
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2023

Convexity Applications in Single and Multi-Agent Control Convexity Applications in Single and Multi-Agent Control

Olli Nikodeemus Jansson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Jansson, Olli Nikodeemus, "Convexity Applications in Single and Multi-Agent Control" (2023). All Graduate
Theses and Dissertations. 8719.
https://digitalcommons.usu.edu/etd/8719

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8719?utm_source=digitalcommons.usu.edu%2Fetd%2F8719&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

CONVEXITY APPLICATIONS IN SINGLE AND MULTI-AGENT CONTROL

by

Olli Nikodeemus Jansson

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mechanical Engineering

Approved:

Matthew W. Harris, Ph.D. David K. Geller, Ph.D.
Major Professor Committee Member

Tianyi He, Ph.D. Douglas Hunsaker, Ph.D.
Committee Member Committee Member

Greg Droge, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Olli Nikodeemus Jansson 2023

All Rights Reserved

iii

ABSTRACT

Convexity Applications in Single and Multi-agent Control

by

Olli Nikodeemus Jansson, Doctor of Philosophy

Utah State University, 2023

Major Professor: Matthew W. Harris, Ph.D.
Department: Mechanical and Aerospace Engineering

The focus of this dissertation is in the application of convexity for control problems;

specifically, single-agent problems with linear or nonlinear dynamics and multi-agent prob-

lems with linear dynamics. A mixture of convex and non-convex constraints for optimal

control problems is also considered. The main contributions of this dissertation include: 1)

a convexification of single-agent problems with linear dynamics and annular control con-

straint, 2) a technique for controlling bounded nonlinear single-agent systems, and 3) a

technique for solving multi-agent pursuit-evasion games with linear dynamics and convex

control and state constraints. The first result shows that for annularly constrained linear

systems, controllability is a sufficient condition for a free or fixed time problem to be solv-

able as a sequence of convex optimization problems. The second result shows that if a

nonlinear system is bounded and “ordered”, it is possible to use a convex combination of

bounding linear systems to design a control for the nonlinear system. The third result takes

advantage of a convex reachable set computation for each agent in solving games using a

geometrical approach. Altogether, the theoretical and computational results demonstrate

the significance of convex analysis in solving non-convex control problems.

(168 pages)

iv

PUBLIC ABSTRACT

Convexity Applications in Single and Multi-agent Control

Olli Nikodeemus Jansson

The focus of this dissertation is in the application of convexity for control problems;

specifically, single-agent problems with linear or nonlinear dynamics and multi-agent prob-

lems with linear dynamics. A mixture of convex and non-convex constraints for optimal

control problems is also considered. The main contributions of this dissertation include: 1)

a convexification of single-agent problems with linear dynamics and annular control con-

straint, 2) a technique for controlling bounded nonlinear single-agent systems, and 3) a

technique for solving multi-agent pursuit-evasion games with linear dynamics and convex

control and state constraints. The first result shows that for annularly constrained linear

systems, controllability is a sufficient condition for a free or fixed time problem to be solv-

able as a sequence of convex optimization problems. The second result shows that if a

nonlinear system is bounded and “ordered”, it is possible to use a convex combination of

bounding linear systems to design a control for the nonlinear system. The third result takes

advantage of a convex reachable set computation for each agent in solving games using a

geometrical approach. Altogether, the theoretical and computational results demonstrate

the significance of convex analysis in solving non-convex control problems.

v

ACKNOWLEDGMENTS

First and foremost I would like to thank my major professor Dr. Matt Harris. I have

been fortunate to have Dr. Harris as my adviser since the first day I stepped on USU

campus. Dr. Harris is a great researcher but also a great teacher who truly cares about

the students working for him. I am forever grateful for all the knowledge on control theory,

optimization, as well as life in general that he has shared with me throughout my graduate

studies.

I would also like to thank my family, friends, and people at the Advanced Aerospace

Dynamics Lab for their support and encouragement. I could not have done this without

them. Finally, I wish to acknowledge Office of Naval Research for supporting part of this

research through grant N00013-22-1-2131.

Olli Jansson

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1
1.1 Optimal Control Problems with Annular Control Constraints 1
1.2 Nonlinear Single-agent Problems . 2

1.2.1 Linearization Techniques . 3
1.2.2 Nonlinear Control Techniques . 3
1.2.3 Non-convex Optimization . 4

1.3 Pursuit-Evasion Games . 4
1.4 Objectives . 5
1.5 Outline . 6

2 BACKGROUND . 8
2.1 Convexity . 8
2.2 Linear Dynamical Systems . 9

2.2.1 Continuous-time . 9
2.2.2 Discrete-time . 12

2.3 Discretization . 12
2.3.1 State Transition Matrix Method . 13
2.3.2 Euler Method . 14
2.3.3 4th Order Runge-Kutta Method . 14
2.3.4 Numerical Examples . 15

3 LINEAR SINGLE-AGENT PROBLEMS WITH ANNULAR
CONTROL CONSTRAINT . 19

3.1 Introduction . 19
3.2 Nomenclature for the Chapter . 21
3.3 Problem Description . 21
3.4 Mathematical Results . 23
3.5 Main Result . 26
3.6 Solution Procedure . 30
3.7 Examples . 32

3.7.1 Double Integrator . 32
3.7.2 Harmonic Oscillator . 36

vii

3.7.3 Mars Powered Descent Guidance . 40
3.8 Summary and Conclusions . 44

4 CONTROL OF BOUNDED NONLINEAR SYSTEMS . 45
4.1 Introduction . 45
4.2 Systems with Additive Scalar Nonlinearity 46

4.2.1 Continuous-Time Systems . 46
4.2.2 Discrete-Time Systems and Optimization 53

4.3 Systems with Additive Multi-dimensional Nonlinearities 69
4.3.1 Problem and Main Result . 70
4.3.2 Spherically Constrained Relative Motion Trajectory Design 75
4.3.3 Spacecraft Attitude Control . 86

4.4 Computational Method of Controlling Convex Polytope Bounded Nonlinear
Systems with Comparison to Feedback Linearization 98
4.4.1 Nomenclature for the Section . 98
4.4.2 Problem Statement . 99
4.4.3 Feedback Linearization . 100
4.4.4 Proposed Linearization Technique 102
4.4.5 Examples . 105

4.5 Summary and Conclusions . 112

5 LINEAR PURSUIT-EVASION GAMES . 113
5.1 Introduction . 113
5.2 Reachable Sets . 116

5.2.1 Algorithm for Reachable Set Calculation 117
5.2.2 Stochastic System . 120

5.3 Game Theory . 122
5.3.1 Single Pursuer and Single Evader . 123
5.3.2 Multiple Pursuers and Single Evader 125
5.3.3 Single Pursuer and Multiple Evaders 127

5.4 Dynamics . 130
5.5 Examples with Single Pursuer and Single Evader 131

5.5.1 Problem without State Constraints 132
5.5.2 Problem with State Constraints . 133
5.5.3 Stochastic Problem . 133
5.5.4 Sun Blocking . 135

5.6 Examples with Multiple Pursuers or Evaders 136
5.6.1 Multiple Pursuers and Single Evader 137
5.6.2 Single Pursuer and Multiple Evaders 138

5.7 Summary and Conclusions . 140

6 CONCLUSIONS AND SUMMARY . 141

REFERENCES . 144

CURRICULUM VITAE . 153

viii

LIST OF TABLES

Table Page

4.1 Parameter explanations and values [1]. 63

ix

LIST OF FIGURES

Figure Page

2.1 Examples of convex and non-convex sets in R2. 8

2.2 Example of a convex function in R2. 9

2.3 Errors in displacement between exact solution and discretized versions for
damped harmonic oscillator. 16

2.4 Errors in velocity between exact solution and discretized versions for damped
harmonic oscillator. 16

2.5 Errors in the first state between exact solution and discretized versions for
the nonlinear system. 17

2.6 Errors in the second state between exact solution and discretized versions for
the nonlinear system. 18

3.1 (a) At time t1, the problem is infeasible as the point, w, is outside the reach-
able set. (b) At some time t2 > t1, the point, w, is in the interior of the
reachable set and the problem is feasible. (c) At the minimum time, t∗, such
that t1 < t∗ < t2, the point, w, is on the boundary of the reachable set. . . 27

3.2 The quantity F −G is positive and convexification holds for final times be-
tween the minimum feasible time and the optimal time of about 2.1 time
units. For larger times, the difference is negative and convexification fails. . 34

3.3 State trajectories in phase plane. The solid black curve corresponds to the
v1(t) = 1 solution. The gray curve corresponds to the v1(t) = −1 solution.
After the perturbing periods, a minimum time control u1 is computed that
satisfies ||u1(t)|| = 1. The state then follows the so-called switching curve to
reach the origin. 35

3.4 The solid lines correspond to the perturbing controls v1. The dashed lines
correspond to the minimum time control u1. Color scheme is the same as
Figure 3.3. 35

3.5 Reachable set, R(t1, tf , U2), for t1 = 0.42 and tf = 5 time units (v1(t) = 1
case). As required, the point wf − w1 lies on the boundary of the set. . . . 36

x

3.6 The quantity F −G is positive for final times between the minimum feasible
time and tf ≈ 2 time units. The fuel optimal time is 2 time units. For tf > 2
time units, the quantity is negative. Standard convexification holds for all
final times between the minimum feasible time and fuel optimal time, after
which it fails. 37

3.7 State trajectory in phase plane. The initial state is perturbed using a arbi-
trary control v1(t) that satisfies ||v1(t)|| = 1 for a duration t1 = 3.65 time
units (indicated by the dashed curve). At the end of t1 time units, a min-
imum time control, u1(t) is achieved that satisfies ||u1(t)|| = 1. The state
then follows the switching curve to reach the origin (indicated by the solid
curve). 38

3.8 Control trajectory. The dashed line corresponds to the arbitrary control v1(t)
that satisfies ||v1(t)|| = 1. The solid line corresponds to the minimum time
control, u1(t), which switches from -1 to +1. 39

3.9 Reachable set, R(t1, tf), for t1 = 3.65 and tf = 5 time units. As required,
the point wf − w1 lies on the boundary of the set. 40

3.10 The spacecraft’s initial position is at the tip of the dashed curve. The dashed
curve indicates the perturbed portion of the trajectory. After 43 seconds, a
minimum time control lands the spacecraft at the desired point (indicated
by the solid curve). 43

3.11 The thrust magnitude is constant at the lower bound of ρ1 = 13.151 kN. . . 43

3.12 The three components of thrust are shown as a function of time. 44

4.1 Surfaces for α1 and γ1. For any fixed t ∈ I, curves along the dark surface in
the τ direction α1(t, ·) and curves along the light surface in the τ direction
γ1(t, ·) are all ordered. In fact, for any (t, τ), it is evident that α1(t, τ) ≤ γ1(t, τ). 50

4.2 Surfaces for α2 and γ2. For any fixed t ∈ I, curves along the dark surface in
the τ direction α2(t, ·) and curves along the light surface in the τ direction
γ2(t, ·) are all ordered. In fact, for any (t, τ), it is evident that α2(t, τ) ≥ γ2(t, τ). 51

4.3 Trajectories for x1L, x
1
U , and x

1, which is the nonlinear trajectory. 52

4.4 Surfaces for α1 and γ1. With t fixed at approximately 1.58, the curve along
the dark surface in the τ direction α1(t, ·) and the curve along the light
surface in the τ direction γ1(t, ·) cross, and hence, are not ordered. 52

4.5 Trajectories for x1L, x
1
U , and x1, which is the nonlinear trajectory. The non-

linear trajectory escapes the lower and upper envelope curves. 53

xi

4.6 The state trajectory begins at the bottom right and terminates at the origin
in the upper left. The transfer time is one second. 60

4.7 The controls generated by the SOCP are the gray curves. They bound the
black curve, which is the nonlinear control. The nonlinear control is obtained
by interpolating between the gray curves. 60

4.8 The state trajectory begins at the bottom right and terminates at the origin
in the upper left. The transfer time is one second. 62

4.9 The controls generated by the MI-SOCP are the gray curves. They bound the
black curve, which is the nonlinear control. The nonlinear control is obtained
by interpolating between the gray curves. It takes values of (approximately)
one and two. 62

4.10 The state trajectory begins at the origin in the bottom left and terminates
at the bottom right of the figure corresponding to the horizontal position of
the pendulum. 65

4.11 The controls generated by the SOCP are the gray curves. They bound the
black curve, which is the nonlinear control. The nonlinear control is obtained
by interpolating between the gray curves. Observe that the upper gray curve
saturates at the control limit of 8 volts. 66

4.12 The y-position of the vehicle as a function of time. 68

4.13 The controls generated by the SOCP are the gray curves. They bound the
black curve, which is the nonlinear control. The nonlinear control is obtained
by interpolating between the gray curves. All control functions remain be-
tween -10 and +10 rad/s2. 68

4.14 Coordinate Transformation of Relative Coordinates. 77

4.15 Angular displacement trajectories of the spacecraft. The black curves are
the angular displacements of the actual nonlinear system whereas the gray
curves are the angular displacements of the auxiliary linear systems. The
dashed line is the desired final position and the dotted line a solution using
a non-convex solver. 81

4.16 Angular velocity trajectories of the spacecraft. The black curves are the
angular velocities of the actual nonlinear system whereas the gray curves
are the angular velocities of the auxiliary linear systems. The dashed line
is the desired velocity at final time and the dotted line a solution using a
non-convex solver. 82

xii

4.17 Angular displacement trajectories of the spacecraft. The black curves are
the angular displacements of the actual nonlinear system whereas the gray
curves are the angular displacements of the auxiliary linear systems. The
dashed line is the desired final position and the dotted line a solution using
a non-convex solver. 84

4.18 Angular velocity trajectories of the spacecraft. The black curves are the
angular velocities of the actual nonlinear system whereas the gray curves
are the angular velocities of the auxiliary linear systems. The dashed line
is the desired velocity at final time and the dotted line a solution using a
non-convex solver. 85

4.19 Attitude of the spacecraft. The black curves are the attitude of the actual
nonlinear system whereas the gray curves are the attitudes of the auxiliary
linear system. The dashed line is the desired final attitude and the dotted
line a solution using a non-convex solver. 92

4.20 Angular velocity of the spacecraft. The black curves are the angular velocities
of the actual nonlinear system whereas the gray curves are the angular veloc-
ities of the auxiliary linear systems. The dashed line is the desired angular
velocity and the dotted line a solution using a non-convex solver. 93

4.21 Attitude of the spacecraft. The black curves are the attitude of the actual
nonlinear system whereas the gray curves are the attitudes of the auxiliary
linear systems. The dashed line is the desired final attitude and the dotted
line a solution using a non-convex solver. 95

4.22 Angular velocity of the spacecraft. The black curves are the angular velocity
of the actual nonlinear system whereas the gray curves are the angular veloc-
ities of the auxiliary linear systems. The dashed line is the desired angular
velocity and the dotted line a solution using a non-convex solver. 97

4.23 Control input as a function of time for Example I using controller from Al-
gorithm 3. 107

4.24 State trajectories as a function of time for Example I using controller from
Algorithm 3. Solid line represents x1 and dashed line x2. 107

4.25 Control input as a function of time for Example I using feedback linearization
controller. 108

4.26 State trajectories as a function of time for Example I using feedback lin-
earization controller. Solid line represents x1 and dashed line x2. 108

4.27 Control input as a function of time for Example II using controller from
Algorithm 3. 110

xiii

4.28 State trajectories as a function of time for Example II using controller from
Algorithm 3. Solid line represents x1 and dashed line x2. 110

4.29 Control input as a function of time for Example II using feedback
linearization. 111

4.30 State trajectories as a function of time for Example II using feedback lin-
earization. Solid line represents x1 and dashed line x2. 111

5.1 Illustration of variables used for polytopic approximation in (5.16). 120

5.2 The initial simplex is the innermost triangle. The next two generations share
vertices with the triangle and give better approximations of the reachable
set, which appears as the ellipse with a thicker line. 120

5.3 Pursuer’s (shaded region) and evader’s (solid line) reachable sets before cap-
ture (t < t∗), after capture (t > t∗), and at capture (t = t∗). 124

5.4 Pursuers’ (shaded region) and evader’s (solid line) reachable sets before cap-
ture, after capture and at capture. 125

5.5 Pursuers’ (shaded region) and evader’s (solid line) reachable sets before cap-
ture, after capture and at capture. 126

5.6 Pursuer’s (shaded region) and evaders’ (solid line) reachable sets at capture
of the first evader, shortly after the capture of the first evader and at capture
of the second evader. Notice that shortly after capture of the first evader,
the pursuer’s reachable set is reset at the capture point whereas the second
evader’s set continues to grow. 128

5.7 Tree graph showing the different possibilities (branches) on the order pursuer
could capture the evaders. t∗ is the termination time for the pursuer to
capture all the evaders. 129

5.8 Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with
the trajectories of the pursuer and evader from their initial outputs to the
capture point shown with dotted lines. 132

5.9 Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with
the trajectories of the pursuer and evader from their initial outputs to the
capture point shown with dotted lines. The black areas represent the linear
state constraints or keep-out zones. 133

5.10 Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with
the trajectories of the pursuer and evader from their initial outputs to the
capture point shown with dotted lines. The black areas represent the linear
state constraints or keep-out zones. 134

xiv

5.11 Reachable sets for sun blocking problem: Pursuer’s reachable set is marked
with filled black, evader’s reachable set with solid line and the area shaded by
pursuer’s reachable set in gray. The arrow represents the direction on which
the Sun is shining on the players. 136

5.12 Pursuers’ (shaded) and evader’s (solid) reachable sets at capture time with
the trajectory of the capturing pursuer from its initial output to the capture
point shown with dotted line. The black areas represent the linear state
constraints or keep-out zones. 137

5.13 Pursuer’s (shaded) and evaders’ (solid) reachable sets at the time of the first
capture with the trajectories of the pursuer and the captured evader from
their initial outputs to the capture point shown with dotted lines. 138

5.14 Pursuer’s (shaded) and evaders’ (solid) reachable sets at the time of the
second capture with the trajectories of the pursuer and the captured evader
from their initial outputs to the capture point shown with dotted lines. . . . 139

5.15 Pursuer’s (shaded) and evader’s (solid) reachable sets at the time of the third
capture with the trajectories of the pursuer and the captured evader from
their initial outputs to the capture point shown with dotted lines. 139

CHAPTER 1

INTRODUCTION

The topic of this dissertation is the application of convexity for single and multi-

agent control problems. Single-agent control problems studied in this dissertation include

ones with linear and nonlinear dynamics. For single-agent optimal control problems, non-

convex control constraints in the presence of linear and nonlinear dynamics are also studied.

For multi-agent control problems, this dissertation focuses on time-optimal pursuit-evasion

games with linear dynamics and convex state and control constraints. These games may

include single or multiple pursuers and evaders.

Control problems are usually categorized as either linear or nonlinear. Linear control

problems tend to be easier to solve using linear algebraic techniques. Optimization problems

are usually categorized as either convex or non-convex. Convex optimization problems are

typically easier to solve using interior point methods. There are well-known techniques to

linearize special classes of nonlinear problems [2–4] and, in recent years, significant research

has been done on convexification of non-convex optimization problems [5–11].

1.1 Optimal Control Problems with Annular Control Constraints

Annular control constraints appear in many real-time control applications that involve

systems with complex actuator models – particularly in the entry, descent, and landing

of spacecraft with chemical thrusters [5, 12–14]. Chemical thrusters fail to operate reliably

under a certain thrust level, thereby introducing a non-zero lower bound on the thrust mag-

nitude. This lower bound is non-convex, and as such, the resulting trajectory optimization

problems are difficult to solve. Existing nonlinear programming based trajectory optimiza-

tion methods do not guarantee convergence to solutions (optimal or feasible) making them

inappropriate for real-time applications. If, however, the problem can be written in a con-

vex form, then powerful interior point methods can be customized to find globally optimal

2

solutions in polynomial-time. This appears to be the approach taken by SpaceX in their

rocket landings [15].

When studying convexification of non-convex problems, the term lossless convexifica-

tion comes up. The term lossless convexification refers to the two-stage process of 1) relax-

ing the annular, non-convex constraint to a convex form and 2) proving optimal solutions

for the relaxed problem are also optimal for the original problem. These relaxation tech-

niques have been studied extensively for annularly constrained linear systems [7], nonlinear

systems [16], and linear systems with explicit state constraints and additional control in-

equalities [8]. Each of these proofs requires an assumption on the gradient of the final

point. In general, the assumption cannot be verified a priori since it depends on the op-

timal solution. However, one special case where it can be verified a priori is the free final

time transfer between fixed points, which is assumed directly in [16]. The proofs also have

in common controllability/observability assumptions. In [7], controllability of the linear

system (observability of the dual system) is assumed. In [16], controllability of the system

linearized about each extremal is assumed. In [8, 17], strong controllability is assumed.

1.2 Nonlinear Single-agent Problems

Many control systems include nonlinear dynamics. The popular book on nonlinear

control by Khalil [2] gives several examples in Chapter 1 including circuits, robotic systems,

automotive systems, and more. In fortunate cases, an exact or approximate linearization

of the dynamics may be obtained so that linear control techniques are effective in achieving

the control objectives [3]. In other cases, the control engineer must design a controller using

techniques of nonlinear control theory. These techniques often involve finding a Lyapunov

function, solving a non-convex optimal control problem, or something else of equal difficulty.

The presence of practical actuator or state constraints further increases the control design

challenge. A short survey of different control approaches for nonlinear systems is given next.

3

1.2.1 Linearization Techniques

Beyond standard linearization by computing the Jacobian, recent research has advanced

the idea of approximating the nonlinear system by a higher-order linear one. Techniques

include approximation of the Koopman operator, data-driven modeling, and the use of

machine-learning tools [18]. Whereas a standard linearization retains the same dimension

as the original system, these recent techniques lift the state through nonlinear maps to a

potentially much larger dimension. In certain cases, this may result in an exact lineariza-

tion [19]. This is the ideal case. However, it is well-known that some nonlinear systems

exhibit purely nonlinear phenomena such as finite-time escape and limit-cycles [2], in which

case an exact finite-dimensional linearization is beyond reach. A linear parameter varying

(LPV) or quasi-linear parameter varying (q-LPV) techniques may also be used to linearize

the system such that the varying parameter is bounded by a convex polytope [20–24]. This

allows the use of linear matrix inequalities (LMIs) to design controllers for parameters at

each vertex of the polytope offline. A convex combination of these controllers is then used

online based on the current parameter value.

1.2.2 Nonlinear Control Techniques

There exists a large set of techniques from nonlinear control theory. These include Lya-

punov analysis, backstepping, passivity-based control, sliding mode control and other robust

techniques, adaptive control, feedback linearization, and more [2]. Feedback linearization

allows linear control techniques to be used in conjunction with a nonlinear feedback law.

When applicable, this can simplify the analysis, though it is known that such laws are not

robust. Moreover, even systems that are feedback linearizable may not be so on the domain

of interest. In this case, the control magnitude may become unbounded.

Most of these techniques assume the control is unconstrained or subject only to satu-

ration. Recent work using control Lyapunov functions has analyzed nonlinear control affine

systems with polytopic control bounds [25]. Their algorithm minimizes the control mag-

nitude pointwise in time; and as such, requires the solution of a quadratic program (QP)

pointwise in time.

4

1.2.3 Non-convex Optimization

Optimal control theory provides a useful framework for formulating control problems

with nonlinear dynamics, actuator constraints, objectives, and various boundary condi-

tions [26, 27]. Solving such problems, however, remains a challenging task. One approach

is the “indirect” approach wherein the state and costate equations are solved in contin-

uous time through a shooting algorithm or something similar. The key challenge in this

approach is obtaining reasonable estimates for the costates so that convergence is obtained.

An alternative “direct” approach is to discretize the continuous problem into a nonlinear

programming problem (NLP) that can be solved using a generic NLP solver [28]. The key

challenge in this approach is obtaining reasonable estimates for the control values at the dis-

crete times so that convergence is obtained. Recent work in sequential convex programming

(SCP) has apparently led to significant improvements in computation time, though theo-

retical convergence guarantees remain weak [29]. Yet another approach is model predictive

control (MPC) or receding horizon control (RHC). Standard MPC/RHC solves an opti-

mization problem with the nonlinear dynamics or its linearization, advances time forward,

and resolves the optimization problem [30].

For special cases in which the dynamics are linear (or can be exactly linearized) but

other constraints are non-convex, a number of relaxations have been proposed leading to

polynomial-time (fast and provable) algorithms for their solution [7–9,31–33]. These relax-

ations exploit system properties such as controllability [34], strong observability [35], and

normality [36], which are more difficult to synthesize for nonlinear systems [37]. They use

interior-point methods for numerical solution [38, 39]. However, they only apply to linear

dynamical systems.

1.3 Pursuit-Evasion Games

Pursuit-evasion games are commonplace in engineering as well as other fields such as

economics. There are a variety of techniques available to solve pursuit-evasion games. Gen-

erally speaking, however, their solution is more difficult to solve than those of an individual

pursuer’s or evader’s optimal control probelms would be, which can be difficult in their own

5

right. One approach is the variational approach wherein the necessary conditions of optimal

control are written for both players and solved simultaneously. This is briefly described by

Bryson and Ho for a special set of linear-quadratic games and time-optimal games with

scalar control [40].

Due to the complex nature of differential games, an analytical solution using the vari-

ational approach may not always be reached. This may happen, for example, when the

problem has nonlinear dynamics or control constraints. Instead of solving the problem by

calculus of variation techniques, numerical techniques have also been used successfully to

solve games using neural networks [41] and genetic algorithms [42–44] leading to so-called

semi-direct methods. A purely direct method known as the iterative or relaxation approach

has also been used and offers a convergence guarantee when both sub-problems are con-

vex [45,46].

A different approach is geometric in nature and requires the calculation of each player’s

reachable set. This is motivated by the work of Mizukami [47] where it was shown that the

solution to a single-pursuer and single-evader pursuit-evasion game lies on the boundary

of both pursuer’s and evader’s reachable sets. An analytical solution for capture time and

optimal trajectory was derived when control inputs of the players are restricted by an

integral constraint. Reachable sets have also been used for control constrained problems in

dynamic flowfields [48], robotics, development of trade studies, and more [49–52].

1.4 Objectives

This dissertation addresses the following research topics.

1. For linear systems with annular control constraints and fixed final time:

(a) Investigate methods to solve these problems in real-time.

(b) Determine conditions for such method to work.

2. For bounded nonlinear systems:

(a) Investigate ways to bound nonlinear systems with linear systems.

6

(b) Determine conditions on when the nonlinear system can be controlled by bound-

ing linear systems.

(c) Investigate adding convex and non-convex control constraints into the original

nonlinear system.

3. For linear multi-agent systems:

(a) Explore solving single-pursuer, single-evader pursuit-evasion games with control

and state constraints using reachable sets.

(b) Examine generalizing this to multi-pursuer and multi-evader games.

1.5 Outline

An overview of the remaining chapters is now given.

Chapter 2: Background

Chapter 2 introduces some mathematical and system theory background that will be used

during the remainder of the work. Topics covered in this chapter include convexity, linear

systems, and discretization.

Chapter 3: Linear Single-agent Problems with Annular Control Constraints

This chapter includes work that has been done for linear single-agent problems with annular

control constraints as well as a literature review for this subject. The work in this chapter

has been published in [32]. The chapter provides a sufficient condition for the standard

convexification to hold for both free and fixed final time problems, a sufficient condition for

the standard convexification to hold for all final times between the minimum feasible time

and the optimal time, and a perturbation technique to solve the general fixed time problem

as a sequence of convex programs when the final time is greater than the optimal time.

7

Chapter 4: Control of Bounded Nonlinear Systems

This chapter discusses single-agent systems with bounded additive nonlinearities. Systems

with scalar nonlinearity are considered first and a sufficient condition to control such systems

with bounding linear ones is given in the presence of control constraints and convex state

constraints. The sufficient condition is then generalized to systems with multi-dimensional

nonlinearities in the presence of convex control and state constraints. The sufficient condi-

tions are applied to multiple numerical examples throughout the chapter as well to demon-

strate their capabilities in solving trajectory design and control problems. This work has

been published in [53–55].

Chapter 5: Linear Pursuit-Evasion Games

The work related to linear pursuit-evasion games is shown in this chapter. Linear pursuit-

evasion games with 1) single pursuer and single evader, 2) multiple pursuers and single

evader, and 3) single pursuer and multiple evaders are considered. The games are solved

using a geometrical method that utilizes approximations of the agents’ reachable sets. The

agents’ motion is constrained by convex control input and state constraints. This work has

been published in [56,57].

Chapter 6: Conclusions and Summary

This chapter concludes and summarizes the dissertation. Some open questions related to

the research are also discussed.

8

CHAPTER 2

BACKGROUND

This chapter provides mathematical background on convexity, dynamical systems, and

discretization that is useful in subsequent chapters.

2.1 Convexity

First a definition of convexity is given for a set as well as for a function.

Definition 2.1. [58] A set S is said to be convex if for every x1, x2 ∈ S and for every

θ ∈ [0, 1], it is true that

θx1 + (1− θ)x2 ∈ S (2.1)

In Rn this means that a line segment can be drawn between any two points in the set

and any point on the line segment is also in the set. Figure 2.1 shows examples of convex

and non-convex sets in R2. The set on the left is convex as any two points in the set can be

connected with a line segment and any point on the line segment is in the set as well. The

set on the right however is non-convex. As seen in the figure, the line segment connecting

the points passes through a region that is not in the set.

Fig. 2.1: Examples of convex and non-convex sets in R2.

9

A point that is given as θ1x1 + θ2x2 + · · · + θkxk, where
∑k

i=1 θi = 1 and θi ≥ 0, i =

1, 2, . . . k is called a convex combination of points x1, x2, . . . , xk. It can be shown that a

point that is given as a convex combination of points which lie in a convex set is in the

convex set as well [58].

Definition 2.2. [59] A function f : R → R is convex on the open set D if for every

x, y ∈ D and for every θ ∈ [0, 1], it is true that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (2.2)

The function is called strictly convex if equality holds only for θ = 0 or θ = 1.

This means that the line segment connecting any two points on the function is above

the function. This is illustrated in Figure 2.2.

Fig. 2.2: Example of a convex function in R2.

It should be noted that an affine transformation of a function or set preserves its

convexity [58].

2.2 Linear Dynamical Systems

2.2.1 Continuous-time

The most general representation of a continuous-time linear dynamical system used in

this dissertation is

ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)δ(t) (2.3)

10

where x(t) ∈ Rn is a system state vector, u(t) ∈ Rm is a control input vector, and δ(t) ∈

Rq is a bias vector. The state function x is assumed to be continuous, and the control

and bias functions are assumed to be piecewise continuous. The matrix-valued functions

A(t) ∈ Rn×n, B(t) ∈ Rn×m, and E(t) ∈ Rn×q are assumed to be continuous. The dynamical

system is assumed to be globally Lipschitz. This system is also called a continuous-time

linear time-varying (CLTV) system or often times just a linear time-varying (LTV) system.

A unique solution to this system is given in Theorem 2.1 with initial state vector x0 ∈ Rn

so that at initial time t0 ∈ R, x(t0) = x0.

Theorem 2.1. [60] The solution to (2.3) is given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ (2.4)

where Φ(t2, t1) is the state transition matrix.

Proof. Assume (2.4) is the solution to (2.3). Take the derivative of (2.4) with respect to

time to get

d

dt
x(t) = ẋ(t) =

d

dt
Φ(t, t0)x0 +

d

dt

∫ t

t0

Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ (2.5)

Now, recall the Leibniz integral rule [34] and notice that at t = t0 the integral in the above

equation disappears.

ẋ(t) = A(t)Φ(t, t0)x0 +Φ(t, t)

(
B(t)u(t) + E(t)δ(t)

)
+∫ t0

t0

∂

∂t
Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ+∫ t

t0

∂

∂t
Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ

= A(t)Φ(t, t0)x0 +Φ(t, t)

(
B(t)u(t) + E(t)δ(t)

)
+∫ t

t0

∂

∂t
Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ

(2.6)

11

Using the following two properties of the state transition matrix: d
dtϕ(t, τ) = A(t)ϕ(t, τ)

and ϕ(t, t) = I [60], the above simplifies to

ẋ(t) = A(t)Φ(t, t0)x0 +B(t)u(t) + E(t)δ(t)+

A(t)

∫ t

t0

Φ(t, τ)

(
B(τ)u(τ) + E(τ)δ(τ)

)
dτ

= A(t)

(
Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ) (B(τ)u(τ) + E(τ)δ(τ)) dτ

)
+

B(t)u(t) + E(t)δ(t)

(2.7)

Substituting (2.4) into the above gives

ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)δ(t) (2.8)

which is (2.3).

The state transition matrix is defined in Definition 2.3 using a Peano-Baker series.

Definition 2.3. [34] For a CLTV system as described in (2.3) the state transition matrix

is defined as

Φ(t, t0) =I +

∫ t

t0

A(s1)ds1 +

∫ t

t0

A(s1)

∫ s1

t0

A(s2)ds2ds1+∫ t

t0

A(s1)

∫ s1

t0

A(s2)

∫ s2

t0

A(s3)ds3ds2ds1 + . . .

(2.9)

If the system matrix A is not time-varying, the above equation simplifies to

Φ(t, t0) =I +A

∫ t

t0

ds1 +A2

∫ t

t0

∫ s1

t0

ds2ds1+

A3

∫ t

t0

∫ s1

t0

∫ s2

t0

ds3ds2ds1 + . . .

=

∞∑
k=0

1

k!
Ak(t− t0)

k

=eA(t−t0)

(2.10)

12

2.2.2 Discrete-time

A discrete-time linear dynamical system is defined as

x[k + 1] = A[k]x[k] +B[k]u[k] + E[k]δ[k] (2.11)

where k ∈ N. This system is referred to as a discrete-time linear time-varying (DLTV)

system with the solution to it given in Theorem 2.2 with a definition of a discrete-time

state transition matrix given in Definition 2.4.

Theorem 2.2. [60] The solution to (2.11) is given by

x[k] = Φ[k, k0]x0 +
k−1∑
i=k0

Φ[k, i+ 1]

(
B[i]u[i] + E[i]δ[i]

)
(2.12)

where Φ[k2, k1] is the discrete-time state transition matrix.

Definition 2.4. [60] For a DLTV system as described in (2.11) the discrete-time state

transition matrix is defined as

Φ[k2, k1] =

I k2 = k1

A[k2 − 1]A[k2 − 2] . . . A[k1 + 1]A[k1] k2 > k1

(2.13)

If the discrete system matrix is not time-varying, the above simplifies to

Φ[k2, k1] = Ak2−k1 (2.14)

2.3 Discretization

Different discretization methods are described and compared in this section. Discretiza-

tion methods are covered here because optimization tools are later used in this dissertation

and require a finite-dimensional system. The continuous-time system considered in this

section is

ẋ(t) = Ax(t) +Bu(t) + Eη(x(t)) (2.15)

13

where η : Rn → Rq is a nonlinear function and the other variables are the same ones

as described in (2.3) except that the matrices A, B, and E are constant and not time-

varying like they were in (2.3). The dynamics in (2.15) have a linear time-invarying (LTI)

portion given by Ax(t)+Bu(t) with an added nonlinearity from Eη(x(t)). The discretization

methods considered here include discretization using state transition matrix, Euler method,

and 4th order Runge-Kutta method. Other discretization methods exist as well such as

pseudo-spectral ones [61,62] but are not covered here.

2.3.1 State Transition Matrix Method

This method is also often referred as exact discretization as it does discretize the LTI

portion exactly as long as an assumption for a zero-order hold on control input vector

u(t) is valid. However, for exact discretization using this method, a zero-order hold in

the nonlinear term would be needed as well which is not in general valid for this system.

Because of this, the discretization is in general not exact. Using this method, the system is

discretized as follows. Upon defining the state transitionl matrix Φ(tk+1, tk) = eA(tk+1−tk),

it can be shown by direct differentiation that a solution to (2.15) on the interval [tk, tk+1] is

x(tk+1) = Φ(tk+1, tk)x(tk) +

∫ tk+1

tk

Φ(tk+1, τ)[Bu(τ) + Eη(x(τ))]dτ. (2.16)

For small time steps ∆t = tk+1 − tk, evaluation of the integral may be approximated by

fixing u and η(x) at their initial values u(tk) and η(x(tk)) (zero-order hold), respectively.

Upon defining

Ad = Φ(tk+1, tk), Bd =

∫ tk+1

tk

Φ(tk+1, τ)Bdτ, Ed =

∫ tk+1

tk

Φ(tk+1, τ)Edτ, (2.17)

a discrete-time approximation of the continuous-time system is

x[k + 1] = Adx[k] +Bdu[k] + Edη(x[k]), (2.18)

14

which is similar form to (2.11). For linear systems this method is an exact discretization

method as long as the zero-order hold for the control input is a valid assumption.

2.3.2 Euler Method

The next discretization method considered is Euler method which assumes zero-order

hold in states, control inputs, as well as in the nonlinear term. Considering the system

in (2.15), the method gives the state after a short time step ∆t = tk+1 − tk as

x(tk+1) = x(tk) +

(
Ax(tk) +Bu(tk) + Eη(x(tk))

)
∆t (2.19)

With the definition of

Ad = (I +A)∆t, Bd = B∆t, Ed = E∆t, (2.20)

a discrete system is given as

x[k + 1] = Adx[k] +Bdu[k] + Edη(x[k]) (2.21)

which again is in the similar format as (2.11).

2.3.3 4th Order Runge-Kutta Method

The last discretization method considered is the 4th order Runge-Kutta method. A

zero-order hold is assumed for the control input and the nonlinear term once again. The

discretization is given as

x[k + 1] = x[k] +
1

6
(ψ1 + 2ψ2 + 2ψ3 + ψ4)∆t (2.22)

15

where

ψ1 = Ax[k] +Bu[k] + Eη (x[k])

ψ2 = A

(
x[k] + ψ1

∆t

2

)
+Bu[k] + Eη (x[k])

ψ3 = A

(
x[k] + ψ2

∆t

2

)
+Bu[k] + Eη (x[k])

ψ4 = A (x[k] + ψ3∆t) +Bu[k] + Eη (x[k])

(2.23)

These equations can be combined and expressed more compactly as

x[k + 1] =

4∑
i=0

(A∆t)i

i!
x[x] +

4∑
i=1

Ai−1∆ti

i!
(Bu[k] + Eη(x[k])) (2.24)

Comparing this to (2.10) reveals that the above is simply a 4th order approximation of the

state transition matrix method given in Section 2.3.1.

2.3.4 Numerical Examples

Numerical examples of discretization of both linear and nonlinear systems are shown

in this section. First, consider a homogeneous LTI system given as

ẋ =

 0 1

−0.5 −0.1

x (2.25)

The above equation is a damped harmonic oscillator where the first state is displacement

from reference position and the second state is velocity. An exact solution for this can be

found by using Theorem 2.1 with a known initial state. Let the initial state be x(0) =

x0 = [1 − 0.5]⊤ and final time be tf = 5. The discretization time step used is ∆t = 0.1.

Figures 2.3 and 2.4 show the magnitude of error between the exact solution and solutions

gotten using the described discretization methods. From the figures it is evident that for

this example, the state transition matrix method provides the best discretization results as

it should provide exact discretization. It is assumed that the error associated with the state

transition matrix method is caused by numerical error.

16

0 1 2 3 4 5
10−18

10−14

10−10

10−6

10−2

t

d
is
p
la
ce
m
en
t
er
ro
r

Transition Matrix
Euler
4th Order Runge-Kutta

Fig. 2.3: Errors in displacement between exact solution and discretized versions for damped
harmonic oscillator.

0 1 2 3 4 5
10−18

10−14

10−10

10−6

10−2

t

ve
lo
ci
ty

er
ro
r

Transition Matrix
Euler
4th Order Runge-Kutta

Fig. 2.4: Errors in velocity between exact solution and discretized versions for damped
harmonic oscillator.

As a second example, a nonlinear system is considered. The system is given as

ẋ =

−0.1 0

0 −1

x+

 0

−1

x21 (2.26)

17

To get an exact solution for this, the system is linearized exactly using Koopman theory

and defining a new state vector as y = [x1 x2 x
2
1]
⊤ [19]. The nonlinear equations are used

in the discretization. The initial state is taken as x(0) = x0 = [1 − 0.5]⊤ and final time

as tf = 5. The discretization time step is ∆t = 0.1 in this example as well. The errors in

states between the exact solution and the solutions gotten from the discretized systems are

shown in Figures 2.5 and 2.6. As the first state of this system has only linear behavior, the

results shown in Figure 2.5 closely follow those of Figures 2.3 and 2.4. However, the second

state is affected by the nonlinear term x21 and the error between the exact solution and

the discrete approximates is a lot larger. All three discretization methods seem to perform

very close to each other with the state transition matrix and the 4th order Runge-Kutta

methods performing close to identically with their error trajectories being on top of each

other in Figure 2.6.

0 1 2 3 4 5
10−17

10−14

10−11

10−8

10−5

10−2

t

δx
1

Transition Matrix
Euler
4th Order Runge-Kutta

Fig. 2.5: Errors in the first state between exact solution and discretized versions for the
nonlinear system.

18

0 1 2 3 4 5

10−4

10−3

10−2

t

δx
2

Transition Matrix
Euler
4th Order Runge-Kutta

Fig. 2.6: Errors in the second state between exact solution and discretized versions for the
nonlinear system.

19

CHAPTER 3

LINEAR SINGLE-AGENT PROBLEMS WITH ANNULAR

CONTROL CONSTRAINT

3.1 Introduction

This chapter analyzes a class of optimal control problems with an annular control

constraint. As noted before, the primary motivation for the work in this chapter is real-

time optimization. Within the domain of spaceflight, the real-time calculation of trajectories

is called guidance. Traditional guidance algorithms, dating back to the 1950s, are simple

and analytical in nature. Examples include Apollo lunar descent guidance [63–66], the

Iterative Guidance Mode (IGM) for Saturn V ascent [67,68], and Powered Explicit Guidance

(PEG) for Shuttle [69, 70]. However, with improved computing power and algorithms,

computational guidance laws (especially ones based on convex optimization) are becoming

popular [71–77]. Notably, in the last few decades, the computational speed-up due to

algorithmic advances exceeds that due to hardware improvements by a factor of two for

some problem classes [78]. Within a computational guidance framework, more difficult

problems involving systems with practical limitations or constraints can be solved such as

the powered rocket landing problem with velocity bounds [31], problems with linear state

constraints [79], problems with quadratic state constraints [80], and problems with integer-

type control constraints [9, 10].

Even when the problem can be rendered convex, customization is required to accelerate

solve times [81–83] to levels sufficient for use onboard radiation-hardened flight processors.

These customizations exploit problem structure, sparsity, and memory allocation. The

efficacy of this relax and customize approach to the problem of powered rocket landing

has been successfully demonstrated through bench testing on a flight computer [84], flight

tests [85, 85, 86], and the SpaceX landings [15]. Regarding the flight computer tests [84],

20

tests were carried out on a 200 MHz RAD750 in the flight software testbed at NASA JPL.

Solution times of milliseconds on a 3.4 GHz desktop processor corresponded to solution

times of approximately one second on the flight computer with customized code, which is

considered appropriate for a real-time guidance, navigation, and control system. During

testing and simulation for the above demonstrations, it was observed that the relaxations

work even at times that are not the fuel optimal times. This observation and the removal

of the assumption on the gradient of the final point motivate the results of this chapter.

To summarize, the three most significant theoretical contributions to lossless con-

vexification involve a controllability assumption and a second assumption at the final

point [7, 8, 16]. This assumption precludes convexification for fixed final time problems

between fixed points. A key result of this chapter is that for time-invariant systems the

second assumption is not needed. The main contributions of the chapter are:

1. Conditions for the standard convexification to hold that are applicable to both free

and fixed final time problems (see Theorem 3.1, Corollary 3.2, and Theorem 3.2).

2. A sufficient condition for the standard convexification to hold for all final times be-

tween the minimum feasible time and optimal time (see Theorem 3.3).

3. Establishment of controllability as a sufficient condition for solving the general fixed

time problem as a sequence of convex programs (see Theorem 3.4).

The remainder of the chapter is organized as follows. Section 3.2 introduces the math-

ematical notation used in this chapter. Section 3.3 describes the problem of interest, which

is an optimal control problem with an annular control constraint. Section 3.4 provides the

mathematical analysis of the problem. The main result of the chapter is presented in Sec-

tion 3.5, which proves controllability to be a sufficient condition for solving fixed final time

and fixed end point problems. The section also provides a brief background on reachable

sets and minimum time problems. Section 3.6 describes the algorithm used to solve the

example problems. Section 3.7 illustrates the application of the new convexification results

21

to a standard problem in optimal control. A Mars powered descent guidance example is

also presented. Section 3.8 concludes the chapter.

3.2 Nomenclature for the Chapter

The following is a partial list of notation used; a function f ∈ Cn if its first n

derivatives exist and are continuous; R is the set of real numbers; Rn is the set of real n-

tuples; ||v|| is the 2-norm of v; a condition is said to hold almost everywhere in the interval

[a, b], a.e. [a, b], if the set of points in [a, b] where this condition fails to hold is measure

zero; the time derivative of a function is denoted with an over-dot, i.e. dx(t)/dt = ẋ(t); the

boundary of a set S is denoted by ∂S, and the interior of the set by int S. The open ball

centered at p with radius r is Br(p).

3.3 Problem Description

The primary problem of interest is that of minimizing the control effort required to

transfer a linear time-invariant system between fixed points subject to an annular control

constraint. The problem is described mathematically below in (P3.0).

min J =
∫ tf
t0
ℓ(g(u(t))) dt (P3.0)

subj. to ẋ(t) = Ax(t) +Bu(t)

x(t0) = x0, x(tf) = xf

u(t) ∈ U0 = {ω : 0 < ρ1 ≤ g(ω) ≤ ρ2}

The initial time is t0. The final time is tf . The system state x : [t0, tf] → Rn belongs to the

set of absolutely continuous functions. The control u : [t0, tf] → U0 ⊂ Rm belongs to the set

of bounded measurable functions with ρ1, ρ2 ∈ R. The objective is to minimize the control

effort given by ℓ : [ρ1, ρ2] → R where g : Rm → R. The system dynamics are described by

the linear differential equations where A and B are constant matrices. It is assumed that g

is convex and that ℓ is convex, strictly increasing, and positive on its domain. The objective

function is then convex. For the moment, the final time can be free or fixed. The least

22

final time for which the problem is feasible is called the minimum feasible time. The final

time for which (P3.0) achieves a global minimum is called the optimal time. The primary

challenge in solving (P3.0) is the non-convex control constraint U0.

The problem (P3.1) below is the standard relaxation of (P3.0). It is obtained by

introducing a new variable Γ and reformulating the control constraint.

min J =
∫ tf
t0
ℓ(Γ(t)) dt (P3.1)

subj. to ẋ(t) = Ax(t) +Bu(t)

x(t0) = x0, x(tf) = xf

(u(t),Γ(t)) ∈ U1 = {(ω,Ω) : ρ1 ≤ Ω ≤ ρ2, . . .

and g(ω) ≤ Ω}.

The control set U1 is a convex relaxation of U0, but because it is a relaxation, solutions

of (P3.1) may not be feasible for (P3.0). If it so happens that g(u(t)) = Γ(t) almost

everywhere, then solutions of (P3.1) are solutions of (P3.0). This leads to the definition of

lossless convexification.

Definition 3.1. (P3.1) is a lossless convexification of (P3.0) if for every (u,Γ) solving

(P3.1) it follows that g(u(t)) = Γ(t) almost everywhere.

From this definition and inspection of the problems follows a necessary and sufficient

condition, albeit one that is not checkable a priori.

Lemma 3.1. Let (u,Γ) be a solution of (P3.1). Lossless convexification holds if and only

if g(u(t)) ≥ ρ1 almost everywhere. Equivalently, it fails if and only if g(u(t)) < ρ1 on a set

of positive measure.

Proof. To prove the forward implication, suppose convexification holds. Then g(u(t)) =

Γ(t) ≥ ρ1. To prove the backward implication, suppose g(u(t)) ≥ ρ1. Then the objective is

minimized by picking Γ(t) as small as possible, i.e., Γ(t) = g(u(t)).

23

This leads to the definition of the hairline case.

Definition 3.2. Let (u,Γ) be a solution of (P3.1). The hairline case is when g(u(t)) = ρ1

almost everywhere.

Lossless convexification holds in the hairline case according to the above theorem.

However, any change in problem data that causes g(u(t)) to decrease on a set of positive

measure will make convexification fail.

3.4 Mathematical Results

Problem (P3.1) is now analyzed mathematically leading to some new results. The

necessary conditions of Pontryagin [26] state that if (x, u,Γ) is optimal for (P3.1) then

there exist a scalar p0 ∈ {0, 1}, a function p : [t0, tf] → Rn, and a scalar ν such that the

following hold.

0 ̸= (p0, p) (3.1)

H(t) = p0ℓ(Γ(t)) + p(t)T (Ax(t) +Bu(t)) = −ν (3.2)

ṗ(t) = −AT p(t) (3.3)

u(t) ∈ argmin
ω
pTBω s.t. g(ω) ≤ Γ (3.4)

Γ(t) ∈ argmin
Ω
p0ℓ(Ω) s.t. ρ1 ≤ Ω ≤ ρ2 , g(u) ≤ Ω (3.5)

The first condition is called the non-triviality condition. The second condition states that

the Hamiltonian H is a constant. It is zero when the final time is free and possibly non-zero

when the final time is fixed. The third condition is the adjoint system. The fourth and fifth

conditions are the pointwise minimum conditions.

A sufficient condition for lossless convexification is stated below. In general, it cannot

be checked a priori.

Lemma 3.2. If pT (t)B is non-zero almost everywhere, then lossless convexification holds.

Proof. If pT (t)B is non-zero, then the optimal point is on the boundary of the feasible set

in (3.4), i.e., g(u(t)) = Γ(t) almost everywhere.

24

In other words, convexification holds if the solution is non-singular. Conversely, if

convexification fails, then the solution is singular. However, if the solution is singular, con-

vexification may or may not hold. This leads to another result for free final time problems.

Corollary 3.1. If (A,B) is controllable and the final time is free, then lossless convexifi-

cation holds.

Proof. Suppose convexification fails such that pT (t)B = 0 on a set of positive measure.

Because p is analytic and (A,B) is controllable, p(t) = 0 on this set [7]. Because the final

time is free, the Hamiltonian must be zero, which can only happen if p0 = 0 since ℓ is

positive. This violates the non-triviality condition. Therefore, the problem is non-singular

and lossless convexification holds.

The following sufficient condition is true for all cases except the hairline case. This

condition and its corollary are new results.

Theorem 3.1. Let (u,Γ) be a solution of (P3.1). If (A,B) is controllable and g(u(t)) > ρ1

on a set of positive measure, then convexification holds.

Proof. There are two cases.

Case 1) Suppose the final time is free. Then the above corollary applies and lossless

convexification holds.

Case 2) Suppose the final time is fixed and convexification fails. Then on a set of

positive measure, pT (t)B = 0 and p(t) = 0 because of controllability. The Hamiltonian

reduces to H(t) = ℓ(Γ(t)) = constant almost everywhere. From Lemma 3.1, it is known

that there is some time where g(u(t)) < ρ1. Minimizing the Hamiltonian implies Γ(t) = ρ1

almost everywhere since ℓ is strictly increasing. Thus, g(u(t)) ≤ ρ1 almost everywhere,

which is a contradiction.

This proof leads to a very useful corollary.

Corollary 3.2. Let (u,Γ) be a solution of (P3.1). Suppose (A,B) is controllable. Lossless

convexification fails if and only if g(u(t)) ≤ ρ1 almost everywhere and g(u(t)) < ρ1 on a set

of positive measure.

25

For free final time problems, there is an a priori checkable sufficient condition: control-

lability. For fixed final time problems, another checkable condition is now derived from this

corollary for the common situation where g(u(t)) = ||u(t)||. Recall that the state equation

can be written as

xf − Φ(tf , t0)x0 =
∫ tf
t0

Φ(tf , t)Bu(t)dt, (3.6)

where Φ is the state transition matrix, or matrix exponential. Norming each side and

assuming convexification fails, i.e., ||u(t)|| ≤ ρ1, then

||xf − Φ(tf , t0)x0|| = ||
∫ tf
t0

Φ(tf , t)Bu(t)dt|| (3.7)

≤
∫ tf
t0

||Φ(tf , t)Bu(t)||dt (3.8)

≤
∫ tf
t0

||Φ(tf , t)B|| ||u(t)||dt (3.9)

≤ ρ1
∫ tf
t0

||Φ(tf , t)B||dt. (3.10)

Define the following

F (tf) = ||xf − Φ(tf , t0)x0||,

G(tf) = ρ1
∫ tf
t0

||Φ(tf , t)B||dt,
(3.11)

so that a checkable condition for the fixed final time problem can be stated.

Theorem 3.2. Suppose that (A,B) is controllable and g(u(t)) = ||u(t)||. If F (tf) > G(tf),

then convexification holds.

Proof. The proof follows from the analysis above and Corollary 3.2.

Conceptually, convexification is guaranteed when the boundary conditions belong to

the open, non-convex set whose complement is the closed ellipsoid defined by F and G. As

an example, consider problems that terminate at the origin. The ellipsoid is then centered

at the origin and given by

26

xT0 Φ
T (tf , t0)Φ(tf , t0)x0 ≤

(
ρ1
∫ tf
t0

||Φ(tf , t)B||dt
)2
, (3.12)

which can easily be calculated for given problem data.

It is now proven that for fixed final time problems, convexification holds for all final

times between the minimum feasible time and the optimal time.

Theorem 3.3. Suppose (A,B) is controllable. Let t1 be the minimum feasible time and t2

be the optimal time. If the optimal cost J(tf) =
∫ tf
t0
ℓ(g(u(t)))dt decreases strictly on [t1, t2],

then convexification holds for any tf ∈ [t1, t2].

Proof. Because the objective is strictly decreasing, one can deduce that ν ≥ 0 and that the

Hamiltonian is a non-positive constant [87]. Suppose convexification fails such that pT (t)B

is zero on a set of positive measure. Because (A,B) is controllable, p(t) = 0 on this set.

The Hamiltonian then reduces to

p0ℓ(Γ) + ν = 0. (3.13)

The scalar p0 is non-negative and ℓ(Γ) is positive such that the both terms are non-negative.

Equality holds only when p0 = ν = 0, but this violates the non-triviality condition.

3.5 Main Result

The sufficient condition in Theorem 3.2 is quite conservative because it involves several

approximations. Also, Theorem 3.3 is only applicable to final times between the minimum

feasible time and the optimal time. In this section, is is shown that controllability is a

sufficient condition to solve (P3.0) as a sequence of convex programs for any fixed final

time. To do so, several facts related to reachable sets and minimum time problems are

needed.

Define the point wf := xf − Φ(tf , t0)x0 and the reachable set as

R(t0, tf , U) := {
∫ tf
t0

Φ(tf , t)Bu(t)dt, ∀u(t) ∈ U}, (3.14)

27

where U is a compact set of all admissible controls. It is clear that wf ∈ R(t0, tf , U) is

required for any optimal control problem, no matter the objective, to be feasible. It is

known that the reachable sets are compact, convex, and continuous in both time arguments

(see Lemmas 12.1 and 12.2 in [88]).

Definition 3.3. A reachable set is expanding if for all t1 < t2, R(t0, t1, U) ⊂ int R(t0, t2, U).

Lemma 3.3. Suppose U is compact, convex, and 0 ∈ int U . The reachable set is expanding

if and only if (A,B) is controllable. If the reachable set is expanding, then tf is the minimum

time if and only if wf ∈ ∂R(t0, tf , U).

Proof. See Corollary 17.1 and Theorem 17.3 of [88]. Also see Theorem 1 on page 301

of [89].

An illustration of the expanding reachable set and its connection with the minimum

time is given in Figure 3.1.

w(t1)

w(t2)
w(t∗)

(a) (b) (c)

Fig. 3.1: (a) At time t1, the problem is infeasible as the point, w, is outside the reachable
set. (b) At some time t2 > t1, the point, w, is in the interior of the reachable set and the
problem is feasible. (c) At the minimum time, t∗, such that t1 < t∗ < t2, the point, w, is
on the boundary of the reachable set.

28

The following minimum time problem is studied now.

min J =
∫ tf
t0

1 dt (P3.2)

subj. to ẋ(t) = Ax(t) +Bu(t) (F3.1)

x(t0) = x0, x(tf) = xf (F3.2)

u(t) ∈ U2 = {ω : g(ω) ≤ ρ1} (F3.3)

The optimal control problem is referred as (P3.2) and the problem of only satisfying the

constraints (F3.1)-(F3.3) for a fixed final time as the feasibility problem, which is convex.

As before, the necessary conditions state that if (x, u) is optimal for (P3.2) then there exist

a scalar p0 ∈ {0, 1} and a function p : [t0, tf] → Rn such that the following hold.

0 ̸= (p0, p) (3.15)

0 = p0 + p(t)T (Ax(t) +Bu(t)) (3.16)

ṗ(t) = −AT p(t) (3.17)

u(t) ∈ arg min
ω∈U2

p(t)TBω (3.18)

Lemma 3.4. Let u be a solution of (P3.2). If (A,B) is controllable, then g(u(t)) = ρ1

almost everywhere.

Proof. If (A,B) is controllable, then pT (t)B ̸= 0 almost everywhere (see the proof of Corol-

lary 3.1) and the optimal point is on the boundary of the feasible set, i.e., g(u(t)) = ρ1

almost everywhere.

With these facts about reachable sets and minimum time problems, the main theorem

regarding problem (P3.0) can be stated and proved.

Theorem 3.4. Consider (P3.0) and assume fixed final time. Assume (P3.1) is not a

lossless convexification of (P3.0). If (A,B) is controllable, then there exists an optimal

control u for (P3.0) such that g(u(t)) = ρ1 almost everywhere obtained by solving a sequence

of convex problems.

29

Proof. By assumption, (P3.1) is not a lossless convexification for (P3.0) and (A,B) is

controllable. It follows from Corollary 3.2 that an optimal control u for (P3.0) satisfies

g(u(t)) = ρ1 almost everywhere. Because U2 is compact, convex, and 0 ∈ int U2, Lemma 3.3

indicates that reachable sets generated by U2 are continuous, compact, convex, and expand-

ing such that any point on the boundary of a reachable set must be reached in minimum

time. Two cases are now considered.

Case 1:

If the final time is the minimum final time, then wf ∈ ∂R(t0, tf , U2) and Lemma 3.4 implies

that any feasible control u satisfies g(u(t)) = ρ1 almost everywhere. Therefore, one must

solve a single instance of the convex feasibility problem (F3.1)-(F3.3) on [t0, tf].

Case 2:

If the final time is greater than the minimum time, then wf ∈ int R(t0, tf , U2) since the

reachable set is expanding. By definition of interior, ∃ϵ > 0 such that ∀w1 ∈ Bϵ(0) the

point wf − w1 ∈ int R(t0, tf , U2). From closedness, convexity, and continuity (see Lemma

12.3 of [88]), ∃δ > 0 such that ∀t1 ∈ Bδ(t0) the point wf − w1 ∈ int R(t1, tf , U2).

Consider a function v1 : [t0, t1] → ∂U2 and let w1 and t1 satisfy

w1 =
∫ t1
t0

Φ−1(t, t1)Bv1(t)dt, (3.19)

which can always be done by making t1 sufficiently close to t0. That is, w1 ∈ R(t0, t1, ∂U2).

If t1 is increased to tf and wf − w1 never leaves the reachable set, then v1 is an optimal

control for (P3.0) since ∀t ∈ [t0, tf], g(v1(t)) = ρ1, which results in the least possible

objective value.

If the point wf − w1 does leave the reachable set, then at the time t1 when the point

is on the boundary of the reachable set, there exists a minimum time control to wf − w1

denoted u1 : [t1, tf] → ∂U2. It follows that the control u : [t0, tf] → ∂U2 given by

u(t) =

v1(t), t0 ≤ t < t1

u1(t), t1 ≤ t ≤ tf

(3.20)

30

is optimal for (P3.0) since ∀t ∈ [t0, tf], g(u(t)) = ρ1, which results in the least possible

objective value.

By incrementally increasing t1, introducing a perturbing function v1 : [t0, t1] → ∂U2,

solving the convex feasibility problem (F3.1)-(F3.3) from the perturbed point to the final

point for u1, and checking if u1(t) ∈ ∂U2, the optimal control u for (P3.0) is obtained.

The proof of Theorem 3.4 is constructive and indicates that a line search for t1, selection

of a perturbing control v1, and solution of a convex constrained problem for u1 yields the

optimal control. This is similar to free final time problems where a line search for tf

is required. Lastly, since any v1 satisfying g(v1(t)) = ρ1 works, it is clear that optimal

solutions are non-unique. A specific algorithm for finding an optimal control is given in the

following section.

3.6 Solution Procedure

This section summarizes the algorithm constructed in the proof of Theorem 3.4 and

method used to solve the feasibility problem (F3.1)-(F3.3). Given a control u on [t0, tf], a

measure of how close its magnitude is to ρ1 is given by the following formula.

E(u, t0, tf) =

∫ tf

t0

||g(u(t))− ρ1|| dt (3.21)

The line search algorithm to solve (P3.0) when Theorem 3.4 applies is given in Algorithm 1.

To numerically solve the convex feasibility problem (F3.1)-(F3.3), it is discretized and

constraints are enforced at the nodes resulting in a second-order cone program that can

be solved using interior-point methods. A simple discretization method is used, and is

summarized below.

The time domain [t0, tf] is uniformly discretized into N+1 nodes separated by ∆t. The

states at time ti are denoted by x[i] and they exist at all nodes i = 1, ..., N+1. The controls

at time ti are denoted by u[i] and they exist at nodes i = 1, ..., N . The controls are held

31

Algorithm 1 Algorithm to solve fixed final time problems with annular control constrains

Initialization:
Choose a v ∈ Rm such that g(v) = ρ1.
Choose a t1 ∈ (t0, tf).
Choose a tolerance ϵ > 0.
Set tmin = t0 and tmax = tf .

Loop:
1: loop
2: Define v1(t) = v on [t0, t1].
3: Compute x(t1) generated by v1.
4: Solve (F3.1)-(F3.3) from x(t1) to xf to find u1 on [t1, tf].
5: if (F3.1)-(F3.3) is infeasible then
6: Set tmax = t1 and t1 =

1
2(tmin + tmax).

7: else if (F3.1)-(F3.3) is feasible and E(u1, t1, tf) > ϵ then
8: Set tmin = t1 and t1 =

1
2(tmin + tmax).

9: else
10: return v1 and u1 as an optimal control
11: end if
12: end loop

constant over every interval. The system dynamics are discretized using the fundamental

matrix resulting in

x[i+ 1] = Adx[i] +Bdu[i], i = 1, ..., N. (3.22)

The discrete system matrices Ad and Bd are given by

Ad = eA∆t, Bd =

∫ ∆t

0
eAτBdτ. (3.23)

The boundary conditions are enforced at the initial and final nodes.

x[1] = x0, x[N + 1] = xf (3.24)

The control constraints are enforced at nodes 1 to N .

||u[i] || ≤ ρ1, ∀ i = 1, ..., N (3.25)

32

Equations (3.22)-(3.25) represent a finite-dimensional second-order cone program that can

be solved using commercially available solvers.

3.7 Examples

In this section, the algorithm is demonstrated on a simple double integrator and a har-

monic oscillator. A Mars powered descent guidance example is then solved in a sample-and-

hold scheme to emulate a real guidance system. Problems are solved using the Gurobi [90]

solver with a MATLAB interface [91].

3.7.1 Double Integrator

Consider the following problem with double integrator dynamics and an annular control

constraint. The problem fits into the definition of (P3.0) and is mathematically described

below.

min J =
∫ tf
t0

||u(t)|| dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = u(t)

x1(t0) = 1, x1(tf) = 0

x2(t0) = 1, x2(tf) = 0

1 ≤ ||u(t)|| ≤ 6

33

Recognizing g(u(t)) = ||u(t)|| and ℓ(g(u(t)) = g(u(t)), the standard relaxation (P3.1) can

be stated.

min J =
∫ tf
t0

Γ(t) dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = u(t)

x1(t0) = 1, x1(tf) = 0

x2(t0) = 1, x2(tf) = 0

1 ≤ Γ(t) ≤ 6

||u(t)|| ≤ Γ(t)

According to Theorem 3.2, the above convexification will hold if F (tf) > G(tf), where F (tf)

and G(tf) are defined by (3.11). Figure 3.2 shows the the difference F (tf) − G(tf) as a

function of the final time tf . By solving the problem, it was determined that the minimum

feasible time is approximately 1.016 time units and the optimal time is approximately 2.1

time units. The difference is positive between the minimum feasible and optimal times and

negative for times greater than the optimal time. Consistent with Theorems 3.2 and 3.3,

numerical tests demonstrate that the standard convexification holds when the difference is

positive.

34

1 2 3 4
−4

−2

0

2

tf

F
(t

f
)
−
G
(t

f
)

min time

optimal time

convex. holds

std.

convexification fails

std.

Fig. 3.2: The quantity F − G is positive and convexification holds for final times between
the minimum feasible time and the optimal time of about 2.1 time units. For larger times,
the difference is negative and convexification fails.

For a final time of tf = 5 time units, standard convexification fails. With tf = 5,

Algorithm 1 is used to solve the problem. According to Theorem 3.4, since the system is

controllable, the optimal control u satisfies ||u(t)|| = 1 almost everywhere. To demonstrate

non-uniqueness, two solutions are generated using the perturbing functions v1(t) = 1 on

[0, 0.42] and v1(t) = −1 on [0, 2.38], respectively. In each case, the feasibility problem

(F3.1)-(F3.3) is solved to find the optimal control after the perturbing period. Figures 3.3-

3.5 show the states, controls, and reachable set.

35

−1 0 1 2 3
−2

−1

0

1

2

x1

x
2

Fig. 3.3: State trajectories in phase plane. The solid black curve corresponds to the v1(t) = 1
solution. The gray curve corresponds to the v1(t) = −1 solution. After the perturbing
periods, a minimum time control u1 is computed that satisfies ||u1(t)|| = 1. The state then
follows the so-called switching curve to reach the origin.

0 1 2 3 4 5
−2

−1

0

1

2

t (time units)

u
(t
)

Fig. 3.4: The solid lines correspond to the perturbing controls v1. The dashed lines corre-
spond to the minimum time control u1. Color scheme is the same as Figure 3.3.

36

−10 −5 0 5 10

−4

−2

0

2

4

wx

w
y

wf − w1

Fig. 3.5: Reachable set, R(t1, tf , U2), for t1 = 0.42 and tf = 5 time units (v1(t) = 1 case).
As required, the point wf − w1 lies on the boundary of the set.

For both cases, Algorithm 1 was initialized with a guess of t1 = 2.5. It turns out that

both cases required the solution of seven second-order cone programs. On a laptop with 2.2

GHz processor, each program required about 0.2 seconds to solve for a total solution time

of about 1.4 seconds.

3.7.2 Harmonic Oscillator

A fuel optimal problem with the dynamics of a harmonic oscillator is now considered.

The problem is mathematically described below.

min J =
∫ tf
t0

||u(t)|| dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + u(t)

x1(t0) = 2, x1(tf) = 0

x2(t0) = 0, x2(tf) = 0

1 ≤ ||u(t)|| ≤ 3

37

Below is the standard, convex relaxation to the problem.

min J =
∫ tf
t0

Γ(t) dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + u(t)

x1(t0) = 2, x1(tf) = 0

x2(t0) = 0, x2(tf) = 0

1 ≤ Γ(t) ≤ 3

||u(t)|| ≤ Γ(t)

Figure 3.6 shows the variation of the difference F (tf) − G(tf) with the final time tf . The

minimum feasible time for the problem is approximately 1.51 time units and the difference

is non-negative until tf ≈ 2 time units. However, standard convexification fails only when

tf is increased beyond 2 time units, which is the fuel optimal time for the problem.

1.5 2 2.5 3
−1

−0.5

0

0.5

tf

F
(t

f
)
−
G
(t

f
)

min time

min fuel

convex. holds

std.

convexification fails

standard

Fig. 3.6: The quantity F −G is positive for final times between the minimum feasible time
and tf ≈ 2 time units. The fuel optimal time is 2 time units. For tf > 2 time units, the
quantity is negative. Standard convexification holds for all final times between the minimum
feasible time and fuel optimal time, after which it fails.

38

For a final time of tf = 5 time units, standard convexification fails. Like before, tf = 5

time units and it is shown that this fixed time problem can be solved as a sequence of

convex programs. According to Theorem 3.4, since the system is controllable, there exists

a control u(t) such that ||u(t)|| = 1 almost everywhere.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

x1

x
2

Fig. 3.7: State trajectory in phase plane. The initial state is perturbed using a arbitrary
control v1(t) that satisfies ||v1(t)|| = 1 for a duration t1 = 3.65 time units (indicated by
the dashed curve). At the end of t1 time units, a minimum time control, u1(t) is achieved
that satisfies ||u1(t)|| = 1. The state then follows the switching curve to reach the origin
(indicated by the solid curve).

39

0 1 2 3 4 5
−2

−1

0

1

2

t (time units)

u
(t
)

Fig. 3.8: Control trajectory. The dashed line corresponds to the arbitrary control v1(t) that
satisfies ||v1(t)|| = 1. The solid line corresponds to the minimum time control, u1(t), which
switches from -1 to +1.

It is found that on perturbing the initial state with a control v1(t) that satisfies

||v1(t)|| = 1 for a duration of ≈ 3.65 time units, convexification works, and we have an

optimal control u(t) that satisfies ||u(t)|| = 1 almost everywhere. Fig 3.7 shows the trajec-

tory in state plane and Figure 3.8 shows the control profile. Figure 3.9 shows that the point

wf − w1 lies on the boundary of the reachable set R(t1, tf) at time t1 ≈ 3.65 time units.

40

−0.5 0 0.5
−1

−0.5

0

0.5

1

wx

w
y wf − w1

Fig. 3.9: Reachable set, R(t1, tf), for t1 = 3.65 and tf = 5 time units. As required, the
point wf − w1 lies on the boundary of the set.

3.7.3 Mars Powered Descent Guidance

As a final example, consider a Mars powered descent guidance problem. Because the

landing mission starts at a low altitude, it is assumed that the gravitational field is uniform.

Aerodynamic forces are not considered since they are negligible compared to the propulsive

and gravitational forces during powered descent. An illustration of the problem is given

in [5].

The dynamics of the spacecraft are given by the following equations

r̈(t) = g +
T (t)

m(t)
, (3.26)

ṁ(t) = −α||T (t)||, (3.27)

where r(t) ∈ R3 is the position vector of the spacecraft relative to the target, g ∈ R3 is

the constant gravitational vector, T (t) ∈ R3 is the net thrust vector, m(t) ∈ R is the

spacecraft mass, and α ∈ R is a positive constant that defines the fuel consumption rate.

The net thrust is bounded by

0 < ρ1 ≤ ||T (t)|| ≤ ρ2, (3.28)

41

which defines a non-convex set of feasible controls. Additional nonlinearities are present be-

cause of the nonlinearity of (3.26) and (3.27). To remove these nonlinearities, the following

variable transformations are introduced.

u(t) :=
T (t)

m(t)
, σ :=

||T (t)||
m(t)

, z(t) := ln(m(t)) (3.29)

Upon defining the quantities

µ1(t) = ρ1e
−z̃(t) and µ2(t) = ρ2e

−z̃(t) (3.30)

where

z̃(t) =

ln(mwet − αρ2t), mwet − αρ2t ≥ mdry

ln(mdry), otherwise

, (3.31)

a second-order cone program can be formed that approximates the problem of interest [5].

min J =
∫ tf
0 σ(τ) dτ

subj. to ṙ(t) = v(t)

v̇(t) = u(t) + g

ż(t) = −ασ(t)

||u(t)|| ≤ σ(t)

µ1(t)

[
1−

[
z(t)− z̃(t)

]
+ 1

2

[
z(t)− z̃(t)

]2]
≤ σ(t) ≤ µ2(t)

[
1−

[
z(t)− z̃(t)

]]
ln(mwet − αρ2t) ≤ z(t) ≤ ln(mwet − αρ1t)

m(0) = mwet, r(0) = r0, ṙ(0) = ṙ0

r(tf) = ṙ(tf) = 0

42

The following parameters are used to solve the problem.

r0 = [1500, 0, 2000]T m

ṙ0 = [−75, 0, 100]T m/s

g = [−3.7114, 0, 0]T m/s2

mdry = 1505 kg,mwet = 2110 kg

Isp = 225 s, α = 5.09 · 10−4 s/m

ρ1 = 13.151 kN, ρ2 = 19.727 kN

(3.32)

Through numerical tests, the problem has a minimum feasible time of about 45 seconds and

an optimal time of about 52 seconds. Tests indicate that the standard convexification holds

for final times between 45 seconds and 72 seconds, and it fails thereafter. To demonstrate

our results, the final time is set at tf = 90 seconds and it is known that the optimal solution

will have thrust magnitude equal to ρ1 almost everywhere.

To emulate a practical guidance implementation, the problem is solved in a sample-

and-hold manner. In each call to guidance, the feasibility problem is solved. If the control

solution has magnitude ρ1 at each node, the control at the current node is accepted and

passed to the simulation. Otherwise, a perturbing control with magnitude ρ1 is introduced

and passed to the simulation. This process is repeated every second from 90 seconds down

to 1 second. The resulting state and control trajectories are shown in Figures 3.10 to 3.12.

43

0
200

400 0

2,000

4,000

0

1,000

r2 (m) r3 (m)

r 1
(m

)

Fig. 3.10: The spacecraft’s initial position is at the tip of the dashed curve. The dashed
curve indicates the perturbed portion of the trajectory. After 43 seconds, a minimum time
control lands the spacecraft at the desired point (indicated by the solid curve).

0 20 40 60 80
5

10

15

Time (s)

||T
(t
)||

(k
N
)

Fig. 3.11: The thrust magnitude is constant at the lower bound of ρ1 = 13.151 kN.

44

0 20 40 60 80

−10

0

10

Time (s)

T
(t
)
(k
N
)

Fig. 3.12: The three components of thrust are shown as a function of time.

The problems were solved on a laptop with a 2.2 GHz processor. Each call to guidance

requires the solution of one second-order cone program. On average, the solution time was

0.25 seconds.

3.8 Summary and Conclusions

This chapter presented new convexification results including a sufficient condition for

the standard convexification to hold for both free and fixed final time problems, a sufficient

condition for the standard convexification to hold for all final times between the minimum

feasible time and the optimal time, and a perturbation technique to solve the general fixed

time problem as a sequence of convex programs when the final time is greater than the op-

timal time. In short, the perturbation technique works as follows: perturb the initial point,

solve a feasibility problem to the final point, and repeat until convexification works, which

is guaranteed to happen. This results in a globally minimizing control. The perturbation

technique has practical applications as demonstrated in the Mars landing example. In each

call to guidance, the problem was solved in less than one second without customization,

suggesting that the new perturbation technique is suitable for real-time guidance applica-

tions.

45

CHAPTER 4

CONTROL OF BOUNDED NONLINEAR SYSTEMS

4.1 Introduction

Many control systems include nonlinear dynamics. The popular book on nonlinear

control by Khalil [2] gives several examples in Chapter 1 including circuits, robotic systems,

automotive systems, and more. In fortunate cases, an exact or approximate linearization

of the dynamics may be obtained so that linear control techniques are effective in achieving

the control objectives [3]. In other cases, the control engineer must design a controller using

techniques of nonlinear control theory. These techniques often involve finding a Lyapunov

function, solving a non-convex optimal control problem, or something else of equal difficulty.

The presence of practical actuator or state constraints further increases the control design

challenge. This chapter describes a novel technique for control of systems with bounded

nonlinearity, convex state constraints, and control constraints. The technique reduces the

problem to finding bounding solutions associated with linear systems. This process is shown

to be a second-order cone program (SOCP), for which efficient solvers exist [38, 39, 90, 92].

The nonlinear controller may then be interpolated from these bounding solutions in real-

time. The technique benefits from a rigorous theoretical foundation and the efficient SOCP

solvers. Note that although the technique uses optimization, the resulting nonlinear control

solutions are not optimal in any pre-defined sense.

The chapter is organized as follows. First, systems with an additive scalar nonlinear

term are considered in Section 4.2. The section includes a sufficient condition on when the

nonlinear system can be controlled by bounding linear systems. The sufficient condition

is then applied to control systems with convex and some non-convex control constraints.

Section 4.3 generalizes the sufficient condition to systems with multi-dimensional additive

nonlinearities. Two methods of controlling nonlinear systems through bounding linear sys-

46

tems are introduced based on this condition. The methods are demonstrated by applying

them to aerospace examples. Section 4.4 provides a feedback linearization-like computa-

tional method for controlling systems with convex polytope bounded nonlinearities. A

comparison between this method and a classic feedback linearization is given in this section

as well through numerical examples. The chapter is concluded in Section 4.5.

4.2 Systems with Additive Scalar Nonlinearity

This section considers systems with additive scalar nonlinearities. A sufficient condition

for when such systems can be controlled by bounding linear systems is given. This condition

is also applied to multiple examples with varying constraints in states as well as in control

input.

A brief outline of the section and its contributions is now given. Section 4.2.1 intro-

duces a continuous-time nonlinear system. Two related linear systems are then introduced.

The first contribution is a sufficient condition for solutions of these two systems to bound

the nonlinear system. This condition is given in Theorem 4.1. A consequence is that the

nonlinear system may be controlled by interpolating the linear controls which is demon-

strated in the examples at the end of Section 4.2.1. Discrete-time nonlinear systems are

investigated in Section 4.2.2. The second contribution is again a condition for the nonlinear

control to be interpolated from linear controls. This is given in Theorem 4.2. The discrete-

time formulation leads to a novel SOCP synthesis tool for control design in the presence

of convex control and state constraints. The third contribution is the generalization of the

theorems and synthesis tool for certain non-convex control constraints. The discrete-time

results are demonstrated through engineering examples.

4.2.1 Continuous-Time Systems

Consider a nonlinear system of the form

ẋ = Ax+Bu+ Eη(x) (4.1)

47

on spatial domain D ⊂ Rn and time domain I = [t0, tf] ⊂ R with a single scalar nonlinearity

η satisfying the bounds

∀x ∈ D, ∆L ≤ η(x) ≤ ∆U . (4.2)

The control objective is to drive the system to the terminal set Xf ⊂ Rn while keeping the

state in the state constraint X ⊂ D and the control in the control constraint U ⊂ Rn. It

is assumed that Xf , X, and U are convex. Note that the boundedness of the nonlinearity

is not restrictive when X is compact since any continuous function attains a minimum and

maximum on such a set. Because of the nonlinearity and the constraints, this is a challenging

problem and classical nonlinear techniques such as feedback linearization, backstepping, etc.

may not apply. Optimization-based techniques such as model predictive control or nonlinear

optimal control require the solution of a nonlinear program, for which convergence is not

guaranteed. It is now shown when the nonlinear system may be controlled by interpolation

of linear controls.

Consider the auxiliary linear systems

ẋL = AxL +BuL + E∆L, (4.3)

ẋU = AxU +BuU + E∆U , (4.4)

which have been generated by replacing the nonlinearity with its bounds. The following

question is now asked: Under what conditions will the resulting trajectories xL and xU

bound the nonlinear trajectory x? In other words, under what conditions can the nonlinear

control be determined by analyzing linear systems? Solutions of the linear differential

equations are given by

xL(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ) [BuL(τ) + E∆L] dτ = Φ(t, t0)x0 +

∫ t

t0

α(t, τ)dτ, (4.5)

xU (t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ) [BuU (τ) + E∆U] dτ = Φ(t, t0)x0 +

∫ t

t0

γ(t, τ)dτ. (4.6)

48

For given functions uL and uU , the integrands α and γ become known vector-valued func-

tions. Before proceeding, some preliminary results on “ordered” functions are given.

Definition 4.1. Two scalar-valued functions f : I → R and h : I → R are “ordered” if

f ≤ h or f ≥ h on I. Equivalently, they are ordered if there exists ℓ ∈ {+1,−1} such that

ℓf ≤ ℓh. Two vector-valued functions f : I → Rn and h : I → Rn are “ordered” if for every

j ∈ {1, . . . , n} there exists ℓj ∈ {+1,−1} such that ℓjf
j ≤ ℓjh

j. In other words, two vector-

valued functions are ordered if their components are ordered. Note that all components do

not have to be ordered the same.

Lemma 4.1. Let f and h be scalar-valued functions as in Definition 4.1. Let ℓ ∈ {+1,−1}.

ℓf ≤ ℓh =⇒ ℓ

∫
I
f(t)dt ≤ ℓ

∫
I
h(t)dt (4.7)

Corollary 4.1. Let f and h be as in Lemma 4.1. Let w : I → [0, 1] be Riemann integrable.

Let g := (1− w)f + wh. Let ℓ ∈ {+1,−1}. Then

ℓf ≤ ℓg ≤ ℓh and ℓ

∫
I
f(t)dt ≤ ℓ

∫
I
g(t)dt ≤ ℓ

∫
I
h(t)dt. (4.8)

One of the main results is now given. It answers the above questions and provides

sufficient conditions for a nonlinear control to be interpolated from linear controls.

Theorem 4.1. If for every t ∈ I the vector-valued functions

α(t, ·) : [t0, t] → Rn (4.9)

γ(t, ·) : [t0, t] → Rn (4.10)

are ordered, then u = (1 − w)uL + wuU achieves the control objective for the nonlinear

system with w(t) = (η(x(t))−∆L)/(∆U −∆L).

Proof. For any Riemann integrable function w : I → [0, 1], the linear system

ẋ = Ax+B [(1− w)uL + wuU] + E [(1− w)∆L + w∆U] (4.11)

49

has a solution given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

(1−w(τ))α(t, τ) +w(τ)γ(t, τ)dτ = Φ(t, t0)x0 +

∫ t

t0

β(t, τ)dτ. (4.12)

If for every t ∈ I the vector-valued functions α(t, ·) and γ(t, ·) are ordered, then it follows

from Definition 4.1, Lemma 4.1, and Corollary 4.1 that for every j ∈ {1, . . . , n} there exists

ℓtj ∈ {+1,−1} such that

ℓtjα
j(t, ·) ≤ ℓtjβ

j(t, ·) ≤ ℓtjγ
j(t, ·). (4.13)

The double subscript tj on each ℓ is present to emphasize that the choice of ℓ depends on

each t and each j. Consequently, their integrals are ordered in the same way.

ℓtj

∫ t

t0

αj(t, τ)dτ ≤ ℓtj

∫ t

t0

βj(t, τ)dτ ≤ ℓtj

∫ t

t0

γj(t, τ)dτ (4.14)

Adding ℓtjΦ(t, t0)x0 to each, it follows that

ℓtjx
j
L(t) ≤ ℓtjx

j(t) ≤ ℓtjx
j
U (t). (4.15)

That is, the x function is always between the xL and xU functions. From convexity of X

and Xf , it is concluded that ∀t ∈ I,

x(t) ∈ X and x(T) ∈ Xf . (4.16)

Upon choosing w(t) ∈ [0, 1] such that η(x(t)) = (1 − w(t))∆L + w(t)∆U and u = (1 −

w)uL + wuU , the original differential equation is obtained. Furthermore, by convexity,

∀t ∈ I, u(t) ∈ U .

Theorem 4.1 gives a sufficient condition for the nonlinear control problem to be solved

using linear control techniques. An illustrative example is now given.

50

Example 1: As an example, consider the following problem

ẋ1 =
1
10 sinx1 cosx2 + x2 (4.17)

ẋ2 = −x1 + u (4.18)

with D = X = R2 and U = R. The objective is to drive the first state to zero, i.e.,

Xf = {0} × R. The system is rewritten in the following form

ẋ =

 0 1

−1 0

x+

0
1

u+

1
0

 1
10 sinx1 cosx2 (4.19)

so that A, B, E, and η are easily identified. The scalar nonlinearity is bounded between

∆L = −1/10 and ∆U = +1/10. Using LQR techniques to generate uL, uU , and their

associated trajectories, it is seen in Figures 4.1 and 4.2 that the α and γ functions are

ordered as required by Theorem 4.1.

Fig. 4.1: Surfaces for α1 and γ1. For any fixed t ∈ I, curves along the dark surface in the τ
direction α1(t, ·) and curves along the light surface in the τ direction γ1(t, ·) are all ordered.
In fact, for any (t, τ), it is evident that α1(t, τ) ≤ γ1(t, τ).

51

Fig. 4.2: Surfaces for α2 and γ2. For any fixed t ∈ I, curves along the dark surface in the τ
direction α2(t, ·) and curves along the light surface in the τ direction γ2(t, ·) are all ordered.
In fact, for any (t, τ), it is evident that α2(t, τ) ≥ γ2(t, τ).

Furthermore, the state trajectories x1L and x1U descend to the origin. Therefore, a

control is obtained that drives the nonlinear system to the target set. This is shown in

Figure 4.3. In this figure, and subsequent ones, the legend item L corresponds to the

trajectory generated by the lower bounding system; the legend item U corresponds to the

trajectory generated by the upper bounding system; the legend item N corresponds to the

nonlinear trajectory.

52

Fig. 4.3: Trajectories for x1L, x
1
U , and x

1, which is the nonlinear trajectory.

Theorem 4.1 requires ordering on the time domain of interest. Though this condition

is sufficient, this example shows that it cannot be significantly weakened. Using the same

LQR solution to generate uL and uU on a larger time horizon, a breakdown of the ordering

is now seen with t ≈ 1.58 in Figure 4.4. The interpolated x1 trajectory escapes the bounding

curves x1L and x1U at t ≈ 2.3. This is seen in Figure 4.5.

Fig. 4.4: Surfaces for α1 and γ1. With t fixed at approximately 1.58, the curve along the
dark surface in the τ direction α1(t, ·) and the curve along the light surface in the τ direction
γ1(t, ·) cross, and hence, are not ordered.

53

Fig. 4.5: Trajectories for x1L, x
1
U , and x1, which is the nonlinear trajectory. The nonlinear

trajectory escapes the lower and upper envelope curves.

In continuous-time, the theorem serves as an analysis tool: given functions uL and uU

one is able to check if a nonlinear control can be derived from them. However, the synthesis

question of how to generate suitable uL and uU so that the α and γ surfaces do not cross

remains open. The synthesis problem seems best addressed in a discrete-time setting in

which the surface crossing constraint can be embedded in a finite-dimensional optimization

problem. This optimization problem can be formulated as a second-order cone program

(SOCP), which can be solved efficiently. This topic is investigated next.

4.2.2 Discrete-Time Systems and Optimization

Consider a discrete-time, nonlinear system of the form

xk+1 = Axk +Buk + Eη(xk), x0 given (4.20)

with states xk ∈ X ⊂ Rn, controls uk ∈ U ⊂ Rm, and index domain k ∈ I = {0, . . . , N −1}.

There is a single scalar nonlinearity η : X → R satisfying the bounds

∀x ∈ X, ∆L ≤ η(x) ≤ ∆U . (4.21)

54

Discrete-time systems may arise naturally in digital settings or by discretizing continuous-

time systems. Discretization method shown in Section 2.3.1 is used in subsequent examples.

The problem is to determine a Rm-valued control sequence

{uk}N−1
k=0 = {u0, u1, . . . , uN−1} (4.22)

to achieve the following objectives: drive the system to the terminal set Xf while keeping

the state in the state constraint X and the control in the control constraint U . It is assumed

that Xf and X are convex sets. It is assumed that the control set U is the union of convex

sets, i.e.,

U =
⋃
i

Ui, Ui is convex. (4.23)

Note that U may be non-convex and even disconnected.

Consider the auxiliary linear systems

xL,k+1 = AxL,k +BuL,k + E∆L, xL,0 = x0, (4.24)

xU,k+1 = AxU,k +BuU,k + E∆U , xU,0 = x0, (4.25)

which have been generated by replacing the nonlinearity with its bounds. Solutions of these

equations are given by

xL,k = Akx0 +

k−1∑
i=0

Ak−1−i(BuL,i + E∆L), (4.26)

xU,k = Akx0 +
k−1∑
i=0

Ak−1−i(BuU,i + E∆U). (4.27)

Upon defining the Rn-valued quantities

αk,i := Ak−1−i(BuL,i + E∆L), (4.28)

γk,i := Ak−1−i(BuU,i + E∆U), (4.29)

55

solutions of the auxiliary systems may be written more compactly as

xL,k = Akx0 +
k−1∑
i=0

αk,i, (4.30)

xU,k = Akx0 +
k−1∑
i=0

γk,i. (4.31)

For given control sequences {uL,k}N−1
k=0 and {uU,k}N−1

k=0 , the sequences {αk,i}k−1
i=0 and {γk,i}k−1

i=0

become known for every k ∈ {1, . . . , N}.

Definition 4.2. The control sequences {uL,k}N−1
k=0 and {uU,k}N−1

k=0 are “compatible” if for

every k ∈ I there exists i such that uL,k ∈ Ui and uU,k ∈ Ui.

Definition 4.3. Two scalar-valued sequences {fi}N−1
i=0 and {hi}N−1

i=0 are “ordered” if for

every i ∈ I, fi ≤ hi or fi ≥ hi. Equivalently, they are ordered if there exists ℓ ∈ {+1,−1}

such that for every i ∈ I, ℓfi ≤ ℓhi. To simplify notation, it is written as {ℓfi}N−1
i=0 ≤

{ℓhi}N−1
i=0 . Two vector-valued sequences {fi}N−1

i=0 and {hi}N−1
i=0 are “ordered” if for every

j ∈ {1, . . . , n} there exists ℓj ∈ {+1,−1} such that {ℓjf ji }
N−1
i=0 ≤ {ℓjhji}

N−1
i=0 . In other

words, two vector-valued sequences are ordered if their components are ordered sequences.

Note that all components do not have to be ordered the same.

Lemma 4.2. Let {fi}N−1
i=0 and {hi}N−1

i=0 be scalar-valued sequences. Let ℓ ∈ {+1,−1}.

{ℓfi}N−1
i=0 ≤ {ℓhi}N−1

i=0 =⇒ ℓ
N−1∑
i=0

fi ≤ ℓ
N−1∑
i=0

hi (4.32)

Corollary 4.2. Let {fi}N−1
i=0 and {hi}N−1

i=0 be as in Lemma 4.2. Let {wi}N−1
i=0 be a scalar-

valued sequence taking values in [0, 1]. Let gi = (1 − wi)fi + wihi. Let ℓ ∈ {+1,−1}.

Then

{ℓfi}N−1
i=0 ≤ {ℓgi}N−1

i=0 ≤ {ℓhi}N−1
i=0

=⇒ ℓ

N−1∑
i=0

fi ≤ ℓ

N−1∑
i=0

gi ≤ ℓ

N−1∑
i=0

hi

(4.33)

56

The following theorem provides sufficient conditions for a nonlinear control to be in-

terpolated from control sequences associated with the auxiliary linear systems.

Theorem 4.2. Let {uL,k}N−1
k=0 and {uU,k}N−1

k=0 be compatible control sequences achieving

the control objectives for the auxiliary systems in Equations (4.24) and (4.25), respectively.

Let αk,i and γk,i be given by Equations (4.28) and (4.29), respectively. If for every k ∈

{1, . . . , N} the Rn-valued sequences {αk,i}k−1
i=0 and {γk,i}k−1

i=0 are ordered, then the control

sequence {uk}N−1
k=0 achieves the control objective for the nonlinear system in Equation (4.20)

with uk = (1− wk)uL,k + wkuU,k and wk = (η(xk)−∆L)/(∆U −∆L).

Proof. For any sequence {wk}N−1
k=0 with elements in the set [0, 1], the linear system

xk+1 = Axk +B[(1− wk)uL,k + wkuU,k]

+ E[(1− wk)∆L + wk∆U]

(4.34)

has a solution given by

xk = Akx0 +
k−1∑
i=0

(1− wi)αk,i + wiγk,i. (4.35)

Upon defining the Rn-valued quantity

βk,i := (1− wi)αk,i + wiγk,i, (4.36)

the solution may be written more compactly as

xk = Akx0 +
k−1∑
i=0

βk,i. (4.37)

If for every k ∈ {1, . . . , N} the Rn-valued sequences {αk,i}k−1
i=0 and {γk,i}k−1

i=0 are ordered,

then it follows from Definition 4.3, Lemma 4.2, and Corollary 4.2 that for every k ∈

{1, . . . , N} and j ∈ {1, . . . , n} there exists ℓkj ∈ {+1,−1} such that

{ℓkjαj
k,i}

k−1
i=0 ≤ {ℓkjβjk,i}

k−1
i=0 ≤ {ℓkjγjk,i}

k−1
i=0 . (4.38)

57

Consequently, summations of the sequences are ordered in the same way. For every k ∈

{1, . . . , N},

ℓkj

k−1∑
i=0

αj
k,i ≤ ℓkj

k−1∑
i=0

βjk,i ≤ ℓkj

k−1∑
i=0

γjk,i. (4.39)

Adding ℓkjA
kx0 to each, it follows that for every k ∈ {1, . . . , N}

ℓkjx
j
L,k ≤ ℓkjx

j
k ≤ ℓkjx

j
U,k. (4.40)

That is, the x sequence is always between the xL and xU sequences. From convexity of X

and Xf , it is concluded that for every k ∈ I, xk ∈ X and xN ∈ Xf . Upon choosing wk such

that η(xk) = (1 − wk)∆L + wk∆U and uk = (1 − wk)uL,k + wkuU,k, the original nonlinear

system in Equation (4.20) is obtained. Lastly, it follows from the compatibility condition

stated in Definition 4.2 that for every k ∈ I there exists i such that uL,k ∈ Ui and uU,k ∈ Ui.

Because uk is obtained by a convex combination of uL,k and uU,k and because Ui is convex,

it follows that uk ∈ Ui. This completes the proof. □

The ordering and compatibility conditions in Theorem 4.2 may be incorporated as

constraints in an optimization problem, which can be solved to generate suitable control

sequences {uL,k}N−1
k=0 and {uU,k}N−1

k=0 . Once these are known, the nonlinear control may be

interpolated. The ordering condition can be simplified so that the same ordering holds for

all times k, and this is observable in the upcoming examples. This eliminates the need for

the integer variables ℓkj and reduces the computational complexity of the problem. Given an

ordering, the optimization problem is used to prove feasibility of the ordering and generate

the bounding controls; it is not used to find an ordering. Provided the sets Xf , X, and U

are convex second-order cones, the resulting optimization problem is a SOCP. Provided U

is not convex but each Ui is a convex second-order cone, the resulting optimization problem

is a mixed-integer SOCP (MI-SOCP). This is illustrated in the following three sections in

which engineering problems are solved.

58

Van der Pol Oscillator

In this first example, the Van der Pol oscillator is considered. The oscillator originally

served as a model for an electrical circuit with a triode valve. It has later appeared in

other applications such as biomedical engineering, power systems, combustion processes,

and robotics [93]. It also serves as a classic example in nonlinear systems and control [2].

The Van der Pol oscillator has a similar structural form to the Duffing oscillator, which has

been used to model various engineering systems including microelectromechanic systems

(MEMS) [94]. The continuous-time Van der Pol equations are

ẋ1 = x2, ẋ2 = −x1 + ϵx2 − ϵx2x
2
1 + u. (4.41)

Following the discretization approach outlined in Section 2.3.1 with a time step of 0.05

seconds and ϵ = 0.1, the discrete-time Van der Pol oscillator is (to four decimals)

xk+1 =

 0.9987 0.0501

−0.0501 1.0038

xk +
0.0013
0.0501

uk
+

−0.0001

−0.0050

x2,kx21,k.
(4.42)

The quantities A, B, E, and η are readily identified, and this system is consistent with

that in Equation (4.20). The goal is to drive the system from its initial condition x0 =

[12 m,−1 m/s]⊤ to the origin in one second (N = 21). The control magnitude is bounded

by 1.4 m/s2. The remaining problem data are specified to be

Xf = {0}, X = [0, 12]× [−1, 0]

U = [−1.4, 1.4], ∆L = −1
4 , ∆U = 0,

∀k ∈ {1, . . . , N}, ℓk1 = 1, ℓk2 = −1.

(4.43)

By choosing X in this way, the states will not overshoot their final state. To find control

solutions to the auxiliary linear systems that satisfy the conditions in Theorem 4.2, the

59

following finite-dimensional optimization problem is posed and solved using YALMIP [92]

and Gurobi’s SOCP solver [90].

min
∑N−1

k=0 ||uL,k||2 + ||uU,k||2 (4.44a)

subj. to

xL,k+1 = AxL,k +BuL,k + E∆L, k ∈ I (4.44b)

xU,k+1 = AxU,k +BuU,k + E∆U , k ∈ I (4.44c)

xL,0 = xU,0 = x0, xL,N = xU,N = 0 (4.44d)

1
2 ≥ x1L,k, x

1
U,k ≥ 0 ≥ x2L,k, x

2
U,k ≥ −1, k ∈ I (4.44e)

1.4 ≥ uL,k, uU,k ≥ −1.4, k ∈ I (4.44f)

αk,i = Ak−1−i(BuL,i + E∆L), (k, i) ∈ S (4.44g)

γk,i = Ak−1−i(BuU,i + E∆U), (k, i) ∈ S (4.44h)

α1
k,i ≤ γ1k,i, (k, i) ∈ S (4.44i)

α2
k,i ≥ γ2k,i, (k, i) ∈ S (4.44j)

The objective function in (4.44a) helps regularize, or smooth, the controls but it is not

required. The auxiliary linear systems appear in (4.44b) and (4.44c). The initial and final

conditions are in (4.44d). The state constraints are in (4.44e) and the control constraints

are in (4.44f). With S being the set of k ∈ {1, . . . , N} and i ∈ {0, . . . , k − 1}, the α and γ

sequences are defined in (4.44g) and (4.44h). Lastly, the ordering constraints corresponding

to (ℓk1, ℓk2) = (+1,−1) for each k are in (4.44i) and (4.44j). Gurobi solves this problem in

0.01 seconds on a 2019 iMac with 3.7 GHz 6-core Intel Core i5 processor. This proves the

given ordering is feasible and the nonlinear control is interpolatable from uL,k and uU,k. As

a minor remark, the optimization problem remains feasible for (ℓk1, ℓk2) equal to (+1,+1),

(−1,−1), and (−1,+1) for each k. The resulting state trajectories are shown in Figure 4.6.

The control trajectory is shown in Figure 4.7. The figures show that the state reaches the

origin and the control satisfies the bounds.

60

0 0.1 0.2 0.3 0.4 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

x1 (m)

x
2
(m

/s
)

Fig. 4.6: The state trajectory begins at the bottom right and terminates at the origin in
the upper left. The transfer time is one second.

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

t (s)

u
(m

/s
2
)

Fig. 4.7: The controls generated by the SOCP are the gray curves. They bound the black
curve, which is the nonlinear control. The nonlinear control is obtained by interpolating
between the gray curves.

61

To illustrate the technique on a problem with non-convex control constraints, a quan-

tized control is sought that achieves the same objectives. The control is only permitted

to take integer values between -3 and 3. A quantization threshold Q is set at 0.03. The

threshold allows for small deviations in the control. For instance, because uk = 2.02 is

between 2−Q = 1.97 and 2 +Q = 2.03, it is an allowable control value. As before, to find

control solutions to the auxiliary linear systems that satisfy the conditions in Theorem 4.2,

a finite-dimensional optimization problem is posed. This time, however, because of the inte-

ger nature of the control, the resulting problem is a mixed-integer SOCP (MI-SOCP). The

problem is posed and solved using YALMIP [92] and Gurobi’s MI-SOCP solver [90]. The

optimization problem is similar to that in Equation (4.44). The only change is to replace

the control constraint in Equation (4.44f) with the following two constraints.

bk ∈ {−3,−2,−1, 0, 1, 2, 3}, k ∈ I (4.45a)

bk −Q ≤ uL,k, uU,k ≤ bk +Q, k ∈ I (4.45b)

Gurobi solves this problem in 0.17 seconds on a 2019 iMac with 3.7 GHz 6-core Intel Core i5

processor. The resulting state trajectories are shown in Figure 4.8. The control trajectory

is shown in Figure 4.9. The figures show that the state reaches the origin and the control

satisfies the quantization constraint.

62

0 0.1 0.2 0.3 0.4 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

x1 (m)

x
2
(m

/s
)

Fig. 4.8: The state trajectory begins at the bottom right and terminates at the origin in
the upper left. The transfer time is one second.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t (s)

u
(m

/s
2
)

Fig. 4.9: The controls generated by the MI-SOCP are the gray curves. They bound the black
curve, which is the nonlinear control. The nonlinear control is obtained by interpolating
between the gray curves. It takes values of (approximately) one and two.

63

Pendulum Control with DC Motor

In the second example, a pendulum that is being driven by a DC motor [1, 95] is

considered. The pendulum consists of a massless rigid rod which is connected directly to

the motor shaft in one end and having a mass in the other end. The continuous-time

equations for this system are

θ̇

ω̇

İ

 =

ω

− mgℓ
mℓ2+J

sin θ − β
mℓ2+J

ω + Kt
mℓ2+J

I

−Kb
L ω − R

L I +
1
LV

 , (4.46)

where θ is the angular position of the pendulum in radians measured from the downward

position, ω is the angular velocity of the pendulum in radians per second, and I is the

armature current of the DC motor in amperes. The motor armature voltage in volts is V ;

the voltage is the control input. The constant parameters are explained in Table 4.1. The

table also shows the numerical values used in this example.

Table 4.1: Parameter explanations and values [1].

Symbol Explanation Value

m Pendulum mass 0.1 kg

g Gravity 9.81 m/s2

ℓ Pendulum length 0.24 m

β Damping constant 0.01 Nms

J Inertia of the motor 2.02×10−5 kgm2

Kt Motor torque 0.052 Nm/A

Kb Motor back EMF 0.052 V/rad/s

L Armature inductance 1.8×10−3 H

R Armature resistance 1.3 Ω

64

Upon defining the state vector as x = [θ, ω, I]⊤ and the control input as u = V , the

above continuous-time equations can be written more concisely as

ẋ =

0 1 0

0 − β
mℓ2+J

Kt
mℓ2+J

0 −Kb
L −R

L

x+

0

0

1
L

u+

0

− mgℓ
mℓ2+J

0

 sinx1. (4.47)

Following the discretization approach in Section 2.3.1 with a time step of 0.05 seconds, the

discrete-time equations are

xk+1 =

1 0.0475 0.0006

0 0.9012 0.0113

0 −0.0362 −0.0005

xk +

0.0079

0.3200

0.7568

uk

+

−0.0492

−1.9347

0.0753

 sinx1,k.

(4.48)

The quantities A, B, E, and η are readily identified, and the system is consistent with that

in Equation (4.20). The goal is to drive the system from its initial, downward state θ0 = 0

rad and ω0 = 0 rad/s to the fixed, horizontal state of θN = π
2 rad and ωN = 0 rad/s. The

initial current is I0 = 0 amperes. The final current IN is free. The control magnitude is

bounded by 8 volts. The remaining problem data are specified to be

Xf = {π
2 } × {0} × R, X = [0, π2]× R× R,

U = [−8, 8], ∆L = 0, ∆U = 1,

∀k ∈ {1, . . . , N}, ℓk1 = −1, ℓk2 = −1, ℓk3 = 1.

(4.49)

To find control solutions to the auxiliary linear systems that satisfy the condition in Theo-

rem 4.2, N is set to 15 and a finite-dimensional optimization problem is posed and solved

using YALMIP [92] and Gurobi’s SOCP solver [90]. The problem structure is similar to

the one presented in Equation (4.44), and for this reason, it is not given explicitly. Gurobi

65

0 π
6

π
3

π
2

0

1

2

3

θ (rad)

ω
(r
ad

/
s)

Fig. 4.10: The state trajectory begins at the origin in the bottom left and terminates at the
bottom right of the figure corresponding to the horizontal position of the pendulum.

solves this problem in less than 0.001 seconds on a 2019 iMac with 3.7 GHz 6-core Intel

Core i5 processor. This proves the given ordering is feasible and the nonlinear control is

interpolatable from uL,k and uU,k. The resulting state trajectories are shown in Figure 4.10.

The control trajectory is shown in Figure 4.11. The figures show that the state reaches the

terminal set and the control satisfies the bounds.

Automatic Lane Shift Maneuver

In the final example, let us consider a lane shift maneuver of a vehicle moving at

constant speed. The continuous-time equations for a continuous-steering car are [96]

ȧ

ẏ

θ̇

ϕ̇

=

V cos θ

V sin θ

V
L tanϕ

uϕ

(4.50)

where a is the along-track (horizontal) position of the vehicle, y is the cross-track (vertical)

position of the vehicle, θ is the orientation of the vehicle from the positive a-axis, and ϕ is

the turning angle of the vehicle. V is the constant speed of the vehicle, L is the wheelbase

66

0 0.2 0.4 0.6

−2

0

2

4

6

8

t (s)

V
(v
ol
ts
)

Fig. 4.11: The controls generated by the SOCP are the gray curves. They bound the black
curve, which is the nonlinear control. The nonlinear control is obtained by interpolating
between the gray curves. Observe that the upper gray curve saturates at the control limit
of 8 volts.

of the vehicle, and uϕ is the control input.

A lane shift maneuver is one in which the cross-track position y measured along the

vertical axis is shifted. With this maneuver in mind, the along-track position a is free and

decoupled from the problem; hence, the ȧ equation is dropped in the subsequent analysis.

Because the speed of the vehicle V is constant, a new variable ω = V/L tanϕ is introduced.

With the state vector x = [y, θ, ω]⊤, the continuous-time system is

ẏ

θ̇

ω̇

 =

2
√
2V θ/π + V

(
sin θ − 2

√
2θ/π

)
ω

u

 . (4.51)

Observe that in the ẏ equation, a linear term 2
√
2V θ/π has been added and subtracted.

For vehicle orientations θ in the set [−π
4 ,

π
4], this represents a linear approximation to the

sin θ term and reduces the effect of the nonlinearity. The new control variable is u =

V/L sec2(ϕ)uϕ.

67

Following the discretization approach in Section 2.3.1 with a time step of 0.02 seconds,

speed of V = 20 m/s, and wheelbase of L = 3 m, the discrete-time system is

xk+1 =

1.0000 0.3601 0.0036

0 1.0000 0.0200

0 0 1.0000

xk +

0.0000

0.0002

0.0200

uk

+

0.4000

0

0

(
sin(x2,k)−

2
√
2

π
x2,k

) (4.52)

Again, the quantities A, B, E, and η are easily identified, and the system is consistent

with that in Equation (4.20). Because the linear term has been added and subtracted, the

nonlinear term is now sin(x2,k)− 2
√
2

π x2,k, which is bounded in magnitude by 0.1486. Upon

restricting the turning angle ϕ to the set [−π
4 ,

π
4], magnitude of the third state becomes

bounded by V
L = 20

3 . The control magnitude is bounded by 10 rad/s2. The goal is to

perform a plus 5 m lane shift in one second. With these requirements in place, the problem

data are specified as

Xf = {5} × {0} × {0}, X = R× [−π
4 ,

π
4]× [−20

3 ,
20
3],

U = [−10, 10],∆L = −0.1486,∆U = 0.1486,

∀k ∈ {1, . . . , N}, ℓk1 = 1, ℓk2 = −1, ℓk3 = 1.

(4.53)

To find control solutions to the auxiliary linear systems that satisfy the condition in Theo-

rem 4.2, a finite-dimensional optimization problem is posed and solved using YALMIP [92]

and Gurobi’s SOCP solver [90]. The problem structure is similar to the one presented in

Equation (4.44), and for this reason, it is not given explicitly. Gurobi solves this problem

in less than 0.001 seconds on a 2019 iMac with 3.7 GHz 6-core Intel Core i5 processor.

This proves the given ordering is feasible and the nonlinear control is interpolatable from

uL,k and uU,k. The cross-track position of the vehicle is shown in Figure 4.12. The control

68

trajectory is shown in Figure 4.13. The figures show that the lane change is achieved and

the control satisfies the bounds.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

t (s)

y
(m

)

Fig. 4.12: The y-position of the vehicle as a function of time.

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

t (s)

u
(r
ad

/s
2
)

Fig. 4.13: The controls generated by the SOCP are the gray curves. They bound the black
curve, which is the nonlinear control. The nonlinear control is obtained by interpolating
between the gray curves. All control functions remain between -10 and +10 rad/s2.

69

4.3 Systems with Additive Multi-dimensional Nonlinearities

This section generalizes the sufficient condition from previous section to discrete sys-

tems with additive multi-dimensional nonlinearities in the presence of convex state and

control constraints. This theoretical result leads to two numerical approaches for solv-

ing the nonlinear constrained problem: one requires solving a single convex optimization

problem and the other requires solving a sequence of convex optimization problems.

The techniques are applied to two spacecraft trajectory design and control problems:

1) a spacecraft is constrained to stay a certain distance from another space object in orbit

while moving from one location to another in a finite time and 2) a spacecraft is to change its

attitude in a finite time. The first problem may arise in the inspection phase of an on-orbit

servicing (OOS) mission [97]. For such a mission, the controlled spacecraft must stay far

enough from the target space object for safety reasons but also close enough to efficiently

perform the inspection. In general, OOS missions are needed to either repair a damaged

spacecraft or to extend the active lifetime of a spacecraft. An example of a spacecraft that

has had multiple OOS missions to service it is the Hubble Space Telescope [98]. Beyond

OOS missions, there are other types of missions where this type of problem could arise such

as asteroid proximity operations [99,100].

The finite time attitude control problem arises in optical applications where a picture

of a space object is to be taken at a certain time [101]. There may, for example, be a short

time window when lighting of a space object is sufficient due to the relative positions of the

space object, the controlled spacecraft, and the sun [102,103]. The problem could also arise

when a spacecraft wants to do an impulsive or so-called “delta-v” maneuver [104] and its

thrusters need to be oriented in the correct direction.

The remainder of the section is structured as follows. Section 4.3.1 describes the

problem of interest, which is a nonlinear control problem with convex state and control

constraints, and proves sufficient conditions (see Theorem 4.3) for the problem to be solvable

in a single convex program. A sequential or resetting approach is then outlined for cases

in which the sufficient conditions are not satisfied. The theoretical results and associated

70

algorithms are applied to a constrained relative orbital motion problem in Section 4.3.2 and

an attitude control problem in Section 4.3.3.

4.3.1 Problem and Main Result

This section describes the problem of interest, provides a sufficient condition for its

solution as a single convex program, and describes a practical algorithm for implementing

the theoretical results. Consider a nonlinear system of the form

ẋ = Ax+Bu+ Eη(x), x0 = x(t0) given (4.54)

where A ∈ Rn×n is the system matrix, B ∈ Rn×m is the control-influence matrix, and

E ∈ Rn×p is a mapping for the nonlinearity η : D → Rp. The system is defined on a spatial

domain D ⊂ Rn and time domain I = [t0, tf] where t0 is the initial time and tf is the

final time. The given initial condition is x0 = x(t0). It is assumed that the range of the

nonlinearity η is bounded by a convex polytope as

∀x ∈ D, η(x) ∈ co{δ1, δ2, . . . , δq} ⊂ Rp (4.55)

where δi ∈ Rp are the vertices of the polytope and ‘co’ denotes the convex hull. The

trajectory design and control problem is to drive the state to the terminal constraint set

Xf ⊂ D while maintaining x ∈ X ⊂ D and u ∈ U ⊂ Rm. All of the constraint sets Xf , X,

and U are assumed to be convex. The polytopic range assumption is satisfied when X is

compact and η is continuous since each component of η is guaranteed to attain a minimum

and maximum. These minima and maxima may then serve as vertices of the polytope.

Note that this is a feasibility problem; no objective function is present.

Though motivated by continuous-time dynamics in aerospace applications, all analysis

is conducted on an analogous discrete-time system

x[k + 1] = Adx[k] +Bdu[k] + Edη(x[k]), x[0] = x(t0) given (4.56)

71

where the discrete-time index is k ∈ Id = {0, . . . , N − 1}. A significant portion of the anal-

ysis in this section can be done in either continuous or discrete-time. However, for use as a

control synthesis tool using finite-dimensional optimization, it is best to use a discrete-time

formulation. To the author’s knowledge, all results on lossless convexification of optimal

control problems are based on continuous-time formulations and measure-theoretic consid-

erations. As such, the ‘lossless’ guarantees do not hold up in the associated discrete-time

algorithms. The use of discrete-time dynamics in the formulation is superior in this re-

spect. A particular discretization strategy used in the forthcoming examples is provided in

Section 2.3.1.

Now consider the auxiliary systems

xi[k + 1] = Adxi[k] +Bdui[k] + Edδi, xi[0] = x0, i ∈ {1, . . . , q} (4.57)

where in the ith system the nonlinearity η is replaced by the δi vertex of its bounding

polytope. Solutions to these linear time-invariant (LTI) difference equations are, for every

k ∈ {1, . . . , N}, given by

xi[k] = Ak
dx0 +

k−1∑
j=0

Ak−1−j
d (Bdui[j] + Edδi)

= Ak
dx0 +

k−1∑
j=0

αi[k, j]

(4.58)

where for every k ∈ {1, . . . , N} and j ∈ {0, . . . , k − 1}

αi[k, j] = Ak−1−j
d (Bdui[j] + Edδi) . (4.59)

For a given sequence {ui[k]}N−1
k=0 , the sequence {αi[k, j]}k−1

j=0 becomes known. This fact

motivates the following theorem.

Theorem 4.3. For each i ∈ {1, . . . , q}, let {ui[k]}N−1
k=0 be a control sequence that solves the

trajectory design and control problem for the ith auxiliary system. Let αi[k, j] be given

72

by (4.59). If for every k ∈ {1, . . . , N} and l ∈ {1, . . . , n} there exist indices ⋎,⋏ ∈

{1, 2, . . . , q} such that for every i ∈ {1, . . . , q} and j ∈ {0, . . . , k − 1}

αl
⋎[k, j] ≤ αl

i[k, j]

αl
⋏[k, j] ≥ αl

i[k, j]

(4.60)

then the sequence {u[k]}N−1
k=0 with u[k] = u1[k]λ1[k] + . . . + uq[k]λq[k] solves the trajectory

design and control problem for the nonlinear system where λi[k] satisfies the interpolation

constraint

η(x[k]) = δ1λ1[k] + . . .+ δqλq[k] (4.61)

and the convex combination constraints

q∑
i=1

λi[k] = 1, 0 ≤ λi[k] ≤ 1. (4.62)

Proof. For every k ∈ Id, define the following quantities.

U [k] = [u1[k], . . . , uq[k]]

∆ = [δ1, . . . , δq] (4.63)

λ[k] = [λ1[k], . . . , λq[k]]
⊤

For any sequence {λ[k]}N−1
k=0 satisfying (4.62), the linear system

x[k + 1] = Adx[k] +BdU [k]λ[k] + E∆λ[k] (4.64)

73

has a unique solution, for every k ∈ {1, . . . , N}, given by

x[k] = Ak
dx0 +

k−1∑
j=0

Ak−1−j
d (BU [j] + E∆)λ[j]

= Ak
dx0 +

k−1∑
j=0

[
α1[k, j], . . . , αq[k, j]

]
λ[j] (4.65)

= Ak
dx0 +

k−1∑
j=0

β[k, j]

where for every k ∈ {1, . . . , N} and j ∈ {0, . . . , k − 1}

β[k, j] =

[
α1[k, j], . . . , αq[k, j]

]
λ[j]. (4.66)

Because β[k, j] is defined as a convex combination of α1[k, j], . . . , αq[k, j], it is known that

each component l ∈ {1, 2, . . . , n} of β[k, j] is constrained based on (4.60) as

∀k ∈ {1, . . . , N}, ∀j ∈ {0, . . . , k − 1}, αl
⋎[k, j] ≤ βl[k, j] ≤ αl

⋏[k, j]. (4.67)

Consequently, their sums are ordered in the same way.

∀k ∈ {1, . . . , N},
k−1∑
j=0

αl
⋎[k, j] ≤

k−1∑
j=0

βl[k, j] ≤
k−1∑
j=0

αl
⋏[k, j]. (4.68)

Adding the lth component of Ak
dx0 to each, it follows that for every k ∈ {1, . . . , N}

xl⋎[k] ≤ xl[k] ≤ xl⋏[k]. (4.69)

That is, elements of the sequence {xl[k]}k=N
k=0 are always between elements of the sequences

{xl⋎[k]}k=N
k=0 and {xl⋏[k]}k=N

k=0 . From convexity of X and Xf , it is concluded that for every

k ∈ {0, . . . , N} the state x[k] ∈ X and x[N] ∈ Xf .

Upon choosing, for every k ∈ Id, λ[k] such that (4.61) is satisfied and u[k] = U [k]λ[k],

the original discrete-time system (4.56) is obtained. By convexity of U , the interpolated

74

control u[k] ∈ U . That is, the sequence {u[k]}N−1
k=0 solves the nonlinear trajectory design

and control problem.

Conceptually, it is convenient to think of the controls and nonlinearities as non-homoge-

neous forcing terms whose effects are captured in αi[k, j] – see (4.59). The theorem is

requiring through (4.60) that it be possible for the non-homogeneous effects to be bounded

componentwise by only two of the possibly many αi[k, j] terms. For this reason, (4.60) is

referred as the ‘ordering constraint’. It is this restriction, as detailed in the proof, that allows

the nonlinear trajectories to be bounded by the linear ones thus allowing interpolation for

the nonlinear controls.

Next, two techniques to design trajectories for nonlinear systems that are both based on

Theorem 4.3 are introduced. The first technique sets (4.60) as a constraint in an optimiza-

tion problem. Including this constraint does not add any nonlinearities to the optimization

problem. However, it does require the control engineer to pre-determine what the ⋎ and

⋏ are for each l and each k. In other words, the lower and upper limits on α can vary by

the element of α as well by the time instance k but must be pre-determined by the control

engineer in this formulation. In the forthcoming examples, this is called the “constrained

approach.”

The second technique computes a trajectory for a full time domain Id and then checks

if the condition (4.60) is violated. If it is, the problem is reset at the first k ∈ Id where the

condition is violated. Not introducing the constraint (4.60) into the optimization problem

makes solving the optimization problem faster, but this technique does require computing

the controller multiple times with a shrinking time horizon (similar to MPC). This tech-

nique also does not require the control engineer to pre-determine ⋎ or ⋏, which can be a

challenging task especially for higher dimensional systems. The algorithm for this technique

is given in Algorithm 2 and is referred to as the “resetting approach.”

75

Algorithm 2 Resetting Approach

Require: x0, N,Ad, Bd, Ed,∆, η
Ensure: u
1: Set K = 0 and x[0] = x0.
2: while K < N − 1 do
3: For each k ∈ {K,K + 1, . . . , N − 1} find u1[k], u2[k], . . . , uq[k].
4: for k = K to N − 1 do
5: For each j ∈ {K,K + 1, . . . , k} compute α1[k, j], α2[k, j], . . . , αq[k, j].
6: Determine α⋎[k] and α⋏[k].
7: if ∃j ∈ {K,K + 1, . . . , k} such that α[k, j] < α⋎[k] or α[k, j] > α⋏[k] then
8: Set K = k.
9: break for

10: end if
11: Use (4.62) to get λ[k].
12: Compute nonlinear control as u[k] = U [k]λ[k].
13: Use u[k] in (4.56) to get x[k + 1].
14: end for
15: end while

4.3.2 Spherically Constrained Relative Motion Trajectory Design

The approaches developed in Section 4.3.1 are now applied to a spherically constrained

relative orbital motion problem. Variations of the problem have motivated a recent lossless

convexification [33] and nonlinear dynamical analysis [105], which identified periodic and

chaotic motion.

The relative motion of two spacecraft in proximity to each other in low earth orbit is

described by the Clohessy-Wiltshire (CW) equations [106] as

ẏ = v

v̇ =M1y +M2v + τ

(4.70)

where y ∈ R3 is the relative position of the spacecraft in the local vertical local horizontal

(LVLH) frame, v ∈ R3 is the relative velocity of the spacecraft in the LVLH frame, and

76

τ ∈ R3 is the thrust-to-mass ratio. The matrices M1 and M2 are

M1 =

3ω2 0 0

0 0 0

0 0 −ω2

 , M2 =

0 2ω 0

−2ω 0 0

0 0 0

 (4.71)

where the constant ω ∈ R is the mean motion of the reference orbit. To prevent the vehicles

from colliding while keeping them close together, the relative position is constrained to a

sphere of radius R, i.e., ||y|| = R. Because of this constraint, use of a spherical coordinate

system is convenient. The transformation from Cartesian to spherical coordinates is given

as
y1

y2

y3

 = r

cos(ϕ) cos(θ)

cos(ϕ) sin(θ)

sin(ϕ)

 (4.72)

where r ∈ R is the radial distance of the spacecraft from the target space object, which

in the case of a spherical constraint is constant and equal to R. The spherical angles are

ϕ ∈ (−π/2, π/2) and θ ∈ [0, 2π]. An illustration of the coordinate transformation is shown

in Figure 4.14.

The thrust-to-mass ratio may be transformed from Cartesian to spherical coordinates

as
ur

uθ

uϕ

 =

cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(ϕ)

− sin(θ) cos(θ) 0

− sin(ϕ) cos(θ) − sin(ϕ) sin(θ) cos(ϕ)

τ1

τ2

τ3

 . (4.73)

Using the the defined transformations, the CW dynamics in the spherical coordinate system

are

r̈ = rϕ̇2 + rω2
(
3 cos(ϕ)2 cos(θ)2 − sin(θ)2

)
+ rθ̇2 cos(ϕ)2 + 2ωrθ̇ cos(ϕ)2 + ur (4.74a)

θ̈ = 2(θ̇ + ω)(ϕ̇ tan(ϕ)− ṙ/r)− 3ω2 sin(θ) cos(θ) + uθ/ (r cos(ϕ)) (4.74b)

ϕ̈ = −2ϕ̇ṙ/r − sin(2ϕ)(θ̇ + ω)2/2− 3ω2 sin(ϕ) cos(ϕ) cos2(θ) + uϕ/r. (4.74c)

77

x1

x2

x3

θ

ϕ

R

Fig. 4.14: Coordinate Transformation of Relative Coordinates.

Keeping in mind that the constraint is to stay on a spherical surface centered at the

target space object, it is known that r = R, ṙ = 0, and r̈ = 0. Using this information,

(4.74a) can be solved for the radial control ur to get

ur = −R
(
ϕ̇2 + ω2(3 cos(ϕ)2 cos(θ)2 − sin(θ)2) + θ̇2 cos(ϕ)2 + 2ωθ̇ cos(ϕ)2

)
. (4.75)

The spherical controls uθ and uϕ may then take any values, and the relative distance between

the spacecraft will remain R. Also since the r̈ equation is constant, it does not need to be

considered for the dynamics and the simplified equations for θ̈ and ϕ̈ with r = R and ṙ = 0

are

θ̈ = 2(θ̇ + ω)ϕ̇ tan(ϕ)− 3ω2 sin(θ) cos(θ) + uθ/ (R cos(ϕ))

ϕ̈ = − sin(2ϕ)(θ̇ + ω)2/2− 3ω2 sin(ϕ) cos(ϕ) cos2(θ) + uϕ/R.

(4.76)

78

Now if a new control vector is defined as u = [uθ/ cos(ϕ), uϕ]
⊤ and a state vector as x =

[θ, ϕ, θ̇, ϕ̇]⊤, the above equations can be written in the following form

ẋ =

02×2 I2×2

02×2 02×2

x+
1

R

02×2

I2×2

u

+

02×2

2(θ̇ + ω)ϕ̇ tan(ϕ)− 3ω2 sin(θ) cos(θ)

− sin(2ϕ)(θ̇ + ω)2/2− 3ω2 sin(ϕ) cos(ϕ) cos2(θ)

 .
(4.77)

This nonlinear system is in the form of (4.54) with the system matrices being

A =

02×2 I2×2

02×2 02×2

 , B =
1

R

02×2

I2×2

 , E =

02×2

I2×2

 (4.78)

and the nonlinear function η given by

η(θ, ϕ, θ̇, ϕ̇) =

 2(θ̇ + ω)ϕ̇ tan(ϕ)− 3ω2 sin(θ) cos(θ)

− sin(2ϕ)(θ̇ + ω)2/2− 3ω2 sin(ϕ) cos(ϕ) cos2(θ)

 . (4.79)

For numerical purposes, the radius R of the sphere is 100 m and the mean motion ω is 4

rad/hr, which corresponds to a low earth orbit with period π/2 hr. The dynamics in (4.77)

are discretized according to the procedure in Section 2.3.1 with ∆t = 0.05 hr to get

Ad =

1 0 0.05 0

0 1 0 0.05

0 0 1 0

0 0 0 1

, Bd =

0.0125 0

0 0.0125

0.5 0

0 0.5

× 10−3, Ed =

0.00125 0

0 0.00125

0.05 0

0 0.05

.

(4.80)

The initial relative position of the spacecraft is defined as θ0 = 3π/4 rad and ϕ0 = π/4 rad

with initial relative velocity of zero. The desired final relative position of the spacecraft

is θf = ϕf = 0 rad and the desired final relative velocity is zero. This maneuver is to be

79

completed in 6 hours. With the chosen time step 0.05 hours, N becomes 120. The vertices

for the bounding polytope of the nonlinearity are chosen as (all in rad/hr2)

δ1 =

−35

−42

 , δ2 =

−35

+42

 , δ3 =

+35

−42

 , δ4 =

+35

+42

 . (4.81)

With this in place, Theorem 4.3 may be applied to generate feasible solutions to the non-

linear trajectory design and control problem. First, the “constrained approach” is used

and then the “resetting approach.” Both of the solutions are compared against a solution

that was achieved by solving a non-convex optimization problem using MATLAB’s [91]

fmincon solver. The “constrained” and “resetting” solutions are used as initial guesses for

the non-convex solver.

Constrained Approach

In this approach, the constraints in (4.60) are incorporated into an optimization prob-

lem. The second-order cone programming (SOCP) problem to be solved is

min
u

4∑
i=1

(
N−1∑
k=0

10−12∥ui[k]∥2 + ∥xi[N]− xf∥2
)

(4.82a)

s.t. xi[k + 1] = Adxi[k] +Bdui[k] + Edδi, i = 1, . . . , 4, k = 0, . . . , N − 1 (4.82b)

xi[0] = x0, i = 1, . . . , 4 (4.82c)

Equation (4.60) with⋎ = [4, 4, 4, 4]⊤ and ⋏ = [2, 3, 2, 3]⊤, k = 1, . . . , N (4.82d)

The cost function in (4.82a) has two quadratic terms. The first term penalizes the control

inputs of the auxiliary LTI systems. This term is not needed; it serves to regularize or

smooth the resulting solutions. The second term penalizes error in the final state. Weights

multiplying the terms have been chosen based on their magnitudes. The control inputs for

the auxiliary LTI systems are on the order of 104 whereas the final state error gets very

close to zero so the multiplier for the final state error is chosen to be significantly larger

than that for the control inputs. The dynamics of the auxiliary LTI systems are enforced

80

in (4.82b) with initial conditions in (4.82c). The ordering constraint (4.60) of Theorem 4.3

is enforced in (4.82d). Note that other orderings can be used, and it is not required for one

ordering be enforced at all k. The user is free to choose the ordering.

Solving the optimization problem (4.82) took 1.14 seconds on a laptop with 2.30 GHz

Intel i7 processor using Gurobi [90] in MATLAB [91] through YALMIP [92]. The same

setup was used for all the computations in the following sections as well.

Figure 4.15 shows the relative angular displacement trajectories of the spacecraft and

Figure 4.16 shows the relative angular velocity trajectories of the spacecraft. In the figures,

the linear system trajectories are covered by the actual nonlinear system trajectories, but

the nonlinear system trajectory is between the upper and lower bounds of the linear system

trajectories. From inspection of the magnified inset, it is evident that the final angular

displacements are on the order of 10−4 rad corresponding to a final position error on the

centimeter level.

81

0 1 2 3 4 5 6

−1

0

1

2

t (hr)

θ
(r
ad

)

5.99 6
0

2

4

·10−4

0 1 2 3 4 5 6

−0.5

0

0.5

t (hr)

ϕ
(r
ad

)

5.99 6
0

2

·10−4

Fig. 4.15: Angular displacement trajectories of the spacecraft. The black curves are the
angular displacements of the actual nonlinear system whereas the gray curves are the angular
displacements of the auxiliary linear systems. The dashed line is the desired final position
and the dotted line a solution using a non-convex solver.

82

0 1 2 3 4 5 6

−6

−4

−2

0

2

4

t (hr)

θ̇
(r
ad

/
h
r)

5.997 6
−3

−1.5

0

·10−3

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

t (hr)

ϕ̇
(r
ad

/h
r)

5.99 6
−1

−0.5

0
·10−3

Fig. 4.16: Angular velocity trajectories of the spacecraft. The black curves are the angular
velocities of the actual nonlinear system whereas the gray curves are the angular velocities
of the auxiliary linear systems. The dashed line is the desired velocity at final time and the
dotted line a solution using a non-convex solver.

83

Resetting Approach

In this section, the constrained relative motion problem is solved using the “resetting

approach” described in Algorithm 2. The SOCP problem used to find control solutions in

Line 3 of Algorithm 2 is the same as (4.82) but with (4.82d) removed. The resets are done

as described in Algorithm 2.

The results are shown in Figures 4.17 and 4.18. The results are similar to those shown in

Figures 4.15 and 4.16 except that towards the end of the time horizon, the angular velocity

trajectories of the linear systems diverge from the desired final velocity. The noticeable

difference is that designing this controller requires a solution to 11 SOCP problems as there

were 10 resets due to violations of the ordering constraint in (4.60). On average, solving

each problem required 0.17 seconds for total solve time of 1.87 seconds. The number of

variables in each optimization problem also reduces on each reset as the time horizon gets

shorter.

84

0 1 2 3 4 5 6

−1

0

1

2

t (hr)

θ
(r
ad

)

5.95 6
−2

0

2
·10−3

0 1 2 3 4 5 6

−0.5

0

0.5

t (hr)

ϕ
(r
ad

)

5.95 6
−2

0

2
·10−3

Fig. 4.17: Angular displacement trajectories of the spacecraft. The black curves are the
angular displacements of the actual nonlinear system whereas the gray curves are the angular
displacements of the auxiliary linear systems. The dashed line is the desired final position
and the dotted line a solution using a non-convex solver.

85

0 1 2 3 4 5 6

−6

−4

−2

0

2

4

t (hr)

θ̇
(r
ad

/h
r)

5.95 6

−2

0

2

·10−2

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

t (hr)

ϕ̇
(r
a
d
/
h
r)

5.9 6

−4

0

4
·10−2

Fig. 4.18: Angular velocity trajectories of the spacecraft. The black curves are the angular
velocities of the actual nonlinear system whereas the gray curves are the angular velocities
of the auxiliary linear systems. The dashed line is the desired velocity at final time and the
dotted line a solution using a non-convex solver.

86

4.3.3 Spacecraft Attitude Control

The approaches developed in Section 4.3.1 are now applied to a spacecraft attitude

control problem. To represent the attitude of a spacecraft, a rotation vector θ = αe ∈ R3

is used. The unit vector e ∈ R3 is the Euler rotation axis and α ∈ R is the angular

displacement. To derive the kinematics of the spacecraft attitude, a quaternion q ∈ R4 is

defined representing the spacecraft attitude as [107]

q =

 1
α sin(α/2)θ

cos(α/2)

 . (4.83)

Taking the time derivative leads to

q̇ =

 1
α sin(α/2)θ̇

0

+

(− 1
α2 sin(α/2) +

1
2α cos(α/2)

)
α̇θ

−1
2 sin(α/2)α̇

 . (4.84)

It is also well-known that the quaternion kinematics can be written as [108]

q̇ =
1

2

q4ω + q1:3 × ω

−q⊤1:3ω

 (4.85)

=
1

2

cos(α/2)ω − 1
α sin(α/2)θ × ω

− 1
α sin(α/2)θ⊤ω

 (4.86)

where ω ∈ R3 is the attitude rate of the spacecraft expressed in its body frame. Comparing

the last element of (4.84) and (4.86) gives an expression for α̇ as α̇ = α−1θ⊤ω. Comparing

the first three elements of (4.84) and (4.86), substituting the expression of α̇, and solving

for θ̇ gives

θ̇ =

(
1

α
− 1

2
cot(α/2)

)
1

α
θ⊤ωθ +

1

2
(α cot(α/2)ω + θ × ω) . (4.87)

87

Subtracting and adding α−2θ⊤θω on the right hand side, using the vector triple product,

and noting that α = ∥θ∥ (provided 0 < α < 2π), simplifies the above to [109]

θ̇ = ω +
1

2
θ × ω +

1

∥θ∥2

(
1− ∥θ∥

2
cot(||θ||/2)

)
θ × (θ × ω). (4.88)

The attitude dynamics of the spacecraft can be derived from Euler’s equations [108].

Assuming that the only external torque affecting the system is a control torque τ ∈ R3, the

dynamics are

ω̇ = J−1 (ω × (Jω) + τ) (4.89)

where J is moment of inertia of the spacecraft about its center of mass represented in the

body frame. Defining the state vector as x = [θ⊤, ω⊤]⊤ ∈ R6, equations (4.88) and (4.89)

can be written as

ẋ =

03×3 I3×2

03×3 03×3

x+

03×3

J−1

 τ
+

I3×3 03×3

03×3 J−1

1

2θ × ω + 1
∥θ∥2

(
1− ∥θ∥

2 cot(||θ||/2)
)
θ × (θ × ω)

ω × (Jω)

 .
(4.90)

To simplify the nonlinear effects, it is assumed that the rate vector ω is known from navi-

gation and available for feedback linearization. Upon defining the control τ = u−ω× (Jω),

the nonlinear system is

ẋ =

03×3 I3×2

03×3 03×3

x+

03×3

J−1

u
+

I3×3

03×3

[1
2θ × ω + 1

∥θ∥2

(
1− ∥θ∥

2 cot(||θ||/2)
)
θ × (θ × ω)

]
.

(4.91)

Feedback linearization has the effect of reducing the dimension of the nonlinearity from six

to three, which in turn reduces the dimension of the bounding convex polytope.

88

The nonlinear system in (4.91) is in the form of (4.54) with the system matrices being

A =

03×3 I3×2

03×3 03×3

 , B =

03×3

J−1

 , E =

I3×3

03×3

 (4.92)

and the nonlinear function η given by

η(θ, ω) =
1

2
θ × ω +

1

∥θ∥2

(
1− ∥θ∥

2
cot(||θ||/2)

)
θ × (θ × ω). (4.93)

For numerical purposes, the spacecraft is assumed to have a cylindrical shape with

constant density. The radius of the spacecraft is r = 0.25 m, height h = 0.5 m, and mass

m = 100 kg. The body z-axis is defined to be aligned with the axis of the cylinder. The

moment of inertia matrix is then given as J = diag{Jxx, Jyy, Jzz}, where Jxx = Jyy =

1
4mr

2 + 1
12mh

2 and Jzz = 1
2mr

2. The dynamics in (4.90) are discretized according to the

procedure in Section 2.3.1 with ∆t = 0.05 sec to get

Ad =

1 0 0 0.05 0 0

0 1 0 0 0.05 0

0 0 1 0 0 0.05

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, Bd =

0.343 0 0

0 0.343 0

0 0 0.4

13.7 0 0

0 13.7 0

0 0 16

× 10−3, (4.94)

Ed =

0.05 0 0

0 0.05 0

0 0 0.05

0 0 0

0 0 0

0 0 0

.

89

The initial attitude of the spacecraft is given with an axis of rotation of 1√
3
[1, 1, 1]⊤

and angle 45◦. The desired final attitude is given by an axis of rotation of − 1√
3
[1, 1, 1]⊤ and

angle 90◦. The initial angular velocity of the spacecraft is [5,−10, 15] ◦/s and the desired

final angular velocity is zero. The maneuver is to be done in 6 seconds. With the chosen

time step of 0.05 seconds, N becomes 120. The vertices for the bounding polytope of the

nonlinearity are chosen as (all in rad/s)

δ1 =

−0.1

−0.1

−0.1

 , δ2 =

−0.1

−0.1

+0.1

 , δ3 =

−0.1

+0.1

−0.1

 , δ4 =

−0.1

+0.1

+0.1

 ,

δ5 =

+0.1

−0.1

−0.1

 , δ6 =

+0.1

−0.1

+0.1

 , δ7 =

+0.1

+0.1

−0.1

 , δ8 =

+0.1

+0.1

+0.1

 .
(4.95)

Again, Theorem 4.3 may be applied to generate feasible solutions to the nonlinear trajectory

design and control problem. The “constrained” and “resetting” approaches are compared

against a solution that was achieved by solving a non-convex optimization problem using

MATLAB’s [91] fmincon solver with initial guesses gotten from the “constrained” and

“resetting” solutions.

90

Constrained Approach

In this approach, the constraints in (4.60) are incorporated into an optimization prob-

lem. The second-order cone programming (SOCP) problem to be solved is

min
u

8∑
i=1

(
N−1∑
k=0

10−8∥ui[k]∥2 + ∥xi[N]− xf∥2
)

(4.96a)

s.t. xi[k + 1] = Adxi[k] +Bdui[k] + Edδi, i = 1, . . . , 8, k = 0, . . . , N − 1 (4.96b)

xi[0] = x0, i = 1, . . . , 8 (4.96c)

Equation (4.60) with⋎ = [4, 6, 7, 8, 8, 8]⊤, k = 1, . . . , N (4.96d)

⋏ = [8, 8, 8, 4, 6, 7]⊤, k = 1, . . . , N

Due to different scaling between the auxiliary system control magnitudes and errors between

actual and desired final states compared to the relative motion problem of the previous

section, the weight on the control term is set to 10−8. As before, the control penalty is not

needed but has a regularizing effect. The dynamics of the auxiliary LTI systems are enforced

in (4.96b) with initial conditions in (4.96c). The ordering constraint (4.60) of Theorem 4.3

is enforced in (4.96d).

Solving the SOCP problem took 1.09 seconds. Figure 4.19 shows the attitude of the

spapecraft with the dashed line as the desired final attitude. Figure 4.20 shows the angular

velocity of the spacecraft. It can be seen in these figures that the nonlinear system does

not get exactly to the desired final state but stays between the upper and lower bounding

linear systems. The magnitude of error between the desired final rotation vector and the

final rotation vector of the nonlinear system is 0.107 rad. However, the average magnitude

of error between the desired final rotation vector and the final rotation vectors of the linear

auxiliary systems is 0.217 rad. Since the linear auxiliary systems provide the limits for the

nonlinear system trajectories, better performance is desired and is investigated as part of

the “resetting approach.”

91

0 1 2 3 4 5 6

−1

−0.5

0

0.5

t (s)

θ 1
(r
ad

)

0 1 2 3 4 5 6

−1

−0.5

0

0.5

t (s)

θ 2
(r
ad

)

92

0 1 2 3 4 5 6

−1

−0.5

0

0.5

t (s)

θ 3
(r
ad

)

Fig. 4.19: Attitude of the spacecraft. The black curves are the attitude of the actual
nonlinear system whereas the gray curves are the attitudes of the auxiliary linear system.
The dashed line is the desired final attitude and the dotted line a solution using a non-
convex solver.

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

t (s)

ω
1
(r
ad

/s
)

93

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

t (s)

ω
2
(r
ad

/s
)

0 1 2 3 4 5 6

−0.6

−0.4

−0.2

0

0.2

t (s)

ω
3
(r
ad

)

Fig. 4.20: Angular velocity of the spacecraft. The black curves are the angular velocities
of the actual nonlinear system whereas the gray curves are the angular velocities of the
auxiliary linear systems. The dashed line is the desired angular velocity and the dotted line
a solution using a non-convex solver.

94

Resetting Approach

In this section, the attitude control problem is solved using the “resetting approach”

described in Algorithm 2. The SOCP problem used to find control solutions in Line 3

of Algorithm 2 is the same as (4.96) but with (4.96d) removed. The resets are done as

described in Algorithm 2.

Figure 4.21 shows the attitude of the spacecraft with the dashed line as the desired

final attitude. Figure 4.22 shows the angular velocity of the spacecraft. It can be seen on

these figures that the resetting controller seems to perform significantly better than the

constrained controller in the previous section especially when comparing the errors between

the desired final attitude and the actual final attitude. The magnitude of the error between

the desired final rotation vector and the final rotation vector of the nonlinear system is

2.17×10−3 rad. Even the average magnitude of the error between the desired final rotation

vector and the final rotation vectors of the auxiliary systems is only 2.9×10−3 rad. These are

significantly lower compared to the final attitude errors reached with constrained controller.

Design of this controller required solving 20 SOCP problems with an average solution time

of 0.233 seconds for a total solver time of 4.67 seconds. The resets are also easily noticeable

with the saw blade like linear system trajectories.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

t (s)

θ 1
(r
ad

)

5.95 6
-.91

-.905

95

0 1 2 3 4 5 6
−1

−0.5

0

0.5

t (s)

θ 2
(r
ad

)

5.95 6
-.909

-.904

0 1 2 3 4 5 6

−1

−0.5

0

0.5

t (s)

θ 3
(r
ad

)

5.95 6
-.909

-.905

Fig. 4.21: Attitude of the spacecraft. The black curves are the attitude of the actual
nonlinear system whereas the gray curves are the attitudes of the auxiliary linear systems.
The dashed line is the desired final attitude and the dotted line a solution using a non-
convex solver.

96

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

t (s)

ω
1
(r
ad

/s
)

0 1 2 3 4 5 6

−0.4

−0.2

0

t (s)

ω
2
(r
ad

/s
)

97

0 1 2 3 4 5 6

−0.6

−0.4

−0.2

0

0.2

t (s)

ω
3
(r
ad

)

Fig. 4.22: Angular velocity of the spacecraft. The black curves are the angular velocity
of the actual nonlinear system whereas the gray curves are the angular velocities of the
auxiliary linear systems. The dashed line is the desired angular velocity and the dotted line
a solution using a non-convex solver.

98

4.4 Computational Method of Controlling Convex Polytope Bounded Nonlin-

ear Systems with Comparison to Feedback Linearization

This section describes an algorithm to control nonlinear systems whose nonlinearity is

known to take values in a convex polytope. The algorithm relies upon solving a finite set

of linear programs and reconstructing the nonlinear control from these solutions. Though

motivated by continuous-time applications, the algorithm relies upon a time discretization

and computes controls at those discrete time instances. The algorithm bears resemblance

to feedback linearization and model predictive control (MPC). Examples indicate that it

performs better in cases when the feedback linearization domain does not coincide with the

spatial domain of interest. Furthermore, the algorithm uses optimization, but the resulting

nonlinear control solutions are not optimal in any pre-defined sense.

The following is a brief outline of the section. Section 4.4.1 explains some of the

mathematical nomenclature used throughout the rest of the section. Section 4.4.2 states the

problem of interest and required assumptions. Section 4.4.3 gives requisite background on

feedback linearization. Section 4.4.4 presents the algorithm of this section, which involves

the solution of a finite set of linear programming problems. Section 4.4.5 provides two

examples analyzed in MATLAB [91] and compares the results to feedback linearization.

The primary contribution of this section is Algorithm 3 on page 105. The algorithm

is a technique for controlling nonlinear systems whose nonlinearity takes values in a convex

polytope. It solves a linear program analytically at each discrete time instance.

4.4.1 Nomenclature for the Section

The following is a partial list of notation used throughout this chapter. R is the set of

real numbers. Rn is the set of real n-tuples. The time derivative of a function is denoted with

an over-dot, i.e. dx(t)/dt = ẋ(t). Identity matrix with appropriate dimension is denoted

by I. An element-wise inequality is denoted by a ≤ b. The transpose is denoted with a

superscript ⊤. A map x is identically equal to constant on an interval T if ∀t ∈ T, x(t) = c

where c is a constant.. This is denoted by x ≡ c. The gradient of a map f : Rn → Rm with

respect to x is denoted by ∂f
∂x : Rn → Rm×n. The Lie derivative is denoted by Lfg (x) =

99

∂g
∂xf (x). The following notations are introduced for Lie derivatives Lk

fg (x) =
∂Lk−1

f g

∂x f (x)

and L0
fg (x) = g (x). The lie bracket is denoted as [f, g] (x) = Lfg (x) − Lgf (x) with the

following additional notation ad0fg (x) = g (x) and adkfg (x) =
[
f, adk−1

f g
]
(x) for k ≥ 1. For

discrete dynamical systems the upperscipt denotes the sampling occurrence (e.g. xk+1 is

sampled one sampling period after xk).

4.4.2 Problem Statement

Throughout this section a nonlinear system of the form

ẋ (t) = Ax (t) +Bu (t) + f
(
x (t)

)
(4.97)

is considered. The system state is x : [t0, tf] → D ⊂ Rn. The control input is u : [t0, tf] →

Rm and belongs to the set of piecewise continuous functions. The linear system matrix is

A ∈ Rn×n. The linear control matrix is B ∈ Rn×m. The nonlinear element of the system

is captured in the function f : D → Rn. It is assumed that the system is Lipschitz in

x ∀t ∈ [t0, tf] and x ∈ D, the linear portion (A,B) of the system is controllable and the

nonlinearity f
(
x(t)

)
takes values in a convex polytope. These dynamics are discretized to

get

xk+1 = Āxk + B̄uk + D̄f
(
xk
)

(4.98)

where k = 1, 2, . . . , N − 1, N = (tf−t0)/T , Ā = eAT , B̄ =
∫ T
0 eAτdτB and D̄ =

∫ T
0 eAτdτ .

Here T is sampling period and a zero-order hold for u and f (x) is assumed. Since f (x)

is continuous in time the zero-order hold is invalid. However, this assumption is made

in practical feedback linearization as measurements and estimates of state variables are

received discretely in time. The control objective is to regulate the state to the origin in

finite time.

For the continuous dynamics in (4.97) with f ≡ c where c is a consant in Rn, a

continuous-time control law can be synthesized by solving the following finite horizon linear-

quadratic regulator (LQR) problem.

100

min
u

1

2

∫ tf

t0

(
e⊤ (t)Qe (t) + u⊤ (t)Ru (t)

)
dt (P4.0)

+
1

2
e⊤ (tf)Se (tf)

s.t. Equation (4.97)

e (t) = x (t)− xf

x (t0) = x0

The fixed initial time is t0 and the known initial state is x0. The fixed final time is tf and

desired final state xf . The matrices Q,S ∈ Rn×n ⪰ 0 and the matrix R ∈ Rm×m ≻ 0.

In similar fashion with f ≡ c, a discrete-time control can be synthesized by solving the

following LQR problem.

min
uk

1

2

N−1∑
k=1

((
ek
)⊤

Qek +
(
uk
)⊤

Ruk
)

(P4.1)

+
1

2

(
eN
)⊤
SeN

s.t. Equation (4.98)

ek = xk − xf , k = 1, 2, . . . , N

x1 = x0

The resulting LQR laws will be used in Section 4.4.4 to construct a nonlinear control for

certain nonlinearities.

4.4.3 Feedback Linearization

An input-state feedback linearization technique for a single input system is discussed

here. Feedback linearization is presented because it serves as the primary comparison case

for the proposed algorithm.

101

Definition 4.4. [2] Let f1 and f2 be vector fields. A distribution Σ is involutive if

f1 (x) ∈ Σ and f2 (x) ∈ Σ =⇒ [f1, f2] (x) ∈ Σ

Lemma 4.3. [2] A nonsingular distribution Σ = span {f1, f2, . . . , fn} on domain D is

involutive if and only if [fi, fj] ∈ Σ, ∀1 ≤ i, j ≤ n.

Proof. Necessity is obvious as it follows directly from Definition 4.4. For sufficiency, let g1

and g2 be any two vector fields in Σ. Then they can be expressed as

g1 (x) =
n∑

i=1

αi (x) fi (x) , g2 (x) =
n∑

i=1

βi (x) fi (x)

The Lie bracket of the vector fields g1 and g2 is

[g1, g2] (x) =

[
n∑

i=1

αifi,
n∑

i=1

βifi

]
(x)

=
n∑

i=1

n∑
j=1

(
αi (x)βj (x) [fi, fj] (x)+

αi (x)Lfifj (x)− βj (x)Lfjfi (x)

)

Since [fi, fj] (x) ∈ Σ, it follows that [g1, g2] (x) ∈ Σ.

As mentioned earlier, feedback linearization is one of the most common techniques to

design controllers for nonlinear systems. One of the shortcomings of feedback linearization

is that it is not always possible or it may only be applicable on a restricted domain.

Theorem 4.4. [2] For (4.97), let g (x) = Ax+f (x) and the control input u to be a scalar.

Then the system in (4.97) is feedback linearizable on D0 if and only if there exist a domain

D0 ⊂ D such that

1. matrix G (x) =

[
B, adgB (x) , . . . , adn−1

g B (x)

]
is non-singular ∀x ∈ D0.

2. distribution E = span
{
B, adgB, . . . , ad

n−2
g B

}
is involutive in D0.

102

If Theorem 4.4 holds, then it is possible to find a transformation z = T (x) such that

T (x) is diffeomorphism on D0 and

ż = Azz + bzv (4.99)

where Az ∈ Rn×n, bz ∈ Rn and v = γ (x) (u+ α (x)) or equivalently u = vγ−1 (x) − α (x).

The transformation T (x) is

T (x) =

h (x)

Lgh (x)

L2
gh (x)

...

Ln−1
g h (x)

so zi = Li−1

g h (x) for i = 1, 2, . . . , n. This makes α (x) = Ln
gh (x)

(
LBL

n−1
g h (x)

)−1
and

γ (x) = LBL
n−1
g h (x). The mapping h (x) is chosen such that LBL

i−1
g h (x) = 0, ∀i =

1, 2, . . . , n− 1, γ (x) ̸= 0 and h (xf) = 0 where xf is a desired final state.

4.4.4 Proposed Linearization Technique

This subsection describes the proposed linearization technique which takes advantage

of convex combination of vertices of a polytope that bounds the nonlinearity in (4.97). Let

the columns of matrix ∆ =

[
∆1, ∆2, . . . , ∆q

]
, ∆i ∈ Rn, i = 1, 2, . . . , q be the vertices

of a bounding polytope for the nonlinearity in (4.97). The nonlinear system can then be

represented as a linear equation

ẋ(t) = Ax(t) +Bu(t) + ∆λ(t) (4.100)

where λ ∈ Rq such that

∆λ(t) = f
(
x(t)

)
, 0 ≤ λ(t) ≤ 1,

q∑
i=1

λi(t) = 1 (4.101)

103

This means that f
(
x(t)

)
can be represented as a convex combination of the extreme points

of its bounding polytope. It should be noted that the vertices of the polytope are assumed

to be constant vectors, which makes the matrix ∆ constant. The vector λ is time varying.

Equation (4.100) can be written in discrete form to get

xk+1 = Āxk + B̄uk + D̄∆λk (4.102)

where ∆λk = f
(
xk
)
. If the state xk is known, then each subsystem can be represented

based on (4.102) as

xk+1
i = Āxk + B̄uki + D̄∆i ∀i = 1, 2, . . . , q (4.103)

each of which is linear in the state. Since xk is known, (4.101) can be solved for λk.

By taking convex combinations of the control inputs from (4.103), the resulting control is

uk =

[
uk1, uk2, . . . , ukq

]
λk = Ukλk. This gives

xk+1 = Āxk + B̄Ukλk + D̄∆λk

What remains is to determine the control sequences uki . A subproblem based on Prob-

lem P4.1 for each subsystem (4.103) is proposed as

min
uk
i

1

2

N−1∑
k=1

((
eki

)⊤
Qeki +

(
uki

)⊤
Ruki

)
(P4.2)

+
1

2

(
eNi
)⊤
SeNi

s.t. Equation (4.103)

eki = xki − xf , k = 1, 2, . . . , N

x1i = x0

104

Now let

F̄ =

B̄ 0 · · · 0

ĀB̄ B̄
...

...
. . . 0

ĀN−2B̄ ĀN−3B̄ · · · B̄

(4.104)

Â =

Ā

Ā2

...

ĀN−1

(4.105)

D̂ =

D̄

ĀD̄ + D̄

...∑N−2
k=0 Ā

kD̄

(4.106)

Q̄ = diag (Q, . . . , Q, S) (4.107)

R̄ = diag (R) (4.108)

Ī =

[
I, I, · · · , I

]⊤
(4.109)

Then a solution to Problem P4.2 is given by

u1i

u2i
...

uN−1
i

=
(
F̄⊤Q̄F̄ + R̄

)−1
(
F̄⊤Q̄

(
Âx0 + D̂∆i − Īxf

))
(4.110)

With these solutions now available analytically, the following algorithm is proposed to give

an approximate solution to Problem P4.0. The algorithm is shown in Algorithm 3. Step 5

requires the solution of a linear feasibility (programming) problem.

105

Algorithm 3 Algorithm for controller design using a combination of convex polytope
vertices to represent nonlinearities

Input: xk, xf , t
k, tf , T , A, B, f(x), ∆

Output: uk

Initialization:
1: Discretize the continuous system given by (4.97) to get (4.98)

Subproblems:
2: for i = 1 to q do
3: Use Equation (4.110) to get uki
4: end for

Convex Combination:
5: Solve for λk such that f(xk) = ∆λk

6: Use λk to get uk = Ukλk

7: return uk

4.4.5 Examples

This section gives numerical examples which compare the controller introduced in Sec-

tion 4.4.4 to a controller based on feedback linearization from Section 4.4.3. For feedback

linearization based controller the following is introduced. After linearizing the system given

in (4.97) using a feedback linearization, the control input v is computed as

v1

v2

...

vN−1

=
(
F̄⊤
z Q̄F̄z + R̄

)−1 (
F̄⊤
z Q̄

(
Âzz0 − Īzf

))
(4.111)

where F̄z and Âz follow F̄ and Â introduced in (4.104) and (4.105) respectively with the

exception that Ā is replaced with Āz and B̄ with b̄z, which are the discrete versions of

Az and bz. This gives a feedback linearization based controller which is comparable to the

controller introduced in Section 4.4.4.

In both examples let t0 = 0, tf = 1, T = .005, Q = 0, R = 1/N, S = NI, and

xf = [0, 0]⊤.

106

Example 1: Consider the following nonlinear system

ẋ1 = sin(x2)

ẋ2 = −x21 + u

on the domain

D =

{
x ∈ R2

∣∣∣∣|x1| ≤ 1, 0 ≤ x2 ≤ 2π

}
Note that the “linear part” of the system is not controllable. However, by rewriting the

system such that

A =

0 0.1

0 0

 , B =

0
1

 , and f (x) =
sin (x2)− 0.1x2

x21

the (A,B) pair is controllable. Using Theorem 4.4 with

g(x) =

sin(x2)
−x21

it can be confirmed that the system is feedback linearizable with D0 = {x ∈ D| cos (x2) ̸= 0}.

Note that the linearizable domain does not coincide with the domain of interest. Therefore,

the control obtained by feedback linearization is not guaranteed to achieve the control

objective.

The control inputs calculated using Algorithm 3 are shown in Figure 4.23 and corre-

sponding state trajectories shown in Figure 4.24 as functions of time. In similar fashion,

the control inputs as a function of time using the controller from Section 4.4.3 are shown

in Figure 4.25 and the corresponding state trajectories are shown in Figure 4.26. It is easy

to see that the feedback linearization controller fails when x2 = π/2 with the control input

becoming unbounded since γ (x) = 0.

107

0 0.2 0.4 0.6 0.8

−5

−4

−3

−2

−1

Time

In
p
u
t

Fig. 4.23: Control input as a function of time for Example I using controller from Algo-
rithm 3.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

2.5

Time

S
ta
te
s

Fig. 4.24: State trajectories as a function of time for Example I using controller from
Algorithm 3. Solid line represents x1 and dashed line x2.

108

0 0.2 0.4 0.6 0.8

−60

−40

−20

0

Time

In
p
u
t

Fig. 4.25: Control input as a function of time for Example I using feedback linearization
controller.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

2.5

Time

S
ta
te
s

Fig. 4.26: State trajectories as a function of time for Example I using feedback linearization
controller. Solid line represents x1 and dashed line x2.

109

Example 2: Consider the nonlinear system

ẋ1 = x1 + x32

ẋ2 = x1 + x2 + u

on the domain D = R2. Note, again, that the “linear part” of the system is not controllable.

However, by rewriting the system such that

A =

1 0.1

1 1

 , B =

0
1

 , and f (x) =
−0.1x2 + x32

0

the (A,B) pair is controllable. Using Theorem 4.4 with

g (x) =

x1 + x32

x1 + x2

the system is feedback linearizable on D0 = D\{x2 = 0}. Note that the linearizable domain

excludes the target state. Therefore, the control obtained by feedback linearization is not

guaranteed to achieve the control objective.

With an initial state of x0 = [0, 0.1]⊤, the control inputs calculated using Algorithm 3

are shown in Figure 4.27 and corresponding state trajectories are shown in Figure 4.28

as functions of time. In similar fashion, the control inputs as a function of time using a

controller based on feedback linearization are shown in Figure 4.29 and the corresponding

state trajectories are shown in Figure 4.30. Once again, it is easy to see that the feedback

linearization controller fails when x2 = 0 with the control input becoming unbounded which

is caused by γ (x) = 0.

110

0 0.2 0.4 0.6 0.8

−0.18

−0.16

−0.14

−0.12

−0.1

Time

In
p
u
t

Fig. 4.27: Control input as a function of time for Example II using controller from Algo-
rithm 3.

0 0.2 0.4 0.6 0.8 1

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Time

S
ta
te
s

Fig. 4.28: State trajectories as a function of time for Example II using controller from
Algorithm 3. Solid line represents x1 and dashed line x2.

111

0 0.2 0.4 0.6 0.8

−100

0

100

200

Time

In
p
u
t

Fig. 4.29: Control input as a function of time for Example II using feedback linearization.

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

Time

S
ta
te
s

Fig. 4.30: State trajectories as a function of time for Example II using feedback linearization.
Solid line represents x1 and dashed line x2.

These two examples show how feedback linearization controllers fail when the matrix

G in Theorem 4.4 approaches singularity. When G becomes singular, it also means that

γ(z) approaches zero and the control input magnitude becomes unbounded. The controller

112

proposed in Algorithm 3 of Section 4.4.3 remains bounded throughout the time horizon

and outperforms the feedback linearization based controller. These examples show that

the proposed controller is an alternative for feedback linearization when the linearization

domain does not coincide with the domain of interest.

4.5 Summary and Conclusions

This chapter consider a problem of trajectory design and control of systems with ad-

ditive nonlinearities. First, systems with additive scalar nonlinearity were considered and

a sufficient condition on when such system can be controlled by bounding linear systems

was derived. This was done for both continuous-time and discrete-time systems with con-

trol constraints and convex state constraints. The scalar results were then generalized for

discrete systems with additive nonlinearities and convex state and control constraints. A

computational method for the multi-dimensional case similar to feedback linearization was

also discussed in the last section, and compared against the classic feedback linearization

technique through numerical examples.

113

CHAPTER 5

LINEAR PURSUIT-EVASION GAMES

5.1 Introduction

This chapter studies time-optimal pursuit-evasion games with linear dynamics and

convex state and control constraints. Cases with a single pursuer and a single evader,

multiple pursuers and a single evader, as well as a single pursuer and multiple evaders are

considered. A geometrical approach is taken in solving these games by setting them up as

reachable set problems as first introduced in [47]. By using modern, convex optimization

techniques for reachable set construction of constrained systems, it is now possible to solve

constrained, multi-player games not considered in [47].

Pursuit-evasion games commonly arise in aerospace engineering as well as in eco-

nomics. The history of differential pursuit-evasion games begins with the seminal work

by Isaacs [110]. His work also describes multiple interesting problems that can be set as

differential pursuit-evasion games. An overview of the development of differential pursuit-

evasion games is given in [111] including seminal work done in the 1970s as well as the

current state of the art.

Aerial warfare is one of the typical problems that can be modeled as a pursuit-evasion

game [112, 113]. Multiple assumptions are often made to simplify dynamical complexity.

Some common assumptions restrict the motion to be planar, model the aircraft as a point-

mass, linearize the dynamics, and require instantaneous control response [114]. Examples

of different aerial warfare problems modeled as pursuit-evasion games consist of missile

versus aircraft [44, 112, 114, 115], aircraft versus aircraft interception [116, 117], and fighter

maneuvering [43].

Pursuit-evasion games have also been studied in the context of astrodynamics, partic-

ularly collision avoidance and interception [118,119]. Rather than use a nonlinear two-body

114

formulation, linearization and the use of the Clohessy-Wiltshire (CW) equations simplifies

the problem so that minimax formulations lead to open-loop and closed-loop control strate-

gies based on kriging [120]. Pursuit-evasion strategies have been used for tracking of space

objects and selection of sensor management strategies [121]. A hybrid global-local technique

has been developed for a two phase (long distance and short distance) game [122].

A pursuit-evasion game can be seen as an optimal control problem where the pursuer(s)

and evader(s) have different objectives. The addition of multiple agents with opposite

objectives generally makes the optimal control problem more difficult to solve than those of

an individual pursuer’s or evader’s would be. It should be noted that sometimes the single

agent optimal control problems can be complicated to solve as is. A technique utilizing

calculus of variation may be used to to solve differential games. It requires setting an

optimal control problem for all the players with the underlying necessary conditions and

then finding a solution simultaneously for all the players. Linear-quadratic as well as time-

optimal scalar games were solved using this methodology in [40]. A case of one of the players

not playing the game optimally based on the variational approach solution is also included

in [40] as is a short discussion on games with stochastic behavior.

Because of their complexity, it is often difficult to solve differential games using the

variational theory. This is particularly true when the governing differential equations are

nonlinear and there are pointwise constraints on the states and controls. The pointwise con-

straints introduce switches as trajectories enter and leave control boundaries, which may

violate smoothness assumptions required for a Newton method. Consequently, direct meth-

ods [45, 46] and semi-direct methods have been introduced to leverage finite-dimensional

optimization packages. These methods involve the use of genetic algorithms and neural

networks [41–44].

In contrast to the optimization-based approaches, Mizukami [47] has shown that a

two-player time-optimal pursuit-evasion game terminates when the evader’s reachable set is

contained in the pursuer’s reachable set – motivating a geometric approach to solving the

game based on reachable set computation. More precisely, the termination point in state

115

space lies on the boundary of the players’ reachable sets. For problems with linear dynamics

and integral-constrained (rather than pointwise-constrained) controls, analytical solutions

can be derived for the termination time and optimal trajectories. Motivated by this work,

reachable set analyses have been used in dynamic flowfields [48], coordinate control [49],

missile/sensor trade studies [51], and other game scenarios [50,52].

In general, it is difficult to find analytical solutions for reachable sets, and consequently,

numerical methods are utilized to approximate them. Multiple numerical algorithms to

calculate a reachable set for control affine systems are provided in [123]. An algorithm for

the computation of reachable sets for linear systems with bounded inputs, which approaches

the problem by finding inner and outer approximations, is introduced in [124]. Optimal

control has also been used to calculate reachable sets [125–128]. A polytopic approximation

of the actual reachable set is computed in them. In [127], a single semidefinite programming

(SDP) problem and multiple sequential second-order cone programming (SOCP) problems

are solved to find an inner approximation of the reachable set for linear dynamics and convex

state and control constraints. An outer approximation is added in [126] as a heuristic to

determine the precision of the approximation. Non-convex control constraints are considered

in [128]. The approach from [127] is used as a basis for solving multi-player games in this

chapter.

The primary contribution of this chapter is the construction of reachable set approx-

imations to solve constrained pursuit-evasion games. The inclusion of pointwise, convex

constraints on the state and control make the variational approach difficult, while such

constraints add minimal additional complexity to the geometric approach. Inclusion of

multiple pursuers and evaders adds complexity to the problem as well, especially if vari-

ational techniques were to be used. It is shown that with reachable set methods, solving

pursuit-evasion problems with multiple pursuers and evaders stays tractable. It is assumed

that the pursuers and evaders have perfect information about the other players and everyone

behaves optimally. Pursuit-evasion problems with 1) a single pursuer and a single evader,

2) multiple pursuers and a single evader, and 3) a single pursuer and multiple evaders are

116

considered. Numerical aerospace-related examples of all the cases are given to demonstrate

the capability of the method. In these examples, the agents are assumed to be in close

proximity to each other and in low earth orbit.

The remainder of this chapter is structured as follows. Section 5.2 describes a numerical

method based in convex optimization for approximating reachable sets for both determin-

istic and stochastic systems. The algorithm is based on the one introduced in [127]. The

constrained pursuit-evasion game is introduced in Section 5.3 and an explanation on how

reachable set theory can be used to solve it for varying number of pursuers and evaders is

explained. Section 5.5 applies the method to aerospace related single-pursuer and single-

evader problems whose dynamics and constraints are explained in Section 5.4. Examples

with multiple pursuers or evaders are shown in Section 5.6. Results of this chapter are

summarized and conclusions drawn in Section 5.7.

5.2 Reachable Sets

An introduction to reachable sets is given in this section. Reachable sets for linear

time-varying (LTV) dynamics with second-order cone control constraints and linear state

constraints are considered. This system of interest is given as

ẋ = A(t)x+B(t)u (5.1)

y = C(t)x (5.2)

x ∈ X (t) = {x ∈ Rn : D(t)x ≤ b(t)} (5.3)

u ∈ U(t) (5.4)

x(t0) = x0 (5.5)

The state vector is x ∈ Rn, the control vector is u ∈ Rm, the output vector is y ∈ Rp, the

system matrix is A(t) : Rn → Rn, the control influence matrix is B(t) : Rm → Rn, and the

output matrix is C(t) : Rn → Rp. The quantities D(t) ∈ Rq×n and b(t) ∈ Rq define linear

117

state inequality constraints for the set X (t). The second-order cone control constraint is

U(t). The initial state vector is x0 at initial time t0.

Definition 5.1. For the system in (5.1)-(5.5), the reachable set R(t) is the set of all outputs

the system can reach at time t from the initial state x0 using feasible controls, i.e.,

R(t) = {y ∈ Rp : y = C(t)Φ(t, t0)x0 + C(t)

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ for all feasible u}

(5.6)

where Φ(t2, t1) is the state-transition matrix.

Remark 5.1. Because the dynamics of the system are linear and the state and control

constraints are convex, the reachable set is convex [129].

5.2.1 Algorithm for Reachable Set Calculation

An algorithm to calculate an inner polytopic approximation of the system described

in (5.1)-(5.5) is given next. The algorithm first solves a SDP optimization problem to

compute the largest possible size simplex that fits inside the reachable set. The algorithm

then solves a sequence of SOCP problems to compute a better inner approximation of the

reachable set based on the initial simplex. A more detailed explained of the algorithm can

be found in [127].

First, consider a discretized version of the continuous system given in (5.1)-(5.5). The

discrete-time system is

xk+1 = Ākxk + B̄kuk, k = 0, ..., N − 1 (5.7)

yk = Ckxk, k = 0, ..., N (5.8)

xk ∈ Xk = {x ∈ Rn : Dkx ≤ bk} (5.9)

uk ∈ Uk (5.10)

xk=0 = x0 (5.11)

118

where N represents the number of time intervals used in discretization. The barred quanti-

ties are discretized matrices based on their continuous counterparts and discretization time

step with the discretization performed as explained in Section 2.3.1. Discretization allows

the use of numerical optimization. The reachable set definition given in Definition 5.1 for

continuous system is analogous to that for discrete system by replacing t with tk.

Initial Simplex

The computation of the initial simplex is explained first. Computing the initial simplex

requires solving a single SDP problem. Let Z be the set containing the p+ 1 vertices of an

initial simplex in Rp. Furthermore, define a matrix Q as

Q =

[
(z2 − z1) . . . (zp+1 − z1)

]
: zi ∈ Z (5.12)

The volume of the simplex may then be calculated as

v =
1

p!
|detQ| (5.13)

With an expression for a simplex volume, maximizing (5.13) gives us an initial simplex with

maximum volume. This also leads to the vertices of the simplex being on the boundary of

the system’s reachable set.

zi ∈ ∂R ⊂ R (5.14)

This maximum volume simplex is used as the initial simplex. The volume maximization

problem can be written as a SDP.

min
ui

− logdet(Q)

s.t. Q = QT =

[
(z2 − z1) . . . (zp+1 − z1)

]
⪰ 0

zi = yi(tf), i = 1, ..., p+ 1

Eqs. (5.7)-(5.11)

(5.15)

119

The log-determinant is denoted logdet, which acts on square symmetric matrices. The

initial simplex requires calculation of p + 1 trajectories emanating from the initial point,

x0, to p+1 final states. The initial simplex is constructed from the p+1 final state vectors

which form the z1, . . . , zp+1 vertices of the initial simplex.

Growing Simplices

Following construction of the initial simplex, improved approximations are achieved by

computing additional simplices out of the open faces of the current polytopic approximation.

Where the computation of the initial simplex required a solution to a SDP problem, the

computation of additional simplices is achieved by solving a SOCP for each additional

vertex in the polytopic approximation. This is possible because maximizing the volume of

an additional simplex is analogous to maximizing the length of a vector that connects the

open face to a point on the boundary of the reachable set and is orthogonal to the face.

The point on the boundary of the reachable set is then added as a new vertex to the current

polytopic approximation of the reachable set.

min
α,λ,u

− α

s.t. ν = Ziλ, 1⊤λ = 1, λ ≥ 0

ν + αhi = z

z = y(tf)

Eqs. (5.7)-(5.11)

(5.16)

The quantity to be maximized is the scaling factor α. The point on the open face ν is

such that the minimum distance between it and the reachable set boundary is maximized.

The matrix Zi contains the p vertices corresponding to the open face i. The vector λ ∈ Rp

identifies the point ν from the vertices in Zi. A vector normal to the ith open face is given

by hi. A point on the boundary of the reachable set is z. Figure 5.1 gives a graphical

representation of these variables with ν being represented as a vector from a vertex on an

open face to the actual point ν.

120

∂R

ν

α hi

Fig. 5.1: Illustration of variables used for polytopic approximation in (5.16).

Overall, the algorithm requires a solution to a single SDP defined in (5.15) to get

an initial approximation of the reachable set. A tighter approximation is then reached

by solving a sequence of SOCPs given in (5.16) with each SOCP adding a new vertex

to the current polytopic approximation. The first three reachable set approximations are

illustrated in Figure 5.2 along with the actual reachable set. Further explanation and

illustration of the approximation process may be found in [127].

Fig. 5.2: The initial simplex is the innermost triangle. The next two generations share
vertices with the triangle and give better approximations of the reachable set, which appears
as the ellipse with a thicker line.

5.2.2 Stochastic System

In this section, the algorithm is extended for dynamical systems with stochastic un-

certainty. Consider the following discrete, stochastic, LTV control system with state and

121

control constraints.

xk+1 = Ākxk + B̄kuk +Wkwk (5.17)

yk = C̄kxk (5.18)

δ ≥ Prob (Dkxk > bk) (5.19)

||uk|| ≤ ρk (5.20)

xk=0 = x0 (5.21)

where w is an unknown stochastic disturbance and δ is an upper bound on the probability

of not satisfying the constraint. The uncertainties vary as follows:

wk ∼ N (0, Qk) (5.22)

x0 ∼ N (x̄0, P0) (5.23)

Pk+1 = ĀkPkĀ
T
k +WkQkW

T
k (5.24)

where Qk, P0 and Pk are positive definite covariance matrices and x̄0 is the expected value

of the initial state. The stochastic problem described in (5.17)-(5.21) with the uncertainties

stated in (5.22)-(5.24) can be written in a deterministic form by taking a conservative

approximation of (5.19). This approximation is given as [130]:

N∑
k=0

(
Prob (Dkxk > bk)

)
≤ δ (5.25)

where the probability inequality is equal to

Prob (Di,kxk > bi,k) =
1

2
− 1

2
erf

(
bi,k −Di,kx̄k√

2σi,k

)
(5.26)

with σi,k = Di,kPkD
T
i,k, x̄k is an expected value of xk, i = 1, ..., q specifies the row of

vector or matrix and erf(·) is the error function. Using (5.25) and (5.26), a conservative but

122

deterministic approximation of the stochastic problem given in (5.17)-(5.21) is below.

xk+1 = Ākxk + B̄kuk +Wkwk (5.27)

yk = C̄kxk (5.28)

Di,kx̄k ≤ bi,k −
√

2σi,kerf
−1(1− 2∆i,k) (5.29)

δ ≥
N∑
k=0

∆k (5.30)

||uk|| ≤ ρk (5.31)

x(k = 0) = x0 (5.32)

where ∆k are risk allocation variables that can be included as solution variables or preset,

and erf−1(·) is the inverse error function. The inverse error function cannot be included

within an SOCP, but a conservative, quadratic approximation can. The quadratic approx-

imation is given as

erf−1(ξ) = a+ bξ + cξ2, ξ ∈ [1− δi, 1− δi/α] (5.33)

where i = 1, ..., q, α >> 1 and a, b, and c are coefficients that can be solved using least

squares method. Since we now have a deterministic SOCP, an approximation for its reach-

able set can be calculated using the algorithm provided in the previous section by switching

the constraint equations from (5.7)-(5.11) to (5.27)-(5.32) and using (5.33) to evaluate the

inverse error function.

5.3 Game Theory

This section introduces the pursuit-evasion game of interest. Three pursuit-evasion

games considered in this chapter are games with 1) a single pursuer and a single evader, 2)

multiple pursuers and a single evader, and 3) a single pursuer and multiple evaders. The

pursuers’ objective is to minimize the capture time of all the evaders. The evaders’ objective

is to maximize the time it takes for the pursuers to capture all the evaders. It is assumed

123

that a solution exists, i.e. capture occurs, such that the game considered here is a game of

degree rather than a game of kind [110].

5.3.1 Single Pursuer and Single Evader

First, consider the simplest case of the game with a single pursuer and a single evader.

The game may be rewritten as two time-optimal control problems. The pursuer’s problem

is:

min
uP (·)

t∗

s.t. ẋP = AP (t)xP +BP (t)uP

yP = CP (t)xP

xP ∈ XP (t) = {x ∈ Rn : DP (t)x ≤ bP (t)}

uP ∈ UP (t)

xP (t0) = x0,P

yP (t
∗) = yE(t

∗)

(P5.1)

The evader’s problem is:

max
uE(·)

t∗

s.t. ẋE = AE(t)xE +BE(t)uE

yE = CE(t)xE

xE ∈ XE(t) = {x ∈ Rn : DE(t)x ≤ bE(t)}

uE ∈ UE(t)

xE(t0) = x0,E

yE(t
∗) = yP (t

∗)

(P5.2)

The subscript P refers to the pursuer, the subscript E refers to the evader, and t∗ is the

termination time of the game. It is assumed that both pursuer and evader have perfect

information about the other.

124

It was shown by Mizukami [47] that such time-optimal games can be recast as reachable

set inclusion problems.

Theorem 5.1 ([47]). If a solution to the game exists, then the game terminates in the

least time such that

RE(t) ⊆ RP (t) (5.34)

The question of existence is not explored in this dissertation. It is assumed that a

solution exists, and the theorem is used to find the solution by comparing the players’

reachable sets. The termination time is the first time at which the evader’s reachable set is

contained in the pursuer’s reachable set. The game is therefore reduced to a one-dimensional

search for t∗. In state space, the game terminates at a point on the boundary of both players’

reachable sets, i.e., y∗ ∈ ∂RE(t
∗) ∩ ∂RP (t

∗), where y∗ is the capture point.

The simplest situation occurs when C(t)Φ(t, t0)x0 is zero (so that the reachable sets do

not translate) and the pursuer’s control set is larger than the evader’s (so that it enlarges

at a faster rate). Prior to the termination time, the evader’s reachable set is not contained

in the pursuer’s. After the termination time, the evader’s reachable set is in the interior of

the pursuer’s. At the termination time, the evader’s set is contained in the pursuer’s set

and they share a boundary point. These relationships are demonstrated in Figure 5.3.

t < t∗ t > t∗ t = t∗

Fig. 5.3: Pursuer’s (shaded region) and evader’s (solid line) reachable sets before capture
(t < t∗), after capture (t > t∗), and at capture (t = t∗).

125

5.3.2 Multiple Pursuers and Single Evader

When there are multiple pursuers and a single evader, the game terminates when the

evader’s reachable set is contained in the union of the pursuers’ reachable sets [48], i.e.,

RE(t) ⊆

{
NP⋃
i=1

RPi(t)

}
(5.35)

where NP is the number of pursuers. If the game has only one pursuer, (5.35) reduces to

(5.34) as expected. Some of the possible capture scenarios are shown in Figures 5.4 and 5.5.

In Figure 5.4, the capture happens at the boundary of the two pursuers’ and evader’s sets.

In Figure 5.5, the capture happens at the boundary of the four pursuers’ sets but is in the

interior of the evader’s reachable set. In both cases, however, the capture happens at the

first time instance when the evader’s reachable set is contained in the union of the pursuers’

reachable sets.

t < t∗ t > t∗ t = t∗

Fig. 5.4: Pursuers’ (shaded region) and evader’s (solid line) reachable sets before capture,
after capture and at capture.

126

t < t∗ t > t∗ t = t∗

Fig. 5.5: Pursuers’ (shaded region) and evader’s (solid line) reachable sets before capture,
after capture and at capture.

A line search is done to find the capture time. An algorithm to perform this line search

is shown in Algorithm 4. The algorithm uses a method from Section 5.2.1 to generate inner

approximations of the pursuers’ and evader’s reachable sets and checks if (5.35) is satisfied

or not. The algorithm uses a bisection method to find the capture time. The algorithm

uses notation zX for the vertices of the agent X’s reachable set approximation where RX

would be agent X’s reachable set. NP is the number of pursuer’s in the game. Subscript

∪P means the union over all pursuers.

127

Algorithm 4 Line Search for Capture Time in Multiple Pursuer and Single Evader Game

Input: Dynamics for evader and pursuers, initial states, ϵ, tmin, tmax

Output: t∗

1: Set t0 = (tmin + tmax)/2 and i = 0.

2: while ∥ti − ti−1∥ < ϵ do

3: i = i+ 1

4: Calculate reachable sets for the evader and each pursuer.

5: z∪P = ∪NP
j=1zP,j ̸∈ RP,k, k ∈ {1, . . . , NP } \ {j}

6: if All zE ∈ R∪P or any z∪P ∈ RE then

7: ti = (tmin + ti−1)/2, tmax = ti−1.

8: else

9: ti = (tmax + ti−1)/2, tmin = ti−1

10: end if

11: end while

12: t∗ = ti

5.3.3 Single Pursuer and Multiple Evaders

Lastly, a pursuit-evasion game with a single pursuer and multiple evaders is considered.

This game is split into multiple single-pursuer and single-evader games where the pursuer’s

reachable set is reset at the capture point when a capture of one of the evaders happens.

Figure 5.6 demonstrates the evolution of pursuer’s and evaders’ reachable sets where the

pursuer’s reachable set is reset after capturing an evader.

128

t = t∗1 t = t∗1 + ϵ t = t∗2

Fig. 5.6: Pursuer’s (shaded region) and evaders’ (solid line) reachable sets at capture of
the first evader, shortly after the capture of the first evader and at capture of the second
evader. Notice that shortly after capture of the first evader, the pursuer’s reachable set is
reset at the capture point whereas the second evader’s set continues to grow.

To consider all the possible strategies for the pursuer to capture the evaders, it is

in general required to consider NE ! possibilities for capturing sequences where NE is the

number of the evaders. This means that in a case of three evaders, the pursuer could capture

the evaders in six different orders, 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1. Let’s consider a

case where catching four evaders in an order 1,2,3,4 takes t1,2,3,4 time units. If catching only

evaders 4 and 3 in this order takes t4,3 time units such that t1,2,3,4 < t4,3, it is not optimal

for the pursuer to capture the evaders starting with evaders 4 and 3 as catching these two

evaders in this order takes more time than catching all the evaders in order 1,2,3,4. This

logic leads to a pruning strategy that may allow finding the termination time for the game

without considering all the capture strategies completely.

Figure 5.7 shows the pursuer’s possibilities for capture order in a three evader game. t

with subscripts represents the capture time of the evaders in the order of numeric values in

the subscript. t∗ is the termination time of the game associated with the shallowest branch,

i.e., the branch offering the least time compared to all other branches. In this example, the

selected order for capturing the evaders is 2,1,3. The nodes beyond this capture time are

not considered.

129

t0

t1

t1,2

t1,2,3

t1,3

t1,3,2

t2

t2,1

t2,1,3

t2,3

t2,3,1

t3

t3,1

t3,1,2

t3,2

t3,2,1

t∗

t

Fig. 5.7: Tree graph showing the different possibilities (branches) on the order pursuer could
capture the evaders. t∗ is the termination time for the pursuer to capture all the evaders.

An algorithm to find the termination time t∗ for the multiple evader and a single

pursuer game is provided in 5. The algorithm begins by finding the termination time of the

game with a greedy approach when choosing the next evader being captured. The other

capturing sequences are then compared to this. If the capture time of an evader is larger

than the current estimate for the termination time of the game t∗current, that capturing

sequence is excluded from further analysis, and the branch is pruned. On the other hand,

if the game termination time using that sequence is less than the current estimate for the

game termination time, the current estimate for the game termination time is updated to

that.

130

Algorithm 5 Termination Time in Single Pursuer and Multiple Evader Game

Input: Dynamics for evaders and pursuer, initial states

Output: t∗

1: Set t∗current = ∞

2: for i = 1 to NE ! do

3: while Free evaders left do

4: Find capture time, t of the next evader such that this capture order is not yet

considered.

5: Add the captured evader in the capture sequence.

6: if t ≥ t∗current then

7: Set this capture sequence considered.

8: break while

9: end if

10: Reset pursuer’s reachable set at capture point.

11: end while

12: if t < t∗current then

13: t∗current = t

14: end if

15: end for

16: t∗ = t∗current

5.4 Dynamics

The dynamics used for numerical examples in Sections 5.5 and 5.6 are explained in

this section. A planar constellation of satellites near a circular orbit is considered in the

131

numerical examples. The dynamics can be modeled as linear by the use of the Clohessy-

Wiltshire (CW) equations [106]

ẋ = Ax+Bu =

 0 I

M1 M2

x+

0
I

u
y = Cx =

[
I 0

]
x

(5.36)

where x ∈ R4 is a state vector with the first two elements corresponding to a satellite’s

relative position in a local vertical local horizontal (LVLH) frame and the last two to a

satellite’s relative velocity in the LVLH frame. The external control acceleration is u ∈ R2.

The matrices M1 and M2 are given by

M1 =

3ω2 0

0 0

 , M2 =

 0 2ω

−2ω 0

 (5.37)

where ω is the mean motion of the circular reference orbit and is set to 4 rad/hr for the

remainder of this section. This corresponds to a low earth orbit. In all the examples, the

output vector y is to be the relative position of the player, which means that the output

matrix is C =

[
I 0

]
with I, 0 ∈ R2. The relative position is chosen as the output because

capture occurs in position space. The first element of the y vector corresponds to the

player’s radial position (altitude) in the LVLH frame and the second element to the player’s

along-track position in LVLH frame.

5.5 Examples with Single Pursuer and Single Evader

In this section, examples of several time-optimal pursuit-evasion games with a single

pursuer and a single evader are provided, and the techniques discussed in Section 5.3 are

applied to find solutions to these examples. All the agents evolve according to CW dynamics

as explained in Section 5.4. Each agent’s control set is of the form

U(t) = {u ∈ R2 : ||u|| ≤ ρ} (5.38)

132

with ρ a prescribed upper bound on the control magnitude. This is a second-order cone

constraint. Additional constraints consistent with those in Equations (5.1)-(5.5) are also

present and described in the following subsections.

5.5.1 Problem without State Constraints

Consider a single-pursuer and single-evader pursuit-evasion problem with the players’

dynamics given in (5.36). The initial state of the pursuer is x0,P = [0, 1, 0, 0]⊤ and of the

evader is x0,E = [0, 0, 0, 0]⊤. The control of the pursuer is bounded by ρP = 1 and the

control of the evader by ρE = 0.5. All the units of distance in these problems are km and

the units of time hr.

Figure 5.8 shows the reachable sets of the pursuer and evader when the capture happens.

The trajectories that the pursuer and evader take to reach the capture point are also shown

in the figure. The capture happens at t∗ = 1.32 hr. It is evident from the figure that the

capture happens at the boundary of both pursuer’s and evader’s reachable sets.

−0.5 0 0.5

−2

0

2

4

y1 (km)

y 2
(k
m
)

Fig. 5.8: Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with the
trajectories of the pursuer and evader from their initial outputs to the capture point shown
with dotted lines.

133

5.5.2 Problem with State Constraints

Now consider the same problem setup with state constraints. Data for the state con-

straints in (5.3) for both pursuer and evader is given as

D =

0 −1 0 0

0 1 0 0

 , b =

1
1

 . (5.39)

Because of these constraints, the previous solution is now infeasible. Figure 5.9 shows the

reachable sets of the pursuer and evader when the capture happens. The trajectories that

the pursuer and evader take to reach the capture point are also shown in the figure. The

capture happens at t∗ = 1.42 hr. Once again, the capture happens at the boundary of both

pursuer’s and evader’s reachable sets. The black regions demonstrate the state constraints.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

y1 (km)

y 2
(k
m
)

Fig. 5.9: Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with the
trajectories of the pursuer and evader from their initial outputs to the capture point shown
with dotted lines. The black areas represent the linear state constraints or keep-out zones.

5.5.3 Stochastic Problem

The problem in Section 5.5.2 is now changed by making the state constraint probabilis-

tic, introducing a stochastic input into the dynamics, and considering an uncertain initial

134

point. The formulation follows that given in (5.17)-(5.24) where

δP = δE = .05 (5.40)

WP =WE = I4×4 (5.41)

QP = QE = 10−6I4×4 (5.42)

PP,0 = PE,0 = 10−9I4×4 (5.43)

N = 40 (5.44)

and all units are consistent with the data specified in the previous examples. The initial

condition of the pursuer is changed to x0,P = [0, 0.75, 0, 0]⊤ due to the stochastic nature of

the problem. By conducting a one-dimensional search, the optimal capture time is found

to be t∗ = 1.2 hr. The reachable sets as well as the trajectories of both the pursuer and

evader are shown in Figure 5.10. It is evident from the plot that both, pursuer and evader

stay away from the keep-out zones. Due to the uncertainty in both of their systems, the

agents do not go on the boundary of the keep-out zones like they did in the deterministic

example given in Section 5.5.2.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

y1 (km)

y 2
(k
m
)

Fig. 5.10: Pursuer’s (shaded) and evader’s (solid) reachable sets at capture time with the
trajectories of the pursuer and evader from their initial outputs to the capture point shown
with dotted lines. The black areas represent the linear state constraints or keep-out zones.

135

5.5.4 Sun Blocking

As a final example of a single-pursuer and single-evader game, a sun blocking problem

is considered. In this problem, the pursuer’s goal is to place himself between the evader

and sun. Reasons for doing so include depriving the evader of solar power and positioning

the pursuer for capture of images of the evader while depriving the evader of the capability

to image the pursuer. In this example, the pursuer and evader have the same deterministic

CW dynamics as in Sections 5.5.1 and 5.5.2, and there is no state constraint. In the Hill

frame, a vector pointing to the Sun rotates with a constant angular velocity. Thus, the Sun

pointing vector, s(t), is given by

s(t) =

 cos(ωt+ θ)

− sin(ωt+ θ)

 (5.45)

where ω is angular velocity and is the same quantity that is used in the CW equations as

mean motion, and θ is an offset value corresponding to the initial position of the players

along the orbit. A value of −π/2 is used for θ in this example. The game termination

criterion must now be changed to

βs(t) +RE(t) ⊆ RP (t) (5.46)

where β is a non-negative scalar. Conceptually, this means that all points in the evader’s

reachable set can be projected along the Sun vector into the pursuer’s reachable set. Once

again by conducting the one-dimensional search, the optimal “capture” time and corre-

sponding Sun vector are

t∗ = 0.65 hr

s(t∗) =

[
0.52 −0.85

]T

The reachable sets at the moment when Sun blocking occurs are shown in Figure 5.11. The

area shaded by the pursuer’s reachable set at that time instant is shown in gray. It can be

136

observed from the figure that the evader’s reachable set (solid line) is completely shaded by

the pursuer’s reachable set (black) indicating that the pursuer is capable of blocking the Sun

from any position the evader could achieve. It should be noted that the previous statement

may only be true at a single instant in time. A future research consideration would be to

assure that the pursuer can block the Sun from the evader for an extended period of time.

0 2 4 6 8 10 12

−20

−15

−10

−5

0

SUN

y1 (km)

y 2
(k
m
)

Fig. 5.11: Reachable sets for sun blocking problem: Pursuer’s reachable set is marked with
filled black, evader’s reachable set with solid line and the area shaded by pursuer’s reachable
set in gray. The arrow represents the direction on which the Sun is shining on the players.

5.6 Examples with Multiple Pursuers or Evaders

This section considers numerical examples with either multiple pursuers or evaders. As

in Section 5.5, the agents evolve according to CW dynamics as explained in Section 5.4 in

this section as well. Each agent’s control set is of the form

U(t) = {u ∈ R2 : ||u|| ≤ ρ} (5.47)

with ρ a prescribed upper bound on the control magnitude. Possible additional constraints

are consistent with those in Equations (5.1)-(5.5).

137

5.6.1 Multiple Pursuers and Single Evader

Consider a pursuit-evasion problem with 4 pursuers and a single evader. The dynamics

of the pursuers and the evader are given by the CW equations (5.36). The initial states of

the players are x0,P1 = [0, 0.5, 0, 0]⊤, x0,P2 = [0,−0.5, 0, 0]⊤, x0,P3 = [ω−2, 0.5, 0, 0]⊤, x0,P4 =

[−ω−2,−0.5, 0, 0]⊤ and x0,E = [0, 0, 0, 0]⊤. The states of all the players are constrained with

D =

0 −1 0 0

0 1 0 0

 , b =

1
1

 . (5.48)

which are the same D and b specified in (5.39). The control input of all the pursuers is

constrained by ρP = 1 and the control input of the evader by ρE = 0.5.

Figure 5.12 shows the reachable sets of all the pursuers as well as the evader. The

capture happens at the origin. The evader could be captured by either pursuer 1 or pursuer

2 but only pursuer 1’s trajectory from its initial point to the capture point is shown. Inter-

estingly the capture happens at the evaders initial location as that is the last point covered

by the union of the pursuers’ reachable sets. The capture happens at t∗ = 0.84 hr.

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

y1 (km)

y 2
(k
m
)

Fig. 5.12: Pursuers’ (shaded) and evader’s (solid) reachable sets at capture time with the
trajectory of the capturing pursuer from its initial output to the capture point shown with
dotted line. The black areas represent the linear state constraints or keep-out zones.

138

5.6.2 Single Pursuer and Multiple Evaders

Lastly, a game with three evaders and a single pursuer is considered. The dynamics

of all the agents are again given by the CW equations. The initial state of the pursuer

is x0,P = [0, 0, 0, 0]⊤ whereas the evaders’ initial states are given as x0,E1 = [0, 0.5, 0, 0]⊤,

x0,E2 = [0,−0.75, 0, 0]⊤ and x0,E3 = [ω−2, 0, 0, 0]⊤. There are no state constraints for the

agents but the control inputs are constrained with ρP = 1 for the pursuer and ρE = 0.25

for the evaders.

Figure 5.13 shows the reachable sets of all the agents at the time instance when the

first evader is captured. Figure 5.14 shows the reachable sets of the remaining two evaders

as well as the pursuer’s set when the second evader is captured. Figure 5.15 shows the

reachable sets of the pursuer and the last evader at the time of the last capture which is

also the termination time of the game. The captures happen at t1 = 0.92 hr, t1,2 = 2.32 hr

and t1,2,3 = t∗ = 6.24 hr.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2

−1

0

1

y1 (km)

y 2
(k
m
)

Fig. 5.13: Pursuer’s (shaded) and evaders’ (solid) reachable sets at the time of the first
capture with the trajectories of the pursuer and the captured evader from their initial
outputs to the capture point shown with dotted lines.

139

−1 −0.5 0 0.5
−6

−4

−2

0

2

y1 (km)

y 2
(k
m
)

Fig. 5.14: Pursuer’s (shaded) and evaders’ (solid) reachable sets at the time of the second
capture with the trajectories of the pursuer and the captured evader from their initial
outputs to the capture point shown with dotted lines.

−1 0 1 2 3

−30

−20

−10

0

10

20

y1 (km)

y 2
(k
m
)

Fig. 5.15: Pursuer’s (shaded) and evader’s (solid) reachable sets at the time of the third
capture with the trajectories of the pursuer and the captured evader from their initial
outputs to the capture point shown with dotted lines.

140

5.7 Summary and Conclusions

This chapter demonstrated a technique using convex optimization to numerically con-

struct reachable sets and to solve time-optimal pursuit-evasion games when the dynamics

are linear and all the constraints are convex. The games with 1) a single pursuer and a

single evader, 2) multiple pursuers and a single evader, and 3) a single pursuer and multiple

evaders were considered. Traditional formulations, such as those based on variational equa-

tions, are not tractable in the presence of practical actuator and state constraints. On the

contrary, such constraints add minimal complexity to the reachable set method described

herein. This is true because construction of the reachable set has been reduced to a sequence

of convex programs. Multiple aerospace-related numerical examples were given to demon-

strate the method for a constellation of satellites in close proximity in low earth orbit. In

conclusion, the reachable set approach leads to a tractable formulation of the constrained,

multi-player game problem that leverages modern convex solvers.

141

CHAPTER 6

CONCLUSIONS AND SUMMARY

This dissertation focused in the application of convexity for control problems; specif-

ically, single-agent problems with linear or nonlinear dynamics and multi-agent problems

with linear dynamics were considered. A mixture of convex and non-convex constraints for

optimal control problems was considered. The main contributions of this dissertation in-

cluded: 1) a convexification of linear single-agent problems with annular control constraint,

2) a technique for controlling bounded nonlinear single-agent systems, and 3) a technique

for solving multi-agent pursuit-evasion games with linear dynamics and convex control and

state constraints. Altogether, the theoretical and computational results demonstrated the

significance of convex analysis in solving non-convex control problems.

Chapter 3 presented new convexification results including a sufficient condition for the

standard convexification to hold for both free and fixed final time problems, a sufficient

condition for the standard convexification to hold for all final times between the minimum

feasible time and the optimal time, and a perturbation technique to solve the general fixed

time problem as a sequence of convex programs when the final time is greater than the op-

timal time. In short, the perturbation technique works as follows: perturb the initial point,

solve a feasibility problem to the final point, and repeat until convexification works, which

is guaranteed to happen. This results in a globally minimizing control. The perturbation

technique has practical applications as demonstrated in the Mars landing example. In each

call to guidance, the problem was solved in less than one second without customization,

suggesting that the new perturbation technique is suitable for real-time guidance applica-

tions.

Chapter 4 considered a problem of trajectory design and control of systems with addi-

tive nonlinearities. First, systems with additive scalar nonlinearity were considered, and a

sufficient condition on when such system can be controlled by bounding linear systems was

142

derived. This was done for both continuous-time and discrete-time systems with control

constraints and convex state constraints. More specifically, the ability to solve problems

with non-convex control constraints was demonstrated with an example with quantized

control. The scalar results were then generalized for discrete-time systems with additive

nonlinearities and convex state and control constraints. Two different methods for solving

nonlinear problems of this type were derived using the sufficient condition. These methods

were demonstrated with spacecraft trajectory design examples. A computational method

for multi-dimensional case was also discussed in the last section of Chapter 4. The com-

putational method was compared against the classic feedback linearization technique via

numerical examples. The introduced method outperformed the feedback linearization in the

given examples. The future research in the area of control of nonlinear systems using their

bounding linear ones should try to find answers to the following questions: Is it possible to

control nonlinear systems by bounding linear ones when the control inputs are not affine?

Can the infinite-dimensional continuous-time approach be used in the control applications

instead of the finite-dimensional discrete-time one? Is there a less conservative sufficient

condition, or even a necessary condition for systems that can be found?

A technique using convex optimization to numerically construct reachable sets and to

solve time-optimal pursuit-evasion games when the dynamics are linear and all the con-

straints are convex was discussed in Chapter 5. The games with 1) a single pursuer and a

single evader, 2) multiple pursuers and a single evader, and 3) a single pursuer and multiple

evaders were considered. Traditional formulations, such as those based on variational equa-

tions, are not tractable in the presence of practical actuator and state constraints. On the

contrary, such constraints add minimal complexity to the reachable set method described

in the chapter. This is true because construction of the reachable set was reduced to a

sequence of convex programs. Multiple aerospace-related numerical examples were given

to demonstrate the method for a constellation of satellites in close proximity in low earth

orbit. In conclusion, the reachable set approach leads to a tractable formulation of the

constrained, multi-player game problem that leverages modern convex solvers. The com-

143

putation of the reachable sets is currently not fast enough using the algorithm given in the

chapter to consider this method real-time capable. Applying a method for faster reachable

set computation is a possible future research topic if onboard computing is desired.

144

REFERENCES

[1] Lowe, G., and Zohdy, M. A., 2009, “A technique for using H2 and H-infinity robust
state estimation on nonlinear systems,” In 2009 IEEE International Conference on
Electro/Information Technology, IEEE, pp. 109–115.

[2] Khalil, H. K., 2001, Nonlinear Systems Pearson.

[3] Rugh, W. J., 1981, Nonlinear System Theory The Johns Hopkins University Press.

[4] Vidyasagar, M., 2002, Nonlinear systems analysis SIAM.

[5] Açıkmeşe, B., and Ploen, S., 2007, “Convex programming approach to powered de-
scent guidance for Mars landing,” AIAA Journal of Guidance, Control and Dynamics,
30, pp. 1353–1366.

[6] Açıkmeşe, B., Carson, J., and Blackmore, L., 2013, “Lossless convexification of non-
convex control bound and pointing constraints of the soft landing optimal control
problem,” IEEE Transactions on Control Systems Technology, 21, pp. 2104–2113.

[7] Açıkmeşe, B., and Blackmore, L., 2011, “Lossless convexification for a class of optimal
control problems with nonconvex control constraints,” Automatica, 47, pp. 341–347.

[8] Harris, M. W., and Açıkmeşe, B., 2014, “Lossless convexification of non-convex opti-
mal control problems for state constrained linear systems,” Automatica, 50, pp. 2304–
2311.

[9] Harris, M. W., 2021, “Optimal control on disconnected sets using extreme point re-
laxations and normality approximations,” IEEE Transactions on Automatic Control,
66(12).

[10] Malyuta, D., and Açıkmeşe, B., 2020, “Lossless convexification of optimal control
problems with semi-continuous inputs,” In IFAC World Congress 2020, IFAC.

[11] Harris, M. W., 2014, Lossless Convexification of Optimal Control Problems The
University of Texas at Austin, Austin, TX.

[12] Açıkmeşe, B., and Ploen, S. R., 2005, “A powered descent guidance algorithm for
Mars pinpoint landing,” In AIAA Guidance, Navigation, and Control Conference
(San Francisco, California), AIAA.

[13] Ploen, S. R., Açıkmeşe, B., and Wolf, A., 2006, “A comparison of powered descent
guidance laws for Mars pinpoint landing,” In AIAA Guidance, Navigation, and Con-
trol Conference (Keystone, Colorado), AIAA.

[14] Blackmore, L., Açıkmeşe, B., and Scharf, D., 2010, “Minimum landing error powered
descent guidance for Mars landing using convex optimization,” Journal of Guidance,
Control and Dynamics, 33, pp. 1161–1171.

145

[15] Blackmore, L., 2016, “Autonomous precision landing of space rockets,” The Bridge :
Linking Engineering and Society (National Academy of Engineering), 26.

[16] Blackmore, L., Açıkmeşe, B., and Carson, J. M., 2012, “Lossless convexification of
control constraints for a class of nonlinear optimal control problems,” Systems and
Control Letters, 61, pp. 863–871.

[17] Kunhippurayil, S., and Harris, M. W., 2022, “Strong observability as a sufficient
condition for non-singularity and lossless convexification in optimal control with mixed
constraints,” Control Theory and Technology, pp. 1–13.

[18] Korda, M., and Mezic, I., 2018, “Linear redictors for nonlinear dynamical systems:
Koopman operator meets model predictive control,” Automatica, 93.

[19] Brunton, S. L., Brunton, B. W., Proctor, J. L., and Kutz, J. N., 2016, “Koopman
invariant subspaces and finite linear representations of nonlinear dynamical systems
for control,” PLoS ONE, 11(2).

[20] Sename, O., Gaspar, P., and Bokor, J., 2013, Robust control and linear parameter
varying approaches: application to vehicle dynamics, Vol. 437 Springer.

[21] Robert, D., Sename, O., and Simon, D., 2007, “A reduced polytopic LPV synthesis
for a sampling varying controller: experimentation with a T inverted pendulum,” In
2007 European Control Conference (ECC), IEEE, pp. 4316–4323.

[22] Atoui, H., Sename, O., Milanés, V., and Martinez, J. J., 2021, “LPV-based au-
tonomous vehicle lateral controllers: A comparative analysis,” IEEE Transactions on
Intelligent Transportation Systems.

[23] Do, A. L., 2011, “LPV approach for the vehicles dynamics robust control: joint
comfort and safety improvement.,” PhD thesis, PhD thesis. Université de Grenoble.

[24] He, T., 2019, “Smooth switching LPV control and its applications,” PhD thesis,
Michigan State University.

[25] Pylorof, D., and Bakolas, E., 2015, “Nonlinear control under polytopic input con-
straints with application to the attitude control problem,” In 2015 American Control
Conference (ACC), pp. 4555–4560.

[26] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mischenko, E. F.,
1986, The Mathematical Theory of Optimal Processes Gordon and Breach Science
Publishers.

[27] Liberzon, D., 2012, Calculus of Variations and Optimal Control theory Princeton
University Press.

[28] Hull, D. G., 1997, “Conversion of optimal control problems into parameter optimiza-
tion problems,” Journal of Guidance, Control and Dynamics, 20, pp. 57–60.

[29] Reynolds, T. P., and Mesbahi, M., 2020, “The crawling phenomenon in sequential
convex programming,” In 2020 American Control Conference (ACC), pp. 3613–3618.

146

[30] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M., 2019, Model Predictive Control:
Theory, Computation, and Design Nob Hill Publishing.

[31] Harris, M. W., and Açıkmeşe, B., 2013, “Maximum divert for planetary landing
using convex optimization,” Journal of Optimization Theory and Applications, 162,
pp. 975–995.

[32] Kunhippurayil, S., Harris, M. W., and Jansson, O., 2021, “Lossless convexification of
optimal control problems with annular control constraints,” Automatica, 133.

[33] Woodford, N. T., and Harris, M. W., 2022, “Geometric properties of time optimal
controls with state constraints using strong observability,” IEEE Transactions on
Automatic Control, 67(12).

[34] Rugh, W. J., 1993, Linear System Theory Prentice Hall.

[35] Trentelman, H. L., Stoorvogel, A. A., and Hautus, M., 2001, Control Theory for
Linear Systems Springer.

[36] Berkovitz, L. D., 1975, Optimal Control Theory Springer-Verlag.

[37] Lewis, A. D., 2001, “A brief on controllability of nonlinear systems,” Preprint.

[38] Peng, J., Roos, C., and Terlaky, T., 2001, Self-regularity: a new paradigm for primal-
dual interior-point algorithms Princeton Series in Applied Mathematics.

[39] Nesterov, Y., and Nemirovsky, A., 1994, Interior-point polynomial methods in convex
programming SIAM.

[40] Bryson, A. E., and Ho, Y.-C., 1975, Applied optimal control: optimization, estimation
and control CRC Press.

[41] Johnson, P. A., 2009, “Numerical solution methods for differential game problems,”
Master’s thesis, Massachusetts Institute of Technology.

[42] Horie, K., and Conway, B. A., 2004, “Genetic algorithm preprocessing for numerical
solution of differential games problems,” Journal of guidance, control, and dynamics,
27(6), pp. 1075–1078.

[43] Horie, K., and Conway, B. A., 2006, “Optimal fighter pursuit-evasion maneuvers
found via two-sided optimization,” Journal of guidance, control, and dynamics, 29(1),
pp. 105–112.

[44] Carr, R. W., Cobb, R. G., Pachter, M., and Pierce, S., 2018, “Solution of a pursuit–
evasion game using a near-optimal strategy,” Journal of Guidance, Control, and
Dynamics, 41(4), pp. 841–850.

[45] Basar, T., 1987, “Relaxation techniques and asynchronous algorithms for online com-
putation of non-cooperative equilibria,” Journal of Economic Dynamics and Control,
11(4), pp. 531–549.

147

[46] Uryasev, S., and Rubinstein, R., 1994, “On relaxation algorithms in computation
of noncooperative equilibria,” IEEE Transactions on Automatic Control, 39(6),
pp. 1263–1267.

[47] Mizukami, K., and Eguchi, K., 1977, “A geometrical approach to problems of pursuit-
evasion games,” Journal of the Franklin Institute, 303(4), pp. 371–384.

[48] Sun, W., Tsiotras, P., Lolla, T., Subramani, D. N., and Lermusiaux, P. F., 2017,
“Multiple-pursuer/one-evader pursuit–evasion game in dynamic flowfields,” Journal
of guidance, control, and dynamics, 40(7), pp. 1627–1637.

[49] Chung, C. F., Furukawa, T., and Goktogan, A. H., 2006, “Coordinated control for
capturing a highly maneuverable evader using forward reachable sets,” In Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.,
IEEE, pp. 1336–1341.

[50] Chung, C. F., and Furukawa, T., 2008, “A reachability-based strategy for the time-
optimal control of autonomous pursuers,” Engineering Optimization, 40(1), pp. 67–
93.

[51] Salmon, D. M., and HElNE, W., 1973, “Reachable sets analysis-an efficient technique
for performing missile/sensor tradeoff studies,” AIAA Journal, 11(7), pp. 927–931.

[52] Zanardi, C., Hervé, J.-Y., and Cohen, P., 1995, “Escape strategy for a mobile robot
under pursuit,” In 1995 IEEE International Conference on Systems, Man and Cyber-
netics. Intelligent Systems for the 21st Century, Vol. 4, IEEE, pp. 3304–3309.

[53] Jansson, O., and Harris, M. W., 2022, “Nonlinear control algorithm for systems
with convex polytope bounded nonlinearities,” In 2022 Intermountain Engineering,
Technology, and Computing Conference.

[54] Jansson, O., and Harris, M., 2022, “A Technique for Constrained and Quantized
Control of Nonlinear Systems using Second-order Cone Programming,” ASME Letters
in Dynamic Systems and Control, 12, pp. 1–11.

[55] Jansson, O., and Harris, M. W., 2023, “Convex optimization-based techniques for
trajectory design and control of nonlinear systems with polytopic range,” Aerospace,
10(1).

[56] Jansson, O., Harris, M., and Geller, D., 2021, “A parallelizable reachable set method
for pursuit-evasion games using interior-point methods,” In 2021 IEEE Aerospace
Conference (50100), IEEE, pp. 1–9.

[57] Jansson, O., and Harris, M. W., 2022, “A geometrical, reachable set approach for
constrained pursuit-evasion games with multiple pursuers and evaders,” Aerospace
Submitted.

[58] Boyd, S., and Vandenberghe, L., 2004, Convex Optimization Cambridge University
Press.

148

[59] Moon, T. K., and Stirling, W. C., 2000, Mathematical methods and algorithms for
signal processing No. 621.39: 51 MON.

[60] Hespanha, J. P., 2018, Linear systems theory Princeton university press.

[61] Elnagar, G., Kazemi, M. A., and Razzaghi, M., 1995, “The pseudospectral Legendre
method for discretizing optimal control problems,” IEEE transactions on Automatic
Control, 40(10), pp. 1793–1796.

[62] Boyd, J. P., 2001, Chebyshev and Fourier spectral methods Courier Corporation.

[63] Klumpp, A. R., 1974, “Apollo lunar descent guidance,” Automatica, 10, pp. 133–146.

[64] Cherry, G. W., 1997, “A general, explicit, optimizing guidance law for rocket-propelled
spaceflight,” In Guidance, Navigation, and Control Conference, AIAA Paper 1997-
3709, AIAA.

[65] D’Souza, C. S., 1964, “An optimal guidance law for planetary landing,” In Astrody-
namics, Guidance and Control Conference, AIAA Paper 1964-0638.

[66] Lu, P., 2020, “Theory of fraction-polynomial powered descent guidance,” Journal of
Guidance, Control, and Dynamics, 43, pp. 398–409.

[67] Martin, D. T., Sievers, R. F., O’Brien, R. M., and Rice, A. L., 1967, “Saturn V
guidance, navigation, and targeting,” Journal of Spacecraft and Rockets, 4, pp. 891–
898.

[68] Chandler, D. C., and Smith, I. E., 1967, “Development of the iterative guidance
mode with its applications to various vehicles and missions,” Journal of Spacecraft
and Rockets, 4, pp. 898–903.

[69] McHenry, R. L., Brand, T. J., Long, A. D., Cockrell, B. F., and Thibodeau, J. R.,
1979, “Space shuttle ascent guidance, navigation, and control,” Journal of the Astro-
nautical Sciences, 27, pp. 1–38.

[70] Hull, D., 2011, “Optimal guidance for quasi-planar lunar descent with throttling,” In
AAS/AIAA Space Flight Mechanics Meeting, AAS 11-169, AAS/AIAA.

[71] Lu, P., and Liu, X., 2013, “Autonomous trajectory planning for rendezvous and
proximity operations by conic optimization,” Journal of Guidance, Control, and
Dynamics, 36, pp. 375–389.

[72] Lu, P., 2019, “Augmented Apollo powered descent guidance,” Journal of Guidance,
Control, and Dynamics, 42, pp. 447–457.

[73] Lu, P., 2017, “Introducing computational guidance and control,” Journal of Guidance,
Control, and Dynamics, 40.

[74] Liu, X., Lu, P., and Pan, B., 2017, “Survey of convex optimization for aerospace
applications,” Astrodynamics, 1, pp. 23–40.

149

[75] Liu, X., and Lu, P., 2014, “Solving nonconvex optimal control problems by convex
optimization,” Journal of Guidance, Control, and Dynamics, 37, pp. 750–765.

[76] Pinson, R., and Lu, P., 2015, “Rapid generation of optimal asteroid powered de-
scent trajectories,” In AAS/AIAA Astrodynamics Specialist Conference, AAS 15-616,
AAS/AIAA.

[77] Pinson, R., and Lu, P., 2016, “Trajectory design employing convex optimization for
landing on irregularly shaped asteroids,” In AAS/AIAA Astrodynamics Specialist
Conference, AIAA 2016-5378, AAS/AIAA.

[78] Bixby, R. E., 2012, “A brief history of linear and mixed-integer programming com-
putation,” Documenta Mathematica, pp. 107–121.

[79] Harris, M. W., and Açıkmeşe, B., 2013, “Lossless convexification for a class of optimal
control problems with linear state constraints,” In IEEE Conference on Decision and
Control (Florence, Italy), IEEE.

[80] Harris, M. W., and Açıkmeşe, B., 2013, “Lossless convexification for a class of optimal
control problems with quadratic state constraints,” In American Control Conference
(Washington, D.C.).

[81] Mattingley, J., and Boyd, S., 2012, “CVXGEN-a code generator for embedded convex
optimization,” Optimization and Engineering, 13, pp. 1–27.

[82] Chu, E., Parikh, N., Domahidi, A., and Boyd, S., 2013, “Code generation for em-
bedded second-order cone programming,” In European Control Conference (Zurich,
Switzerland).

[83] Domahidi, A., Chu, E., and Boyd, S., 2013, “ECOS: An SOCP solver for embedded
systems,” In European Control Conference (Zurich, Switzerland).

[84] Dueri, D., Açıkmeşe, B., Scharf, D., and Harris, M. W., 2017, “Customized real-time
interior-point method for onboard powered descent guidance,” Journal of Guidance,
Control and Dynamics, 40, pp. 197–212.

[85] Açıkmeşe, B., Aung, M., Casoliva, J., Mohan, S., Johnson, A., Scharf, D., Masten,
D., Scotkin, J., Wolf, A., and Regehr, M. W., 2013, “Flight testing of trajectories
computed by G-FOLD: Fuel optimal large divert guidance algorithm for planetary
landing,” In AAS/AIAA Spaceflight Mechanics Meeting, AAS/AIAA.

[86] Scharf, D., Regehr, M. W., Dueri, D., Açıkmeşe, B., Vaughan, G. M., and Benito,
J., 2014, “Adapt: Demonstrations of onboard large-divert guidance with a resuable
launch vehicle,” In IEEE Aerospace Conference, IEEE.

[87] Hartl, R., Sethi, S., and Vickson, R., 1995, “A survey of the maximum principles
for optimal control problems with state constraints,” SIAM Review, 37(2), June,
pp. 181–218.

[88] Hermes, H., and LaSalle, J. P., 1969, Functional analysis and time optimal control
Academic Press.

150

[89] Jurdjevic, V., 1997, Geometric Control Theory Cambridge University Press.

[90] Gurobi Optimization, LLC, 2019, Gurobi Optimizer Reference Manual.

[91] , 2021, MATLAB 2021a The Mathworks, Inc.

[92] Löfberg, J., 2004, “Yalmip : A toolbox for modeling and optimization in MATLAB,”
In In Proceedings of the CACSD Conference.

[93] Ahmed, H., Rios, H., Ayalew, B., and Wang, Y., 2018, “Robust output tracking
control for Van der Pol oscillator: A sliding-mode differentiator approach,” In 2018
American Control Conference (ACC), pp. 5350–5355.

[94] Jin, L., Mei, J., and Li, L., 2014, “Chaos control of parametric driven duffing oscilla-
tors,” Applied Physics Letters, 104.

[95] Lowe, G., and Zohdy, M., 2010, “Modeling nonlinear systems using multiple piecewise
linear equations,” Nonlinear Analysis: Modelling and Control, 15(4), pp. 451–458.

[96] LaValle, S. M., 2006, Planning Algorithms Cambridge University Press.

[97] Flores-Abad, A., Ma, O., Pham, K., and Ulrich, S., 2014, “A review of space robotics
technologies for on-orbit servicing,” Progress in aerospace sciences, 68, pp. 1–26.

[98] Li, W.-J., Cheng, D.-Y., Liu, X.-G., Wang, Y.-B., Shi, W.-H., Tang, Z.-X., Gao,
F., Zeng, F.-M., Chai, H.-Y., Luo, W.-B., et al., 2019, “On-orbit service (OOS) of
spacecraft: A review of engineering developments,” Progress in Aerospace Sciences,
108, pp. 32–120.

[99] Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., and Nakazawa, S., 2013, “Sys-
tem design of the Hayabusa 2—asteroid sample return mission to 1999 JU3,” Acta
Astronautica, 91, pp. 356–362.

[100] Gaudet, B., Linares, R., and Furfaro, R., 2020, “Terminal adaptive guidance via
reinforcement meta-learning: Applications to autonomous asteroid close-proximity
operations,” Acta Astronautica, 171, pp. 1–13.

[101] D’Amico, S., Benn, M., and Jørgensen, J. L., 2014, “Pose estimation of an uncooper-
ative spacecraft from actual space imagery,” International Journal of Space Science
and Engineering, 2(2), pp. 171–189.

[102] Stastny, N. B., and Geller, D. K., 2008, “Autonomous optical navigation at Jupiter:
a linear covariance analysis,” Journal of Spacecraft and Rockets, 45(2), pp. 290–298.

[103] Bradley, N., Olikara, Z., Bhaskaran, S., and Young, B., 2020, “Cislunar naviga-
tion accuracy using optical observations of natural and artificial targets,” Journal of
Spacecraft and Rockets, 57(4), pp. 777–792.

[104] Curtis, H., 2009, Orbital mechanics for engineering students, second ed. Butterworth-
Heinemann.

151

[105] Harris, M. W., and Woodford, N. T., 2022, “Equilibria, periodicity, and chaotic
behavior in spherically constrained relative orbital motion,” Nonlinear Dynamics.

[106] Clohessy, W. H., and Wiltshire, R. S., 1960, “Terminal guidance system for satellite
rendezvous,” Journal of Aerospace Systems, 27, pp. 653–658.

[107] Shuster, M. D., 1993, “The kinematic equation for the rotation vector,” IEEE
Transactions on Aerospace and Electronic Systems, 29(1), pp. 263–267.

[108] Markley, F. L., and Crassidis, J. L., 2014, Fundamentals of spacecraft attitude deter-
mination and control, Vol. 1286 Springer.

[109] Bortz, J. E., 1971, “A new mathematical formulation for strapdown inertial naviga-
tion,” IEEE transactions on aerospace and electronic systems(1), pp. 61–66.

[110] Isaacs, R., 1999, Differential games : a mathematical theory with applications to
warfare and pursuit, control and optimization Dover Publications, Mineola, N.Y.

[111] Weintraub, I. E., Pachter, M., and Garcia, E., 2020, “An introduction to pursuit-
evasion differential games,” In 2020 American Control Conference (ACC), IEEE,
pp. 1049–1066.

[112] Shinar, J., and Gutman, S., 1979, “Recent advances in optimal pursuit and evasion,”
In 1978 IEEE Conference on Decision and Control including the 17th Symposium on
Adaptive Processes, IEEE, pp. 960–965.

[113] Shinar, J., Glizer, V. Y., and Turetsky, V., 2009, “A pursuit-evasion game with hybrid
pursuer dynamics,” European Journal of Control, 15(6), pp. 665–684.

[114] Shinar, J., 1981, “Solution techniques for realistic pursuit-evasion games,” In Control
and Dynamic Systems, Vol. 17. Elsevier, pp. 63–124.

[115] Imado, F., and Kuroda, T., 2005, “A method to solve missile-aircraft pursuit-evasion
differential games,” IFAC Proceedings Volumes, 38(1), pp. 176–181.

[116] Greenwood, N., 1992, “A differential game in three dimensions: The aerial dogfight
scenario,” Dynamics and Control, 2(2), pp. 161–200.

[117] Calise, A. J., and Yu, X.-m., 1985, “An analysis of a four state model for pursuit-
evasion games,” In 1985 24th IEEE Conference on Decision and Control, IEEE,
pp. 1119–1121.

[118] Shen, D., Pham, K., Blasch, E., Chen, H., and Chen, G., 2011, “Pursuit-evasion
orbital game for satellite interception and collision avoidance,” In Sensors and Systems
for Space Applications IV, Vol. 8044, International Society for Optics and Photonics,
p. 80440B.

[119] Blasch, E. P., Pham, K., and Shen, D., 2012, “Orbital satellite pursuit-evasion game-
theoretical control,” In 2012 11th International Conference on Information Science,
Signal Processing and their Applications (ISSPA), IEEE, pp. 1007–1012.

152

[120] Stupik, J., Pontani, M., and Conway, B., 2012, “Optimal pursuit/evasion spacecraft
trajectories in the Hill reference frame,” In AIAA/AAS astrodynamics specialist
conference, p. 4882.

[121] Shen, D., Jia, B., Chen, G., Pham, K., and Blasch, E., 2017, “Game optimal sensor
management strategies for tracking elusive space objects,” In 2017 IEEE Aerospace
Conference, IEEE, pp. 1–8.

[122] Zeng, X., Yang, L., Zhu, Y., and Yang, F., 2020, “Comparison of two optimal guidance
methods for the long-distance orbital pursuit-evasion game,” IEEE Transactions on
Aerospace and Electronic Systems.

[123] Colonius, F., and Szolnoki, D., 2001, “Algorithms for computing reachable sets and
control sets,” IFAC Proceedings Volumes, 34(6), pp. 723–728.

[124] Girard, A., Le Guernic, C., and Maler, O., 2006, “Efficient computation of reachable
sets of linear time-invariant systems with inputs,” In International Workshop on
Hybrid Systems: Computation and Control, Springer, pp. 257–271.

[125] Varaiya, P., 2000, “Reach set computation using optimal control,” In Verification of
Digital and Hybrid Systems. Springer, pp. 323–331.

[126] Dueri, D., Raković, S. V., and Açıkmeşe, B., 2016, “Consistently improving approx-
imations for constrained controllability and reachability,” In 2016 European Control
Conference (ECC), IEEE, pp. 1623–1629.

[127] Dueri, D., Açıkmeşe, B., Baldwin, M., and Erwin, R. S., 2014, “Finite-horizon control-
lability and reachability for deterministic and stochastic linear control systems with
convex constraints,” In 2014 American Control Conference, IEEE, pp. 5016–5023.

[128] Yang, R., and Liu, X., 2022, “Reachable set computation of linear systems with
nonconvex constraints via convex optimization,” Automatica, 146, p. 110632.

[129] Pecsvaradi, T., and Narendra, K. S., 1971, “Reachable sets for linear dynamical
systems,” Information and control, 19(4), pp. 319–344.

[130] Blackmore, L., and Ono, M., 2009, “Convex chance constrained predictive control
without sampling,” In AIAA Guidance, Navigation, and Control Conference, p. 5876.

153

CURRICULUM VITAE

Olli N. Jansson

Published Journal Articles

� S. Kunhippurayil, M. Harris, O. Jansson, ”Lossless Convexification of Optimal Con-

trol Problems with Annular Control Constraints,” Automatica, vol. 133, 2021: 109848.

� O. Jansson, M. Harris, ”A Technique for Constrained and Quantized Control of Non-

linear Systems Using Second-Order Cone Programming,” ASME Letters in Dynamic

Systems and Control, 2022. doi: https://doi.org/10.1115/1.4056551

� O. Jansson, M. Harris, ”Convex Optimization-based Techniques for Trajectory De-

sign and Control of Nonlinear Systems with Polytopic Range,” Aerospace, vol. 10(1),

2023: 71.

� O. Jansson, M. Harris, ”A Geometrical, Reachable Set Approach for Constrained

Pursuit-Evasion Games with Multiple Pursuers and Evaders,” Aerospace, In Review

2022.

Published Conference Papers

� P. Karra, O. Jansson, ”A Cost-effective Laboratory Setup for Engine and Chassis-

Dynamometer,” In 2019 ASEE Annual Conference & Exposition.

� O. Jansson, M. Harris, D. Geller, ”A Parallelizable Reachable Set Method for

Pursuit-Evasion Games Using Interior-Point Methods,” In 2021 IEEE Aerospace Con-

ference.

154

� O. Jansson, M. Harris, ”Nonlinear Control Algorithm for Systems with Convex

Polytope Bounded Nonlinearities,” In 2022 Intermountain Engineering, Technology,

and Computing Conference.

	Convexity Applications in Single and Multi-Agent Control
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Optimal Control Problems with Annular Control Constraints
	Nonlinear Single-agent Problems
	Linearization Techniques
	Nonlinear Control Techniques
	Non-convex Optimization

	Pursuit-Evasion Games
	Objectives
	Outline

	BACKGROUND
	Convexity
	Linear Dynamical Systems
	Continuous-time
	Discrete-time

	Discretization
	State Transition Matrix Method
	Euler Method
	4th Order Runge-Kutta Method
	Numerical Examples

	LINEAR SINGLE-AGENT PROBLEMS WITH ANNULARCONTROL CONSTRAINT
	Introduction
	Nomenclature for the Chapter
	Problem Description
	Mathematical Results
	Main Result
	Solution Procedure
	Examples
	Double Integrator
	Harmonic Oscillator
	Mars Powered Descent Guidance

	Summary and Conclusions

	CONTROL OF BOUNDED NONLINEAR SYSTEMS
	Introduction
	Systems with Additive Scalar Nonlinearity
	Continuous-Time Systems
	Discrete-Time Systems and Optimization

	Systems with Additive Multi-dimensional Nonlinearities
	Problem and Main Result
	Spherically Constrained Relative Motion Trajectory Design
	Spacecraft Attitude Control

	Computational Method of Controlling Convex Polytope Bounded Nonlinear Systems with Comparison to Feedback Linearization
	Nomenclature for the Section
	Problem Statement
	Feedback Linearization
	Proposed Linearization Technique
	Examples

	Summary and Conclusions

	LINEAR PURSUIT-EVASION GAMES
	Introduction
	Reachable Sets
	Algorithm for Reachable Set Calculation
	Stochastic System

	Game Theory
	Single Pursuer and Single Evader
	Multiple Pursuers and Single Evader
	Single Pursuer and Multiple Evaders

	Dynamics
	Examples with Single Pursuer and Single Evader
	Problem without State Constraints
	Problem with State Constraints
	Stochastic Problem
	Sun Blocking

	Examples with Multiple Pursuers or Evaders
	Multiple Pursuers and Single Evader
	Single Pursuer and Multiple Evaders

	Summary and Conclusions

	CONCLUSIONS AND SUMMARY
	REFERENCES
	CURRICULUM VITAE

