captured by inte-
grated step-selection analyses to the coarser scales typically mod-
elled with traditional habitat-selection functions. The amt package 
has a basic capacity to simulate the utilization distribution based on 
a parameterized integrated step-selection function (Signer et al., 
2017), and we expect this approach to become more flexible in the 
near future, allowing users to forecast not only steady-state utili-
zation distributions but also transient movement patterns such as 
migration and dispersal.
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Using an integrated step-selection approach (e.g. as in Figure 4), 
it is also possible to draw ecological inference using the selection-
free movement kernel. For example, the fitted step-length and 
turn-angle distributions can tell us how much more likely an animal 
is to take large versus small steps or to turn left or right relative 
to moving straight. We can also calculate moments of these dis-
tributions under different environmental conditions, which can be 
informative when our models include interactions between move-
ment characteristics and environmental predictors. For example, 
we could calculate the expected selection-free displacement rates 
(and/or directionality) as function of local snow depth (i.e. if snow 
depth was included in our model as an interaction with step length). 
Once the selection-free movement parameters are obtained, one 
can use them to calculate various aspects of the (theoretical) dis-
tributions of step lengths and turn angles, such as the mean, the 
median or the 95% confidence bounds (see Supporting Information 
Appendix B for examples).

4  | DISCUSSION

We have highlighted how connecting habitat-selection functions to 
IPP models and weighted distribution theory helps with interpreting 
parameters in habitat-selection functions using simple examples. We 
have also reviewed step-selection functions and demonstrated how 
to estimate movement and habitat-selection parameters when con-
ducting an integrated step-selection analysis using the amt package. 
So far, we have focused on interpreting results when analysing data 
from a single individual. We end with a brief discussion addressing 

statistical dependencies, particularly when analysing data from mul-
tiple individuals, along with issues related to model transferability 
and parameter sensitivity to changes in habitat availability and spe-
cies population density.

4.1 | Statistical dependencies

Earlier, we highlighted the importance of statistical independence as 
it applies to individual locations when estimating habitat-selection 
functions. We also noted that step-selection analyses typically as-
sume step lengths and turn angles are independent of each other and 
also over time, although it is possible to account for these correla-
tions using appropriate interactions (e.g. between step length at time 
t and time t − 1, step length and turn angle both at time t). It would 
be nice to have multivariate distributions available that are capable of 
describing correlated step lengths and turn angles and any inherent 
autocorrelation. It is plausible, however, that models that allow move-
ment parameters to vary by habitat type, using interactions between 
step length, turn angle and habitat covariates, will be able to account 
for much of the autocorrelation and cross-correlation (between step 
lengths and turn angles) present in the data. Similarly, autocorrelation 
and cross-correlations may be accommodated by models that include 
a (possibly latent) behavioural state, with movement and habitat-
selection parameters that are state dependent (Nicosia et al., 2017; 
Suraci et al., 2019).

In addition to cross-correlation between step lengths and turn 
angles and serial dependencies, individuals living in different envi-
ronments may exhibit different habitat-selection patterns, and thus, 

F I G U R E  4   Step-length and turn-angle distributions from an integrated step-selection analysis applied to Lupe's location data (see 
Supporting Information Appendix B). The conditional logistic regression model included interactions between movement characteristics 
(step length, log step length and cosine of the turn angle) and the landuse category Lupe was in at the start of the movement step. We see 
that Lupe tends to take larger, more directed steps when in grass and slower and more tortuous steps in wet habitat
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repeated observations on the same set of individuals will induce 
further statistical dependencies. A simple strategy for dealing with 
repeated measures when individuals can be assumed to be indepen-
dent is to fit models to individual animals and then treat the resulting 
coefficients as data when inferring population-level patterns (Fieberg 
et al., 2010; Murtaugh, 2007). For example, sample means of the 
regression coefficients can be used to characterize average habitat-
selection parameters. Estimating among-animal variability is trickier 
due to sampling error; naively ignoring sampling error will lead to a 
positive bias in estimates of among-animal variability, but more for-
mal two-step methods can address this issue (Craiu et al., 2011, 2016; 
Dickie et al., 2020). Alternatively, generalized linear mixed models 
with random coefficients can be used to quantify among-animal vari-
ability in habitat-selection analyses (Muff et al., 2020).

Although it is possible to conduct integrated step-selection 
analyses with hierarchical models containing random effects, we 
have much to learn about how these approaches perform in prac-
tice. For example, Muff et al. (2020) found that parameters de-
scribing among-animal variability in habitat-selection parameters 
were biased low when movement characteristics were included in 
the model. Mixed-effect models with random coefficients are also 
‘parameter hungry’, requiring p (p + 1) ∕2 variance and covariance 
parameters to be estimated, where p is the number of random co-
efficients. Models that allow all coefficients to be animal specific 
and to covary are thus likely to be computationally challenging to 
fit and problematic for small datasets containing only a few indi-
viduals. For this reason, Muff et al. (2020) assumed coefficients did 
not covary in their applied examples. In the context of our fisher 
analysis, this equates to assuming that knowing an individual's co-
efficient for popden tells us nothing about that animal's parameters 
for elevation or landuseC variables. For categorical variables, it is 
natural to expect parameters to have a negative covariance (since, 
e.g. spending more time in forest must come at the expense of 
spending less time in other landuse categories). Research evaluat-
ing the performance of mixed-effect step-selection analyses under 
various data-generating scenarios would be helpful for evaluating 
robustness to assumption violations (e.g. those regarding the distri-
bution of random parameters).

4.2 | Sensitivity of selection coefficients to species 
population density and habitat availability

Before concluding, we feel it is important to briefly discuss the oft 
observed pattern of density and availability dependence in habitat-
selection inference (Matthiopoulos et al., 2011, 2015; Matthiopoulos, 
Fieberg, & Aarts, 2020; Mysterud & Ims, 1998). Density-dependent 
inference may be observed when the same analysis is applied to indi-
viduals or populations of the same species, under similar environmental 
conditions, but at different population densities. Availability dependence 
(also referred to as a ‘functional response’) may be observed when the 
same analysis is applied to individuals or populations of the same spe-
cies, which experience different landscape-scale resource or habitat 

availabilities. For example, van Beest et al. (2016) found that individual 
elk display availability-dependent habitat-selection patterns (switching 
from selection to avoidance of certain habitats as function of the avail-
ability of these habitats within their home range), but that the strength of 
this functional response depended on elk population density. Such con-
text dependencies are in fact so common that we do not know of a sin-
gle instance where researchers were looking for them and failed to find 
them. Recently, Avgar et al. (2020) showed that such context dependen-
cies in habitat-selection patterns are expected to emerge even under the 
simplest theoretical model of an Ideal Free Distribution (Fretwell, 1969). 
Thus, habitat-selection models often have poor predictive capacity 
when transferred across different study areas, or even within the same 
area over time (e.g. Torres et al., 2015). Yet, these differences may also 
be exploited; modelling frameworks that leverage data from multiple 
environments and across a range of population densities can potentially 
increase predictive capabilities (Matthiopoulos et al., 2019). As with any 
other attempt to model complex ecological data, critical evaluation of 
model performance for both within and out-of-sample data is essential 
(Fieberg, Forester, et al., 2018).
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