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Overview

• Motivation
• Validate Comparison of PEA Results
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• PEA System Comparison
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• Results
• Compare PEA Measurements

• Conclusions
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Motivation – Validate Comparison of PEA

• PEA is a well established method for measuring internal charge 
distributions in dielectric materials

• There is a standard method of calibration
• Apply known amount of charge and measure with PEA

• Use as reference for calibration

• Calibration is a tough issue
• Difficulties arise when calibrating samples with embedded charge or when 

using open PEA

• Potential issues can result from applied pulsed voltage, electrode material, 
coupling media, semi-conducting layer, etc. 
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Overview of PEA System – Key Components
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Comparing PEA Systems

Utah State University PEA System
• Ambient, parallel plate capacitor

• ~5 ns, ~300 V exciting pulse
• 1 kV pulse through 8 dB attenuator and short 

cable

• 50 Ω impedance match

• PVC semiconductor film

• Al electrodes

• 9 µm PVDF piezoelectric sensor

• 40 dB gain (1 amplifier)

• Light machine oil (coupling media)

• 5000 traces averaged/measurement

• Data is filtered with modified Gaussian

• Reference obtained with charged sample

Université Paul Sabatier PEA System
• Ambient, parallel plate capacitor

• ~5 ns, ~250 V exciting pulse
• Low frequency artifacts, pulse traveled along 25 m 

cable

• 50 Ω impedance match

• Carbon black semiconductor film

• Al electrodes

• 9 µm PVDF piezoelectric sensor

• 40 dB gain (2 amplifiers)

• Silicone oil (coupling media)

• 8000 traces averaged/measurement

• Data is filtered with modified Gaussian

• Reference obtained with pristine sample
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Signal Processing
Processing Steps:

• Average multiple measurements and 
compute statistics (not shown)

• The rest of the processing is done on the 
averaged measurement

• Compute FFT to determine filter 
parameters

• Modified Gaussian filter used on data

• Take difference of DC on – DC off to 
obtain reference wave (Chen 2006)

• Use system response to perform 
deconvolution

Calibration

• Multiply by calibration factor

• 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝜖𝑟𝜖𝑜𝑉𝐷𝐶

𝑑 ׬ 𝑉𝑅𝑒𝑓𝑆𝑖𝑔𝑛𝑎𝑙𝑑𝑥

• Calibrate x-axis to distance using the 
speed of sound calculated from the 
measured thickness and peak-to-peak 
time difference of the two interfaces
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Signal Processing – Filtering Effects 

a) c)
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No Filter Too Much Filtering Approximately Optimized Filtering

(Gibson 2022)

b)

• Higher spatial resolution 
• Very noisy
• Overestimate charge density

• Very low spatial resolution
• Underestimate charge density
• Low noise

• Optimal charge density
• Low noise
• Optimal spatial resolution



Experimental Details – The Experiment

• Experimental Overview:
• Measure pristine sample with DC bias only
• Measure samples with embedded charge
• Compare PEA measurements in ambient conditions at 

Utah State University (Logan, UT) and Université Paul 
Sabatier (Toulouse, France)

• Sample details
• Samples must be very resistive so charge will not 

migrate during transportation
• Materials used are polytetrafluoroethylene (PTFE) and 

polyether-etherketone (PEEK) of 200-250 µm 
thickness

• Irradiation chamber details
• Samples irradiated with 50, 60, or 70 keV electrons 

with a flux of ~1 nA/cm2 for 10 min
• Irradiation completed at UPS with MATSPACE chamber
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Comparing PEA – PTFE DC Bias

• Basically the same 
results

• The charge 
magnitude agrees by 
definition

• Slight difference in 
analysis/processing

PEA measurements of 200 µm thick PTFE with 2 kV DC bias. Inset 

depicts internal electric field calculated from the measured charge.
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Comparing PEA – 70 keV PEEK

• Features are similar

• Charge magnitude greater for 
USU data
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Comparing PEA – 50 keV PTFE

• Attenuation/dispersion is 
apparent in “incident right” 
plot for PTFE

• Features are similar

• Charge magnitude greater 
for UPS data
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Comparing PEA – 50 keV PTFE – Classic Calibration

• Classic calibration only changes 
charge magnitude slightly

• Changes in the “wrong” 
direction (less agreement)

• The USU data was also 
calibrated with “classic” 
method (pristine sample)
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Comparing PEA – Other Results

• Similar results were obtained for the rest of the measurements
• PEEK irradiated with 60 keV electrons

• PTFE irradiated with 60 keV and 70 keV electrons

• It was attempted to calibrate USU data with pristine sample reference 
but this provided a minimal change, and in the “wrong” direction

• There is no obvious answer to the discrepancies in the charge 
magnitude of the measurements
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Conclusions

• The shape of measurements are in agreement

• The distance scale is in agreement

• The charge magnitude is not in agreement for measurements with embedded charge 
distributions

• Possible issues:
• Electrode materials, coupling media, data analysis/processing, pulse effects, temperature, 

clamping pressure, humidity, errors (applied voltage, etc.)
• Calibration used is from surface charge, perhaps allowing surface effects to contribute to error

• Ideal calibration for comparing absolute charge magnitude:
• Known charge magnitude and distribution in bulk of material used for calibration

• This is much more difficult to achieve
• Perhaps an irradiated sample of PEEK or PTFE with magnitude of charge verified by surface potential 

measurement
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Questions?
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Backup slides 
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Other Results – PEEK
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Other Results – PTFE
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