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Abstract

The ground-breaking results achieved by Deep Generative Models, when given merely a

dataset representing the desired distribution of generated images have caught the interest of

scholars. In this work, we introduce a novel structure designed for image generation utilizing

the idea behind Fourier Series and Deep Learning function composition. By composing

low-dimensional structures, we will first compress a high-dimensional image, and then we will

use this latent space to generate fake images. Our compression algorithm gives comparable

results to the JPEG algorithm and even, in some cases, outperforms it. Also, our image

generation model can generate decent fake images on MNIST and CIFAR-10 datasets and

can surpass the first generation of Variational Autoencoders.
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Chapter 1

Introduction

A generative model models the generation of data in the real world. It explains how data

is created in terms of a probabilistic model. Image editing, visual domain adaptation, data

augmentation for discriminative models, and assisted creative production are all examples of

generative models. To be specific, datasets often have fewer data points in some sections of

their domain, which might reduce model performance if not handled appropriately. Generative

models may be used to modify datasets and upsample low-density areas. This is particularly

beneficial for skewed datasets and simulated data settings. In addition to that, in a wide range

of mathematics and engineering areas, high-dimensional probability distributions are crucial

elements. As in many domains, such as visual data, most distribution content is constrained

to a small region of space, we can safely compress it to a space with a lower dimension. A great

test of our capacity to represent and work with high-dimensional probability distributions is

the training and sampling of generative models that use the same approach. While significant
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1. Introduction

progress has been achieved, there are still issues that must be addressed. For example,

high-quality synthesis for complicated scenes or multi-class datasets is still a long way off.

There is a lack of universal objective criteria for assessing the quality of produced samples.

While image production has delivered remarkable results, there is still a significant possibility

for advancement in new areas such as cross-modal generation and video generation. In

this work, we are trying to propose a new network in order to explicitly incorporate the

frequency representation in the process of image generation in order to create a stable novel

image generative model. The backbone of our model is a composition of low-frequency

low-dimensional structures, which is designed to store high-dimensional images in a low-

dimensional space in the frequency domain. If all images in a dataset could be assigned to

separate points in our proposed latent space, we could get new samples from this space to

generate fake images. We have two main contributions in this thesis:

• Introducing a unique Fourier-based algorithm for the lossy image compression task with

an adjustable compression rate.

• Proposing a novel image generative model which relies on the same idea behind the

compression task.

2



Chapter 2

Backgrounds

In this section, we first start with deep learning models, the reason behind their success, and

their main building blocks. Then we introduce some deep generative model structures. We

describe their structure, the core mathematical notion behind them, how they are designed

to operate intuitively and mention their pros and cons. In the end, we give a brief review of

methods to evaluate the quality of image generative models.

2.1 Deep Learning

In recent years, Deep Learning has revolutionized Artificial Intelligence (AI) techniques.

From self-driving cars to language understanding services, almost all recent advances in AL

are indebted to deep learning methods. As it appears from its application, the term “Deep

Leaning" is used to name a broad set of algorithms which have totally different structures,

but all these structures, which are usually called networks, work on the same principles. They

3



2.1 DEEP LEARNING

all consist of a composition of multiple functions, known as layers, each of which has an

input-output relationship based on their learnable parameters, known as weights. The aim

of the learning process is to find a set of weights for these layers so that the input-output

relationship of the whole network estimates a target function. In practice, instead of a target

function, we have a set of input-output pairs and we want to estimate the output of the

target function for new inputs. It turned out that if we use a specific learning algorithm,

known as Stochastic Gradient Descent (SGD), to minimize the error of these networks on a

subset of large enough data, the predicted outputs for unseen data will be close enough to the

real outputs for many different networks in different applications, although the minimization

problem is not convex, which SGD is initially designed to work on. In the following paragraphs,

we introduce some of the most common layers in Deep Learning in order to make it easier to

understand the structure of our network.

Multilayer Perceptron MLP or fully connected network is the most simple Neural

Network and a building block for many Deep Learning models. It consists of multiple layers,

each of which consists of a linear function and a pointwise nonlinear function, known as the

activation function. The two most famous activation functions are ReLU [1] and Sigmoid

functions. We can show this network as MLPw(x) = fd ◦ fd−1 ◦ · · · ◦ f1(x) where x ∈ Rn is

the input of the network and fi is the i-th layer:

fi(z) = ϕ(Wiz+wi) (2.1)

where fi : Rni−1 7→ Rni is a real function, z ∈ Rni−1 is the input of the layer, Wi ∈ Rni×ni−1
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2.1 DEEP LEARNING

is a ni × ni−1 real matrix, wi ∈ Rni is a ni-dimensional real vector and ϕ : Rni 7→ Rni is a

pointwise real nonlinear function, e.g. ReLU or Sigmoid functions. We can also consider each

layer of MLP as a set of nodes connected to nodes of the previous and next layer shown in

figure 2.1. Here the value of each node represents each element of a vector in a layer. As you

will see in the next chapters we are more interested in the first interpretation of an MLP.

Figure 2.1: A fully connected neural network with two hidden layers.

The training process of MLP - similar to other Neural Network models is based on

Gradient Descent and Backpropagation algorithm. Considering the error function and its

5



2.1 DEEP LEARNING

divergence, these algorithms change the weights of the network so that the error of the output

of the network decrease. This process continues until the error of the network becomes small

enough. In practice, instead of Gradient Descent, Deep Learning models use SGD where

the algorithm works on a small subset of the dataset, known as the batch in each iteration,

rather than the whole dataset.

Convolutional Neural Networks A convolutional neural network (CNN) is another form

of artificial neural network widely used in image recognition and processing that is specifically

designed to process pixel data. The backbone of CNN is the convolutional layer which is a

special kind of fully connected layer where most connections have been removed and many of

the remaining connections share the same weight. This layer is designed in a way to satisfy

two important properties. Locality modelling and shift-invariance. The reason behind the

first property is that only a few close nodes (pixels) determine the value of a specific output

node. The main idea is that close pixels usually represent the same object and share the

same features, so each convolutional layer tries to extract these features into the next layer.

The second property means when the input of the convolutional layer shifts by a vector, the

output of the layer remains the same except for a shift by the same vector. This property

ensures that changing the location of objects in the input image would result in a small

change in the location of the output feature map, not more.

Although convolutional layers play a critical role in CNNs, many other layers are essential

to get the best possible results from these models. Pooling layers and normalization layers are

one of the most common layers in CNNs. Pooling layers are applied to compres the output of

6



2.2 GENERATIVE MODELS

convolutional layers and normalization layers try to smooth the loss function which is the

input for the SGD algorithm.

2.2 Generative Models

Generally, there are two main machine learning models. Generative models vs discriminative

models. In discriminative models, the objective is to train a model to figure out the relationship

between features and labels so that in presence of features of new data (test set) model can

predict the labels. On the other hand, in a generative task, models are usually trained to

mimic the features (or even labels) and learn the distribution of the dataset in the space

of all possible features. Image generative models are a subset of these models that try to

generate images that are drawn from the same distribution as the images of the dataset. For

example, if the dataset consists of images of human faces, the goal of a generative model is

to generate new human faces that are not in the dataset.

The core idea behind image generative models is that we often have or observe really high

dimensional data, in this case, images where there might be millions of dimensions in the

data space, but images are actually not that high dimensional at the core. In other words,

there is a smaller number of causal factors that explain the images that we observe which are

much more compact than the actual signal itself and all image generative models use this

idea and try to find this lower dimension space and sample new images from it.

There are many different types of probabilistic generative models starting from classical

approaches like (Gaussian) Mixture Models and Energy-Based Models to the state-of-the-art

7



2.2 GENERATIVE MODELS

Generative Adversarial Networks, but most deep image generative models can be categorized

into four different groups. Variational Autoencoder (VAEs), Generative Adversarial Networks

(GANs), Normalizing Flows and Diffusion Models. In the next few paragraphs, we will discuss

each of these models and their pros and cons.

Figure 2.2: An overview of different deep generative model [2].

Generative Adversarial Networks GAN [3] is a brilliant way of training a generative

model by framing the unsupervised learning problem as a supervised problem with two

sub-modules: a generator G, and a discriminator D. Training these two networks together

leads to a model which can generate images that are drawn from the same distribution as

8



2.2 GENERATIVE MODELS

the training set images. The generator is trained to produce realistic fake images from any

random input. The fake examples produced by the generator are used as negative examples

for training the discriminator. The discriminator is trained to distinguish fake data from

realistic data. If the generator produces implausible results the discriminator penalizes the

generator. If the result of the generator is good enough to deceive the discriminator, the

discriminator gets penalized. This process continues until these two agents get experts in

generating and discriminating fake images respectively.

Training a GAN requires finding a Nash equilibrium which is a saddle point and there is

no guarantee that SGD-based algorithms can do it. In practice, finding a saddle point is way

harder than a near-global optimum in a non-convex problem - at least in deep leaning models.

This leads to an unstable training process in GANs compared to other deep generative models.

Also sampling from GANs is easy and straightforward however evaluating the density is not

possible.

Variational Autoencoder Autoencoders are a class of networks, that consist of a bot-

tleneck which keeps a compressed version of input data. Half of the network, starting from

input to bottleneck is called encoder and it attempts to encode the input and the other

half, starting from the bottleneck to output is called decoder which tries to reconstruct the

original data from the encoding, stored in the bottleneck. As a result, the model throws

out some information, but because it still wants to reconstruct the signal, it has to preserve

what’s the important information for reconstructing the signal, as opposed to just preserving

everything right. Autoencoders can be used as a compressing tool to decrease the dimension
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2.2 GENERATIVE MODELS

of an input image but since they do not define a distribution of encoded data to be sampled

from, they cannot operate as generative models. The issue of non-regularized latent space

in autoencoders can be solved using Variational Autoencoders [4] so they could be used as

generative models. In VAEs encoder outputs means and variances of a joint independent

normal distribution in the latent space for every input instead of outputting a vector in the

latent space. This constraint makes the latent space regularized.

An advantage of VAEs is that there is a straightforward way to evaluate the quality of the

model (log-likelihood, either estimated by importance sampling or lower-bounded) compare

to GANs which is not obvious how to compare them except by some other metrics like FID

and Inception Score, to name a few, which they all have their own problems. Here in VAEs

sampling from the distribution is simple and only approximate evaluation of density function

is possible. Also, the outputs of VAE models are usually not as sharp as GANs.

Normalizing Flows Basically, Normalizing Flows [5] are image generative models built on

invertible transformations. Based on change of variable rule in probability, given px(x) and a

fixed normal distribution pz(z), Normalizing Flows aim to find an invertible and differentiable

function f(x) such that:

px(x) = pz(f(x))| detDf(x)|. (2.2)

where pz(z) is typically selected as N (z|0, I). Now if we somehow find function f(x), as it

is invertible, we would have x = f−1(z) and as pz(z) is a normal distribution, we have an

exact estimation of px(x).

10



2.2 GENERATIVE MODELS

Using Normalizing Flows it is possible to get an exact estimate of the likelihood of the

samples, as well as in the reverse direction but NFs are harder to train and are usually larger

for the same quality.

Diffusion Models Diffusion probabilistic models (DPMs) [6], or diffusion models for short,

can be viewed as a form of VAE, whose structure and loss function enable effective training of

arbitrarily large models [7]. Non-equilibrium thermodynamics serves as the basis for diffusion

models. They learn to reverse the diffusion process to create desired data samples from the

noise after constructing a Markov chain of diffusion steps to gradually introduce random noise

to data. Diffusion models, in contrast to VAE models, are trained using a fixed process, and

the latent variable has a high degree of dimension, same as the original data. These models

are consist of two process. A forward process (also known as a diffusion process), in which a

picture is gradually noised, and a reverse process (also known as a reverse diffusion process),

in which the noisy images is changed back into a sample from the target distribution.

Figure 2.3: The Gaussian conditional chain transitions are the product of the joint distribution

of the latent variables under the Markov assumption [8].

Same as Normalizing Flows, Diffusion models are both analytically tractable and it is

possible to get an exact estimate of the likelihood of the samples but the training process
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2.3 EVALUATING QUALITY OF IMAGE GENERATIVE MODELS

may be extremely time and compute intensive since they depend on a long Markov chain of

diffusion processes. Despite the fact that new techniques have been offered to speed up the

process significantly, sampling still takes more time than GANs.

2.3 Evaluating Quality of Image Generative Models

There are several metrics to measure the performance of machine learning methods on

supervised tasks, either classification or regression, but proposing a measure in unsupervised

tasks, especially image generation is not as easy as it seems as there is no label on the data.

It even gets worse in the case of GANs where the loss of the model tells us nothing not only

about the quality of models but the quality of the generated images of one model over the

training time. This leads to a lack of consensus on the way of evaluating a given image

generative model. While many measures have been introduced, there is no general agreement

as to which measure best captures the strengths and limitations of models and should be

used for fair model comparison.

Manual Evaluation Many generative model practitioners fall back on the evaluation of

them via the manual assessment of generated images. This involves using the generator

model to create a batch of synthetic images, then evaluating the quality and diversity of the

images in relation to the target domain. The model is trained iteratively over many training

epochs. For GANs it is not even straightforward when the training process should stop and

when a final model should be saved for later use, as there is no objective measure of model

12



2.3 EVALUATING QUALITY OF IMAGE GENERATIVE MODELS

performance. Therefore, it is common to use the current state of the model during training

to generate a large number of synthetic images and to save the current state of the generator

used to generate the images. This allows for the evaluation of each saved generator model

using its generated images.

Inception Score Inception Score considers two main concepts. First, each image should

belong to a class. It means that the image of a dog belongs to the dog class, and there is no

doubt about putting it in another class. In other words, it is the confidence of the conditional

class predictions for each synthetic image p(y|x), where x is the generated image and y is its

class. Second, the generated images should be diverse and include all classes which are the

integral of the marginal probability of the predicted classes p(y). It means that p(y|x) should

have low entropy and p(y) should have high entropy, so if we put them in a KL divergence

formula a higher number shows two highly different distributions which will satisfy both

metrics.

IS(G) = exp(Ex∼PGDKL(p(y|x)||p(y)) (2.3)

In practice, researchers use Inception v3 network [9], pre-trained on the Imagenet dataset,

as a classifier to calculate this KL-divergence.

Fréchet Inception Distance Fréchet Distance can be used to calculate the distance

between two multivariate normal distributions. In the context of computer vision, FID [10]

is a measure of similarity between two image datasets. Similar to Inception Score, it uses

13



2.3 EVALUATING QUALITY OF IMAGE GENERATIVE MODELS

Inception v3 network [9], pre-trained on the Imagenet dataset, but this time not the output

but the feature map after the third pooling layer of the model. If we assume this feature map

for each dataset has a multivariate Gaussian distribution, we can compare these datasets

via their distributions. To be precise, we can estimate the mean vector and the covariance

matrix for both real and synthetic data distributions, µr, µg, Σr and Σg respectively. Then

FID score can be computed using the Fréchet Distance formula:

FID(r, g) = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg)
1
2 ) (2.4)

where Tr(Σ) is trace - sum of the diagonal elements - of the matrix Σ. Note that unlike

the Inception Score where we wanted to have two different distributions in a KL-divergence

formula therefore a higher score was a sign of a better model, here a more realistic generated

dataset should have the same mean and covariance as the real dataset so a lower score is an

indication of a better model.
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Chapter 3

Literature Review

In this section, we will review four main image generative models: Generative Adversarial

Networks, Variational Autoencoder, Normalizing Flows, and Diffusion Models. Due to the

enormous number of papers that have been published in this area, we have to only mention

the most important works.

3.1 Generative Adversarial Networks

Goodfellow et al. [3] have shown that procedure of generating and discriminating images can

be formulated as following minimax game:

min
θg

max
θd

(
Ex∼Px(x)[logDθd(x)] + Ez∼Pz(z)[log(1−Dθd(Gθg(z)))]

)
. (3.1)

where θg and θd are the parameters of the generator and discriminator respectively. z is

random input noise to the generator and Pz(z) is the distribution over it. x is an image from

15



3.1 GENERATIVE ADVERSARIAL NETWORKS

data distribution Px(x). Gθg(z) is the generator which get the random variable z and gives

an image as its output and Dθd(x) is the discriminator which get the - fake or real - image

x and give the probability of x coming from the data distribution rather than generator

distribution. It can be shown that the optimal solution for this minimax problem is where

the generator output distribution matches the data distribution.

After Goodfellow et al. [3] proposed GAN in 2014, it has become one of the hottest

research fields in machine learning and computer vision. Different types of GAN models have

been designed in recent years, mostly to improve and stabilize the main model. GAN has

the benefit of not relying on expected data distribution for input; the produced samples can

be more realistic by employing direct sampling to input random noise Z. Simultaneously,

GAN-generated samples are too free to regulate and cannot focus on a given class. Mehdi

Mirza et al. introduced Conditional Generative Adversarial Nets or CGANs [11] where the

label of each image was fed into the GAN generator and discriminator.

min
θg

max
θd

(
Ex∼Px(x)[logDθd(x|y)] + Ez∼Pz(z)[log(1−Dθd(Gθg(z|y)))]

)
. (3.2)

In ACGAN [12] the access of the discriminator to the labels has been blocked but instead the

discriminator has been trained to output two different variables. By using the idea of [13], the

classification results of samples are added to the classical output of the discriminator which

resulted in better performance. Researchers initially attempted to incorporate CNN in GAN,

but no positive results were obtained [14]. In 2015, Alec Radford et al. published DCGAN

paper [15], which enhanced the network structure of GAN and significantly raised the quality
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3.1 GENERATIVE ADVERSARIAL NETWORKS

of GAN-generated images as well as the stability of training. DCGAN removed the fully

connected layers because of their inefficient training process on the images. Additionally,

DCGAN employs batch normalization, which stops the generator from collapsing and allows

deeper gradient propagation. The Wasserstein GAN or WGAN [16], is an extension that

enhances model stability while training and gives a loss function that corresponds with image

quality. The WGAN has a profound mathematical motivation, but in reality, just a few modest

tweaks to DCGAN, are required. To stabilize the discriminator’s training, [17] suggested

spectral normalization, a unique weight normalization approach. Their normalizing approach

is computationally light and simple to implement in current systems. They demonstrated

that spectrally normalized GAN (SNGAN) may generate pictures of comparable or higher

quality than earlier training stabilizing approaches. SAGAN or Self-Attention Generative

Adversarial Network [18], enables attention-driven, long-term dependency modelling for image

generation challenges. In lower-resolution feature maps, traditional convolutional GANs

create high-resolution features as a function of only spatially local points. Details in SAGAN

may be created utilizing inputs from all feature locations. Furthermore, the discriminator

can ensure that highly detailed elements in different parts of the image are consistent with

one another. With orthogonal regularisation and a truncation method, [19] continues its

efforts to scale up the dataset. BigGAN altered the discriminator by including an additional

path for encoded generated images, proposing a unique representation learning technique for

training GANs. And lastly, [20] and [21] suggested the Affine Transformation and Adaptive

Instance Normalization (AdaIN). Also, they modified the generator of the model in a way
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that the noise input goes through an MLP to produce a style vector w, which is then fed into

the generator architecture at various stages as opposed to the classical approach where the

input noise z was fed into the generator directly.

3.2 Variational Autoencoder

As we mentioned in Background section encoder of VAEs outputs means and variances of a

joint independent normal distribution in the latent space for every input instead of outputting

a vector in that space. In practice, instead of maximizing the probability of getting a real-like

image which leads to an intractable integral, VAEs objective is to maximize a lower bound

on it, called Evidence Lower Bound or ELBO.

log pθ(x) = Eqϕ(z|x)

[
log

[ pθ(x)

qϕ(z|x)

]]
+DKL(qϕ(z|x)||pθ(z|x)). (3.3)

Since Kullback–Leibler divergence is always positive, VAE would maximize

Eqϕ(z|x)

[
log

[
pθ(x)
qϕ(z|x)

]]
as a proxy for log pθ(x).

In 2014, [4] and [22] presented a scalable stochastic variational inference and learning

technique for large datasets. The approach even works in the intractable scenario with minor

differentiability requirements. Posterior inference may be made extremely efficient for i.i.d.

datasets with continuous latent variables per data point. Two years later, [23] investigated

the feasibility of adding latent random variables into the state of a recurrent neural network

(RNN). They suggested that the variational RNN can simulate the type of variability seen in

highly structured sequential data such as real speech by using high-level latent variables. In
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3.2 VARIATIONAL AUTOENCODER

2017, [24] proposed β-VAE which uses a hyperparameter that may be adjusted to reconcile

latent channel capacity and independence limitations with reconstruction accuracy. They

showed that β-VAE with correctly adjusted β > 1 outperforms VAE (β = 1) qualitatively.

In order to quantify the trade-off between compression and reconstruction accuracy, [25]

developed variational lower and upper bounds on the mutual information between the input

and the latent variable. Then they utilize these bounds to generate a rate-distortion curve.

With the help of this framework, they show that there is a family of models with the same

ELBO but various quantitative and qualitative features. Additionally, their approach proposed

a straightforward technique to prevent latent variable models with potent stochastic decoders

from ignoring their latent code. In 2018, [26] suggested adding a new prior type to the VAE

architecture, named “Variational Mixture of Posteriors" prior, or VampPrior. A blend of

Gaussians distribution with components provided by variational posteriors conditional on

learnable pseudo-inputs makes up the VampPrior. They demonstrated that this architecture,

which has a coupled prior and posterior, learns noticeably superior models by extending

this prior to a two-layer hierarchical model. The model also stays clear of the typical local

optima problems caused by useless latent dimensions. In the paper [27], authors suggested

Vector Quantised- Variational AutoEncoder (VQ-VAE) which the encoder network produces

discrete outputs rather than continuous ones, in contrast to vanilla VAEs. Additionally, the

prior is learned rather than static. The model can avoid posterior collapse issues where

latents are disregarded when they are combined with a powerful autoregressive decoder, by

using the vector quantization approach (VQ). In 2020, [28] presented Nouveau VAE (NVAE),
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3.3 NORMALIZING FLOWS

a deep hierarchical VAE designed for picture generation employing batch normalization

and depth-wise separable convolutions. The training of NVAE is stabilized by spectral

regularisation, and it has a residual parameterization of Normal distributions. VD-VAE [29] a

hierarchical extremely deep VAE obtain greater likelihoods than the PixelCNN [30], employs

fewer parameters, produces samples tens of thousands of times quicker, and is simpler to use

with high-resolution pictures. This is because the VAE develops effective hierarchical visual

representations, according to their qualitative research.

3.3 Normalizing Flows

Training with normalizing flows is most commonly done with maximum likelihood and because

of the fact we can compute the density function exactly we can write out the log-likelihood

of the set of datapoints xi:

max
θ

N∑
i=1

(log pz(f(xi|θ) + log | detDf(xi|θ)|). (3.4)

where θ are the parameters of the flow f(xi|θ) which we aim to learn and pz is a Gaussian

density. Note that to make Normalizing Flows practically useful it has to be efficient to

compute the Jacobian determinant detDf(x). Designing and constructing these flows is the

core research problem for Normalizing Flows. To do so researchers rely on the fact that

invertible, differentiable functions are closed under composition. This allows us to build up

complex flows from the composition of simpler flows - the same idea that we are going to use

in building our model.
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3.3 NORMALIZING FLOWS

f = fd ◦ fd−1 ◦ · · · ◦ f1 (3.5)

where each of f1 to fd are invertible and differentiable. As the Jacobian of products is equal

to the product of Jacobians, the log-likelihood problem we might use can be rewritten as:

max
θ

N∑
i=1

(log pz(f(xi|θ) +
d∑

k=1

log | detDfk(xi|θ)|). (3.6)

There are many choices for fi function. E.g., Elementwise Flows [31][32], Diagonal

Flows [33][34], Triangular Flows [35], Permutation Flows [33][36], Orthogonal Flows [37],

Factorizations [36][38], Convolution [36][38], Planar Flows [5], Radial Flows [5], Coupling

Flows [39][33], Autoregressive Flows [40], Residual Flows [41][42][43], and Continuous Flows

[44][45][46].

[39] provided a deep learning approach termed Non-linear Independent Component

Estimation for modelling intricate high-dimensional densities (NICE). They trained a non-

linear transformation of the data that maps it to a latent space and causes it to conform

to a factorized distribution, producing independent latent variables. They parameterized

this transformation in order to make it straightforward to calculate the determinant of the

Jacobian and inverse Jacobian while retaining the capacity to learn complicated non-linear

transformations using a combination of basic building blocks. Their proposed coupling layers

are still one of the most utilized layers in normalizing flows. By defining a class of invertible

functions (Real NVP) with a tractable Jacobian determinant, [33] made it possible to evaluate,

infer, and sample log-likelihood with precision and tractability. They demonstrated that
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3.3 NORMALIZING FLOWS

both in terms of sample quality and log-likelihood, this class of generative models provides

competitive results. Kingma and Dhariwal in [36] suggested Glow, a generative flow that

makes use of an invertible 1× 1 convolution. They showed a considerable improvement in

log-likelihood on common benchmarks using their model. Most impressively, they showed

that a flow-based generative network that is optimized for the basic log-likelihood objective is

capable of producing realistic large-scale pictures with efficiency. [45] introduced FFJORD, a

high-dimensional reversible generative model for data that leverages continuous-time dynamics

to generate a generative model that is parameterized by an unconstrained neural network.

Black-box ODE solvers, Hutchinson’s trace estimator, and automatic differentiation may all

be used to calculate the necessary values for training and sampling. Dequantization, flow

design, and conditioning architecture design were three particular aspects of design concepts

for flow models that [47] took into consideration and which bridged the performance gap

between flow models and autoregressive models. Employing a “Russian roulette" estimator,

[48] provided a tractable unbiased estimate of the log density and lowered the training memory

need by using a different infinite series for the gradient. Additionally, by suggesting the usage

of activation functions that prevent derivative saturation and extending the Lipschitz criterion

to induced mixed norms, They enhanced invertible residual blocks. The resultant method,

known as Residual Flows, performs better in joint generative and discriminative modelling

than networks that have coupling blocks. SurVAE Flows [49] use surjective transformations

to bridge the gap between normalizing flows and VAEs. The transformations are stochastic in

the reverse direction, offering a lower bound on the likelihood, and deterministic in the forward
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3.4 DIFFUSION MODELS

direction, enabling accurate likelihood calculation. They demonstrated that a number of new

techniques, such as dequantization and enhanced normalizing flows, may be described as

SurVAE Flows. Finally, they presented common operations like the absolute value, maximum

value, stochastic permutation, and sorting as composable layers.

3.4 Diffusion Models

When the noise level is low enough, the forward process’s sampling chain transitions can be

shown as conditional Gaussians. This fact combined with the Markov hypothesis results in a

parameterization of the forward process:

q(x1:T |x0) = ΠT
t=1q(xt|xt−1) = ΠT

t=1N (xt;
√
1− βtxt−1, βtI) (3.7)

where x1 to xT are the latent variables with the same dimensionality as x0, q(x1:T |x0) is

approximate posterior, and β1 to βT is an either learned or fixed variance schedule which

ensures that xT is as close as possible to an isotropic Gaussian for sufficiently large T.

But diffusion models’ magic lies in the reverse procedure. The model learns to reverse

the diffusion process during training in order to produce the output. Model starts with an

isotropic Gaussian noise p(xT ) = N (xT ;0, I) and learns the joint distribution p(x0:T ) as

below:

pθ(x0:T ) = p(x0)Π
T
t=1pθ(xt−1|xt) = p(x0)Π

T
t=1N (xt−1;µµµθ(xt, t),ΣΣΣθ(xt, t)) (3.8)
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3.4 DIFFUSION MODELS

where µµµθ and ΣΣΣθ can be learned by a deep learning model. Diffusion Models are trained

by the reverse Markov transitions which maximize the likelihood of the training data. Here

like VAEs training consists of minimizing the variational upper bound on the negative

log-likelihood.

E[− log pθ(x0)] ≤ Eq[− log
pθ(x0:T )

q(x1:T |x0)
] = Lvlb =

T∑
t=0

Lt (3.9)

Now we can rewrite Lt’s as below:

L0 = − log pθ(x0|x1)

Lt = DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))

LT = DKL(q(xT |x0)||p(xT ))

Thanks to the fact that each KL term above compares two Gaussian distributions, they

can all be calculated in closed form. Because xT is a Gaussian noise and q has no learnable

parameter, LT is constant and may be disregarded during training. Note that the reverse

diffusion process, pθ(xt−1|xt) = N (xt−1;µµµθ(xt, t),ΣΣΣθ(xt, t)), requires us to learn a neural

network to approximate the conditional normal distributions but instead of predicting less

noisy image from the noisy one we can just predict the added noise itself. After some

reparameterizations, we can train a model to predict zθ(xt, t) from xt and t then plug it into

the following formula to predict µµµθ(xt, t):

µµµθ(xt, t) =
1
√
αt

(xt −
βt√
1− ᾱt

zθ(xt, t)) (3.10)

24



3.4 DIFFUSION MODELS

where αt = 1− βt and ᾱt =
∏t

i=1 αi. According to experiments, parameterizing the model

by the added noise’s mean results in more stable training and better image synthesis. This

outcome could be the result of the simpler distribution of the noise process compare to the

natural image distribution function.

After [6] introduced the diffusion models in 2015, it took a long time for researchers to

get a near-state-of-the-art performance. The main contribution to modifying these networks

was from [8] in 2020, which added a number of model enhancements to the original DPM,

which yielded remarkable results in the quality of generated images. They also discovered

connections between diffusion models and variational inference and showed diffusion models

excellent inductive biases for image data. Additional improvements were suggested by [50]

which resulted in better likelihood scores. Furthermore, they discovered that learning the

reverse diffusion process’ variances, ΣΣΣθ(xt, t), enables sampling with an order of magnitude

fewer forward passes and barely any difference in sample quality, which is crucial for the

practical application of these models. Also, they demonstrated that these models are easily

scalable due to the smooth scaling of their sample quality and likelihood with model capacity

and training computation. [51] demonstrated how diffusion may be effectively utilized

to optimize energy-based models (EBMs) towards an accurate approximation of the log-

likelihood target, producing high-fidelity samples even after extensive Markov chains. [52]

demonstrated that diffusion models provide image sample quality that is better than the

most advanced generative models currently available. With classifier guidance, they further

enhance sample quality for conditional image synthesis. They used a simple, computationally
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3.4 DIFFUSION MODELS

efficient technique for balancing variety and fidelity using gradients from a classifier. With

as little as 25 forward passes per sample, they got the same performance as BigGAN-deep.

Finally, they demonstrate that classifier guidance enhances FID by combining well with

upsampling diffusion models.
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Chapter 4

Deep Fourier Machines (DFM)

All deep image generation models suffer from their own issues. GANs are unstable and

generate samples with little diversity and because they are not trained using the log-likelihood

method there is no obvious measure to compare them. Outputs of VAEs are usually not as

sharp as other models. Normalizing Flows are huge models that need powerful computational

power to train. The same problem occurs in diffusion models, which are computationally

inefficient. In this work, we will try to propose a model that can remediate these problems.

4.1 Frequency Analysis

The Frequency Domain is an analytic space in which mathematical functions are displayed in

terms of their frequency content, rather than time or space. For example, where a spatial

image may display changes in the signal over space, a frequency-domain image displays

how much of the signal is present in each given frequency band. It is possible to convert
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4.1 FREQUENCY ANALYSIS

information from a spatial domain to a frequency domain and vice versa. An example of such

a transformation is the Fourier transform, which is usually used to convert continuous signals

between the time and frequency domain. The frequency domain has close relationships with

sine and cosine functions as they only contain one frequency in their spectrum. In fact, the

Fourier transform is nothing but rewriting functions as an integral of a coefficient multiplied

by the sine and cosine functions. Although there has been much work in the frequency domain

in image processing, deep learning has limited the application of frequency analysis on images

for a while. The frequency domain represents valuable information about the image in a

different form, which in many applications can be helpful. Different types of representations

have been introduced to manifest the frequency domain in either the continuous or discrete

domain. Here we will have a quick review of the Fourier Series.

Fourier Series Fourier Series is a transformation from periodic continuous signals to the

discrete frequency domain. Fundamentally, Fourier Series is just rewriting a periodic function

as a weighted sum of orthogonal bases, in this case fk(x) = e2πikx. Suppose we have a periodic

function h : Rm → R. Under some loose constraints, we can calculate the Fourier Series for

this function ck ∈ Cn as below:

h(x) =
∞∑

k1=−∞

· · ·
∞∑

km=−∞

cke
2πik.x (4.1)

where k = (k1, . . . , km) ∈ Nm. Now based on Euler’s formula eix = cosx + i sinx we can

propose an equivalent form as below:
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4.2 DEEP FOURIER MACHINES (DFM)

h(x) =
∞∑

k1=0

· · ·
∞∑

km=0

ak cos(2πk · x) + bk sin(2πk · x) (4.2)

where ak,bk ∈ Rn. Based on Dirichlet Conditions what this equation exactly means is if we

define error signal el1...lm(x) as below:

el1...lm(x) = h(x)−
l1∑

k1=0

· · ·
lm∑

km=0

ak cos(2πk · x) + bk sin(2πk · x) (4.3)

energy of the error signal el1...lm(x) is zero when l1, . . . , lm →∞. So based on definition of

limit, for every ϵ there is a sequence of l1, . . . , lm which power of the error is less than ϵ which

means that we can estimate h(x) based on limited number of elements:

h(x) ≈
l1∑

k1=0

· · ·
lm∑

km=0

ak cos(2πk · x) + bk sin(2πk · x) (4.4)

which is normally called truncated Fourier Series.

4.2 Deep Fourier Machines (DFM)

If we want to use Fourier Series as a signal compression or generation tool, the main problem

with it is that if the original signal has large high-frequency components l1, . . . , lm in equation

4.4 would be large numbers which means we need to save many ak’s and bk’s to preserve a

decent copy of the signal. Our solution to this problem is to cascade many low-frequency h’s

and hope that this composition of functions would reconstruct important frequencies better,

whether they are high or low. Note that here having a low-frequency signal is equivalent to

small li’s in equation 4.4 which is analogous to small number of ak’s and bk’s.
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4.2.1 Image Compression

In the first step, we will show that it is possible to compress images in a network that

consists of a composition of many low-frequency sine and cosine functions in a relatively

low dimensional space. This network is trained on just one image. It treats each image as

a 2-dimensional function. It gets the position of each pixel of an image and outputs the

corresponding pixel value —either a scalar for a black-and-white image or an RGB value

for a colour image. After the training process is done, the weights of the network are a

compressed copy of the input image, which means that instead of the image itself, we can

save the network and use it to reconstruct the image. Also, not that reconstruction is fast

and can be done in parallel for each pixel. To reconstruct the image, we give the position of

each pixel as input of the model and output is the value of that pixel. Specifically, we can

show the input-output relationship of the layer i, hi(x), of this network as follows:

y = hi(x) =
∑
k

ai,k cos(2πk · x) +
∑
k

bi,k sin(2πk · x) + x (4.5)

where hi : Rm → Rn represents i-th layer of the network from m to n dimensions, x =

(x1, x2, . . . , xm) ∈ Rm is an m-dimensional input, y = (y1, y2, . . . , yn) ∈ Rn is an n-dimensional

output, k ∈ (N ∪ {0})m is all the possible frequencies in a 1× 1 image (without considering

quantization and discreteness effects), and ai,k,bi,k ∈ Rn are learnable parameters of the

layer i. Note that we can always rescale any images to 1× 1 unit square. In order to explore

low-dimensional structures, we try to make this construction depend on a small number of

free parameters: First, the construction relies on composing a small number of low-frequency
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function. Second, each low-frequency depends on a few free Fourier coefficients. In other

word, hi should be low-frequency function, so in our experiments we choose k ∈ {0, 1}m,

which means that we have 2m different k’s in each layer. For example, in the first layer

of the network, h1, because input is the position of each pixel in a image, (x1, x2) where

x1, x2 ∈ [0, 1], dimension of the input, m, is equal to 2 so we have 4 different k’s: k1 = (0, 0)

constant value, k2 = (1, 0) one period of a sinusoidal function starting from left side of the

image to right side, k3 = (0, 1) one period of a sinusoidal function starting from upper side of

the image to lower side, and k3 = (1, 1) two periods of a sinusoidal function starting from one

edge of the image to another edge. It can be shown that the composition of two functions

with maximum frequency of ||f || can have up to ||f ||2 frequencies. We keep only a small

number of k’s in hope of getting higher frequencies of the composition of these layers. Also,

we use the idea proposed in [53] to mitigate the vanishing gradient problem and add input x

to the output whenever the dimension of the input and output is the same.

We compose these layers and randomly initialize ak’s and bk’s of each layer from a

Gaussian distribution:

h = hd ◦ hd−1 ◦ · · · ◦ h1 (4.6)

Again, note that the input of this network is the position of each pixel (x1, x2), and its output

is a scalar value for black-and-white images and an RGB value, (r, g, b), for colour images

and loss function is a mean square error between real image and constructed one using our
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Figure 4.1: The cos part of one layer of our model compare to one layer of Perceptron. Note

that sin’s and the residual connections are not shown here. The only differences for the sin

are that noo-linearity is the sin function and name of the trainable weights are bki
. Also, in

Perceptron model, ReLU non-linearity is applied before the weight multiplication to make

it easier to compare it with our model. Note that ki’s unlike wi’s and aki
’s are constants,

not learnable weights. Here, in our model: y =
∑

k ak cos(2πk · x) and in Perceptron:

y =
∑

i wiReLU(xi)
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Figure 4.2: High-level overview of a layer of the Model. Our network without (left image)

and with (right image) the residual connection. Unless input and output have different

dimensions, we use the residual layer. ak’s and bk’s are the coefficients of the cos and sin

functions, respectfully.

network.

MSE =
1

N

N∑
i=0

∥yi − ŷi∥2 (4.7)

where yi is the original value of i-th pixel of the image, ŷi is the predicted value of i-th pixel

of the image and N is the number of pixels of the image.

To fully use the residual blocks, except for the dimension of the input and output of the

network, which are two and three—for colour images—respectively, we keep the dimension of

the middle layers the same and call it the width of our network. Furthermore, the number of

layers of the network would be called depth. We pass the output of the model from a tanh

function between -1 and 1. We also normalize pixel values between these numbers as the

target value. We train multiple networks with different depths and widths to evaluate the

power of our model to compress images. After training these networks, we found that images

can be compressed by up to 85% with a small reconstruction error.
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Algorithm 1 The forward propagation of image compression algorithm
Input: Index of each pixel of an image

Output: Value of each pixel of an image

1: for each batch of pixels do

2: pixel_value← h(pixel_index)

3: end for

4: return pixel_value’s

4.2.2 Image Generation

After we found out that it is possible to reduce the dimension of images with this network

without losing much quality, we tried to use it in an image generation model. Note that the

main idea of many image generation models is to compress high-dimensional images into low-

dimensional spaces. In our generation model, we try to further explore the lower-dimensional

structure in natural images. We use another deep neural network as a decoder to generate all

the above Fourier coefficients, i.e., ak’s and bk’s, from an even smaller set of parameters in

a low-dimensional latent space. Different images that have different embeddings will have

different decoder outputs, which would lead to different reconstructed images. If the latent

space is regulated enough, any point there could potentially be mapped to a realistic image,

and after the model is trained, we can use any point in the low-dimensional latent space

to generate a new image in the original high-dimensional space. We use an MLP as our

decoder, which means we start from the latent representation of images, which for now is
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just a learnable vector in about 120-dimensional space. Then we feed each of them to an

MLP, which sends the representation to a higher and higher dimension in each layer. The

output of this decoder will have the same dimension as the coefficient of a compressed image

and will be used as the Fourier Net’s ak and bk. Then this network gets the position of all

pixels as an input and is supposed to predict the value of each pixel in the corresponding

image. Again, we use square error as the loss of our model. We also add the log-likelihood of

each latent representation coming from a Gaussian distribution time by a constant—which is

a hyperparameter—to the loss function to make the latent space normal. This term simply

adds
∥∥z2∥∥ to the loss function, causing the network to keep latent representations as close to

the origin of space as possible.

Loss =
1

MN

M∑
i=0

N∑
j=0

∥∥yi,j − ŷi,j

∥∥2
+

λ

M

M∑
i=0

∥zi∥2 (4.8)

where yi,j is the original value of j-th pixel of i-th image of dataset, ŷi,j is the predicted

value of j-th pixel of i-th image of dataset, zi is the latent representation of i-th image, M

is the number of images of the dataset, N is the number of pixels of each image and λ is a

hyperparameter.
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Algorithm 2 The forward propagation of image generation algorithm w/o encoder
Input: Index of each pixel of an image and index of all images

Output: Value of each pixel of all images

1: for each batch of images do

2: find the corresponding embedding z for each index of the image of batch from a table

3: A,B← Decoder(z)

4: for each batch of pixels do

5: pixel_value← hA,B(pixel_index)

6: end for

7: end for

8: return pixel_value’s

In the training process, we found out that large networks are unstable to train. Our

solution to this problem was to add an encoder before the latent representation. Instead of

randomly initializing z, we pass each image to an encoder then we use the output as the

latent representation of the image. Using this structure, not only large networks are stabilized

but also similar images have similar latent representations even at the beginning of training,

which speeds up the training process. Similar to the decoder, we used an MLP as the encoder

of our model.
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Algorithm 3 The forward propagation of image generation algorithm with encoder
Input: Index and value of each pixel of all image

Output: Value of each pixel of all images

1: for each batch of images do

2: z← Encoder(image)

3: A,B← Decoder(z)

4: for each batch of pixels do

5: pixel_value← hA,B(pixel_index)

6: end for

7: end for

8: return pixel_value’s
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Figure 4.3: Our Model without (left image) and with (right image) an encoder. z is the

latent representation of each image, A and B are the set of all ak’s and bk’s of each image,

(x1, x2) is the input position of each pixel, and (r, g, b) is output of network for each pixel of

each image.
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Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Servers

The servers that are used in this study have been provided by Laboratory for Neural

Computing for Machine Learning. Please refer to table 5.1 for more details. As our model

was the first of its kind, we spend hundreds of hours investigating different structures and

tuning the hyperparameters.

The experiments are all conducted with Python version 3.6.13, JAX [54] version 0.2.13 uti-

lized with CUDA 11.1. JAX is a framework that is designed by Google for high-performance

numerical computing, especially machine learning research. We have designed the model

layer by layer using this library and used its tools for high-speed computations.

39



5.1.2 Datasets 5.1 EXPERIMENTAL SETUP

Server List

System CPU Memory GPUs

Data 10-core CPU (i9-7900X) 128GB 4 × GTX1080 Ti, 11 GB memory

Knowledge 10-core CPU (i9-7900X) 128GB 4 × GTX1080 Ti, 11 GB memory

Text 6-core CPU (i7-5820K) 64GB 4 × TITAN X, 12GB memory

Table 5.1: List of systems used for the experiments

5.1.2 Datasets

We used three datasets in this work, MNIST [55], CIFAR10 [56] and ImageNet [57]. MNIST

contains 70000, 28× 28 black-and-white images of handwritten digits between 0 and 9. 60000

images are gathered as the training set and the remaining are test set but because of the

nature of unsupervised tasks, we use the whole dataset to train our generative model. The

objective of our algorithm is to generate realistic synthetic handwritten digits. The second

dataset, CIFAR10, contains 60000, 32× 32 colour images, 50000 as the training set and 10000

as the test set, of 10 different classes. We trained our generative model on this dataset to

output images from the same classes. Finally, we use ImageNet [57] to show the ability of

our model to compress separate images. ImageNet is a huge dataset containing 1000 classes.

We only use a very limited number of images to train our model.
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5.1.3 Optimization and Hyperparameters Settings 5.1 EXPERIMENTAL SETUP

5.1.3 Optimization and Hyperparameters Settings

We trained the model using the Adam optimizer both for image compression and image

generation tasks. We used a constant learning rate equal to 4×10−4 for the image compression

task and a linear schedule starting from 10−3 and ending with 10−7 for the decoder of the

image generation task. On the MNIST dataset, where the model does not have an encoder, we

set the learning rate for the latent representation 106 times smaller than the decoder learning

rate; whereas, on the CIFAR10 dataset, the encoder learning rate is from 10 to 1000 times

smaller than the decoder, a linear schedule through the whole training process. The batch

size for the compression task is set to 214 where each element of the batch is a pixel. For the

generation tasks on MNIST and CIFAR10, the batch size is set to 64 and 512, respectively,

where each element is an image. All of the compression task’s learnable weights are drawn

from a Gaussian distribution with a variance of 2× 10−10. The same initialization has been

used in the generation task with 2× 10−2 and 3× 10−2 respectively on MNIST and CIFAR10,

except for bias weights, which are initialized to 0. On the MNIST and CIFAR10 datasets,

we set the constant hyperparameter, which is multiplied by the log-likelihood of each latent

representation derived from a Gaussian distribution,
∥∥z2∥∥, to 0.5 and 200, respectively.
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5.2 MODELS EVALUATION

5.2 Models Evaluation

5.2.1 Image compression on ImageNet

We use a 400× 400 image from the ImageNet dataset [57] to train our network five times

and get the average final loss on these five networks. Then we show this averaged final loss

in figure 5.1 using four different colours. The darker the colour, the better the image is

preserved. Also, the number in each box of the table shows the percentage of the size of

the compressed image. For example, 100 indicates that the network is the same size as the

training image, and 1 indicates that it is 1
100

the size of the image. To get a better sense of

the colour of each box, we also display the corresponding image to each loss interval in figure

5.2. In this experiment we used 32-bit floating point numbers, which means the number in

each box can be calculated as below:

# of learnable weights of the net

400× 400× 3
× 32

8
× 100

where 400 is the height and length of the original image, 3 is the number of channels in a

colour image (RGB), 32 is the number of bits required to represent a 32-bit float, and 8 is the

number of bits required to represent one channel of a pixel—a number between 0 and 255.

We also trained one specific network with about 82% compression rate — compressed

image is 18% of the original image — on other images of the ImageNet dataset to find out

how our approach can generalize on other images. Also, the same images are compressed

with almost the same compression rate using the JPEG algorithm to compare them with our
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5.2.1 Image compression on ImageNet 5.2 MODELS EVALUATION

Figure 5.1: Percent size of the network compare to the original image and corresponding loss

interval.

Figure 5.2: Compressing the same image with different final loss. Use this figure to get a

better sense how a sample image would look like in the table 5.1.
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

model’s output. Comparing results presented in figure 5.3, our network can compress images

as well as the JPEG algorithm and even outperform it mostly in cases where the original

image is low-frequency dominant, for example, the speaker image. The only disadvantage of

our model compared to the JPEG algorithm is its training time, which is a lot longer than

the compression time of the JPEG algorithm.

5.2.2 Image generation on MNIST

We used the MNIST dataset to train our model so that it embeds images in a lower-

dimensional space and uses that space to generate fake images. We trained the model both

with just one class—to generate one specific fake number—and with all ten classes. The

width and depth of the Fourier Net we used were 4 and 6, respectively. The latent space size

is 55, and the decoder is a fully connected network with a size of (55, 170, 220, 352), where

352 is the number of learnable weights of the Fourier Net.

In figure 5.4, we present reconstructed images from the dataset. We can see that after

embedding images into the latent space, they can be reconstructed almost perfectly via

our network. In figure 5.5, our networks are trained on one class of the MNIST dataset to

generate fake numbers from the same class. In figure 5.6, we trained the same network on all

images of the MNIST dataset and sampled random images from the network. In figure 5.7,

we try to explore latent space by moving from one embedded image to another to generate

images that are similar to both. In some rows, for instance, the interpolation between 7 and

8, the network generates images which are similar to other numbers—in this case, 9. If this
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

Figure 5.3: Comparison between our model and JPEG algorithm. The width and depth of

our model in this experiment are 8 and 6 respectively. A lossy JPEG algorithm with almost

the same compression rate has been used to compress the original image.
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

number is visually between the start and end numbers, it is a sign that the latent space is

well-regulated and similar numbers are being embedded near each other.

Figure 5.4: Original images and their reconstructed version using the our model trained on

all MNIST dataset. We can see that images has been embedded in the latent space almost

prefectly which means that square loss of the training is close to zero - excluding log-likelihood

part.
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

(a)

(b)

Figure 5.5: Random images generated using our model trained on (a) number 2 and (b)

number 7 images of that dataset.
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

Figure 5.6: Random images sampled from our model trained on full MNIST dataset.
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5.2.2 Image generation on MNIST 5.2 MODELS EVALUATION

Figure 5.7: Interpolation between different integers from 0 to 9. We start from one image

latent representation and as we go toward the next one in the latent space, we feed that to

the decoder and get the output from Fourier Net.
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5.2.3 Image generation on CIFAR10 5.2 MODELS EVALUATION

5.2.3 Image generation on CIFAR10

We trained our model on the CIFAR10 dataset to measure its capability to generate colour

images. Because the FID score uses the Inception v3 network trained on the ImageNet

dataset which contains colour images, we can get quantitative results from this experiment.

Throughout this experiment, the width and depth of the Fourier Net were 6 and 10 respectively,

the dimension of the latent space was 110, and the encoder and decoder were (3072, 1200,

600, 110) and (110, 500, 1000, 3672) fully connected networks, where 3072 is the number

of RGB pixels in the CIFAR10 dataset and 3672 is the number of learnable weights of the

Fourier Net.

Figure 5.8 shows the quality of images after reconstructing them using the trained model. It

is worth mentioning that the best model with respect to the quality of generated images is

not the same model that can reconstruct the training images the best. We can achieve better

image reconstructions by training larger networks, but their generated images will not have

the same quality and FID score as the presented outputs here. As our goal is to generate

fake images, we present reconstructed images of our best model in the image generation task.

In figure 5.9, we sample fake images from the network. In table 5.2, we compare the FID

score of our model with the first generation of different image generative models. Note that

DCGAN [15] is a second-generation GAN model that utilizes CNN layers, and unlike our

model, evaluating the probability density function is not possible there. Also, although the

FID score is probably the most popular metric to compare all generative models, it has many

shortcomings, and it is better to not rank generative models only based on it.
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5.2.3 Image generation on CIFAR10 5.2 MODELS EVALUATION

Figure 5.8: Original images and their reconstructed version using the our model trained on

CIFAR10 dataset. Images have been embedded in the latent space with a small quality loss.
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5.2.3 Image generation on CIFAR10 5.2 MODELS EVALUATION

Figure 5.9: Random images sampled from our model trained on CIFAR10 dataset.
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5.2.3 Image generation on CIFAR10 5.2 MODELS EVALUATION

Model FID

VAE [22] 106.0

WAE [58] 80.9

DCGAN [15] 30.9

Fourier Net (ours) 80.5

Table 5.2: FID comparison between different models trained on CIFAR10 dataset
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Chapter 6

Conclusion

6.1 Summary

In this work, we began by discussing deep learning models, their success factors, and their

fundamental components. We present some complex generative model architectures. We

discussed the fundamental mathematical idea that underlies them, how they are intended

to function intuitively, and their advantages and disadvantages. Then we provided a brief

overview of the frequency domain. We gave an overview of Variational Autoencoder, Gener-

ative Adversarial Networks, Normalizing Flows, and Diffusion Models and discussed their

advantages and disadvantages. Then, to overcome these issues, we proposed our network,

which is capable of compressing images using the frequency domain.

On the MNIST and CIFAR-10 datasets, our model produces acceptable fake images.

Images have been encoded in the latent space and can be reconstructed well, and the whole
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6.2 FUTURE WORKS

latent space is regulated enough to generate high-quality images.

6.2 Future Works

The future steps for the current research are listed as follow:

• Using 16-bit float on image compression task. We used 32-bit floating point numbers

for the whole experiment. Trying 16-bit float will probably give better results on the

image compression task but since here our main focus was on the image generation

task, we present it as future work.

• Using the Gaussian Mixture Model (GMM) instead of a Gaussian Distribution as the

log-likelihood of latent spaces. When there are multiple classes in the dataset, GMM

usually works better as the distribution of the likelihood in image generation tasks.

• Increasing the training speed (decreasing epoch). We tried many modules and tricks to

speed up the training process but most of them were unsuccessful. Batch norm, Layer

norm and dropout were the most famous ones.

• Training this model on larger datasets. We need to evaluate this model on larger image

datasets.
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