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Abstract 
Lithium-ion batteries are mainly utilized in electric vehicles, electric ships, etc. due to their virtue 

of high energy density, low self-discharge, and low costs. Electric vehicles are prone to accelerated 

battery degradation due to the high charging/discharging cycles and high peak power demand. 

Hence, efficient management of the batteries is a dire need in this regard. Battery management 

systems (BMS) have been developing to control, monitor, and measure the variables of the battery 

such as voltage, current, and temperature, to estimate the states of charge (SOC) and state of health 

(SOH) of the battery.  

This study is divided into three parts; in the first part, the SOC of the battery is estimated utilizing 

electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements are 

obtained at different SOC and temperature levels. The highly correlated measurements with the 

SOC are then extracted to be used as input features. Gaussian process regression (GPR) and linear 

regression (LR) are employed to estimate the SOC of the battery.  

In the second part of this study, the EIS measurements at different SOC and temperature levels are 

employed to estimate the SOH of the battery. In this part, transfer learning (TL) along with deep 

neural network (DNN) is adopted to estimate the SOH of the battery at another outrange 

temperature level. The effect of the number of fixed layers is also investigated to compare the 

performance of various DNN models. The results indicate that the DNN with no fixed layer 

outclasses the other DNN model with one or more fixed layers. 

 In the third part of this dissertation, the co-estimation of SOC and SOH is conducted as SOC and 

SOH are intertwined characteristics of the battery, and a change in one affects the other variation. 

First, the SOH of the battery is estimated using EIS measurements by GPR and DNN. The 
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estimated SOH, along with online-measurable variables of the battery, i.e., voltage and current, 

are then utilized as input features for long-short term memory (LSTM) and DNN algorithms to 

estimate the SOC of the battery.  
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Chapter 1 

1. Introduction 

1.1 Motivation 

Global warming resulting from the excessive emission of industry and transportation sections has 

prompted the emergence of renewable energy and plug-in electric vehicles (PEVs), including battery 

EVs (BEVs) and plug-in hybrid EVs (PHEVs) [1], [2].  According to the Environmental and Climate 

Change Canada [3], the transportation sector contributes to 25 % of greenhouse gases (GHG), as shown 

in Figure 1-1.  

 

Figure 1-1. Canada's 2018 Greenhouse Gas Emissions Breakdown by Sector. 

From the transportation sector’s perspective, in order to deteriorate the adverse impacts of GHGs, 

the accelerated replacement of internal combustion engines (ICEs) with eco-friendly PEVs is a potent 
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solution [4], [5]. Moreover, PEVs can greatly be effective in reducing air pollution, such that based on 

Energy Information Administration, their contribution can lead to the reduction of 50% to 70 % of 

carbon emission [6]. In 2020, the number of EVs was about 7 million worldwide as compared to 5 

million in 2019, which shows an increase of 40%. The range anxiety, high initial cost, and long 

charging duration have been some of the main issues of customers being addressed by advanced battery 

technology and modern charging station infrastructures [7]. Vast integration of charging stations for 

PEVs is one of the alternatives for addressing the above issues. Charging stations have been introduced 

to the market with various power levels and are divided into fast and slow chargers.  

As another potential alternative, a lot of advances have been made toward the application of lithium-

ion battery energy storage systems in PEVs. Lithium-ion batteries are extensively employed in 

electrified transportation due to their superiority of high energy density, low self-discharge, low costs, 

etc. [8], [9]. Nonetheless, lithium-ion batteries can sustain capacity fade during constant 

charging/discharging cycling primarily due to lithium inventory loss, solid electrolyte interface (SEI) 

layer growth, and impedance increase [10]. Efficient management of batteries is essential to safeguard 

EV operation, reduce drive-range anxiety, prolong the lifespan and decrease the cost of the batteries. 

Hence, A battery management system (BMS) is of substance in PEVs. BMS includes different 

components, such as sensors, controllers, and signal lines [11]. The BMS contributes significantly to 

charging/discharging processes, proper operation, and EV battery lifespan. The main task of BMS is 

to measure current, voltage, and the temperature of the batteries for estimation of different states of the 

battery, such as state of charge (SOC), state of health (SOH), and state of available power capability 

through implemented algorithms on the BMS [12]. SOC is the capacity of the battery at the current 

state compared to the battery’s capacity at fully charged state. SOH is defined as the maximum 

available capacity of the battery proportionate to the nominal capacity of the battery, which typically 

is provided by the manufacturer.  
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Moreover, SOC and SOH cannot be measured directly from inner quantities such as internal 

resistance and capacitance of the battery. As a result, external quantitative indices are utilized for 

SOC estimation [13]. There are myriads of literature proposing various algorithms for the state 

estimation of lithium-ion batteries. The literature can be mainly divided into three categories: 1) 

SOC estimation methods, 2) SOH estimation methods, and 3) Co-estimation of SOC and SOH 

methods. For each of the mentioned categories, the methods are divided into three main classes, 

namely, model-free methods such as Coulomb counting methods, model-based methods such as 

equivalent circuit models (ECM), and electrochemical impedance models (EIM), which are 

utilized along with some filters, and finally data-driven methods. Given this, there are abundant 

studies that will be extensively discussed in the later chapters. 

In this dissertation, we have investigated the effectiveness EIS measurements for states 

estimation of Li-ion batteries using different machine learning (ML) algorithms. Hence, the main 

contributions of this dissertation are as follows:  

EIS measurements as information-rich datasets have been utilized for estimating two of the 

most important states of Li-ion batteries, i.e., SOC and SOH. Contrary to the conventional studies 

that use EIS measurements to build EIM to estimate SOC and SOH, in our study, the EIS 

measurements were utilized directly as input features in different ML algorithms to serve the 

mentioned purpose. Moreover, the conventional research uses some features, which are dependent 

on the charging/discharging procedures or are extracted from incremental capacity curves, for Li-

ion battery states estimation. Sometimes additional mathematical computation might be required 

to obtain the features from charging/discharging schemes such as time to reach cut-off voltage or 

current. However, EIS measurements are not restrained by the charging/discharging procedures 

and can be acquired at any operational conditions without additional mathematical burden. In 
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contrast to the other features, at various operating conditions, EIS measurements provide profound 

insight about the electrochemical properties and characteristics of the Li-ion batteries with 

different chemistries. Therefore, they can be considered as potential dataset for the fulfillment of 

accurate states estimation. Given this, in our dissertation, the effectiveness of using EIS 

measurements directly as input features in various ML algorithms is investigated, and the 

performance of ML models is evaluated in states estimation. 

In our study, first, it is intended to investigate the effectiveness of EIS measurements at different 

ambient temperatures as potential features in ML algorithms for solely SOC estimation. EIS 

measurements are used directly as input features instead of being used for building an 

electrochemical model. As EIS measurements are obtained at different frequencies, in order to 

decrease computational burden, highly correlated measurements with the SOC are selected as input 

features. Two ML algorithms, i.e., Gaussian process regression (GPR) and linear regression, are 

then adopted to serve the SOC estimation, and the results for each algorithm are compared.  

Second, EIS measurements at different aging and temperature levels are employed to solely 

estimate the SOH of the battery, and their effectiveness in fulfilling this purpose is investigated. 

In this case, transfer learning (TL) technique with a deep neural network (DNN) is utilized to 

estimate the SOH of the battery at outrange temperatures. TL technique will help us avoid time-

consuming experiments for collecting dataset form aging the batteries. In another word, using this 

technique enables us to achieve an accurate model by training our model using small-size dataset. 

This claim is proved by evaluating the accuracy and robustness of the proposed model, utilizing 

different sizes of test datasets. Moreover, the effect of the number of fixed layers on the 

performance of the model during transfer learning is also investigated, and the results of different 

models with different numbers of fixed layers are compared with the base DNN model.  
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Third, since the SOC and SOH are intertwined in the battery and mutually affect each other, in 

order to achieve a more precise and qualified SOC estimation, the effect of SOH should be 

considered as well. To serve this purpose, SOH should be utilized as an input feature along with 

any other features to estimate the SOC. In our study, the EIS measurements are utilized for SOH 

estimation using two ML algorithms, i.e., DNN and GPR (for comparison). The dataset utilized in 

this part has been obtained from a standard driving cycle. Therefore, it can accurately simulate the 

practical application of the proposed strategy. The estimated SOH, along with battery’s measurable 

variables, such as voltage and current, are adopted as input features in two other ML algorithms, 

i.e., DNN and long-short term memory (LSTM) (two algorithms have been selected for 

comparison) to accurately estimate the SOC.  

1.2 Overview of this dissertation 

In this dissertation, the second chapter is dedicated to the fundamentals of lithium-ion batteries 

and the EIS tests and BMS fundamentals. The operation of lithium-ion battery in an electrical 

circuit during charging/discharging processes is discussed. The chemical and mechanical 

degradation processes and their impacts on each component of the cell are briefly explained. This 

chapter presents the constituting components of a lithium-ion cell and their key roles in the cell. 

Additionally, EIS procedure and its basics are presented. The key functionalities of BMS, such as 

cell monitoring, cell balancing, charging/discharging schemes, are briefly explained.   

The third chapter presents the literature review pertaining to SOC estimation methods and our 

contribution in this regard. This chapter employs informative measurements of EIS obtained at 

different temperatures and SOC levels in ML, i.e., linear regression model and Gaussian process 

regression (GPR), to accurately predict the SOC of li-ion batteries. First, a feature sensitivity 
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analysis of the data is conducted to extract the most reliable features, i.e., the EIS impedances 

which are highly correlated with SOC, from EIS measurements. The feature sensitivity analysis is 

conducted using Pearson correlation method. Then, the ML models are fed by the chosen features. 

These models are designed to train the input features and establish the mapping relationship 

between the selected features and the SOC.  

The SOH estimation using TL with DNN is presented in chapter 4. First, the base DNN model 

is trained and validated based on the source dataset containing EIS measurements at the 

temperatures of 25 °C and 35 °C. Then, the base DNN model is retrained and validated using 

different proportions, i.e., the first 50% and 20% of the target dataset, which contains EIS 

measurements at the temperature of 45 °C. This will create a new model called DNN-TL carrying 

the knowledge from the base model. The DNN-TL model is employed to predict the second 

proportions, i.e., the second 50% and 80% of the target dataset considered as missing data.  

The co-estimation of SOC and SOH using different ML algorithms is discussed in chapter 5.  

ML approaches are adopted to estimate SOC of the battery, considering its state of SOH. First, the 

ML algorithm is employed to directly estimate the SOH using electrochemical EIS measurements 

as input features. The SOH is estimated separately using the EIS obtained at three SOC levels, i.e., 

20%, 50%, and 80%. The SOC and SOH datasets used for this study have been obtained from the 

standard driving cycles, which aid the proposed method in generalizing to dynamic real-world EV 

applications. The effectiveness of direct usage of EIS measurements instead of using them to build 

EIM is verified and how informative they convey the health status of batteries at different SOCs 

is indicated. Additionally, its efficacy in SOC estimation is implicitly demonstrated by adopting 

the estimated SOH along with voltage and current as input features. 

 Finally, the conclusions and future works are drawn in chapter 6. Figure 1-2 shows the 
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overview of this study. 

 

Figure 1-2. Overview of the dissertation 
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Chapter 2 

2. Battery and BMS Basics 

2.1 Lithium-ion battery fundamentals 

Rechargeable batteries are the primary electrochemical energy storage in EVs. They can 

quickly respond to load variation and accept re-generated power [14]. A typical lithium-ion battery 

consists of the following main components: cathode, anode, electrolyte, and separator. Lithium-

ion batteries contain two electrodes, i.e., cathode (the positive electrode) and anode (the negative 

electrode), whose chemical potentials are different. The chemical potential difference determines 

the cell’s open circuit voltage (OCV). The electrolyte allows the lithium ions diffusion between 

the electrodes during charging/discharging cycles [15]. The separator is an inactive part of a 

lithium-ion battery that hinders the physical contact between the anode and cathode [15]. Upon the 

electronically connection of an external circuit to the two electrodes, electrons move from the 

anode to the cathode resulting in a balanced potential between the two electrodes. Positive lithium 

ions migrate through the electrolyte in the same direction. In this scenario, the chemical energy 

stored in the cell is then released as electrical energy in the external circuit. The discussed 

procedure occurs while discharging the battery. This procedure is reversible, implying that lithium 

ions can migrate back to the anode for charging the battery, whereby electrical energy is converted 

back to chemical energy [15]. Figure 2-1 demonstrates the working principle of a lithium-ion 

battery.  
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Figure 2-1. Battery’s operation principle 

 

2.2 Main components of lithium-ion battery 

The four major components of a typical lithium-ion battery are as follows: anode, cathode, 

electrolyte, and separator. The cell life cycles, performance, and operating conditions are dictated 

by the interactivity of these components. 

2.2.1 Electrodes 

The electrodes consist of active materials, additives, and binders. The active materials are 

graphite and metal oxides for anodes and cathodes, respectively. Active materials' primary 

objective is to safely accommodate lithium for prolonged cycling [16]. During battery operation, 

lithium ions transfer back and forth between the two electrodes and experience intercalation and 

de-intercalation process. The additives are employed to improve the electronic conductivity within 

the electrode.  

The anode of a lithium-ion battery has a Li intercalation compound covered into a thin layer on 

the copper current collector. Homogeneous and thin covers of the active materials are essential for 
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the batteries employing organic electrolytes (almost all the commercial cells available at present) 

[15], [16]. Hence, the process of anode manufacturing, including anode material mixing and 

covering, affects the properties of the battery, such as rate capability, battery capacity, and the 

aging mechanism of the cell. Deficiencies regarding the anode coating can contribute to cell 

thermal runaway and failure. Carbonaceous materials are utilized for the anode structure. The most 

widely used anode material is graphite, as they have demonstrated a reasonable rate of lithium 

intercalation/de-intercalation, improving the charge/discharge process. Although, the battery 

performance is affected due to SEI formation on the anode due to the electrolyte decomposition 

during cell operation [15].  

The cathode consists of layered oxides such as LiMO2 and LiM2O4. There are different 

materials used for the cathode in commercial lithium-ion cells such as lithium cobalt oxide 

(LiCoO2), lithium manganese oxide (LiMn2O4), lithium iron phosphate (LiFePO4), or mixed metal 

oxides, such as nickel manganese cobalt oxide (NMC). The cobalt-based cells have higher 

capacity, low-discharge rate, and high discharge voltage; however, they are expensive and toxic, 

and not environmentally friendly. Manganese-based cells are cheaper, but they restrict the 

performance of the cells as they tend to dissolve into the electrolyte during cycling resulting in 

further capacity fade of the cells. LiFePO4 cells have lower voltage level but demonstrate higher 

power and density. Moreover, they are cheap and eco-friendly. 

2.2.2 Electrolyte 

An electrolyte is formed of one or more liquid solvents along with lithium salts. Electrolytes 

should have the following features [17]: (i) good ionic conductivity and electronic insulation to 

ease ion transport and minimize self-discharge. (ii) should be electrochemically inactive with 

oxidizing or reducing electrode surface. (iii) should not react with other components of the cells.  
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Electrolyte is typically composed of one or more liquid solvent with lithium salts. The widely-

used salt is lithium hexafluorophosphate (LiPF6). Non-aqueous electrolytes are the most common 

electrolytes for li-ion batteries. A mixture of linear and cyclic carbonate solvent such as ethylene 

carbonate and dimethyl carbonate is usually used in the electrolytes carry the merits of low 

viscosity, high ionic conductivity, and SEI-forming ability. It is worth mentioning that battery 

manufacturers are trying to replace liquid electrolytes with solid-state electrolytes. The advantages 

of solid-state electrolytes are having a wide range of operating temperatures, being non-flammable, 

improving energy density by using lithium as anode material and enabling bipolar electrode 

configuration [18]. Still, considerable time and effort are needed before commercializing solid-

state batteries. So far, most sloid electrolytes suffer from inherently lower ionic conductivity and 

Coulombic efficiency compared to liquid electrolytes. Another contributing factor to the 

performance of solid-state batteries is their electrochemical stability. Finally, some solid 

electrolytes are significantly reactive to environmental exposure changing the chemistry and 

kinetics at their interfaces [18], [19]. 

2.2.3 Separator 

A separator is a porous membrane between the anode and cathode. The critical task of the 

separator is to physically detach the anode and cathode to prevent the short-circuit inside the cell. 

The porosity of the separator allows the movement of lithium ions during charging/discharging 

cycling. A separator should have the following properties [15]: (i) good electronic insulation. (ii) 

proper mechanical and thermal stability and physical strength. (iii) chemical stability and 

resistance against deterioration. (iv) uniformity in thickness and tortuosity. (v) high ability to 

prevent migration of soluble species or particles between the two electrodes. (vi) low air 

permeability, i.e., low electrical resistance and high porosity. 
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Polyolefins are the most widely-used separators in Li-ion batterie. There are different types of 

polyolefins such as polyethylene, polypropylene, or laminates of polypropylene and polyethylene. 

[15]. Separators are categorized based on the number of polyolefins layers, i.e., monolayer and 

multilayer [20].  Although monolayer polyolefin has mechanical strength and chemical stability, 

they show high thermally induced dimensional shrinkage at high temperatures leading to short-

circuit inside the battery. On the other hand multilayer separator tackle the mentioned problem by 

blocking the ion conductivity upon melting at high temperature condition [20]. 

2.3 Degradation mechanism in Li-ion batteries 

Battery aging is defined as decline in lifespan, functioning, and reliability of the battery. Battery 

aging will result in either capacity reduction or power fading, or both of them. As the batteries 

consists of a complex set of intertwined components subject to the aging, a cell component’s aging 

affects the functionality of other components, which will, in turn exacerbate the whole system 

aging [21]. Degradation mechanisms in batteries are significantly complicated, as all components 

of the cell contribute to the aging and mutually affect each other. The relationship between 

different components indicates that degradation mechanisms spring from both chemical and 

mechanical origins. Therefore, aging mechanism can be divided into the following:  

2.3.1 Chemical degradation mechanism 

Electrolyte decomposition, excessive SEI growth, binder decomposition, solvent co-

intercalation, active material loss, gas venting, and loss lithium inventory are the main chemical 

degradation mechanisms in lithium-ion batteries [21]. The electrolyte can be reduced in anode and 

during low and very high potentials. Electrolyte impurities operates as catalyst for the side 

reactions. Temperature and cell voltage are contributing factors in the kinetics of side reactions 
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[22]. The interactions between the electrolyte and electrode results in formation of interface layers 

on the electrode which will lead to impedance increase and capacity fade. 

2.3.2 Mechanical degradation mechanisms 

Side reactions are not the sole cause for battery aging. Lithium insertion and extraction lead to 

the volume expansion or shrinkage in the electrodes. This process occurs heterogeneously. 

Mechanical degradation mechanisms pertain to the volume changes and subsequent stress 

generated in the active material particles of the electrode during lithium intercalation and de-

intercalation. As a result of tensile stress, active material may experience cracks, loss of physical 

contact between each other or from the current collectors, and isolation as well [23]. Charging and 

discharging cycling result in changes in structure of pores in separator and leads to lower lithium 

ion mobility. Mechanical degradations mechanisms are aggravated as the cell ages, compromising 

the cathode and anode structures as well as mechanical properties of the other component.  

2.4  Degradation in cell components 

2.4.1 Anode degradation 

The reactions between the anode and electrolyte are believed to be the main cause of anode 

degradation [24]. The reactions between the anode surface and the electrolyte cause the electrolyte 

to decompose. The products of electrolyte decomposition will be deposited on the anode surface, 

forming a thin layer called SEI. The active lithium ions are consumed by the SEI layer which leads 

to resistance increase in the anode.  

When SEI is initially formed, it benefits the cell by restricting the electrolyte from further 

decomposition and anode corrosion. Although the SEI grows continuously during the battery life, 

its growth takes place at lower rate compared to the initial stage as the kinetics of decomposition 
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reaction limits the SEI growth [25]. 

The SEI growth affects the resistance of both electrodes, porosity of separator, and wettability 

of the electrolyte. The SEI growth soars at lower anode voltage and higher temperatures [25]. Since 

SEI is the product of electrolyte decompositions and is formed onto anode surface, its 

characteristics are significantly dependent on the electrolyte solvent and salt and anode surface. 

Moreover, SEI is considered as the main reason of batteries degradation in the form of internal 

resistance increase and capacity fade or lithium inventory loss.  

Another cause of anode degradation is lithium plating. This process is defined as the 

precipitation of lithium metal occurring at the surface of the anode while it voltage exceeds the 

threshold value [23]. Lithium plating creates lithium dendrites which can pierce the separator and 

consequently lead to short-circuit in the cell, an instant cell failure.  

Changes in anode structure is another contributing factor to aging. Electrical/mechanical 

contact loss between the anode components leads internal resistance increase. One of the inevitable 

sources of contact loss is the change in the volume of anode active materials. The volume change 

leads to mechanical stresses and disintegration throughout the anode structure [22]. Contact loss 

occurs between: 1) carbon particles, 2) carbon and current collector, 3) carbon and binder, and 4) 

current collector and binder. Mechanical stress changes the porosity anode electrode as it is 

important for the anode electrode to let the electrolyte penetrate the bulk of anode.  

Additionally, the current collector of anode electrode may face corrosion through reacting with 

electrolyte components, or when the anode voltage is too high. In such a case, mechanical or 

electronic contact loss between the current collector and other components of the anode electrode 

are resulted [26]. 
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2.4.2 Cathode degradation 

There are a couple of changes on the cathode which can impact the life of the lithium-ion 

batteries [26]: 

• Active material aging 

• Changes or degradation of electrode components such as binder, conducting agents, or 

current collector corrosion 

• Electrolyte component oxidation and subsequent formation of surface film 

• Aging product reaction with anode 

The above-mentioned reactions do not necessarily occur separately and may be dependent on 

each other. Capacity deterioration in positive active materials have their roots in the following 

[26]: 

• Structural changes within cycling 

• Modification of surface film 

• Chemical decomposition or dissolution reaction 

Similar to anode electrode, degradation in cathode electrode is contingent upon SOC and 

cycling conditions. The insertion/extraction of lithium ions results in changes in positive active 

material volume that can create mechanical strains for the cathode components. 

During insertion/extraction of lithium ions, some of the cathode oxide may experience the phase 

shift, leading to the crystal lattice distortion and mechanical strains [25]. The stains at the 

boundaries of the phase contribute to lack of coherence and nanoparticle cracking. 

Active material dissolution in cathode is another source of capacity degradation and is mainly 

seen in Mn-based cathodes. The Mn dissolution into the electrolyte shows twice effect on the cell 
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aging. So active material dissolution, first caused the active material loss, second the dissolved 

active material migrates to the anode and will be deposited on its surface, increasing the resistance 

of the anode [21]. 

Isolation of the active particles in cathode electrode is one of the main causes of battery 

deterioration [22]. There are two justifications for this mechanism [21]: 

• Crack formation in the active material  

• Fracture of the binder, which connects the active particles  

Therefore, the isolation of active material is stemmed from mechanical degradation of the active 

material and binder, as well as chemical degradation of the binder. 

2.4.3 Separator degradation 

Separator deteriorates mainly due to the lithium dendrite growth caused by separator pores, 

structural reduction from high temperature or cycling numbers, and the blocking of passageways 

in the separator over cycling [21]. At very high temperatures, the separator film softens and the 

pores close, making the ion transportation between the electrode difficult. In such a case the 

separator is called shutdown separator.  

Although the chemical properties of materials used for separator is of substance, as they should 

be inert and do not impact the electrical output, their physical properties can significantly affect 

the cell performance and safety. To maintain a good functionality in lithium-ion batteries, 

separators should possess uniformity in their porous structure, low shrinkage, and low resistance 

[27]. The resistance of separator to penetration, separator thickness, separator porosity, and its 

toughness may vary by desirable cell characteristics and functions [27]. One of the ways to increase 

cell capacity is to use thinner separator; however, this method has some deficiencies, as thinner 
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separators can contain less electrolyte and do not show good mechanical strength. It has been 

demonstrated in [28] that one of the reasons of power fading originating from separator is due to 

the inherent increase in the separator ionic impedance. The ionic impedance is highly dependent 

on the number of cycling and temperature. The ionic impedance increase is resulted from the 

clogging of separator pores caused by the electrolyte decomposition products, which is accelerated 

at high temperatures. 

2.5 EIS fundamentals  

EIS is an information-rich technique for investigating processes taking place in batteries. From 

EIS measurements, one can effectively deconvolute electrochemical reactions into a series of basic 

procedures [29]. EIS is able to diagnose one or more processes in the cell, such as (i) electron 

movements from the current collector to the electrodes, (ii) lithium ion migration across the 

electrodes, (iii) double-layer capacitance at solid/liquid interfaces, and (iv) migration and diffusion 

of the ions inside separator and active storage particles [29]. EIS is a non-destructive and 

information-rich test which is conducted by galvanostatic or potentiostatic excitation signal over 

a wide range of frequencies to obtain the impedance of the battery during charging and discharging 

[30]. The excitation signals in galvanostatic and potentiostatic methods are commonly sinusoidal 

current and voltage; the corresponding response will be voltage and current, respectively. Based 

on these waveforms, the electrochemical impedance of the battery can be calculated. The 

impedance of the battery is obtained based on the following equations in galvanostatic mode [31]: 

∆𝐼 = 𝐼𝑚𝑎𝑥  sin(2𝜋𝑓𝑡) 2-1 

  

∆𝑉 = 𝑉𝑚𝑎𝑥  sin(2𝜋𝑓𝑡 + ∅) 2-2 
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𝑍(𝑓) =
𝑉𝑚𝑎𝑥

𝐼𝑚𝑎𝑥
 𝑒𝑗∅ 

2-3 

where ∆𝐼  is a sinusoidal current at frequency 𝑓 , which is superimposed on the dc 

charging/discharging current and results in ∆𝑉 and phase angle ∅. Accordingly, 2-3 shows that the 

battery’s impedance is frequency-dependent and characterized by its magnitude and phase angle. 

Figure 2-2 indicates a typical EIS spectrum. The horizontal axis indicates the real part of the 

impedance, and the vertical axis shows the negative of the imaginary part of the impedance. The 

EIS spectrum is drawn over a wide range of frequencies. The low-frequency tail indicates the 

diffusion of Li-ions processes inside the active material of the battery. The Li-ions diffuse in 

electrodes due to their gradient concentration in the components during charging/discharging 

process.  The mid-frequency semi-circle indicates the double-layer capacitance effect. The double-

layer capacitor is due to the charged ions in extremely short distance of the electrodes. Moreover, 

the semicircle indicates the charge transfer conductivity inside the battery cell. In the high-

frequency region, the intercept of the EIS curve with the real axis is the indicator of the Ohmic 

resistance of the battery. This resistance is the sum of Ohmic resistance of all components 

including electrolyte, electrodes, and separator in the battery cell. The high frequency region also 

represents inductive impedance of the battery cell due to current collectors at each electrode and 

the wiring of the connected devices to measure the EIS. The Nyquist plot of Figure 2-2 does not 

indicate the frequencies at which the impedances have been measured. However, this 

representation of EIS measurements is sensitive to the changes of battery cell. An alternative 

representation of EIS measurements is Bode plot which indicates the magnitude and phase angle 

of the impedances at different frequencies in logarithmically scale. A general Bod diagram has 

been shown in  Figure 2-3. Bode diagrams are not sensitive to changes but indicate the impedance 

at each frequency.  
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Figure 2-2. Typical EIS spectrum of lithium-ion battery 
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Figure 2-3. Typical Bode diagram for EIS measurements of lithium-ion battery 

 

2.6 BMS 

BMS is a control unit in battery energy storage systems responsible for the safe operation of 

the battery pack [32], [33]. The chief purpose of the BMS is to safeguard the battery cells inside 

the battery pack. Monitoring individual cells inside the battery pack is indispensable due to safety 

reasons, cell balancing, and aging issues [34]. BMS can disconnect the battery modules from the 

whole system in abnormal conditions. In EV applications, BMS and microcontroller unit (MCU) 

is responsible for energy management and distribution between different components of the EV, 

e.g., from the battery to the DC/DC converter and from the DC/DC converter to the DC/AC 
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converter, and finally to the electrical motor of the EVs [35]. Figure 2-4 indicates how the above 

electrical components are integrated together. Figure 2-5 show how a BMS in PEVs connects to 

the battery pack and rest of the systems. BMS will read and sample the data from the battery pack 

and send the information back to the data collection center, display terminal, and vehicle controller. 

The BMS communicates with the vehicle electronic parts through controller network area (CAN).    

 

Figure 2-4. BMS in an EV 
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Figure 2-5. BMS integration with a battery pack 

2.6.1 Components and topology 

BMS is implemented along with other system modules to fulfill the desired tasks. For example, 

a battery energy storage system consists of BMS, a battery interface module, battery units, and 

battery supervisory control [36].  

The topology of BMS is divided into three categories: distributed, centralized, and modular. In 

a distributed topology, each control unit is dedicated to each cell by a communication link. In a 

centralized architecture, a single control unit and battery cells are connected through wires. In a 

modular structure, some control units are integrated with particular battery cells, and all are 

connected to a central control unit [37]. Figure 2-6 shows different topologies of BMS.  

2.6.2 Software architecture 

BMS software is capable of multitasking. A BMS software’s primary tasks such as voltage, 

current, and temperature measurements, over current/voltage protection, and protective relay 

actuation, must be carried out promptly to safeguard BMS safety. The BMS software includes a 

real-time operating system to perform real-time operations [38].  
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Figure 2-6. BMS topologies 

2.6.3 Functionalities 

BMS measures the typical battery quantities such as cell or pack voltage, current, impedance, 

and temperature to estimate the SOC, SOH, and operational key parameters of the cell or the 

battery pack. The above measurements improve battery performance and increase battery lifetime.  

BMS consists of functional unit blocks and design techniques. Different applications determine 

the battery requirements for architecture, functional unit blocks, and electronic circuitry to design 

a BMS and its charging/discharging scheme [39]. In order to optimize the life of the battery pack, 

the following considerations should precede [39]: 

• Battery pack functionality and safety features 

• Robustness among the system units in various hazardous cases 

• Energy management system with a user interface to control and evaluate the 

performance of the battery system in different system blocks 
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BMS should possess the following capabilities to ensure the safety of the battery pack: 

protection, stability and resiliency, automatic charging/discharging, cell balancing, and 

monitoring. Figure 2-7 shows the BMS functions.  

 

Figure 2-7. BMS functions 

• Monitoring  

BMS mainly observes cell or battery pack voltage, current, temperature, isolation, and 

interlocks. A faulty BMS may result in overvoltage and overcurrent in the battery pack or cell, 

which lead to irreversible damage to the whole battery pack [40]. On the other hand, overcharging 

causes cell venting. Vented gases inside the cells are flammable; they may create hazardous events. 

Analogously, low voltage and current impose permanent damage to the cells. Also, isolation is 

required to prevent physical contact between persons and electrical equipment of the battery pack. 

Temperature observation is another preeminent task of BMS; hot and below-zero temperatures 

negatively affect battery performance.  
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• Protection 

BMS ought to protect the battery pack and related electrical equipment from hazards. The BMS 

protection scheme includes authenticating the system, detecting operating mode, setting fault 

criteria, predicting the pack or individual cell overvoltage/overcurrent, predicting the isolation 

fault, and detecting abnormal operating conditions [34]. Protection from environmental conditions 

is a dire need, since they can impact the cell or battery pack parameters over the long run.  

• Cell balancing  

Cell balancing is one of the most important functions of a BMS. Although it is preferred that 

each cell inside the battery pack perform identically, many contributing factors prevent this from 

happening. These factors, such as variances in the manufacturing process and inhomogeneous 

temperature distribution, will result in the uneven capacity fade of cells in a battery pack [41], [42]. 

The above factors result in individual cells undergoing slight differences in degradation and 

resistance. For example, in a study, a 20% variance in resistance and capacity of parallel connected 

cells was found to decrease pack lifetime by 40%, showing the adverse effect of having 

inconsistent cell characteristics [43]. Given this, it is essential to include a method of cell balancing 

in a BMS. There are two methods for cell balancing, namely, passive and active balancing. The 

former utilizes a resistive circuit to drain energy from the most charged cells and reduces their 

SOC to the SOC of the cell with the lowest SOC. The drained energy is wasted in a resistive load 

[44], [45]. While the latter utilizes complex circuitry to balance the cells. The active method 

employs capacitors [46], [47], inductors [48], [49], transformers [50], [51], and various power 

electronic converters [52], [53] to transfer the energy between the cells with minimized energy 

waste. The advantages of this method are fast balancing speed are high efficiency; however, this 

method suffers from high complexity and cost [54].  Figure 2-8 shows active and passive balancing 
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methods. 

 

Figure 2-8. Cell balancing methods 

• Charging and discharging schemes 

The number of charging and discharging cycling and charging/discharging procedure influence 

the battery life and performance. BMS must ensure an efficient way of charging/discharging the 

battery pack/cell. The SOC and SOH of the battery are interconnected and affect each other 

mutually; hence, a BMS must maintain the appropriate SOC so that the battery’s health is not 

compromised [55], [56]. To properly manage the charging/discharging scheme, the BMS should 

perform the following tasks: issue signals to active switches of the converters, monitor the charge 

current, run the pre-charge sequence, and conduct active or passive cell balancing [57].  

Additionally, various charging schemes have been developed and improved to reduce charging 

duration and charging impact on battery degradation. Constant Current – Constant Voltage (CC-

CV) is most widely-used; however, other charging schemes are listed below [58]: 

• Constant Current 

• Constant Voltage 

• Pulse Current 
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In constant current method, as the name suggests, a constant current charges the battery till a 

pre-set voltage is reached. This method may impose overheating risks on the battery at the onset 

of charging process. In the constant voltage method, a constant voltage is applied to the battery 

and the charging process lasts till the charging current reach to a pre-set value. Because the 

charging current is less that to the one in constant current method, the charging duration is higher 

in this method. Combining the first and second methods will create faster charging process which 

is call CC-CV. This approach has been shown in Figure 2-9 (a). This charging process includes 

two stages: in the first one, charging process begins by injecting a constant current to the battery 

till the voltage of the battery reaches a pre-set value (Vset). In the second stage, the pre-set voltage 

is fixed upon the battery’s terminal and the current starts declining as the battery charges. The 

current decreases till it reaches a pre-set value (around 0.1C or Iset) and the charging process is 

terminated. 

In Pulse current method, current pulses with a specific duty cycle are injected to the battery. 

The magnitude of current pulses and their duty cycle can be varied during the charging procedure 

[58]. Charging process terminates when the battery voltage reaches a pre-determined voltage, and 

the frequency of pulses can be between 0.2 Hz and 100 Hz [44]. Figure 2-9 (b) shows this method 

of charging. 

 

(a) 
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(b) 

Figure 2-9. Charging schemes 

• Diagnosis  

BMS is responsible for detecting faults, such as fires, thermal runaway, and minimizing the 

repercussions of fault effects.   

2.7 Conclusions 

In this chapter, the fundamental operation of lithium-ion batteries was discussed, and the 

components of a lithium-ion batteries and their functionalities were presented. Basic information 

about one of the most information-rich tests, EIS, was provided. EIS can provide insightful details 

about the behavior of the battery at different SOC and SOH levels. Hence, it is potential data to be 

adopted for state estimation of the batteries. 

 Over the lifespan, lithium-ion batteries undergo capacity fade and degradation due to various 

operating conditions. Many factors contribute to the capacity loss of the batteries, such as ambient 

temperature and abnormal charging/discharging cycles. If proper management of the battery 

cell/pack is not considered seriously in any battery-powered devices and vehicles, the malfunction 

of the battery system may lead to hazardous events. Hence, BMS is of substance to prevent mal-

operation of the battery. The key roles and functionalities of BMS, such as monitoring and 
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aggregating battery data, controlling charging/discharging procedures, and cell balancing in 

battery packs, were also briefly presented in this chapter.    
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Chapter 3 

3. SOC Estimation Using EIS 

3.1 Introduction 

As discussed in Chapter 1, one of the main tasks of BMS is to measure the SOC of the battery. 

SOC is defined as the capacity of the battery at the current state compared to the battery's capacity 

at fully charged state. SOC can be calculated as follows [59]: 

𝑆𝑂𝐶(𝑡) =  
𝐶𝑟

𝐶𝑚
 × 100% 

3-1 

where 𝐶𝑟 is the current capacity of the battery and 𝐶𝑚 is the capacity of the battery at fully charged 

state. SOC varies from 0 % to 100 %; the former denotes that the battery is fully discharged, while 

the latter denotes that the battery is fully charged. In practice, the battery should work between 

20%-80% to avoid overcharging and over-discharging [60]. Alternatively, SOC can be measured 

using the initial SOC and current of the battery [61]: 

  𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶(𝑡0) −  ∫
𝐼(𝑡)𝜂

𝐶𝑚

𝑡

𝑡0
𝑑𝑡  3-2 

where 𝑆𝑂𝐶(𝑡) and 𝑆𝑂𝐶(𝑡0) are SOCs at time t and 𝑡0 , respectively. 𝜂 denotes the Coulombic 

efficiency that presents the ratio of the battery discharge capacity to the charge capacity during the 

same cycle. 𝐼(𝑡) is the charging/discharging current. The discrete representation of the above 

equation is as follows:  
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  𝑆𝑂𝐶𝑘 =  𝑆𝑂𝐶𝑘−1 −  
𝜂∆𝑇

𝐶𝑚
. 𝐼𝑘  3-3 

where ∆𝑇 is the sampling time, and 𝐼𝑘 is the loading current.  

In fact, the SOC can be calculated using the above formulas; however, the inaccurate initial SOC 

and accumulated error in the current due to flawed measurement devices can lead to considerable 

estimation error in practical application. Therefore, growing attention has been paid to advanced 

methods for more precise SOC estimation [62]. 

 SOC cannot be measured directly from inner quantities such as internal resistance and 

capacitance of the battery. As a result, external quantitative indices are utilized for SOC estimation 

[13], [63]. Myriads of literature propose various SOC estimation methods, such as the look-up 

table method, Coulomb counting method, data-driven, and model-based estimation methods. 

Figure 3-1 shows the different methods for the estimation of battery SOC. 

 

Figure 3-1. SOC estimation methods 

SOC of batteries has a direct mapping relationship with their static characteristic parameters, 

such as the open-circuit voltage (OCV), impedance, etc. Thus, the SOC can be inferred by 
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measuring one or more parameters and then using the look-up table, which was built with the 

relationship between the SOC and the parameters, i.e., OCV or impedance [64]. Thus, knowing 

the OCV, SOC can be estimated through looking up the table between OCV and SOC. However, 

real-time usage of this method is very hard and cannot be utilized for a running EV, as the OCV 

should be measured while the battery is at rest for an extended period [11]. Moreover, the effect 

of temperature, material, hysteresis, and aging of the battery should be taken into account while 

measuring the OCV; otherwise, the measurement of SOC using this method does not lead to a 

reliable result [65]. There is also a relationship between impedance and SOC. When the current of 

a specific frequency is applied to the battery, multiple SOC-related parameters are identified by 

curve-fitting, then the impedance look-up table method is established [66].  

The impedance parameters refer to internal ohmic resistance, polarization resistance, 

polarization capacitance, inductance, constant phase element, etc. [67]. The prediction error will 

be considerable if the amplitude of the impedance is small. The influence of aging, temperature, 

and current ratio should be taken into account in these methods for accurate estimation of SOC 

[65]. Thus, as mentioned, the main drawback of look-up table methods is that the battery should 

rest for a long-time period, and the accuracy of the methods is dependent on the accuracy of the 

SOC table.  

As for Coulomb counting or ampere-hour counting ( 3-2 and 3-3), the SOC can be measured 

precisely if the initial SOC is known and the current of the battery can be measured accurately. 

There are three deficiencies with this method that should be dealt with. First, the initial SOC should 

be known. Second, the maximum available capacity of the battery should be recalibrated as it ages 

during its lifespan. Third, there are cumulative current measurement errors. Thus, this method is 

not considered as a highly accurate method for SOC estimation [11] [13].  
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In the model-based methods, ECMs and electrochemical models (EMs) are the major models 

derived from empirical data to predict the SOCs [68], [69]. ECMs and EMs are combined with 

various adaptive algorithms such as Kalman filter [70], [71], [72], extended and unscented Kalman 

filter [73], [74], central difference KF [75], [76], Particle filter (PF) [77], [78], and H-infinity 

observer [79], [80], to estimate or infer the internal state of the battery. Actually, the model-based 

methods are a kind of fusion method. They combine the ampere-hour method and looking-up table-

based method through state equation of batteries. In such a case, the SOC of batteries provides a 

relationship between the ampere-hour method and the looking-up table-based methods. The 

terminal voltage of the battery can be estimated inaccurately if an imprecise SOC estimate 

calculated by the ampere-hour method brings an erroneous battery OCV. In such a case, if the best 

SOC is obtained, the minimum estimation error of battery terminal voltage can be obtained. In 

other words, the OCV can be used to correct the estimation error [11].  

The EM is able to describe the macroscopic quantities such as cell current and voltage and local 

distribution on a microscopic scale for cell concentration, potential, current, and temperature [81]. 

The widely used EMs for battery SOC estimation are the one-dimension model [82] and the 

pseudo-two-dimensional model [83]. The single-particle model ignores the detailed distribution of 

local concentration and potential in the solution phase and instead accounts for a lumped solution 

resistance term. Forecasting methods based on the EM can provide insight into the effect of the 

kinetic process and charge transfer process in the battery. Identification of all parameters is 

difficult, although several simplifications have been made. Moreover, it needs high professional 

background. Thus, it is hard to be embedded in the BMS directly [11]. Figure 3-2 exhibits a general 

algorithm on how SOC is calculated in fusion-based methods. It is evident from Figure 3-2 that 

first, battery data, such as temperature and current, are sampled from the battery. Considering 
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EIM/ECM model of the battery and using initialized values for the model parameter and state-

space equations the voltage of the battery is estimated. Then, the estimated voltage is compared 

with measured voltage and the output is utilized in filters algorithms to estimate the SOC of the 

battery.   

 

Figure 3-2. General algorithm for SOC estimation using EIM/ECM methods 

  As for the ECMs, they are divided into two categories, namely, integral-order equivalent 

circuit models and fractional-order equivalent models. Figure 3-3 shows a general diagram of the 

integral-order equivalent model. The simplest integral-order equivalent circuit model is the Rint 

model, which includes resistance in series with a voltage source [84]. The model structure of the 

Rint model is simple, but the polarization and diffusion phenomena are not considered. There is 

also literature considering different numbers of RC networks in their equivalent model in order to 

better model the dynamic and behavior of the battery, such as the charge and discharge process, to 

achieve better accuracy of the estimation [85], [86]. However, the more parameters are used in the 

model, the more intense the computational burden becomes. For the integral-order equivalent 

circuit models, the input/output relationship of the cell is easy to derive, and the models involve 

minor parameters. Therefore, the most commonly used approaches for online parameter 
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identification are the recursive least-squares methods [65]. The EIS and the bode plot are utilized 

to analyze the battery characteristics and to build the model structure. On the basis of the Bode 

plot obtained from EIS data, which will be fully explained in the next chapter, In the middle-

frequency, the battery’s Nyquist curve is not a standard semicircle, which means that the standard 

RC cannot simulate the battery behavior [65]. To address this issue, the constant phase elements 

can be used instead of the capacitors in RC networks. Figure 3-4 shows the diagram of the 

fractional-order equivalent model. 

 

Figure 3-3. Integral-order equivalent circuit 

 

Figure 3-4. Fractional-order equivalent circuit 

In [87], the relationship between SOC and the chemical composition of different types of 

batteries is studied. Then based on the proposed battery model, which utilizes the OCV and five 

other model parameters to make the closed-loop feedback system and to correct the error from 
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only using the OCV to estimate the SOC, the accurate prediction of SOC was estimated by adaptive 

extended Kalman filter (AEKF). The results indicated that the maximum error of SOC estimation 

is within 3%. Due to the fractional-order model having a better description of the battery behavior, 

the battery SOC was estimated by AEKF based on the fractional-order model. Moreover, the 

proposed fractional-order-AEKF can quickly track the unknown and time-invariant (or slow time-

varying) noise variance and then improve the accuracy of SOC estimation [88]. A joint estimation 

method of SOC and capacity based on the AEKF multi-time scale framework is proposed in [89] 

to solve the problem of interference of current measurement offset to SOC estimation. The 

proposed method effectively increases the robustness and precision of SOC estimation. The 

maximum error of SOC estimation is found to be less than 3.3%. Moreover, electrochemical 

impedance spectroscopy measurements are utilized in ECMs to estimate SOC. In [90], the EIS 

data is derived only at one SOC, which prevents the model from being an inclusive model, but on 

the other hand, a wide range of temperatures is considered for modeling the battery based on ECM. 

The EIS data at above-zero temperature and SOCs between 10% to 90% and 10% to 100% have 

been derived in [91] and [92], respectively, which, however, decrease the accuracy and reliability 

of the estimation for SOCs at sub-zero temperatures and SOCs below 10%. Xu et al. [91] analyze 

the EIS data of a Li-ion battery. A fractional-order calculus modeling method is presented to be 

utilized as an impedance mode to estimate the SOC. The fractional Kalman filter is used to estimate 

the SOC based on the impedance model. The results indicate that the proposed estimation method 

based on the fractional-order model excels that based on the RC model. The estimated SOC of the 

proposed method can quickly converge to the reference SOC and trace it well with a small error 

confined to ±1%. However, the EIS measurement for the Li-ion battery has been obtained for 

SOCs between the range of 10% to 90% and at room temperature, and it does not cover a wide 
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range of temperatures.  

Data-driven models are only dependent on historical data, and they do not need complicated 

equivalent or mathematical models. However, the challenge of data-driven models is the 

acquirement of informative inputs to construct a robust model for predicting the battery 

characteristics. Additionally, effective extraction of the features from historical data still remains 

a challenging task [93], [94]. In [95], different ML algorithms are employed to predict SOC, and 

a subtractive clustering-based adaptive neuro-fuzzy interface system architecture for electric 

vehicles SOC estimation under diversified driving cycles is proposed. In comparison with other 

advanced algorithms, such as the backpropagation neural network and Elman neural network, the 

proposed algorithm yielded better SOC estimation results. In addition, the sensitivity analysis 

results demonstrated that battery module temperature and heat removed from the battery are the 

most important parameters, while actual power loss has the least influence on SOC estimation for 

the subtractive clustering-based adaptive neuro-fuzzy interface system model. In another study 

[96], ML systems such as gradient tree boosting and multi-layer perceptron neural networks were 

applied in satellite lithium-ion battery sets for impedance estimation, which is used in the 

determination of their state of charge. Six different input features including F1- during the charge 

cycle, the time interval between the nominal voltage and the cut of voltage, F2- during the charge 

cycle, the time interval between the nominal current and the cut of current, F3- during the discharge 

cycle, the time interval between two predefined voltages, F4- average temperature during the time 

interval F1, F5- average temperature during the time interval F2, and F6- during the discharge 

cycle, cut off voltage are utilized for ML algorithms. The obtained root mean square error of both 

is found to be below 0.10. The gated recurrent unit-recurrent neural network (GRU-RNN) for SOC 

estimation of lithium-ion batteries is proposed in [97]. Battery variables such as voltage, current, 
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and temperature are employed as the input features to train the GRU-RNN network, while the SOC 

is used as the network output. A step-by-step searching strategy is provided to find the optimal 

GRU structure for SOC estimation. The impact of network parameters on SOC estimation is 

explored. The effectiveness of the proposed method was verified on the lithium-ion battery. Under 

varying temperatures, the root mean squared error (RMSE) of SOC estimation was less than 3.5% 

for the LFP battery. Three-layer and multi-hidden-layer wavelet neural network basing the 

Levenberg-Marquardt algorithm is used in SOC estimation, and they are optimized by PSO 

algorithm and a combining piecewise-network method, respectively [98]. Current, voltage, and the 

sign of current are used as input data for the proposed method. The maximum absolute error of the 

method is found to be less than 5%. The first-order RC model with one-state hysteresis is applied 

to model the dynamic response of a lithium-ion battery [99] . The parameters of the battery model 

are online identified by the dual AEKF algorithm. Aiming at the plateau region of the OCV-SOC 

curve, the dual AEKF and the ampere-hour counting with current correction are combined to 

estimate SOC. Then, the advanced data-driven algorithm, namely, the least square support vector 

machine (LS-SVM) as the advanced pattern of standard SVM, is employed to online predict the 

available capacity [99]. A five-element vector containing temperature, two impedance parameters, 

voltage change, and present voltage are utilized as the input feature data of the LS-SVM model. 

The parameters of the LS-SVM model are optimized by the genetic algorithm (GA) to reduce the 

capacity prediction error. The proposed capacity prediction and SOC estimation methods are 

finally coupled together to estimate SOC at different temperatures and aging levels of the battery, 

and the maximum RMSE is found to be less than 5%. The DNN is used in [100] to map the 

measured battery signals, such as voltage, current, and temperature, directly to SOC to estimate 

the SOC of the battery. Secondly, the DNN self-learns all its weights, which reduces the 
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computational burden and costly processes. In addition, the DNNs can eliminate measurement 

offsets and noise due to deficiencies in the vehicle's measurement devices and achieve great 

estimation performance. However, identifying and extracting reliable features become the main 

bottleneck of the adoption of the data-driven approaches, and thus, more research is required in 

this regard. 

 On the other hand, EIS measurements over a wide range of frequencies provide rich 

information about the dynamic characteristics of the battery and pave the way for precise 

estimation of the battery status. Nevertheless, none of the reviewed papers have adopted the EIS 

measurements directly as input data for ML models to predict SOC except for [101], in which the 

EIS data obtained for SOCs above 30% and at room temperature have been utilized in a deep NN. 

The model does not employ the EIS data in a wide range of temperatures and at different SOC 

points [101]. At the same time, such a data exclusion decreases the accuracy and reliability of the 

model. Also, the reported error of the model of [101] is less than 5%. 

  This chapter investigates the effectiveness of direct employment of the EIS measurements data 

as input features for estimating the SOC of the li-ion batteries using ML techniques. The proposed 

method’s advantages are higher accuracy of the models and lower computational burden by 

eliminating irrelevant input features, i.e., EIS impedances with low correlations. Therefore, highly 

correlated impedances are first identified and then extracted from EIS spectrum measurements 

obtained at SOCs from 0% to 100%. The chosen impedances are utilized as input features for the 

linear regression model and GPR. The models are designed to train the input features and establish 

the mapping relationship between the selected frequencies and the SOC. Finally, the trained 

models are employed to achieve SOC prediction. Moreover, since the ML algorithm is neither 

dependent on the model of the battery nor the method that the battery is charged/discharged, and 
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only the input and output of the dataset matter here, the model can predict the SOC by interpolating 

or extrapolating the dataset, regardless of charging or discharging mode of the battery. In contrast 

to many other studies that only take into account the EIS data obtained at above-zero temperatures, 

this study considers the EIS data for both above-zero and sub-zero temperatures, i.e., as low as -

20 °C. The results demonstrate an error of less than 3.8 % for the GPR model.  

3.2 EIS Experimental Data 

In this chapter, the experimental data from [102] have been utilized, where a Panasonic 

NCR18650PF lithium-ion battery, an NCA chemistry cell similar to the cells used in Tesla’s 

electric cars, was tested. The battery specifications have been presented in Table 3-1. In the test, 

EIS measurements were conducted over SOCs from 0% to 100% and a temperature range of -20 

°C – 25 °C for frequency sweep of 1 mHz to 6 kHz.  

Table 3-1. Panasonic 18650PF Cell Parameters 

Nominal open circuit voltage 3.6 V 

Min/Max Voltage 2.5 V / 4.2 V 

Mass / Energy storage 48 g / 9.9 Wh 

Capacity 2.75 Ah 

Cycles to 80% Capacity 500 (100% DOD, 25 ℃) 

Minimum Charging Temperature 10 ℃ 

 

Figure 3-5 shows the battery’s impedance spectroscopy at different temperatures for the given 

SOC of 50 %. It can be observed from Figure 3-5(a) that the semicircle enlarges as the temperature 

decreases. It is due to the fact that the charge transfer rate decreases in the solid electrolyte interface 

(SEI) layer (or charge transfer resistivity increases), and in the electrode-electrolyte interface at 
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lower temperatures. Figure 3-5(b) shows that as the temperature decreases, the polarization resistance 

of the battery (where –Im Z = 0) increases due to a decrease in ion transfer in the electrolyte at lower 

temperatures.  

 

(a) 

 

(b) 

Figure 3-5. EIS spectrum of the battery at (a) SOC of 50% and different ambient temperature, (b) zoomed-in 

version of (a) 

Figure 3-6 (a), Figure 3-6 (b), and Figure 3-6 (c) plot the EIS measurements of the battery at 

different SOCs and temperatures of +25 °C, 0 °C, and -20 °C, respectively. This figure manifests 

that at above zero temperatures, the SOC is less effective on impedance spectra, while at zero and 

sub-zero temperatures, SOC significantly affects the impedance curve, especially in the mid-
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frequency regions. Thus, the effects of SOC on the impedance spectra at different temperatures 

are different. It is evident from Figure 3-6, that generally at any ambient temperature, the pure 

Ohmic resistance of the battery cell (where –Im Z = 0) including the Ohmic resistance of the 

components such as electrodes, electrolyte, and separator is decreasing as the SOC level increases. 

Typically, the semicircle enlarges and the impedances of low-frequency region increase as the SOC 

increases at above zero ambient temperature, however at very low SOC and at zero and sub-zero 

temperatures, the impedances of the mentioned regions are extremely higher, and it has its roots in 

very low diffusion of Li ions and charge transfer conductivity at low temperatures. 

 

(a) 

 

(b) 
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(c) 

Figure 3-6. EIS spectrum of the battery at (a) 25 °C, (b) 0 °C, and (c) -20 °C and at different SOC levels 

3.3 Methodology 

This section is dedicated to the feature sensitivity analysis to capture the highly correlated EIS 

features, i.e., highly correlated EIS impedances with SOC of the battery, and then the selected 

reliable features are utilized for training and testing of the ML models. 

3.3.1 Feature sensitivity analysis 

Extracting highly relevant features to the ML models' output, i.e., SOC, is essential for 

accurately predicting the output. To this end, the correlation matrix, which indicates the 

dependency of two or more variables on each other, is calculated and then shown on a color-coded 

image plot. The calculation of the correlation is performed by the Pearson correlation coefficient 

as follows: 

𝜌𝑋,𝑌 =  
𝐸(𝑋, 𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸(𝑋)2. √𝐸(𝑌2) − 𝐸(𝑌)2
 

3-4 

where E is the expected value operator, and X and Y are two random variables. Figure 3-7 is a 2-

D graphical representation that indicates the dependency of the features of the dataset. The features 



43 

 

in the used dataset are electrochemical impedances at the corresponding frequencies that they were 

measured. In this case, the number of the features is 54 since the impedances were measured at 54 

frequencies, sweeping from 1mHz to 6kHz. In Figure 3-7, the correlation between the features 

varies from -1 to 1. The positive correlation has been shown in the spectrum of light to dark red, 

and the negative correlation has been shown in the spectrum of light to dark blue. The positive and 

negative correlations mean that the output varies in the same or opposite direction of the input 

variables’ variations. The heatmap is a symmetric figure; thus, the last row or the last column 

represents the relation of the input variables, i.e., impedances at different frequencies with the 

output, i.e., SOC of the battery. Figure 3-7 shows the heatmap of the dataset at temperatures of (25 

°C) – (-20 °C), respectively. Figure 3-7 (a) shows that the first few features are highly and 

negatively correlated with the SOC and these features lie in the high and mid-frequency regions 

of the EIS spectrum. The negative correlation of the high frequency impedances is in accordance 

with what has been explained for Figure 3-6.  As also depicted in Figure 3-7 (a), it is apparent from 

Figure 3-7 (b)-(e) that as the temperature decreases, some other features from mid-frequency 

appear to be positively correlated with the SOC. Another remarkable result deduced from Figure 

3-7 is that the low frequencies are significantly less correlated with the SOC. The reason is that 

according to Figure 3-5 and Figure 3-6, the number of features, i.e., EIS impedances at lower 

frequencies, is significantly less than the number of features at higher frequencies. In other words, 

most of the EIS impedances which have lower magnitudes exist in all of the conditions in Figure 

3-5 and Figure 3-6, and they lie in high and mid-frequency regions; however, the EIS impedances 

with larger magnitudes only exist in extreme conditions, i.e., at the temperature of -20 °C in Figure 

3-5 and SOC of 20% in Figure 3-6. Therefore, heatmaps are useful for extracting reliable features 

to build an accurate and fast model for prediction purposes. Moreover, a pairgrid plot is also 
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utilized to show the relationships of highly correlated features obtained from the heatmap with the 

SOC and their distribution in the dataset. Only four high-correlation features f1, f2, f4, and f5 have 

been shown as examples at 25 °C. The diagonal plots represent the distribution of single-variable 

and off-diagonal plots, which are mirror image of each other and show the relations between every 

two variables of the dataset along with the regression plots. It is worth noting that Figure 3-8 shows 

only the negatively correlated features with the SOC at different temperatures. It is observed that 

with the increase of features f1, f2, f4, f5 in magnitude, the SOC decreases. Therefore, feature 

analysis helps identify the most influential features that contribute to the variation of the output 

variable. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 3-7. Heatmap for feature sensitivity analysis of EIS spectrum at (a) 25 °C. (b) 10 °C, (c) 0 °C, (d) -10 °C, 

(e) -20 °C 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 3-8. PairGrid for reliable features of EIS spectrum at (a) 25 °C, (b) 10 °C, (c) 0 °C, (d) -10 °C, (e) -25 °C 

3.3.2 Linear regression algorithm 

A linear regression algorithm is used for identifying the relationship between a dependent 

variable and one or more independent variables. In this case, the impedances at different 

frequencies are the independent variables, and the SOC is the dependent variable. The basic 

multiple regression model of a dependent variable Y on a set of k independent variables (xk) can 
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be expressed as [103]: 

{

𝑦1 = 𝛽0 +  𝛽1𝑥11 + ⋯ +  𝛽𝑘𝑥1𝑘 + 𝑒1 
𝑦1 = 𝛽0 +  𝛽1𝑥21 + ⋯ + 𝛽𝑘𝑥2𝑘 + 𝑒2

⋮
𝑦𝑛 = 𝛽0 +  𝛽1𝑥𝑛1 + ⋯ +  𝛽𝑘𝑥𝑛𝑘 + 𝑒𝑛

 

3-5 

Therefore:  

𝑦𝑖 = 𝛽0 +  𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑘𝑥𝑖𝑘 + 𝑒𝑖 3-6 

where 𝑦𝑖 is the 𝑖𝑡ℎ case of the dependent variable 𝑌, 𝑥𝑖𝑗 is the value of the 𝑗𝑡ℎ independent variable 

(𝑋𝑗) for the 𝑖𝑡ℎ case of the dependent variable, 𝛽0 is the 𝑌-intercept of the regression surface, each 

𝛽𝑗 is the slope of the regression surface with respect to variable 𝑋𝑗 , and finally, 𝑒𝑖 is the random 

error component for the 𝑖𝑡ℎ case. In each equation in 3-5 , the error is distributed with zero mean 

and standard deviation, and it is independent of the errors in the other equations. Since the variables 

are fixed quantities, the randomness of 𝑌  results from the randomness of error terms in each 

equation; although, in terms of correlation, the input variables are taken into account random 

variables, and the input variables are independent of the error terms. In matrix notation, 3-5 can be 

written as: 

𝑌 = 𝑋𝛽 + 𝑒 3-7 

where: 

𝑌 = [𝑒1 𝑒2 … 𝑒𝑛]𝑇 

𝛽 = [𝛽1 𝛽2 … 𝛽𝑘+1]𝑇 

𝑋 = [

𝑥11 ⋯ 𝑥1(𝑘+1)

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛(𝑘+1)

] 

3-8 

where 𝑌 is the target vector, 𝑒 is the error vector, which is a column vector of length 𝑛, and 𝛽 is 
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the vector of parameters, which is a column vector of length (𝑘 + 1). Matrix 𝑋 is the input matrix, 

which is 𝑛 by (𝑘 + 1) matrix. To do the estimation, 𝛽 and 𝑒 should be calculated. The structure of 

the regression model has been shown in Figure 3-9.    

3.3.3 Gaussian process regression 

For a given training dataset of 𝑇 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛} with n pairs of inputs 𝑥𝑖, which may 

have one or more than one features, and output 𝑦𝑖 , the GPR model computes the predictive 

distribution of unobserved test datasets with 𝑦∗ as output and 𝑥∗ as input [8]. In this study, X and 

Y are defined as 𝑋 =  [𝑥1,  𝑥2, … , 𝑥𝑛 ]𝑇 and 𝑌 =  [𝑦1,  𝑦2, … , 𝑦𝑛 ]𝑇, respectively. In this case, 𝑥𝑖 =

[𝐸𝐼𝑆 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒𝑠] is the EIS impedances and the output 𝑦𝑖  is the SOC of the cells. It is also 

assumed that  𝑦𝑖 = 𝑓(𝑥𝑖 + 𝜀𝑖) where 𝜀𝑖~ℵ(0, 𝜎2) is an independent and identically distributed 

Gaussian noise. The outputs 𝐹 = (𝑓(𝑥1) + ⋯ + 𝑓(𝑥𝑛)) are modeled as Gaussian random field 

𝐹~ℵ(0, 𝐾) where 𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) is the covariance kernel. In this case, the radial basis function is 

utilized for covariance kernel as well. The joint distribution of the training dataset {(𝑥𝑖, 𝑥𝑗), 𝑖 = 1,

2, … , 𝑛} and the predicted test output (𝑥∗, 𝑦∗) is: 

[
𝑌
𝑦∗] = ℵ (0, [

𝐾(𝑋, 𝑋) + 𝜎2𝐼 𝐾(𝑋, 𝑥∗)
𝐾(𝑥∗, 𝑋) 𝐾(𝑥∗, 𝑥∗)

]) 
3-9 

Conditioning on the training set yields the predicted mean on 𝑥∗:  

�̅�∗ = 𝐾(𝑥∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎2𝐼)−1𝑌 3-10 

And its predicted variance is: 

∆2= 𝐾(𝑥∗, 𝑥∗) − 𝐾(𝑥∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎2𝐼)−1𝐾(𝑋, 𝑥∗) 3-11 

The linear regression model is chosen since the computational costs for SOC estimation is low; as 

a linear model using EIS measurements to estimate the SOC, its performance should be investigated. 
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GPR is also utilized as this model learns from the dataset itself and estimates the output SOC by 

interpolating the observed (training) datasets. Moreover, GPR’s accuracy is investigated as a non-linear 

model using EIS measurements for SOC estimation.  

3.3.4 Data preparation 

 To avoid the malfunction of the ML models over a new dataset, the dataset should be split into two 

partitions, i) training set and ii) test set. The training set is used to construct the models and contains 

known output. The ML models are fitted to the training data and calculate the regression coefficients. 

Then, the test set is utilized to observe the performance of the ML models over unknown data. This 

implies that the test set serves as a criterion for the evaluation of the model predictions. In contrast to 

many other studies, the effect of different test-size (TS) is observed in this study for the dataset with 

the selected features and different correlation values. 

 

Figure 3-9. Linear regression structure 

3.3.5 Accuracy estimation 

 The indices used for the evaluation of the performance of the proposed models are:  
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• R-squared: 

Goodness-of-fit R-squared (𝑅-squared) is defined as: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

 
3-12 

where 𝑦𝑖 is the actual value, �̅�𝑖 is the mean value, and �̂�𝑖 is the predicted value for the 𝑖𝑡ℎ case. 𝑅2 

ranges between 0 and 1. The closer to 1, the better the goodness of the fit.   

• Mean absolute percentage error (MAPE) 

MAPE is used to compare the precision of the prediction and is defined as follows: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1
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The smaller the MAE, the better the estimation. 

• Root mean squared error  

The root square of the above equation provides the standard deviation of the random error term. 

Root mean square error is an estimate of the standard deviation of the random component in the data 

and is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
  

3-14 

3.4 Results and Discussions 

In this study, Python and MATLAB have been harnessed to perform the statistical analysis and 

prediction of the SOC. Figure 3-10 shows the flowchart of the proposed methodology for predicting 

the SOC of the battery using EIS measurements. In this section, the models' performance at 
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different temperatures is discussed, considering the effect of reliable features extraction based on 

their correlation value and portioning of the dataset. The statistical evaluation indices discussed in 

the previous section have been recorded in Table 3-2 in different conditions. 

As mentioned earlier, some datasets have been introduced to the ML models with different 

portioning. The default portioning is that 80% of the dataset is dedicated to the training set, and 20 

% (test_size = 0.2) is dedicated to the test set. However, to see the effect of TS, other values for 

this variable have also been taken into account. For corr_value of 0.5, different evaluation indices 

have been obtained at different temperatures, as presented in Table 3-2. The linear regression model 

can perfectly predict the battery's SOC based on the values of R-squared, MAPE, and RMSE at the 

mentioned temperatures except for 10 °C and 0 °C. The MAPE for 25 °C, -10 °C, and -20 °C 

temperatures is less than 4.9%, but for 10 °C and 0 °C, the MAPEs are 8.9% and 17.5%, respectively. 

Moreover, it is clear that for TS of 0.4, the highest accuracy is achieved for temperatures 10 °C and 0 

°C. As for the corr_value of 0.7, we can observe that for the temperatures of 25 °C, -10 °C, and -20 

°C, the evaluation indices values have not changed significantly. However, in the cases of 10 °C 

and 0 °C temperatures, the improvement of evaluation criteria is noticeable such that the MAPEs 

have reduced to 5.5% and 9.7%, respectively. Moreover, one may observe the influence of TS on 

the mentioned temperatures, as the TS increases, an increase in R-squared and a reduction in 

MAPE and RMSE are observed. Considering the corr_value of 0.9, the MAPE for all the cases is 

achieved with a value of less than 7%. Since the extracted features are reliable, it is expected that 

the MAPE and RMSE decrease, but on the contrary, they increase. This is because when highly 

correlated features are selected, most of the other features are lost, and the ML model may lose 

accuracy if the dataset is not big enough. Thus, the performance of the model over a dataset is of 

importance. Although the linear regression model functions properly for corr_values of 0.9, with 
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a maximum error of 7%, a more accurate and reliable model, i.e., GPR, is used for this corr_value. 

The GPR model results for corr_value of 0.9 and the best TS have been presented in Table 3-2. 

The MAE for 25 °C, -10 °C, and -20 °C temperatures is less than 2.8%, but for 10 °C and 0 °C, 

the MAEs are 3.8% and 8.7%, respectively. As an example, the training and test data and their 

predicted values at different temperatures have been shown in Figure 3-11. 

The study results demonstrate that in addition to identifying and extracting reliable features, the 

learning ability of the model and partitioning of the data for training are highly crucial for precise 

prediction. Considering the above-mentioned elements' effects, we also observed that the GPR 

model outperforms the linear regression model. 

 

Figure 3-10. Algorithm of the proposed model for predicting the SOC of the battery using EIS measurements 
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Table 3-2. Evaluation indices under different conditions 

ML Model Corr_value Temp (°C) R-squared MAPE(%) RMSE 

Linear Regression 0.5 

25 (TS=0.2) 0.978 4.84 5.99 

10 (TS=0.2) 0.742 8.93 20.098 

0 (TS=0.4) 0.62 17.44 20.098 

-10 (TS=0.2) 0.989 2.90 3.3387 

-20 (TS=0.2) 0.982 4.23 4.3 

Linear Regression 0.7 

25 (TS=0.2) 0.975 4.845 5.99 

10 (TS=0.4) 0.698 9.546 17.913 

10 (TS=0.6) 0.942 5.562 8.44 

0 (TS=0.4) 0.734 13.66 16.797 

0 (TS=0.5) 0.876 9.73 11.48 

-10 (TS=0.2) 0.987 3.0525 3.602 

-20 (TS=0.2) 0.977 4.9398 4.842 

Linear regression 0.9 

25 (TS=0.2) 0.952 6.27 8.27 

10 (TS=0.4) 0.782 15.23 17.69 

10 (TS=0.6) 0.899 6.99 11.216 

0 (TS=0.4) 0.4345 15.09 24.528 

0 (TS=0.5) 0.8785 9.087 11.38 

0 (TS=0.6) 0.925 6.91 8.87 

-10 (TS=0.3) 0.982 3.23 3.56 

-20 (TS=0.5) 0.875 6.55 9.98 

-20 (TS=0.6) 0.93 6.11 6.88 

GPR 0.9 

25 (TS=0.2) 0.998 1.34 1.46 

10 (TS=0.4) 0.981 3.81 4.4 

0 (TS=0.3) 0.903 8.68 9.96 

-10 (TS=0.3) 0.983 2.72 3.45 

-20 (TS=0.2) 0.988 2.74 3.55 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 3-11. SOC prediction of the proposed model at temperatures of (a) 25 °C, (b) 10 °C, (c) -10 °C, (d) -25 

°C  

3.5 Conclusions 

In this investigation, the prediction of li-ion battery SOC using EIS measurements was 

performed based on an ML approach. This study was conducted based on extracting reliable 

features according to their correlation value with the SOC of the battery. The features are the 

impedances of EIS measurements over the range of desired frequencies, i.e., from 1 mHz to 6 kHz. 

After selecting the reliable features of different datasets at various temperatures and different 

SOCs, the linear regression model and GPR were trained, and the prediction was performed by the 

trained models over the test set. Statistical indices such as R-squared, MAPE, and RMSE were 

used to evaluate the accuracy and robustness of the models. The results indicated that the proposed 

models are able to precisely predict the SOC of the battery using the reliable features. The models 

trained by the features with a corr_value of above 0.9 indicated the best performance among the 

others, such that the error of the GPR model was found to be less than 3.8 %. Furthermore, the 

impact of test-size on the model precision was evaluated. It was observed that for some cases, the 

larger test-size results in higher accuracy.  
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Chapter 4 

4. SOH Estimation 

4.1 Introduction 

One of the main functions of BMS is to estimate the capacity accurately and, ultimately, the 

SOH of the battery and control the charge-discharge cycle and thermal behavior of the battery 

[104], [105], and [106]. The cell SOH is defined as the ratio of the cell capacity in the current stage 

of operation to its initial capacity or the rated capacity provided by the cell manufacturer. 

Therefore, if the calculated capacity is divided by the constant value of the initial capacity, SOH 

is provided. It implies that the capacity and SOH of the battery can convey the same meaning and 

can be used interchangeably. SOH is calculated by the following formula: 

𝑆𝑂𝐻 =  
𝐶𝑎

𝐶𝑟𝑎𝑡𝑒𝑑
 × 100%   

4-1 

where 𝐶𝑎 is the cell capacity at current stage of operation and 𝐶𝑟𝑎𝑡𝑒𝑑 is the nominal capacity of the 

cell. 

The effective estimation of the above measure is the topic of this chapter. Estimation of SOH 

is studied and implemented historically using three methods. These methods are grouped under 

direct calibration, model-based, and data-driven in approach and methodology [107].  

 Direct calibration methods calculate the battery SOH through specific empirical operations. 

For example, fully discharging the battery after a complete charge [108]. Direct calibration 
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methods are relatively easy to implement. However, acquiring precise current and voltage in an 

open-loop approach is of great challenge. In order to address the restrictions of direct calibration 

methods, model-based methods relate the measured battery data such as voltage, current, 

temperature, and EIS to the SOH based on equivalent electrical or electrochemical models [109], 

[110], [111]. The model-based methods are often used in combination with observers or adaptive 

filters algorithms such as EKF [112], [113] [114], PF [115], and H-infinity filter [116] to achieve 

online capacity estimation. Zhang et al.[117] used the Markov chain Monte Carlo algorithm to 

address sample starvation in the improved unscented PF (IUPF) algorithm. Since the IUPF is 

proposed based on the PF, it can attenuate the particle’s existing degradation in the standard PF to 

increase the precision of the model. An EKF along with dual fractional-order is utilized for 

capacity estimation [118]. In [119], GA and recursive least square are employed to get the internal 

resistance of the battery based on ECM. Moreover, to track the internal resistance under various 

depth of discharge, pulse approaches have been adopted in [120]. Then, the mapping between the 

real-time resistance and the maximum and minimum resistances determines the capacity of the 

battery. The performances of EKF, PF, and recursive least squares in terms of precision and 

computational burden were compared in several studies and analyzed for accuracy [121]. 

However, building a precise battery model is a daunting task since it requires a large amount of 

physical knowledge or experimental data under sophisticated designed and well-controlled 

circumstances to be effective. Moreover, due to the internal complex chemical reaction process 

and uncertain external operating conditions of the batteries, achieving sufficient model precision 

remains a challenge for the above model-based methods.  

  Data-driven models can aid in providing the data needed in the model-based approach as they 

do not need mathematical expressions to connect the battery signals to capacity or SOH estimation, 



59 

 

and the relationship can be constructed by training the historical data. Li et al. [122] proposed a 

study using a GPR-based method to predict the battery SOH using the health features extracted 

from partial incremental capacity (IC) curves. IC-values are utilized in [123] for capacity 

estimation from cell level to battery pack level. Feng et al. [124] developed an SVM-based online 

SOH estimation method. The SVM model is first implemented offline, utilizing features extracted 

from the battery charging curves of cells at different SOHs. The SOH is predicted by comparing 

the features of the measured signals and the stored models. Guo et al. [125] extracted health 

features such as the area under the current curve/temperature curve of constant current (CC) 

phase/constant voltage (CV) phase/whole charge process, CC time, CV time, the ratio of CC time 

to CV time, the ratio of area under temperature curve to the corresponding area under the current 

curve, and the maximum slope of the current curve in CC phase/CV phase from charging 

measurements, and they are used as the inputs to a relevance vector machine (RVM) model. Hu et 

al. [126] manually choose five cell features that are representative of the cell capacity from partial 

charge and then utilize RVM to build a relationship between the selected features and the battery 

capacity. The proposed RVM model, after being trained offline, was applied to online estimate the 

capacity of a battery cell based on the five selected charge-related. In [127], a data-driven method 

has been developed to estimate the capacity of the battery using charge voltage and current curves. 

In this approach, the k-nearest neighbor is adopted to establish the relationship between the 

capacity and charge-related factors, and PSO is employed to the parameters of the k-nearest 

neighbor. Bai et al. [128] adopted an NN to estimate the terminal voltage, and then the method is 

used along with a dual EKF for online capacity estimation. In another study [129], the IC peaks, 

IC valleys, and their corresponding voltage values are used as the features to estimate battery SOH. 

The drawbacks of these methods are two-fold: (1) the redundancy of health features is not 
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considered, which will lead to over-fitting and low accuracy of the model, (2) these methods are 

dependent on the manually extracted features provoking significant computational efforts, which 

becomes impractical. To tackle this issue, deep learning algorithms have recently attracted much 

attention due to their ability to extract features automatically. You et al. [130] proposed a recurrent 

neural network (RNN) model using long short-term memory (LSTM). The model takes the current 

and voltage data during a charge cycle as its input. Shen et al. [131] proposed a deep convolutional 

neural network (DCNN) model for cell-level capacity estimation based on the voltage and current 

measurements during a partial charge cycle. The performance of a feed-forward neural network, 

LSTM, and CNN for capacity estimation have been compared in [132], and the test results 

indicated the difficulty of the resultant models in coping well with limited battery data on hand. It 

can be concluded that these data-driven models have proven significant potential in capacity 

prediction, yet their performance can be alleviated if they are not trained with sufficient datasets. 

Only models trained with enough data can achieve satisfactory precision. In turn, obtaining a large 

dataset for degrading batteries requires many cycling tests, which is highly time-consuming and 

costly. Moreover, in another situation where the operating conditions are different, new datasets 

should be recollected, and models should be retrained again to achieve desired efficacy. 

 Given this background, TL technique can be associated with these methods to improve the 

prediction performance on a small or unknown dataset. In this case, knowledge extracted from a 

related domain can be utilized to assist an ML algorithm performs better in the target domain. In 

[133], the battery health was estimated by combining the kernel ridge regression and TL to improve 

the prediction accuracy. The input features were collected from the charge/discharge and IC curves 

of four battery cells from the NASA battery degradation dataset. In [108], TL was applied to 

achieve accurate prediction based on an LSTM model. The features of this article were obtained 
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only based on the voltage data of the CC charging process. A CNN model combining the concepts 

of TL and ensemble learning was used for capacity estimation in [134], with voltage, current, and 

charge capacity as the network's inputs. In [135], the CNN model combined with TL utilizes 

voltage, current, and charge capacity as input variables. A fixed length of 225 data points and a 

flexible starting point are directly used as the model inputs and are generated by a signal-to-image 

transformation to estimate the battery capacity using only partial charging segment. Shu et al. 

[136] have combined TL and LSTM for SOH prediction using partial voltage data acquired from 

the voltage curves during the CC charging process and the specified charging interval for the pre-

set voltage range as the input of the base model.  

To this end, the reviewed studies have employed different input features, among which many 

of them are dependent on IC curves and the charging process, such as CC-CV, CC, or CV, for 

SOH or capacity prediction of batteries. In contrast, scant attention has been given to one of the 

most information-rich datasets, EIS, for the same purpose. Although there is literature employing 

equivalent electrochemical models using EIS for capacity prediction [137], [138], and [139], there 

are very few studies that adopt EIS measurement directly as an input feature for SOH estimation 

[8]. This chapter proposes a DNN in conjunction with TL for capacity estimation of Li-ion batteries 

adopting EIS measurement directly as input features without further computational algorithms to 

extract additional features such as the ones mentioned for IC curves and the CC-CV charging 

process. The contributions of our research are three-fold: (1) contrary to the reviewed literature 

that only considers the datasets for a fixed temperature, this paper takes the different operational 

temperatures of degrading batteries into account such that the model can predict the capacity of 

the battery for out-range temperatures. (2) the effect of the number of fixed layers, i.e., non-

trainable layers of the pre-trained model adopted in TL, is examined on the target dataset. (3) the 
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effect of the target dataset’s size to foster our proposed DNN-TL model is also investigated, 

resulting in a DNN-TL model that is retrained only based on the first 50% and 20% of the target 

dataset, and subsequently, the results are compared to the stand-alone DNN model. 

4.2 EIS Experimental Data 

The experimental data from [8] has been utilized in this study. The experiment applies a 

continuous charge-discharge cycle on 12 commercially available 45 mAh Eunicell LR2032 Li-ion 

coin cells. The cell chemistry is LiCoO2/graphite. The cells are cycled in three climate chambers 

set to 25 °C (25C01–25C08, Cells’ number from 01 to 08 at 25 °C), 35 °C (35C01 and 35C02, 

Cells’ number from 01 to 02 at 35 °C) and 45 °C (45C01 and 45C02, Cells’ number from 01 to 02 

at 45 °C), respectively. Each cycle consists of a 1C-rate (45mA)(1C-rate indicates that the 1A 

discharge current will discharge the entire battery in 1 hour.) CC-CV charges up to 4.2 V, and a 

2C-rate (90 mA) CC discharges down to 3 V [8]. EIS is measured at nine different stages of 

charging/discharging during every even-numbered cycle in the frequency range of 0.02 Hz–

20 kHz with an excitation current of 5 mA [8]. However, in our study, we use the EIS measurement 

at two stages, i.e., before the onset of charging and after 15 minutes rest of charging process at the 

state of charge (SOCs) of 0% and 100 %, respectively. The loss in capacity is determined after 

every odd-numbered cycle.  

We use the EIS and capacity datasets of 10 cells out of the 12, i.e., 25C01–25C03, 25C05-

25C07, 35C01-35C02, and 45C01-45C02 cells. The datasets and implementation details section 

will extensively discuss how to divide the datasets into the training and testing groups to gain 

insight. 

It is evident from Figure 4-1 that the EIS characteristic differs from each other at different 
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temperatures and lifetime levels. In Figure 4-1, “New” means when the battery cell EIS is 

measured at its first cycle (100% of initial capacity), “Middle age” means when the battery cell 

EIS is measured at middle cycles, and “Old” means when the battery cell EIS is measured at its 

end of life as energy storage for electric vehicles (usually 80% of its initial capacity). The research 

goes well beyond the pure resistance of the battery, i.e., the intersection of EIS with the x-axis 

increases and takes into consideration the semicircle and the tail part of EIS enlarge. This indicates 

that EIS at different temperatures and lifetime levels provides rich information about the battery's 

capacity and can be considered a potential criterion for the capacity prediction of batteries during 

their longevity.   

 

Figure 4-1. EIS at different cycles and temperatures 

4.3 Methodology 

4.3.1 Deep neural network 

DNN is a supervised learning requiring the output and input data for the training and the 

prediction. DNN model has been adopted in this study to investigate its capability in capturing the 

EIS measurements patterns at different aging and ambient temperature levels for SOH or capacity 
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estimation of li-ion battery cell.  The number of hidden layers and neurons can be determined 

based on one's needs. The weights between the layers are first initialized ad hoc and then adjusted 

continually during training [140]. Figure 4-2 shows the general structure of the used DNN. Where 

{𝑥1, 𝑥2, . . . , 𝑥𝑛} denotes the input layer, which in our study is the magnitude of EIS measurements 

for the frequency range of 20 mHz to 20 kHz at different temperatures and lifetime levels. The 

output of each neuron in the first and the next hidden layers is calculated by (4) and (5), 

respectively: 

ℎ𝑖
1 = 𝑓 (𝑏1 + ∑ 𝑊𝑖𝑥𝑖

𝑛

𝑖=1

)   
4-2 

ℎ𝑖
𝑗+1

= 𝑓 (𝑏j+1 + ∑ 𝑤𝑖
𝑗
ℎ𝑖

𝑗

𝑚𝑗

𝑖=1

)      j ≥ 1 
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where in 4-2, 𝑓 is the activation function, 𝑥𝑖  is the 𝑖𝑡ℎ  neuron in the input layer, 𝑊𝑖  is the 𝑖𝑡ℎ 

neuron’s weight in the input layer, 𝑏1 denotes the deviation from the input layer to the first hidden 

layer, 𝑛 is the number of input neurons. In 4-3, 𝑏j+1 denotes the deviation from the 𝑗𝑡ℎ hidden layer 

to the 𝑗 + 1𝑡ℎ hidden layer, 𝑚𝑗 is the number of neurons in the 𝑗𝑡ℎ hidden layer, 𝑤𝑖
𝑗
 is the weight 

of 𝑖𝑡ℎ neuron in the 𝑗𝑡ℎ hidden layer, and ℎ𝑖
𝑗
 is the output of 𝑖𝑡ℎ neuron in the 𝑗𝑡ℎ hidden layer. The 

final output, which in our study is the predicted capacity of the battery, can be calculated by the 

following formula: 

𝑦 = 𝑓 (𝑏p+1 + ∑ 𝑤𝑖
𝑝ℎ𝑖

𝑝

𝑚𝑝

𝑖=1

) 

4-4 

where 𝑤𝑖
𝑝
 is the weight of  𝑖𝑡ℎ neuron in the last hidden layer, ℎ𝑖

𝑝
 is the output of 𝑖𝑡ℎ neuron in the 

last hidden layer, 𝑝 is the number of the hidden layers, and 𝑝𝑡ℎ layer is the last hidden layer. The 
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calculated output of the DNN model is compared to the real value from the dataset to calculate the 

loss function. An optimization algorithm is then utilized to minimize the loss function and tune the 

values for the weights and deviations. Table 4-1 indicates the configuration of the layers and 

activation function utilized in this study.  

 

Figure 4-2. A general indication of the DNN model 

Table 4-1. the configuration of the layers and activation function of the proposed DNN 

Layers Neurons Activation function 

Input layer 62  

First hidden layer 32 ReLU 

Second hidden layer 16 ReLU 

Third hidden layer 8 ReLU 

Output layer 1 ReLU 

 

4.3.2 Transfer learning 

Typically, ML algorithms are presumed to be trained and tested by training and test datasets 

from the same distribution. However, this presumption may not be true in real-world applications. 
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When the test dataset alters, the ML algorithm should be retrained based on a substantial amount 

of newly produced training dataset, which is expensive and time-consuming, to maintain precision 

[134]. To prevent the malfunction of ML algorithms confronting a new test dataset distribution, 

TL has arisen. TL transfers the learned knowledge from the previous source dataset to ease the 

model building of the target source. In other words, a small amount of newly produced training 

data is sufficient to rebuild an ML algorithm, while the data may not necessarily be obtained from 

similar test data distribution [133]. TL technique will help us avoid time-consuming experimental 

tests for battery aging. 

The main goal of this chapter is to employ the application of TL in conjunction with DNN for 

the capacity estimation of Li-ion batteries using EIS measurements as the input features. 

According to Figure 4-3, TL is achieved through the following two steps in this study: first, the 

base DNN model is trained and validated based on the source dataset, then the knowledge is 

transferred to rebuild (retrain and validate) a new model based on a specific portion of the target 

dataset and the rest of the dataset is utilized to test the rebuilt model. In other words, the TL fine-

tuning strategy is adopted to adjust the parameters of one or more hidden layers using the target 

dataset, while the parameters of other layers remain unaltered, and the results for each case are 

compared. In this manner, the TL model is built. The resultant DNN model after TL is denoted as 

DNN-TL in the remainder of the paper. Simultaneously, the proposed DNN-TL model can transfer 

the lifetime data and the previously trained model of the source dataset to the newly built model 

of the target dataset for easier capacity prediction. Its significant learning capability can connect 

the rich information in the EIS measurements and model between two domains to facilitate the 

prediction model construction of the target dataset, thus mitigating the requirement of cycling data 

and improving the training efficiency. 
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Figure 4-3. DNN-TL model construction 

 

Figure 4-4. DNN-TL algorithm for capacity prediction 

4.3.3 Implementation details 

Figure 4-4 represents the general algorithm for capacity prediction of the battery using TL. 

In this study, the source dataset, according to which the base DNN model is trained and 

validated, consists of the EIS measurements and capacity of the batteries 25C01–25C03, 25C05-

25C07, and 35C01-35C02. The source dataset is divided into training and validation datasets, and 

the samples are selected randomly for each dataset. The ratio of training dataset to the validation 
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dataset is set to be 8:2. The prediction models were built by Keras upon Tensorflow backend in 

Python. The DNN model is trained for 4000 epochs; an epoch refers to one cycle through the entire 

training dataset. Typically, training a DNN takes more than a few epochs. In other words, DNN is 

fed on the training data for more than one epoch in different patterns for better generalization when 

given a new unobserved input (test data). However, on the one hand, overfitting may occur if the 

number of epochs is too large, and on the other hand, too few epochs may result in an underfit 

model. We used early stopping, which is a method that allows us to determine a randomly large 

number of training epochs and stop the model from being trained once the model performance 

halts to be improved on a holdout validation dataset. Therefore, a validation dataset is required 

during training the DNN model for using early stopping method. The loss function, which is 

validation loss (mean squared error (MSE)) to be optimized for the DNN model, is calculated at 

the end of each epoch. EarlyStopping is a method backed by Keras that stops the training early 

through a callback. This callback will observe the MSE improvement and trigger the training 

process once the improvement is stopped. However, the first sign of no further improvement may 

not be the best time to stop training because the model may coast into a plateau of no improvement 

or even get slightly worse before getting much better. To tackle this problem, a delay is added to 

the trigger in terms of the number of epochs on which there is no improvement in MSE. This can 

be done by setting the “patience" argument, which Keras also support. The EarlyStopping callback 

will stop training once called, but the model at the end of training may not be the model with the 

best performance on the validation dataset, i.e., minimum MSE. An additional callback needs to 

be triggered to store the best model observed with minimum validation loss during training for 

later use. The ModelCheckpoint is the callback function for this purpose. 

Then, to transfer the knowledge from the base DNN to DNN-TL, the EIS measurements at 0% 
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and 100% SOCs of the batteries 45C01and 45C02 are employed as the target dataset. For the target 

datasets at each SOC, namely, 0% and 100%, two case studies are conducted in this paper to 

investigate the efficacy and comprehensiveness of the proposed DNN-TL model: i) the first 50% 

and ii) the first 20% of the target datasets are utilized for re-training and validation of the DNN-

TL model based on the method explained in the previous paragraph. The remaining portion of the 

target dataset, which is considered missing data, is employed to predict the battery's capacity. 

Moreover, the effect of the number of fixed layers during the re-training of DNN-TL is studied. 

The versatility of DNN-TL can be demonstrated in this study such that only a small amount of EIS 

measurements and capacity of the battery at the temperature of 45 °C is obtained for some cycles 

through the experiments, and the rest can be predicted using TL. Eventually, the proposed DNN-

TL model results are compared with the stand-alone DNN based on the target dataset. 

4.3.4 Accuracy evaluation 

The indices used for the evaluation of the performance of the proposed model are: 

• MAPE 

MAPE is used to compare the precision of the prediction and is defined as follows: 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

                    
4-5 

where 𝑦𝑖 is the actual value of 𝑖𝑡ℎ sample, �̂�𝑖 is the estimated output of 𝑖𝑡ℎ sample, and 𝑛 is the 

number of the samples. The smaller the MAPE, the better the prediction. 

• MSE 

Mean square error is an estimate of the standard deviation of the random component in the data 

and is utilized for optimizing the validation loss while training the models and is defined as 
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follows: 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
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where 𝑦𝑖 is the actual value of 𝑖𝑡ℎ sample, �̂�𝑖 is the estimated output of 𝑖𝑡ℎ sample, and 𝑛 is the 

number of the samples. 

• Coefficient of determination 

The coefficient of determination or R-squared is defined to demonstrate the goodness of the fit 

and how well the missing or unobserved samples can be predicted. The best possible value is 1, 

and the value can be negative too, which indicates that the model cannot follow the actual datasets. 

R-squared is defined as follows:  

𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1
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where 𝑦𝑖 is the actual value of 𝑖𝑡ℎ sample, �̂�𝑖 is the estimated output of 𝑖𝑡ℎ sample, �̅� is the mean 

of the actual samples, and 𝑛 is the number of the samples. 

4.4 Results and Discussions 

To verify the state of the art of the proposed capacity prediction method based on TL, we 

compared the performance of DNN-TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, and 3 

fixed-layer models with the stand-alone DNN model, which is considered as the benchmark model, 

on different datasets, with the same ratio for training and testing. The difference between the DNN-

TL models and the stand-alone DNN model is that the former is retrained and rebuilt by the training 

dataset from the target dataset, having their neurons’ weights initialized based on the previously 

trained base model; however, for the latter, the neurons’ weights are initialized during the model 

training.  
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4.4.1 Prediction results using target dataset at SOC 0% 

In this scenario, the target dataset, i.e., EIS measurements at SOC 0% for the batteries 45C01 

and 45CO2, is utilized for training, validation, and prediction. 

• Using the first 50% of the target dataset for training 

100% of the target dataset of the battery 45C01 and the first 50% of the target dataset of the 

battery 45C02 (from 0-250 cycles) with a ratio of 8:2 is employed for training and validating the 

DNN-TL and stand-alone DNN models. Fig. 6 depicts the predicted capacity against the true 

capacity value based on the validation dataset for DNN-TL with no fixed-layer, DNN-TL with 

1fixed-layer, and the stand-alone DNN model. The reason that DNN-TL with 2 and 3 fixed-layer 

have not been shown in Figure 4-5 , is that these models did not demonstrate accurate performance 

toward the concept of TL. One may conclude that during the TL, the most important layers are the 

last two layers of the DNN-TL models, as they are responsible for transferring the knowledge and 

accurate prediction on the target dataset. Therefore, on account of preventing the last two layers 

of DNN-TL with 2 and 3 fixed-layer from being re-trained, these models could not demonstrate 

satisfying performance on capacity prediction for an unseen dataset. Figure 4-6 indicates the 

performance of DNN-TL with no fixed-layer and 1 fixed-layer compared to the stand-alone DNN 

model. It is evident from this figure that the DNN-TL model outclasses the stand-alone DNN 

model. Table 4-2 indicates the MAPE values for predicting the capacity of the battery 45C02 after 

250 cycles, i.e., the second 50% of the target dataset of the battery 45C02, which is considered as 

missing data. The MAPE for DNN-TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-

layer, and the stand-alone DNN model is 0.605%, 0.495%, 0.663%, 8.238%, and 2.773%, 

respectively, which indicates that DNN-TL outclasses the stand-alone DNN model. The evaluation 

indices of Table 4-2 prove the above-mentioned conclusion about the DNN-TL with 2 and 3 fixed-
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layer, as these values are relatively high for these two models. The R-squared from Table 4-2 for 

the DNN-TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone 

DNN model is 0.9551, 0.9668, 0.9026, -4.420, and 0.2092, respectively. The closer the R-squared 

value is to 1, the better the model can follow and fit the unobserved or actual missing dataset. The 

negative value of the R-squared indicates that the model cannot fit the actual missing dataset. 

Given this, the DNN-TL with no fixed-layer and 1 fixed-layer has the best R-squared. The negative 

value of the R-squared for DNN-TL with 3 fixed-layer indicates the model is not working correctly 

and cannot follow the actual missing data. The low R-squared value of the stand-alone DNN model 

indicates its incapability to fit the actual unobserved dataset. 

 

Figure 4-5. Prediction results vs. true values of capacity (mAh) for validation dataset at SOC 0% when the first 

50% of target dataset is utilized for training and validation 

 



73 

 

Figure 4-6. Capacity prediction for the battery 45C02 at SOC 0% when the second 50% of the target dataset is 

considered as missing data 

• Using the first 20% of the target dataset for training 

This case study follows the same steps as the previous one with the difference that only the first 

20% of the target dataset of the battery 45C02 (from 0-100 cycles) with the ratio of 8:2 is employed 

for training and validating the DNN-TL and stand-alone DNN models. Figure 4-7 depicts the 

predicted capacity against the true capacity value based on the validation dataset for DNN-TL with 

no fixed-layer, DNN-TL model with 1fixed-layer, and the stand-alone DNN model. For the same 

reason, DNN-TL with 2 and 3 fixed-layer have not been shown in Figure 4-7. Figure 4-8 indicates 

the performance of DNN-TL with no fixed-layer and 1 fixed-layer compared to the stand-alone 

DNN model. It is evident from this figure that the DNN-TL model outperforms the stand-alone 

DNN model. Another remarkable point is that only the first 20% of the target dataset has been 

exploited for re-training and validating the model, and the remaining, which is a missing dataset, 

can be predicted by the DNN-TL model. Table 4-2 indicates the MAPE values for predicting the 

capacity of the battery 45C02 after 100 cycles, i.e., the second 80% of the target dataset of the 

battery 45C02, which is considered as missing data. The MAPE for DNN-TL with no fixed-layer, 

1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone DNN model is 0.999%, 2.703%, 

2.168%, 12.114%, and 4.262%, respectively, which indicates that DNN-TL outclasses the stand-

alone DNN model. Table 4-2 also demonstrates the robustness of the DNN-TL model with no 

fixed-layer, as for the different sizes of the target dataset, the model exhibits accurate performance. 

The R-squared from Table II for the DNN-TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 

fixed-layer, and the stand-alone DNN model is 0.9526, 0.7006, 0.7821, -7.865, and 0.008, 

respectively, which indicates that DNN-TL with no fixed-layer has the best R-squared. 
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Figure 4-7. Prediction results vs. true values of capacity (mAh) for validation dataset at SOC 0% when the first 

20% of target dataset is utilized for training and validation 

 

Figure 4-8. Capacity prediction for the battery 45C02 at SOC 0% when the second 80% of the target dataset is 

considered as missing data 

Table 4-2. MAPE (%) and R-squared values for DNN-TL and DNN on (1) first 50% of, (2) first 20% of target 

dataset at SOC 0% 

MAPE (%) 

DNN-TL DNN 

No Fixed-layer 1 Fixed-layer 2 Fixed-layer 3 Fixed-layer 

(1) 0.605 0.495 0.663 8.238 2.773 

(2) 0.999 2.703 2.168 12.114 4.262 

R-squared  

(1) 0.9551 0.9668 0.9026 -7.865 0.008 

(2) 0.9526 0.7006 0.7821 -4.420 0.2092 

 

4.4.2 Prediction results using target dataset at SOC 100% 

In this scenario, the target dataset, i.e., EIS measurements at SOC 100% for the batteries 45C01 
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and 45CO2, is utilized for training, validation, and prediction. 

• Using the first 50% of the target dataset for training  

Following the same steps as the previous scenario, Figure 4-9 demonstrates the performance of 

the models based on the validation dataset. Figure 4-10 indicates the performance of DNN-TL 

with no fixed-layer and 1 fixed-layer compared with the stand-alone DNN model. It is evident 

from this figure that DNN-TL with no fixed-layer model outclasses the other two models. Table 

4-3 indicates the MAPE values for predicting the capacity of the battery 45C02 after 250 cycles, 

i.e., 50% of the target dataset of the battery 45C02, which is considered as missing data. The MAPE 

for DNN-TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone 

DNN model is 0.362%, 6.517%, 9.185%, 11.020%, and 2.24%, respectively, which indicates that 

DNN-TL outclasses the stand-alone DNN model. The R-squared from Table 4-3 for the DNN-TL 

with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone DNN model is 

0.9808, -4.0876, -7.4699, -11.321, and 0.3567, respectively, which indicates that DNN-TL with 

no fixed-layer has the best R-squared. The rest of the models cannot follow the actual missing 

dataset at this condition. 

 

Figure 4-9. Prediction results vs. true values of capacity (mAh) for validation dataset at SOC 100% when the 

first 50% of target dataset is utilized for training and validation 
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Figure 4-10. Capacity prediction for the battery 45C02 at SOC 100% when the second 50% of the target dataset 

is considered as missing data 

• Using the first 20% of the target dataset for training  

In this case study, the same analysis is conducted. The performance of the models on the 

validation dataset has been shown in Figure 4-11. Figure 4-12 manifests the estimation 

characteristics of DNN-TL with no and 1 fixed-layer and that of the stand-alone DNN model. 

Figure 4-12 indicates that DNN-TL with no fixed-layer performed best in these conditions among 

the other models. The evaluation indices have been recorded in Table 4-3. The MAPE for DNN-

TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone DNN model 

is 0.501%, 5.684%, 8.913%, 12.366%, and 1.025%, respectively, which indicates that the same 

conclusion can be made as the previous case study. The R-squared from Table 4-3 for the DNN-

TL with no fixed-layer, 1 fixed-layer, 2 fixed-layer, 3 fixed-layer, and the stand-alone DNN model 

is 0.9850, -0.3255, -2.018, -4.554, and 0.9309, respectively, which indicates that DNN-TL with no 

fixed-layer and the stand-alone DNN model have the best R-squared. The rest of the models cannot 

follow the actual missing dataset at this condition. 
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Figure 4-11. Prediction results vs. true values of capacity (mAh) for validation dataset at SOC 100% when the 

first 20% of target dataset is utilized for training and validation 

 

Figure 4-12. Capacity prediction for the battery 45C02 at SOC 100% when the second 80% of the target dataset 

is considered as missing data 

Table 4-3. MAPE (%) and R-squared values for DNN-TL and DNN on (1) first 50% of, (2) first 20% of target 

dataset at SOC 100% 

MAPE(%) 

DNN-TL DNN 

No Fixed-layer 1 Fixed-layer 2 Fixed-layer 3 Fixed-layer 

(1) 0.362 6.517 9.185 11.020 2.24 

(2) 0.501 5.684 8.913 12.336 1.025 

R-squared  

(1) 0.9808 -4.0876 -7.4699 -11.321 0.3567 

(2) 0.9850 -0.3255 -2.018 -4.554 0.9309 

 

Figure 4-13 indicates the histogram error bar for all the above scenarios. It is evident that for 

the DNN-TL with no fixed-layer, the number of predicted samples with the error of less than 1% 
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is significantly higher than the other models, especially the stand-alone DNN model. In contrary 

to the other models, the histogram plot of the DNN-TL with no-fixed layer almost follows the 

same pattern in all the scenarios, which indicates its well performance at different conditions.   

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-13. Capacity prediction for the battery 45C02 (a) at SOC 0% when the second 50% of the target dataset 

is considered as missing data, (b) at SOC 0% when the second 80% of the target dataset is considered as missing 

data, (c) at SOC 100% when the second 50% of the target dataset is considered as missing data, (d) at SOC 100% 

when the second 80% of the target dataset is considered as missing data. 
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The effect of the number of fixed layers in the DNN-TL model was demonstrated, and DNN-

TL with no fixed-layer proved an outstanding performance compared to the other models, 

specifically the stand-alone DNN model. This proves that every single layer in DNN-TL carries 

the knowledge to transfer and accounts for better estimation of capacity for an utterly unobserved 

dataset with different distributions. The stand-alone DNN model achieves an acceptable accuracy 

with an average MAPE of 2.575%. The proposed DNN-TL model with no fixed-layer outclasses 

the other DNN-TL models and the benchmark model, i.e., the stand-alone DNN model, with the 

average MAPE of 0.616% for the same scenarios. The average R-squared of 0.9683 was achieved 

by the DNN-TL with no fixed-layer, which indicates the goodness of its fit and its capability to 

follow the actual missing datasets. Although the stand-alone DNN model has an acceptable MAPE, 

it demonstrates a poor R-squared, which means that it cannot follow the actual missing dataset. 

The two different scenarios with two various target datasets for EIS measurements at SOC 0% 

and 100% were tested to demonstrate the effectiveness of direct usage of EIS measurements 

instead of using it as equivalent circuit modeling and how rich they are in conveying the 

information about the health status of batteries at different SOCs. One may question the 

comprehensiveness of the proposed model as the other SOC values have not been tested. The data 

for other SOC values were not available to be included in our datasets; however, interpolation 

cannot be denied in neural network models. It is evident from Fig. 2 that EIS measurements follow 

a predictable pattern in accordance with temperature and aging. A predictable pattern of EIS 

measurement based on the mentioned parameters further enhances the ability of the model to 

interpolate between other values of SOC. EIS characteristic is also dependent on the SOC and 

follows a similar pattern. The results confirm the performance of the models based on the 

validation dataset. 
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4.5 Conclusions 

A novel battery capacity prediction method using TL with DNN was proposed. This study 

employed EIS measurements directly, which is not dependent on the charging/discharging process 

and IC curves, for three ambient temperatures of 25 °C, 35 °C, and 45 °C. The effect of the number 

of fixed layers during retraining of the DNN-TL was also investigated, and the results of capacity 

prediction on the target dataset were compared between DNN-TL models that are DNN-TL with 

different numbers of fixed layers and the stand-alone DNN model, which was used as the 

benchmark model. The maximum MAPE, when the first 50% and 20% of the target dataset were 

used for retraining the DNN-TL with no fixed-layer, were found to be 0.605% and 0.999%, 

respectively. As the results of the chapter indicate, an average MAPE of 0.616% was achieved for 

the DNN-TL with no fixed-layer in four different scenarios with different sizes of the target 

dataset, while the stand-alone DNN model achieved an average MAPE of 2.575%. The average 

R-squared of 0.9683 was achieved by the DNN-TL with no fixed-layer, which indicates the 

goodness of its fit and its capability to follow the actual missing datasets.  
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Chapter 5 

5. Co-estimation of SOC and SOH 

5.1 Introduction 

Despite numerous literatures on estimating SOC and SOH separately, it is known that with the 

degradation of the batteries, the increase in battery resistance and the decrease in its capacity will 

lead to a dramatic SOC deviation [141]. Therefore, in order to achieve a qualified SOC estimation 

method, it should account for health status of the battery. In other words, the SOH should be used 

as an input to SOC estimation method for joint estimation, and in such case higher estimation 

accuracy can be achieved. To enhance the performance of SOC estimation method, considerable 

studies have been tailored toward the joint estimation of SOC and SOH. There are myriads of 

works leveraging ECM and EIM for joint estimation of SOC and SOH [142], [143], [144], [145], 

[146], and [147]. In [148], a fractional-order model is adopted to joint estimate the SOC and SOH 

of the battery. In this approach, the parameters of the model are optimized using a hybrid GA/PSO 

technique. The validity of the proposed method is verified on the Dynamic Stress Test and Federal 

Urbane Driving Schedule datasets. A dual fractional-order EKF is integrated into the model for 

co-estimation. In [85], a second-order equivalent circuit model considering the temperature effect 

is implemented to model the electrical performance. The particle swarm optimization (PSO) is 

then utilized to instantly update the parameters of the battery model. The charging duration is 

chosen as the input feature. The SOH is estimated by the LSTM method, and then the estimated 



82 

 

value is used in a second-order ECM with the square root cubature Kalman filter to estimate the 

SOC. In [149], an ECM is exploited to model the battery behavior with recursive least squares, 

which identifies the model parameters. A minimalist EIM is proposed to evaluate the SOH. The 

capacity degradation is measured by identifying the amount of lithium inventory loss in the battery. 

Based on the capacity value the SOC of the battery is then estimated. The data used in the 

mentioned study are for the batteries which have undergone random walk (RW) tests. So, the 

dataset does not simulate the real-world driving cycle scenarios. In [150], a battery SOH and SOC 

co-estimation algorithm is proposed based on the first-order ECM. First, the recursive least square 

method and AEKF are employed to jointly achieve online model parameters identification and 

SOC estimation. Partial voltage curves during the charging/discharging process are employed to 

estimate the battery age. The Elman neural network is then employed to estimate battery SOH in 

real-time, which provides the foundation for battery SOC estimation. Although these model-based 

methods achieve high accuracy for co-estimation of battery states, they rely on the complicated 

testing procedure, and constructing an accurate battery model is a daunting task requiring an 

enormous amount of knowledge about the battery physics and chemical reactions [151].  

Compared to the model-based methods, data-driven methods extract a relationship between the 

inputs and outputs from the dataset. In such a case, no information is required about the chemistry 

of the battery, its physical interoperation, and testing procedures. Because of the potential pros of 

data-driven modes, such as flexibility and nonlinear mapping, different ML models, e.g., ANN 

[152] and SVM [153]. In [151], the battery is degraded using a dynamic stress test, and SOH is 

estimated using measurable terminal voltage and current by LS-SVM. The current SOH along with 

the other two measurements, are then employed in unscented PF for SOC estimation. The direct 

mapping of input features and output eliminate parameter identification and updating, which are 
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highly time-consuming. In [154], a multilayer NN model is used to estimate the SOH. The 

estimated SOH at three conditions is then utilized to estimate the SOC of the battery. The voltage 

during the discharge process at each cycle is measured and utilized as input features for SOH 

estimation. The battery data were collected based on CC-CV charging/discharging process, which 

does not accurately mimic the behavior of the battery under real-world conditions. In [155], a 

dynamic RNN with the ability of dynamic updating is constituted on the basis of nonlinear 

autoregressive with exogenous input architecture. A self-adaptive weight PSO algorithm is then 

utilized for training the network. The SOC and SOH are then jointly estimated under various 

conditions, including temperature, current, and degree of aging, to evaluate the robustness and 

accuracy of the model. Although different operating conditions have been considered, the 

corresponding dataset is obtained in CC-CV charging/discharging procedures, which does not 

qualify the dataset for real-world driving cycles simulations. In [156], the charging time of segment 

voltage is introduced as an input feature. LS-SVM is then utilized to estimate the SOH of the 

battery. The estimated SOH along with other features such current and voltage are utilized in 

nonlinear autoregressive with exogenous algorithm to estimate the SOC of the battery. In [157], a 

unified data-driven method, namely, LSTM-RNN is utilized to co-estimate the SOH and SOC of 

the battery. The SOH dataset has been obtained from CC-CV charging/discharging process. 

Although the same charging process is conducted for SOC dataset, the discharge procedure only 

consists of different CC with periodic transformation until cutoff voltage is reached. 

To this end, the discussed literatures have employed various input features, among which some 

of them rely on the charging/discharging process, such as the charging time of segmented voltage. 

In contrast, insufficient attention has been dedicated to the EIS measurements as one of the most 

informative datasets for the same purpose. Although there are some studies employing EIM using 
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EIS for co-estimation of SOC and SOH [158], [146], there are very few works employing EIS 

measurements directly as input features for SOH estimation only [8], [159]. In this chapter, a novel 

method is proposed for the joint estimation of SOC and SOH. First, the EIS measurements are 

adopted directly as input features in two ML algorithms, i.e., GPR and DNN, to estimate the SOH 

of the battery (Two algorithms for the sake of comparison). The estimated SOH values in 

conjunction with the real-time measurable battery’s voltage and current are then fed to two other 

ML algorithms, i.e., LSTM and DNN, to estimate the SOC of the battery. In such a manner, the 

aging effect of the battery is considered for SOC estimation of the battery. The contributions of 

our research are multiple-fold: (1) In contrary to the reviewed studies that employ the datasets 

obtained from simple CC-CV or random walk charging/discharging processes, The SOH and SOC 

datasets of this study are provided from real-world driving cycles which results in more practical 

and realistic use of the proposed method for joint estimation of SOC and SOH. (2) Compared to 

the other studies that utilize EIS measurements at some specific frequencies, the EIS measurements 

are obtained for a wide range of frequencies, i.e., 1 mHz-10 kHz. (3) The SOH is estimated using 

EIS measurements obtained at three SOC levels, i.e., 20%, 50%, and 80%. The estimated values 

are then utilized with the voltage and current of the battery to estimate the SOC of the battery 

under operation. This implies the robustness of the model to joint estimate the SOH and SOC using 

EIS obtained at any given SOC. 

5.2 EIS Experimental Data 

The experimental datasets from [160] are utilized in our study. The dataset is composed of EV 

standard driving cycle profiles and diagnostic tests, i.e., capacity and EIS tests, for ten INR21700-

M50T NMC cells over a period of 23 months. It is worth mentioning that in our study, we use six 

out of the ten cells, namely, V4, V5, W5, W8, W9, and W10. The cell specifications have been 
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recorded in Table 5-1. To regenerate the degradation exposed to the lithium-ion cells during real-

world EV operation, the charging/discharging profiles shown in Figure 5-1 were used. This figure 

shows an entire cycle which will be explained thoroughly below. In this dataset, a cycle is 

composed by the sequence of 6 steps, summarized in Table 5-2. A cycle starts with a CC charge 

performed at a C-rate (1C-rate indicates that the 1A discharge current will discharge the entire 

battery in 1 hour) of C/4, C/2, 1C, or 3C, as specified in the second column of Table 5-3 (Step 1). 

Once the battery voltage reaches 4V, a CV phase starts (Step 2) until the current goes below 50mA. 

Next, Step 3 (CC at C/4) and Step 4 (CV) are designed to bring the battery to 4.2 V, corresponding 

to 100% SOC. Step 5 is used to discharge the battery from 100% to 80% SOC at C/4 constant 

current. In Step 6, a concatenation of Urbane Dynamometer Driving Schedule (UDDS) cycles is 

used to discharge the battery from 80% to 20% SOC. The diagnostic tests, i.e., capacity and EIS 

tests, are run after some number of cycles (for the majority of the cells, every 25 cycles, see Table 

5-3). Capacity test, performed at C/20 discharge from a fully charge cell, is used to evaluate the 

cell discharged capacity or its SOH. EIS is performed to assess the battery impedance between 

1mHz and 10kHz at 20%, 50%, and 80% SOC. 

Table 5-1. Technical specifications INR21700-M50T NMC cell 

Model INR21700-M50T 

Positive electrode LiNiMnCoO2 

Negative electrode graphite and silicon 

Nominal capacity 4.85Ah 

Nominal voltage 3.63V 

Charge cutoff voltage 4.2V 

Discharge cutoff voltage 2.5V 

Cutoff current 50mA 
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Figure 5-1. The charging/discharging cycle experienced by the cells 

Table 5-2. Description of the experimental Cycle  

Step Action Termination condition 

1 CC charge at C-rate specified in the second 

column of Table III 

4V is reached 

2 CV charge Current below 50mA 

3 CC charge at C/4 4.2V is reached 

4 CV charge followed by 30-minute rest Current below 50mA 

5 CC discharge at C/4 Reaching SOC 80% 

6 UDDS discharge Reaching SOC 20% 

 

Table 5-3. Cells label, test charging condition, and diagnostic test number, all cells are tested at 23 ◦C. 

  Diagnostic tests (capacity and EIS tests) [cycle] 

Cell Charge  #1 #2 #3 #4 #5 #6 #7 #8 #9 

W5 C/2 0 25 75 125 159 167 187 194 219 

W8 C/4 0 25 75 125 148 150 151 157 185 

W9 1C 0 25 75 122 144 145 146 150 179 

W10 3C 0 25 75 122 146 148 151 159 188 

V4 C/4 0 20 45 70 95 - - - - 

V5 1C 0 12 18 29 - - - - - 

 

Figure 5-2 shows the SOH of the cells versus their cycling number. It is evident from Figure 

5-3 3 that as the battery degrades, the EIS measurements increase; moreover, it can be observed 

that at any given cycle (at any SOH level), EIS measurements are different from each other at 

different SOC levels. This proves that EIS measurements at different SOC levels and lifetime 

levels provides informative data about the battery's status and can be considered a potential 

criterion for the SOH estimation of batteries during their longevity.  
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Figure 5-2. Aging of the cells 

 

Figure 5-3. EIS measurements for cell W10 at different SOC and SOH levels 

5.3 Methodology  

For the sake of comparison, two ML models, i.e., GPR and DNN are leveraged in our study to 

estimate the SOH of the battery using EIS measurements conducted at three SOC levels, directly 

as input features. The effectiveness EIS measurements and the performance the mentioned ML 

models for SOH estimation investigated. 

5.3.1 DNN and GPR structure for SOH estimation 

• DNN structure 

The DNN architecture has been discussed in section 4.3. However, in the current section, the 
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EIS measurements for the frequency range of 1 mHz to 10 kHz at different SOC and lifetime levels 

is the input layer, and the SOH is the output. Table 5-4 indicates the configuration of the layers 

and activation function utilized in this model.   

• GPR structure 

The GPR architecture has been discussed in section 3.3. However, in the current section, 𝑥𝑖 =

[𝐸𝐼𝑆 𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡𝑠] and 𝑦𝑖 is the SOH of the battery are the input and output, respectively.   

Table 5-4. The Configuration of the layers and Activation function of the DNN for SOH estimation  

Layers Neurons  Activation 

function 

Input layer 41  

First hidden layer 16 ReLU 

Second hidden layer 8 ReLU 

Third hidden layer  4 ReLU 

Fourth hidden layer 4 ReLU 

Output layer 1 ReLU 

 

5.3.2 DNN and LSTM for SOC estimation 

Similar to the SOH estimation methodology, two ML algorithms are adopted to perform the 

joint estimation of SOC. The performance of these models is compared when estimating the SOC 

through the cell’s lifetime as the cell is aging using standard driving cycles (to simulate the real-

world driving cycles).   

• DNN structure 

The structure of the DNN utilized for the SOC estimation is analogous to what was discussed 

in the previous part. However, in this model, the input features are the estimated SOH and the 

voltage and current from the UDDS driving cycle, and the output is the SOC of the battery. Table 

5-5 indicates the configuration of the layers and activation function utilized in this model. 
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Table 5-5. The Configuration of the layers and Activation function of the DNN and LSTM for SOC estimation  

LSTM 

Layer Neurons Activation function 

Input layer 3  

First hidden layer 32  

Output layer 1 ReLU 

DNN 

Layer Neurons Activation function 

Input layer 3  

First hidden layer 64 ReLU 

Second hidden layer 32 ReLU 

Third hidden layer 16 ReLU 

Output layer 1 ReLU 

 

• Multilayer LSTM structure 

In order to explain the LSTM structure, first, a brief introduction to RNN is required.  

There are some forms of ML problems in which the order of input features to the model is of 

importance for predicting the output [161]. Time series predictions are classified as one of 

sequential problems. 

According to Figure 5-4, the raw input data can be split into time step for a multilayer RNN, 

where 𝑥<𝑡> is the input, 𝑎<𝑡> is the hidden state passing through different cells at each time step, 

𝑦<𝑡> is the output for every 𝑡, and 𝑇𝑥 is the input and output length. RNN considers the data at 

every time step in the sequence that it appears. This corresponding output passes from layer to 

layer is called hidden state. Essentially, the hidden state allows the RNN model to keep a memory 

of the corresponding states from the sequential data [162].    
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Figure 5-4. General structure of RNN 

Figure 5-5 shows the structure of a single cell in the RNN model. RNN begins with the 

constitution of a single cell and then broadcasts to the number of time steps [163]. In this figure, 

�̃�<𝑡> is the predicted output, 𝑎<𝑡> is the hidden state, 𝑥<𝑡> is the input, and 𝑎<𝑡−1> is the hidden 

state from previous cell. The current hidden state can be determined through Eq. 5-1 using tanh 

activation function. 𝐶𝑎𝑎 and 𝐶𝑎𝑥 are the hidden state and input parameters with a random value, 

respectively. 𝑏𝑎 is the hidden state bias with the initial value of zero. Also 𝑎<0> can be set to zero. 

�̃�<𝑡> is calculated by Eq. 5-2, where 𝐶𝑎𝑦 and 𝑏𝑦 are output parameter and bias, respectively. The 

initial output bias can be set to zero.  

𝑎<𝑡> =  tanh (𝐶𝑎𝑎𝑎<𝑡−1> + 𝐶𝑎𝑥𝑥<𝑡> + 𝑏𝑎)                        5-1 

�̃�<𝑡>  =  ReLU (𝐶𝑎𝑦𝑎<𝑡> + 𝑏𝑦)                        5-2 

 

Figure 5-5. A single cell structure in RNN model 
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One of the deficiencies of the RNN models is that they do not work well with long-term 

dependencies because of the vanishing gradient problem during the training state. The problem 

stems from training the deep neural networks using gradient-based methods such as 

backpropagation [164]. The loss will decrease when it is propagated backward. Consequently, the 

loss decreases so much when it reaches the first few layers. Hence, it is almost impossible for the 

weights of the first few layers to be improved as a slight loss is propagated backward [164], [165]. 

The disappearing gradient problem means that RNNs will have poor performance in using long-

term memory. In other words, the RNN models tend to remember everything, which leads to the 

failure to learn from long sequences [166]. In order to tackle this problem LSTM network has been 

proposed.  

LSTM selectively forgets unnecessary inputs, and this allows it to deal with both short-term 

and long-term memories [167], [168]. A multilayer LSTM is leveraged in our study for SOC 

prediction. Figure 5-6 exhibits a general structure of a multilayer LSTM model.  

 

Figure 5-6. General structure of multilayer LSTM used in this study 
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Figure 5-7 indicates the structure of an LSTM cell containing four main gates, namely, Forget 

gate, Update gate, Input gate, and Output gate, to process the input data and estimate the desired 

output. According to this figure, the inputs of the LSTM-RNN model are fed to the model as a 

time series data: 

{(𝑎<𝑡−𝑣−1>, 𝑥<𝑡−𝑣>), … , (𝑎<𝑡−2>, 𝑥<𝑡−1>), (𝑎<𝑡−1>, 𝑥<𝑡>)}  

where 𝑣 is the length of a time series, 𝑎<𝑡−1> is the out state of hidden layer at step 𝑡 − 1, and 

𝑥<𝑡>is the input vector at time 𝑡. For SOC estimation, t and 𝑥<𝑡> represent second and the input 

vector at time 𝑡, i.e., 𝑥<𝑡> = [SOH, V, I].  Moreover, there is another variable, 𝐶<𝑡> which acts as 

the memory of the cell. It is responsible for passing the information, that must remain at the 

moment, from one structure to the next one. The function of each gate is explained below [169], 

[170]: 

Forget gate (𝛤𝑓
<𝑡>): the proportion of the information to be disregarded from the memory cell 

is determined by this gate. A sigmoid activation function is adopted in this gate. It receives the 

inputs of 𝑥<𝑡>and 𝑎<𝑡−1>and generates a number between 0 and 1, which will be multiplied by 

𝐶<𝑡−1>. If the value is close to zero, the gate prevents the information from passing to the next 

level. In other words, it forgets the information in the component of 𝐶<𝑡−1>. If the value is one, 

the information will pass. The output of forget gate is calculated as follows: 

𝛤𝑓
<𝑡> = 𝜎(𝑊𝑓𝑥<𝑡> + 𝑈𝑓𝑎<𝑡−1> + 𝑏𝑓)                                  5-3 

where 𝑊𝑓, 𝑈𝑓, and 𝑏𝑓 are the two weights matrices and bias vector to determine the output of 

forget gate.  
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Figure 5-7. Structure of an LSTM cell 

Update gate (𝛤𝑢
<𝑡>) and Input gate 𝛤𝑖

<𝑡>: in order to update the cell state 𝐶<𝑡>, update gate and 

input gate are utilized.  The input gate will decide how much information should pass to the current 

cell state, 𝐶<𝑡> . In such a case, first the update gate passes the 𝑥<𝑡>and 𝑎<𝑡−1> to a sigmoid 

function, and the corresponding result is then multiplied by the output of a tanh function, i.e., 

�̃�<𝑡>, which results in 𝛤𝑖
<𝑡>as follows: 

𝛤𝑢
<𝑡> = 𝜎(𝑊𝑢𝑥<𝑡> + 𝑈𝑢𝑎<𝑡−1> + 𝑏𝑢)                                          5-4 

�̃�<𝑡> = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑥<𝑡> + 𝑈𝐶𝑎<𝑡−1> + 𝑏𝐶)                                 5-5 

𝛤𝑖
<𝑡> = 𝛤𝑢

<𝑡>. �̃�<𝑡>                                  5-6 

where 𝑊𝑢 , 𝑈𝑢 , 𝑊𝐶 , and 𝑈𝐶  are the two weight matrices for the update gate and �̃�<𝑡>  gate, 

respectively. 𝑏𝑢  and 𝑏𝐶  are the bias vector for the Update gate and �̃�<𝑡>  gate, respectively.    

Ultimately, the current cell state is provided by the following formula: 

𝐶<𝑡> = 𝛤𝑓
<𝑡>. 𝐶<𝑡−1> +  𝛤𝑖

<𝑡>                                  5-7 

Output gate: the amount of information to be retrained in the hidden state is determined by this 

gate. The output result of the gate is calculated below: 
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𝛤𝑜
<𝑡> = 𝜎(𝑊𝑜𝑥<𝑡> + 𝑈𝑜𝑎<𝑡−1> + 𝑏𝑜)           5-8 

where 𝑊𝑜, 𝑈𝑜, and 𝑏𝑜 are the two weights matrices and bias vector to determine the output of 

output gate. The current hidden state 𝑎<𝑡> is formulated as below: 

𝑎<𝑡> =  𝛤𝑜
<𝑡>. tanh (𝐶<𝑡>)                    5-9 

The predicted output is calculated as follows: 

�̃�<𝑡> = 𝑅𝑒𝐿𝑈(𝑊𝑦𝑎<𝑡> + 𝑏𝑦)                                   5-10 

Table 5-5 indicates the configuration of the layers and activation function utilized in this model. 

5.3.3 Implementation details  

Figure 5-8 represents the general algorithm for joint estimation of SOC and SOH of the battery. 

In this study, the SOH and SOC datasets of the cells V4, V5, W5, W9, and W10 are utilized for 

training and validating the models, and the datasets of the cell W8 are utilized for testing the 

models. The prediction models are built by Keras upon Tensorflow in Python. 

For the datasets for SOH estimation, the EIS tests are run for the cells in 9 diagnostic tests, 

indicating the SOH level of the batteries. Each diagnostic test is run after some number of cycles 

which have been presented in Table 5-3. At each session, the EIS measurements are collected at 

three different SOC levels, i.e., 20%, 50%, and 80%. The ratio of the training dataset to the 

validation dataset is set to be 8:2. For the sake of comparison, two ML models, namely, DNN and 

GPR, are utilized to estimate the SOH. For each ML model, the training and validation datasets 

containing EIS measurements obtained at three SOC levels, are utilized. Both models are then 

tested by totally unseen datasets of the cell W8 at each SOC level separately. For example, the 

GPR model will be tested three times, first with EIS measurements at SOC 20%, second with EIS 

measurements at SOC 50%, and third with EIS measurements at SOC 80%. Therefore, for each 
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actual measured SOH in the diagnostic test, there are three estimated SOH values by each of the 

models. This is done to evaluate the performance of each model when they are confronting a new 

set of unobserved EIS measurements at different SOC levels.      

For the dataset for SOC estimation, the real-time measurable variables of the battery, i.e., 

voltage and current, are collected from the last UDDS driving profile at each session of the 

diagnostic test for all the cells. Additionally, the actual measured SOH at each diagnostic test is 

included as another feature of this dataset. The ratio of the training dataset to the validation dataset 

is set to be 8:2. For the sake of comparison, two ML models, namely, DNN and LSTM, are utilized 

to estimate the SOC. Both models are then tested by totally unobserved datasets of the cell W8. It 

is worth mentioning that for the test datasets, instead of using the actual measured SOH at the 

diagnostic tests, the SOH estimated from the previous models is utilized as an input feature of the 

test dataset, see Figure 5-8. To assess the universality and versatility of the proposed method, there 

are nine different test datasets to be performed on the selected ML models. To do this, three 

diagnostic tests are selected for test datasets. In the first, second, and third selected diagnostic tests, 

the actual measured SOH levels of the battery are 100%, 96%, and 93%, respectively. Therefore, 

for each of the actual measured SOH, there are three estimated SOH values from the previous 

models. Each of these estimated SOH values and their corresponding voltage and current of the 

last UDDS driving profile in each diagnostic test build one test dataset. In such a case, the effect 

of battery aging and degradation during its lifetime in an EV application is characterized for joint 

SOC and SOH estimation.  



96 

 

 

Figure 5-8. The proposed method algorithm for joint estimation of SOC and SOH 

In this study, The DNN model for SOH estimation, the LSTM and other DNN model for SOC 

estimation are trained for 10000, 1000, and 1000 epochs, respectively; an epoch is defined as one 

cycle through the entire training dataset. Typically, training a DNN and an LSTM takes more than 
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a few epochs. In other words, the models are trained for more than one epoch in various patterns 

of training dataset for a better comprehension when given a new unobserved input (test data). 

However, the training of the model may not be effective if the number of epochs is too large or 

too small. In the former case, overfitting may occur, and in the latter case, it will result in an 

underfit model. An early stopping technique is utilized to solve this issue. This technique provides 

the opportunity to select a randomly large number of training epochs and terminate the training of 

the model once the model performance halts to be improved on a holdout validation dataset. 

Therefore, a validation dataset is necessary during training the DNN and LSTM models for using 

early stopping technique. At the end of each epoch, the loss function, which is validation loss 

(MSE) to be optimized for the models, is calculated. The model training will be stopped early 

through a callback in EarlyStopping technique. This callback will monitor the MSE improvement 

and terminates the training process once the improvement is stopped. However, during the training, 

the model may fall into a plateau of no improvement or even get slightly worse before getting 

much better. To prevent this problem, the “patience" argument which is a delay, is added to the 

trigger in terms of the number of epochs on which there is no improvement in MSE. Although the 

EarlyStopping callback will stop training once called, the model at the end of training may not be 

the model with the minimum MSE. In such case, the ModelCheckpoint, which is another callback 

function, is utilized for the purpose of storing the best model, i.e., the model with the minimum 

MSE, and restoring it for later use. 

5.3.4 Accuracy evaluation 

The indices used for the evaluation of the performance of the proposed model are: MAPE and 

the R-squared. The lower MAPE, the better the estimation. R-squared represents the goodness of 

the fit. The best possible value is 1, and the value can be negative too, which indicates that the 
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model cannot follow the actual datasets. 

5.4 Results and Discussions 

To verify the state of the art of the proposed joint SOC and SOH estimation method, first, we 

compare the performance of the GPR and DNN model on SOH estimation. The estimated SOH 

values are then utilized to be leveraged as a feature input along with the voltage and current of the 

battery measured from a standard driving cycle. 

5.4.1 SOH estimation results 

To verify the state of the art of the proposed joint SOC and SOH estimation method, first, we 

compare the performance of the GPR and DNN model on SOH estimation. The estimated SOH 

values are then utilized to be leveraged as a feature input along with the voltage and current of the 

battery measured from a standard driving cycle. Figure 5-9 (a) and Figure 5-9 (b) indicate the 

performance of the DNN and GPR models for SOC levels of 20%, 50%, and 80%, respectively. 

This figure demonstrates that the models can follow the actual unseen data and estimate the SOH 

precisely. Table 5-6 indicates the MAPE and R-squared values for the models. The MAPE of the 

DNN model for the three SOC levels are 0.769%, 1.069%, and 0.557%, respectively. The MAPE 

of the GPR model for the three SOC are 0.803%, 0.816%, and 0.604%. The low MAPE values for 

both models prove the above-mention claim for the accuracy of the models. The average value of 

MAPE for the two models slightly differs from each other, which indicates that both models can 

precisely estimate the SOH of the battery. Moreover, the R-squared values indicate that the models 

can follow the actual data. In summary, if new unseen EIS measurements at any SOC level are 

input to the models, they can precisely estimate the SOH of the battery. This case study proved 

that since the evaluation criteria differ from each other at different SOC levels, it is necessary to 
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consider the effect of SOC on EIS measurements for the purpose of SOH estimation. The results 

indicated the universality and robustness of the models confronting the EIS dataset measured at 

different SOC levels. 

Table 5-6. MAPE (%) and R-squared values for DNN and GPR for SOH estimation using EIS measurements 

obtained at three SOC levels  

MAPE (%) DNN GPR 

EIS at SOC 20% 0.769 0.803 

EIS at SOC 50% 1.069 0.816 

EIS at SOC 80% 0.557 0.604 

R-squared   

EIS at SOC 20% 0.741 0.866 

EIS at SOC 50% 0.787 0.871 

EIS at SOC 80% 0.933 0.919 

 

 

(a) 
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(b) 

Figure 5-9. Estimated SOH at three different SOC levels, i.e., 20%, 50%, and 80% from top to bottom for cell 

W8, (a) using DNN model (b) using GPR model 

5.4.2 SOC estimation  

In this scenario, nine test datasets of cell W8 are utilized to assess the performance of the DNN 

and LSTM models on SOC prediction. It is worth mentioning that the estimated SOH values from 

the GPR model in the previous part, have been utilized in as an input feature, as the accuracy of 

this model was slightly better than the DNN model. Figure 5-10 (a) indicates the estimated SOC 

for the first selected diagnostic test (which corresponds to the actual measured SOH of 100%). 

Figure 5-10 (a) contains three plots which indicates the performance of the model for adopting the 

three different estimated SOH values. 
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      (a) 

 

(b) 
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(c) 

Figure 5-10. Estimated SOC at (a). SOH level of 100%, (b). SOH level of 96%, and (c). SOH level of 93% using 

DNN model adopting the estimated SOH at three SOC levels 

Figure 5-10 (b) and Figure 5-10 (c) demonstrate the estimated SOC for the second and third 

selected diagnostic tests corresponding to SOH levels of 96% and 93%, respectively. 

Figure 5-11 (a)-(c) demonstrate the ability of the LSTM model in accurate estimation of the 

SOC at the same diagnostic tests. 
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(a) 
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(b) 

 

(c) 

Figure 5-11. Estimated SOC at (a). SOH level of 100%, (b). SOH level of 96%, and (c). SOH level of 93% using 

DNN model adopting the estimated SOH at three SOC levels 

According to Figure 5-10 and Figure 5-11, one may conclude that the DNN and LSTM models 

possess the ability to estimate the SOC precisely at different levels of battery health. Similarly, 

both models are able to effectively consider the effect of battery degradation on SOC estimation. 

Moreover, Figure 5-10 and Figure 5-11 imply that the effect of EIS measurements at different SOC 

levels have been passed through the model, which results in more accurate estimation and 

universality of the proposed method. The MAPE and R-squared of the DNN and LSTM models 

have been recorded in Table 5-7. The maximum MAPE value is found to be less than 3% for the 

models. The average MAPE value of the SLTM model is slightly less than the DNN model. It can 
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be concluded from the high R-squared values for the models, that models are able to follow the 

actual missing data. Regarding the low MAPE values and high R-squared values achieved by the 

models, one may conclude that the proposed method has constituted a precise algorithm for 

estimating the SOC obtained from the standard driving cycles while the effect of the battery’s 

capacity fade has been considered. 

Table 5-7. MAPE (%) and R-squared values for DNN and LSTM for SOC estimation for UDDS driving cycle at 

three SOH levels  

MAPE (%) DNN LSTM 

1st selected diagnostic test 

(Corresponding to SOH 100%) 

(1) 2.035 1.759 

(2) 1.637 1.778 

(3) 1.773 1.768 

2nd selected diagnostic test 

(Corresponding to SOH 96%) 

(1) 1.508 1.652 

(2) 1.667 1.738 

(3) 1.497 1.701 

3rd selected diagnostic test 

(Corresponding to SOH 93%) 

(1) 2.364 2.375 

(2) 2.846 2.479 

(3) 2.481 2.398 

R-squared   

1st selected diagnostic test 

(Corresponding to SOH 100%) 

(1) 0.9956 0.9939 

(2) 0.9968 0.9938 

(3) 0.9963 0.9938 

2nd selected diagnostic test 

(Corresponding to SOH 96%) 

(1) 0.9972 0.9946 

(2) 0.9968 0.9941 

(3) 0.9973 0.9943 

3rd selected diagnostic test 

(Corresponding to SOH 96%) 

(1) 0.990 0.988 

(2) 0.985 0.987 

(3) 0.9895 0.987 

 

According to the above discussion, the effectiveness of direct usage of EIS measurements 

instead of using it as EIM and how informative they are in conveying the health status of batteries 

at different SOCs, was indicated. Additionally, its effectiveness in SOC estimation was obliquely 

demonstrated by adopting the estimated SOH as an input feature. The SOC was estimated at three 

different levels of SOH, and high estimation accuracy was achieved by the models, which implies 

that models account for the capacity fade of the battery and are able to predict the SOC of the 

battery during its longevity. Moreover, the models for SOC estimation were trained by the standard 
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driving cycles, which mimics more practical use of the proposed method in an EV application. It 

can be deduced that any combination of the ML models for SOH estimation, i.e., DNN and GPR, 

with ML models for SOC estimation, i.e., DNN and LSTM, will constitute a comprehensive 

algorithm to jointly and precisely estimate the SOC and SOH of the battery. One may question the 

comprehensiveness of the proposed model as the other temperature values have not been tested. 

The data for other temperature values were not available to be included in our datasets; however, 

interpolation cannot be denied in ML models. It is well-known that EIS measurements follow a 

predictable pattern in accordance with temperature. A predictable pattern of EIS measurement 

based on the mentioned parameter further enhances the ability of the model to interpolate or 

extrapolate between other values of temperature.  

5.5 Conclusions  

This study employed EIS measurements directly, which are not dependent on the 

charging/discharging process and IC curves, at three SOC levels of 20%, 50%, and 80%, to 

estimate the SOH of the battery. To do this, two ML models, namely, GPR and DNN, were adopted 

for the sake of comparison. The SOH was estimated separately at the mentioned SOC levels. The 

MAPE achieved by both of the models is less than 1% for the three SOC levels. The average R-

squared of 0.885 is also achieved by the models, which indicates the goodness of fit. The real-time 

measurable variables such as voltage and current of the battery obtained from standard driving 

cycles, were collected from three diagnostic tests corresponding to three SOH levels of 100%, 

96%, and 93%. The estimated SOH and the voltage and current were then employed as input 

features for joint estimation of SOC. Two other ML models, i.e., DNN and LSTM, were exploited 

for the mentioned purpose. The maximum MAPEs for the SOC estimation for the three estimated 

SOH values is found to be less than 3%. The average R-squared for SOC estimation is 0.992, 
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which indicates the model can follow the unseen actual data. The results indicated that the 

proposed method effectively takes advantage of EIS measurements for SOH estimation and then 

utilizes the estimated SOH as an input feature to account for the capacity fade in joint estimate of 

SOC. 
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Chapter 6 

6. Conclusions and Future Works 

6.1 Conclusions 

Chapter 1 presented the motivations for the proposed dissertation, and it concluded the need for 

transferring to an electrified transportation. It highlighted the significant factors to the global 

warming. This chapter provided incentives for developing advanced BMSs for better and more 

efficient management of battery storage systems, specially the lithium ones in battery-powered 

vehicles. To serve this purpose, accurate SOC and SOH estimation using advanced data-driven 

models implemented on BMS is of great substance. This not only prevents the malfunction of the 

battery energy storage in battery-powered vehicles but also ease the transfer to electrified 

transportation. 

Chapter 2 presented fundamental information regarding the lithium-ion cell operation in an 

electrical circuit. Moreover, different components of the lithium-ion cell and their functionalities 

were discussed. Basics of EIS were outlined in this chapter, and how EIS measurements are 

obtained has been briefly presented. Additionally, the key roles and functionalities of BMS, such 

as monitoring and aggregating battery data, controlling charging/discharging procedures, and cell 

balancing in battery packs, were briefly presented in this chapter.    

In Chapter 3, the prediction of li-ion battery SOC using EIS measurements was performed based 

on an ML approach. This study was conducted based on extracting reliable features according to 
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their correlation value with the SOC of the battery. After selecting the reliable features of different 

datasets at various temperatures and different SOCs, the linear regression model and GPR were 

trained, and the prediction was performed by the trained models over the test set. The results 

indicated that the proposed models are able to precisely predict the SOC of the battery using the 

reliable features. The models trained by the features with a corr_value of above 0.9 indicated the 

best performance among the others, such that the error of the GPR model was found to be less than 

3.8 %. Furthermore, the impact of test-size on the model precision was evaluated. It was observed 

that for some cases, the larger test-size results in higher accuracy. 

A novel battery capacity prediction method using TL with DNN was proposed in Chapter 4. 

This study employed EIS measurements directly, which is not dependent on the 

charging/discharging process and IC curves, for three ambient temperatures of 25 °C, 35 °C, and 

45 °C. The maximum MAPE, when the first 50% and 20% of the target dataset were used for 

retraining the DNN-TL with no fixed-layer, were found to be 0.605% and 0.999%, respectively. 

As the results of the chapter indicate, an average MAPE of 0.616% was achieved for the DNN-TL 

with no fixed-layer in four different scenarios with different sizes of the target dataset, while the 

stand-alone DNN model achieved an average MAPE of 2.575%. The average R-squared of 0.9683 

was achieved by the DNN-TL with no fixed-layer, which indicates the goodness of its fit and its 

capability to follow the actual missing datasets.  

Chapter 5 employed EIS measurements directly, which are not dependent on the 

charging/discharging process and IC curves, at three SOC levels of 20%, 50%, and 80%, to 

estimate the SOH of the battery. To do this, two ML models, namely, GPR and DNN were adopted 

for the sake of comparison. The SOH was estimated separately at the mentioned SOC levels. The 

MAPE achieved by both of the models is less than 1% for the three SOC levels. The average R-
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squared of 0.885 is also achieved by the models, which indicates the goodness of fit. The real-time 

measurable variables, such as voltage and current of the battery obtained from standard driving 

cycles, were collected from three diagnostic tests corresponding to three SOH levels of 100%, 

96%, and 93%. The estimated SOH and the voltage and current were then employed as input 

features for joint estimation of SOC. Two other ML models, i.e., DNN and LSTM, were exploited 

for the mentioned purpose. The maximum MAPEs for the SOC estimation for the three estimated 

SOH values is found to be less than 3%. The average R-squared for SOC estimation is 0.992 which 

indicates the model can follow the unseen actual data.  

6.2 Future works  

This dissertation demonstrates state estimation algorithms using EIS and machine learning 

techniques. However, further research is required to expand this study. This section provides some 

recommended future works: 

• Cloud-based computations 

The developed algorithm can be implemented in a cloud-based platform and the 

corresponding calculation, information, and results can be transferred through the 

internet of things (IoT). It is well-known that wireless BMSs are developing, and once 

this technology is commercialized, it should be compatible with cloud-based platform 

and features. Hence, advanced machine learning algorithms that conventional BMS 

cannot burden their computational cost, can be utilized in cloud-based computation 

systems. In such a case, the data from wireless BMS can be sent and stored in the clouds 

via IoT and processed according to the desired needs. 

The proposed method can benefit from acquirement of more comprehensive datasets. 
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The datasets can be obtained in more ambient temperature especially at extreme hot and 

cold conditions. Moreover, the EIS datasets can be obtained for SOC levels with less 

increments, e.g., 5 % for better interpolation and extrapolation of the proposed model.  

In addition to the ambient temperature and SOC level, obtaining dataset for different 

cell chemistry will benefit our models. In the case of cloud-based platform, these 

datasets can be stored in the cloud and be employed when an update of the model is of 

mandate. 

Stochastic methods such as Markov-chain and Monte Carlo can be implemented in 

cloud-based platform as well, to compare their performance with the ML models for co-

estimating the SOC and SOH of the battery cells. The stochastic models can be 

considered as potent models as they use time-dependent variables, such as, voltage, 

impedance, and current of the battery to estimate the desired output, i.e., SOC and SOH.  

• Energy management system for hybrid energy storage vehicles 

In addition to developing sophisticated SOC and SOH estimation methods that can 

decrease the capacity fade of battery packs in EVs, utilizing another energy storage 

system, such as ultracapacitors, along with the battery pack, can reduce the degradation 

of battery pack. In such a case, a meticulous energy management system is required to 

optimize the power allocation between the two energy sources in the EV to minimize 

the capacity fade for both sources.  

• Experimental implementation 

 To investigate the real-world performance of the proposed method in this study, an 

experimental evaluation through hardware in the loop (HIL) test needs to be conducted. 

In this way, feasibility challenges can be effectively assessed and addressed. 
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