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Abstract—Combining individual and collaborative learning
is common, but dynamic combinations (which happen as-the-
need arises, rather than in pre-planned ways, and may happen
on an individual basis) are rare. This work reports findings
from a technology probe study exploring alternative designs for
classroom co-orchestration support for dynamically transitioning
between individual and collaborative learning. The study involved
1) a technology-probe classroom study in an authentic, AI-
supported classroom to understand teachers’ and students’ needs
for co-orchestration support over dynamic transitions; and 2)
workshops and interviews with students and teachers to get
informed feedback about their lived experiences. 118 students
and three teachers from a middle school in the US experienced
a pairing policy – student, teacher and, AI-controlled pairing
policy – (i.e., identifying students needing help and potential
helpers) for switching from individual to a peer tutoring activity.
This work aims to answer the following questions: 1) How did
students and teachers react to these pairing policies?; and 2)
What are students’ and teachers’ desires for sharing control over
the orchestration of dynamic transitions? Findings suggest the
need for a form of hybrid control between students, teachers,
and AI systems over transitions, as well as for adaptivity and
adaptability for different classroom characteristics, teachers, and
students’ prior knowledge.

Index Terms—Adaptive and Intelligent Educational Systems,
orchestration tools, human-AI orchestration, hybrid human-AI
tools, individual learning, collaborative learning.

I. INTRODUCTION

COmbining individual and collaborative learning is com-
mon, but dynamic combinations (which happen as-the-

need arises rather than in pre-planned ways and may happen
on an individual basis) are rare [1]. For instance, many widely
used collaborative learning instructional methods, such as the
Think-Pair-Share [2] or Jigsaw [3] methods, in fact, use indi-
vidual phases at some point in the activity to promote a more
productive collaboration. In addition, individual and collabo-
rative learning modes may have complementary strengths for
supporting learning efficiently [4]. For example, collaborative
learning offers opportunities for mutual elaboration and co-
construction of knowledge, or sense-making, whereas individ-
ual learning promotes induction and refinement as learning
mechanisms [4]. Given these hypothesized complementary
strengths of individual and collaborative learning, it may
be fruitful to have students transition dynamically between
individual and collaborative learning, as the need arises for
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given students (e.g., when there are diminishing returns in
the one learning mode at moments where the other might be
more effective). Doing so would mean teaming up students in
ways that are not fully pre-planned but are instead determined
opportunistically based on unfolding learning situations –
whether by an instructor or by educational software.

Orchestrating the dynamic switching in classrooms has
been recognized as a major challenge in teaching practice
[5], [6]. Although it might seem that orchestration tools
designed specifically with this goal in mind could be extremely
helpful for teachers, little, if any, past work has focused on
designing such tools. Prior research has focused on designing
tools for supporting teachers in orchestrating either individual
(e.g., [1]) or collaborative learning (e.g., [7]) scenarios, or
individual and collaborative learning phases on CSCL scripts
(e.g., [8]). However, these tools have typically been designed
with the assumption that a class of students progresses through
instructor- or student-led activities in a pre-planned, relatively
synchronized manner [9].

In AI-supported classrooms, such as those using intelligent
tutoring systems (ITSs), each student progresses along an indi-
vidualized learning trajectory, determined by the AI according
to a student’s needs. During class, teachers may provide
additional one-on-one guidance, and help to co-orchestrate the
flow of activities in the classroom alongside the AI software.
For instance, prior work suggests that during AI-supported
class sessions, teachers will sometimes orchestrate transitions
on the fly, between individual and collaborative learning (e.g.,
by pairing one student to tutor another who may currently be
struggling) [10], [11]– although they desire greater support
from the AI in doing so. Meanwhile, other works have found
that students desire some agency over these decisions as well
and reject the idea of either teachers or AI systems having full
control [10], [12], [13]. In short, these prior works suggest di-
verse perspectives for providing agency to the different actors,
i.e., students, teachers and the AI system, during the classroom
orchestration, Still, many open questions remain regarding
how best to distribute the task of co-orchestrating dynamic
transitions between students, teachers, and AI systems.

In this work, we present a technology-probe study for
eliciting design features of a pairing tool and report design
challenges and opportunities for human–AI control over dy-
namic transitions in the classroom. These dynamic transitions
(i.e., pairing opportunities) are supported by the pairing tool
allowing students, teachers, or the AI system to identify
students needing help and potential helpers who might take0000–0000/00$00.00 © 2022 IEEE
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advantage of the benefits of a peer tutoring activity. Thus,
three pairing policies for transitioning from individual to a
peer tutoring activity were defined: student, teacher and AI-
controlled pairing policies. We aim to address the following
questions: 1) How did students and teachers react to each of
these three pairing policies; and 2) What are students’ and
teachers’ desires for sharing control over the orchestration of
dynamic transitions?.

II. PRIOR WORK

As pointed out by Dillenbourg and colleagues [1], current
CSCL scenarios not only relate to a collaborative activity but
also integrate individual (e.g., reading) and class activities
(e.g., lectures). In practice, teachers move from individual to
collaborative activities following instructional methods, such
as Think-Pair-Share [2] or Jigsaw [3], or opportunistically,
by matching students struggling with more proficient ones to
ease the workload of attending students needing prompt help
[14]. In a recent review, authors stated that the orchestration
of these transitions does not happen timely, according to
classroom needs [15]. In this sense, there has been a surge
of interest in designing and implementing orchestration tools
in diverse classroom contexts and activities that supports the
management and monitoring of diverse learning activities.

A. Classroom Orchestration Tools to Support Dynamic Tran-
sitions

Classroom orchestration refers to the management of multi-
ple learning activities and posits the teacher as the conductor
of the learning process [5]. Technology can support classroom
orchestration by capturing students learning behaviors and
informing the teacher about these. The teacher can make in-
formed decisions on the fly and adapt the classroom conditions
or instructions in response to the current students’ needs [5].
Orchestration tools, then, support teachers in managing and
monitoring individual, collaborative or class activities, ideally
to lower the teacher load.

Orchestration tools have been developed to support individ-
ual activities at the class level, for example, orchestration tools
for supporting teachers’ awareness using real-time analytics.
For example, Holstein and colleagues [16] designed and
developed a mixed-reality orchestration tool called Lumilo,
which detects students’ status and behaviors (e.g., off-task,
struggling) while practicing equations in an ITS. Lumilo
allowed teachers to quickly observe and pay attention to those
needing more help.

Prior works have investigated how orchestration tools allow
the adequate supervision of small group activities and improve
teachers’ awareness of the tasks and interactions happening
during these activities (e.g., for a review, see [15]). These
orchestration tools may provide different support modes to
teachers, such as mirroring, alerting, or guiding modes [15].
Mirroring dashboards display basic students’ actions and be-
haviors without providing any interpretation to the teacher.
This information often shows students’ progress when using
a tool (e.g., in an ITS, this could be the number of problems
solved, their current level of knowledge, among others) [17].

Alerting mode in a dashboard provides information to the
teacher about important events needing attention [7]. For
example, a dashboard could show real-time analytics about
student’s learning status based on indicators that capture
students’ behavior with the ITS (e.g., when a student is
idle or is making many errors) so the teacher can make
an informed decision and act promptly [17], [18]. Finally,
advising dashboards provide suggestions about the current
student’s status and possible ways to act. In an ITS, this
advising information could be provided as suggestions to pair
up students who are not progressing in their math skills with
students who already mastered a specific set of skills [17].

Few studies have investigated the design and implemen-
tation of dynamic orchestration tools for transitioning from
individual to group activities to a lesser extent. For example,
[14] reported a set of tools to assist teachers in individual
activities by alerting them which students need immediate
help, finding students’ status (e.g., task completion, struggling,
disengagement when using an intelligent tutoring system), and
in group activities, by showing pairing suggestions for sup-
porting group discussions. Similarly, the work presented in [8]
evaluated an orchestration tool to support dynamic transitions
in a collaborative inquiry activity. The tool sends the teacher
notifications about the state of the class while interacting in an
equipped smart environment (i.e., tablets, multitouch tables,
projectors), either in the individual or collaborative phase
of the activity. It also matches students to work in groups
and monitors their progress. While these few works illus-
trate how orchestration tools could timely support teachers’
classroom management when transitioning from individual to
collaborative learning, students switch simultaneously from
one instruction to another. By contrast, our study aims to
investigate the design needs for orchestration tools to support
dynamic transitions as-the-need arises.

Other works have pointed to the need for shared orches-
tration (or co-orchestration) for individual and collaborative
activities, given the complex and dynamic scenario. In a recent
work by Olsen and colleagues [13], authors reported a set
of design desires for orchestrating dynamic transitions but
focusing on the shared roles and responsibilities of intelligent
systems and humans (i.e., teachers and students). Also, a study
reported by Holstein and colleagues [10] found that one of the
most preferred concepts among students is the ability to have a
student-system shared control over the selection of peer tutors.
The authors also reported a contrasting view from teachers,
who preferred to work with the AI system to match peer tutors
and tutees. Our work extends these current studies by eliciting
the need for shared control between students, teachers and the
AI-system from teachers and students.

B. Group Formation for Effective Dynamic Transitions

Orchestrating dynamic transitions involves a group forma-
tion process in which pairs of students are selected and are
expected to collaborate effectively. This issue has been studied
extensively in Computer-Supported Collaborative Learning
(CSCL) research (see reviews in [19], [20]). Several consider-
ations and techniques when forming groups lead to effective
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collaboration. In this section, we review group formation
in terms of 1) students’ characteristics, 2) group type and
3) participants involved in the group formation, which are
relevant to our context.

Prior works have reported diverse students’ characteristics
to find compatible members that lead to a positive learning
outcome [20]. For example, gender or task proficiency has
been used as input data to find suitable members and conform
groups. In our work, we consider students’ skill levels as a
key characteristic to determine who may need help or may be
a good candidate for becoming a tutor.

Concerning the group type, studies in CSCL have mainly re-
ported heterogeneous and homogeneous group types (see [19],
[20] for a complete overview of group formation types). For
instance, in homogenous group formation, participants with
similar characteristics are considered potential group members.
In practice, students involved in the selection process tend
to create homogeneous groups (e.g., based on their affinity
and similar knowledge levels). In contrast, in heterogeneous
group formation, participants with diverse skills are selected
to support each other learning. In practice, teachers often tend
to create heterogeneous groups based on their beliefs about
students’ prior knowledge. AI systems could intervene in the
group formation process and support creating heterogeneous
or homogeneous groups by accessing students’ level skills
and determining which students could take advantage of
collaboration. In this study, we explore homogeneous pairings
(those initiated by the student) and heterogeneous pairings
(those initiated by the teacher or the AI system).

Finally, some researchers have reported how the involvement
of different participants – students, teachers and the AI system
–in the group formation process can affect the learning expe-
rience [21]. In some cases, students can be asked to specify
their preferences for collaboration (e.g., based on affinity or
social relationships). This is not always ideal, as students may
not know their learning needs or knowledge levels. In other
cases, the teacher have full agency over the whole group
formation process by initiating and identifying peers based
on their experiences or beliefs. However, this can be time-
consuming or difficult when the teacher does have a prior
conception of students’ knowledge. Intelligent support can be
obtained from an AI system. The AI system can automatically
form groups by considering students’ and teachers’ inputs.
Nevertheless, there is still scarce evidence of the benefits and
desires for fully automating this process. This study examines
the student, teacher, and AI system participation in the group
formation process.

III. CONTEXT

A. AI-Based tutoring systems for individual and collaborative
learning

As mentioned above, many instructional methods include
individual and collaborative phases to improve students’ learn-
ing gains [2], [3], [8]. However, these methods usually unfold
in a pre-planned, synchronized manner, where the teacher sets
the time limit for each phase and students switch simultane-
ously. In the current work, we aim to support fluid dynamic

transitions, where the teacher monitors students’ status and,
according to students’ needs, teachers or the AI system could
decide to initiate a peer tutoring activity. Real-time AI systems
could support these transitions by capturing students’ interac-
tion logs, and the AI system can group students according to
teachers’ inputs or students’ performance [8], [22]. In this way,
AI systems may support teachers by adapting the instructional
method according to the classroom dynamics and potentially
ensuring productive outcomes [23].

In our study, students dynamically transitioned between
two AI-based tutoring systems, namely, Lynnette (see Fig.
1), which supports individual problem-solving practice, and
APTA 2.0 (see Fig. 2), which supports mutual peer tutoring, a
form of collaborative learning. Both systems support practice
in linear equation solving for middle school students.

Lynnette provides step-by-step guidance in the form of
hints and feedback as students individually solve equations
(e.g., solve for x: x+3 = 9). It also keeps track of students’
mastery of detailed skill components as they progress in the
problem sets to support a form of individualized mastery
learning. Lynnette is implemented as a rule-based Cognitive
Tutor [24] within the CTAT/Tutorshop architecture [25].

To support collaborative learning, we implemented a new
version of APTA (Adaptive Peer Tutoring Assistant), devel-
oped originally by Walker, Rummel, and Koedinger [26]. This
system adaptively coaches one student (the "peer tutor") in
tutoring another student (the "tutee") with advice about both
tutoring and mathematics. It uses two rule-based cognitive
models, one that captures peer tutoring strategies and one that
captures equation-solving knowledge (the latter is shared with
Lynnette.)

APTA 2.0 supports two different interfaces, one where the
tutee (the student being helped) solves linear equations (Fig.
2 - top) and another through which the student in the peer
tutor role monitors the tutee’s work and provides guidance
(Fig. 2 - bottom). The peer tutor marks their tutee’s problem-
solving steps as correct (✓) or incorrect (×), accesses hints
about equation solving generated by Lynnette, and receives
messages from APTA 2.0’s coaching model on how to improve
the tutee’s skills and give good advice (e.g., "Well done! Tutor,
do you have a better sense of what your partner is doing?",
Fig. 2 - bottom).

APTA 2.0 gives the peer tutor feedback on whether their
marking of the tutee’s steps is correct. To this end, APTA 2.0
connects with Lynnette, which compares the tutee’s input to
possible correct solutions generated by its cognitive model of
equation solving. For example, in Fig. 2 we can observe that
if the tutor marks the tutee’s step as incorrect, the × button
is highlighted in green, indicating that the tutor’s grading is
correct. At the same time, the tutee’s step is highlighted in
red, indicating that the solving step for the equation is wrong.

APTA 2.0 also presents a chat module where the tutee
and the tutor can communicate during the assignment. For
example, the tutee can ask for help, and the tutor can give hints
on the current step (Fig. 2, chat component). Chat messages
are classified as help types (e.g., next-step help, previous-step
help, both and not help) [26]. The classification result is then
used to feed the coaching model and provide adaptive advice
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Fig. 1. Lynnette interface for individual assignments.

to the tutor, as depicted in Fig. 2. APTA 2.0 assesses students’
collaboration skills using its model of collaboration with a
variant of Bayesian Knowledge Tracing.

APTA 2.0 also has a teacher’s interface, where a teacher
can log in, access her classes, and add a roster. She can also
configure problem sets and skills, check students’ progress
and skills in real-time, and manually assign pairs to initiate
a peer tutoring activity. For example, Fig. 3 (A) depicts
the Reports view, where the teacher can access the list of
students and observe their progress on the problem sets they
have been assigned. This view also allows filtering of the
information based on students skills and performance based
on the assignments students are working on. The legend of the
student’s progress can be found at the bottom of the view. All
these reports can be accessed in real-time. Fig. 3 (B) illustrates
the Assignment view, where the teacher can see all students
who are working on a specific assignment. The teacher can
also choose students to work on this assignment and initiate
a peer tutoring activity. Fig. 3 (B) shows an example of a
peer assignment called SubstractConstant. Two students have
been assigned to the SubstractConstant assignment and have
already completed the task.

While Lynnette and APTA have been used in prior studies
separately and have each separately shown improved learning
gains [27]–[29], the current study is the first attempt to
combine both AI systems for dynamically switching between
individual and collaborative learning activities.

B. Dynamically transitioning from individual to peer tutoring
activities

In the current study, we support fluid dynamic transitions,
where the teacher monitors individual students’ status and, ac-
cording to students’ needs, they can work on tutoring activities
or keep working individually with the help of an intelligent
system (i.e., Lynnette). Fig. 4 depicts the orchestration tasks
for dynamically transitioning between individual and peer
tutoring activities. In principle, any of the participants (e.g.,
students, teachers and/or the AI system) could have control
over any of these tasks - although, as mentioned, a key
question is how control should be shared or divided - and
how the orchestration tool should be designed to support the
desired sharing or division of control. It is worth noting that
there are more cases to be considered in these three main tasks
(described below) for transitioning from individual to peer

tutoring activities and that the examples provided here help
illustrate the type of control and decisions that the participants
may be involved in.

• Task 1: Identifying students needing help and poten-
tial partners: In prior works, researchers have explored
how technology can support group formation to maximize
individuals’ and groups’ outcomes [30]. This is usually
done by gathering students’ characteristics, so the system
or teacher can make informed decisions for selecting
potential partners to conform to a group based on similar
(homogeneous group formation) or complementary needs
(heterogeneous group formation) (e.g., [8]). The student,
the teacher, or the AI system could control this task.
For students, this task could mean asking for help if
they struggle with the equation-solving exercise. Teach-
ers could identify struggling students by considering
their prior knowledge or by observing students’ behavior
during the individual activity and then detect potential
partners that can act as mentors. As for the AI system, it
could detect struggling students (c.f. [12]) working in an
individual activity and could provide a potential match
with a student that could act as a tutor (i.e., a student
that has already mastered a specific skill and have good
aptitudes to be a helper).

• Task 2: Negotiating with participants: Negotiation is a
complex process where all participants could be involved
in the decision of accepting or rejecting a new task based
on their goals, preferences and interests [30]. Classroom
dynamics and instructional goals could be considered to
delineate which participants should have the power or
authority to accept and/or reject tasks. Students could
decide if they are willing to participate or not in a new
peer tutoring activity. For example, a high-performing
student could reject a request made by another student
because she may want to finish her work first and does
not want to be interrupted. Teachers could decide if
they accept or reject pairing suggestions from students
or the AI system. For example, following a request
by a student to collaborate with another student, the
teacher may judge that it would not be beneficial for this
student to start a new peer tutoring activity because it
could be a distraction. Finally, for the AI system, this
negotiation could be related to the co-configuration and
optimization of peer tutoring activities. For example, the
AI system could suggest that the peer activity initiated
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Fig. 2. APTA 2.0 interfaces for students in the tutee (top) and tutor (bottom) role.

Fig. 3. APTA 2.0 teacher interface. (A) Reports view - where the teacher can access students’ progress, performance and skills. (B) Assignment view - where
the teacher can choose a pair of students to work in a tutor-tutee activity.
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Fig. 4. Representation of the shared control between participants (i.e., AI
system, student, teacher) during dynamic transitions.

by the teacher might not be productive and then provide
some recommendations for effective pairing.

• Task 3: Initiating peer tutoring activity: Finally, par-
ticipants could have the control to initiate the peer tutor-
ing activity [13], [30], resulting in the instantiation and
enactment of this activity. This initialization depends on
students’ needs (i.e., past knowledge, and current skills)
and the decisions taken in the previous tasks. For instance,
a student could initiate a peer tutoring activity that has
already been negotiated with the teacher or with another
student. A teacher could initiate a peer tutoring activity
based on prior students’ knowledge without requiring
students’ approval. And finally, the AI system could also
initiate a peer tutoring activity without the teacher’s or
students’ input or approval.

When all steps of the dynamic pairing process have been
completed successfully, a newly-formed pair of students will
be working on a peer tutoring activity using APTA 2.0. The
other students will continue their work (either individually
with Lynnette or collaboratively with APTA 2.0). The current
work focuses on Task 1, namely the pairing policy. The other
two tasks are being further explored in ongoing research [31].

In the next section, we introduce the methodology used to
explore the boundaries for co-orchestrating the pairing policy
task between teachers, students, and AI systems.

IV. METHODOLOGY

A. Technology Probe Study Design

To explore designs of classroom co-orchestration support for
dynamically transitioning between individual and collaborative
learning, we conducted a technology probe study in middle
school classrooms. Following Hutchinson et al.’s conception
of technology probes [32], our goals were to: (1) better under-
stand how unplanned, dynamic pairing plays out in authentic
AI-supported classroom settings, (2) conduct technical field
tests of an early version of a co-orchestration system to
support dynamic pairing, and (3) provide teachers and students
with the necessary context to provide rich, experientially-
grounded design feedback and ideas for future human-AI co-
orchestration tools. The technology probe study was designed
to explore alternative designs within a subset of the design
space we described, namely, the task of identifying students

who might benefit from collaboration and finding potential
partners for them.

Based on prior design explorations with students and
teachers [10], [13], we defined three pairing policies for
dynamically transitioning between individual and collaborative
learning. At this point, classroom characteristics (i.e., low-
achieving, high-achieving classes) were unknown, as the study
intended to understand how dynamic transitions may unfold
in authentic classrooms. The steps to initiate and actuate a
switch from one learning mode to another for given students
were not yet fully automated, as we envision they will be in the
future; they were conducted following a Wizard of Oz (WoZ)
experiment (i.e., a remote researcher interacted with the tool
to initiate a peer tutoring activity). Each class was randomly
assigned to one of the three policies described below.

Student-controlled pairing policy. Students were encour-
aged to request help from a classmate (tutor) if they felt they
were stuck on a problem. They could select several peers
(based, e.g., on their affinity) by filling in and then submitting
an online request form (i.e., Google Forms). In this policy, a
student (tutee) requested help by clicking the "Request Help"
red button in the Lynnette interface (see Fig. 1), meaning that
the tutee had full control over the selection of tutor candidates
and there was no negotiation with the teacher and the AI
system. Once the request was delivered, the WOZ AI system
(simulated by a remote researcher) initialized a peer tutoring
assignment in APTA 2.0 by matching the tutee with the first
option listed on the submitted form. If that option was not
available (e.g., because the requested partner was working
on another peer tutoring assignment), the AI system tried to
match the tutee with the second option listed, and so on, until
fulfilling the help request.

Teacher-controlled pairing policy. Teachers were encour-
aged to identify students who were struggling (tutee) and pair
them with students who could be of help (tutor). Teachers
selected students primarily based on their conception of the
student’s knowledge and skills. Upon the teacher’s request,
information about each student’s skill mastery in Lynnette was
shown to them. The teacher identified a student (tutee) that
could potentially benefit from a peer tutoring activity and a
partner (tutor) and requested the AI system (simulated by a
remote researcher) to pair them up and initialize a new peer
tutoring assignment in APTA 2.0.

AI system-controlled pairing policy. Before fully de-
ploying an AI system policy, we used a WoZ AI system
pairing policy to explore the configuration and run-time of
an intelligent pairing policy in an authentic scenario 1. Fol-
lowing a technology probe approach, the simulated AI system
was constantly monitoring students’ skills (from Lynnette)
and identifying students who had a lower skill mastery (as
candidates for the tutee role). Then, the AI system found a
possible candidate with higher skills (tutor), assuming that
students with lower skills could benefit from peer tutoring
activities. The remote researcher was instructed to identify
students who, for one of the ten skills being monitored (e.g.,

1A complete exploration of an existing AI ecosystem for pairing students
has been reported in [17].
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cancel constant terms, as shown at the bottom of Fig. 1), had a
probability of knowing – as estimated by Bayesian Knowledge
Tracing [33] – below 50% for the tutee candidate and above
75% for the tutor candidate. The remote researcher had access
to students’ skill mastery from Lynnette’s teacher’s view. If
the tutor was already paired up with another student, then the
researcher would choose the next best match, based on any
other skill, and ultimately choose a random tutor who was not
paired up yet. The AI system initialized the new peer tutoring
assignment in APTA 2.0.

B. Participants and Procedure

Three seventh-grade math teachers (1 female, 2 male) from
a middle school in a suburban school district in the US were
recruited. Teachers were asked to use both AI-based tutoring
systems during their normal classroom period. A total of 118
students from six classes (C1 – C6; see Table 1). Students
practiced equation solving for further skill development and
refinement.

During two regular class periods, each lasting for 45
minutes, students performed a set of tasks using Lynnette
and/or APTA 2.0, respectively, for individual and peer tu-
toring assignments. First, students followed a mini-tutorial
on how to use Lynnette and APTA 2.0. Second, students
were engaged in individual activities by solving four sets of
individual assignments using Lynnette. Third, after 20 minutes
of working on individual assignments, a phase started in which
some students were paired up dynamically for collaborative
learning, using the pairing policy in effect for the given class,
as explained above. Peers (tutee and tutor) were asked to
stop their individual assignments and work on an assignment
with a partner. Fourth, students participated in a discussion
workshop led by the teacher to discuss their lived experiences
(e.g., Did you like to be paired with a peer to solve linear
equations? Would you prefer to select your peer? Would you
let the teacher, or the system pair you up with someone?)
and the overall activity (e.g., Did you enjoy working with the
software?)

Afterward, teachers participated in post-hoc interviews to
explore their needs, preferences, and reservations regarding
the design of co-orchestration support, building upon their ex-
perience during the classroom study. We conducted two semi-
structured interview sessions, each lasting about 30 minutes:
one with two teachers (A and B) and the other with one teacher
(C). Given that only one of the three teachers experienced all

pairing policies, we prepared a set of storyboards2 representing
the three different pairing policies (student-, teacher-, or AI
system- controlled) as described above to help the teachers
understand the differences between these. Teachers were asked
to review these storyboards and explain their preferences on
co-orchestration opportunities (e.g., Who should have control
over the pairing policy? Who should accept or reject the
initialization of a peer tutoring activity?).

To preserve students’ privacy, we conducted live classroom
observations rather than audio/video recording classroom ses-
sions. An observer and a researcher were present during each
class period. Similar to the approach in [18], the observer took
observational notes regarding teacher and students’ behaviors
using LookWhosTalking3. The tool allows for coding live
classroom observations, customized with pre-configured cat-
egories for teachers and students (e.g., the teacher explaining
instructions to the whole classroom, a student talking to
another student). These categories were grounded in prior
works, such as [18], [34], where they developed a protocol for
exploring and understanding teacher and students’ interactions.
The observer was trained to conduct observations in a pre-
training class session. The researcher took notes during stu-
dents’ workshop sessions and teachers’ interviews. All logged
data generated by Lynette and APTA were collected in the
PLC DataShop repository [25] for further analysis.

V. ANALYSES AND RESULTS

To understand design challenges and opportunities for
human-AI control over dynamic transitions in the classroom,
we aim to answer the following research questions: A) How
did students and teachers react to each of these three pairing
policies? And B)What are students’ and teachers’ desires for
sharing control over the orchestration of dynamic transitions?

We analyzed quantitative data collected from the Lynnette
and APTA 2.0 log data and qualitative data collected from
classroom observation notes from six classes, along with notes
from post-hoc workshop discussions with students and semi-
structured interviews with teachers. Quantitative data were
analyzed and summarized to understand individual and peer
assignments and to understand and illustrate the variability in
orchestration dynamics at the classroom level. . Qualitative
data were analyzed following a content analysis procedure
[35]. Quotes of interest were selected by two researchers and
then summarized in relation to the experience of dynamic
switching and in relation to each pairing policy.

A. RQ1: How did students and teachers react to the pairing
policies?

We first obtained the number of students who engaged in in-
dividual assignments and peer tutoring assignments (excluding
the mini-tutorial assignments) for each policy using the data
logs from Lynnette and APTA 2.0 (see Table I).Fewer stu-
dents engaged in peer tutoring assignments under the student-
controlled pairing policy than under the teacher-controlled or
the AI-controlled pairing policy.

2The full protocol can be found at https://vanechev.github.io/cyberlearning/
teacher-protocol.html

3Available at: https://bitbucket.org/dadamson/lookwhostalking
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Fig. 5. Percentage of students struggling during the pairing activity on each class and pairing policy.

A summary of the average time spent (in seconds), the
average of errors made, and the number of pairs that fully
completed the peer tutoring assignments are presented in Table
II. From Table II, we can observe that pairs from C1 spent less
time (M = 96.5 secs; SD = 47.6); had fewer errors ( M = 2
errors; SD = 2.8) compared to the rest of the classes, and all
the pairs completed all the assignments. On the other hand,
pairs from C4 spent more time (M = 270 secs; SD = 138.3),
had a higher average of errors ( M = 30.7 errors; SD = 27.2)
and 33% of pairs completed all the assignments.

In addition to the summary presented above, we wanted
to explore if students who were engaged in a peer tutoring
activity had a productive collaboration. Thus, we computed
(for each minute of the collaborative episode) whether the tutee
was struggling using the same struggle detector as [36], as a
proxy of an unproductive collaboration episode (see Fig. 5)
Students (tutees) that struggle during peer tutoring activities
are not progressing with the help of the student tutor. Next,
we summarize the interpretation of our results in terms of the
three pairing policies and teachers’ and students’ responses.

Student-controlled pairing policy: In the student-
controlled pairing policy, in which students were encouraged
to request to work with a peer when needed, 16 out of 41
students (39.5%) engaged in a peer tutoring assignment. Given
the rather large difference in the number of peer tutoring
assignments in the two classes that experienced this condition
(C1 and C2, see Table I), we analyzed the behavior of these
two classes separately from log data, observations, and inter-
views. Only four students from C1 requested to be engaged in

peer tutoring assignments. From classroom observations and
the teacher’s responses, we found that students in this class
were more confident and had more advanced math skills than
those in C2 (i.e., "class 1 is a high-achieving classroom" -
Teacher A). Students in C1 expressed that they did not feel
the need to ask for help and initiate a peer assignment. As
for students from C2, half of the students worked on a peer
tutoring assignment, a low number compared to the other
two conditions (e.g., 14 out of 16 students from C3 worked
on a peer tutoring activity). From classroom observations
and students’ responses, we found that not all students were
equally motivated to work on collaborative learning activities.
For instance, most students from C2 stated that "they would
prefer working alone." Pairs from C1 and C2 spent a moderate
amount of time working on the assignments. C1 had fewer
errors (only two pairs were created), and C2 had an average
of 7 errors (from the 7 working pairs). Almost all pairs
completed all the assignments (C1: 100% and C2: 83%), and
their struggling statuses were low (see Fig. 5 - left column).

Concerning students’ experience with the pairing policy,
most of the students preferred having full agency over choos-
ing their own partners. For instance, all students from C1
(high-achieving classroom as mentioned by the teacher and
defined in Section V - B) and some students in C2 (a large
classroom, as defined in Section V - B) mentioned they liked
being able to choose a classmate and not being paired by the
teacher. A student from C1 expressed that he would prefer
"to choose someone [he] can work with better" based on their
affinity. However, another student argued that he would prefer
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to "work with someone with a higher skill level", which may
suggest that students would like to have access to their skill
mastery levels to choose their best partner. Most students in
C2 expressed that they would prefer to work alone, and some
students thought it would be better to ask for help from the
teacher instead of a classmate, which may suggest a student-
teacher shared control over the pairing activity, i.e., students
detecting and signaling (to the teacher) that they are struggling
and the teacher choosing the partner.

The teachers’ perspectives did not align with students’
preferences. Teachers expressed that they prefer unrestricted
control over pairing. For example, they would like to "have
some control over the pairing" and "override students’ pair-
ing," arguing that "some kids don’t work well might choose
those who’ll just give answers or chat about something else."
Thus, one reason teachers may prefer to have the final decision
over the pairing is to reduce non-math-related chat interactions
on the part of their students. Findings from prior work and
analysis of chat interactions from the current study seem to
suggest that teachers have reason to be concerned: It is very
common for students to use the chat for interchanging off-topic
messages.

Teacher-controlled pairing policy: In the teacher pairing
policy, the teacher was the instigator of the dynamic pairing.
Table I shows that 26 out of 31 (83.9%) of students in this
condition engaged in a peer tutoring activity. The teacher could
recognize students who might benefit from peer tutoring and
pair up students either by herself (7 pairings requested) or by
requesting information about students’ skill mastery, which
was retrieved from Lynnette (6 pairings requested). From
Table II, we can observe that C4 spent more time and made
more errors compared to other classes in the teacher-controlled
pairing policy. Not all pairs completed all the assignments (C3:
57% and C2: 33%). Struggling status in C3 was low and in
C4 relatively high (see Fig. 5 – middle column).

Regarding students’ experience with the pairing policy, most
students from C3 and roughly half of the students from C4 (a
small classroom, as defined in Section V - B) positively reacted
to letting the teacher make pairing decisions, suggesting that
the teacher should have full agency over choosing partners.
One student stated: "[the teacher] knows who is good and who
is bad," noting that the teacher could use her prior knowledge
of the students’ skills to get a productive peer tutoring activity.
However, similar to students’ perspective on the student-
controlled pairing policy, some students from C3 and C4 stated
that they would like to choose a classmate as tutor candidate
"depending on the problem [they] are working on," meaning
that they would expect to be helped by a friend or someone in
the class only if the problem is not too difficult (i.e., student
having a full agency to choose a partner). Otherwise, they
would prefer to receive help from the teacher rather than a
peer. Although most students were positive about the pairing
decisions made by the teacher, they also recommended other
pairing policies. For example, one student mentioned that she
would prefer "to get a randomized partner because she can get
someone new every time" (i.e., shared student-system control
when a student requests a random tutor). However, another
student raised the concern that, with randomized partners,

"it could be possible to get someone who cannot help you
with the problem." Following up on this idea, other students
suggested that another pairing policy to match tutees and
tutors would be "based on a [potential tutor] skill" or "a
qualification of becoming a tutor," and only students who have
this skill should be recommended for tutoring other students.
As explained above, students did not have access to any up-to-
date information about other students’ math or peer tutoring
skills. These comments from students raise the interesting
novel idea of a pairing policy that would consider APTA’s
assessment of a student’s peer tutoring skills. (As mentioned,
APTA 2.0 uses its model of tutoring skills to assess individual
students’ skills in this area.) Therefore, it may suggest a shared
student-system control over the pairing activity.

As for teachers’ perspectives, they acknowledged that this
pairing policy might be more beneficial for students, as the
teacher would choose someone who "they can focus better."
However, teachers raised some concerns about the orchestra-
tion load from the teachers’ side, as one teacher expressed that
"at some point, matching and monitoring individual and peer
tutoring activities would be bothersome."

AI System-controlled pairing policy: In the AI system
policy, 38 out of 41 (82.3%) students were engaged in peer
tutoring assignments, similar to the teacher pairing policy.
Our records indicate that, of the peer tutoring activities under
this pairing policy, 78.9% of them were chosen based on the
same skill for the tutee (below 50%) and the tutor (above
75%); 15.8% were chosen based on the next best match by
considering any higher skill for the tutor, and 5.23% were
initialized by selecting a random tutor due to a lack of
good candidates. These results suggest that the AI system
pairing policy seems to be feasible for teaming up students
with differential mastery of the same skill. From Table I,
we can observe that pairs in C6 spent more time but had
fewer errors than C5. Almost all pairs in C5 completed all
the assignments (70%), but fewer pairs in C6 completed all
the assignments (44%). The amount of struggle (as measured
by the struggle detector) for C5 was relatively high at the
beginning of the peer tutoring activity but decreased towards
the end of the activity. In contrast, the amount of struggle
for C6 increased towards the end of the activity (see Fig. 5
– right column), suggesting that students in the peer tutoring
activity were unable to improve their skills. From classroom
observations and teachers’ responses, we noticed that C6 was
a "struggling classroom". Teachers B and C mentioned that
some students had basic or limited knowledge of the given
subject matter (linear equation solving). They also expressed
that some students had external issues that may hinder their
learning.

Regarding students’ experience with the pairing policy, most
students from C5 (large classroom) expressed no reservations
about being paired up by the system, suggesting full agency
to the system over the pairing activity. However, most stu-
dents from C6 (struggling classroom) had a contrasting view,
expressing that they would prefer to choose a classmate to
become their tutor (i.e., students’ full agency over the pairing
activity). Comments from students also indicated that they felt
surprised to learn who their peer was. One student said that
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"his peer was a classmate who does not talk to him often."
Similar to previous comments from previous pairing policies,
students indicated that the matching of tutees and tutors should
be based on skill levels. As one student suggested: "if the skill
[represented as a horizontal bar in the interface] is long, that
person should be a tutor."

As for teachers’ perspectives, they liked the idea of having
an AI system pair up students. However, teachers pointed
out they should have a certain degree of control over the AI
system’s decisions, suggesting a shared teacher-system control
over the pairing activity. One teacher mentioned that "she
must be able to override the system’s matching decisions."
Teachers also suggested that the system should have some
constraints for matching students based, for example, on
students’ characteristics, social dynamics and prior knowledge.
For example, teacher C expressed that "he would trust the
system", as long as it has some constraints such as "never
putting these two kids (e.g., Sally and Molly) together because
I know they don’t work together well." Furthermore, teachers
indicated that the AI system could potentially suggest best
matches to teachers, based on students skills, along with the
teacher accepting or rejecting a matching suggestion.

B. RQ2: What are students’ and teachers’ desires for a shared
control over dynamic transitions?

When teachers were asked about their desires for support
and control of the dynamic transitions, they all envisioned
hybrid forms of control shared between students, teachers, and
AI systems. Additionally, teachers indicated that the control
of the dynamic transitions should be tailored to class and
individual student characteristics, noting that the orchestration
tool should "preserve flexibility," because "different classes
have different dynamics and skills." This view is supported by
the results presented for RQ1. We explain this view according
to three differentiated classroom characteristics that emerged
from teachers’ responses.

In addition, we analyzed how students’ degree of struggle
and their initial knowledge differentiated among classes and
how it might have influenced teachers and students’ prefer-
ences for control of dynamic transitions. Students’ struggle
is defined as students making many errors without reaching
mastery in skills that they are practicing [16]. Struggling
behaviors have been linked with students’ lack of learning,
frustration, and disengagement [37]. We analyzed the ratio of
students who were in a struggle status (Ratio of Struggle Status
- RSS) for the first 20 minutes of working on an individual
assignment using a struggle detector [37]. The detector is
implemented in JavaScript, categorizing students as struggling
if their number of total correct attempts at steps in a math
problem within recent attempts (window size = 10) is below
a certain threshold (n = 3). Fig. 6a shows the RSS for each
class. Similar to the analysis approach presented in [36], the
ANOVA results indicated that the classes have different ratios
of struggling students (RSS) [F(5,62) = 1.94, p < 0.1]. Post-
hoc Tukey tests showed a significant difference in the RSS
between C3 and C1 (diff = 0.09, p < 0.01), C3 and C4 (diff
= -0.07, p < 0.05), C3 and C5 (diff = -0.08, p < 0.05).

Students’ initial knowledge (IK) measures students’ pre-
mastery skills (i.e., equation-solving skills), indicating stu-
dents’ baseline learning on these skills. For the initial knowl-
edge analysis, we calculated the average of IK from all
Knowledge Components (KC) involved in each individual
assignment. Specifically, for each KC, we used the average
mastery level (predicted by BKT) from the first three attempts
each student made to represent their IK on this KC. We then
took the average IK across all KCs involved for one student
to represent their overall IK. Fig. 6b shows the IK averaged
across students per class. From the Kruskal-Wallis Test, results
indicated a significant effect of classes on IK for the six classes
[F (5, 120) = 17.6, p < 0.01], and the IK for the six classes
were not all equal.

From the quantitative analyses and the qualitative data gath-
ered from classroom observations and teachers’ interviews,
we illustrate three differentiated classroom characteristics and
describe the preferences for co-orchestration of dynamic tran-
sitions.

High-achieving classrooms. From the teachers’ comments,
we found that C1 was a high-achieving classroom. Teacher A
stated that most of the students from his class were taking
advanced math classes. There were no significant differences
in the proportion of struggle or in students’ initial knowledge.
Also, as indicated in the results of RQ1, only four out of
17 students worked on peer tutoring activities (see Table I),
in which students expressed they did not feel the need to
ask for help. These pairs had fewer errors (see Table II) and
did not struggle during the peer assignment activity (see Fig.
5). Concerning the co-orchestration of dynamic transitions,
teachers suggested that for high-achieving classes, the control
over the pairing policy could be shared by students and
teachers, giving partial agency to students by letting them
choose a partner to work with, with the teacher having the
option to accept or reject them. In line with prior findings
[10], [38], teachers agreed to give students some control over
the pairing.

Struggling classrooms. We found that C6 was a low-
achieving classroom from teachers’ comments, classroom ob-
servations and quantitative analyses. Although there were no
significant differences in the struggling and IK analyses, both
indicators suggest a higher ratio and variability of struggling
students (Fig. 6a) and higher variability of IK, ranging from
0.2 to 0.6 (Fig. 6b). As noted in the previous section, 18 out
of 20 students worked in peer tutoring activities (see Table I).
Working pairs in C6 had the second highest average of time
spent in the peer tutoring activity (avg= 216.0, Table II); only
44% of pairs completed the peer tutoring activity. Furthermore,
their teacher (Teacher B) stated that there were several students
with math scores below the average and that usually, the
classroom dynamics for this class are different from others
(e.g., large classes like C2). Concerning the co-orchestration
of dynamic transitions, in line with prior findings, teachers
indicated that for this class, orchestration could be the shared
between the AI system and teachers [10], [13]. For example,
teacher C indicated that she would let the orchestration tool
match students according to students’ skills if the system
is "able to restrict some matchings" depending on students’
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(a) (b)
Fig. 6. (a) Ratio of struggling students and (b) mean initial knowledge in each class C(1-6)

characteristics (e.g., affinity). All teachers also suggested that
the teacher should be able to accept and reject these pairings.
However, Teachers B and C indicated that, at the same time,
"the teacher should not become a bottleneck": if the teacher
is busy helping another student or doing any other classroom
duty and does not have the time to accept or reject the pairing,
the system should be able to proceed and initialize the peer
tutoring activity.

Classroom sizes. During interviews, teachers noted that
their ability to share control over dynamic pairings with the
AI system is constrained by the size of the class – a factor
that has rarely been explored in prior work on co-orchestration
support. We considered a class to be large if the number of
students is above the average class size in the U.S. (n=16.6
for middle schools)4. Therefore, we considered C2 and C5 as
large classes. C2 and C5 experienced student and AI system-
paring policies, respectively. Almost all working pairs in C2
(83%) completed their peer assignments. C2 had a lower
ratio of struggling students during their peer assignments (see
Fig. 5, left column). In contrast, C5 had the highest average
time spent (avg= 270.0, Table II), the highest average of
errors made (avg= 30.7, Table II) and a lower percentage
(33%) of completed peer assignments. C5 also had a high
ratio of struggling students during the peer tutoring activity
(see Fig. 5, right column). Regarding the co-orchestration of
dynamic transitions, teachers recognized that complete teacher
control over the dynamic pairing would be feasible in a small
class if "most students could work in individual assignments,"
(Teacher A) and only a small number of students could benefit
from a peer tutoring activity. By contrast, in cases where
teachers need to orchestrate larger classes, they would prefer
a shared control between the AI system and teachers to
maximize the support from AI systems and offload some of
the orchestration tasks, as "it would take much time to control
and monitor too many students at once." (Teacher B) Thus,
in larger classes, teachers were open to exploring the option
of giving most of the agency to the AI system to monitor and
suggest pairing opportunities.

VI. DISCUSSION AND FURTHER DIRECTIONS

This work delineates design alternatives to support hu-
man–AI control over dynamic transitions. Motivated by prior

4As published by the National Center for Education Statistics [39]

findings, we aimed to understand how to share control between
teachers, students, and AI systems when students transition
between individual and collaborative learning activities, where
such transitions are not pre-planned but are instigated on the
fly as the need arises, and they do not happen at the same
time for all students.. Our technology probe study allowed us
to evaluate shared control features and investigate teachers’
and students’ desires in an authentic classroom environment
before moving to the full development of a co-orchestration
tool. Teachers and students participated in the orchestration of
dynamic transitions by experiencing a specific policy (student-
, teacher- or AI system-controlled pairing policy) to transition
from an individual to collaborative activity. This work raises
several issues for discussion.

A. Classroom characteristics

Findings from this study suggest the need for a form of
hybrid human-AI control which is shared between students,
teachers, and AI systems and which is sensitive to class-
room characteristics and social dynamics [40]–[42]. Learning
performance in K-12 classrooms is driven by personal and
socio-contextual factors [43]. Therefore, educational technol-
ogy (EdTech) tools, such as orchestration systems, should
factor in these classroom characteristics so teachers can tailor
learning experiences. It is worth noting that the classroom
differentiation presented in Section V illustrates how these
characteristics may affect the boundaries and limits of shared
control in the co-orchestration of dynamic transitions. Albeit,
we cannot generalize these results nor prove statistical differ-
ences among classes due to the small sample size. For instance,
teachers envisaged how the shared control with students de-
pend on classroom size, learning performance, gender, and
social dynamics. This perspective is in line with prior research
exploring how orchestration might be shared between teachers,
students, and technologies, to make the best use of teachers’
limited time [10], [13], [38], [44]. While prior findings suggest
the need for shared control over pairing decisions between
teachers and AI systems (cf. [13]), our work suggests a need
for all participants, students, teachers and the AI system to
take a role in the co-orchestration of dynamic transitions (cf.
[10], [44]) – although the ideal balance of control may vary
based on classroom characteristics and dynamics, as described
in the examples presented in Section V.
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B. Tensions Between Students’ and Teachers’ Desires

Findings from this study also surfaced some tensions be-
tween students’ and teachers’ desires. While students’ desires
pointed to greater control when selecting their partners, teach-
ers would prefer to be able to override these selections. Also,
students and teachers valued the role of the AI system when
automatically matching students who were not progressing in
their skill levels. Nonetheless, teachers still want to be able
to override AI-system decisions or give the AI system some
constraints that are shaped by the teacher’s expertise and class-
room dynamics. These tensions are aligned with prior findings
[13] Co-orchestration systems’ features should be aligned with
teachers’ expectations and beliefs but also should account for
students’ and AI participation. Future investigations should
address how co-orchestration support might be designed to
help teachers productively share control over orchestration
tasks without leaving students and AI systems out of the co-
orchestration task.

C. Adaptivity and adaptability in Co-Orchestration Systems

Moving beyond prior work on the design of co-orchestration
support, which focused on understanding general needs among
teachers and students, the current study surfaced variations in
teacher and student needs across different classes. The current
work points to the need for adaptivity and/or adaptability
[45] for different classroom contexts, teacher preferences, and
students’ prior knowledge [8], [40], which are relevant features
in AI systems.

One example of adaptability in a co-orchestration system
could be enabling teachers to select the best pairing policy
based on their goals, needs, and classroom dynamics (i.e.,
classroom characteristics). In a small size class, teachers may
allow students to choose which peers they would like to work
with – perhaps supported by the AI system. By contrast,
in a large size class, teachers might choose to have the AI
system take more control over the pairing decisions (perhaps
within constraints pre-configured by the teacher - cf. [41]).
Another example of adaptability could be enabling the teacher
to override AI or student decisions when deemed necessary.
As indicated in prior work, teachers may wish to be able to
prevent or override students or AI’s decisions on a case-by-
case basis, but without necessarily being the point of respon-
sibility for initiating peer tutoring activities [10], [44]. Also,
as reported by Yang and colleagues, the system can adjust
thresholds in order to maximize students’ engagement in peer
tutoring according to classroom dynamics [36]. For example,
in a high-achieving classroom, as suggested by teachers, the
system may pair up students of similar knowledge level for
the tutoring activity, knowing that the pairing assignment is
for social purposes. Concerning the pairing policies adopted
in this study, further research should also explore the feasibility
of the pairing algorithms simulated in the AI system policy.
For instance, in the AI system policy, we only considered
skill mastery as the primary strategy for teaming up students.
However, other pairing strategies and data can be used for
optimizing collaboration (e.g., [20]–[22]). For example, the AI

system can learn from past interactions using historical data
and predictive analytics [22].

In addition to adaptability, our findings also suggest promise
for co-orchestration systems that are adaptive to teachers’ and
classrooms’ needs, as discussed above. For example, a co-
orchestration system might detect the class size or the teacher’s
current workload and, in turn, adjust how it balances control
across teachers, students, and the AI. When the teacher has
a high workload, the system could intervene by automatically
assuming greater control over orchestration to support more
fluid transitions (e.g., by ensuring the teacher is not a bot-
tleneck for pairing decisions). Further work should examine
design features to provide a fluid scaffolding of these dynamic
transitions, so participants can quickly move from one form of
instruction to another without feeling burdened. Our findings
point to a need to explore the design space of context-adaptive
pairing policies.

D. Hybrid Control for Human-AI Orchestration of Dynamic
Transitions

Adopting a hybrid human-AI vision for supporting person-
alizing learning [46], we conceptualize three hybrid features
towards designing systems that supports a shared control
between the AI system, teachers, and students:

Teacher/student assistance. As suggested in [46], at this
level, the teacher/student has full control of the orchestration
tasks, and the AI system provides supportive information.
Based on our findings, we suggest that the AI system could
provide supporting data/information to teachers and students,
such as current students’ status and behavior with the sys-
tem (i.e., errors made and skills in Lynnette). For example,
in struggling classrooms, teachers (c.f., [17]) may want to
examine students’ errors, and skill mastery from Lynnette to
make informed decisions for maximizing pairing assignments
outcomes [47]. These scenarios can be applied in small size or
high-achieving classrooms. As suggested by students during
the workshops (see Section V, RQ1), they could be presented
with data/information to select their partner, for example,
based on tutoring skills.

Partial AI Automation. In this level, teachers and students
monitor responses from the AI system, and the AI system
controls specific tasks [46]. An illustrative example could
be that the AI system (i.e., Lynnette) diagnoses students’
status (e.g., off-task, gaming the system, among others [10])
and advises which students may need help [48]. This advice
information can be consulted either by the teacher or the
student. For example, as suggested by teachers, when exposed
to the AI system-controlled pairing policy, they would like to
have the option to reject/accept the advice from the AI system
(c.f., [17]), specifically in struggling classrooms. On the other
hand, students may also have the control to accept/reject the
AI system’s advice. While students or teachers did not mention
this scenario, we suggest this may provide better support in
high-achieving classrooms, where students value their learning
[49].

Conditional AI automation. In this level, The AI system
controls most of the orchestration tasks and advises teachers
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or students when control is needed (low human control). For
example, the AI system could notify teachers and students
that a new pairing activity has been initiated. Information may
be shown to the teacher and students about the decisions of
the AI system (i.e., based on some criteria, skills, behaviors
[17]), and the teacher can override the AI system decisions,
as suggested by teachers during the interviews. According to
teachers’ desires, this scenario can be realistic in struggling
and large size classrooms. Also, according to teachers, it is
not expected that students have a role in stopping AI system
decisions. Earlier findings reported that, in practice, even when
teachers are given the option to allow greater student control
over some orchestration tasks, they did not share control with
students [38].

E. Limitations and Further Directions

This work, however, is subject to several limitations. The
major limitation is related to the limited data we could get
from this authentic scenario. Due to the limited exposure to
the pairing policies that teachers and students experienced,
these results are to be taken as illustrative examples of the
type of human-AI shared control and support that orchestration
technologies should consider. Due to the low data sample of
pairing information, We did not run any statistical tests to test
for relevant differences in students’ learning experiences or
outcomes that might result from these policies. The statistical
results presented in Section V (specifically in Table II and
Figure 5) aimed to understand students’ behavior during the
exposure to pairing policies. The statistical tests were run using
(individual) student data, using a similar approach as in [36].

It is worth noting that design techniques for human-AI
systems, such as the ones applied in this study (i.e., story-
boards and probe studies), could help explore, understand and
prompt human needs before moving to full deployment. This
study’s storyboards and results served as a baseline for other
studies (see [17], [31], [42] for details). These other studies
have built upon our findings and have investigated further
design concepts and tool features with more teachers and
students, focusing on the teacher-AI hybrid co-orchestration.
For instance, in [31], we explored design features and different
levels of control for teacher-AI co-orchestration (as suggested
in Section V- RQ2 and Section VI) with teachers. Moreover,
in [42], we delved deeper into the design of a teacher-AI co-
orchestration tool from co-designing with teachers. Finally, in
[17], we presented the results of the first testing of a teacher-
AI co-orchestration ecosystem with teachers and students in
authentic classrooms.

VII. CONCLUSION

This study aimed to address the design of human-AI co-
orchestration systems that meet the complexity of authentic
classrooms. To the best of our knowledge, this is the first class-
room field study to explore human–AI control over dynamic
transitions between individual and collaborative learning. This
study helped us gather experimentally grounded feedback from
teachers and students to inform the design of co-orchestration
support for dynamic transitions. Moving beyond prior work in

this area, which has offered general design recommendations
for “average” classroom contexts, this study surfaced context-
dependent needs for the design of human-AI co-orchestration
support. General design guidelines for orchestration technolo-
gies have emphasized the need to carefully consider class-
room context and students’ characteristics. Yet little research
has explored how this might be achieved in contexts where
orchestration is distributed among humans and AI systems.

In sum, this work contributes to the emerging literature on
human–AI co-orchestration, pointing to a hybrid human-AI
control of orchestration activities, needs for further research
on how particular orchestration tasks can best be balanced
between teachers, students, and AI systems, and how the
ideal balance may depend on classroom contextual factors.
In turn, the design of new co-orchestration supports may
facilitate complex yet powerful classroom scenarios, which
would otherwise be difficult or impractical to implement.
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