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Abstract  

Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. 

SSA is critical to all current and future space activities and protect space assets by providing access control, 

conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure 

are not sufficient to account for the proliferations of space debris. In response to the need for better SSA 

there has been many different areas of research looking to improve SSA most of the requiring dedicated 

ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s 

(Resident Space Objects) from passive low-resolution space-based sensors is presented with all the 

background work performed to enable this novel method. Low resolution space-based sensors are common 

on current satellites, with many of these sensors being in space using them passively to detect RSO’s can 

greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to 

overcome with research in the area has to do with the lack of publicly available labelled data to test and 

confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify 

and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one 

of the only publicly available low-resolution space-based images found with auxiliary data. During the 

development of the ORBITALS simulator it was found that the generation of these simulated images are 

computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the 

currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was 

performed to allow the algorithm to run in parallel reducing the computational time required to propagate 

entire catalogs of RSO’s.  From the results it was found that the standard facet model with a particle swarm 

optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a 

sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of 

demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms 

in a simulated environment. 
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1 Introduction 

 

Since the first satellite launch of Sputnik 1 in 1957 the barriers to access space have become easier to 

overcome. Currently there has been around 8950 active satellite put into orbit [1] with the launching of 

satellites becoming more and more common. The substantial increase in satellites has largely come in the 

last few decades from the leaps that have happened in space enabling technology, allowing for smaller and 

low-cost CubeSat™ (class of nanosatellites). Two of the more significant ways that CubeSat, and their 

larger subset of nanosatellites (spacecraft with less than 10 kg mass), differ from conventional satellites is 

their small size and weight allows them to act as secondary payloads on launch vehicles. This has the effect 

of reducing the cost of launch, as well as, increasing the flexibility of launch opportunities. The second 

significant difference between CubeSat’s and conventional satellites is the large integration of Commercial 

of The Shelf (COTS) components. The integration of COTS parts gives CubeSat’s the advantage of 

reducing the cost and lead time of special components, with these properties CubeSat’s  have been leveraged 

to enable them to be low cost, rapid-response, and suited to various applications [2] [3] [4]. In recent years 

the Nanosatellite industry has exploded with it estimated to be worth $566.2 million USD by 2022 [5] 

having companies now dedicated to making COTS products for CubeSat applications. With this growing 

field there are new promising trends such as mega constellations; constellations are groups of similar 

satellites that work together to accomplish a goal. Mega constellations refer to extremely large 

constellations of smaller satellites, one example is StarLink which is looking to launch over 10,000+ 

satellites to provide satellite-based internet services. With the proliferation of Resident Space Objects 

(RSO’s) in Near Earth Orbit new problems have started arising, the most significant problem is the 

proliferation of RSO’s, specifically space debris, which has caused an increased need for Space Situational 

Awareness (SSA) [6] [7]. An RSO is any object that orbits around the earth, both man made and naturally 

occurring. Space debris are any objects that are a non active satellite still orbiting around Earth. Some 
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examples of space debris include old rocket bodies, dead satellites, nuts, bolts, and fragmentation debris 

from collisions. The growing space debris problem has been well documented in recent literature with 

current SSA assets being identified as inadequate for the rising need, this will only lead to the increase in 

the 3 C’s of space; Congested, Contested, and Competitive [8]. Leveraging components on current and 

future space assets, such as star trackers and low-resolution imagers, can greatly augment current SSA 

efforts with out the need for expensive dedicated infrastructure. This thesis looks to present a novel method 

to leverage the large increase in CubeSat class satellites with COTS imagers to enable low resolution 

imagery for passive RSO detections. Passive RSO detections allow for low resolution images to perform 

their primary mission while contributing to SSA through observations of opportunity. Implementing this 

on CubeSat class satellites transforms the burden on SSA of the proliferation of CubeSat’s to actively 

increasing SSA. In this chapter, we describe the background information and recent trends related to each 

topic in this thesis followed by the explanation of the Motivation for the current work on Technology for 

Low Resolution Space Based RSO Detection and Characterisation. The motivation is then followed by the 

goals of this thesis, the outline of this thesis, and this chapter is finished with a list of publications.  

 

1.1 Nanosatellites, Mega Constellations, and the Proliferation of Space Debris 

The rise in the use of CubeSat™ and nanosatellites has lowered the barrier for entry making space more 

accessible, with the first cube satellite launched in 2003. A satellite type is based on its weight, Table 4 [9] 

[10] shows the different classifications of satellites based on mass. CubeSat’s™ are well defined structures 

that fit in the nanosatellite category. CubeSat’s™ have fixed dimensions instead of weight, with the 

unofficial classifications being shown in Table 5 [11].  
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Table 4 Classification of Satellites Based on Weight [9]  

Name of satellite type: Weight: 

Large > 1000 Kg  

Medium  500 Kg to 1000 Kg 

Small  < 500 Kg  

Subsets of Small Satellites: Weight: 

Mini  100 Kg to 500 Kg 

Micro  10 Kg to 100 Kg  

Nano 1 Kg to 10 Kg  

Pico 100 g to 1 Kg  

Femto  10 g to 100 g 

Atto 1 g to 10 g 

Zepto  0.1 g to 1 g  

 

Table 5 Classification of Cube Satellites Based on Size [11] 

Name of CubeSat*  Length Width  Height 

1U 11.35 cm 10 cm 10 cm 

2U  22.70 cm 10 cm 10 cm 

6U 34.05 cm 20 cm 10 cm 

12U  34.05 cm 20 cm 20 cm 

*Table 5 does not show all possible CubeSat configurations but rather some of the most common ones.  

The reason there has been such a large increase of CubeSat comes from the low cost; enabling multiple 

satellites to be designed and launched for a similar cost to one larger satellite. This has led to the growth in 

the utility and feasibility of constellations. Many satellites collectively working together is called a 

constellation, a few examples of constellations today include the Iridium Constellation, IntelSat 
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Constellation, and the GPS constellation. Currently the largest constellation as of 2018 is the Flock 

constellation operated by Planet Lab. The Flock constellation has over 144 operational satellites, called 

Doves, used for imaging of Earth. Planet Lab’s Doves also have the record for largest number of satellites 

launched at one time, launching 88 satellites on February 15th 2015 [12].  As Cube and Nanosatellites get 

more popular the size of the constellations will increase and allow for more satellites to be launched at once. 

Some benefits of constellations vs a single satellite include; better temporal resolution, mitigated risk due 

to the loss of one satellite, and quick replacement times for damaged satellites. Currently there have been a 

few companies which have looked to launch mega constellations of hundreds to thousands of satellites, a 

few examples are shown in Table 6 below [7].  

Table 6 Proposed Mega Constellations  

Name  Number of Satellites*  

OneWeb Constellation  720 

SpaceX Constellation (LEO) 4425 

SpaceX Constellation (VLEO)  7518 

Telesat Constellation 117 + 

Boeing Constellation 2956 

Samsung Constellation 4600 

Google Constellation 841-1218  

*Table 3 the values for each constellation might change since it was initially made in 2019.  

The large increase in space traffic in the same or similar orbital planes has led to a greater possibility of 

micrometeoroid impacts, and collisions from space debris. With the launching of these mega constellation 

better methods of RSO detection and avoidance will be vital for the survival of the constellations and to not 

trigger Kessler syndrome. 
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Space debris, in the context of Earth, are any uncontrolled artificial object that is orbiting Earth. A more 

encompassing category used to describe any satellites or orbiting object is Resident Space Object (RSO).  

The rising number of RSO’s has become a growing problem over the last few years due to space being 

utilized more, leading to more RSO’s of which a majority of the objects are space debris. Figure 1 shows 

the increase of RSO’s and the source of the RSO’s which can be primarily attributed to different types of 

space debris. As the number of RSO’s will only increase with the increased use of space assets new 

technologies are required to avoid collisions and keep active satellites operational for their lifetime [13]. 

Currently the Space Surveillance Network (SSN) is a group of ground and space-based sensors dedicated 

to the tracking and detection of RSO’s. Ground based sensors are the most common but come with the 

downside of having trouble being able to track debris greater than 10 cm in LEO [14]. There are currently 

25 ground station participating in the SSN with the Space Fence, a US government project, to come online 

in 2019. The recently operational space fence looks to increase the number of RSO’s detected by allowing 

for smaller debris to be seen in LEO, as it is able to see RSO’s as small as 1 cm in LEO. With the ability to 

detect smaller debris the number of tracked RSO’s is expected to jump to over 100,000 [15]. Even with the 

Space Fence operational there are still areas to improve on with the SSN, one of these areas is the temporal 

resolution of observations. Ground based sensors can only observe a RSO when it passes over them or into 

their FOV, and with optical sensors there are even more restrictions. To optically track an RSO the right 

Sun, Earth, and RSO geometry needs to happen while is nighttime for the observation station, these 

constraints give ground-based observations a poor temporal resolution [16]. Space based sensors offer many 

advantages over ground-based sensors including getting closer to target RSO’s, not having to view from 

the atmosphere, and being able to take observations anytime of the day. Currently space based optical RSO 

tracking is a relatively new technology with only a few dedicated space-based sensors currently in orbit 

such as Sapphire, and NEOSSat [17]. As nanosatellite technology increase the cost, and lead time, to 

launching space-based sensors will be decreased. This allows space-based sensors to be a viable solution 

to help track the growing RSO problem around Earth. Figure 3 and Figure 2 below show more information 
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of the size of the RSO population around Earth, showing number of objects per size, as well as the 

percentage of types of debris respectfully.  

 

Figure 1 Space Debris in Orbit Over the Years [18] 
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Figure 2: Percentage Distribution of the RSO population taken from Space-Track Box Score March 18th, 2022.  

 

 

Figure 3: The trend of estimated number of space debris vs the debris size [19]    
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1.2 Parallel Processing for RSO Light Curve Analysis 

In the last few decades the increase in computer technology has led to an exponential increase in available 

computational power with a decrease in the average cost. This decreased cost and more computational 

power has been leveraged by the use of parallel processing in many fields. Parallel processing is the method 

for a processor to perform multiple parts of the overall algorithm at once to reduce the over all computation 

time. There are many different forms of this, the simplest is Single Instruction, Multiple Data Parallel 

Processing (SIMD). SIMD is the method of performing one instruction with multiple data sets at once. 

Compared to traditional processing SIMD has the advantage of processing multiple uncorrelated data sets 

at once instead of the traditional sequential method. In the space sector this can be implemented to decrease 

propagation time of large constellation, faster image processing, and allows for on-orbit processors to be 

used more efficiently. When working with one data set and looking to perform multiple kinds of analysis, 

Multiple Instruction, Single Data (MISD) is used. This is where one data set has multiple different type of 

instructions to be performed on it, where these instructions have no correlation or relationship between the 

instructions allowing them to be performed in parallel. While MISD is one of the more uncommon 

implementations of parallel processing, it has large implication in the space sector with different flight 

control and on-board algorithms using MISD methodology. The most complex current implementation of 

parallel processing methodology is Multiple Instruction, Multiple Data (MIMD). This is where the 

computer uses multiple processors to perform multiple different sets of instructions on multiple data sets 

all at once. This level of parallel processing requires a high level of control and was originally implemented 

on super computers with most parallel processing computers after 2013 having MIMD capability. Parallel 

processing has many implementations with the context to this thesis which include but are not limited to; 

image processing, coordinate transformations, and RSO propagation. With the space catalogue expected to 

jump and order of magnitude the implementation of parallel processing methodology can drastically reduce 

required computation time. With the satellites being uncorrelated, instead of propagating 20,000+ RSO’s 

sequentially, the 20,000+ RSO’s can be propagated using either SIMD or MIMD methodology.   
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1.3 Optical Detections of RSO’s  

RSO detections are done primarily two ways, from radar, and optical sensors. Radar is the most common 

type being able to cover large area and see smaller objects then optical detections. Optical detections have 

the advantage of providing additional information when compared to radar detections. This information 

includes the shape, attitude, and optical properties in addition to the position and velocity. When an RSO 

is detected optically its brightness varies over the detection duration. There are many contributing factors 

to the change in brightness, with some of the more significant being the Sun, Earth, RSO geometry, the 

reflective surfaces and shape of the RSO, as well as the RSO relative motion to the sensor [20]. Plotting the 

brightness vs time generates the light curve of the RSO over that sequence of optical detections. Light 

curves are commonly used astronomy for a variety of purposes such as exoplanet finding, and rotation 

period estimates of celestial bodies [21] [22]. In comparison to an exoplanet or asteroid a RSO’s the light 

curve is more complex to find due to the irregular shape and relative motion between the sensor and RSO. 

The technique of extracting information about an object from its light curve is called a light curve analysis 

and is currently a growing field, especially for RSO optical detections [23] [24] [25]. Recently in literature 

there  have been different methods of light curve analysis using different techniques such as: phase folding, 

least squares spectral analysis, glint analysis, and machine learning algorithms [22] [26] [27]. Light curve 

inversion is an iterative light curve analysis methodology that extracts additional information such as shape, 

attitude, and optical properties. There is not one algorithm for light curve inversion; it rather references a 

general process to better characterize the target object. Both techniques have been used for RSO optical 

characterisation, depending on what information is required. below Figure 4 shows the difference in 

algorithm flow between light curve analysis and light curve inversion technique.  

 

To meet the rising need for more and higher fidelity SSA optical detection of RSO’s are becoming more 

common. With the rise in number of RSO optical detections the is a direct increase in the amount of 
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computational power to analyse, extract, and estimate, SSA information such as Object ID, Position, 

Attitude etc. The integration of SIMD or MIMD, as mentioned above, has the potential to greatly increase 

the throughput of these algorithms. Specifically in the context of this thesis this is looking to be 

implemented in the simulation of RSO optical detections and extraction of information from real data. 

Simulated images of RSO detections have many uses including; estimating the suitability of future 

detections, confirming known motion in RSO’s from deviations in the light curve, and enabling the finding 

of the optical and physical properties of RSO’s [28]. Simulating images is common in other fields such as 

graphics and computer animation, the difficult part of preforming this in the context of space comes from 

the complex dynamic motion and systems that arise. Image simulation, at least in RSO context, involves 

tracing of the incoming light from all sources (active and reflective) that reach the RSO, then tracing all the 

light that reflects off of the RSO and enters the sensor. This methodology is called forward ray tracing and 

to preform this method good knowledge of all light sources are need for the system [29]. While the motion 

and brightness of larger celestial objects is well known such as the Sun, Earth, the Moon etc., the motion 

of smaller RSO’s has large uncertainty. This causes a problem with space-based sensors as in space the 

large amounts of uncertainty and error in the position, size, and optical properties of objects directly impact 

the ability to simulate the proper brightness and motion of the object. Empirical models can preform well 

under these conditions, like the Anisotropic Phong model modified for RSO applications [30], the number 

of detections required to accurately estimate RSO parameters is large and generally not available in public 

datasets. With all objects in the sensors FOV, and some outside, effecting the image there is a lot of 

information to calculate and process, causing image simulation to be very computationally intensive. 

Implementation of parallel processing methodology in the image simulator will be preformed and compared 

to sequential methods to look at the advantage of parallel processing in image simulation. Simulated images 

will also then be used to help with light curve inversion and optical characterisation process extracting 

information on the RSO from the RSO’s light curve.  
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Figure 4 represents the algorithm flow of both Light Curve Inversion (left) and Light Curve Analysis (right) 

 

1.4 RSO Optical Characterisation  

RSO characterisation represents the estimation of RSO properties and orbital characteristics from one or 

more remote detections. In the context of this thesis RSO characterisation will only refer to using optical 

detections. RSO characterisation in the context of this thesis specifically refers to finding the size and shape, 

attitude, and optical properties of the satellite. Depending on the type of characterisation being performed; 

ex. Attitude vs Spin Rate Estimation, either light curve analysis or light curve inversion techniques are used, 

respectfully. This thesis looks to perform higher fidelity characterisation than spin rate analysis leading to 

light curve inversion techniques being implemented over light curve analysis. Different light curve 

inversion techniques have been proposed all requiring a priory estimate and optimiser [23] [31] [32]. 
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Comparing a simulated (or estimated) light curve with estimated properties of the RSO to the true light 

curve the residual between the two can be calculated. After a residual is generated an optimisation algorithm 

is used to improve the estimate of parameters till the simulated light curve matches the true light curve. 

This provides an estimate of the RSO’s true properties. Being an optimisation problem with a large multi-

parameter design space it requires either heuristic or approximation algorithms to be implemented as the 

optimisation function. This creates a trade off between, accuracy, robustness, and speed. Priory estimates 

are used to reduce the search space, this limits the number of local solutions, and decrease the required time 

to converge to a global optimum. Cooperative targets, such as active satellites, have the possibility of having 

priory information available. When looking at space debris it is very unlikely to have priory information 

available, and if available is usually just the size and general shape with no attitude information. For a light 

curve inversion technique to be able to characterise all RSO’s it needs to be robust enough to not require a 

priory estimate or require only a limited shape estimate. The increasing congestion of space and recent 

increase of on orbit event such as active debris removal, and on orbit servicing demonstrate a growing need 

for such RSO characterisation techniques [33] [34] 

 

1.5 Motivation  

The motivation for this research looks to augment current SSA capability by enabling passive space based 

optical sensors to contribute to SSA. The need for increased SSA has been well document but the use of 

space based optical sensors, specifically dual purpose/ passive sensors, is a new concept that shows 

advantages over traditional terrestrial sensors. The advantages include but are not limited to; avoiding 

atmospheric effects, different viewing geometries, and not requiring sundown to take observations. The 

advantages that space based sensor provide combined with the number of low-resolution optical sensors in 

space gives the perfect environment to leverage currently available space assets, while allowing for growth 

with future space assets. Low resolutions optical sensors, such as star trackers, are common on modern 
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satellites, performing tasks such as attitude determination and remote sensing. These sensors generally have 

a large field of view making them ideal for observations of opportunity given from passive sensors. Passive 

sensing refers that the detections of RSO’s will not be the primary goal of the sensor but when an RSO does 

pass the FOV of the detector the information can be extracted and used for SSA purposes. Currently most 

optical observations are tracked observations, tracked observations require priory knowledge of the targets 

position, as well as accurate control to track the target. For RSO’s, specifically space debris, priory 

information like this is not always known making passive sensing ideal for large scale RSO identification 

and initial orbital determination. Observations of opportunity also enables RSO observations to be a 

secondary mission for optical payloads, one relevant example are star trackers images can be used for 

attitude determination, as well as RSO observations. Augmenting current low-resolution space based 

optical sensors with software updates to enable this can enable a new network of passive RSO observatories 

with out the cost and lead time of dedicated operations. To realise this goal of a passive space based RSO 

network 4 key technologies were identified to tackle current challenges. Namely, (1) parallel processing of 

RSO propagation, (2) RSO image simulation, (3) space based RSO detections (4) space based RSO 

characterisation. Below each of these technologies, the challenge they look to overcome, and how they 

technology enables passive space based RSO observations are mentioned.  

With the proliferation of RSO’s there is an increasing computational strain with more objects to be, 

propagated, simulated, and cataloged. With more RSO’s there is an increased requirement for higher fidelity 

propagation models to for conjunction warnings and rendezvous, leading to an increase in computational 

resources required. In recent papers it has been noted that current methods do not have the speed or accuracy 

to keep up with current and future SSA demands requiring a large increase in efficiency to allow for space 

to keep growing in a sustainable matter [35]. Parallel processing looks to overcome this by reducing the 

computation time increase with the increase in objects propagated. Different methodologies: such as SIMD, 

and MIMD, have the potential to reduce the amount of computational resources required by making more 

efficent use of the computational resources available. Specifically in the context of this thesis parallel 
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processing is looking to be implemented in 3 areas to improve throughput of data: RSO propagation, RSO 

image generation, and light curve extraction. This will start with a comparison of the accuracy and 

computation time of serial vs parallel propagation methodology. If parallel processing is shown to cause an 

improvement in computation time with out a decrease in accuracy, this methodology will be implemented 

in image simulation. Light curve extraction does not rely on propagation but does require the extraction of 

information from many similar images. The implementation of parallel processing will look to extract the 

light curve from sequence of images all at once, reducing the computation time. This key technology looks 

to enable and increase the impact of all other technologies through its implementation allowing for more 

efficent RSO image simulation, detection, and characterisation.   

 

To be able to properly predict, schedule, and characterise RSO’s from optical images, the images of the 

detection sequence need to be able to be replicated in a simulated environment. Currently one of the industry 

standard ways of generating this image come from Systems Tool Kit’s (STK) EOIR Toolbox. STK EOIR 

allows for user to simulate binary and raw images from both ground and space-based sensors, but it does 

have its limitations. EOIR does not produced labeled images requiring the images to be labeled through a 

UI or 3rd party software, this requires large amount of human interaction to generate data sets. To overcome 

come this a star field and RSO optical image simulator was created in MATLAB. ORBITALS looks to 

overcome the downside from STK’s EOIR by enabling the generation of simulated labeled images with 

limited human interaction in an efficent manner. ORBITALS looks to further enable SSA by providing 

labeled data sets for; RSO detection finding, RSO detection predictions, RSO identification, RSO 

characterisation, and training of machine learning algorithms. ORBITALS also further enables RSO 

characterisation by allowing for the replication of light curves with estimated parameters to be compared 

vs the observed light curve. This allows for higher fidelity characterisation of RSO’s from there light curve 

in a more efficent manner then the currently available STK EOIR software.   
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Objects detected from ground-based observation can be seen down to a size of 10 cm, which poses a 

problem with a majority of space debris being below the 10 cm size [36]. As mentioned in the previous 

section space fence looks to aid in the detection of debris down to 1 cm size through radar observations 

which will cause a large increase in the number of tracked objects in the space catalog. This large increase 

has two major effects on SSA; an increased need for better RSO scheduling algorithms, as well as the ability 

to see under 10 cm sized objects from optical observations. Increasing the number of RSO observatories, 

both in optical and radar region, to account for the increase in the space catalog has the downside of being 

expensive and having a long lead time for observatories to become operational. Better scheduling 

algorithms will help augment current and future observatories allowing them to know optimal viewing 

conditions to detect the maximum number of RSO’s. To enable the development and testing of scheduling 

algorithms test scenarios with the possible detection geometries, detection times, and detection statistics 

are required. Normally this information is not well known with real world data, using ORBITALS to 

replicate the detections of real data in a simulated environment the detection time, detection geometry and 

detection statistics can be extracted. Scheduling observations will ideally allow for the increase in number 

of detection but does not improve the size of the objects that can be seen. To be able to see smaller than 10 

cm objects better dynamic range and spatial resolution is required for current terrestrial optical sensors. To 

accomplish this larger aperture telescope with better lenses and sensors are required, increasing cost of 

building and operating these observatories. One way to over come this challenge is to augment terrestrial 

optical RSO detections with space based optical RSO detections. Space based RSO optical detection do not 

require atmospheric correction, are not limited to nighttime observations, and have the possibility of getting 

closer to the target object then terrestrial observatories. This allows for space-based observation to require 

less calibration, see smaller objects, and have a better duty cycle compared to terrestrial observations. 

Currently there are working examples of these types of sensors such as NEOSSat and SAPHIRE which are 

both Canadian space assets. These sensors act as dedicated space-based sensors, finding and tracking 

objects which allows for high resolution imagery of RSO’s. Like dedicated ground observatories these have 
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large lead times and are expensive, which is not ideal to overcome the challenges caused by the proliferation 

of space debris. In recent literature passive low resolution RSO detection have been examined and 

demonstrated to be a low cost widely available solution for augmenting current SSA efforts [37]. RSO 

detections have been shown to happen from these platforms, such as from the Fast Auroral Imager (FAI) 

and star tracker images. However, these detections being lower resolution have not yet been shown to 

acquire the same amount of data as their terrestrial counterparts. Using ORBITALS in a simulated 

environment detection statistic, object determination, as well as optical characterisation can be performed 

to see what type of information can be determined from space vs terrestrial RSO observation. This looks to 

augment and improve current SSA efforts by allowing lower resolutions sensors; which are less expensive, 

have less lead time, and are commonly used on current active satellites, to contribute to SSA. The passive 

sensing component allows for these sensors to detect RSO’s as a secondary mission not requiring tracking 

or dedicated attitude maneuvers. Ultimately this should enable all satellite with a low-resolution optical 

sensor, such as a star tracker, to act as a passive RSO observatory greatly augmenting the current number 

of observatories.  

 

With the increasing reliance on space assets for everyday functionality just identifying an RSO’s orbit is 

no longer sufficient for SSA. To get more information on the target object RSO characterisation is 

performed. RSO characterisation currently requires dedicated detections from a highly spatially accurate 

telescope. As mentioned above these types of observatories are expensive and have a large lead time. 

Currently space-based characterisation has been performed from dedicated sensors, such as NEOSSat and 

SAPHIRE, which leverages the advantages of space-based observatories. Demonstrating that RSO 

characterisation can be performed from low resolution space based RSO images will greatly increase the 

amount of SSA information available with out the required expenses and lead time as dedicated sensors.   
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Together these 4 technologies look to enable low resolution space based RSO detections to be used for RSO 

detection, tracking, and characterisation. Moving this technology to a more operational state looks to have 

a huge impact on augmenting current SSA efforts to meet the rising need. The short-term goals from this 

research look to enable RSO detections to take place from any space based optical instrument, including all 

current and future assets. Majority of satellites have either dedicated optical sensor, or star trackers which 

can be augmented to provide vital SSA contribution with out expensive infrastructure upgrades. The 

increase in number of detections will also lead to an increased need to process all of these detections and 

extract as much information on the RSO as possible. With parallel processing implemented in RSO 

characterisation solutions large number of data sets will be able to be processed in an efficient manner, 

lessening the amount of computational hardware required for SSA data processing and analysis. Long term 

goals for this research look to help train different machine learning algorithm for either in-situ or ground 

based data processing, as well as, to enable the creation of better image simulators through larger data sets. 

Improving RSO detection and characterisation technologies both for accuracy and computational speed will 

lead to improve most aspects of the space sector and Canada’s role in it. The augmentation of current SSA 

assets with the proposed technology will increase Canada’s current role in SSA and could lead to more 

ambitious project to solve the worlds need for better SSA. Canada’s large land mass and experience with 

space based SSA assets, like NEOSSat and SAPHIRE, put it in a position with the right terrestrial and 

space-based infrastructure to be the world leader in SSA. Accomplishing Canada’s goal of being Strong, 

Secure, and Engaged in the space sector.  

 

1.6 Research Objectives  

In this section each of the research objectives will be mentioned along with the technological gap that is 

causing the objective.  
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The first objective is improving the throughput of current propagation algorithms using parallel processing. 

This objective comes for the technological gap caused by the proliferation of RSO’s requiring more efficent 

propagation algorithms to keep up with the growing catalog. More efficent propagation methods are affect 

the complete space sector and are used for tasks such as access determination, conjunction warnings, 

satellite scheduling, and mission planning. This provides a unique and novel propagation method to the 

space community which will increase the throughput multi-satellite propagation. This work performed is 

explored more in chapter 3 with a summary of the contributions of the improved throughput multi-satellite 

propagator at the end of chapter 3.  

The second objective is to develop a RSO image simulation software that allows for the efficent generation 

of optical RSO detections from space-based platforms. This objective comes from the technological gap of 

the lack of efficent publicly available space based RSO simulation software’s. Currently there are a few of 

these software’s that are on the market but have their limitation including requiring expensive licences, not 

providing labeled images, and taking seconds to minutes to generate one image. This allows the ORBITALS 

image simulator to provide a unique roll allowing for the generation of large simulated image sets efficiently 

and accurately with out expensive licences. This research objective is explored more in chapter 4 with a 

summary of the contribution of the RSO image simulator at the end of chapter 4. 

The third objective, and main focus of this thesis is to demonstrate the feasibility of performing RSO 

characterisation from space based optical observations. This objective come from the current technology 

gap in space based optical characterisation. There have been different techniques proposed for the 

characterisation of RSO’s from high resolution terrestrial observations, but there has only recently have 

space-based observations been looked at in this context. Terrestrial is more common due to the availability 

of data for training and algorithm development. This is looked to be overcome by developing an image 

simulator that is able to generate labeled data sets similar to those present for terrestrial observations. This 

provides a novel method to allow for low resolution detection of RSO’s to provide more that just orbital 

information. With the proliferation of RSO’s this unique and novel method will allow for more information 
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to be extracted from light curves of RSO’s to meet the rising need for better SSA. This research objective 

is explored more in chapter 5 with a summary of the contribution of the feasibility of performing RSO 

characterisation from space based optical observations to the research objectives at the end of chapter 5. 

Together these three objectives look to improve the TRL level of low-resolution space based RSO 

detections and characterisation by demonstrating the feasibility and showcasing the accuracy of the 

proposed methods. 

 

1.7 Thesis Outline 

In this thesis the all the background information needed will be outlined in section 2, chapters 2 through 5 

contain the published studies performed. Chapter 3 is the first technical chapter and focuses on the 

implementation of parallel processing in orbital propagation. The initial study, as well as the follow up 

study focusing on parallel orbital propagation for spacecraft maneuver detection. Both the studies set up, 

and results are discussed in this section including the implementations that these studies have on the other 

key technologies. Chapter 4 focuses on the ORBITALS simulator and comparing it to the industry standard, 

STK EOIR. To do this both ORBITALS and EOIR simulated images are compared against truth data, in 

the form of real space-based images from the FAI. Both the accuracy of the RSO position in image and the 

computation speed is compared between the two image simulators. Chapter 5 uses the ORBITALS 

simulator to test the feasibility of space based low resolution optical characterisation of RSO’s. To perform 

this study different optimisation and bidirectional reflectance distribution functions were compared in the 

ORBITALS optical environment. The optimal results from this study are then looked to be implemented in 

the real-world environment to verify the results. Chapter 6 looks to summarize the main findings of this 

thesis, as well as mention the future areas of work to be expanded upon.  
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2 Background Information 

2.1 RSO Propagation Method 

To estimate the location of RSO’s a propagator and known position at a given time is required. Orbital 

propagators take an RSO’s position at a known time, then calculate the acceleration on the object using a 

force model. Once the acceleration is calculated the RSO’s motion can be approximated, allowing for the 

estimation of its position at some future point. This, for most propagators, creates a trade off between the 

accuracy of the system and the computational time, the more sophisticated the model the more 

computational time is required. All orbital propagators start by considering the two-body gravitational 

problem with one of the objects mass, in this case Earths, being much more massive than the RSO’s mass 

that is in orbit around it. This leads to equation 1-3 which is the acceleration of the RSO as a function of 

position around the larger object. These equations are a series of Ordinary Differential Equations (ODEs) 

used to solve for the position of the orbit of the RSO in ECI coordinates, this is called the state propagation 

method [38].                          
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In equations 1 to 3: 𝜇 represents the standard gravitational parameter for Earth. Xe, Ye and Ze represent the, 

X, Y, and Z, position of the satellite in the ECI reference frame respectfully. This is the base model for 

orbital propagation requiring numerical methods to solve for the coupled ODE equations which is shown 

in equation 4 below  [39].  
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In equation 4: R represents the distance vector from the center of Earth to the satellite. μ represents the 

gravitational coefficient for earth. The two-body problem is a solvable problem with a closed form solution 

represented by equation 5.  

 
𝑹(𝜃) =

ℎ2

𝜇

1

(1 + 𝑒𝑐𝑜𝑠(𝜃))
 5 

 

In equation 5: 𝜃 represents the true anomaly. e represents the eccentricity. 𝜇 represents the standard 

gravitational parameter. h represents the specific relative angular momentum.  

An alternate form of propagation uses closed form solution of the two-body problem. Where the Keplerian 

elements are used to represent the RSO’s motion instead of a state vector. The Keplerian elements are 6 

elements that perfectly describe the position and orbit of a satellite, the elements and their descriptions are 

listed in Table 7 and shown in Figure 5.  

Table 7 The Different Keplerian Elements  

Name Variable  Units  Description  

Semi Major Axis a Distance (commonly 

Km)  

The largest line segment that runs through 

focus to each side of an ellipse. Has 

different definitions for parabola and 

hyperbola.   

Inclination  i  Degrees or radians  The angle between the orbit plane and the 

equatorial plane of the earth.  
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Name Variable  Units  Description  

Eccentricity  e  Unitless  Gives the shape of the orbit with 0 

representing circular, 0 to 1 representing an 

ellipse, 1 representing a parabola, and 

greater than 1 representing a hyperbola. 

Argument of perigee 

(periapsis)  

𝜔 Degrees or radians  The argument of perigee is an angle that 

passes from the ascending node to the 

perigee of the orbit.  

Right Ascension of 

the Ascending Node 

(RAAN)  

Ω Degrees or radians  The angle measured from the vernal 

equinox reference point to the ascending 

node of the RSO.  

True Anomaly  𝜃 Degrees or radians  The angle from the perigee to the target 

RSO about Earth.  

Mean Anomaly* M Degrees or radians  The angle from the perigee to the target 

about Earth if the RSO was in a circular 

orbit.  

Mean Motion* No Degrees or radians per 

second  

The angular speed at which the RSO would 

move from an observer on Earth if the RSO 

was in a circular orbit.  

* The mean motion and mean anomaly are not required Keplerian elements but are required when it comes 

to propagation of the RSO’s orbit.  

There are only 6 required elements to find an RSO’s position which are the semimajor axis, inclination, 

eccentricity, argument of perigee, RAAN and one of the anomalies. Different types of anomalies are used 

in difference instances with the main two being the mean anomaly and true anomaly. The true anomaly 

gives the angle from the argument of perigee to the target RSO, about the Earth’s center. The mean anomaly 
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gives the true anomaly of the RSO if it was in perfectly circular orbit. Due to Kepler’s 2nd law the amount 

of area taken from an elliptical and circular orbit is the same over a time period. From this the mean and 

true anomaly can be changed between each other, the equations for transformation are shown in equations 

6 and 7.   

In equations 6 and 7: 𝜃 represents the true anomaly. e represents the eccentricity. 𝐸 represents the eccentric 

anomaly. 𝑀 represents the mean anomaly.  

 

Figure 5 Diagram of the Keplerian Elements [40] 
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Both anomalies can tell where the satellite is in its orbit, with each anomaly having its specific use for 

propagation. The true anomaly allows for the position of an ecliptic orbit to be transformed into cartesian 

coordinates commonly ECI. The mean anomaly has the advantage having a constant rate of change (in an 

ideal two body system), this allows for the easy propagation of the mean anomaly. To propagate a satellite 

orbit using the Keplerian elements, and the closed form solution, the mean motion, and mean anomaly are 

used for the propagation. The other orbital elements describe the orientation of the orbital plane relative to 

Earth coordinate systems. The mean motion will represent the change in mean anomaly which represents 

how far a RSO will progress in its orbit over a given time step. Knowing the change in mean anomaly and 

the time, 𝑡, the updated mean anomaly can be calculated with equation 8. Unlike using the state propagation 

method using the mean motion and Keplerian elements does not require intermediate points to be 

considered. This allows the position to be calculated quicker than state propagation models, as well as the 

computation time not depending on propagation time. The downside to Keplerian propagation is that it does 

not include any perturbations making the propagator become inaccurate after a few orbits. Keplerian 

propagation does work well when requiring a RSO to be propagated over a small-time step and to be 

calculated quickly.  

𝑀𝑡 = 𝑀𝑜 + 𝑁𝑜𝑡 8 

In equation 8: 𝑀𝑡 represent the mean anomaly at some future time 𝑡. 𝑀𝑜 represents the mean anomaly at 

the starting point. 𝑁𝑜 represents the mean motion of the RSO. 𝑡 represents the amount of time passed from 

the initial to final mean anomaly.  

Both the two-body state vector propagation and Keplerian propagation only account for Earth and the RSO 

to be the only objects in the system, in reality the system is much more complex. In reality effects such as 

atmospheric drag, solar and lunar gravitation, and solar radiation pressure change the orbit of the RSO over 

time causing both the two body and Keplerian propagator to be inaccurate for long period of propagation. 
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To over come this a perturbation term is included in equation 4 forming equation 9 where the perturbation 

term depends on the perturbation model used.  

 �̈� −
𝜇

|𝑹|3
∗ 𝑹 + 𝐏 9 

 

In equation 9: 𝑹 represents the distance vector from the center of Earth to the orbiting object. 𝑷 represents 

the vector of the perturbation’s contribution to the acceleration of the orbiting object. Two propagation 

models that will be looked in this thesis are the J2 Perturbation model, which will be implemented as a 

feasibility study for parallel processing of orbital propagation. If the results are promising the more complex 

Special Generalized Perturbation Model 4 (SGP4) will be implemented and tested for common space 

applications such as orbital maneuver detection, and large catalog propagation.  Both the theory behind 

these two different models, as well as, how each of the models were implemented for this thesis will be 

discussed in their respective sections below.  

2.1.1 J2 Perturbations  

The J2 perturbation model is a force model of the first gravitational harmonic caused by Earth being a 

spheroid. The J2 model is normally used when propagating satellites for days to weeks, when low accuracy 

position information is needed. Beyond a couple of days, the accuracy of the J2 model in not sufficient for 

accurate propagation. The J2 model is commonly used for academic or simple LEO propagation where the 

time steps are extremely small. The J2 model is the simplest of the state propagation methods that involve 

perturbations making it an ideal case to test different coding practises, and implementation of parallel 

processing for this thesis. The J2 force model is well known for state vectors and is shown in equation 10-

12 which represent the X, Y, and Z axis in the ECI coordinates, respectfully [38] [41]. 
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In equations 8 to 10: 𝐽2 represents the second gravitational harmonic of Earth. 𝜇 represents the standard 

gravitational parameter. 𝑅𝐸 represents the mean radius of Earth. 𝑅 represents the scalar distance to the RSO 

from the center of Earth. 𝑋𝑒, 𝑌𝑒, and 𝑍𝑒 represent the RSO’s coordinates in the ECI coordinate system. The 

J2 perturbation model when applied to equation 9 leads to equations 13-15 which represent the force in 

each ECI axis.  
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The above equations are used with numerical methods to solve the ODE for the RSO’s position, the different 

numerical methods used in this thesis are explained in section 2.6. If you are looking for more information 

on J2 perturbations some references are [38] [41] [42]. The results from the implementation of the J2 

algorithm can be seen in section 3.1, Initial Feasibility Study. 

2.1.2 Specialized General Perturbation Method 4  

Specialized General Perturbations Method 4 (SGP4) and other variations of Keplerian propagators start 

with an initial point similar to state propagators. SGP4 takes the initial point from a Two-Line Element 

(TLE) instead of being a state vector. A TLE contains the Keplerian elements, mentioned above in Table 

7, with auxiliary timing and drag information, for more information of TLE’s please see [43]. Currently 

TLE’s are the standard but are getting phased out due to the limited amount of space objects that can be 
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recorded in the TLE format. The new space standard is looking to move to the Orbital Mean Elements 

Message (OMM). OMM contains the same information as a TLE in a different format with covariance 

matrices that are not given in TLE’s, more information on OMM can be found at [44]. The standard two 

algorithms used are SGP4 and Special Deep Space Perturbation Method 4 (SDP4). These algorithms follow 

the same architecture with SGP4 focusing on perturbations that effect LEO RSO’s, like atmospheric drag. 

SDP4 focuses on RSO’s that are further away from Earth allowing the drag to be simplified but requires a 

more complex 3rd body perturbation model. Most RSO’s that are currently of interest in this thesis are in 

the LEO region of space which is why the SGP4 was originally implemented. As the propagation of GEO 

and other non-LEO satellites became required for this thesis the original SGP4 method was upgraded to 

SDP4 to allow the propagation of all RSO’s around Earth. The 6 Keplerian elements can be used for simple 

propagation using the mean anomaly and mean motion, shown above in equation 8. The SGP4 method was 

developed to reflect the perturbations on the RSO as changes in there Keplerian elements over time. This 

allows the algorithm to account for perturbations while providing a computationally efficient method of 

calculating the RSO position. These updated parameters are then used to calculate propagation constants 

such as drag and gravitational coefficients. After all the initial values have been calculated the propagation 

loop is entered where the perturbations are added, such as: Earth's obliquity, atmospheric drag, 3rd body 

perturbations, etc. To perform this the perturbations are split into sections and calculated for each 

propagation time. The sections are secular effects of atmospheric drag and gravitation, long-period 

periodics, and short-period periodics. Once all of perturbations have been included as changes in the 

Keplerian elements the state of the RSO is calculated from the updated elements, returning the position and 

velocity in the form of a state vector. The position and velocity returned by the SGP4 algorithm are given 

in True Equator Mean Equinox (TEME) coordinate system, this is because TLE’s are made for the TEME 

coordinate system [45]. To transform this coordinate system into other commonly used space coordinate 

systems, such as J2000, see [46]. With propagation using SGP4 and SDP4 not requiring intermediate steps 

multiple propagation times can be performed at once in parallel. This does not reduce the accuracy of the 
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results while increasing the throughput of the propagator. SGP4 and state vector propagation can both 

implement parallel propagation for each RSO, as they are independent of each other. When it comes to 

implementing parallel propagation for the different time steps only SGP4 can be implement with out 

sacrificing accuracy. This ability of SGP4 to use parallel processing for each RSO and time step allows 

SGP4 to be an ideal propagator in the context of this thesis for RSO access and detection finding. If you 

are looking for more information about the SGP4 algorithm, CelesTrack (https://celestrak.com) has good 

information, as well as, the original report for SGP4 [47]. Recently a new release of SGP4 called SGP4-X 

has been introduced. This updated algorithm follows the same flow while updating some of the perturbation 

estimates to improve accuracy, the updated algorithm and all of its changes can be found on the space track 

website (https://www.space-track.org/).  

2.1.3 Parallel Specialized Perturbation Method 4 (PSG4) 

PSGP4 is a version of the SGP4 propagator that is set up to propagate RSO’s in parallel. Due to the 

propagation of RSO’s following almost the same architecture and having no correlation between different 

RSO’s, this allows for implementation of SIMD parallel processing. This is shown from the algorithm block 

diagram, Figure 6. While there are some sections where SIMD is not possible, such as the solving of 

Kepler’s equation which is performed iteratively, it is implemented in a significant portion to see 

improvements in computation time with out a reduction in accuracy. This can be seen from the 

implementation of PSGP4 for maneuver detection in Parallel Propagation for Orbital Maneuver Detection 

[48]. Since the paper was published in 2020 the PSGP4 algorithm has been updated to include the 

Specialized Deep Space Perturbation Method 4 (SDP4). The difference between SGP4 and SDP4 is that 

SDP4 is used for objects with an orbital period above 225 minutes with SGP4 being for objects with periods 

below 225 minutes. The SDP4 algorithm follows the same architecture as the SGP4 algorithm with some 

added functions and different coefficients, this allows SDP4 to be integrated with a set of sub functions 

which are represented on the left side of Figure 6. 

https://celestrak.com/
https://www.space-track.org/
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Figure 6: PSGP4 Algorithm Block Diagram, where the color represents the different implementations of SIMD processing. On the 

left of the main flow the additional PSDP4 functions are shown with the location of the implementation. 
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2.2 RSO Detections  

To discuss RSO detection first the definition of what a detection means in this context is needed. In this 

thesis we use Samuel Clemens’ definition of a detection and access [37]. A detection is when a RSO is in 

the Field of View (FOV) of the sensor and has a Signal to Noise Ratio (SNR) that is larger than the minimal 

detectible SNR. An access is defined as where an RSO is in the FOV of a sensor but does not have a large 

enough SNR for detection. The definitions are transformed into the basic equations 16 and 17.  Equation 

16 represents if a RSO is in access, while equation 17 represents if a RSO is detected. 

 
𝐴𝑐𝑐𝑒𝑠𝑠 = {

1 , 𝜃𝑅𝑆𝑂𝑛 < 𝜃𝐹𝑂𝑉

0 ,         𝜃𝑅𝑆𝑂𝑛 > 𝜃𝐹𝑂𝑉
 16 

   

 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = {

1,    𝜃𝑅𝑆𝑂𝑛 < 𝜃𝐹𝑂𝑉 𝑎𝑛𝑑 𝑆𝑁𝑅𝑅𝑆𝑂 > 𝑆𝑁𝑅𝑀𝑖𝑛  
0 ,            𝐸𝑣𝑒𝑟𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒                              

 17 

 

In equations 16 and 17: 𝜃𝑅𝑆𝑂𝑛 represents the angle from the boresight of the sensor to the RSO. 𝜃𝐹𝑂𝑉 

represents the half angle FOV of the sensor. 𝑆𝑁𝑅𝑅𝑆𝑂 represents the SNR of the RSO as detected from the 

sensor. 𝑆𝑁𝑅𝑀𝑖𝑛 represents the minimum SNR that the sensor can detect.  

Equation 16 and 17 give the basic physical model of what is required for an access or detection, when 

operating with a real star tracker other constraints are considered. Other real-world constraints include the 

Earth exclusion angle, Sun exclusion angle, and eclipses, to name a few. These definitions of access and 

detection were used to generate different simulated results for COTS star trackers. In Table 8 the results 

from detection and access simulations are shown for different mounting geometries. From the results it 

can be seen that the number of detections and access heavily depend on what direction that the star tracker 

is facing, with the anti-sun having the largest number of detections and zenith having the fewest [37]. 

Over a full 24 hours of observations from the FAI had total detections of over 3127 detected, and 2345 

unique objects. In Table 9 the pricing comparison between different RSO detection methods are shown. 
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Comparing the price between terrestrial, active space sensors, and passive space sensors it can be seen 

that passive RSO tracking can become the most affordable option using COTS sensors. Currently passive 

sensors from space-based stations are not widely implemented due to the technology readiness level 

(TRL) being low in comparison with other more widely used methods. Increasing the TRL level through 

simulated environment tests, as well as, finding and correlating known RSO’s from COTS space-based 

sensor data looks to enable the use of passive space-based sensors on future and current missions. In 

Table 9 the results from detection and access simulations are shown for different mounting geometries. 

From the results it can be seen that the number of detections and access heavily depend on what direction 

that the star tracker is facing, with the anti-sun having the largest number of detections and zenith having 

the fewest [37]. 
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Table 8: Number of Estimated Detection Possible in a Simulated Environment [37] 
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Table 9: Price Comparison of Different Types of RSO Detections [49] 

 

 

2.2.1 Signal to Noise Ratio in Defining RSO Brightness 

The SNR of an RSO represents the ratio of the received signal to the noise floor. High SNR for detections 

represents that the RSO’s intensity can easily be determined from the background noise. Low SNR 

detections are harder to find and extract the RSO’s intensity accurately, requiring more post processing to 

remove the noise present. Different optical sensors have different minimum SNR ratios that objects can be 

detected, for the FAI used in this thesis the SNR min used is 6. Being able to accurately simulate the SNR 

of RSO detections allows for the quality of detection to be determined for scheduling, correlation, and 

characterisation. To calculate the SNR of an RSO’s optical detection equation 18 [49], is used with the 

general equation being the first equation and the simplification in the context of this thesis shown below. 

This models most of the major noise sources present in a standard optical system. The noise sources have 

many sources with varying knowledge on accuracy. Better knowledge of these noises and the sources in 

the system leads to better extraction of the signal, allowing for lower SNR detection to be feasible.  
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In equation 1817; 𝑒𝑠 represents the signal received, in the case of optical detections it is received electrons.  

𝛿𝑑 represents the thermal noise of the sensor, also referred to as dark current. 𝛿𝑟 represents the read noise 

of the sensor, which is caused from the pixel wells and ADC, in most cases read noise provides an absolute 

limit to the accuracy of the readings. 𝛿𝑠𝑠 represents the shot noise of the sensor which follows a Poisson 

distribution and is due to the discrete nature of light. 𝛿𝑏𝑔 in the noise contribution from all background 

sources of signal such as Stars, Moon, Zodiac, and more. 𝑁𝐷𝐶 represents the number of electrons received 

per second due to the dark noise, this is normally given for a CCD/CMOS, or it is found through calibration. 

𝑡𝑖𝑛𝑡 represents the integration time over which the signal was acquired. 𝑒𝑠𝑠 and 𝑒𝑏𝑠 represents the electrons 

received from the shot noise, and background noise, respectfully. In this thesis the signal to noise ratio will 

be used as a way to determine detections vs access. In the future the analysis and simulation of the SNR of 

detections can lead to; better scheduling of detections, better observatory location planning, and the training 

of machine learning algorithms for a wide variety of SSA applications.  

2.2.2  Detection Algorithms for Low Resolution Space Based RSO Detections 

With passive space-based sensors, such as star trackers, taking images regularly for there primary mission 

the images need to check to determine if there are RSO present in the image or not. To figure out what 

images contain RSO’s vs which ones don’t a detection algorithm is used to search the star tracker images. 

RSO detection algorithms have two main goals, to find out if an RSO is in the image, as well as find the 

location, size, and brightness of the RSO in the image. The location of the RSO in the image if given in an 

image sequence can be used for angle only orbital determination. The size of the RSO in the image 

represents the number of pixels that are lit from the object, this gives the quality of the detection. As most 
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to all of the objects being detected are sub pixel size the spreading of the signal over multiple pixels comes 

from the Point Spread Function (PSF), with a smaller PSF representing a better-quality detection than larger 

found PSF. This will be covered in more detail in 2.5.3. The intensity of the RSO represents the amount of 

reflected flux received by the detector, this is used to generate a light curve allowing for further analysis. 

Determining if an image has an RSO detection will allow for filtering of the images in-situ, allowing only 

the ones with RSO’s in them to be downlinked to the ground, or compressed and packaged for downlink. 

As downlinks from spacecrafts have a limited data budget having every image downloaded is not feasible 

for a passive system with out interrupting the main satellite mission. The filtering of the images in-situ aids 

with this limiting the number of images that need to be downloaded, but full quality images contain a large 

amount of data which would need to be downlinked for each detection. Due to the downlink data restrictions 

downloading images would make the system infeasible, a solution to this is to just downlink the pixels of 

interest, or the magnitude and location of the RSO. Exploiting the fact that a majority of the image can be 

disregarded a lit pixel list can be made which contains the row, column and intensity for each pixel 

associated with an RSO. Having a detection algorithm that finds the centroid of RSO’s in the image allows 

for just the pixels for each RSO to be extracted, with the standard RSO size being 1 pixel with some spill 

over due to the PSF on average only 9 to 25 pixels need to be downlinked for each detection. With each 

pixel requiring 4 bytes to downlink; one byte containing the row, one byte containing the column and 2 

bytes containing the DN value of the pixel. For an image with 1 RSO detection this reduces the required 

downlink size from megabytes of data to only 36 bytes of data, which makes the downlink of detection data 

feasible as a passive system. From which the RSO can be further analysed on the ground using the lit pixel 

list.  

 

For this thesis developing a detection algorithm is outside the scope of the work, this is because detection 

algorithms are well defined for other applications with there being some made for RSO detections. Instead, 

the detection algorithms used for this thesis are made by Magellan Aerospace specifically for RSO 
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detections from passive low-resolution space-based images. The two different detection algorithms used in 

the research are GLARED (Graphically Learned Algorithm for RSO Enhanced Detection) which is a 

machine learning algorithm and STARED (Star Tracker Analytic RSO Enhanced Detector) which is an 

analytical algorithm. A continuation of this is research currently being performed by the Nano Satellite 

laboratory at York testing different detection algorithms. More information on the different detection 

algorithms developed by Magellan Aerospace can be found here [49]. More information on York’s work 

on detection algorithms can be found here [50]. This thesis will focus on the replication of detection from 

simulated images which will be gone over in chapter 4.  

 

2.3 Light Curve Analysis 

Light curve analysis, in the context of optical RSO detection, refers to the use of the light curve to determine 

physical characteristics of the RSO. Different types of methods from astronomy and planetary science are 

looked at for the purposes of RSO characterisation: phase dispersion minimization, Fourier analysis, least 

squares spectral analysis and glint analysis [51] [52] [53]. One method that is used for RSO characterisation 

but not always astronomy and planetary science is light curve inversion. Light curve inversion differs from 

the astronomical methods by giving the shape, attitude, and/or optical properties not just the spin period 

like the other mentioned methods. Light curve inversion is more computationally intensive and requires 

more background information then the other light curve analysis methods. All of these methods will be 

summarized below with which method is being selected for this research looked at in section 2.3.2. 

2.3.1 Fourier Analysis  

Fourier analysis of an objects light curve is done by taking the Fourier transform of the light curve to view 

the light curve in the spectral domain [54]. Fourier analysis has the advantage of being computationally 

efficient, as well as, easy to implement in most coding languages with fast Fourier transform function being 

common predefined functions. Fourier analysis provides the power spectrum of the light curve in the 
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spectral domain, this includes the RSO spin rate, its harmonics and other distortion. The downside with 

Fourier analysis is that Fourier transforms require a constant sample rate to be used. This causes light curves 

that having missing measurements or varying sample rates not to be able to use Fourier analysis. A method 

that gets nearly the same result as Fourier analysis but can handle non consistent time series is the least 

squares spectral analysis method. For this reason, Fourier analysis is not considered to be a robust enough 

light curve analysis method for RSO light curves. For this reason, Fourier Analysis will not be tested in this 

thesis.  

2.3.2 Overview of Light Curve Analysis Techniques  

The above methods all provide a good selection for RSO characterisation with most methods being 

previously implemented. The light curve analysis methods give the spin rate of the object, but with current 

SSA needs more information is required. For this reason, light curve inversion is implemented to determine 

the attitude, shape, and optical properties of the RSO. This information is becoming more needed in the 

space environment to determine if space crafts are adhering to deorbit protocol, to see if active satellites are 

performing as they should, as well as, assisting in the initial attitude assessment for active debris removal 

[7].  

2.3.3 Least Squares Spectral Analysis 

Least Squares Spectral Analysis (LSSA) is a method that fits sinusoidal waves and generate a power spectral 

density of the function. LSSA is a very similar method to Fourier transform, both generating the power 

spectral density [55]. LSSA has the advantage of not requiring constant sampling rates and other restrictions 

of Fourier transforms. For this reasons LSSA is chosen in place of Fourier transforms to acquire the power 

spectral density of the light curve and use that for determination of characteristics of the light curve. The 

equations for LSSA is shown are below, with equation 19 representing the formula to calculate the residual, 

equation 20 represents the design matrix, equation 21 represents the estimated LSSA states, equation 22 
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represents the amplitude values for the frequency being looked at, and lastly equation 23 represents the fit 

of the LSSA which is 0 for a perfect fit. 

 𝑟 = 𝐹(𝑡𝑖) − 𝐿𝑆𝑆𝐴(𝜔𝑗, 𝑡𝑖) = 𝐹(𝑡𝑖) −  Φ(Φ𝑇𝐶𝑓
−1Φ)

−1
ΦT𝐶𝑓

−1𝐹(𝑡𝑖) 19 

 Φ = [cos(𝜔𝑗, 𝑡𝑖) , sin(𝜔𝑗, 𝑡𝑖)] 20 

 𝐿𝑆𝑆𝐴(𝜔𝑗, 𝑡𝑖) = 𝑥1 cos(𝜔𝑗𝑡𝑖) + 𝑥2 sin(𝜔𝑗𝑡𝑖) 21 

 𝑥 = (Φ𝑇𝐶𝑓
−1Φ)

−1
ΦT𝐶𝑓

−1𝐹(𝑡𝑖) 22 

 Θ𝐿𝑆𝑆𝐴 = 1 −
𝐹(𝑡𝑖)𝑇𝐶𝑓

−1𝐿𝑆𝑆𝐴(𝜔𝑗, 𝑡𝑖)

𝐹(𝑡𝑖)𝑇𝐶𝑓
−1𝐹(𝑡𝑖)

 23 

In equations 19 to 23: 𝑟 represents the residual from the found light curve to the LSSA fitted light curve. 

𝐹(𝑡𝑖) is the true light curve brightness at point 𝑡𝑖. 𝐿𝑆𝑆𝐴(𝜔𝑗, 𝑡𝑖) represents the Least Squares Spectral 

Estimate with a frequency of 𝜔𝑗 at point 𝑡𝑖. Φ represents the state matrix used in least squares analysis, this 

is represented by equation 20. 𝐶𝑓 represents the covariance matrix for least squares analysis. 𝑥 represents 

the estimated parameters used in least squares analysis, for LSSA it represents the amplitudes of the 

sinusoids with frequency 𝜔𝑗. Θ𝐿𝑆𝑆𝐴 represents the fit of the sinusoids to the found light curve, this ranges 

from 0 to 1 with 0 representing a perfect fit.  

2.3.4 Phase Dispersion Minimization   

The Phase Dispersion Minimization (PDM), also called Phase Folding, method is very popular in the 

astronomical field, as it allows for the period of rotation to be extracted from non sinusoidal light curve 

patterns [56]. This method has the advantage of not requiring perfect sinusoidal periodics to determine the 

spin period. First a range of possible spin periods is estimated limiting the number of phases. From there 

the light curve is split into sections the length of the spin period being examined. These periods are then 

stacked on top of each other which is used to find a residual from the difference between the period chosen 

and the total light curve. The difference between the length of the total light curve and the small section 

being folded is called the phase. The stacked light curve sections are then binned to find the variance 
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between each of the sections of the light curve. If the phase chosen is similar to the spin rate of the RSO 

the variance in the brightness should be minimal, if the period does not correspond with the spin rate there 

will be a high variance in the answers.  The variance of each bin is then used to calculate a value between 

0 and 1 (0 being the best fit and 1 being a poor fit), with the frequency corresponding to the lowest value 

being the estimated spin rate of the target RSO [57]. PDM has the advantages of allowing the underlying 

trends for light curves with large gaps or low sample rates to be reconducted from the PDM [58]. Equation 

24 and 25 shows the range of frequencies chosen to search over, equation 26 shows how the phase is 

calculated for each point, and equation 27 to 29 showing the calculation of the variance [56]. The required 

input parameters to PDM are shown in Table 10.  

Table 10 Input Parameters for PDM 

Parameter Variable  

The lowest frequency to be tested.  𝑓𝑙𝑜𝑤 

The highest frequency to be tested.  𝑓ℎ𝑖𝑔ℎ 

The step size of the frequency, used to control the 

accuracy of the solution.  

𝑓𝑠𝑡𝑒𝑝 

The number of bins that the phase gets grouped 

into, this is also used to control the fidelity of the 

system. 

𝑁𝑏𝑖𝑛 

 

 𝑖 =
𝑓ℎ𝑖𝑔ℎ − 𝑓𝑙𝑜𝑤

𝑓𝑠𝑡𝑒𝑝
 24 

 𝑓(𝑖) = 𝑓𝑙𝑜𝑤 + 𝑓𝑠𝑡𝑒𝑝 ∗ 𝑖 25 

 𝑟𝑒𝑚(𝐹(𝑇), 𝑓(𝑖)) = 𝑃ℎ𝑎𝑠𝑒 26 

 𝜎𝑆
2 =

∑(𝑦𝑖 − �̃�)2

𝑁𝑆 − 1
 27 
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 𝜎𝑇
2 =

∑(𝑁𝑆 − 1)𝜎𝑆
2

∑ 𝑁𝑆 − 𝑁𝑏𝑖𝑛
 28 

 ΘPDM =
𝜎𝑆

2

𝜎𝑇
2 29 

In equation 24 to 2529: 𝑓𝑙𝑜𝑤 represents the lower frequency bound set by the user. 𝑓ℎ𝑖𝑔ℎ represents the 

higher frequency bound set by the user. 𝑓𝑠𝑡𝑒𝑝 represents the frequency step size set by the user. 𝑖 represents 

the number of iterations, which represent different folds, to be performed. 𝑓(𝑖) represents the frequency 

selected for folding on ith iteration. 𝐹(𝑇) represents the total frequency of the observed signal. 𝑃ℎ𝑎𝑠𝑒 

represents the phase shift, this needs to be considered as not all frequencies will create a perfect multiple of 

the total frequency. Assigning each point, a phase, for in respect to the examined frequency, allows for the 

grouping of the phases not to lose any data to non perfect multiple of the signal frequency. 𝜎𝑆
2 represents 

the variance in one bin, bin S, of the folded light curve. 𝑦𝑖 represents the different points that fit in the 𝑆 

bin. �̃� represents the mean of the different points that fit in the 𝑆 bin. 𝑁𝑆 represents the number of points in 

bin 𝑆. 𝜎𝑇
2 represents the total variance of all the folded sections. 𝑁𝑏𝑖𝑛 represents the number of bins used 

for the phase folding. ΘPDM represents the fit of the chosen frequency ranging between 0 and 1 with 0 being 

a perfect fit.  

2.3.5 Glint Analysis 

Compared to the other methods mentioned above glint is very different. Glint analysis looks at the 

periodicity between the peaks in the light curve instead of trying to take a look at the complete curve. A 

glint is a specular (mirror like) reflection off of a surface instead of diffuse reflection which is normally 

seen off of RSO’s, for more information see section 2.5. Specular reflection happens when specific viewing 

geometry between the light source, object, and detector is achieved. This method has been used since the 

70’s with papers being published containing phase functions of common satellite shapes called facets [20] 

[59].  
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An example of a light curve that is good for glint analysis is shown in Figure 7. From Figure 7 it can be 

seen that the brightness has periodical peaks that correspond with the spin rate of the satellite, or one of its 

harmonics. One of the challenges, when it comes to glint analysis, is differentiating between periodic spikes 

and the true spin rate. The peaks in Figure 7 show a spin period of around 12.6 seconds, taking only the 

wider peaks gives a spin period of approximately 25.3 seconds. The two different peaks could correspond 

to different solar panels or reflective surfaces. With out prior knowledge of the satellites shape it is hard to 

determine which spin period is the satellites true spin rate. In the case of KMS 3-2 the satellite has one large 

polar panel facet made up of deployable solar arrays and is reported to be tumbling since its launch [60]. 

Glint analysis has the advantage of being very computationally efficent looking at only the peaks in the 

curve not the whole curve, also it does not need to do repetitive calculations unlike PDM and LSSA.  

 

Figure 7 KMS 3-2 light curve taken on Feb 2, 2016. [60] 

 

2.3.6 Light Curve Inversion 

Light curve inversion is not one single method, but rather an umbrella term that cover different methods 

that determine more information about the object than standard light curve analysis methods. Standard light 
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curve analysis methods find the spin rate with light curve inversion finding other properties such as shape, 

size, and optical properties. This main way of performing light curve inversion is through a facet analysis 

of the RSO. Facets are surfaces with a well know Bidirectional Reflection Distribution Function (BRDF). 

To create an accurate 3D model of the target RSO different facets are put together represent the shape of 

the satellite, I the form of reflective surfaces. Equation 30 through 35 shows the implemented example, in 

the context of this thesis, of the calculations required for light curve inversion, with a description of the 

variables and procedure below [31].  

 𝑭 = 𝐴𝒔 30 

 𝐴𝑖𝑛 = 𝐵𝑅𝐷𝐹(𝑵𝑛,𝑠𝑒𝑛, 𝑵𝑛,𝑠𝑢𝑛, Φ𝑝𝑖
)𝛼𝑛 31 

 𝑺𝒏 = 𝑒𝐸𝐴𝑛 32 

 𝜒𝑝
2 = 𝑎𝑟𝑔min | ∑

𝑭𝑘 − 𝐴𝑘𝒔

�̅�𝑘
| 33 

 𝜒𝑓
2 = 𝑎𝑟𝑔min |𝑭 − 𝑐𝑠𝑐𝑎𝑙𝑒𝑭𝐿𝐶𝐼| 34 

 𝑐𝑠𝑐𝑎𝑙𝑒 =
∑ 𝑭𝑘𝑭𝐿𝐶𝐼

𝑘

∑ 𝑭𝑘2
 

 35 

 

In equations 30 to 35: 𝑭 represents the matrix of brightness measurements. 𝐴 represents the design matrix 

which in this case represents the bidirectional reflectance distribution function. 𝒔 represents the matrix of 

the facet sizes and shape, described in more detail in section 2.5. 𝑵𝑛,𝑠𝑒𝑛 represents the normalized vector 

in the facet frame 𝑛 to the sensor. 𝑵𝑛,𝑠𝑢𝑛 represents the normalized vector in the facet frame 𝑛 to the Sun. 

Φ𝑝𝑖
 represents the phase angle in the facets frame. 𝛼𝑛 represents the reflectivity of facet 𝑛. 𝐸𝐴𝑛 represents 

the effective area of facet 𝑛. 𝜒𝑝
2 represents the preliminary set of parameters found to represent the best 

estimated states. 𝜒𝑓
2 represents the final set of parameters found to represent the best estimated states. 𝑐𝑠𝑐𝑎𝑙𝑒 

represents the scaling factor of the light curve. 
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2.4 Maneuver Detection  

Maneuver detection is done to monitor active satellites and space debris, look for space events, and ensure 

that satellites adhere to the deorbiting standards. There are two main types of orbital maneuvers: in-plane 

and out-of-plane. In-plane orbital maneuvers affect the energy of the orbit, changing its eccentricity and 

semi-major axis. Out-of-plane orbital maneuvers affect the inclination and right ascension of the 

ascending node (RAAN), usually manifesting as abrupt changes [61]. There are two main methods used 

for RSO maneuver detection, the first using previous TLE data to predict future TLE parameters. The 

second method uses state propagators to estimate the RSO’s location, both methods are described in 

sections 2.4.1 and 2.4.2, respectively. Section 2.4.3 describes how the two approaches are fused into a 

hybrid maneuver detection method. 

2.4.1 TLE Analysis for Maneuver Detection 

TLE analysis for maneuver detection uses historical data in the form of previously taken TLEs. These 

TLEs are used together to create a trend of the objects’ Keplerian orbital elements versus time, which is 

used to estimate the Keplerian orbital elements for a TLE at a new time. New TLEs are compared to the 

estimated value from the trend. If the new TLE is significantly different, it is flagged as indicating a 

possible orbital maneuver. Using historical TLE data for maneuver analysis has the advantage of being 

less computationally intensive than the state propagation method, because it does not require the use of an 

orbital propagator [62]. Existing TLE analysis detection uses various fitting techniques, threshold values, 

and historical data sizes [61] [62] [63]. Some of the disadvantages of the TLE analysis method come from 

the uncertainty in TLE measurements, as well as the dependency on historical TLE data [61]. The 

uncertainty of the TLE measurements adds error into the system, and because the TLE generation method 

is not known, error correction can be challenging. The method implemented in this research is a version 

of the method proposed by Kelecy et al. [61].  
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 In this method, semi-major axis, eccentricity, and orbital energy calculated with equation 36 [62], 

are examined over time with a moving window. In equation 36, 휀 is the orbital energy and 𝑛𝑜 is the mean 

motion. The moving window uses the parameters shown in Table 11 Parameters for Moving Filter, which 

represents a simple case of using the previous 14 TLEs with equal weighting. For more information on 

moving windows, see [64], and for specific SSA implementations, see Kelecy et al. [61]; Lemmens and 

Krag [63]. 

 휀 = −0.5 [
𝜋𝑁𝑜𝜇

43,200
]

2/3

 36 

Table 11 Parameters for Moving Filter 

Parameter  Value  

Size of the moving window  14 

Weight of incoming point 1 

New data point included 1 

 

 The standard deviation and mean are calculated for each iteration and each parameter of the 

moving window. Once the mean and standard deviation are found, a new point is introduced to the 

window, which is the point being looked at for an orbital maneuver. The new point is used to update the 

mean and standard deviation, and then tested against the mean using an 𝑛-σ threshold method. To 

estimate the trend, a line of best fit is used to estimate the variables within the moving window. Each 

point that is over the 𝑛-σ threshold generates a flag for possible maneuver, and the flags over the entire 

time series are then revisited afterward to determine whether the TLE is just an outlier or in fact due to an 

orbital maneuver. 

2.4.2 State Propagation for Maneuver Detection 

State propagators propagate from one TLE to the next to identify whether any unexpected deviation occurs. 

This method is computationally more intensive than TLE methods but has the advantage of not requiring 
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historical TLE data, which is not always available for all space objects. Just like TLE analysis, state 

propagation is very sensitive to TLE errors, which can cause false detection of orbital maneuvers. The TLE 

propagation is done via a parallel implementation of the SGP4 propagator to increase the computational 

speed and then compared to the nonparallel SGP4 propagator. The error associated with the error in TLE 

measurements is shown in Equation 37. 

 
|𝑅𝑖| =  √(𝑋𝑇𝐸𝑀𝐸,𝑖 − �̂�𝑇𝐸𝑀𝐸,𝑖)

2
+ (𝑌𝑇𝐸𝑀𝐸,𝑖 − �̂�𝑇𝐸𝑀𝐸,𝑖)

2
+ (𝑍𝑇𝐸𝑀𝐸,𝑖 − �̂�𝑇𝐸𝑀𝐸,𝑖)

2
 37 

 

In Equation 37, 𝑋𝑇𝐸𝑀𝐸,𝑖,  𝑌𝑇𝐸𝑀𝐸,𝑖, and 𝑍𝑇𝐸𝑀𝐸,𝑖represent the x, y, and z components of the estimated position 

in the TEME (true equator mean equinox) coordinate system, respectively, and, �̂�𝑇𝐸𝑀𝐸,𝑖,  �̂�𝑇𝐸𝑀𝐸,𝑖, and 

�̂�𝑇𝐸𝑀𝐸,𝑖  represent the X, Y, and Z components of the true TLE position in the TEME coordinate system, 

respectively. For information on the TEME coordinate system, see Seago and Vallado [65].  

2.4.3 Hybrid Detection Method  

This section describes the hybrid detection method that fuses the TLE method with the state propagation 

method. First, the hybrid detection method uses TLE analysis to see which RSOs have the possibility of 

orbital maneuvers. Then, the orbits of RSOs flagged for possible maneuver are propagated, with the state 

propagation method used to confirm and characterize the maneuver. The flow of this structure is shown in 

Figure 3. Here, the colors represent the different stages. Blue is the initialization stage and TLE analysis, 

yellow is the state propagation stage, and green is the update stage. There are two paths that an RSO can 

take after TLE analysis if there is no historical data or if a possible maneuver is flagged. RSOs follow Route 

1 if a maneuver flag is generated or there is insufficient historical data to allow for TLE analysis. RSOs 

follow Route 2 only if the TLE analysis was successful and no maneuver was detected. 
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Figure 8 Flow Diagram Representing the flow of the Orbital Maneuver Hybrid Detection Method 

 

2.5 RSO Image Simulation (ORBITALS)  

RSO image simulation is a form of image reconstruction using the known or estimated values of all light 

sources and objects in the sensors FOV. Different methods are available to reconstruct an image, such as 

forward and backward ray tracing models. The difference between these two models what information they 

use to recreate an image, forward ray tracking using information about the light sources and objects to 

recreate the image starting from when the light leaves the light source. Backward ray tracing does the 

opposite of forward raytracing and starts with the light that enters the sensor and traces it back to the light 

source. Both methods are optimal in different situations, for RSO image simulation the light sources are 

well known leading to a forward ray tracing model to be used. 
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ORIBTALS was originally designed to examine the feasibility of RSO detection in space. In order to 

understand the characteristics of on-orbit images with RSOs, we simulated various scenarios based on 

commercial grade star trackers currently available in the market. For the purpose of simulation, we 

considered several star trackers, including AD-1 Star Tracker by Mars Bureau [66], and BOKZ-MF Star 

tracker by IKI RAN [67]. All models are great candidates for star imaging on a small satellite platform for 

attitude de-termination. However, for the purpose of this study, we focused on Fast Auroral Imager (FAI) 

parameters as the baseline imager. The FAI sensor is on board the CASSIOPE satellite as part of the ePOP 

(Enhance Polar Outflow Probe) science mission. The purpose of FAI is to measure large-scale auroral 

emissions. It measures auroral emissions with the near-infrared wavelengths (650 nm – 1100 nm) and a 

monochromatic wavelength of 630 nm. The parameters for FAI are shown in Table 1. Images from FAI are 

publicly available on the ePOP website (https://epop.phys.ucalgary.ca/) because the images are easily 

accessible opposed to images from COTS star trackers that are not readily available. FAI images were used 

to validate different portions of the image simulator. 

Table 12: FAI Parameters  

Parameter Value 

Pixels 256 x 256 

Quantum Efficiency, QE 0.66 

Optical Transmittance Loss, τ 0.9 

Aperture Diameter 1.7 cm 

Pixel Size 26 μm 

Effective Focal Length 1.38 cm* 

Integration Time 0.1 seconds 
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*Noise sources include read-out noise, shot noise, and the point spread function; **pseudo image refers to the simulated image that contains the 

single light source, namely Earth glow, moon, zodiac glow and RSO 

Figure 9. space-based optical image simulator (SBIOS) system architecture (left), image generation sequence for steps 2 through 

6 (right) 

 

ORBITALS assumes that the RSOs are not active sources of flux but rather reflectors of so-lar radiation, 

which is common in current RSO models [68], [29] , and [69].) For the Bidirectional Reflectance 

Distribution Function (BRDF) modeling, we assume that satellites consist of several well-defined surfaces: 

sphere, flat surface and cylindrical. More details of the BRDF and facet modeling of ORBITALS is 

described in [70]. ORBITALS also simulates the various noise and ambient light, such as Earth glow, Moon 

glow, Zodiac glow, read-out noise, shot noise, and the point spread function. There are several types of 

active and inactive RSO’s which contain different types of position data, from GPS accurate data to basic 
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TLE information. Due to this ORBITALS robustness includes Ephemeris, State, and TLE input options for 

both the RSOs and host satellite. The goal of having such a robust simulator allows for the generating large 

data sets for machine learning application. 

 

2.5.1 Brightness Magnitude of Simulated Objects  

Brightness is a relative measure of incoming flux that compares the flux incoming to the flux of known 

object with an assigned brightness value. Brightness is a negative logarithmic value with the difference 

between -2.5 brightness value corresponding to 10 times difference in flux. All objects are assumed spheres, 

except for RSO’s, and their brightness is calculated with equation 38 and 39 representing the combination 

of specular and diffuse reflections phase functions. The phase function for spheres and common facets are 

shown in Table 13. 𝐵𝑑𝑖𝑓𝑓 and 𝐵𝑠𝑝𝑒𝑐 are weighting values between the specular and diffuse reflection and 

are related to each other via equation 40 [29]. 

 

𝑀𝑜𝑏𝑗 = 𝑀𝑟𝑒𝑓 − 2.5 log (
𝑑𝑜𝑏𝑗

2

𝑑𝑟𝑒𝑓
2 𝛼𝑃(𝛷𝑝)) 38 

 𝑃(𝛷𝑝) = 𝐵𝑑𝑖𝑓𝑓𝑃𝑑𝑖𝑓𝑓(𝛷𝑝) ∗ 𝐵𝑠𝑝𝑒𝑐𝑃𝑠𝑝𝑒𝑐(𝛷𝑝) 39 

 1 = 𝐵𝑑𝑖𝑓𝑓 + 𝐵𝑠𝑝𝑒𝑐 40 

 

Where in equations 38 : 𝑀𝑜𝑏𝑗 represents the brightness of the target object, 𝑀𝑟𝑒𝑓 represents the reference 

brightness, 𝑑𝑜𝑏𝑗 represents the distance from the sensor to the object, 𝑑𝑟𝑒𝑓 represents the distance from the 

sensor to the reference light source, 𝛼 represents the reflectivity of the object, and lastly 𝑃(𝛷𝑝) represents 

the phase function which is made up of the specular and diffuse components and there weighting shown by 

equation 39 and 40.  
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The specular and diffuse components represents the two different type of reflections which together produce 

the reflection seen off of the target object. Specular reflection is best thought of like mirror like reflection, 

where the angle of incidence of the incoming light beam is the angle that the outcoming light beam leaves. 

Specular reflection does not disperse as much as diffuse reflection leading it to have brighter reflections 

than diffuse reflections, but it does have stricter geometric conditions on the objects facet, reference light 

source, and sensor. Below contain sub sections that cover the main light sources considered in ORBITALS. 

2.5.1.1 RSO Brightness Defined Model 
The modeling of RSO’s is difficult to do with out any priori information, as well as this needs to be done 

for each RSO individually. Due to this reason, it is common for RSO’s to be simulated or thought of as a 

perfectly spherical object with .175 reflectivity, though recent work shows that .2 reflectivity is a better 

approximation [37]. While this works well for simulating RSO detections and the location of the RSO in 

the image when it comes to accurately representing the light curve modeling RSO as spheres is not 

sufficient. Other methods have been suggested to allow for the RSO’s shape, attitude, and optical properties 

to be considered and have had promising results. The problem with these methods is they require priori 

information about the RSOs shape, attitude, and optical properties, if these are not known accurately, they 

can be estimated for but will contain some error. Taking into account the shape of the RSO is done by 

considering the RSO to be made up of a defined number of facets. Each facet has the properties of size, 

orientation, and optical properties, each facet also has a unique phase function 𝑃(𝛷𝑝). The phase function 

for each of the facets is dependent on the star tracker, RSO, sun geometry, as well as, the attitude of the 

facet, and the shape of the facet. There are two main ways of calculating the phase function for different 

facets, one method uses phase function that are well defined for common shapes like spheres, flat surfaces, 

and cylinders. These phase functions are shown in Table 13. It can be seen that for all facets, but spheres 

and diffuse cylindrical, the phase functions have geometric conditions to provide nonzero answers. The 

viewing geometry can be seen in Figure 10. 
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Figure 10: Defined Model Illumination Geometry [71] 

Table 13 RSO Facet Dependent Phase Functions  

Facet Type 

(Degrees of 

Curvature) 

Sphere  

(2)  

Flat Surface 

(0) 

Cylinder 

(1) 

Diffuse Phase 

Condition  

None 

𝜙𝑜𝑏𝑠 and  𝜙𝑠𝑢𝑛 are the 

same sign  

None 

Diffuse Phase 

Equation 𝐹𝑑𝑖𝑓𝑓 

2

3𝜋2 [(𝜋 − Φ) cos(Φ) + sin(Φ)] 
1

𝜋
sin(𝜙𝑜𝑏𝑠) sin (𝜙𝑠𝑢𝑛)  

cos(𝜙𝑜𝑏𝑠) cos (𝜙𝑠𝑢𝑛)

4𝜋
[(𝜋 − 𝜃) cos(𝜃) + sin(𝜃)] 

Specular Phase 

Condition  

None 
|𝜙𝑜𝑏𝑠 − 𝜙𝑠𝑢𝑛| ≤

∆

2
 &  

|𝜃𝑠𝑢𝑛 − 𝜃𝑜𝑏𝑠|  = 𝜋 

|𝜙𝑜𝑏𝑠 − 𝜙𝑠𝑢𝑛| ≤
∆

2
 

Specular Phase 

Equation 𝐹𝑠𝑝𝑒𝑐 

1

4𝜋2
 

4cos (Φ 2)⁄

𝜋∆2
 

cos (Φ 2)⁄  𝛼(𝑡)

4Δ
 

 

In Table 13: Φ represents the phase angle between the light source and host about the facets normal. 𝜃𝑜𝑏𝑠 

represents the longitude angle from the facet’s X axis (or a defined axis) to the host sensor about the facet 
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normal. 𝜃𝑠𝑢𝑛 represents the longitude angle from the facet’s X axis (or a defined axis) to the Sun (or active 

light source) about the facet normal. 𝜙𝑜𝑏𝑠 represents the elevation angle of the host sensor from the facet 

plane. 𝜙𝑠𝑢𝑛 represents the elevation angle of the Sun from the facet plane.  ∆ represents the angular size of 

the Sun at Earth’s distance from the sun.  𝛼(𝑡) is a time dependent function that describes that one sees the 

integrated light across a chord of the sun’s disk, and for this code it is assumed to be a maximum value of 

1.2723. The equation for spectral reflection for a cylindrical facet is the minimum flash, the reason for this 

is that the time dependency of 𝛼(𝑡) requires the known start and stop time of the flash which are not always 

available.  

The other methods of calculating the phase functions does not assume the facet is a typical shape and uses 

the normal and area to calculate the phase function with the BRDF that best describes the curvature of the 

facet. 

2.5.1.2 RSO Brightness Anisotropic Phong model 
Since the initial facet model for satellites were first developed in the 70's, different BRDF models have 

been examined and implemented to represent the satellites in orbit. An example that has been widely 

accepted in recent years is the Anisotropic Phong model [29] [27]. This model uses empirically found 

values, 𝑛𝑢 and 𝑛𝑣, which accounts for the reflection across the different axis of the facet. This model is 

proposed for RSO’s image simulation because it has the possibility of reducing the possible state 

estimations due to the reducing ambiguity in the facet orientation. The Phong model is a much more 

complex example, with a simplification for flat facets shown in equations 41 through 43. Flat facets 

sufficiently represent active satellites with large flat surfaces, such as solar panels and reflective facts. For 

this current study, we have applied flat facet model to represent the RADARSAT Constellation Mission 

(RCM) satellites. Figure 11 shows the observation geometry of the Phong model.  

 𝐹𝑠𝑝𝑒𝑐 =  
√(𝑛𝑢 + 1)(𝑛𝑣 + 1)

8𝜋

(𝒖𝑛 ⋅ 𝒖ℎ)𝑛𝑢(𝒖ℎ⋅𝒖𝑢)2+𝑛𝑣(𝒖ℎ⋅𝒖𝑣)2

𝒖𝑛 ⋅ 𝒖𝑠𝑢𝑛 + 𝒖𝑛 ⋅ 𝒖𝑜𝑏𝑠 − (𝒖𝑛 ⋅ 𝒖𝑠𝑢𝑛 )(𝒖𝑛 ⋅ 𝒖𝑜𝑏𝑠)
𝐹𝑟𝑒𝑓 41 
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 𝐹𝑟𝑒𝑓 = 𝐵𝑠𝑝𝑒𝑐 + (1 − 𝐵𝑠𝑝𝑒𝑐)(1 − 𝒖𝑠𝑢𝑛 ⋅ 𝒖ℎ)5 42 

 𝐹𝑑𝑖𝑓𝑓 =
28𝐵𝑑𝑖𝑓𝑓

23𝜋
(1 − 𝐵𝑠𝑝𝑒𝑐) (1 − (

𝒖𝑛 ⋅ 𝒖𝑠𝑢𝑛

2
)

5

) (1 − (
𝒖𝑛 ⋅ 𝒖𝑜𝑏𝑠

2
)

5

) 43 

 𝐹 = 𝐹𝑠𝑝𝑒𝑐 + 𝐹𝑑𝑖𝑓𝑓  

In equations 41 to 43: 𝐹𝑠𝑝𝑒𝑐 represents the specular reflection. 𝐹𝑑𝑖𝑓𝑓 is the diffuse reflection. 𝐹𝑟𝑒𝑓𝑙𝑒𝑐𝑡 is the 

Fresnel reflectance.  𝐵𝑠𝑝𝑒𝑐 and 𝐵𝑑𝑖𝑓𝑓 represent the Hejduk Weighting Coefficients; 𝑛𝑢 and 𝑛𝑣 represent the 

directional distribution of the specular reflection.  𝒖𝑛 represents the facet normal vector normalized, 

represented in Figure 11 as n. 𝒖ℎ represents the normalized half- vector between the light source and 

observer, represented in Figure 11 as h. 𝒖𝑢 represents the local horizontal normalized vector, represented 

in Figure 11 as u. 𝑢𝑣 represent the local vertical normalized vector, represented in Figure 11 as v. 𝒖𝑠𝑢𝑛 

represent the normalized sun vector, represented in Figure 11 as k1. and 𝒖𝑜𝑏𝑠 represents the normalized 

observer vector, represented in Figure 11 as k2.  

 

Figure 11 Observation Geometry for Phong Facet Model 
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2.5.1.3 Stars 
The stars that were used for image simulation are from the bright star catalog [72], with the option. The 

reason that this catalog was used as typical star trackers can see objects with visual magnitude below 6. The 

position of these star is rotated from the given J2000 frame to the star tracker frame, then the ones in the 

FOV are included in the image.  

Earth 

In these images Earth is normally excluded but sometimes Earth’s limb and Earth can be included. 

Modeling of the Earth itself is complex and does not affect the RSO. RSOs can often be seen in Earths 

limb, its modeling needs to be accurate enough to extract signal about RSO’s if detection in Earth’s limb is 

to be used. As the highest number of RSO detections are performed when the sensor is faced away from 

Earth, as seen in Table 8. Because of this high-fidelity model of the Earth are out of scope of this thesis, so 

Earth and its limb is modeled as a homogenous brightness sphere. To perform this homogenous model 

Earth and Earth’s limb brightness is calculated from measurements of the emission spectrum integrated 

over the star tracker effective band to get brightness per arcsecond. 

2.5.1.4 Moon 
The moon is usually excluded through a moon exclusion angle, like the Sun, but in rare cases it can be seen 

in images. As it does not affect the RSO the moon will be modeled as a homogeneously bright sphere 

similar to the Earth, mentioned in the subsection above.  

2.5.1.5 Sun 
The suns brightness does not need to be included in the image due to the fact that imaging the sun would 

burn most of the electronic equipment. The magnitude of the sun is an important quantity that is used as a 

reference magnitude for RSO magnitude calculations. The reason for this is that the flux and flux density 

of the sun is well known, as well as the majority of the light that reflects off of the RSO is from the sun. In 

this thesis the brightness of the Sun is set to be -26.73 represented by 𝑀𝑠𝑢𝑛. 

Zodiac Brightness 
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Zodiac brightness represents the brightness from the background of space. There are quite a few different 

ways to model this brightness including implemented methods such as [73] [74].  For the context of this 

thesis the zodiac brightness was modeled as a constant function of the spectral band of the sensor. 

2.5.2 Brightness Magnitude to Digital Number Value 

The brightness magnitude of an object gives the flux given off of the object, but not the amount of flux 

received by the sensor and its digital number value. Digital number value (DN) is the amount of flux 

received from the sensor after all losses converted from an analog to a digital number which acts as the raw 

data that is received for each pixel from the sensor. Converting from the found magnitude of the object to 

the DN value uses the parameters of the sensor used. To account for the active sources of flux, they are 

considered either as point sources or area sources with different calculation performed for each. Point 

sources include the Sun, and stars that are calculated from their known magnitude. The equations to 

calculate the given magnitude to the Digital Number (DN) values are shown in equations 44 to 45 [75]. 

 𝐸𝑜𝑏𝑗 = 𝐸𝑧𝑒𝑟𝑜 × 10−0.4𝑚𝑜𝑏𝑗 44 

 𝐷𝑁𝑥,𝑦 = 𝐸𝑜𝑏𝑗 × 𝑒𝐷𝑁 × 𝑄𝐸 × 𝜏 × 𝐴𝑎𝑝𝑝 × 𝑡𝑖𝑛𝑡 × 𝑃𝑆𝐹(𝑥, 𝑦, 𝑥𝑜𝑏𝑗 , 𝑦𝑜𝑏𝑗) 45 

 

In equations 44 and 45: 𝐸𝑜𝑏𝑗 represents the photon irradiance from the objects in photons per second per 

meter squared 𝑝ℎ/𝑠/𝑚2. 𝐸𝑧𝑒𝑟𝑜 represents the zero-point photo irradiance found from integrating the solar 

spectrum over the effective band, in 𝑝ℎ/𝑠/𝑚2. 𝑚𝑜𝑏𝑗 represents the absolute magnitude of the object. 𝐷𝑁𝑥,𝑦 

represents the Direct Number (DN) value at pixel x and y on the sensor. 𝑒𝐷𝑁 represents ratio of photons 

received to the electrons given by the sensor properties, the units are electrons per DN, 𝑒/𝐷𝑁. QE 

represents the quantum efficiency of the sensor system in the band used. 𝜏 represents the optical feed loss 

of the sensor. 𝐴𝑎𝑝𝑝 represents the area of the aperture given in 𝑚2. 𝑡𝑖𝑛𝑡  represents the integration time 

of the sensor in seconds. 𝑃𝑆𝐹(𝑥, 𝑦, 𝑥𝑜𝑏𝑗 , 𝑦𝑜𝑏𝑗) represents the point spread function on pixel x, y for a 
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source that is located at 𝑥𝑜𝑏𝑗 , 𝑦𝑜𝑏𝑗. Note that the Sun is never included in the image due to the Sun 

exclusion angle. 

For area sources such as Earth, Earth’s limb, the Moon, Moon glow, and zodiac glow, are calculated from 

there surface brightness. The equations to transform the given magnitude to the DN values are shown in 

equations 46 to 48. 

 𝐿𝑜𝑏𝑗 = 𝐸𝑧𝑒𝑟𝑜 × 10−.04𝑚𝑎𝑠𝑐,𝑜𝑏𝑗 (
180

𝜋
)

2

36002 46 

 𝐸𝑜𝑏𝑗 = 𝐿𝑜𝑏𝑗 × 𝐼𝐹𝑂𝑉2 47 

 𝐷𝑁𝑝𝑝 = 𝐸𝑜𝑏𝑗 × 𝑒𝐷𝑁 × 𝑄𝐸 × 𝜏 × 𝐴𝑎𝑝𝑝 × 𝑡𝑖𝑛𝑡 48 

 

In equations 46 to 48: 𝐿𝑜𝑏𝑗 represents the photon radiance give in units of photons per second per meter 

squared per steradian 𝑝ℎ 𝑠𝑒𝑐/𝑚2/𝑠𝑟⁄ . 𝐸𝑧𝑒𝑟𝑜 represents the zero-point photo irradiance found from 

integrating the solar spectrum over the effective band, in units of 𝑝ℎ/𝑠/𝑚2. 𝑚𝑎𝑠𝑐,𝑜𝑏𝑗 represents the 

magnitude per square arc-second of the surface object given in magnitude per arc-second squared 

𝑚𝑜𝑏𝑗/arcsec2. 𝐸𝑜𝑏𝑗 represents the photon irradiance from the objects in photons per second per meter 

squared, 𝑝ℎ/𝑠/𝑚2. 𝐼𝐹𝑂𝑉 represents the instantaneous field of view which is found from dividing the 

pixel size by the focal length. 𝐷𝑁𝑝𝑝 represents the DN values per pixel across the sensor. 𝑒𝐷𝑁 

represents photo electron the DN ratio given in electrons per DN, 𝑒/𝐷𝑁. 𝑄𝐸 represents the quantum 

efficiency of the sensor system in the band being used. 𝑡 represents the optical feed loss of the sensor. 𝐴𝑎𝑝𝑝 

represents the area of the aperture given in units meters squared 𝑚2. 𝑡𝑖𝑛𝑡  represents the integration time of 

the sensor in seconds. Note that in equation 3, 36002 represents conversion from arcseconds squared to 

degrees squared, with (180 𝜋⁄ )2representing the conversion from degrees squared to steradians. 

To calculate the brightness of the RSO’s in the image, a BRDF, like the ones mentioned in the section 

above, is used with the incoming solar flux. To give a simple example of the RSO magnitude to DN value 



59 

 

conversion RSO’s are assumed to be perfectly spherical objects with a 0.2 reflectance value. Equations 49 

to 54 shows the calculation of DN values from the spherical facet model of RSO’s.  

 𝜌𝐴𝐹 =  𝜌𝐴(𝐵𝑑𝑖𝑓𝑓𝐹𝑑𝑖𝑓𝑓 + 𝐵𝑠𝑝𝑒𝑐𝐹𝑠𝑝𝑒𝑐) 49 

 𝐹𝑑𝑖𝑓𝑓,𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
2

3𝜋2 ((𝜋 − Φ) cos(𝛷) + sin(𝛷)) 50 

 𝐹𝑠𝑝𝑒𝑐,𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
1

4𝜋2
 51 

 𝑚𝑜𝑏𝑗 = 𝑚𝑠𝑢𝑛 − 2.5 log10 (
𝜌𝐴𝐹

𝑎2
) + 5 log10 (

𝑑𝑟𝑠𝑜,𝑠𝑢𝑛 × 𝑑𝑟𝑠𝑜,𝑠𝑒𝑛𝑠𝑜𝑟

𝑎2
) 52 

 𝐸𝑜𝑏𝑗 = 𝐸𝑧𝑒𝑟𝑜 × 10−0.4𝑚𝑜𝑏𝑗 53 

 𝐷𝑁𝑥,𝑦 = 𝐸𝑜𝑏𝑗 × 𝑒𝐷𝑁 × 𝑄𝐸 × 𝜏 × 𝐴𝑎𝑝𝑝 × 𝑡𝑖𝑛𝑡 × 𝑃𝑆𝐹(𝑥, 𝑦, 𝑥𝑜𝑏𝑗, 𝑦𝑜𝑏𝑗) 54 

 

In  equations  49  to 54,  𝜌𝐴𝐹 represents  the  reflective  area  phase  function  which  is an intermittent step 

on calculating the magnitude of the RSO. 𝜌 represents the reflectivity of the object. A represents the 

effective area of the RSO in meters squared. 𝐵𝑑𝑖𝑓𝑓 and 𝐵𝑠𝑝𝑒𝑐 represent the diffuse and specular Hejduk 

mixing coefficients, respectfully  [29]. 𝐹𝑑𝑖𝑓𝑓 and 𝐹𝑠𝑝𝑒𝑐 represent the diffuse and specular phase function 

respectfully. 𝛷 represents the solar phase angle of the Sun, RSO, and host sensor. 𝑚𝑜𝑏𝑗 represents the 

magnitude of the RSO. msun represents the magnitude of the sun, which is constant at -26.73. 𝑎 represents 

one astronomical unit, the distance from the Sun to Earth. 𝑑𝑥,𝑦 represents the magnitude distance from 

object x to object y. The rest of the variable are the same as in equation 44 and 45 which are described 

above. 

2.5.3 Simulated Noise  

Including noise in the simulated images allows for them to be more similar to true images and allow for 

machine learning algorithms to be trained off of the images. Noise also allows for the quality of the real 

detection to be estimated instead of an ideal detection that would be given from no additional noise. The 
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different types of noise that are included in ORBITALS are described below. All noise modeling was taken 

from Samuel Clemens work and can be found in On-Orbit Resident Space Object (RSO) Detection Using 

Commercial Grade Star Trackers [37]. 

2.5.3.1 Shot Noise  
Shot noise is from wave particle duality of radiation that hits the sensors and excited the pixel. Due to the 

discrete nature of photons there is random variation in the photos received over same integration times.  

This is important as shot noise can cause false positives for low SNR RSO detection so including it in 

simulated images would allow machine learning algorithms to be more effectively trained to avoid false 

positive detections.  

2.5.3.2 Dark Current  
The dark current is the background bias that the camera has, while ideally it is the same over all of the 

pixels in the camera, in reality each one can have a different dark current. To correct for this, images with 

a cover over the camera can be taken and used to calculate the average dark current. Most sensors provide 

the average dark current for a given temperature in the data sheet allowing for easy implementation in the 

simulator.  

2.5.3.3 Hot Pixels 
Hot pixels are caused by difunctional pixels that are always fully or partially triggered if something is in 

that pixel or not. These appear as either fully bright or dim pixels in images that do not move across a 

sequence of images. To correct for this a sequence of images can be used to remove the hot pixels as they 

can be mistaken for RSO’s.   

 

2.5.3.4 Point Spread Function 
The point spread function (PSF) is the overflow of values from one pixel to another this happens from the 

optics being non ideal. The PSF is applied to all incoming signals and has to be corrected for the get 

scientifically correct values for the flux off of an object. Different methods of point spread function 

deconvolutions are possible most of which require a non blurry or distorted image to find the values used 
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for deconvolution. In the context of this thesis a 2D gaussian PSF is used with the two dimensions (X and 

Y axis pixels) being independent from each other. More complex modeling of the PSF is required for higher 

resolution images, due to this thesis focusing on low resolution images this is considered out of scope.  

 

2.6 Numerical Methods  

Numerical integration allows computers to do integration and derivations of formulas as they require 

analytical methods unlike how humans normally do numerical integration. The focuses on numerical 

integration as a numerical method and the effects it has on the outcome. The easiest way to think of 

numerical integration as having a graph with some curve as represented in Figure 12, the numerical 

integration of the function is summing all of the area under the curve as shown by Figure 12 [76]. This is 

easily accomplished by humans when the function is well known and described but when the function is 

not known it can become a problem, numerical integrator used to solve integration by computers. Numerical 

integrators work by finding a start and end point on the curve and approximating the area underneath by 

different methods, the more sophisticated the higher accuracy the approximation in most cases. The 

simplest method is estimating a linear slope in between the points with more complex methods fitting higher 

order polynomials and calculating the area underneath.  

Problems like the two body and J2000 equation are solved by numerical methods integrating the well known 

�̈� to become the position represented by 𝑋. This causes numerical integrators to become important when 

considering the accuracy and computation time of propagation. Simple numerical integrators use linear or 

low order equations to estimate the function curve, while this is method is able to run quickly it does not 

approximate the integral accurately over large periods of nonlinear change. Higher level methods have the 

advantage of being able to approximate the function well but are more computationally intensive than the 

lower order methods. The choice of state propagator used has a large effect on the computation time and 

accuracy of the resulting propagation. More sophisticated state models require higher order numerical 
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methods to keep their accuracy. For example, when propagating an RSO to know its rough position a second 

from the starting time a simple two body problem or J2 force model can be used with a low order numerical 

integrator. Yet if we were looking to propagate an RSO for a day or longer more sophisticated higher order 

models are required to get accurate answers. For this reason, in this thesis higher order numerical integrators 

are used.  

 

 

 

Figure 12 An Example of Different Numerical Methods [76]  
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Looking at the types of numerical methods we can split numerical methods into two main methods, implicit 

vs explicit methods. Explicit methods are defined as when the dependent variables can be calculated directly 

from known quantities, implicit methods are for when the dependent variables are given via coupled 

equations that need to be solved with a matrix or iterative process. While both methods can be used for 

satellite propagation typically explicit method are used due to their ease to implement, as well as low 

computational intensity compared to implicit methods. Implicit methods require multiple calculation for 

one value making them more computationally intensive but have the advantage of having better system 

stability [77]. Currently in the field of propagation more and more implicit methods are being used with the 

combination of parallel processing to increase their computational intensity some example are present in 

[78] [79] [42]. As numerical methods are not the focus of the research but rather a tool to get the correct 

answer, the simpler version of both methods will be used.  

 

With explicit numerical methods there are two subcategorize adaptive vs fixed step size. Fixed step size 

methods use constant steps in the independent variable, adaptive step size methods change the size of the 

step size based on control values. Many control values can be used, for example: approaching a critical 

point or the nth order error, which is implements in section 2.6.2 Dorman Prince 5(4) below. In the 

preliminary research both an adaptive step size and fixed step are used to test the difference between the 

two, the two methods used are Runge Kutta 4th Order (RK4) and Dorman Prince 5(4) (DP54). While these 

are relatively simple numerical methods for orbital propagation, with higher order methods such as Runge 

Kutta 7 (8) and Gauss Jackson being commonly used. The point of this is to provide a preliminary test on 

the differences between methods to help decide what type of numerical method should be used in the 

ORBITALS simulator, and the effect of introducing parallel processing techniques. 
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2.6.1 Runge Kutta 4th Order 

Runge Kutta 4th order method (RK4) is a 4th order numerical method that uses fixed step sizes to solve 

ODE’s. RK4 method uses the weighted average slope of the function at multiple intermittent points to 

estimate the point after a specified step size. The general equation for explicit methods is described in 

equation 55 and 56 below [80].  

 𝑘𝑖 = ℎ𝑓(𝑡𝑖 + 𝑐𝑖ℎ, 𝑥𝑛 + 𝑎𝑖1𝑘1 … + 𝑎𝑖,𝑖−1𝑘𝑖−1) 55 

 

 

𝑦𝑛+1 = 𝑦𝑛 + ∑ 𝑏𝑖𝑘𝑖

𝑗

𝑖=1

 

 

56 

In equations 55 and 56: 𝑦𝑛 is a known initial value of the dependent variable. 𝑦𝑛+1 is the value of the 

dependent variable being solved for. 𝑥𝑛 and 𝑡𝑖 are known initial values of the independent variables. 𝑘𝑖 

represent the estimated slopes at intermediate points. 𝑎𝑖,𝑗, 𝑏𝑗, and  𝑐𝑖  represent coefficients for the RK4 

method and are summarized in a Butcher tableau below. 

 

Table 14 The Butcher Tableau for Runge Kutta 4th Order 

j: 1 2 3 4 i:  

0     1 

1/2 1/2    2 

1/2 0 1/2   3 

1 0 0  1  4 

 1/6  1/3  1/3  1/6   
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The Butcher tableau shows what coefficients need to be used for explicit and implicit numerical methods. 

Butcher tableau represents 3 coefficients with two independent indices; “i” represents the intermediate point 

being looked at and are displayed vertically above the horizontal black line. “j” indices represent the 

contribution from intermediate values, which is shown to the right of the vertical back line. The 3 different 

coefficients represented are 𝑎𝑖,𝑗 , 𝑏𝑗 , 𝑐𝑖 which are separated by the black solid lines. 𝑎𝑖,𝑗 are the values 

above the horizontal line and to the right of the vertical line, 𝑏𝑗 are the values below the horizontal solid 

line and 𝑐𝑖 to the left of the vertical solid line. 

2.6.2 Dorman Prince 5(4) 

The Dorman-Prince 5(4) method (DP) is a Runge-Kutta method that uses a fourth order method with a fifth 

order error correction for adaptive step size. This method is a special case of Runge-Kutta methods that 

allows for convenient and fast adaptive step size. What makes this method unique is that it uses first same 

as last property (FSAL) allowing seven stages with only six function evaluations. The Butcher tableau for 

the Dorman Prince 5(4) method can be found below in Table 15 [80]. 

Table 15 Dorman Prince 5(4) Butcher Tableau  

j: 1 2 3 4 5 6 i: 

0       1 

1/5 1/5      2 

3/10 3/40 9/40     3 

4/5 44/45 -56/15 32/9    4 

8/9 19372/6561 -25360/2187 64448/6561 -212/729   5 

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656  6 

1 35/384 0 500/113 125/192 -2186/6784 11/84 7 

 35/384 0 500/113 125/192 -2186/6784 11/84 0 

 5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40 
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The Butcher tableau for DP has the same variables as the Butcher tableau for RK4 with one extra variable: 

bj
*. bj

* represents the 5th order Dorman Prince coefficients being located below bj which represents the 4th 

order Dorman Prince coefficients. Using the 4th order coefficients equation 57 and 58 below are used to 

estimate the error at that point. 

 

𝑦𝑛+1
∗ = 𝑦𝑛 + ∑ 𝑏𝑖

∗𝑘𝑖

𝑗

𝑖=1

 57 

 𝑂𝑛+1 = |𝑦𝑛+1 − 𝑦𝑛+1
∗ | 58 

The error at the given point is then used to find a tolerance ratio using equation 59 below. 

 
𝑇𝑅𝑛+1 =

𝑂𝑛+1

𝑎𝑡𝑜𝑙 + |𝑦𝑛|𝑟𝑡𝑜𝑙
 59 

In equations 58 and 59: 𝑇𝑅𝑛+1 represents the tolerance ratio for the updated point. 𝑂𝑛+1 represents the error 

between the estimates of different orders, in this case it is between the 4th and 5th order. 𝑎𝑡𝑜𝑙 represents the 

absolute tolerance of the system, this is a constant value used to help update the step size. 𝑟𝑡𝑜𝑙 represents 

the relative tolerance of the system, like the absolute tolerance it is used to update the step size and 

represents how the error scales with the increase in 𝑦𝑛. Calculating the tolerance ratio allows for the step 

size to change depending on if the error is with in, or outside, the error tolerance. If the tolerance ratio is 

greater than one the error is above the allowed tolerance and the step size needs to decrease to increase 

accuracy. If the tolerance ratio is less than one the error is below the allowed tolerance and the step size is 

increased to decrease computation time. Lastly, if the tolerance ratio is one the step size does not change, this 

can be seen in Equation 60 below which calculates the next iterations step size. 

 

ℎ𝑛+1 = 𝑆ℎ𝑛√
1

𝑇𝑅𝑛+1
 60 
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In equation 60: ℎ𝑛 represents the initial step size/ the step size used the last iteration. ℎ𝑛+1 represents the 

updated step size for the current iteration. 𝑆 represents the safety factor which is elaborated upon below. 

𝑇𝑅𝑛+1 represents the tolerance ratio for the current iteration. The safety factor (𝑆) is there to change the step 

size each time slightly so the step size does not get stuck in unstable equilibrium points. The safety factor 

chosen for this research is 0.9. This is how the step size for all iterations is calculated starting with an initial 

value for the step size, in this study the initial step size was chosen to be 60 seconds which is a commons 

step size for orbital propagation. As a safety feature to make sure that the step size does not approach 0 or 

infinity there is a minimum and maximum step size; 1 and 300 seconds respectfully. If the step size is 

outside of these bound the step size gets reset to the initial value which is 60 seconds. 

 

2.7 Optimisation Algorithms  

Optimisation algorithms are used to perform optimisation on complex problems that either can not be solved 

through brute force methods or are too computationally intensive to solve in a required time period. 

Optimisation algorithms search the domain of inputted variables to find the best answer given by a set of 

criteria. In the context of this thesis the optimisation problem that is looking to be solved is the 

determination of the best possible RSO parameters to replicate the RSO’s light curve. These parameters 

include the shape, optical properties, and attitude of the target RSO. To determine these properties the 

parameters are estimated then used to simulate light curves which are then compared to the real light curve 

of the object. Thousands to millions of simulated light curves are generated then used to find the brightness 

residual for the estimated parameters. The brightness residual and the corresponding RSO parameters are 

fed into an optimisation algorithm, with the goal of generating better RSO parameter estimates that reduce 

the brightness residual. Light curves are made of many individual measurements with some of the RSO 

parameters being static across the sequence, such as shape, and optical properties. Other RSO parameters 

vary across the light curve, such as attitude, which requires the estimation of different attitudes for each 
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point in the light curve. Requiring estimation of the attitude at each point causes this problem to be solved 

with factorial time 𝑂(𝑛!), acting a type of traveling salesman problem [81]. The optimisation function when 

focusing on attitude sequences tries to reduce the brightness residual in one image, as well as, across the 

time series provided by the light curve. This has been split into two different portions of the research. This 

was done so that the best optimisation method for single image best attitude determination and best attitude 

sequence determination can be studies and modularly changed. For the image specific attitude 

determination only the brightness residual is being minimized in the optimisation problem. The response 

surface of brightness as a function of attitude is a complex function with no well-defined gradients, 

requiring pseudo gradients or non gradient optimisation functions. For the best attitude sequence 

determination, the resultant best attitudes for each point in time are compared to find the most probable 

attitude sequence. This uses not only the brightness residual but the change in yaw, pitch, and roll across 

the sequence to find an optimised estimate. Using the physical dynamics and limits of a satellites attitude 

the number of results can be reduced through throwing out large jumps and discontinuities that would not 

be possible. This is an example of a physical constrained optimiser similar to those implemented in [23]. 

Below different optimisation methods chosen to be studied are mentioned, as well as a definition of the 

objective function that is used with each of the optimisation algorithms.   

 

2.7.1 Objective Function  

The objective function is one the most important parts of optimisation as it determines what the optimiser 

is looking to optimise. In this thesis the optimisation function that is used for RSO characterisation from 

light curve inversion is defined as a weighting between the RMSE of the estimated light curve compared 

to the true light curve, as well as the RMSE of the change in estimated light curve compared to the true 

light curve. The equation for the objective function is shown in 61. The objective function in this context 

is a minimum function which means the optimiser is used to find the global minimum. Below in section 
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2.7.2 to 2.7.6 describe the different type of optimisation algorithms which are used with the objective 

function described in 61.  

 𝐹𝑜𝑏𝑗 = 𝑊1
√∑(𝑀𝑖,𝑡𝑟𝑢𝑒 − 𝑀𝑖,𝑠𝑖𝑚)

2

𝑛
+ 𝑊2

√∑(�̇�𝑖,𝑡𝑟𝑢𝑒 − �̇�𝑖,𝑠𝑖𝑚)
2

𝑛 − 1
 61 

 1 = 𝑊1 +  𝑊2 62 

 

2.7.2 Hill Climbing and Stochastic Hill Climbing 

The hill climbing algorithm (HC) is a global optimization algorithm that is commonly used. The HC has 

two stages to it, the global search section and local search section. HC behaves like recursive random search 

procedure, starting with the global search phase, the starting points are chosen randomly or intelligently. 

The goal of the global search phase is to cover as much ground as possible in the design space so that global 

optimum does not get missed. After the global points are chosen, the local search phase begins, this searches 

around the chosen point to develop a gradient. The gradient is then used in the neighborhood of the global 

point to try and find a better solution, the local solution. After the best solutions are found in the 

neighborhood of the initial global points, new global points are generated, and the process repeats for a 

number of iterations or till continuous convergence on an answer. HC results can be very different from 

each other depending on what method is used for the global point selection, local gradient calculation, and 

number of data points used. Simpler HCs are fully random on there selection of global optimum which 

leads to a chance of finding a sub-optimal solution, to combat these simpler algorithms need more data 

points taken to make sure the design space is fully covered. More complex HC have intelligent point 

selections and more complex formula for approximating the gradient of the local search area. Thus, leads 

to less points being required to converge on a global optimum, but requiring more computation time per 

point. As a result, both simple and complex HC are used depending on the situation.  
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Stochastic Hill Climbing (SHC) varies from HC by producing child optimal estimates from already selected 

parent optimal estimates. The SHC starts the same way with a number of optimal estimates being chosen 

in the design space called the parent optimal estimates. After the local optimization section, the SHC 

algorithm uses mutations and the gradient to create new optimal estimates, called child optimal estimates, 

from the parent optimal estimates. The child optimal estimates are then compared with the parent, if the 

mutation makes the child have a better objective function score, the child replaces the parent for the next 

round of global search selection [82]. This allows an addition of randomness to be added to HC allowing 

for more efficent searches objective functions with jumps or discontinuities.  

One downfall of the HC and SHC is that they can get caught in local maxima and have trouble dealing with 

plateaus in the objective function. Different variants of the stochastic hill climbing algorithms are possible 

depending on how the global points are picked after the first random distribution. The results from multiple 

sources show that intelligent global point selection preforms better than random point selection [83]. In the 

worst-case HC and SHC have exponential computational time [84] which makes it less computationally 

intensive than SA, and GA, mentioned below. Currently both HC and SHC methods have been used in [85]. 

2.7.3  Simulated Annealing 

Simulated annealing (SA) is a process that is similar to SHC with one major variation. There is a probability 

that estimates that provide less optimum solutions are chosen based on the difference between the objective 

functions of both the parent and child estimates. Parent estimates are similar to global estimates being the 

first estimate chosen before local optimisation. Child estimates are found from the local gradient around 

the parent estimate and mutations. Once a child estimate is found from the parent equation 63 is used to 

determine if the parent or child estimate will go to the next round of optimisation [86].  

 
𝑝 =  {𝑒−

𝐹𝑝−𝐹𝑐

𝑐 , 𝐹𝑝 > 𝐹𝑐

1           ,          𝐹𝑝 ≤ 𝐹𝑐

 63 
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In equation 63; 𝑝 represents the probability of a sub optimal step being chosen. 𝐹𝑝 represents the fit of the 

parent solution given by the objective function. 𝐹𝑐 represents the fit of the child solution given by the 

objective function. 𝑐 represents the cooling factor which is mentioned in more details below.  

The cooling factor is used to control the probability of a non ideal step. The cooling factor is chosen based 

on the optimisation being performed, commonly starting with a low value and increasing as the number of 

iterations increase. The “cooling” of the system refers to the decrease in random steps as the number of 

iterations increases. There are many different types of cooling schemes such as linear, exponential, and 

geometric [87]. In the context of this thesis a geometric cooling scheme was chosen due to its ease of 

implementation and rapid fall off. A way of visualizing the SA is well put by Dan Weld’s CSE 473 slides 

[88], where it is said that the SA algorithm is similar to allowing a ball to roll down a hill, which by itself 

would represent HC for minimization of a function. The difference between the two is in SA, the surface is 

shaking while the ball rolls adding randomness into the system, with the shaking of the surface being 

reduced over time [88]. Figure 13(a) shows an example of how the SA algorithm can outperform SHC and 

HC algorithms by avoiding the local minimum of the first trough and having the ball make its way down 

to the global minimum shown by Figure 13 (b) [88].  

 

Figure 13: An example of simulated annealing and when it would outperform hill climbing.  

Figure 13(a) on the left represents the initial problem. Figure 13(b) on the right represents how simulated 

annealing would overcome the first local minimum and find the global minimum. As the SA is a modified 

form of SHC and HC it has the same worse case exponential computation time. Generally SA takes slightly 

longer to run each iteration than SHC and HC due to the added complexity of probability calculations. The 
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advantage of SA is having the non optimal step increase the search space allowing for more optimal answer 

to be found by not getting trapped in local optimum.  

2.7.4  Genetic Algorithm 

The genetic algorithm (GA) is based off of natural evolution, it uses lists of solutions called chromosomes 

to compare different answers. The GA algorithm uses hundred thousand to millions of chromosomes 

depending on the design space in order to find an optimal solution. The GA has 4 stages, 3 of which loop 

till completion, and these four stages are: initial population, sort, recombination, and mutation. The initial 

population stage involves the initial solutions represented the chromosomes, being randomly or sudo-

randomly generated. This stage is only performed once for initialisation and after is where the 3 iterative 

stages take over to supply an optimal solution. The first iterative stage is the sorting stage, in this stage the 

objective function is calculated for each of the chromosomes (parameter estimates) and all the 

chromosomes are ranked. The second stage is the recombination stage, in this stage chromosomes, called 

parent chromosomes, are chosen from the optimal estimates with the top objective function scores and 

combined with other chromosomes. The new chromosome produced from this combination is called the 

child chromosome. Moreover, how the optimal estimates are combined is by using cross over operation 

which are used to determine what aspects of the parent chromosomes are transferred over to the child 

chromosome. In the context of this thesis position based cross over method was implemented with more 

methods and their implementation being available in Appendix C. The goal of the cross over operation is 

to create new and better optimal estimates that are slightly different from the original parent chromosomes. 

This does not always happen with the changes to the chromosome potentially lowering the score of the 

objective function. To correct this, the lowest scoring optimal estimates from both the initial and new 

population are disregarded until the number of chromosomes left equals the number that was in the initial 

population. While this is not an optimal way to find a better optimal solution by itself, using a large initial 

population and many iterations it will slowly converge to local maximum in the design space. Converging 

on only local optimal solutions provide a problem not just for GA, but for most other optimization 
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algorithms. To avoid this, the mutation step is introduced to include randomness in the design space. The 

third step in the iterative stages is the mutation step which operates very differently than the other stages. 

The mutation stage depends on the conditions for when a mutation operation can happen and what mutant 

operator is being used. One example would be if an operator chooses one of any two optimal estimates with 

the same objective function to mutate in order to provide a different solution. This in turn keeps randomness 

in the design space which prevents converging on a sub optimal solution. Different mutation operators and 

their conditions are possible for this thesis the displacement mutation operator was implemented with more 

information being available in Appendix B. After the mutation stage is finished, the iterative stages: sort, 

recombination and mutate are iterated over until the solution converges or a maximum number of iterations 

have taken place [89] [90].  

 

GA is a type of Evolutionary algorithm, which allows GA to be good at handling functions where the 

assumptions on the output of the objective functions is not well known. This is a huge benefit when using 

GA for RSO parameter estimation, as not only are these problems complex with little known about the 

objective function output, but it makes the GA algorithm flexible for different satellites and missions that 

would have varying objective functions. The drawback to the GA includes that it is very computationally 

intensive requiring the creation of thousands to millions of optimal estimates in order to be able to find an 

optimal solution [90].  

2.7.5  Hybrid Genetic Algorithms 

Hybrid Genetic Algorithm (HGA) uses the complementary properties of genetic algorithms with other 

heuristic algorithms. Most commonly for traveling salesman problems a greedy algorithm is used, but 

recently more complex HGA have been examined for when the objective function output is not well known, 

an example of this is for satellite scheduling applications, and RSO parameter estimation [91]. There are 

many ways that heuristic or local optimization algorithms can be integrated with the genetic algorithm such 



74 

 

as: incorporating heuristic algorithms to generate an initial population, involve heuristics into the GA 

objective function, and incorporate local optimization around child chromosomes to improve the child 

before going to their evaluation. While the computational intensity of the HGA is large, it makes up for it 

by often outperforming EA and Greedy algorithms when operating on complex problems [92].  

 

2.7.6 Particle Swarm Optimization  

Particle swarm optimization (PSO) is an optimisation method that is gradient independent optimisation 

method that acts similar to SHC or SA. PSO places thousands of particles randomly throughout the response 

surface with each of these particles having an initial ‘Velocity’. Velocity in the context of PSO is how much 

the particle changes the parameters it is looking to optimise each iteration of the optimiser. Normally to 

find the change in parameters, velocity in PSO’s case, for gradient optimisers, such as SHC and SA, the 

gradient is calculated. PSO being gradient independent optimiser instead uses the distance to different local 

and global optimums to find the change in velocity each iteration. PSO breaks the response surface into 

local grids, the size of these grids is determined by the user and the optimisation problem. In each of these 

grids the local optimum is recorded with the global optimum being found as the best of the local optimum. 

A particle updates its velocity from a weighted average of the previous velocity, distance to the local 

optimum of the grid the particle is in, distance to the global optimum, and finally a random component. For 

each of the optimum contribution to velocity the direction of the velocity change is found from the direction 

to the optimum with the size of the velocity change being related to the distance to optimum and difference 

in the objective function between the particle and optimum. The equation for calculating the velocity of the 

particles used in thesis is shown below in 64. This method has the advantage of not requiring 

computationally expensive gradient calculations, which make a large difference when populating the 

response surface with tens of thousands of particles. The particles act as a swarm slowly converging to the 
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global optimum allowing large portion of the response surface to be covered while still converging to an 

optimum.  

 

 𝑽𝑖+1 = 𝑊𝑃𝑟𝑒𝑽𝑖 + 𝑊𝐿𝑜𝑐(𝑀𝐿𝑜𝑐 − 𝑀𝑃)(𝑳𝑶𝑪 − 𝑷) + 𝑊𝐺𝑙𝑜(𝑀𝐺𝑙𝑜 − 𝑀𝑃)(𝑮𝑳𝑶 − 𝑷) + 𝑹𝒄 64 

 

In equation 62: 𝑽𝒊 represents the velocity vector of the particle for the ith iteration, 𝑊𝑃𝑟𝑒 represents the 

weighting of the previous velocity on the next iterations velocity,  𝑊𝐿𝑜𝑐 represents the weighting of the 

local optimum on the next iterations velocity, 𝑀𝐿𝑜𝑐  represents the objective function score of the local 

optimum, 𝑀𝑃 represents the objective function score of the particle, 𝑳𝑶𝑪 represents the location vector in 

the response surface of the local optimum,  𝑷 represents the location vector in the response surface of 

the particle, 𝑊𝐺𝑙𝑜 represents the weighting of the global optimum on the next iterations velocity, 𝑀𝐺𝑙𝑜 

represents the objective function score of the global optimum, 𝑮𝑳𝑶 represents the location vector in 

the response surface of the global optimum, 𝑹𝒄 represents the random component of the velocity 

vector of the next iteration taken by using an uniform distributed random function bound at 25% of 

the maximum step size.  

 

2.8 Optimisation Algorithm Tuning  

Tuning of an optimisation algorithm is performed by evaluating the algorithm with different optimisation 

parameters to see which values of the parameters allow the optimisation algorithm work the best. Tuning 

optimisation algorithms is a well-defined topic in academia and industry, due to this tuning was not the 

focus of this thesis with a simple grid search being performed to tune all of the algorithms in Table 16. The 

simple grid search tried every possible discrete combination of tunning parameters to create a response 
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surface from which the tuned parameters were chosen.  For each of the algorithm’s papers have been 

provided which go over more complex tunning and the application.   

  

 

Table 16: Tunning Parameter for the Optimisation Algorithms Used 

Optimisation 

Function 

Tuning Parameter/s Range  

[Min, Max, Step] 

Found 

Optimal 

Value  

Tuning 

References 

Gradient 

Descent 

Magnitude to Degrees* [5, 90, 5] 30 

[93] [94] 

[95] 

Degree Step Max* [10, 30, 5] 15  

Degree Step Min* [0.1, 1, .1] 0.1  

Total Iterations* [50, 450, 50] 100 

Number of Points* [10,000, 100,000, 

1,000]  

20,000 

Stochastic Hill 

Climbing 

Magnitude to Degrees* [5, 90, 5] 30 

[96] [93] 

Degree Step Max* [10, 30, 5] 15 

Degree Step Min* [0.1, 1, .1] 0.1 

Total Iterations* [50, 450, 50] 100 

Number of Points* [10,000, 100,000, 

1,000]  

20,000 

Simulated 

Annealing 

Magnitude to Degrees* [5, 90, 5] 30 [97] [98] 

[99] Beta [.85, 1, 0.01]  0.99 

Cooling Factor  [1, 10, 1] 5 

Degree Step Max* [10, 30, 5] 15 
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Degree Step Min* [0.1, 1, .1] 0.1  

Total Iterations* [50, 450, 50] 100 

Number of Points* [10,000, 100,000, 

1,000]  

20,000 

Genetic 

Algorithm 

Cross Over Parameters  [.3, .7, .01]  0.5 [100] [101] 

Mutation Chance  0.0001, 0.0005, 0.001, 

0.005 **  

0.001 

Total Iterations* [50, 450, 50] 100 

Number of Points* [10,000, 100,000, 

1,000]  

20,000 

Particle 

Swarm 

Optimisation 

Max Velocity* [5, 90, 5] 30 [102] [103] 

Current Velocity Weight [.5, 1.5, .01] .9 

Local Optimum Velocity 

Weight 

[.5, 1.5, 0.l] 1.2 

Global Optimum Velocity 

Weight 

[.5, 1.5, 0.1]  1.2 

Total Iterations* [50, 450, 50] 100 

Number of Points* [10,000, 100,000, 

1,000]  

20,000 

* Represents values that were average over all of the optimisation methods for comparison study shown in 

section 5.1. 

** These were the 4 values tested for mutation chance instead of the range and step formula performed for 

the other parameters  
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3 Parallel Propagation of Multi Satellite Systems 

 

In this section an initial feasibility study and the results for parallel propagation are shown in section 3.1. 

In section 3.2, the results from the initial feasibility study were implemented for orbital maneuver detection 

to test serial vs parallel processing methodology. This study was published in the Advances in Space 

Research journal [48]. 

3.1 Initial Feasibility Study   

This study examines the parallel propagation computational methods relative to sequential propagation 

computational methods for multi satellite propagation using various numerical methods. Runge-Kutta, 

Dorman-Prince, and Systems Toolkit (STK) Automation methods are examined over 3 design variables for 

computational efficiency for multi satellite propagation application rather than qualitative characterization. 

Results indicate that computational time is reduced up to 80% using parallel computation when a large 

number of satellites are propagated, or propagation is over a long period. 

3.1.1 Methodology  

3.1.1.1 Access Time 
To find access time in this paper there are two conditions, the range to the satellite and the minimum elevation 

angle (MEA). These constraints are related to the position of the satellite and ground station by Equation 1 

and 2 below. 

 𝑠𝑖𝑛(𝑀𝐸𝐴) ≤
𝑧

𝑟(𝑥, 𝑦, 𝑧)
 65 

 𝑅𝑎𝑛𝑔𝑒𝑗≥r(x,y,z) 66 

In the above equations x, y and z represents the x, y, and z component of the satellite position in topocentric 

coordinates respectfully, r represents the distance from the ground station to the satellite, MEA represents the 

minimum elevation angle that the satellite needs to communicate with a ground station, and Rangej 
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represents the maximum distance the satellite can be away from the jth target area or ground station to 

communicate with it. In this paper, ground stations and target area act the same; therefore, will be referred 

to as ground stations from now on. If a satellite and ground station satisfy these two conditions, the satellite 

is declared in access. At all other times the satellite is declared of out access. To find a satellites position 

at some time, t, it is required to know the position of the satellite at some previous point, t0, as well as the 

force model on the satellite. The position of the satellite at the start of propagation period will be given to 

each numerical method, with all the different methods using the same force model. The force model being 

used is J2 perturbation model which is less complex when compared to the common SGP4 and other more 

sophisticated force models. The J2 perturbation model was chosen for its easy of implementation and to first 

validate that parallel methods do reduce computation time on simple models before moving to more 

sophisticated models. More information on force models for satellites and the J2 force models equations can 

be found in section 2.1.1 J2 Perturbations above. 

 

3.1.1.2  Simulation Environment 
In order to test this computational efficiency, satellite orbits will be simulated to find the access times for a 

number of satellites to a number of ground stations. The simulation will randomize the satellite Keplerian orbital 

elements as shown in Table 18 as well as, the ground station locations before passing the information to five 

different methods of propagation shown in Table 17. Three different variables will be changed during the 

simulation to see how each of the methods react to the changes. The three variables are: The period of 

propagation, the number of satellites, and the number of ground stations. Each variable will have a range that 

is being tested and a default value where the two independent variables not being tested will be held at. 

Table 17 shows all 3 tests that will be preformed are listed with the independent variables used and the number 

of points taken. The number of points were chosen to balance the time taken of each simulation while still 

getting the trend result. 
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Table 17 Simulation Test Parameters  

 Period Test Satellite Test GS_TA Test 

Period of 

Propagation  

1 to 180 Days 5 Days 5 Days 

Number of 

Satellites 

100 10 to 5,000 100 

Ground Stations 

and Target 

Areas 

4 4 1 to 10  

Number of 

Points 

50 60 44 

Point Repetition  10 10 10 

 

The simulations will start by using MATLAB’s “rand” function to randomly make the satellites Keplerian 

elements and ground station position. The ranges for all the Keplerian elements are specified by the user. The 

range of values randomized for all the Keplerian elements can be specified by the user, however, in this 

paper the values used for simulations are given in Table 18. 
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Table 18 Range of RSO’s Keplerian Elements  

Name of Element Variable Range  

Semi Major Axis a 7000 km to 42,164 km  

Eccentricity  e .00 to .99 

Inclination i -90o to 90o  

Argument of Perigee  ω 0o to 360o 

Longitude of The Ascending Node O 0o to 360o 

True Anomaly  v  0o to 360o 

 

The ground stations are randomly placed anywhere on Earth’s surface. The Keplerian elements and position 

of the ground stations are passed to each method which computes the access time. The computational time 

is defined as the time from when the Keplerian elements and position of the ground stations are passed to the 

method until the access times are calculated from the method. 

3.1.2 Results   

The results of the simulation were taken and linearly fit using least squares analysis to see which functions 

act linearly with time. Below are the results of the simulations which are plotted with a linear line of best 

fit generated from least squares analysis.  
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Figure 14 Period of Propagation vs Computation Time 
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Figure 15 Runge Kutta Period comparison for Parallel vs Serial methodologies  
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Figure 16 Dorman Prince 5(4) Period comparison for Parallel vs Serial methodologies 
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Figure 17 Number of Satellites vs Computation Time  
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Figure 18 Runge Kutta Satellite comparison for Parallel vs Serial methodologies 
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Figure 19 Dorman Prince 5(4) Satellite comparison for Parallel vs Serial methodologies 
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Figure 20 Number of Ground Station vs Computation time 
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Figure 21  Runge Kutta Ground Station comparison for Parallel vs Serial methodologies 
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Figure 22 Dorman Prince 5(4) Ground Station comparison for Parallel vs Serial methodologies 
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Figure 23 Dorman Prince 5(4) Parallel method results for Period Testing  
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Figure 24 Dorman Prince 5(4) Parallel method results for number of satellite testing 
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3.1.3 Discussion and Future Work 

3.1.3.1 Period Testing 
The results from the period test illustrate how the different numerical methods are affected by changing the 

period of propagation. It was expected that all methods increase in computation time as the period of 

propagation increases. In Figure 15 there is a noticeable difference between the parallel and series methods 

of RK, looking at the overall computational time, as expected, the parallel method is significantly less than 

series method only requiring around 20% of the computation time. For both the parallel and series 

methodologies the trend is almost constant with a slight downwards slope found from the least squares 

linear analysis. These downwards slope indicates that a longer characterization period should be used for 

RK method due to their computation time not varying significantly over the observed propagation periods. 

A larger range of propagation periods will be looked over for the RK method to see if the trend is linearly 

upwards as expected, or the slight downwards slope continues which then would require more testing to 

explain the cause behind downward trend. 

Looking at how the DP methodologies deal with change in propagation we notice some similar trends to 

the RK methods. The first and most significant similarity between the two is that the parallel method takes 

notably less computational time than the series method as expected. The DP methods trends are different 

from RK, as the period of propagation increases the more computationally efficient the parallel 

methodology is. With a small propagation period the serial and parallel methods are around the same 

computation time. The real change takes place when the propagation period increases. Once the propagation 

period reaches 60 days the parallel method takes around 20% of the computation time of the serial method 

and decreases further as propagation period increases. Where with the RK method the difference in 

computational intensity stayed relatively constant for the entire duration. As seen in  Figure 23 where unlike 

the other methods, the parallel method acts like a step function instead of linearly. Possible causes of this 

behavior of DP parallel stems may be attributed from some of the orbits being unstable, which, causes all 

the satellites to continually be propagated. The DP methodology has adaptive step size which normally 
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decreases the time it takes to integrate non-strict problems; however, unstable orbits lead to strict problems 

with large error. The strict problem causes the step size to get smaller and smaller than reset back to the 

initial step size value. It is coded to propagate the satellites till they all reach the propagation period, so 

when one might reach it in N iterations if not all satellites have reached the full propagation period, the 

satellite will keep iterating. These extra iterations are wasted and could be eliminated to increase the 

computational efficiency in the future. Looking at the DP series method we see the computational time 

becoming quite sporadic having most data points near linear with some taking much larger computational 

time. The randomly selected orbits between the sporadic and linear data will be compared to see if a cause 

for this is unstable orbits. 

Comparing both the RK and DP series methods to STK we can see that they are clearly much more 

computationally efficient then STK, with DP parallel method being the closest to STK for computational 

efficiency. From the trends, the DP parallel method will become less efficient than STK over longer periods 

which will be confirmed once more data points are taken. 

3.1.3.2 Satellite Testing 
The results from the satellite test show similar results to the period test with the parallel methods preforming 

better than serial methods. Looking firstly at the RK trends, the parallel method out preforms the serial 

method, unlike the period tests, where the increase of satellites cause an upward linear trend. This shows 

that the RK methods computation time is affected more by the increase of satellite compared to an increase 

in period of propagation. The computation time of the parallel method relative to the series method 

decreases as the number of satellites increase. When the number of satellites is near 500, which is around 

the number of satellites in proposed mega constellations the parallel method requires less than 20% of the 

computational time. With the parallel method getting more computation- ally efficient as the number of 

satellites increase, it would be useful for large catalogs like NORAD’s space catalog, which has more that 

40,000 tracked objects. 
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Looking at the DP methods, the trends are similar to the period testing, with the serial method having a near 

linear trend with sporadic outliers, currently the reason for these outliers is unknown and will be looked 

into further. The parallel method is found to be more efficient than the series method, at 500 satellites taking 

around 20% of the computational time of the series method. With the satellite range tested the step that was 

found in period testing was not found with the satellite testing. To confirm that the satellite testing follows 

the same step a larger range of number of satellites will need to be tested. The DP takes more computation 

time when compared to RK methods; however, DP methods get more computationally efficient when 

comparing the parallel to series method as the number of satellites increase. One should note that the DP 

parallel method requires less computation time than RK series as the satellite number increases, this shows 

how effective parallel methods are for multi-satellite propagation. 

When comparing the DP and RK methods to STK, the RK methods take significantly less computation 

time, as well as the DP parallel method. However, the DP series method computational time is similar to 

that of STK. This demonstrates how inefficient serial methods are when dealing with large number of 

satellites. The US space fence is looking to come online this year allowing the tracking of more space debris 

to be possible, this is expected to have the Space Catalog jump to over 100,000 satellites and space debris. 

3.1.3.3 Ground Station Testing 
The ground station testing presents a very different trend than the other two tests. According to the ground 

station test, it is clear that while the addition of ground stations does increase the computational time; 

however, it does not affect the computational time as much as increase in propagation period and number 

of satellites. This was as expected as the period of propagation and the number of satellites effects the 

propagator which takes the most computational time. The position calculation for ground stations does not 

require a propagator, as the motion is well-known and can be modeled as a function of time. Looking at 

Figure 22 the trend of increasing the ground stations has a similar effect on both the parallel and series 

methods. The slight upwards trend from the two methods is as expected as the additional ground station 

doesn’t affect the propagation time, which take up the most computation time, but rather effects the post 
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processing after the propagator. The computational time of the ground station test is similar to the period 

test which shows that with RK methods the computation time depends mostly on the number of satellites 

being propagated. 

The DP methods have a similar trend as seen in the RK methods but being an order of magnitude greater 

in computational time. The trend confirms what was mentioned above which is with the number of ground 

stations not effecting the propagator it has a much smaller effect on the computation time compared to how 

the DP method handles increases in satellites, as well as propagation period. The parallel method is more 

efficient than the series method as expected, but the parallel method has a steeper upward slope than the 

series method alluding to series DP methods are more efficient for the addition of ground stations than 

parallel methods are. To be able to verify this statement more data points with larger amount of ground 

stations needs to be taken. Looking at how DP methods compare to RK methods we can see similar trends 

to what were seen in the past two tests. The DP have more computational time than the RK methods and 

both follow very similar trends, this is expected with both methods having the same post processing which 

is what the number of ground stations effects. Both DP and RK methods are significantly below STK’s 

results, which as expected take longer and have a steeper upward trend when compared to DP and RK. This 

is due to STK having information and a graphical component to compute. It also adds the additional 

computational time of the graphics, rather than just adding an extra calculation step when the number of 

ground stations increase. 

3.1.3.4 Conclusion and Overall Summary 
The trends from all 3 tests bring interesting qualitative results that will be described below which look to 

be expanded upon and made into qualitative results in the future with more data points taken. First looking 

at the similarity between the tests the period and satellite test are the most similar with the ground station 

test looking much different. This as described in the ground station section is because the number of ground 

stations effects the post processing after the propagator while period and satellite number effect the 

propagator. One of the most important and similar trends between all the tests and numerical methods is 
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that parallel methods out preformed serial methods in most case shown. While there are some cases where 

serial methods out preform parallel methods with multi satellite propagation parallel methods have a clear 

advantage in computational time. The goal of this paper was to prove that parallel processing can save 50% 

of the computational time when compared to series methods, which was proven in to be true under certain 

parameters. While the computational time and the amount saved depends on the inputs, it was shown that 

as the number of satellites, and period of propagation increase so does parallel methods efficiency when 

compared with series methods. The next step towards introducing parallel methods into multi-satellite 

propagation is to upgrade the propagation model to SGP4 and use TLE data to test how accurate the methods 

are and compare them to STK. As well as characterize their computational efficiency more accurately with 

more data points over a longer range, which will be done in a follow up paper. Looking toward the future 

as the space domain becomes busier more efficient methods will not only be needed by for ground 

calculations, but with the autonomy of satellites ever-increasing allowing for in- situ calculations of orbits 

will be extremely valuable for space situational awareness, navigation, and collision avoidance. 

 

3.2 Parallel Processing of TLE’s for Orbital Maneuver Detection  

The below publication was originally submitted and published by the Advances in Space Research journal 

[48]. The background information was move to chapter 2 of this thesis with the resulting methodology and 

results being contained in the section below.  

Space situational awareness (SSA) is an important and growing field in the space sector. With space 

becoming filled with active satellites and space debris, the Big Sky Theory [104] is becoming less and 

less applicable. There are currently 20,000 tracked objects from NORAD, called resident space objects 

(RSOs). RSOs are any active or inactive satellites that orbit Earth. The number of tracked RSOs is 

estimated to jump an order of magnitude with the space fence coming online [105]. With more objects to 

account for, more efficient tracking methods are required. 
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 The parallel processing of orbital propagation first occurred in the early 1990s [106]  [107]. Since 

then, the advances in parallel processing have allowed for more efficient calculations of complex 

algorithms. The parallel processing discussed in this paper is single instruction multiple data (SIMD). 

SIMD parallel processing takes a single instruction, such as adding two numbers, and applies the 

instruction to multiple data points, making it the easiest form of parallel processing to implement. 

Integrating SIMD parallel processing into current methods of TLE analysis and state propagation should 

decrease the computation speed on large datasets. 

 In recent years, there have been different implementations of SIMD parallel processing, such as 

implementing these algorithms on processing units specially designed for parallel processing, with the 

graphics processing unit (GPU) being a notable example [108]. With the implementation of SIMD 

parallel processing, computer resources are being used more efficiently, allowing for an increase in 

computational speed without the downside of loss of accuracy. With recent advances in parallel 

processing, new algorithms for multi-satellite orbital propagation have arisen, as described by San-Juan et 

al. [109] and Koblick et al. [110]. Multi-satellite propagation has applications in several areas of the space 

sector, such as access finding, satellite scheduling, and constellation design. 

 This study focuses on determining the effectiveness of parallel processing at increasing the 

computational efficiency of orbit determination through the use of both simulated and truth data. In 

addition, a novel method of orbital detection, which combines TLE analysis with state propagation, is 

proposed. 

3.2.1 Methodology  

To evaluate the TLE analysis, state propagation, and hybrid detection methods, computation speed and 

detection accuracy are used as comparison metrics. Computation speed is determined for each method not 

including the TLE read in. The reason that the TLE read-in is not taken into account is because it is 

completely independent of the two different maneuver detection algorithms and can be optimize 
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separately. Two different figures of merit that are being looked at are the number of true detections and 

the number of false detections. The number of true detections refers to TLEs that have been flagged as 

having maneuvers that correspond with the truth maneuver data given by the ENVISAT catalog. The 

number of false detections refers to the TLEs that have been flagged as having maneuvers that do not 

correspond with the truth maneuver data. The 3 different methodologies for the maneuver detection 

techniques, are outline in the background section 2.4 Maneuver Detection. 

 The parameters were varied over a range of values to find the optimal results from the different 

methods in the design space. The accuracy of these methods has been shown in Kelecy et al. [61] and 

Lemmens and Krag  [63], hence the focus on the computational speed, with the appropriate tuning of 

parameters to be performed in the future. 

 To test the methods with truth data, ENVISAT’s TLEs and maneuver history from 2002 to 2012 have 

been used. Both the maneuver and TLE history are available at: 

https://ilrs.cddis.eosdis.nasa.gov/data_and_products/predictions/maneuver.html, and contain 11,816 TLEs 

and 177 maneuvers, with a total of 220 burns. Both sequential and parallel methods are shown, with the 

sequential method representing the nonparallel methods. 

3.2.2 Results   

 The results for true detections and false detections for each method are shown in Table 19. 

Table 19 : True and false detections from each method  

Hybrid method 𝑛-σ:                                    2.6  True detections:                                        49 

𝑃𝑇𝑜𝑙:                                0.85         False detections:                                       45 

𝑉𝑇𝑜𝑙:                                   0.01 Ratio of false to true detections:       0.9184 

Parallel TLE method 𝑛-σ:                                       3 True detections:                                        71 

   False detections:                                       66 
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Ratio of false to true detections:       0.9296 

Parallel state method 𝑃𝑇𝑜𝑙:                                0.85    True detections:                                      106 

𝑉𝑇𝑜𝑙:                                   0.01  False detections:                                     192 

 Ratio of false to true detections:       1.8113 

Sequential TLE method 𝑛-σ:                                       3 True detections:                                        71 

   False detections:                                       66 

Ratio of false to true detections:       0.9296 

Sequential state method 𝑃𝑇𝑜𝑙:                                0.85    True detections:                                      106 

𝑉𝑇𝑜𝑙:                                   0.01  False detections:                                     192 

 Ratio of false to true detections:       1.8113 

 

 From Table 19 it can be seen that the performance of the parallel and series implementations of both 

the TLE and state methods does not affect the accuracy of the results. In addition, the hybrid method 

outperforms the other methods at distinguishing true detections from false detections. While the hybrid 

method does not have the largest number of true detections, it does minimize false detections of 

maneuvers. The results from all the methods show a few of the true maneuvers detected and a large 

number of false detections. This is assumed to be a result of low-order interpolation and improper tuning 

of threshold values. While linear interpolation was used to estimate the variance in expected parameters, 

other studies have used cubic splines or higher-order functions [62], which will improve accuracy. The 

tuning of the maneuver parameters is method- and RSO-specific, due to the focus on computational speed 

of the different methods in this paper; in addition, the design space for the tuning of the parameters was 

small and all parameters are assumed to be suboptimal [61]. 

 The effect of parallel processing can be seen in Figure 25 and Figure 26. Figure 25 and Figure 26 

show how the computational time changes with the 𝑛-σ threshold value for each method. The reason that 
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the computational time is plotted versus 𝑛-σ is that, in the hybrid method the number of maneuvers that are 

detected by the TLE analysis method is then given to the state propagation method. Larger values of 𝑛-σ 

will result in fewer maneuvers being detected and fewer RSOs moving onto state propagation, which should 

result in a change in computation time due to the fact that fewer calculations are required. 

  

Figure 25 The computation time versus the n-σ threshold values for each method. 
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Figure 26 The zoomed-in version of Fig. 2 excluding sequential state analysis. 

 The results show that parallel processing improves computational speed by a different amount for the 

different methods. For TLE propagation, parallel processing improves the computational speed by 

approximately eight times when taking the average over the 𝑛-σ range. The difference between the 

parallel and sequential computational speed of state propagation is approximately four orders of 

magnitude when taking the average over the 𝑛-σ range. This large difference between the parallel and 

sequential is due to the parallel processing of the orbital propagation, which takes up the majority of the 

computation time for state propagation methods. Previously, TLE analysis had the advantage of quicker 

computational speed; however, with the implementation of parallel processing, state propagation has 

achieved nearly the same computational speed. It was found that the computational time of sequential 

TLE analysis is on average approximately 105 times less than sequential state propagation. In contrast, 

computation time of parallel state propagation is on average approximately 1.6 times less than parallel 
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TLE analysis. This gives an advantage to state propagator methods in most parallel instances because they 

generally provide more accurate results than TLE analysis. 

 When comparing the parallel implementation of TLE analysis and state propagation, Figure 25 shows 

that the hybrid method is worse in terms of computational speed, although it varies based on the 𝑛-σ 

value. As expected, when the 𝑛-σ value increases, the number of detections decreases, which decreases 

the number of RSOs going to state propagation. This, in turn, decreases the computational speed. While 

the hybrid method was designed to minimize the amount of required propagation in order to save 

computational time, the computational speed of the parallel processing of propagation shows that it is not 

required. In the future, hybrid methods that combine TLE analysis and state propagation should not be 

used to increase computational speed, but rather to reduce the false detection rate, and possibly improve 

the accuracy of results. 

3.2.3 Conclusion 

The purpose of this paper was to show that parallel methods reduce the computational time required for 

RSO detection methods, which was accomplished. In the worst case, parallel processing demonstrated an 

eight-fold decrease in computational time. State propagation benefited the most from this implementation, 

which dropped the computation speed by four orders of magnitude, thereby bringing its computation 

speed to a level similar to that of the TLE analysis method. With 11,816 TLEs propagated from 

ENVISAT, the numbers are similar to performing orbital maneuver detections for the public TLE catalog, 

which contains approximately 20,000 tracked objects. This shows the feasibility of large-scale RSO 

maneuver detection from publicly available TLEs, which matches the results of others [108]; [111].  

 The results from the hybrid method showed worse performance than all other parallel methods in 

computational speed and improved performance in the ratio of false to true detections. These results 

suggest that the hybrid method can be implemented for improving detection accuracy rather than 

computational speed. Future hybrid method architecture should run both TLE and state propagation in 
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parallel and compare their results to reduce false positives and improve the accuracy on the orbital 

maneuvers. 

 Further improvements consist of refining the hybrid method, with a focus on improving accuracy in 

order to detect and characterize orbital maneuvers. The characterization of maneuvers is done by 

available information to estimate the direction and ΔV of the maneuver, which can be calculated 

accurately using TLE analysis and state propagation methods. Using information from both TLE analysis 

and state propagation leads to fewer false detections and can lead to better characterization of the 

maneuver. Using different methods of detection, such as changes in the semi-major axis, predicted states, 

and orbital energy, it could be possible to achieve better estimates of the type of maneuver and reduce the 

error on the estimated ΔV.  

3.3 Summary  

The work performed on parallel processing for multi-sat propagation has shown a significant reduction in 

computation time compared to serial methods. This has major implications in reducing the amount of 

resources needed to large scale multi-satellite propagation which are needed for analysis such as 

constellation scheduling and access time, conjunction warnings and analysis, as well as, in maneuver 

detection. In section 3.2 maneuver detection was used as an example to see the improvement of the 

implementation of parallel propagation in contrast to serial propagation which showed orders of magnitude 

reduction of computation time. By integrating parallel propagation into the RSO image simulator it looks 

to significantly reduce the amount of propagation time as satellite propagation is one of the most 

computationally intensive steps in RSO image simulation. From work performed in chapter 3 the PSGP4 

code was verified and validated allowing for it to be easily integrated into the RSO image simulator. This 

demonstrates another area in which parallel propagation has a positive contribution to the space community, 

as well as aids in the accomplishment of research objective two and three.  
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4 Simulation of RSO Images for Space Situation Awareness (SSA) Using 

Parallel Processing 

 

The below publication of Simulation of RSO Images for Space Situation Awareness (SSA) Using Parallel 

Processing is submitted and currently in review for publication in the Sensors journal. The background 

information was move to chapter 2 of this thesis with the introduction, methodology, and results being 

contained in the section below.  

4.1 Introduction  

Space Situational Awareness (SSA) is becoming an increasingly important issue around the world as the 

number of resident space objects (RSOs) in space is continually increasing. SSA requires innovative, robust 

and reliable solutions to identify, track and characterize RSOs. Previously, we demonstrated the feasibility 

of using low-resolution on-orbit images (such as star tracker images) for RSO detection. In [49], we 

examined the number and frequency of RSOs that are detectable (given the physical and optical parameters 

of the objects and imager such as distance, brightness, motion) when a commercial grade star tracker is 

used instead of dedicated high-resolution imagers. Using the simulation study, we concluded that hundreds 

of objects in low earth orbit can be observed using a star tracker in a day. The starfield simulator named 

ORBITALS developed for this feasibility study was modeled after FAI imager onboard CASSIOPE 

mission. Similar simulators: such as the ones outlined in [112] and [113], use a propagation and ray tracing 

algorithm where ORBITALS performs all calculations in MATLAB with no additional software required. 

The simulation represents low-resolution star-tracker-like images in IR range. More information on the 

preliminary star field image simulator is also provided in [49].  

ORBITALS also serves as the training tool to enable an artificial intelligence (AI) algorithm design to 

identify and characterize the RSOs from low-resolution images. AI algorithms have been shown in recent 
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years to perform accurately and efficiently after training, such as [37] for RSO detection and [50] for RSO 

characterization. Research such as [114] and [115] highlight the need for high quality and quantity of 

training data pertaining to star field images and corresponding labels. A labelled star field database, as 

produced by SBOIS, enables novel model development for resolving imagery for classification purposes. 

As detailed in [116] and [50], machine learning algorithms adapted to classification and characterization 

are able to leverage large dataset variations which is only achievable via tools like SBOIS. Therefore, from 

the perspective of image processing algorithms, the key value metrics of an image simulator like SBOIS 

are labelled image generation accuracy, variability in simulation and image generation time. 

While the tool provides powerful means to generate and simulate large number of realistic star field images, 

the simulator’s performance was limited in its computation efficiency, as well as the versatility in providing 

images from multiple sources. In this study, we present the next generation starfield simulator design that 

features object centroid estimation; implementation of parallel processing for optimal computation; and 

robustness in simulation parameters. To validate the accuracy of the simulator, we compare the resulting 

simulation of the starfield images to the actual images obtained from FAI as well as the simulated images 

from the Systems Tool Kit (formerly Satellite Tool Kit, STK) a commercially available application.  

Accuracy and efficiency of the simulation in starfield images is a critical step in developing SSA algorithms. 

In [23], the importance of ‘high-fidelity and innovative simulation architecture’ is described to engage SSA 

mission design. PROXOR™/RT-PROXOR™ by Bell Aerospace is one of the few commercially available 

starfield simulators using multi-thread architecture. STK offers an alternative tool to visualize and analyze 

stars and RSOs in orbit. For the purpose of this study, we compared the proposed simulator design to STK 

with electro-optical and infrared sensors (EOIR) toolkit. Originally developed by the Space Dynamics 

Laboratory for missile defense, STK-EOIR supports radiometric sensor modeling of optical sensors. 

Combined with STK’s various mission design capabilities, STK-EOIR is a unique platform where optical 

RSO tracking mission can be planned, simulated and studied with graphical user interface for convenience; 

more details of STK-EOIR features are also described in [117] [118]  presents a study on space object 
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identification using deep neural networks using STK-EOIR where the photometric observations are 

generated from STK-EOIR with the GEODSS sensor. While STK-EOIR proves to be a versa-tile platform 

to simulate starfield images for mission planning and proof-of-concept demonstration, it still lacks 

flexibility and efficiency we seek for the current study. We recognize that a commercial product like STK 

(by Analytical Graphics, Inc.) offers a unique capability to perform complex analyses as well as training 

and research opportunities. AGI reports that STK has more than 50,000 installations at more than 800 global 

organizations. While limited STK functionalities are available for free, advanced functions still require 

expensive licensing. Furthermore, for the purpose of the current study, flexibility in low-level 

implementation is required to accommodate the large set of data and multiple sensor platform. As such, a 

custom starfield simulator specifically designed for RSO identification study was designed and based on 

the simulator we had developed for the feasibility study. In developing ORBITALS, three key parameters 

were considered to enable RSO tracking algorithms: (1) RSO centroid estimation; (2) implementation of 

parallel processing; and (3) versatility in simulation parameters.   

 

4.2 Simulator Performance Metrics  

4.2.1 RSO Pixel Position Comparison 

To validate the accuracy of the ORBITALS to a readily available commercial product such as STK-

EOIR, a comparison study using the identical orbital parameters in both simulators was conducted. Images 

taken by FAI on June 15th, 2019, 23:35:50 to 23:36:15 were simulated. This time period was chosen to 

capture the first sighting of the RADARSAT Constellation Mission (RCM) spacecrafts after they 

were launched on June 12, 2019. Their distinct formation of three spacecraft, combined with other 

reference stars within FAI’s field of view help not only in determining the pixel locations, but also in 

identifying and correcting for potential lens distortions since it forms a geometrical shape rather than 

a single data point. Three stars from the Bright Star V5 catalogue #6111, #6158, and #6195 were used 
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for as references to prevent errors caused by discrepancies in the simulation of the attitude of the observer 

spacecraft CASSIOPE. They were chosen for their unique in-line formation that are almost parallel to 

the RCM formation during the observation period used in this study. Figure 27 illustrates a set of images 

from FAI (left), ORBITALS (center) and STK-EOIR (right). Highlighted in the red ellipses are the 

RCM constellation imaged on June 15th. Yellow ellipses depict the locations of three reference stars 

(Bright Star V5 #6111, #6158, #6195). The RCM, three-satellite constellation providing daily revisits 

of Canadian land and ocean, was launched three days prior to the study period; thus, not fully deployed 

and still retaining their distinctive formation.  The formation remains visible within FAI’s field of view 

for 32 seconds, with a total of 31 images taken. Table 20 illustrates sample data with three satellite 

locations with corresponding errors in pixels defined as the difference between FAI images and simulated 

images from ORBITALS and STK-EOIR, respectively. More examples of the pixel locations and errors 

are listed in the Appendixes.  

 

Figure 27 Sample Images from: (a) FAI on-orbit observation (left); (b) Simulated using ORBITALS (center); (c) Simulated 

using STK-EOIR (right) 

The comparison results are very promising. Pixel accuracy for RCM satellites is mostly within 5 pixels 

for ORBITALS. This error can be attributed to slight position and attitude discrepancies between the 

real host satellite and the host within the simulator. Observing satellite (CASSIOPE satellite that hosts 

FAI) ephemeris, for example, plays a critical role in presenting RSO orbit in simulated images.  The 

error of RSO position, as seen from a CCD, is minimal compared to the effect of host satellite position. 
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While shape and size of the objects effect the brightness of the object, the position of the RSO in the 

starfield is mostly defined by the accuracy of the RSO position, observer satellite position, and attitude 

of the observer satellite.  RSO attitude and facets (surfaces or shape of the RSO) contribute to the light 

curve in the form of brightness variation; however, they do not affect the position of the RSO on the 

simulated images. For the purpose of this study, it was assumed that all space objects are 10-m diameter 

with a perfect sphere for visibility on the simulated image. The spheres are estimated to have 0.2-

reflectance across FAI’s effective spectral band.  Statistics, such as lights reflectance of materials used, 

physical size of the satellite, solar panel placement and orientation could also affect the centroid of the 

reflected light perceived by another sensor, but only on a subpixel level. The comparison study 

between ORBITALS and STK-EOIR did not consider the above listed physical parameters. Instead, all 

objects were assumed to be of the same size for comparison and to eliminate potential errors which 

may occur from the continuous attitude changes. STK’s SGP4 propagator was used for the RSO 

positioning to keep the propagation method the same between ORBITALS and STK. 

Table 20: Summary of Simulator Accuracy 

*  Values are given in pixels.  

The pixel locations of RCM satellites and reference stars were compared by extracting their pixel 

location from both simulators; then, by calculating differences in the X and Y-axes. The data from 

ORBITALS are extracted directly from the simulator, as there is a built-in function to output pixel 

location. STK, on the other hand, has no such functions to export a file with pixel locations of objects 

Objects 
ORBITALS STK-EOIR 

ORBITALS Error(X,Y)* STK Error (X,Y)* 
Row(X)* Col(Y)* Row(X)* Col(Y)* 

2019-06-15 23:35:50 

Ref 6111 143.0 151.2 143.6 151.0 (1.1, -8.6) (1.7, -8.8) 

Ref 6158 121.6 161.3 120.6 160.7 (-4.4, -5) (-5.4, -5.6) 

Ref 6195 101.1 170.2 100 170.0 (-1.5, -4.8) (-2.6, -5) 

RCM-1 22.6 155.0 13.7 152.6 (3.8, 5.1) (-5.1, 2.7) 

RCM-2 35.5 147.8 30.0 144.6 (1.3, 4.8) (-4.2, 1.6) 

RCM-3 49.9 139.6 45.4 136.6 (-0.3, 4) (-4.8, 1) 
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within the field of view of a sensor. It does have a details window which can be viewed via EOIR 

synthetic scene window, listing the information within each pixel as the user selects it. The information 

includes X-and Y-coordinates, objects within pixel, and object distance from sensor.  The lack of batch-

export ability in STK significantly hinder any future analysis if the user does not know the general 

location of the target at the time period, and likely have to cross-reference with the 3D scenario window 

in STK to determine the pixels the objects are in before analyzing them. The reference stars are compared 

in a similar manner.  Since both simulators use the same star catalogue (Bright Star V5), significant 

differences between the two simulators outputs were not expected nor observed. It is worth noting that 

on rare occasions at 23:36:15, for example the scale of the star formation seems to be altered slightly 

(pixel differences between first and last star is different on both simulators), with STK showing a formation 

that is slightly larger than that of ORBITALS. Also, noteworthy that in the last 2 images, as the satellites 

move towards the edge of the image, lens distortion effect of FAI sensor caused image to warp, 

decreasing the accuracy of both simulators compared to the real image, as seen in the comparison 

shown in Appendixes. As stated in the RCM analysis, ORBITALS images depict stars with 6.6 and 

RSO’s with 5.1-pixel accuracy, comparable to the images generated from STK (mean difference of 6.5 

compared to original FAI image. Note that we reported accuracy of 9.4 pixels using the original 

simulator without sub-pixel feature [119].  As the simulator was used only to examine the feasibility 

of RSO identification using low-resolution, the reported pixel accuracy was considered acceptable. With 

the improvement made since then, we now represent on-orbit images with better than 5.1-pixel accuracy, 

making simulator pertinent for various applications. In the current study, we focus on the validity of the 

simulator in creating large dataset for AI algorithm training where accuracy and variance of the 

simulated data is a key characteristic. Regardless of the approach we take in developing AI for this 

purpose, simulated data needs to represent the real dataset with as much accuracy and flexibility as 

we can afford. It is also noted that in comparison with ORBITALS, STK-EOIR does not have a built-

in sub-pixel output option; if one needs to identify the exact location of an object, it can only be done 
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through a third-party algorithm that calculates the centroid of a multi-pixel shape. This may lead to some 

albeit small, but frequent inaccuracies in future studies. 

4.2.2 Computational Comparison  

Currently, there are over 20,000 in-orbit objects such as satellites, debris, rockets, revolving around Earth 

in various orbits, and this number is expected to rise by about an order in magnitude with the newly 

constructed US space fence coming operational [105]. To account for the large scale of propagation 

required a Parallel SGP4 method (PSGP4) as outline in [48] was implemented. In addition, the Bright 

Star catalog adds around 10,000 objects in the form of stars into the scenario.  Combining all the 

objects in any simulation is a challenging task, as well as the synthetic scene generation required to 

simulate the field of view and images of a sensor installed on a spacecraft. To successfully complete given 

tasks, a simulator needs to be capable of simulating the propagation of a great amount of RSOs, while 

taking the Bright Star Catalog, or any chosen catalog, into account when generating a simulated scene 

for a sensor; this should be done in a way that does not require significant computation time. This 

requires the simulator to be optimized, robust, flexible, and customizable. We compare ORBITALS 

and STK-EOIR in the above listed aspect, with emphasis on computation speed since ORBITALS utilizes 

such methods in its computation. It is worth noting that STK has the advantage of having a graphical 

user-interface (GUI) and a visual 3D scenario, but these can take valuable computational resource away 

from the actual simulation; this can be a burden if the user does not require the visualization nor the GUI. 

The comparison study was designed with both simulators generating 200 and 1000 images, then comparing 

their processing time. The results from ORBITALS were collected via an output function built into the 

simulator akin to other auxiliary data, which gives the time to generate the specified time period. The 

initialization time for ORBITALS is between 0.13 to 0.15 seconds insignificant for this comparison. 

Results from STK were taken   by subtracting the image creation time of the 1st image from the last 

image generated by checking the option “auto generate scene bitmap”, which gives the in-between 

time of the two images.  It is worth noting that the size of the EOIR window affects STK calculation 
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speed but closing it will also stop the generation of images.  Therefore, for the following 

comparisons, all windows were adjusted to the smallest dimension possible to achieve the best results. 

Table 21 below compares the computational speed of STK12.0.1 and its compatible EOIR to ORBITALS 

in terms of total time to generate specified number of images for each comparison category. From the 

comparison, it is clear that ORBITALS is superior to STK in processing time required under the 

circumstances that are tested. Apart from total time needed, average time taken for each image was also 

compared. Time needed for ORBITALS increases alongside the number of images within a set. the 

average time per image for a 200-image sequence was 0.34 seconds and decreased to 0.28 seconds when 

the number of images was increased to 1000. STK takes significantly longer than ORBITALS to 

produce the images in both cases with the images produced not being automatically labeled. This 

implies that ORBITALS is more computationally efficient for generating large, labeled datasets. As 

mentioned earlier, the 3D visualization capability and the GUI of STK helps the user greatly in many 

scenarios but can slow down the program down significantly if large number of objects are active at 

the same time. To test the limitations of STK, the entire GPS constellation and some independent 

satellites were imported into a scenario. STK crashed several times during the import process after there 

are over 60 objects in the scenario. Moreover, the import process can be time consuming for the user 

if TLE or other satellite files are not readily available. On average, it takes 1.5 to 2 seconds to import 

an object from the AGI database via GUI. Importing all objects within ORBITALS into an STK scenario 

can be extremely time consuming. Although object import time can be reduced significantly when 

considering the best-case scenario when the user has satellite orbit files ready, the possibility of STK 

crashing during the import is still present. 

Table 21: Computation Time Comparison  

 Processing time with 200 

image sequence 

Average time per 

image 

Processing time with 

1000-image sequence 

Average time per 

image 

ORBITALS 67 Sec 0.34 Sec 280 Sec 0.28 Sec 

STK 681 Sec 3.4 Sec 3322 Sec 3.3 Sec 
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4.3 RSO Detection Algorithms using Simulated Images  

Detection algorithms are out of the scope of this paper, with the goal just to provide simulated data for 

the training and verification of these algorithms.  Here some of the different types of RSO detection 

algorithms are mentioned and how simulated images are used with them.  Firstly, RSO detection 

algorithms are used to determine if an RSO is in the image, as well as distinguish between stars and 

RSO’s. The main way of determining the difference between stars and RSO’s is from the motion 

that they produce in the image, with stars streaking due to motion of the camera and host platform. 

The streaking of the RSO’s is due to the motion of the camera, host platform, and RSO’s motion. When 

accounting for the sensor and platform motion the only objects that should be moving are the RSO, 

allowing for determination between the stars and RSO’s. For more information on different detection 

and centroiding methods, such as machine learning and analytical algorithms see [70], [119], [120]. For 

the training of machine learning detection algorithms hundreds to thousands of images and image 

sequences are required, which are not always available for space-based platforms. To make up for the 

lack of data simulated images can be used to train these algorithms. One example of detection algorithms 

being trained of ORBITALS simulated images is presented in Mr. Dave’s AMOS technical presentation 

[50]. 

 

4.4 Conclusion  

In this paper, we described the architecture of the custom design star field simulator, ORBITALS and 

compared its performance with the real images as well as the simulated images generated using a 

commercial product, STK-EOIR. In comparing FAI images taken on June 15th, 2019, 23:35:50 to 

23:36:15 where a distinct RADARSAT Constellation Mission (RCM) formation was observed, an 

average of approximately 5-pixel accuracy was observed in both simulators, demonstrating very similar 

performance in generating realistic starfield images. ORBITALS, however, features an annotation 
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function that each image generated has labeled data for the simulated objects (both RSOs and stars) 

with position, velocity, pixel centroid, and SNR. In comparing the processing time, ORBITALS out-

performs for 200 and 1000-image cases with less than 1/3 of the processing time to generate the images. 

As part of future algorithm development, we are extracting light curve information of RSOs to estimate 

target range and improve the accuracy of the temporal classifier with further characterization 

parameters. This will be similar to the light curve inversion methods outlined in [42], [60], [23]  to 

estimate an unresolved RSO’s shape, attitude and optical properties. An additional area of research 

is point spread function modelling of sensors using convolution filters from the proposed 

classification algorithm. The algorithm proposed for PSF modeling would improve the accuracy of 

the simulator in recreating images and reduce centroiding and classification for future sensor simulations. 

Performing a similar analysis on varying range of image datasets from ground and space, from 

varying sensor types and resolutions could also widen the application of the simulator. 

4.5 Summary 

In this chapter it was shown the SBOIS was able to generate simulated images similar to COTS products 

such as STK EOIR. This is a huge step in enabling future research to be performed for space based RSO 

detection, correlation, and characterisation. SBOIS allows for labeled image data sets to be generate that 

allow for machine learning algorithm to be trained to allow for detection, correlation, and characterisation. 

This can be seen with recent research that has been enabled from the SBOIS simulator including the training 

of machine learning algorithms including automatic detection and centroiding of RSO in images performed 

in Dave et al. [50]. This allows for the training of more advanced detection algorithms which was the main 

contribution to RSO optical detections as the development of these codes was found to be outside the scope 

of work for this project. The ability to simulate RSO images shown against the currently available 

commercial option, STK EOIR, shows that the ORBITALS simulator provides accurate and quick data set 

enabling the training and validation of detections algorithms with large, simulated data sets. The ability to 

generate large data sets of optical detections of RSO’s also aided in the development and testing of satellite 
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correlation code. Specifically, code was developed by C-CORE under an IDEaS grant to enable the 

correlation of unknown RSO to its most likely candidate in the NORAD Satellite Catalog, which was used 

with ORBTIALS as it provided labelled images to be used as truth data for testing the algorithm. Other 

uses of the SBOIS include enabling mission preparation for space based SSA missions, which has been 

used to aid in the development of the RSOnar Balloon Mission out of York University. These few examples 

show the far-reaching positive impacts in the space community that the SBOIS contributes to with research 

objective 2. SBOIS has the benefit of allowing for replication of detections which allows for higher fidelity 

RSO characterisation to be performed. This is used in chapter 5 to enable the RSO characterisation from 

light curve inversion which would not be possible without an image simulator that is able to simulate 

thousands of images in a short period of time. Overall, the SBOIS provides a novel contribution to the space 

research community enabling machine learning, mission planning, and RSO correlation to be performed 

with large, simulated data sets where real data is scares or not available.  
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5 RSO Simulated Light Curve Analysis  

In this section a comparison between different optimisation algorithms for RSO characterisation and the 

results are shown in. The results from this study were published as technical proceeding from the Advance 

Maui Optical and Space Surveillance Technologies Conference (AMOS) [28]. In section, the results from 

the optimisation comparison were implemented in a simulated environment to test different BRDF models, 

as well as the performance of characterising different RSO parameters. This study is currently under review 

for publication at the Advances in Space Research journal. For both studies the background information 

has been moved to the Background Information section, as well as, been formatted to meet thesis standards.  

 

5.1 Performance of Parameterization Algorithms for Resident Space Object (RSO) 

Attitude Estimates 

5.1.1 Introduction 

The Resident Space Object (RSO) population is rapidly growing in numbers, which has become a 

significant concern worldwide. Today, according to NASA, more than 22,000 objects that are larger than 

10-cm in diameters are in Earth orbit; many more objects that are smaller than 10-cm diameters are 

estimated to be in orbit. It is still not clear how many hundreds of thousands of uncatalogued debris pose 

threats to space assets around the world. While there are continuing collaborative efforts among various 

space agencies and research communities to monitor the space objects from the ground and on-orbit, a large 

number of uncertainties in RSO numbers, trajectories and identifies still remain. In this paper, we present 

a novel method to estimate RSO shape, attitude and optical properties using their light curve characteristics 

to enhance tracking and identification of RSOs, namely Space Situational Awareness (SSA). SSA is an 

important aspect of establishing space resiliency as an effective means to recognize, view, track, and 

forecast potential threats; much of the SSA comes from RSO’s. In future missions, it is anticipated that the 
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further study of optical imaging of RSOs will lead to the investigation of precise orbit determination, shape, 

and attitude of the RSOs by closely examining light curves.  

Light curve refers to a time series of the RSO’s brightness versus time as received by a sensor. 

Characterization of RSO properties using a light curve is a well-known approach in both astrophysics and 

RSO studies. In [121], for example, the authors present a new technique to interpret the light curves of 

debris objects. In [122], a complex modeling technique to simulate space-based surveillance images 

considers photometric light curves. In Section 2 of this paper, we provide an overview of recent studies on 

RSO characterization using light curve. The majority of the optical detection and light curve analysis are 

based on ground observations; limited studies reported on space-based observations.  

Ground-observations of RSO’s are often managed by national space agencies. In the United States, 

GEODSS network provides the ‘backbone’ of the SSA effort. In [14], a major weakness of the GEODSS 

architecture is described as “not provide[ing] world-wide coverage; the present network has a wide gap in 

coverage over Western Europe and a narrow gap in coverage over East Asia. As the great 40-inch refractor 

at the Yerkes Observatory, Williams Bay, Wisconsin, is still in operation after more than 115 years, there 

is no reason the GEODSS network cannot remain effective for many more decades.” 

Comparatively, the European Space Agency’s (ESA) Space Surveillance and Tracking (SST) activities are 

undertaken by the SSA program with Space Weather and Near-Earth Object tracking. In [123], an overview 

of SSA trends is presented; various sensors are listed, including optical, radar, RF and laser ranging for 

SST. In Canada, DRDC reports several observation sites with SST capabilities; for example, [124] describes 

the DRDC Ottawa Space Surveillance Observatory; another example is showcased in [125] where it 

demonstrates ground-based observation of the light curve of a small satellite.  

Although ground-observation provides the baseline of SST and there is continuing effort to advance 

algorithms, automation, and operationalization of RSO tracking, challenges pertaining to the robustness 

and resilience of these systems still remain. Some disadvantages that come from ground-based observation 
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include atmospheric scattering, temporal restrictions, possible weather interference, and viewing angle 

restrictions.  

In comparison, space-based observations ignore atmospheric and weather effects, is not limited to nighttime 

observations and can view RSO’s at multiple viewing angles. Currently, the largest well-known space-

based SST mission is Space Based Space Surveillance by the United States DOD. Canada has already 

invested in building capabilities to track RSOs, such as the Sapphire and NEOSSAT missions [17]. 

Unfortunately, to date, there are no other currently planned on-orbit Canadian SSA missions to replace 

aging satellites; both Sapphire and NEOSSat have now exceeded the original mission design lifetimes. The 

missions described here are dedicated SST spacecrafts capable of selecting and tracking target RSOs. 

Disadvantages that accompany dedicated sensors are long lead times, high cost, and smaller coverage of 

regions of space.  

We proposed an alternative to the space-based dedicated SST mission to rely on passive observation using 

low-resolution imagers with observation-of-opportunity for RSO tracking and identification. Star trackers 

have been proven feasible for RSO tracking from pervious works, such as in [49]. Fig 1 below (left) 

illustrates a sample FAI image where three RCM is visible.  
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Figure 28: FAI Image with RADARSAT Constellation Mission in FOV circled in red. [126] 

In the current study, we focused on light curve inversion using low-resolution images to take advantage of 

the observation-of-opportunities. Light curve ‘inversion’ refers to the process of modeling the surfaces 

(facets or shape) of an object from their brightness variations; in this case, reflected light. There are several 

commonly used techniques in light curve inversion, most of which follow the same underlying method: 

• Using the shape, optical properties, and attitude to estimate the brightness of the RSO 

• Comparing the brightness to the observed brightness of the object (represented by the light curve) 

• Updating the shape, optical properties, and attitude estimate to reduce the error between the true and 

estimated brightness 

In the remaining paper, we describe the overview of recent studies on RSO light curve analysis, followed 

by a brief review on optimization methods suitable for RSO cauterization.  In Section 3, we describe the 

methods and algorithms we have implemented for RSO attitude estimation. We outline the results from the 

simulation study in Section 4, with a comparison of optimization algorithms under investigation. The last 

section of the paper summarizes the conclusion and suggests future tasks for further analysis of light curve. 
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5.1.2 Methodology  

To perform the comparison of parameterisation algorithms, a simulated environment in MATLAB was 

used. The ORBITALS was used to simulate low resolution images taken from a space-based station. This 

replicates detections that would be similar to an RSO passing in the FOV of a star tracker camera. In the 

simulated environment, one sequence was simulated with 20 different attitude profiles for 4 unique satellite 

shapes to act as the simulated observed data. The unique shapes are shown in Figure 29 to Figure 32, and 

represent 1U, 3U, Box-wing, and Iridium First Generation satellites. Each parameterisation algorithm ran 

a maximum of 30 iterations with the convergence rate and final accuracy being used as a figure of merit to 

compare the performance of the parameterisation algorithm. Table 22 contains the input parameters for 

each of the parameterisation algorithms:  

Table 22 Parameterisation Algorithm Parameter Inputs 

Algorithm Parameter Value 

Gradient Descent  

Magnitude to Degrees  30 

Degree Step Max/Min  15/0.1o 

Bottom Random Percentage  50% 

Stochastic Hill Climbing  

Magnitude to Degrees  30 

Degree Step Max/Min  15/0.1o 

Simulated Annealing  

Magnitude to Degrees  30 

Degree Step Max/Min  15/0.1o 

Beta 0.99 

Cooling Factor  5 

Particle Swarm Optimisation 

Max Velocity  30o 

Current Velocity Weight 0.9 

Local Optimum Velocity Weight 1.2 
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Algorithm Parameter Value 

Global Optimum Velocity Weight 1.2  

Genetic Algorithm  

Cross Over Parameter 0.5 

Mutation Chance  0.01 

 

 

 

 

 

 

 

5.1.3 Results and Discussion 

The results for the two figures of merit, accuracy and convergence rate, for each algorithm and each satellite 

model is shown in Table 23. The average RMSE of the 1000 best estimated light curves for each algorithm 

is shown in Figure 33 to Figure 36 for each satellite model. The attitude profile residual for 1 of the 20 true 

sequences is shown for each algorithm and each satellite model in Figure 38 to Figure 39. How each of the 

2 figures of merit are calculated is described below.  

 

Figure 29 Iridium First 

Generation Satellite Geometric 

Model 

Figure 30 1U Cube 

Satellite Geometric Model 
Figure 32 3U Cube 

Satellite Geometric Model 

Figure 31 Box-Wing 

Satellite Geometric Model 
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Two different types of accuracy are looked at in the results: the brightness accuracy and the attitude profile 

accuracy. The brightness accuracy represents the RMSE of the 1000 best light curve brightness residuals, 

this given over the iterations of the parameterisation algorithms give insight into the convergence of each. 

Attitude profile accuracy is the RMSE in the best Yaw, Pitch, and Roll parameters estimated, compared to 

the true Yaw, Pitch, and Roll parameters for a given sequence. The attitude profile RMSE is then averaged 

over different true sequences to get an average RMSE for the model and parameterisation algorithm.  

 

The convergence rate is compared both by iteration and computation time, which is calculated from each 

iteration being timed. The iteration convergence rate is defined as the number of iterations it takes for the 

Brightness Average RMSE to drop by one half life. The computation convergence rate is the average time 

it takes to converge one half life.  

Table 23 Parameterisation Algorithm Results 

Algorithm Geometric 

Model  

Brightness 

Average 

RMSE 

(Magnitude) 

Attitude 

Profile 

RMSE (o) 

Iteration 

Convergence 

Rate (Iterations) 

Computation 

Convergence 

Rate (seconds) 

Gradient 

Descent  

1U 0.0085 4.6 6.8 16.6 

3U 0.0102 4.7 6.7 16.6 

Box Wing  0.0154 5.5 6.8 20.9 

Iridium F.G.  0.0187 5.4 6.9 26.1 

Stochastic 

Hill 

Climbing 

1U 0.0066 12.1 6.3 13.7 

3U 0.0085 11.5 6.3 13.9 

Box Wing  0.0111 10.4 6.2 16.8 

Iridium F.G.  0.0146 10.3 6.5 21.6 
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Algorithm Geometric 

Model  

Brightness 

Average 

RMSE 

(Magnitude) 

Attitude 

Profile 

RMSE (o) 

Iteration 

Convergence 

Rate (Iterations) 

Computation 

Convergence 

Rate (seconds) 

 

Simulated 

Annealing 

 

1U 0.0062   9.3 6.3 29.1 

3U 0.0081   8.8 6.3 29.0 

Box Wing  0.0103   9.2 6.1 35.0 

Iridium F.G.  0.0137   8.9 6.4 46.9 

Particle 

Swarm 

Optimisation  

1U 0.0035 2.4 5.3 49.6 

3U 0.0049 1.8 5.4 51.0 

Box Wing  0.0056 1.7 5.2 60.1 

Iridium F.G.  0.0080 2.0 5.4 76.2 

Genetic 

Algorithm 

1U 0.0074 2.6 6.6 93.8 

3U 0.0093 2.6 6.5 94.1 

Box Wing  0.0126 2.6 6.5 110.6 

Iridium F.G.  0.0171 2.7 6.8 110.0 

 

 



124 

 

 

Figure 33 1U Model Algorithm Average RMSE 
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Figure 34 3U Model Algorithm Average RMSE 
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Figure 35 Box Wing Model Algorithm Average RMSE 
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Figure 36 Iridium First Generation Model Algorithm Average RMSE 
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Figure 37 1U Model Attitude Residual  
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Figure 38 3U Model Attitude Residual  
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Figure 39 Box Wing Model Attitude Residual  
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Figure 40 Iridium First Generation Attitude Residual  

It can be seen in Table 23 that all the algorithms follow a similar convergence trend, with all algorithms 

reaching similar average RMSE at 30 iterations. PSO shows the best average RMSE for all models, with 

SHC and SA having similar average RMSE and performing the second best. This is followed by GA and 

GD, which performed the worst for average RMSE. Estimating a RSO’s attitude produces a complex design 

space with many local optimums; GD does not have any way of escaping local optimum, which is 

hypothesised to contribute to its poor performance. GA has mutations and cross over operations which 

should allow the algorithm to escape local optimum. The mutation and cross over operation can widely 

change a child from its original parent; this contributes to a larger solution space being searched with less 

accurate local optimum evaluation. To allow for better local optimum finding with GA, different intelligent 

cross over and mutation operators should be tested. Hypothetically, well performing intelligent operators 

for this solution space would be able to consider the chromosome’s relative gene differences, as well as 
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local and global optimum. SA and SHC perform the second best as they both have a random probability of 

making non-optimal steps to escape the local optimum. In SA, the cooling scheme was used to calculate 

probability of taking a non-optimal step. A geometric cooling scheme was used, however other cooling 

schemes such as linear, exponential, and logarithmic should be tested and compared. In SHC, the non-

optimal step is randomly chosen in this implementation. Implementing more intelligent, non-optimal step 

probability and direction is likely to improve the performance. It should be noted that implementing 

intelligent over random methods only improves performance if the intelligent methods accurately represent 

the solution space. PSO performed very well in contrast to the other algorithms in the solution space; this 

is attributed in considering a local and global optimum for the updated point calculation. The tuning of the 

PSO weighting coefficients and velocity calculation should lead to a better convergence for the average 

RMSE. The brightness average RMSE is a good indication of the performance of the parameterisation 

algorithms, however the attitude profile RMSE is the value that is looking to be minimized.  

 

It can be seen from the different algorithm attitude profile RMSE that the brightness average RMSE does 

not fully corelate to the performance when it comes to attitude estimation. SHC and SA were the worst 

performing algorithms in this category, with SA performing slightly better than SHC. While looking at the 

top 1000 results for SA and SHC over the iterations, it can be seen that these algorithms estimates are 

clumped together around the local optimum, not searching the full solution space. To overcome this 

problem, possible solutions include better tuning of the parameter and the introduction of a tabu list to force 

solutions away from known local optimum. Tabu lists, commonly used in Tabu search algorithms, force 

the solution away from previous calculated points to keep searching for a new local and global optimum 

[127]. In their current implementation, with a performance of approximately 11 and 9 degrees for SHC and 

SA respectfully, these parameterisation algorithms are not ideal for use for attitude estimation of low-

resolution optical detections. It is important to note that a different implementation of SHC and SA in the 

future could improve the feasibility of these algorithms for attitude estimation of low-resolution optical 
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detections. GD is the next best thing, having an attitude profile RMSE of 4 to 5 degrees depending on the 

RSO shape model. The current implementation of GD takes the poorest performing attitudes and 

randomises them to improve the area searched in the solution space. Throughout the various iterations, this 

causes the 1000 best ones to change and not be as clumped as was seen with SHC and SA. As GD is very 

likely to get stuck in the local optimum, tabu lists is likely to increase the area searched in solution space, 

which possibly leads to better attitude optima estimations. GD does not perform the best in attitude profile 

RMSE but with its quick computation speed; it is feasible for certain implementation of attitude estimation 

where getting speed is prioritised over accuracy. The best two performing algorithms with similar 

performance are PSO and GA: PSO performing the best with 1.7-to-2.4-degree RMSE verses GA’s 2.6 to 

2.7 RMSE across all models. GA, having such a consistent RMSE across all models, is consistent with the 

cross over operator searching a large solution space but not accurately converge. Implementing more 

intelligent operators is likely to improve the attitude profile RMSE by allowing better convergence on local 

optima. PSO’s ability to search a complex solution space efficiently considering local and global optima 

makes it ideal for attitude estimation of low-resolution optical detections. Tuning of GA and PSO will likely 

lead to more accurate attitude RMSE profile, as well as the addition of higher fidelity local optima 

searching. While comparing the different models, it can be seen that there is a similar attitude performance 

across all models with different algorithms performing differently for each one, GD performs better with 

the less complex models (such as 1U and 3U) compared to Box-Wing and Iridium First Gen. SHC is 

reversed where it performs better in the more complex models and worse on the less complex models. PSO 

and SA perform marginally better in 3U and Box-Wing than in 1U and Iridium First Gen. GA performs 

approximately the same across all models. While it is not fully known why algorithms perform differently 

across the models, it hypothesised that the symmetry and complexity of the models are expected to influence 

the outcome. Having less symmetric RSO should lead to fewer well-performing local optima; though, it 

would normally increase the complexity of the model in doing that. Increasing the complexity increases the 

possibility of error to be introduced in the system; this can be seen by the brightness average RMSE 
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increasing as the model complexity increases. Additionally, more complex models require more 

computation time, making it a trade-off between accurate modeling and computation speed. More 

comparison will need to be performed on how the model of the RSO’s affect the attitude estimate capability 

of each algorithm. 

5.1.4 Future Work and Conclusion 

There are many areas that require further research in order to get from an academic to a functional 

framework. The different areas include testing and tuning more advanced parameterisation algorithms; 

testing and tuning different filtering methods for the top 1000 attitudes; updating the BRDF models to be 

more accurate; and performing the analysis in a real verse simulated environment.  

By looking at testing more advanced parameterisation algorithms, we can see the implementation of 

MMEA, unscented Kalman filters, and different machine learning being proven to work for RSO attitude 

determination. Comparing these methods with PSO and GA will give a better understanding of the 

algorithms’ performance relative to each other, as well as in which situations each algorithm outperforms 

the other. One example is comparing an uncontrolled (or slow) rotating RSO with a controlled RSO that is 

performing a slewing maneuver. Identifying which algorithm performs better in each case can also help 

with the determination between controlled and uncontrolled RSO’s. While one implementation of each 

algorithm was tested in this study, different combinations of these algorithms are also possible; for example, 

a geometric cooling scheme was used for simulated annealing, regardless of there being many different 

cooling schemes that could be implemented that would change the algorithm’s performance. Currently, the 

algorithms optimise the attitude for each image separately and then use the derivative information to limit 

those results. Including the derivative analysis and filtering in the parameterisation algorithms could 

possibly lead to a better convergence accuracy and rate and is currently being implemented and tested for 

all the algorithms mentioned in this paper.  
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Different filtering methods on the Yaw, Pitch and Roll of the best light curve residuals can be implemented 

to reduce the number of possible attitude sequences and more accurately give the best estimate for attitude. 

For this paper, a first-order derivative analysis was used to limit the number of possible sequences. This 

was chosen as it was easy to implement, in the future testing different filtering methods such as second 

order derivative analysis, moving window filters, and whether to perform the filtering after the 

parameterisation algorithm or include it in the parameterisation algorithm. When comparing different types 

of RSO’s, such as controlled verses uncontrolled, the filtering algorithms will also perform differently. 

While first-order filtering is sufficient for an uncontrolled satellite, it does not handle slewing maneuvers 

and large spin rate changes effectively and thus requires the implementation of more robust filters. 

Currently, testing is being performed to see how the different types of filters impact the best estimated 

sequence, as well as identifying if performing the filtering in the parameterisation algorithm leads to a more 

efficient convergence rate and accuracy.  

The BRDF used for the light curve generation is a significant portion of the objective function. Updating 

the BRDF to a more accurate or computationally efficient methods will have a significant impact on the 

results of the optimisation. There are many different known methods for artificial satellite BRDF: the 

methods outlined in Linares, R. et al. (2014) [27]; Fan, S. & Frueh C. (2019) [128]; and Subbarao, K. &  

Henderson, L (2019) [129]. Different methods like the Phong model implementation include facet 

directional reflectance represented by Nu and Nv, which has a possibility of reducing the number of false 

possible sequences. Different BRDF models have also been shown to represent different RSO shapes and 

material properties with different accuracy [129] [128]. To properly test different BRDF methods, the 

accuracy and computation speed should be compared on a range of possible satellite shapes to see which 

method is the most robust and which method performs best for common RSO shapes. Currently, research 

is being completed to compare different light curve models against the current defined facet model 

implementation, such as the methods outlined in [128] [27]. 
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Training and comparing algorithms in a simulated environment are effective ways to demonstrate 

feasibility, however, are useless without the real-world implementations. Moving from a simulated to a real 

environment is the next big stepping in moving low resolution optical characterisation of RSO’s from an 

academic to an operational idea. One of the biggest challenges in taking this step is having well-labelled 

detections, from sensor with known parameters, where the target RSO true attitude and shape is known. 

Currently, thanks to the Defence Research and Development Canada (DRDC), attitude information and 

ground-based detections of the Radar Constellation Mission (RCM) have been provided to York University 

to allow for the real-world testing. By using detections of RCM from the Fast Auroral Imager, as seen in 

Figure 28, as well as low resolution terrestrial detections, this method feasibility and accuracy will be 

evaluated for terrestrial and space-based observations.  

 

In conclusion, this paper demonstrates the feasibility of using different parameterisation algorithms for light 

curve inversion in a simulated environment. While all algorithms showed the ability to converge to different 

attitude sequences, PSO and GA showed the best results for attitude residual accuracy with both having 

under 3 degrees RMSE for all models. SHC and SA provided a good convergence rate but will need to be 

tuned to search a larger solution space.  

Another finding from this paper was the different areas that still needs improvement to move from academic 

to operational model. Below is a summary of the areas identified to enable operational model of low-

resolution optical characterisation: 

• Implementation on real world data 

• Improving filtering methods to handle both controlled and uncontrolled RSO’s 

• Tuning of individual parameterisation algorithm and implementation of meta-heuristics  

• Characterise BRDF models performance with different RSO shapes and detection angles  

• Generation of standard data sets with known parameters for algorithm performance testing   
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• Determination of minimum detection statistics required for accurate attitude estimation  

 

5.2 RSO Attitude and Optical Property Estimation from Space Based Light Curves 

5.2.1 Introduction 

Damage to space systems has a significant and immediate impact on technologies we rely on every 

day, including navigation, communication, resource management and weather forecasting. The 2009 

collision of Iridium 33 and Kosmos 2251 destroyed both satellites and created thousands of debris, 

which resulted in a loss of service [130]. As such, it is imperative to enhance technologies and further 

develop capabilities that identify both active satellites and inactive resident space objects (RSO’s) such 

as debris. According to NASA, there are more than 500,000 > 1cm objects in Earth’s orbit. It is still 

unclear how many hundreds of thousands of uncatalogued objects pose threats to space assets, such 

as the International Space Station. While there are continuing and collaborative efforts among 

various space agencies and research communities to monitor the resident space objects from the 

ground and on-orbit, there still remains many uncertainties in RSO numbers and characteristics. 

In [37], we demonstrated RSO identification from space-based observations using low-resolution 

imager spacecraft such as the Fast Auroral Imager (FAI) onboard the CASSIOPE satellite. A sample 

FAI image is illustrated in Figure 41, with the corresponding simulated image in Figure 42. In order to 

interpret the low-resolution spaceborne images further study of the light curve is required to infer the 

parameters of the RSO. In the context of this paper the parameters include optical properties, shape, 

and attitude of the RSO. Knowledge of these parameters increases SSA, which aids in active debris 

removal, RSO correlation, and confirming that satellite ahead to current international regulations. 

Recent research has been focused on techniques that allow the interpretation of light curves from the 

images of debris objects, such as in [60] [131] [132] [133]. Other research in this field focuses on 

complex modeling techniques to simulate space-based surveillance images and photometric light 

curves [69] [22]. These algorithms provide a baseline for the current study for image simulation of the 
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space-based images for RSO identification, tracking, and characterization. The majority of other image 

processing research focuses on ground-based observations with limited applicability for space-based 

images. Space-based research is still in its early stage; the design and implementation processes require 

further optimization. In this paper, we address the rising need for better SSA by comparing two 

different bidirectional reflectance distribution functions (BRDF) in a simulated environment. The 

with the goal of developing a suitable algorithm to estimate parameters from light curves extracted 

from low-resolution space-based images. This is accomplished through the generation of simulated 

light curves with known parameters then comparing the generated light curve to the found light curve 

of the object. 

 

 

 

A light curve is a representation of the brightness of an object as a function of time. Light curves are 

used to interpret various physical parameters of the object under investigation, mentioned previously. 

In the case of RSO characterization, the temporal optical analysis of light curve is often used to 

Figure 41: An image from the Fast Auroral 

Imager  

 

Figure 42: A simulated image from the Fast 

Auroral Imager  
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estimate the rate of rotation (also referred to as spin-rate) of the object. In [134] (and many articles 

with similar analysis), the authors present an overview of how light curve analysis is used for RSO 

characterisation using low-resolution images. More generally, light curve inversion is a mathematical 

technique used to estimate different states of an objects from its brightness and brightness variation 

over a series of timed measurements, which provides more information than spin rate analysis. Light 

curve inversion is frequently used for the detection of exoplanets and the shape and spin estimation of 

asteroids, such as in [135] and [28]. To invert the light curve to determine more information than just 

the temporal spin rate of the object, simulated environments are commonly used. They determine how 

the variation of brightness corresponds to a change in parameters which are used to generate the 

simulated light curve. To perform a light curve inversion an optical image simulator, in the case of this 

paper ORBITALS is used to replicate the brightness of the RSO with estimated states that consists of 

shape, attitude and optical properties. ORBITALS is further described in above in the section 2.5 of 

this thesis. The complexity of the light curve inversion problem stems from the brightness giving non-

unique solutions for state estimation, where hundreds to thousands of solutions are plausible for one 

brightness measurement. To overcome the challenge of non unique answers a time series of brightness 

(the light curve) is used. The time series allows for higher derivatives of data to be used to reduce the 

number of potential solutions, or local optimum, present. The higher derivative data limits the solution 

space by ignoring solutions with large discrepancies in state parameters that would not be physically 

possible. One example of this is large attitude jumps that can sometime be larger than 30 degrees a 

second. It is unlikely to leave only the ideal solution, even after higher derivative fitting, requiring 

optimization to find better estimated states. It was demonstrated in previous research that Particle 

Swarm Optimization performs effectively for attitude estimation; thus, it is implemented in the current 

study to calculate the optimal state estimates [75].It  is worthwhile to note that any optimization 

algorithm in theory can be implemented to retrieve an optimal state estimate. In this paper, the 

methodology for generation of simulated images, as well as simulated environment used is described. 
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Followed by the results and discussion of the simulation tests and concluded with a summary of the 

results and areas of future research mentioned. 

5.2.2 Simulation Parameters 

For the optimization algorithm, the same implementation of particle swarm optimization was used as 

in [28], with the number of iterations and parameters in Table 24: Particle Swarm Optimization 

Parameters. There are three unique tests being performed on the simulated data a) Attitude only, b) 

Optical Property only, c) Attitude and optical property estimates. In each unique test all the other 

information is known with only the parameter being analyzed being unknown. From the results of the 

three unique tests, a comparison was performed on the convergence rate to an optimal brightness 

estimates as well as the accuracy of the estimated states. 

 

 
Figure 6: Sample Images of RCM constellation from FAI on-orbit observation (left), image credit Cowan and E 

(2008), simulated images of the same RCM constellation using SBIOS (Right) take on June15, 2019, 23:36:05. 
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5.2.3 Results  

The results from the (a) Attitude, (b) Optical,  and (c) Optical and Attitude estimate  tests are shown 

in Table 26, Table 27, and Table 28, respectively. 

Figure 43 and Figure 44 illustrate only the convergence rate for optical estimation. Each of the figure 

of merits used in the comparison of the models are also discussed below. 

The first figure of merit used in all three tests is the Average Best Brightness RMSE (ABB RMSE), 

defined as the root mean squared error between the best estimated light curve and the true light curve. 

ABB is then averaged across each of the true values and detections. Secondly, computation time is 

used as a second figure of merit, which includes the average computation time, the iteration 

convergence rate, and the convergence rate. The average computation time is the average time taken 

to perform on iteration of parameter estimation for the given model and test. The iteration convergence 

Fast Auroral Imager Parameters  

FOV 26 degrees 

Aperture Diameter  1.7 cm 

Focal Length  6.89 cm 

Integration Time 0.1s 

Spectral Band   650 – 1100 nm 

Pixels  256 x 256  

Pixel Size  26 μm 

Quantum Efficiency  0.66  

Particle Swarm Optimisation Parameters  

Total Iterations 100 

Number of Points 20,000 

Max Velocity 30 

Current Velocity Weight 0.9 

Local Optimum Velocity Weight  1.2 

Global Optimum Velocity Weight  1.2 

Beta 0.99 

Cooling Factor 5  

Table 25: Fast Auroral Imager Parameters 

 

Table 24: Particle Swarm Optimization Parameters 
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rate refers to the number of iterations it takes for the ABB RMSE to drop by one half-life (drop by 

50%). The convergence Rate is defined as the average time it takes to converge one half-life. The third 

figure of merit, Average Best Attitude RMSE (ABA RMSE), is used to compare the different estimated 

attitudes. ABA RMSE is the RMSE of the yaw, pitch, roll residual which is then averaged across all 

true values and detections. For the optical figure of merit, due to the different scales and parameter 

used for Phong and Defined model, a direct comparison is not possible.  Instead, a mean absolute 

percentage error (MAPE) is produced for each test to give a comparable figure of merit. MAPE is a 

standard technique in statistical analysis and regression models Guo et al. (2019). This is calculated 

by taking the absolute present error of the optical parameters then averaging it across all true values 

and detections. 

Table 26: Simulated Attitude Estimation  

Parameter  Phong Model  Defined Model  

Average Best Brightness RMSE  

(Relative Magnitude) 

3.6x10-7 2.2x10-6 

Average Best Attitude RMSE  

(Degrees) 

1.6  1.2 

Average Computation Time  

(Seconds per Iteration) 

11 8.2 

Iteration Convergence Rate  

(#Iterations per Half Life) 

10 10  

Convergence Rate  

(Seconds per Half Life)  

108  81 

The results from the attitude only simulated test shows that the Phong model outperformed the Defined 

model in ABB RMSE, but not in ABA RMSE. These FOM indicates that the Phong model’s complex 

design space leads to the particle swarm optimization algorithm to converge better on local optimum 
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but not on the global optimum which is represented by the true attitude. The Phong and Defined models 

have approximately the same iteration convergence rate the Phong model has a longer average 

computation time compared to the Defined model. In summary, the Defined model yields more 

accurate attitude estimates in less time; thus, it is a preferred modeling technique over the Phong 

model with particle swarm optimization. Just like the Defined model, the Phong model performance 

changes based on the optimization algorithm, indicating that implementing other optimization 

algorithms may lead to improved performance both in accuracy and computation speed. 

Table 27: Simulated Optical Parameters Estimation  

Parameter  Phong Model  Defined Model  

Average Best Brightness RMSE 

(Relative Magnitude) 

2.2x10-5 1.7x10-3 

Specular Weighting RMSE 

(Reflectivity)  

7.1x10-3 9.6x10-3 

Diffuse Weighting RMSE 

(Reflectivity) 

7.1x10-3 9.6x10-3 

Reflectance RMSE   

(Reflectivity) 

N/A 5.4x10-3 

𝑛𝑢 RMSE 1.1x103 N/A 

𝑛𝑣RMSE  1.2x103 N/A 

Optical MAPE (% error)  23 2.1 

Average Computation Time  

(Seconds per Iteration) 

3.7 6.7 

Iteration Convergence Rate  

(#Iterations per Half Life) 

8.5 1.5 
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Parameter  Phong Model  Defined Model  

Convergence Rate  

(Seconds per Half Life)  

32 10 

 

 

 

Figure 43: Convergence Rate of Optical Parameters for the Defined Model. 
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Figure 44: Convergence Rate of Optical Parameters for the Phong Model. 

 

The results from the optical parameter estimates show that the Phong model had better convergence 

in ABB magnitude, but not as good Optical MAPE as the defined model. This is similar to the attitude 

only tests, the results showed greater convergence to local minimum, but had problems converging to 

the global optimum. By comparing the optical parameter results, the same trend can be seen with the 

Defined and Phong model. The MAPE for all optical parameters is 2.1% for the Defined model, 

compared to the Phong model, which has a 23% MAPE. The Phong model requiring 5 inputs versus 

the Defined models 4 leads to a larger response surface that will contain more local optimum. The 
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effect of the large response surface is not just reflected in the accuracy, but also in the iteration 

convergence rate between the two models, with the Defined model converging about 5.5 times faster. 

It is observed from the convergence rates ( 

Figure 43 and Figure 44) that the Defined model converges before 20 iterations, whereas it takes more 

than 80 iterations for the Phong model. The results from the attitude and optical parameter estimation 

test (Table 27) show that increased number of parameters greatly reduces the ABB RMSE convergence 

for both models. The Defined model performed better than the Phong model in ABA RMSE; however, 

the two methods have different convergence rates compared to the attitude estimation test. The 

difference in convergence rates is attributed to the defined model converging quicker and having a 

slightly faster computation time. Comparing the attitude to attitude and optical parameter test shows 

that the Defined model had a decrease in ABA RMSE, while the Phong model had an increase of ABA 

RMSE. The increase in ABA RMSE was predictable in the Phong model as the response surface 

greatly increased in size. In comparison, the ABA RMSE in the Defined model decreased with the 

increase in response surface. It is theorized with the Defined model converging quicker than the Phong 

model, the increase in parameters allows for more sensitivity in the solution and a larger number of 

sub-optimal solutions being rejected in the optimization process. If the Phong model was run through 

more iteration a similar trend should emerge. 

Table 28: Simulated RSO Parameter Estimation Test Results  

Parameter  Phong Model  Defined Model  

Average Best Brightness RMSE 0.51 0.27 

Average Best Attitude RMSE 

(degrees) 

5.3  0.66 

Specular Weighting RMSE 

(Reflectivity)  

8.8x10-4 5.0x10-3 
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Parameter  Phong Model  Defined Model  

Diffuse Weighting RMSE 

(Reflectivity) 

8.8x10-4 5.0x10-3 

Reflectance RMSE   

(Reflectivity) 

N/A 2.2x10-2 

𝑛𝑢 RMSE 4.5x103 N/A 

𝑛𝑣 RMSE  3.3x103 N/A 

Optical MAPE (% error) 8.5 0.9 

Average Computation Time  

(Seconds per Iteration) 

34 27 

Iteration Convergence Rate  

(#Iterations per Half Life) 

277 160 

Convergence Rate  

(Minutes per Half Life)  

159  73 

 

Both methods performed well in determining the optical properties and attitude; the Defined model 

determining the ABA with less than one-degree RMSE across the full sequence of images. The 

comparison of the optical parameter MAPE has 0.9% accuracy for the Defined model and 8.5% for 

the Phong model. The Defined model outperformed the Phong model, which matches the results from 

the optical property and attitude only test. The largest change in the parameter test is observed when 

looking at the convergence rate, which increased over an order of magnitude compared to the attitude 

and optical parameters only tests. The increase in parameterization accounts for a majority of the 

increased iteration convergence rate, which is largely attributed to the local optimum distribution 

becoming more complex with the more parameters. Another factor in larger parameterization is that 

more information needs to be calculated and updated each time, leading to (at best) approximately 2 
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times increase in the computation time for both models. The Defined model outperformed the Phong 

model in both the convergence rate and computation time, allowing it to converge around twice as fast 

as the Phong model. With better accuracy and computation speed, the Defined model was found to 

perform better than the Phong model for parameter estimation of RSO’s in the current implementation 

for light curves from low resolution space-based imagers. 

Comparing the proposed RSO attitude and optical property estimation technique to other techniques 

the strengths of the currently implemented models and areas to further research can be seen. The [136] 

implementation of light curve inversion follows a similar methodology, as well as the results 

[ 1 3 7 ] . In this publication, the attitude is determined from the orthographic projection of the target 

with an iterative attitude estimation. This algorithm was implemented in a lab set up with a known 

target and a distinct and non-homogeneous circular pattern; the results for single image attitude 

estimation shows that the attitude of the object can be found to within 1 degree. These results are 

similar to the ones found in the paper with two large differences between the methodologies. First, the 

iterative method is used for singular images, not requiring image sequences. The driving factor behind 

the ability to only use one image for attitude estimation is the second major difference between these 

two methodologies. The second difference is that the target object is a significant portion of the FOV, 

unlike with low resolution RSO detections which are commonly subpixel or few pixel-sized objects. 

The smaller size of RSO’s in low resolution space-based images limits the applicability that this 

method has in this paper’s context. Having both a relatively high spatial resolution and low spatial 

resolutions sensor for attitude determination of RSO’s can lead to leveraging the strength of both types 

of sensors in current SSA applications, leading to better estimated attitude states. 

Comparing more similar methodologies for light curve inversion techniques we look at results such as 

presented in [137] and  [138]. A similar methodology was followed to methodology presented in this 

paper, but with the implementation of an unscented Kalman filter (UKF) as an optimization algorithm. 

In [137] a simplified Cook and Torrance reflectance model is used in contrast with the Defined model 
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used in this paper. The target objects were rocket bodies, which give easy shapes for simulated 

environment tests. The simulated environment tests give preliminary results that the UKF and light 

curve model was able to estimate both the attitude and optical properties within reasonable accuracy. 

When moving to real data, it was found that the simplified reflection model would not be sufficient 

for the more complex RSO shapes. The Defined model implemented in this paper has shown the ability 

in a simulated environment to overcome the higher fidelity model requirements. The implementation 

of the UKF shows impressive results with more complex methods, such as Multiplicative Extended 

Kalman Filter (MEKF) being implemented in [30]. The power of the UKF and other Kalman filtering 

methods, highlighted in [137] and [138]), should be compared to the currently implemented 

optimization algorithm (PSO) to see the accuracy and computation speed differences between the 

two. 

In a recent study performed by [138], a comparison of different filter techniques for state estimation 

of uncooperative objects was performed on MEKF and different minimum energy filter models. The 

results showed similar performance on the estimation of targets attitude from both MEKF and a second 

order minimum energy filter. The MEKF was able to estimate attitude with a transient error RMSE of 

1.21 degrees and steady state error RMSE of 0.35 degrees, with a given priory and inertial matrix of 

the target. With no priory estimate and inertial matrix, it was mentioned that the second order minimum 

energy filter does perform better, giving an error rate of less than one degree after convergence. 

Comparing the results found from this paper shows that the method for attitude estimation from light 

curve inversion and PSO give similar accuracy as other currently used techniques. From [138], it can 

also be seen that the choice of state estimator greatly effects the accuracy of the attitude estimate 

depending on the scenario and information available to the filter. The results of different state 

estimators means that it is highly unlikely there will be one optimum RSO attitude estimation 

algorithm for all situations. Instead, it is much more probable that the optimization algorithms will be 

chosen based on the spatial resolution, sensitivity, and temporal resolution available, much like with 



150 

 

orbital propagators. Identifying which algorithms perform optimally in different scenarios will allow 

for better attitude estimation and high-fidelity attitude estimation. Some of those scenarios include 

terrestrial verses space-based detections, low vs high spatial resolution cameras, and tracking vs stare 

mode. 

 

5.2.4 Conclusion and Future Work 

We have compared the Defined model with the Phong model of an RSO for three types of parameter 

estimation using low-resolution images in a simulated environment. The results indicate that, with 

particle swarm optimization, the Defined model outperforms the Phong model in almost all metrics, 

accuracy, computation time, and convergence rate. The Phong model was examined due to the 

directionality of incoming light effecting the specular and diffuse reflections off the facet, which is not 

considered in the Defined model. It was expected to increase the accuracy of the estimated states due 

to the additional parameters (nu, nv), reducing the number of geometries that provide the same 

brightness. Instead, the results indicate that the increase in number of parameters exponentially 

increased the size of the response surface, making convergence to the local optimum require more 

iterations. Furthermore, the increase in response surface leads to more local optima present when com- 

pared to the Defined model. The increase in number of local optima leads to the Phong model requiring 

more iterations and data points, making it significantly more computation- ally intensive to achieve a 

similar accuracy. The implementation of different, more intelligent optimization algorithms in the 

future could lead to an increase in performance of the Phong model. 

In conclusion, the Defined model form the foundation in characterization of unidentified RSO attitude 

and optical properties. In the future this technology will lead to better remote sensing of RSO’s health 

and operation status. Future work looks to take this method from being performed in a simulated 

environment to using real data. To perform a real-world feasibility, test the light curve analysis for 
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attitude estimation and optical characterization will be performed using on-orbit images of operational 

spacecraft with known health status. Currently this is being performed on NEOSSAT images from 

their Early Orbit Phase (EOP) taken from a ground-based telescope provided by DRDC Canada. While 

ideally the images would be from a space-based sensor, due to the lack of labeled space-based images 

with auxiliary information ground-based observations were chosen. By comparing the results from the 

proposed estimation technique to on-orbit NEOSSAT data (truth data), we can validate the accuracy 

of the proposed light curve inversion methodology. The current methodology still has area of 

improvement that will be further enhanced such as: including intelligent optimization, improved BRDF 

modeling, and efficient parameterization. 

5.3 Summary 

RSO characterisation from low resolution space-based platforms was demonstrated as feasible in a 

simulated environment providing a novel solution for determining characteristics of RSO’s from these 

types of detections. The current novel method of RSO characterisation is different from RSO 

characterisation method by allowing more details to be determined that standard glint or period 

analysis. These analyses do not require any priory information to provide the body spin rate of the 

object but are not able to give more information look at in the dissertation such as size, shape, and 

optical properties. When performing glint and spin rate analysis the light curve of the RSO needs to 

be longer than the spin period, if it is not the full spin rate period is near impossible to find. The novel 

method proposed allows for any length light curve to be analysed with longer light curves providing 

more accurate results. Some RSO characterisation method do exist that allow for the determination of 

size, shape, and optical properties but these methods either require lots of data, as seen in [24], or 

require priory information, such as [31], on the target RSO which is not always available. The novel 

RSO characterisation method allows for these properties to be estimated with out priory information, 

but priory information can be introduced to limit the search space and converge to an answer quicker. 

The last large contribution to the space community that this novel method provides is its robustness to 



152 

 

simulate multiple types of detections. This novel solution with SBOIS allows for both ground and 

space based light curves from optical sensors of any type to be used for characterisation, though only 

space based light curves were focused on this thesis. This will allow SBOIS and RSO characterisation 

to be used by a wide range of institutions and in a wide range of situation fill in a large gap currently 

present in RSO image simulation, without expensive licences. Overall, the novel method of RSO 

characterisation to accomplish research objective 3 is the largest contribution to the space research 

community. This novel solution incorporates the work done to accomplish research objective 1 and 2 

providing use cases and results for SBOIS and the PSGP4. This novel solution fills a unique gap in 

currently available RSO characterisation methods opening the door for future research opportunities, 

as well as the capability to use this method to solve current issues with the proliferation of RSO’s in 

space.  
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6 Summary, Contribution, and Future Work 

6.1 Summary 

In the current space environment star trackers are commonly used for attitude determination and are 

becoming more common on Cube-Sat missions, and very common in larger scale missions such as Radar 

Constellation Mission. Currently star trackers and other low resolutions space-based imagers are not 

commonly used for RSO detection to contribute to SSA. There are many factors required to accomplish 

this including knowing when an RSO is in the FOV, having the detected RSO have a high enough SNR to 

be identified in the image, and confirming that RSO’s shape and orbit information can be determined from 

the detection. This leaves a large section of currently available space assets that are not be utilised to their 

full potential and have the capability to augment the current SSA networks to combat the problem tracking 

the proliferation of RSO’s. From the research performed in this thesis the main technological gaps needed 

to enable passive low-resolution space based RSO were identified and addressed. These technological gaps 

included parallel processing for orbital propagation, the simulation of the low-resolution passive optical 

RSO detections, and the characterisation of RSO’s from low resolution passive optical RSO detections. The 

end goal of this research looks to be the first step in the augmentation of star trackers, and similar imagers, 

to be able to passively detect RSO’s to contribute to SSA. The first area of research explored in this thesis 

was the implementation of parallel processing to orbital propagation and image simulation, with the goal 

of reducing the required computation time with no reduction in accuracy. 

 Parallel processing has become a large field of study in space and other terrestrial sectors because 

of its ability to leverage the rapid improvement of computation power in processors and associated 

hardware. The implementation of parallel processing for orbital propagation was does in two phases, first 

focusing on the state propagators. The point of the research on state propagators was to first confirm that 

parallel processing will reduce the required time to perform multi-satellite and catalog propagation. This 

technological gap has become of increasing importance in the space sector with the estimated number of 
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RSO’s in the space catalog estimated to jump an order of magnitude in the next few years. The initial 

hypothesis was that parallel processing will reduce the computation time by leveraging the increase in 

hardware capabilities using SIMD and the fact that satellites are independent. From the initial study 

performed in section 3.1 the results show that parallel processing was able to greatly decrease the 

computational requirements compared to traditional sequential processing methods for orbital propagation. 

This effect was not seen when propagating a low number of satellites propagated due to the data set up for 

parallel processing taking some initial time. During the initial feasibility study, it was found that for a 

proposed mega constellation of 500 satellites using parallel processing for orbital propagation required 

approximately 20% of the computational time required from the sequential orbital propagation method. 

Very similar results were seen when increasing the period that the satellites were propagated over with an 

approximately 20% of the computational time required from the sequential propagation method. The 

reduction for 500 satellites demonstrates the power of parallel processing with the trend showing that 

parallel processing gets more efficent, relative to the sequential method, as the number of satellites and 

period of propagation increases. Confirming that the propagation was the cause of this was from the ground 

station test where the number of ground stations were varied, as this does not have an impact on the 

propagator being tested. The differences in the parallel and sequential trend in the ground station test was 

very different from the satellite and period test, confirming the hypothesis that parallel processing increases 

the computation speed of orbital propagation with out reducing accuracy. One of the most interesting results 

and visualisation of improvement parallel processing has on orbital propagation comes from the trends of 

the Dorman Prince 5(4), method for period and satellite testing, Figure 23 and Figure 24 respectfully. In 

these graphs the trend of computation time trend starts of linearly till they reach a saturation point where 

the trend is no longer linear. After this saturation point the computation time does not change significantly 

with an increase in the number of satellites, or propagation period. This demonstrates the power of parallel 

processing with propagation performing the same instructions on multiple data sets (satellites) it can 

perform them at the same time as long as it has the hardware resources to do so. This is shown by the 
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plateau after the linear region in both graphs having 500 satellites being propagation with approximately 

the same computation time as 2,500 satellites. This does have its limits when the amount satellites or 

propagation period requires more resources than available it is required to do it in steps. This can be seen 

in Figure 23 with the jump in computation time from ~70 seconds to ~140 seconds after 160 days of 

propagation, and is not seen in the number of satellites, Figure 24, as more satellites would be required to 

reach the hardware limit. This is a massively beneficial in the context of SSA where thousands of RSO’s 

are propagated, allowing for more RSO’s to be introduced with out the linearly increasing the computation 

time required. From the beneficial results of the initial feasibility study parallel processing was implemented 

on a more complex propagation mode, SGP4, as well as, implementing parallel processing in the image 

simulation of low-resolution space based optical RSO detections.  

 The improvement of SGP4 architecture to utilising parallel processing has many implications in 

the space sector and simulated image generation. In the context of this thesis the image simulator requires 

an orbital propagator to find the locations of the RSO’s to see; if they are in the image, and if they are in 

the image there located in the image. Before implementing this for simulating images a test on the 

performance of SGP4 vs a parallel implementation of SGP4, called PSGP4, was required. While parallel 

processing was shown to improve the computation speed of state propagators SGP4 is a Keplerian 

propagator, to demonstrate that the technology is transferable an implementation and comparison of serial 

and parallel Keplerian propagators was required. The study in section 3.2 and its results were used to verify 

and quantify the improvement in computation time of parallel processing methods orbital propagation 

methods compared to serial methods. To do this orbital maneuver detection algorithms, state and TLE, were 

tested and compared using both parallel and sequential propagation methods. As was hypothesised it can 

be seen that the parallel processing version of both the state and TLE maneuver detection performed with 

less computational time while not reducing the accuracy. In orbital maneuver detection state propagation is 

a higher fidelity method than TLE but comes with the downside of being significantly more computationally 

intensive. With the implementation of parallel processing for orbital propagation the required time for state 
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analysis dropped orders of magnitude, with the computation time now being comparable to the TLE 

analysis method. Comparing the accuracy between the parallel and sequential implementation of the orbital 

detection algorithms demonstrates that the decrease in computational time has no effect on the accuracy of 

the results. These results have large implication for the over all SSA, as well as, in the goal of this thesis. 

Almost all RSO identification and conjunction warning algorithms require orbital propagation of large 

numbers of RSO’s, the introduction of parallel processing not only greatly reduces the computation time 

but can allow for multiple analysis to take place at once. For conjunction warning algorithms, that 

commonly use Monty Carlo simulation for high fidelity results, being able to perform the thousands to 

millions of orbital propagations at once can greatly reduce the computation time required or be leveraged 

to have more orbits getting higher accuracy results. In the context of this thesis orbital propagation is one 

of the major bottle necks for the current image simulator architecture, updating this to the PSGP4 

propagation method can greatly increase the throughput of the image simulator.  

 

 Image simulation is an important but sometimes overlooked aspect of RSO detection, 

identification, and characterisation. Image simulation allows for the estimation of the performance of 

sensors, RSO identification, scheduling, and mission planning, as well as the characterisation of RSO 

properties. Most current image simulators focus on higher resolution imagery where an RSO would be seen 

as a multipixel object taking up a majority of the screen, unlike low resolution imagery where almost all 

RSO’s are subpixel sized. To overcome this a star field image and RSO simulator was made in MATLAB. 

Since the image simulators first version, performed by a previous student, it has been completely overhauled 

to ORBITALS which implements parallel processing methods to reduce the computation time and includes 

different reflection models for RSO modeling and light curve generation. The industry standard software 

that best replicates what is being performed in ORBITALS is System Tool Kit’s (STK) EOIR toolbox. To 

demonstrate the power of the newly developed ORBITALS it was compared vs STK EOIR for image 

simulation using real images from the Fast Auroral Imager onboard the CASSIOPE satellite. The results 
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from the comparison of ORBITALS to STK’s EOIR show that ORBITALS generates images with similar 

accuracy for both stars and RSO location but, an order of magnitude faster than STK’s EOIR. Also, STK 

is a commercial software the requires licences to be bought for the base software, as well as the EOIR 

toolbox. This is extremely expensive and can create a barrier to entry for smaller companies and research 

group. ORBITALS does currently require an active MATLAB licence but no external toolboxes, making it 

a more affordable and accessible option when compared to STK’s EOIR. Also, with MATLAB being 

standard in the space sector a majority of companies and research groups already have a licence, which 

requires no additional financial investment to use. Another major benefit of ORBITALS is that it automates 

the labeling of data with the ability for the user to control the data outputted such as position, relative 

motion, SNR, RSO catalog number, etc. In STK EOIR the user needs to select the pixel and extract the 

information manually or have a 3rd party code extract the labeled data. When dealing with large data sets 

the manual labeling of data can be time consuming, the automatic labeling in ORBITALS overcomes this 

allowing for generation of large data set with limited human interaction. The reduction in computation time 

and labeling allows for ORBITALS to generate large data sets more efficiently than using the commercially 

available STK EOIR counterpart.  

  ORBITALS allows for inputs of different bidirectional reflection distribution function for satellite 

models. This gives more flexibility allowing for models tailored to specific RSO’s to be used, as well as 

allows for the comparison of different models. Initially the industry standard defined model was 

implemented, this performed well for RSO detection, identification, and characterisation. Using this model 

and real RSO detections tests were performed to see if space based RSO detections allow for the 

characterisation of RSO’s like terrestrial observations. In a simulation environment the results from section 

5.2 show that the standard model was able to estimate the optical properties, attitude, and the optical 

properties and attitude together for the RCM satellites. As part of this research different BRDF’s were tested 

for satellite facets, specifically the standard model and anisotropic Phong model. While initially the 

hypothesis was that the implementation of the Phong model would allow for better characterisation of the 
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object, this was not shown to be the case. The increase in parameters in the Phong model compared to the 

standard model was shown to significantly increase the solution space for the optimisation algorithm to 

search. The larger solution space lowers the convergence rate of the optimisation algorithm as have more 

area to search. It should be noted that these results are dependant on the optimizer used, implementation 

and tuning of other optimisation algorithms could lead to the Phong model possibly outperforming the 

standard model in the future. More of this is discussed in the Future Work section. During this research 

different types of optimisation algorithms were implemented and tested for light curve inversion. The 

results show that PSO performed the best converging quicker and to a more accurate answer than SHC and 

GA. PSO ability to not require and gradient information or pseudo gradient calculation allowed it to perform 

well when dealing with the complex response surfaces from the RSO light curve inversion. There is still 

lots of work to be performed on the testing and tuning of different optimisation algorithms with different 

BRDF, this will be mentioned in more details in the Future Work section below.  

 

6.2 Future Work 

The work performed in this thesis has reduced the technological gaps limiting the use of low-resolution 

passive space based RSO detections. There is still more work to be performed to enable the operational use 

of low-resolution passive space based RSO detections, below some of the remaining technological gaps are 

mentioned with suggested research areas to overcome the technological gaps. The largest and most 

predominate technological gap is the implementation of RSO characterisation algorithms on real data taken 

from a space-based platform. Originally in this thesis the goal was to eventually use real world data to 

compare the results to the simulated data, due to the lack of publicly available labelled data sets this was 

not possible. Labelled data in the context of this thesis is defined as data where the auxiliary information to 

replicate the detection (ephemeris data and optical parameters) of the host platform is provided, as well as 

the identification of what RSO’s are visible in the image including their centroid, brightness, and NORAD 
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Satellite Catalog ID #. To be able to perform RSO characterisation information about the target RSO and 

host satellite is known, the closest publicly available data set that provides this information is the Fast Aural 

Imager images. This provides the host satellite information but still has a lack of information on the targets 

shape, optical properties, and attitude to confirm the results against. In the context of this thesis ORBITALS 

was used to overcome this lack of data, recently new opportunities for labelled data have become available 

allowing for RSO detection, identification, and characterisation to be tested with real data. Thanks to 

partnerships with the DRDC we have been provided the attitude for NEOSSAT during 2016 before and 

after the on-board failure, along with images of NEOSSAT to allow for light curve extraction. Performing 

characterisation on NEOSSAT using these images an attitude sequences in the next large step in this 

research to raising the TRL level to operational level. The analysis of NEOSSAT should look at 

determining; the optical properties with the given attitude, attitude with estimate optical properties, and 

both optical properties and attitude given only shape priory information. The results from this analysis will 

allow the confirmation that RSO characterisation is possible with real data and give initial accuracy results 

for what can be expected. Comparing this result to currently methods proposed in literature such as [31], 

[23] , and [52], will help put the accuracy in context and find areas of improvement for RSO light curve 

inversion algorithms. Comparing the simulated vs real results will also help determine areas where the 

OBRITALS simulator can be improved. Some limitations of this technology have also been identified with 

work in the future looking to be overcome these limitations or, when not possible, to find other solutions to 

augment the currently proposed solution.  

The first limitation comes from the length of light curve/ RSO detection. The length of a light curve and 

how frequently it is sampled sets limits on the bodies rate range and the accuracy that can be found from 

traditional spin rate analysis and glint analysis of the object. The novel method proposed in this dissertation 

does not limit the spin rate to being less than the light curve duration which can be seen with traditional 

spin rate analysis and glint analysis methods. Rather the duration of the light curve effects the accuracy of 

the estimated attitude and therefore the spin rate of the target RSO. The longer the detection and the more 
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frequent the observations, the more accurately the spin rate can be extracted on the target object. Future 

work looking at this limitation should aim to test many different light curve durations and observation 

frequency to see how the accuracy in attitude and other property estimation is related to the length and 

density of the light curve for different facet models of RSO’s.  

Another limitation that was found during this research is it is assumed that the light curve from the target 

RSO is fully calibrated. Currently the implementation of the light curve inversion is set up is using the 

absolute magnitude and change in absolute magnitude. Un-calibrated light curves use instrumental 

magnitude not absolute magnitude, using the instrumental magnitude in place of the absolute magnitude 

there is a bias introduced. These bias skews the response surface generated for optimisation leading to the 

convergence to sub-optimum estimates of the attitude, size, and optical properties. To avoid this limitation 

future work should look to refine the optimisation method to only use the change in magnitude across the 

light curve as this would be the same for both instrumental and absolute magnitude.  

One other limitation to consider is the hardware limitations of the system that the light curve inversion 

method is running on. As the light curve inversion technique generates thousands of light curves with 

estimated parameters it can be very computationally intensive. Having a system with limited RAM or CPU 

capabilities it still can perform the light curve inversion but will take longer for each iteration. This increase 

in computation time can be offset by reducing the number of estimated light curves, making a trade off 

between accuracy and computation time which is common in optimisation problems.  

The ORBITALS simulator was originally a biproduct of not having enough labelled data but has become 

one of the largest contributions of the thesis work. The update from the original simulator, developed by 

Sam Clemens [37], has addressed many of the original limitations including upgrading to parallel 

processing, improved RSO modeling, and modular functions to allow for easy updates. ORBITALS still 

has areas that can be improved upon to accomplish its goal of generating simulated space based RSO 

detections for the training of RSO detection, identification, and characterisation algorithms. I have 
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identified 3 main areas in which ORBITALS can be improved on including implementing a GUI to make 

it more user friendly, include standard data formats for smooth automation, and improving modules, such 

as PSF, noise modeling, and BRDF. ORBITALS current implementation requires the user to call the 

functions from the command line, this more than sufficient for the use in this thesis. As more researchers 

use ORBITALS to generate data implementing a GUI would; reduce the amount of training researchers 

require and reduce the accessibility barriers to allow more researchers to use ORBITALS. Currently 

ORBITALS has a few standard data formats for how the information is inputted into the simulator, 

preparation of full ICD, as well as, updating the format to match the space standard should be done to keep 

ORBITALS relevant in the ever change space sector. One good example of this is update from TLE 

information to the new OMM format should be performed to allow for both historical TLE data and new 

OMM data to be acceptable inputs. Lastly improvement of the different modules that ORBITALS uses will 

improve its over all functionality and allow it to be tailored to specific applications. The PSF is one prime 

example of this, currently the PSF is implemented as a homogeneous 2D gaussian function. For the current 

application of ORBITALS, the 2D gaussian this is more than sufficient to model the point spread function, 

as ORBITALS is moved to model different types and resolution of imagers this will need to be updated to 

properly simulate the image. Another module that greatly impacts the performance of the simulator is the 

orbital propagator which if upgraded to higher fidelity model will increase the accuracy of RSO placement.  

 

The implementation of PSGP4 algorithm in place of the standard SGP4 algorithm had a major improvement 

in computation speed with out a reduction of accuracy. There is still room to improve on the PSGP4 

algorithm, as well as implement parallel processing and more complex propagation algorithms to allow for 

higher fidelity propagation. RSO propagation is almost always a trade off between computation time and 

accuracy, which means by reducing the computation time of the propagation algorithm more accurate 

answer can be found. One good example of this is in the space sector is for conjunction warnings where 

RSO are first propagated by lower fidelity algorithm and if any RSO’s get to close together they go for 
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further conjunction analysis. Commonly for the second propagation a higher fidelity propagation method 

is used commonly Monte Carlo or HPOP is used. HPOP does not represent one algorithm but rather a sub 

section of high-fidelity algorithms that different companies implement differently for the needed 

applications. The benefits from the implementation a HPOP with full parallel processing capability has not 

been shown in literature yet, but it has the potential to greatly increase RSO propagation technology. One 

emerging technology that has great potential for improved performance of parallel processing is dynamic 

allocation. Dynamic allocation allows for a system to utilise hardware resources more optimally by 

allocating only the required resources allowing the free resources to be used for other process. This has 

great synergy with PSGP4, the integration of dynamic allocation would allow for the different time steps 

to run in parallel if there is enough RAM. This will reduce the overall computation time of the system, as 

propagators are a trade off between speed and accuracy this would allow for more accurate propagation 

methods to be implemented with little to no increase in computation time.  

Wrapping the technologies in this thesis together is a future goal that would provide an end-to-end solution 

for RSO detection, identification, and characterisation from passive space based low resolution images. In 

this thesis the work is mostly focused on the post processing of the detected RSO’s, to provide an end-to-

end solution some on in-situ processing is required to; determine if there is an RSO in the image, compress 

the image with RSO to only the needed information, and downlink the information to be analysed on the 

ground. Currently these different areas of research are being looked at from different academic and 

industrial partners. On board RSO detection is an emerging field with different analytical and machine 

learning algorithms being designed to be implemented on microprocessors on board satellites. A group in 

the nanosatellite research lab at York is currently research this topic and has developed a machine learning 

algorithm to perform onboard processing from a series of 4 images. This is looking to be implemented on 

the RSONAR mission which will be mentioned in more details in the paragraph below. Another topic of 

research in the nano research lab and at Magellan Aerospace is the compression of these images for ground-

based processing. Images require lots of data to store, most of which is not needed for RSO identification 
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and characterisation. This is further limited by the downlink capability of the host satellite, in most cases 

the required downlink size for full frame images is not feasible without disrupting the satellites primary 

goals. By processing the images in-situ board and extracting the relevant information, in the form of a lit 

pixel list or other parameters, the amount of data that needs to be downlinked can be significant reduced. 

The development of an end-to-end system to detect RSO’s, compress the images with RSO’s, and downlink 

the data for ground analysis will greatly increase the TRL of this technology and prepare it for space 

demonstration.  

 

Before a complete space-based demonstration can be performed with this technology a ground or low 

altitude demonstration should be performed. This will be accomplished with the upcoming RSONAR 

mission at York university funded from CSA’s FAST grant. RSONAR mission plans to put a low-resolution 

imager, selected by York, to act as a dual-purpose star tracker on a high-altitude balloon. The dual purpose 

refers to the star tracker performing its job of boresight estimation, as well as RSO detection if an RSO is 

present in the image. The goal of this mission is to show that star tracker like cameras can passively detect 

and save images containing RSO’s with out impacting the cameras’ primary goal. This mission which is 

planned to launch in 2022 will greatly improve the TRL of passive low resolution RSO detections, if 

successful the next step would be looking to implement passive RSO detections on board a current active 

satellite.  

 

6.3 Contribution  

There are a few technological gaps and solutions that were discussed in this thesis, in this section my 

contribution to all of these areas and their importance is outlined below.  
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The largest and most important contribution is the work that was performed on RSO characterisation from 

passive space based low resolution imagers. In this work a novel study was performed to show the feasibility 

and expected accuracy of LEO-to-LEO passive low-resolution space based RSO detections and 

characterisation. Similar studies have been performed on dedicated LEO to LEO, terrestrial to LEO, 

terrestrial to GEO, and GEO to GEO RSO detections but this is the first study that looks at passive LEO to 

LEO for RSO characterisation. Studies that do focus on low resolution light curve analysis commonly focus 

on spin rate analysis instead of characterisation from full light curve inversion. While light curve inversion 

techniques are performed for higher resolution images this is one of the first time it is applied to space based 

low resolution images. This was taken further by a comparative study of the performance of optimisation 

algorithms for the estimation of optimal attitude and optical properties of an RSO. This contribution of 

demonstrating the feasibility and giving expected accuracy of RSO characterisation from passive space 

based low resolution demonstrates the benefit these sensors can be to SSA efforts. With the growing need 

for better SSA augmenting current and future satellites to be passive RSO detectors can be a cost-effective 

solution. This will help improve the accuracy and frequency of satellite catalog updates which reduces the 

ever-growing risk of in orbit collisions. Characterising RSO will help determine what type of object they 

are (active satellite, de-active satellite, rocket body, etc.), if they are adhering to current regulations, and 

assist in giving priory information for active debris removal. With the recent proliferation of RSO’s this 

contribution is coming at a time where innovation in the field `is critical for the protection of current and 

future space assets.  

 

The second most impactful contribution is the development of the ORBITALS simulator. This software 

allows for a user to replicate space based optical detections of RSO’s with different RSO models. This had 

two major impacts; the first was it allowed for the replication of image sequences of RSO detections using 

different RSO models. From the image sequences the light curve was extracted for different RSO models. 

This enabled the RSO characterisation to be performed by simulating the light curves for different models 
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of RSO’s and comparing them to the real light curve. The second impact of this was it enabled the 

generation of data sets in a field where there are not many publicly available data sets. One of the biggest 

challenges I faced in this thesis was not have access to ladled sequences of images from space-based 

sensors. This made it impossible in some cases to characterise the RSO due to lacking host satellite and 

sensor parameters. Many other doing similar research in RSO detection, identification, and characterisation 

from space-based sensors were having the same issue. The development of the ORBITALS simulator over 

came that by providing labeled data from a controlled environment that could generate large data sets 

quickly. The ORBITALS simulator has already been used to generate data sets for this thesis, other 

researchers in the Nano Satellite laboratory, as well as different industry partners. These data sets have been 

used to; help train and compare the performance of machine learning RSO detection algorithms, test the 

feasibility of angles only orbital estimation from space-based platforms, as well as test and verify RSO 

identification and classification algorithms. The development of ORBITALS already has had an impact in 

the Canadian space sector, and it still has room for updates and optimisation. 

 

The third most important contribution from this thesis was the development of PSGP4 propagator. 

Leveraging SIMD parallel processing with the SGP4 algorithm made huge improvement in the computation 

time required for propagation. This was leveraged in the ORBITALS simulator to allow for compete 

satellite catalog propagation while still take less than a second to generate one image. PSGP4 will drastically 

reduce the computation time for SSA tasks, such as conjunction warnings, access finding, and satellite 

identification. As more and more RSO are cataloged in orbit more of them will require propagation, 

increasing the required computation time and resources. PSGP4 looks to reduce the computation burden 

from the increasing catalog by making more efficent use of current hardware available.     
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7 Appendixes 

A. Accuracy Analysis of Simulated Images Using ORBITALS and STK EOIR 

Objects 
Orbitals STK-EOIR 

Orbitals Error (X ,Y)* STK Error (X ,Y)* 
Row(X)* Col(Y)* Row(X)* Col(Y)* 

2019-06-15 23:35:50 

Ref 6111 143.0 151.2 143.6 151.0 (1.1, -8.6) (1.7, -8.8) 

Ref 6158 121.6 161.3 120.6 160.7 (-4.4, -5) (-5.4, -5.6) 

Ref 6195 101.1 170.2 100 170.0 (-1.5, -4.8) (-2.6, -5) 

RCM-1 22.6 155.0 13.7 152.6 (3.8, 5.1) (-5.1, 2.7) 

RCM-2 35.5 147.8 30.0 144.6 (1.3, 4.8) (-4.2, 1.6) 

RCM-3 49.9 139.6 45.4 136.6 (-0.3, 4) (-4.8, 1) 

2019-06-15 23:35:55 

Ref 6111 143.8 152.3 144.5 150.8 (1.3, -6.7) (2, -8.2) 

Ref 6158 122.5 162.5 122.6 161.6 (-4.2, -3.5) (-4.1, -4.4) 

Ref 6195 102.0 171.5 101.7 171.7 (-0.6, -3.5) (-0.9, -3.3) 

RCM-1 55.5 139.5 50.0 140.6 (1.1, 4.5) (3.9, 5.6) 

RCM-2 - - 65.6 131.6 - (2.9, 4.2) 

RCM-3 82.9 123.9 79.6 123.0 (-1.6, 3.7) (4, 2.8) 

2019-06-15 23:36:00 

Ref 6111 144.7 153.5 144.7 153.7 (2.5, -5.6) (2.5, -5.4) 

Ref 6158 123.3 163.7 122.0 163.4 (-3, -2.4) (-4.3, -2.7) 

Ref 6195 102.9 171.8 100.6 172.1 (0.2, -3.4) (-2.1, -3.1) 

RCM-1 88.7 123.7 85.0 121.7 (1.6, 3.9) (2.1, 1.9) 

RCM-2 101.5 116.4 100.6 113.6 (-1, 3.7) (8.1, 1) 

RCM-3 115.7 108.6 114.6 106.0 (-1.5, 3.4) (-2.6, 0.8) 

2019-06-15 23:36:05 

Ref 6111 144.2 151.8 144.0 151.6 (1.7, -6.2) (1.5, -6.4) 

Ref 6158 122.9 162.2 122.0 162.6 (-4.3, -3.1) (-5.2, -2.7) 

Ref 6195 102.6 171.4 101.8 171.7 (-0.7, -3.8) (-1.5, -3.5) 

RCM-1 120.3 105.1 116.0 104.8 (-0.4, 1.7) (-4.7, 1.3) 

RCM-2 132.7 97.8 130.6 96.0 (-2.5, 1.4) (-4.6, 0.4) 

RCM-3 146.5 89.6 144.0 87.7 (-3.6, 1.9) (-6.1, 0) 

2019-06-15 23:36:10 

Ref 6111 143.1 148.6 143.6 148.4 (0.2, -9.2) (0.7, -9.4) 

Ref 6158 121.9 159.2 121.6 159.6 (-4.1, -6.6) (-4.4, -6.2) 

Ref 6195 101.7 168.6 100.8 169.6 (-1.2, -6.4) (-2.1, -5.4) 

RCM-1 150.3 84.8 147.7 83.6 (-2.8, -2.4) (-5.4, -3.6) 

RCM-2 161.2 77.6 161.6 74.7 (-6.6, -2.9) (-6.2, -5.9) 

RCM-3 175.3 69.5 174.6 65.4 (-6.5, -3.3) (-7.2, -7.4) 

2019-06-15 23:36:15 

Ref 6111 142.0 145.3 142.0 145.4 (-0.4, -11.8) (-0.4, -11.7) 
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*  Values are given in pixels.  
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