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Abstract

Automatic generation of questions from text has gained increasing attention due to its useful

applications. We propose a novel question generation method that combines the benefits of

rule-based and neural sequence-to-sequence (Seq2Seq) models. The proposed method can

automatically generate multiple questions from an input sentence covering different views of

the sentence as in rule-based methods, while more complicated "rules" can be learned via the

Seq2Seq model. The method utilizes semantic role labeling (SRL) used in rule-based methods

to convert training examples into their semantic representations, and then trains a sequence-

to-sequence model over the semantic representations. Our extensive experiments on three

real-world data sets show that the proposed method significantly improves the state-of-the-art

neural question generation approaches in terms of both automatic and human evaluation

measures. Moreover, we extend our proposed approach to a paragraph-level SRL-based

method and evaluate it on two data sets. Through both automatic and human evaluations,

we show that our proposed framework remarkably improves its Seq2Seq counterparts.
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question generated by BART (qb), and the questions q̂i generated by our Soft+C

method with BART and alpha=80% on the SQuAD dataset. . . . . . . . . . . . 52

5.14 Human evaluation results on 95 input paragraphs with the same distribution as in

Improved Manuals v1.4.1. Precision is the average of Conciseness, Structure,

Meaning, and Relatedness scores. F-measure is the harmonic mean of precision and

recall scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



List of Figures

2.1 Unfolded recurrent neural network. . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A LSTM unit with input (i), output (o), and forget (f) gates. . . . . . . . . . 8

2.3 Transformer model architecture (Vaswani et al., 2017). . . . . . . . . . . . . 10

2.4 An example of a parse tree and its predicate–argument structure (Punyakanok

et al., 2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Overview of Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 BLEU-4, ROUGE-L and METEOR F-scores of T5 on SQuAD (SQ) and Car Manuals

(CM) using different alphas values. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Comparison of relative change (percent) between the first quarter of SQuAD and

whole SQuAD dataset using T5+C versus T5 with alpha=85%. . . . . . . . . . . 48

xi



Chapter 1

Introduction

Question Generation (QG) from text has gained increasing interest due to its usefulness in

various applications such as conversational systems (Ren et al., 2018), educational question

generation (G. Chen et al., 2018), and reading comprehension assessment (Kumar et al.,

2018; Yao et al., 2018), data augmentation for training question-answering systems (Sultan

et al., 2020), and response generation in conversational systems (Gu et al., 2021). The goal

of Automatic Question Generation (AQG) is to generate meaningful and natural questions

from text with minimum human intervention.

1.1 Motivations

We have been working on QG for the purpose of automatically creating a Knowledge Base

(KB) for the conversational QA systems of an industry partner. The KB contains a set

of QA pairs extracted from a domain-specific document (such as car manuals). During

question-answering, a user’s question is matched against the QAs in the KB to find answers.

Previously, the creation of their KB was done manually by the partner, which is very labor-

intensive. To automate this KB generation process, we have tried both rule-based and neural

1



1.1 Motivations

sequence-to-sequence (Seq2Seq) QG methods.

Traditional QG methods mainly construct heuristic rules to convert an input sentence

to a question (Chali and Hasan, 2015; Flor and Riordan, 2018). The rule-based methods

create rules based on linguistic features that capture the relationships among components

of a sentence and can generate multiple questions from an input sentence to cover different

aspects of the sentence. However, designing such rules is a very labour-intensive task. Also,

these rules may not capture the complexity of ways a human asks questions (Yuan, T. Wang,

A. P. Trischler, et al., 2019). As we will show in Section 5.4, the rule-based method does not

lead to good results compared to neural Seq2Seq models.

Recently, various neural Seq2Seq (Sutskever et al., 2014) models have been used to

generate questions from text (Du et al., 2017; Yuan, T. Wang, Gulcehre, et al., 2017; Zhao

et al., 2018; Zhou et al., 2018; Bao et al., 2020; Xiao et al., 2020). These models, trained on

question-answer (QA) pairs, learn to map an unseen sentence to a question. For example, in

(Du et al., 2017), a seq-to-seq model with an attention mechanism was employed to generate

questions. In (Zhao et al., 2018), the maxout pointer and gated self-attention network is

proposed to produce questions for both sentence and paragraph level inputs.

While the Seq2Seq methods achieved better results than rule-based methods (also found in

(Du et al., 2017; Zhou et al., 2018)), such methods are highly data-driven. For domains with

limited training data (such as car manuals), relations that map the input text to questions

cannot be well captured. In addition, Seq2Seq models often generate a single question from

an input text. However, multiple questions can be asked about a piece of text from different

aspects. For example, "Obama was born in Hawaii in 1961" can answer two questions:

"Where was Obama born?" and "In what year was Obama born?".

One way to generate multiple questions with Seq2Seq models from an input text is to

mark the input text with different short answer spans or keywords to show the focus for QG

2



1.2 Contributions

so that multiple questions may be generated from the same text in multiple runs, one for

each answer span/keyword. However, in our problem setting/application, such answer spans

or keywords are not available as marking answer spans or keywords when creating training

data requires intensive labor work. Our partner prefers an answer-unaware QG system that

can automatically generate multiple factual questions without indicating answer spans or

keywords in either training or inference time.

Alternatively, we may generate multiple questions given a single input sequence by using

[SEP] tokens to separate the ground-truth questions in the output part of each training

example for Seq2Seq models. In this way, the model is trained to generate multiple questions

given a single input sequence. However, as we will show in Section 5, such methods significantly

decrease the quality of generated questions compared to transformers that generate a single

question.

Yet another technique for generating multiple questions from a source sentence is to use

diverse beam search (Vijayakumar et al., 2018; J.-Y. Lin et al., 2021; Z. Zhang and Zhu,

2021). However, the beam search methods require the user to specify the number of questions

returned, which is hard to specify and the ideal number of generated questions varies among

different input texts.

1.2 Contributions

To address these issues, we propose a novel approach to question generation, which uses

SRL, which is commonly used in rule-based systems that can label an input sentence in

different ways corresponding to multiple semantic views of an input sentence, and then trains

a Seq2Seq model with SRL-labeled sequences for question generation. Briefly speaking, SRL

is a process that assigns labels to words or phrases in a sentence to indicate their semantic role

3



1.3 Overview of the thesis

in the sentence with respect to a predicate, such as that of an agent, patient, goal, or result.

Our method does not need keyword/answer span labels in the training data nor specifications

of the number of multiple answers to be generated. The use of SRL also increases the number

of training examples in the data set, which may help alleviate the problem of the limited

labeled data problem.

We evaluate the proposed sentence-level method on three real-world data sets and compared

the proposed method with several state-of-the-art (SOTA) QG methods including the ones

that generate multiple questions. The extensive experiments on these data sets show that the

proposed framework is significantly better than the SOTA Seq2Seq models and rule-based

methods, especially in terms of coverage and overall scores considering both precision and

recall.

Just as importantly, we extend our approach to paragraph-level QG via sentence seg-

mentation. We evaluate the proposed paragraph-level SRL-based method on two data sets.

Through both automatic and human evaluations, we show that our proposed framework

remarkably improves its Seq2Seq counterparts.

1.3 Overview of the thesis

The remainder of the thesis is organized as follows: We give an overview of the development

of language models and SRL in Chapter 2. We review existing works related to our research

in Chapter 3. This is followed with a description of our proposed methods in Chapter 4.

Evaluation of proposed approaches and comparison with SOTA methods are presented in

Chapter 5. In the end, Chapter 6 concludes and summarizes our work and discusses limitations

and future directions.

4



Chapter 2

Background

2.1 Recurrent Neural Network

In sequential tasks such as Natural Language Processing (NLP), there are always dependencies

between the current input and the previous inputs. Traditional language models (e.g., N-

grams) use conditional probabilities to predict the most likely sequence of words. In order

to obtain the dependencies between distant words in a sequence, large N-grams are needed.

Computing the probabilities of large N-grams is only limited to N previous words and

requires a lot of space and memory. Yet N-gram models have a limited ability to capture

longer-distance contexts.

To tackle these issues, Recurrent Neural Network (RNN) was introduced as an alternative

to transmit information within a word sequence. In other words, RNN has a loop-wise

architecture that passes the information from the beginning of a sequence through to the

end. Besides, the computations share most of the parameters in RNN.

5



2.1 Recurrent Neural Network

Figure 2.1: Unfolded recurrent neural network.

Figure 2.11 depicts the building blocks that constitute an RNN at different time steps.

To get the output at time step t, the network is unfolded for t− 1 time steps. The notations

used in the figure are as follows:

• xt ∈ R is the input at time step t. xt is usually words or one-hot vectors being

transformed into word embeddings from pre-trained vector embedding models such as

Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), fastText (Joulin

et al., 2017), and ELMo (Peters et al., 2018).

• ot ∈ R is the prediction of network at time step t.

• ht ∈ Rm holds the hidden states at time step t where m is the number of hidden states.

• U ∈ Rm are weight parameters connected with inputs in the recurrent layer.

• V ∈ Rm×m are weight parameters connected with hidden states in the recurrent layer.

• W ∈ Rm are weight parameters connected with hidden units to output units.
1https://en.wikipedia.org/wiki/Recurrent_neural_network
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2.2 Long Short Term Memory

The hidden state at time step t is computed with an activation function g (e.g., Sigmoid,

Tanh, Relu) as follows:

ht = g(xt−1, ht−1, U, V, bh) = g(Uxt + V ht−1 + bh)

where bh is the bias term associated with the recurrent layer. After computing the hidden

state at time step t, it is possible to get a prediction ot with the bias term by associated with

the feedforward layer as follows:

ot = g(ht,W, by) = g(W · ht + by)

The cost function used in an RNN is usually the cross entropy loss. To get the average cost

in each time step, the loss over several time steps is computed using the following formula:

J = − 1

T

T∑
t=1

K∑
j=1

y<t>
j logo<t>

j

where K is the number of words/classes, y<t>
j is target word, and logo<t>

j is the output of

softmax function. Note that the softmax function produces the probabilities for words.

2.2 Long Short Term Memory

While RNNs allow us to capture dependencies within a word sequence, they fail to exploit

longer contexts (Bengio et al., 1994). In addition, RNNs are prone to vanishing or exploding

gradients during the back-propagating through time (Pascanu et al., 2013). Long Short-Term

Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is a variant of RNN designed to handle

the entire sequences of data. To put it simply, LSTM receives the information from the

previous timestamp and learns when to remember relevant data and when to forget useless

information.

7



2.2 Long Short Term Memory

Figure 2.2: A LSTM unit with input (i), output (o), and forget (f) gates.

Figure 2.22 shows the structure of a typical LSTM consisting of a cell state and a hidden

state with three gates namely input (i), output (o), and forget (f) gates. The hidden state

holds the output from the LSTM cell at time step t and can be formally written using the

activation function k:

ht = k(ht−1, xt)

where ht−1 is the hidden state from previous time step and xt is word input representation at

current time step t. The computations behind it are described below.

• Forget gate chooses which information from the previous cell state and current input

should be kept. Using the Sigmoid function results in an output value between zero

and one. A value close to zero indicates to discard the information while close to one
2https://en.wikipedia.org/wiki/Long_short-term_memory
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2.3 Transformer Models

means to preserve it:

ft = σ(Wfhht−1 +Wfxxt + bf )

• Input gate decides which values to update by yielding a value between zero and one

that value closer to one has higher importance to be preserved. gt is a regulation layer

to help the flow of information by squeezing values within -1 to 1:

it = σ(Wihht−1 +Wixxt + bi)

gt = tanh(Wghht−1 +Wgxxt + bg)

• Output gate determines how much information to pass over to the output:

ot = σ(Wohht−1 +Woxxt + bo)

• Cell state carries all the relevant information through the sequence:

ct = ft · ct−1 + it · gt

Note that all weights (e.g., Wfh, Wfx, Wih, Wix, Wgh, Wgx, Woh, Wox) and biases (e.g., bf ,

bi, bg, bo) are learnable parameters during the training phase.

2.3 Transformer Models

LSTMs are used to overcome the vanishing and exploding gradient problem but they require

the sequential data to be processed in order. The more words there are in the input sequence,

the longer time it takes to process the input. On the other hand, processing long sentence

sequentially, even with LSTMs, causes the information to get lost within the network.

Transformer (Vaswani et al., 2017) is a Seq2Seq model based on a self-attention mechanism

and specially designed to avoid this entire recurrence for machine translation task.

9



2.3 Transformer Models

Figure 2.3: Transformer model architecture (Vaswani et al., 2017).

Figure 2.3 illustrates the architecture of Transformer. As a black box, it looks like an

encoder and a decoder which the encoder first encodes the sentence from the source language

into a representation, and then the decoder decodes it into the target language. The encoder

and decoder have very similar components except for the first layer of the decoder.

10



2.3 Transformer Models 2.3.1 Transformer Encoder

2.3.1 Transformer Encoder

The encoder component is made up of N = 6 identical layers. The encoder can become

separated into 2 parts: (1) multi-head self-attention module, and (2) position-wise fully

connected feed-forward network. A residual connection (He et al., 2016) is applied around

each of the two parts, followed by layer normalization (Ba et al., 2016). Self-attention

mechanism enables the model to focus on the relevant parts of the input sequence. Given

a word sequence X of length n represented by word embeddings [x1, x2, .., xn], there are 4

steps inside self-attention module:

• Query, key, and value vectors are created for these words by multiplying vector xi with

weight matrices which are trained during training. This step can be done in parallel for

all tokens.

[q1, q2, .., qn] = [x1, x2, .., xn]×W q

[k1, k2, .., kn] = [x1, x2, .., xn]×W k

[v1, v2, .., vn] = [x1, x2, .., xn]×W v

• The dot product between query and key vectors of token xi and each word is calculated.

This step gives us the similarity score between words and decides which word, xi is

going to pay more attention to.

[s1, s2, .., sn] = qi · [k1, k2, .., kn]

• The similarity vector is divided by the square root of the dimension of the key vectors.

It is because to have more stable gradients. Then, the result is passed through a softmax

operation to produce probability distributions. It could be expressed that the token xi

associates with itself with the probability of ai.

[a1, a2, .., an] = softmax(
[s1, s2, .., sn]√

dk
)

11



2.3 Transformer Models 2.3.2 Transformer Decoder

• The softmax score vector from the previous step is multiplied by the value vector of

token xi. Next, the weighted value vectors are summed up and the output vector is

produced.

zi =
n∑
1

([a1, a2, .., an]× vi)

The calculation above can be done in matrix form for quicker processing:

Z = softmax(
Q×KT

√
dk

)× V

where Q, K, and V are query, key and value vectors respectively. The matrix Z is the

self-attention score which tells us how much a word interacts with other words. This is

the intuition behind multi-head self-attention that each head behaves with the same word

differently. The heads are just multiple copies of identical self-attention modules.

RNNs know about the position of each word in a sequence because it is a sequential

process. However, the transformer does not process sentences sequentially (it happens at

once) and each word is independent of the other ones. To fix this issue, positional encoding

was proposed. For words to represent different positions, positional encoding is added to

their word embedding. These positional encodings are either learned during training or fixed

that comes from sine and cosine functions.

2.3.2 Transformer Decoder

Once we have the contextual representations of our source sentence, we can feed them into

the decoder. The decoder component is also made up of N = 6 identical layers. As mentioned,

the encoder and decoder have very similar components except for the first layer of the decoder.

In the first layer, there is a masked multi-head self-attention instead of regular multi-head

self-attention due to the fact that the self-attention in the decoder can only attend to the

previous words.

12



2.4 Semantic Role Labeling

2.4 Semantic Role Labeling

Semantic Role Labeling (SRL), a.k.a shallow semantic parsing, recognizes the predicate-

argument structure of a sentence and assigns labels (i.e., semantic roles, such as Agent,

Patient, Instrument, Beneficiary, Goal or Result) to words or phrases in a sentence. The

predicate-argument structure basically explains the meaning of a sentence in the form of who

did what to whom, when, where, and how. This process involves identifying the semantic

arguments related to the predicate (usually a verb) of a sentence and classifying them into

their specific roles. In a nutshell, the task of SRL is to discover the predicate and specify

how these arguments are semantically related to the predicate.

For example given the sentence “Alex bought a book from Sara last month”, the predicate

is ‘bought’ and its arguments are as follows:

• ‘Alex’ is [ARG0] representing the agent (the person doing something in the event).

• ‘a book’ is [ARG1] representing the patient (something underwent a change of state

during the course of the event).

• ‘from Sara’ is [ARG2] representing benefactive (the person that benefits from the

event).

• ‘last month’ is [ARGM-TMP] representing time (temporal modifier of the event).

The semantic analysis of a sentence is an important step for downstream NLP tasks in

understanding the meaning of it. SRL is used in many NLP tasks involving text understanding

such as information retrieval systems (S. Chen et al., 2020), text summarization (Khan et al.,

2015), reading comprehension (Liu et al., 2021), and machine translation (Song, Gildea, et al.,

2019).
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2.4 Semantic Role Labeling

Figure 2.4: An example of a parse tree and its predicate–argument structure (Punyakanok

et al., 2008)

.

Traditional semantic role labelers are feature-based (e.g., predicate and POS tag of

predicate, voice, position, path) where syntax appears to be a prerequisite for SRL extrac-

tion (Punyakanok et al., 2008). They heavily rely on shallow syntactic parsers (i.e., chunkers

and clausers) or full syntactic parsers (using full parse trees). Both parsers try to find

syntactic relations between word pairs. Figure 2.4 provides an example of chunks, clauses

(obtained by a parse tree) and its predicate–argument structure. Another example is Clear

Parser SRL (Choi and Palmer, 2011) where the semantic labels are generated for the input
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2.4 Semantic Role Labeling

text based on a transition-based SRL approach.

Recently end-to-end deep learning models either based on LSTM (Li et al., 2019) or

Transformer (Papay et al., 2022) accomplished SOTA performance without leveraging any

syntactic dependencies. An example includes SRL BERT (Shi and J. Lin, 2019) provided in

AllenNLP (Gardner et al., 2017) to produce the semantic labels for the input text, which is a

SOTA model for SRL extraction. This method generates a predicate-argument structure for

a sentence based on a BERT-based approach. In this model, each sentence is represented by

one or more propositions, consisting of a predicate and its semantic arguments. For example,

the semantic representation of sentence “ABS is activated during braking under certain road

or stopping conditions” is “[ARG1] is activated [ARGM-TMP]”, where [ARG1] (representing

patient) and [ARGM-TMP] (representing time) are semantic role labels for ABS and during

braking under certain road or stopping conditions, respectively. Table 4.1 provides more

examples with their semantic representations.
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Chapter 3

Related Work

The question generation approaches broadly fall into two categories: rule-based approaches

and neural Seq2Seq learning approaches.

3.1 Rule-based Question Generation System

Rule-based approaches mainly rely on hand-crafted templates/rules built upon linguistic

features (Chali and Hasan, 2015; Flor and Riordan, 2018; Khullar et al., 2018; Lindberg

et al., 2013). These methods use rigid heuristic rules to transform a source sentence into one

or more questions. For example, in (Chali and Hasan, 2015) a set of general-purpose rules

based on named entity information and the predicate-argument structures of the sentences

(along with semantic roles) are used to generate questions.

In (Flor and Riordan, 2018) both wh-questions and yes/no questions are directly generated

from semantic analysis of source sentences using SRL (without templates). The semantic role

labels are produced from SENNA system (Collobert et al., 2011) after performing standard

NLP pipeline (e.g., tokenization, POS tagging) on the samples in the dataset. The SRL

output goes through a postprocessing step to correct several system-generated issues (e.g.,
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3.2 Neural Seq2Seq Question Generation

wrong labels assigned by SENNA). In order to generate wh-questions, the focal argument

centered around the predicate of the sentence is chosen as the answer. It means a question

would be created to ask about the text of the focal argument. This step is followed by

identifying the appropriate question word. Next, the question is formulated by reorganizing

the remaining arguments of the predicate.

A benefit of rule-based methods is that rules are transparent and relatively easier to

understand compared to neural-based methods. Also, rule-based methods allow multiple

sentence views, that is, it is possible to generate multiple questions from different aspects of

a sentence.

3.2 Neural Seq2Seq Question Generation

Rules have limited power in expressing the complicated mapping function that human uses

for question generation. Designing a comprehensive set of rules is a very labour-intensive

task. Moreover, these approaches highly depend on the lexical analyzer, syntactic parsers,

or semantic role labelers and often produce meaningless or vague questions due to errors

propagated from these parsers.

Introduced for the first time by Google (Sutskever et al., 2014), Neural Seq2Seq models,

comprised of an encoder and a decoder, have been successfully applied to question generation

due to their capability to extract effective features and model complicated functions. The

encoder takes sequences of data (e.g., words) as input and produces an intermediate state in

a vector space representing the semantics of the input sequence. Then, the decoder takes the

state as the input and generates the output sequence accordingly. Different neural network

architectures such as LSTM (Hochreiter and Schmidhuber, 1997), GRU (Cho et al., 2014),

and Transformer (Vaswani et al., 2017) have been used as decoders and encoders.
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3.2 Neural Seq2Seq Question Generation

Early Seq2Seq-based QG models are based on RNN structures. Examples include an

LSTM-based Seq2Seq model with the global attention mechanism (Du et al., 2017) and

LSTM-based model with the maxout pointer and gated self-attention network (MP-GSN)

(Zhao et al., 2018). The encoder in MP-GSN is a two-layer bidirectional LSTM. A gated self-

attention mechanism (W. Wang et al., 2017) is applied to the encoder to capture dependencies

within the passage hidden states and thus improve the encoded representation. The decoder

is a two-layer unidirectional LSTM. To avoid repetitions in the output sequence, especially

when the input sequence is long, a maxout pointer mechanism is used to calculate the score

of copying word from the input sequence at each step. The aforementioned model is able to

handle rare words not occurring in the training data and outperforms previous approaches

on QG such as (Du et al., 2017) and works better than the vanilla Seq2Seq model (Kumar

et al., 2018).

More recent Seq2Seq models are based on Transformer (Explained in Section 2.3) which

relies entirely on self-attention to compute representations of its input and output without

using sequence-aligned RNNs. Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020) is

a multi-task pre-trained Transformer-based model, which treats a diverse set of NLP tasks

as a text-to-text problem, and can be fine-tuned over various tasks such as classification,

regression, text summarization, machine translation, and question answering. In order for

T5 to perform a specific task, the model is given an input string of texts that contains both

the task and the data. Note that there is one T5 model that performs various tasks without

changing anything but the input sentences. BART (Lewis et al., 2020) is another cutting-edge

pre-trained Transformer-based model that has a denoising autoencoder architecture. BART

is specially designed for text generation tasks and trained by (1) corrupting text with an

arbitrary noising function, and (2) learning a model to reconstruct the original text. Further,

ProphetNet (Qi et al., 2020) is a Transformer-based Seq2Seq model that is pre-trained over
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3.3 Diverse Question Generation

very large datasets to conduct future n-gram prediction with an n-stream self-attention

mechanism. The future n-gram prediction strategy enables the system to foresee the future

tokens and it also helps the model predict multiple future tokens. It is applied to QG and

achieves SOTA results. Some other examples of Transformer-based QG models include

PEGASUS (J. Zhang et al., 2022), UNILM (Dong et al., 2019), UNILMv2 (Bao et al., 2020),

and Ernie-Gen (Xiao et al., 2020).

3.3 Diverse Question Generation

While the Seq2Seq methods achieve better results than rule-based methods (Du et al., 2017),

they are highly data-driven. For domains where labelled training data are limited, relations

that map the input text to questions cannot be successfully acquired. In addition, Seq2Seq

models often generate a single question given an input text, which does not cover multiple

views of a sentence.

To solve this single-question-generation problem, different strategies have been proposed.

One strategy is to use diverse beam search (Vijayakumar et al., 2018; Z. Zhang and Zhu,

2021) and sampling techniques (such as top-p nucleus sampling used in (Sultan et al., 2020)).

While these methods showed promising results, the user has to specify the bin/sample size

and the number of questions to be generated (whose ideal number may depend on the input

sequence).

Another strategy for generating diverse questions is to mark or extract keywords in the

input text and generate questions by conditioning on keywords or keyword positions (e.g.,

(Pan et al., 2020; Shen et al., 2020; Subramanian et al., 2018; Sun et al., 2018; Song, Z. Wang,

et al., 2018; Z. Zhang and Zhu, 2021)). However, extracting keywords (either automatically or

manually) to build keyword-labeled training data often needs domain knowledge, a pre-defined
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3.3 Diverse Question Generation

keyword list, or documents beyond the training data. The QG method we propose solves the

above problems by learning Seq2Seq models with semantic role labeled QAs. It can generate

multiple and diverse questions without specifying the number of questions to be generated or

requiring keyword-labeled training data.

A notable method that uses both diverse beam search and keyword-based method is

KPCNet (Z. Zhang and Zhu, 2021) for generating clarification questions from product

descriptions in e-commerce websites. It first extracts the keywords from the title and

description of a product and then uses classical or diverse beam search to generate questions

conditioned on the keywords.

A recent method that also uses SRL and Seq2Seq models is a 2-step method in (Pyatkin

et al., 2021). It tackles role question generation that, given a predicate mention and a passage,

generates a set of questions asking about all possible semantic roles of the predicate. It first

generates prototype questions for all the roles based on the ontology in PropBank (Palmer

et al., 2005). It then trains a BART model to generate all questions (including ones that

cannot be answered by the input text) given these prototype questions contextualized over

the input text. Both the problem definition and the methodology are very different from ours.

Regarding the problem definition, it generates questions targeting all semantic roles of a

predicate specified in PropBank, which may not be answered by the input text. Our method

does not need to generate prototype questions and we generate only the information-seeking

questions that can be answered by the input text. Regarding the methodology, it lacks

semantic mappers used for the transformation of SRL labels into words/phrases or vice versa.

Such semantic mappers, as we will show in Sections 4.3 and 4.5, are the main part of our

method and also help us satisfy the constraint of generating questions where the answer must

be in the input sequence.
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Chapter 4

Methodology

Given a set of answer (i.e., sentence) and question pairs, our goal is to train a model to

generate from an unseen sentence one or more questions that can be answered by the sentence.

As we will describe in Section 4.6, our approach can be extended to paragraph-level SRL-based

method to incorporate answer with more than one sentence (i.e., paragraph, itemized, table

samples).

4.1 Overview of the Method

Our method contains a Semantic Role Labeler (SRLer), a Seq2Seq model, and two semantic

mappers (namely, Question2SRL and SRL2Question). First, SRLer extracts semantic

representations (i.e., SRL labels) from answers in the training set. Then Question2SRL maps

questions in the training set to their corresponding semantic representations. Next, a Seq2Seq

model is trained using these semantic representations to convert an SRL representation of an

answer to that of a question. In the inference stage, Semantic Role Labeler extracts semantic

representations (âsem) of an answer â. Then, âsem is converted to an SRL representation of a

question (q̂sem) by the learned Seq2Seq model. Finally, SRL2Question converts q̂sem into a
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4.2 Semantic Role Labeler

Figure 4.1: Overview of Proposed Framework

natural language question q̂. Figure 4.1 illustrates our proposed framework.

Next, a Seq2Seq model is trained using these semantic representations to convert an SRL

representation of an answer to that of a question. In the inference stage, Semantic Role

Labeler extracts semantic representations (âsem) of an answer â. Then, âsem is converted to an

SRL representation of a question (q̂sem) by the learned Seq2Seq model. Finally, SRL2Question

converts q̂sem into a natural language question q̂.

4.2 Semantic Role Labeler

A Semantic Role Labeler (SRLer) is used in both training and inference. In the training phase,

an SRLer is used to convert each answer a in the training set into its semantic representation
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4.2 Semantic Role Labeler

(denoted as asem) that contains semantic role lables (SRL).

An SRLer recognizes the predicate-argument structure of a sentence and assigns labels

(i.e., semantic roles, such as agent, goal or result) to words or phrases in a sentence. We use

both SRL BERT (Shi and J. Lin, 2019) and Clear Parser SRL (Choi and Palmer, 2011) in

our experiments. Since SRL BERT leads to better outcome, we report the results from SRL

BERT in this thesis.

Table 4.1: Semantic representation of answers and questions (ARG0: agent , ARG1: patient, ARG2:

attribute, ARGM-NEG: negation, ARGM-PRP: purpose)

Semantic representation for sample input sentences (answers):

S1. [ARG1: the fuel filler funnel] is [ARG2: under the luggage compartment floor covering] .

S2. [ARG0: this vehicle] has a capless refueling system and does [ARGM-NEG: not] have [ARG1:

a fuel cap] .

S3. distribute [ARG1: the trailer load] [ARGM-PRP: so 10 - 15 % of the total trailer weight is

on the tongue] .

S4. distribute the trailer load so [ARG1: 10 - 15 % of the total trailer weight] is [ARG2: on the

tongue] .

Semantic representation for the questions corresponding to the above sentence representations in

the training data:

Q1: where is [ARG1: the fuel filler funnel] ?

Q2: does [ARG0: this vehicle] have [ARG1: a fuel cap] ?

Q3: how much of [ARG1: the trailer load] should be on the tongue ?

Q4: how much of the trailer load should be [ARG2: on the tongue] ?

Table 4.1 provides more examples of semantic representations for answers. Note that

if a sentence contains more than one verb, more than one semantic representation may be

generated. For example, S3 and S4 in Table 4.1 are from the same sentence.
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4.3 The Question2SRL Mapper

4.3 The Question2SRL Mapper

The Question2SRL mapper converts a question q in the training data into its semantic

representation qsem. Instead of applying an SRLer directly on q, Question2SRL uses the

semantic role labels in the semantic representation asem of q’s corresponding answer a to

label the phrases or words in q. We design two approaches for Question2SRL, namely,

Hard-Question2SRL and Soft-Question2SRL:

Hard-Question2SRL: In this approach, for each semantic role label l that occurs in

an answer’s SRL representation, if its corresponding phrase or word occurs in the question,

the phrase or word in the question is replaced with label l. The reason why we did not use

semantic role labeling to directly label the question is that we would like to keep the question

words (e.g., what, where, when, etc.) in the semantic representation of the question, and

also that semantic role labeling may generate labels for a question which do not occur in its

answer. The lower part of Table 4.1 provides the semantic representations of the questions

corresponding to the answer SRL representations in the upper part of the table. Note that

Q3 and Q4 are two different representations of the same question, resulting from two different

SRL representations of the same answer (S3 and S4). Thus, one original training example can

be converted to one or more SRL-labeled examples for training a Seq2Seq model, resulting in

an increase in the size of training data.

Soft-Question2SRL: The words/phrases labeled with a semantic role in an answer may

not occur exactly in the question, but their synonyms or similar expressions may. In this case,

Hard-Question2SRL may not find the exact match in the question. To address this issue, we

design Soft-Question2SRL that considers the semantic similarity between the words/phrases

corresponding to a semantic role label in asem and potential words/phrases in a question to

find the best match. Algorithm 1 outlines the procedure. Given a set of SRLs (L) generated
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4.3 The Question2SRL Mapper

for answer a by Semantic Role Labeler, and question q, we first generate all possible n-grams

(nG) from q, then compare the phrases/words corresponding to each label l ∈ L, denoted by

words(l), with each n-gram ng ∈ nG. The n-gram with maximum similarity with words(l) is

selected to be replaced by l as long as the similarity is greater than or equal to a threshold α.

We calculate the similarity between n-grams and semantic role label words based on cosine

similarity between their corresponding Sentence-BERT embeddings (Reimers and Gurevych,

2019).

Algorithm 1: Soft-Question2SRL
Input :L // a set of SRLs generated for a

q // question

Output : qsem // semantic rep. of q

nG ← Generate all n-grams from q

for each l ∈ L do
score← 0

for each ng ∈ nG do
sim ← Cosine(words(l), ng)

if score < sim then
score← sim

lbest ← l

if score ≥ α then
qsem ← replace ng in q with lbest

Table 4.2 shows how the algorithm works using an example. The first box of the table

illustrates the answer a, and its respective question q. Each subsequent box shows a semantic

role label l ∈ L in asem, the best n-gram ng matching with words(l), and their respective

similarity score. The final box shows the semantic representation of question qsem after

replacing n-grams with SRLs in previous steps. Note that we replace the n-gram with an
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4.3 The Question2SRL Mapper

Table 4.2: An example of Soft-Question2SRL mapper converting a question into its semantic

representation. Each row shows the best score and corresponding n-gram in the question (α = 0.85).

Semantic representation (asem) for sample answer sentence a and its corresponding question q:

asem = [ARGM-TMP: in january 2009] , [ARG0: the green power partnership -lrb- gpp , sponsored

by the epa -rrb-] [V: listed] [ARG1: northwestern] [ARG2: as one of the top 10 universities in the

country in purchasing energy from renewable sources] .

q = in 2009 , who named northwestern as one of the top 10 universities in the country in

purchasing renewable energy ?

l = [ARGM-TMP], words(l) = “in january 2009”

Best matching ng = “in 2009”, Similarity score = 0.91 > α ⇒ Replace ng with l in qsem

l = [ARG0], words(l) = “the green power partnership -lrb- gpp , sponsored by the epa -rrb-

Best matching ng = “in purchasing renewable energy ?”, Similarity score = 0.46 < α

l = [V], words(l) = “ listed”

Best matching ng ← “in”, Similarity score = 0.42 < α

l = [ARG1], words(l) = “northwestern”

Best matching ng = “northwestern”, Similarity score = 1.00 > α ⇒ Replace ng with l in

qsem

l = [ARG2], words(l) = “as one of the top 10 universities in the country in purchasing energy

from renewable sources”

Best matching ng = “as one of the top 10 universities in the country in purchasing renewable

energy”, Similarity score = 0.98 > α ⇒ Replace ng with l in qsem

qsem = ARGM-TMP , who named ARG1 ARG2 ?

SRL label if the score is higher than or equal to a threshold (i.e., α).
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4.4 Sequence-to-Sequence Learning

Given a set of ⟨asem, qsem⟩ pairs (where asem and qsem are an SRL-labeled answer and an

SRL-labeled question, respectively), we train a Seq2Seq model to convert asem to qsem. Any

Seq2Seq model can be used for this purpose. In our experiment, we use the state-of-the-art

models T5 (Raffel et al., 2020) and BART (Lewis et al., 2020) to evaluate our method.

We feed the Seq2Seq model with asem as the input sequence, where some of words/phrases

in the original answer a are replaced by SRLs. While SRLs provide the Seq2Seq model with

useful information, this replacement may reduce the information to which model is exposed.

As another strategy, we add the actual answer a as a context to the input sequence. That is,

the input to the Seq2Seq model is ⟨answer: asem context: a⟩, where answer: and context:

are tokens prepended to asem and a, respectively. Alternatively, we can add the SRL labels of

the actual answer a and their corresponding words separated by a special token <sep> to the

input sequence. The input to the Seq2Seq model is ⟨answer: asem <sep> label words <sep>⟩.

Table 4.3: A training example for Seq2Seq model with 3 different strategies for input (i.e., answer)

representations.

input answer: [ARG1] was named [ARG2], [ARGM-PRD].

input+C answer: [ARG1] was named [ARG2], [ARGM-PRD]. context: denver linebacker von miller

was named super bowl mvp, recording five solo tackles, 2 1/2 sacks, and two forced fumbles.

input+L answer: [ARG1] was named [ARG2], [ARGM-PRD]. <sep> [ARG1] denver linebacker von

miller <sep> [ARG2] super bowl mvp <sep> [ARGM-PRD] recording five solo tackles , 2

1/2 sacks , and two forced fumbles <sep>

output who won the [ARG2] ?

Table 4.3 shows a training example with three variations of the input. We will compare

the three input versions of the Seq2Seq model in the experiment.
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4.5 The SRL2Question Mapper

In the inference phase, the SRLer is first used to convert an input sentence (i.e., answer â) into

its semantic representation (âsem). Then, the trained Seq2Seq model is used to convert âsem

into a semantic representation of a question (q̂sem). After that, the SRL2Question mapper

transforms all the semantic role labels in the generated semantic representation q̂sem into

words or phrases. In particular, for each semantic role label l in the semantic representation

q̂sem generated by the Seq2Seq model, the SRL2Question mapper looks for label l in all the

semantic representations âsem of the input sequence â, and uses the phrase or word in â that

corresponds to l to replace l in q̂sem.

Table 4.4 shows examples of generated semantic representations and converted questions,

together with their input sentences, semantic representations of the input sentences, and

ground truth questions.

4.6 Extension to Paragraph-level Method

We observe that as input texts get longer and more complicated, the SRL model struggles

with generating more accurate output. Hence, we extend our approach to paragraph-level

QG method via sentence segmentation.

Given a set of training data consisting of question and answer pairs, we split answers into

separate sentences using NLTK (Bird and Loper, 2004) and keep the corresponding ground

truth question along with each sentence. NLTK is a toolkit for natural language processing

systems in English. This would enlarge the training data since the answer may contain more

than one sentence. Our paragraph-level dataset is reduced to a sentence-level one where we

can use our proposed approach as discussed in 4.1 to tackle this matter. Before feeding the

Seq2Seq model with asem as the input sequence, we add the actual paragraph p as a context

28
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Table 4.4: Examples of sentence â, its semantic representation âsem, the outcome q̂sem generated by

Seq2Seq, the question q̂ converted from q̂sem, and ground-truth question Qt from the Car Manuals

dataset.

â: before placing a child in the child restraint , make sure it is securely held in place .

âsem: before placing [ARG1] [ARG2] , make sure it is securely held in place .

q̂sem: what should i do before placing [ARG1] [ARG2] ?

q̂: what should i do before placing a child in the child restraint ?

Qt: what should i do before placing a child in the child restraint ?

â: adjust the temperature setting using the + and - temperature buttons on the right-hand side of

the climate controls .

âsem1: adjust the [ARG1] setting using the + and - temperature buttons on the right-hand side of the

climate controls .

âsem2: adjust the temperature setting using [ARG1] [ARGM-LOC] .

q̂sem1: how do i adjust the [ARG1] setting ?

q̂sem2: how do i adjust the temperature [ARGM-LOC] ?

q̂1: how do i adjust the temperature setting ?

q̂2: how do i adjust the temperature on the right-hand side of the climate controls ?

Qt: how do i adjust the temperature on the passenger ’s side ?

to the input sequence. That is, the input to the Seq2Seq model is ⟨answer: asem context: p⟩,

where answer: and context: are tokens prepended to asem and p accordingly. Then, a

Seq2Seq model is fine-tuned to convert an SRL representation of an input sentence along

with its original paragraph into an SRL representation of a question, which is then converted

to a natural language question.
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Chapter 5

Empirical Evaluation

We investigate (1) whether using SRL with Seq2Seq models improves the QG performance of

Seq2Seq without SRL, (2) how our method compares with the state-of-the-art QG methods,

and (3) if our SRL-based QG method extended to paragraph-level results in improvements

over baseline.

5.1 Datasets

We evaluate our method on 3 datasets. The first one contains QAs created by human

annotators from two car manuals of Ford and GM, denoted as Car Manuals. The second

dataset is SQuAD (Rajpurkar et al., 2016), containing QAs created by Amazon Mechanical

Turk crowd-workers from Wikipedia articles. We use the processed sentence-level SQuAD

dataset (Du et al., 2017), where the answer in a QA pair is a single sentence. The third dataset

is NewsQA (A. Trischler et al., 2016), a machine comprehension dataset of human-generated

QA pairs from CNN news articles. We created a sentence-level NewsQA dataset. The

sentences were extracted from corresponding paragraphs based on their answer span. All the

datasets contain training, testing, and development sets. Their statistics are given in Table
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5.1. In these datasets, multiple QA pairs may have the same answer sentence but different

questions.

Table 5.1: Statistics of Three Datasets

Dataset training set test set development set

Car Manuals 9,184 QAs 1,869 QAs 1,403 QAs

SQuAD 70,484 QAs 11,877 QAs 10,570 QAs

NewsQA 91,536 QAs 5,067 QAs 5,136 QAs

5.2 Automatic Evaluation Metrics

The original design of BLEU (Papineni et al., 2002), ROUGE (C.-Y. Lin, 2004) and METEOR

(Denkowski and Lavie, 2014) scores assumes different ground-truths for the same input

sequence have the same meaning, and the best match between the output sequence and one

of the ground truths is used to compute the scores. However, in question generation, the

multiple ground truth questions for an input sentence often have different meanings and the

generated questions should cover all the ground truth questions ideally.

To overcome this limitation, we use the precision, recall and F scores proposed in

(Schlichtkrull and Cheng, 2020) for measuring the quality and diversity of generated questions.

Given a test example consisting of input text a and a set of ground-truth questions T , the

precision and recall of a set of questions G generated from a by a QG method are defined as:

precision(G, T, s) =
1

|G|
∑
g∈G

max
t∈T

s(g, t)

recall(G, T, s) =
1

|T |
∑
t∈T

max
g∈G

s(g, t)
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5.3 Comparison of Seq2Seq+SRL with Seq2Seq methods

F (G, T, s) =
2× precision(G, T, s)× recall(G, T, s)

precision(G, T, s) + recall(G, T, s)

where s is a scoring function s : Ω × Ω → R that measures the similarity between two

questions. We use the similarity function used in BLEU-n (n-gram text overlap), ROUGE-L

(longest common subsequence text overlap) and METEOR (which takes into account word

re-ordering, stemming, synonyms and paraphrase matching) to compute s. F-score is defined

as the harmonic mean of precision and recall. Note that these precision, recall and F-scores

are the same as the u, v and F scores proposed in (Schlichtkrull and Cheng, 2020) for

measuring the quality and diversity of generated questions.

The recall metric measures how much of the ground-truth questions are covered by the

generated questions given an answer sentence. Since the ground-truth questions in our

datasets cover different aspects of an input sentence, this recall value indicates the percentage

of these different/diverse ground-truth questions being covered by the generated questions.

It does not measure the “diversity” among the generated questions, rather it measures the

coverage of the diverse ground-truth questions by the generated questions. The measure was

proposed in (Schlichtkrull and Cheng, 2020), where it was called a diversity measure. Other

diversity measures, such as Distinct-3 used in (Z. Zhang and Zhu, 2021), do not measure the

relevance of the generated questions to the ground-truths. For example, Distinct-3 calculates

the number of distinct 3-grams in the generated questions, free of any reference or ground

truth sentences. We emphasize the coverage over diverse ground truths.

5.3 Comparison of Seq2Seq+SRL with Seq2Seq methods

To investigate whether the use of SRL with Seq2Seq models improves the QG performance

of Seq2Seq models trained with original sentences, we conducted experiments with two
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state-of-the-art transformer-based Seq2Seq models: (1) BART (Lewis et al., 2020) and (2)

T5 (Raffel et al., 2020).

We fine-tune the Huggingface pre-trained models (Wolf et al., 2019) of BART-base and

T5-small with 139 and 60 million parameters respectively. We use the smallest available

model sizes of BART and T5 to avoid GPU memory errors. Four V100-SXM2 32GB GPUs

are used for fine-tuning. For baselines, T5 and BART are fine-tuned using the original

sentence-based QA pairs in each training set to generate a question given an answer.

For our method, we use a pre-trained SRL BERT model (Shi and J. Lin, 2019) provided

in AllenNLP (Gardner et al., 2017) as the Semantic Role Labeler to convert answer sentences

to their SRL representations. We then fine-tune T5 or BART to learn a model that maps an

SRL representation of an input sentence to that of the question, which is then mapped to a

natural language question.

To determine the values of hyperparameters in the Seq2Seq model (T5 and BARR) in

either baseline or our model, we conduct random search (Bergstra and Bengio, 2012) due to

its efficiency. To do so, we randomly select 10 combinations of learning rates (LR) and epoch

numbers (EP) as follows:

• "LR = 5× 10−6, EP = 2"

• "LR = 10−5, EP = 8"

• "LR = 5× 10−5, EP = 5"

• "LR = 5× 10−5, EP = 10"

• "LR = 10−4, EP = 10"

• "LR = 10−4, EP = 4"

• "LR = 5× 10−4, EP = 3"

• "LR = 5× 10−4, EP = 7"
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• "LR = 10−4, EP = 4"

• "LR = 10−4 EP = 10"

The best model for each dataset and each method is chosen based on the final loss of the

development set. We combine an actual batch size of 16 with 2 gradient accumulation steps

per minibatch to artificially create a batch size of 32. The maximum sequence length is set to

512 for both input and output. For the decoding method, we use beam search with a beam

size of 10.

5.3.1 Automatic Evaluation

Table 5.2 shows the automatic evaluation results on Car Manuals with BART and T5 as

the baseline. Hard is our method using Hard-Question2SRL for Question2SRL. Soft is our

method with Soft-Question2SRL with 80% as the soft-matching threshold (α). Soft+C and

Soft+L are our methods with Soft-Question2SRL plus using the original answer or SRL

labels and their corresponding words as the context, respectively.

As shown in Table 5.2, using SRL representations to train a QG model with either

BART or T5 significantly improves the baseline performance on Car Manuals. This is due to

generalization of sentences into SRL representations, allowing general semantic patterns to

be modeled and used in QG. The use of SRLs also increases the number of training examples

due to the fact that the SRLer can convert a sentence into multiple SRL-labeled sentences.

All the variations of our method significantly increase the recall and F-scores in all types of

measures (BLEU, ROUGE and METEOR) and they also increase precision in almost all of

the cases. The recall increase is due to the fact that the SRLer can convert a sentence into

multiple SRL-labeled sentences, leading to questions asking about different aspects of the

sentence.
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Table 5.2: Automatic evaluation results on Car Manuals with BART and T5 as Baselines (P, R

and F mean Precision, Recall and F-score in %). Hard and Soft+ methods are variations of our

method with BART or T5 as the Seq2Seq model.

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART 57.2 63.7 51.9 71.7 75.9 68.0 57.6 63.7 52.6

Hard 70.9 68.3 73.6 76.4 75.7 77.1 58.7 57.5 59.9

Soft 82.6 76.3 90.1 90.6 87.9 93.5 58.8 55.7 62.2

Soft+C 88.3 85.4 91.4 94.3 94.0 94.6 63.0 62.1 63.9

Soft+L 89.0 85.1 93.2 94.8 93.7 95.9 63.6 61.8 65.5

T5 45.0 50.3 40.7 62.4 66.0 59.2 46.3 50.0 43.1

Hard 63.9 58.8 70.0 71.5 69.1 74.0 52.3 49.3 55.7

Soft 77.0 71.5 83.5 85.9 82.7 89.4 53.6 50.4 57.1

Soft+C 85.9 84.1 87.8 91.9 91.5 92.4 59.9 59.3 60.5

Soft+L 84.7 82.8 86.6 91.0 90.1 92.0 58.8 57.6 60.0

Rule Based 17.4 13.9 23.2 36.2 31.6 42.5 22.0 18.5 27.1

Comparing the hard and soft versions of our method, Soft-Question2SRL is better than

Hard-Question2SRL in all cases, indicating that allowing different but similar expressions in

the corresponding question and answer when labeling the question with SRLs is important

and beneficial. We also see that the use of the original source sentence or SRL labels as

a context in the input is beneficial. This is probably because the error propagation from

semantic role labeling has less impact when (part of) the original sentence is given as a

context.

Tables 5.3 shows the automatic evaluation results on the SQuAD dataset with BART
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Table 5.3: Automatic evaluation results on SQuAD with BART and T5 as baselines (P, R and F

mean Precision, Recall and F-score in %). Hard and Soft+ methods are different variations of our

method with BART and T5 as the Seq2Seq models.

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART 15.2 21.4 11.7 42.9 48.0 38.8 20.6 22.6 18.9

Hard 17.8 17.9 17.6 45.0 44.0 46.2 21.4 20.3 22.6

Soft 19.6 18.5 20.9 46.6 44.3 49.1 22.4 21.0 24.0

Soft+C 19.7 20.5 19.0 47.4 47.0 47.9 22.9 21.8 24.1

Soft+L 20.0 20.2 19.9 48.1 46.9 49.3 23.3 21.8 25.0

T5 15.0 19.9 12.0 41.0 46.3 36.7 19.5 23.2 16.7

Hard 16.6 16.1 17.1 43.4 42.2 44.5 20.3 19.6 21.1

Soft 18.0 16.6 19.8 44.8 43.0 46.8 21.5 20.9 22.2

Soft+C 19.0 19.6 18.4 45.7 45.7 45.8 22.1 22.2 22.0

Soft+L 19.9 20.4 19.4 48.0 47.1 48.9 23.2 21.8 24.8

and T5 as the baseline. Again, we observe that all variations of our method significantly

outperform the baseline on recall and F-score. On this data set, the BART baseline shows the

best precision. However, the lower precision of our method is due to the incompleteness of

the ground truth questions in SQuAD. That is, many of the questions our method generates

are good questions, but they do not match the ground truth questions in the data set (Such

a problem is also mentioned by others such as in (Sultan et al., 2020)).

Table 5.4 shows the generated questions for 3 testing examples from our method (Soft+L)

with T5 and T5 without SRL. As shown, our method generates more questions covering

different aspects of an input sentence, while T5 without SRL generates only one question. In
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Table 5.4: Three Examples showing the input sentence â, its ground-truth question qg, the question

generated by T5 (qt), and the questions q̂i generated by our Soft+L method with T5 and alpha=80%

on the SQuAD dataset.

â: there are two categories of repetitive dna in genome : tandem repeats and interspersed repeats .

qg: what are two types of repetitive dna found in genomes ?

qt: what are the two categories of repetitive dna in genome ?

q̂1: what are the two categories of repetitive dna in the genome ?

q̂2: how many categories of repetitive dna are there in the genome ?

â: before the solar/wind revolution , portugal had generated electricity from hydropower plants on

its rivers for decades .

qg: through what renewable resource had portugal generated electricity before the solar/wind

revolution ?

qt: before the solar/wind revolution, portugal had generated electricity from what ?

q̂1: what had portugal generated electricity from before the solar/wind revolution ?

q̂2: how long had portugal generated electricity from hydropower plants on its rivers ?

â: the term parinirvana is also encountered in buddhism , and this generally refers to the complete

nirvana attained by the arahant at the moment of death , when the physical body expires .

qg: what term is used for the complete nirvana attained by the arahant at death ?

qt: what is the term parinirvana used in buddhism ?

q̂1: what term is also encountered in buddhism ?

q̂2: when is the complete nirvana attained by the arahant ?

q̂3: who attained the complete nirvana at the moment of death ?

q̂4: what does the term parinirvana refer to at the moment of death ?

q̂5: what term is used in buddhism to describe the complete nirvana attained by the arahant at the

moment of death ?
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all the 3 examples, there is only one ground-truth question. When precision is computed, the

extra questions we generated have a low precision due to poor match with the ground truth

even though they are good questions. This explains why our methods have lower precision

scores than the baselines.

The results on this dataset also show that soft matching is better than hard matching,

and the use of context is better with T5, but has no obvious advantage for BART. We show

the impacts of soft-matching threshold α in Section 5.5. In practice, α can be tuned using

the development set.

Table 5.5: Automatic evaluation results on NewsQA with BART and T5 as Baselines (P, R and

F mean Precision, Recall and F-score in %). Hard and Soft+ methods are different variations of our

method with BART and T5 as the Seq2Seq models.

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART 10.7 16.8 7.8 38.3 44.7 33.6 17.6 20.6 15.3

Hard 12.2 13.2 11.3 41.4 41.8 41.1 19.0 18.1 20.0

Soft+A80 13.4 12.8 14 42.8 41.9 43.8 19.9 18.9 21.1

Soft+A80+C 14.8 16.3 13.6 43.8 44.6 43.0 20.6 20.4 20.8

T5 10.4 15.8 7.8 37.6 44.1 32.8 17.1 20.7 14.6

Hard 11.9 12.6 11.2 40.9 41 40.8 18.8 18.2 19.6

Soft+A80 13.3 12.9 13.8 42.6 41.6 43.7 19.8 18.8 20.8

Soft+A80+C 14.1 15.7 12.9 42.9 43.9 42.0 20.0 20.3 19.8

Rule Based 4.5 3.8 5.6 22.8 21.8 24.0 12.8 14.2 11.7

Similar results are observed on the NewsQA dataset, as shown in Table 5.5.
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5.3.2 Human Evaluation

We randomly selected 50 input sentences from the SQuAD dataset and asked 5 English

speakers to rate the quality of generated questions from each method in terms of recall,

clarity, Q&A relatedness and grammar on a scale of 1-5 (Heilman and Smith, 2010) using the

following criteria.

For Recall, the ratings are:

• 1= Bad: the generated questions do not cover any fact in the answer;

• 2= Unacceptable: the generated questions cover only a small portion of the facts in the

answer;

• 3= Borderline: the generated questions cover around 50% of the facts in the answer;

• 4= Acceptable: the generated questions cover most of the facts in the answer; and

• 5= Good: the generated questions cover all the facts in the answer.

For Clarity, the ratings are:

• 1= Bad: the question is completely unclear in meaning or makes no sense;

• 2= Unacceptable: the question is mostly unclear;

• 3= Borderline: the question is between unacceptable and acceptable;

• 4= Acceptable: the question is clear and understandable, but the use of words can be

improved; and

• 5= Good: the question has no problem. It is clear and simple and uses the right words.

For Q&A Relatedness, the ratings are:

• 1= Bad: the question is completely unrelated to the answer sentence it is generated

from;
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• 2= Unacceptable: the question is somewhat related to the answer sentence, but it

cannot be answered by the answer sentence;

• 3= Borderline: the question can be partially answered by the answer sentence, but far

from completely;

• 4= Acceptable: the question can be mostly answered by the answer sentence, although

maybe not completely; and

• 5= Good: he question can be very well answered by the answer sentence.

For Grammar, the ratings are:

• 1= Bad: the grammar of the question is completely wrong;

• 2= Unacceptable: the question has major grammatical problems;

• 3= Borderline: the question has a grammatical error, which is between major and

minor;

• 4= Acceptable: the question has only a minor grammatical problem; and

• 5= Good: the question is completely grammatically correct.

A precision score for each question is computed by averaging the scores for clarity, Q&A

relatedness and grammar. An overall score (F score) for each test input sentence is computed

as the harmonic mean of precision and recall scores.

Table 5.6 shows the averages of all the scores among human evaluators. The results

show that our methods (BART+Soft+L and T5+Soft+L) are better in precision, recall and

F-scores. In particular, they are significantly better than their corresponding baseline in

recall and F-measure.
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Table 5.6: Human evaluation results on 50 test sentences from SQuAD. Precision is the average of

Clarity, Relatedness and Grammar scores. F-measure is the harmonic mean of precision and recall

scores.

QG System F-measure Precision Recall Clarity Relatedness Grammar

Score (1-5) ± stdev Score (1-5) Score (1-5) Score (1-5) Score (1-5) Score (1-5)

BART 3.64 ± 0.33 4.73 3.06 4.70 4.56 4.94

Soft+L (with BART) 4.32 ± 0.28 4.77 4.16 4.75 4.61 4.93

T5 3.63 ± 0.37 4.71 3.08 4.66 4.63 4.85

Soft+L (with T5) 4.40 ± 0.29 4.73 4.25 4.72 4.48 4.90

5.4 Comparison with other SOTA methods

We compare our method with additional SOTA baselines, most of which can generate multiple

questions from an input sentence:

• BART-multi and T5-multi. BART (Lewis et al., 2020) or T5 (Raffel et al., 2020)

model fine-tuned to generate multiple sequences given an input sequence by using

<sep> tokens to separate the ground-truth questions in the output part of each training

example.

• BART-divbeam and T5-divbeam. BART or T5 model that uses decoding-based

diverse beam search (Vijayakumar et al., 2016) to generate multiple questions. We use

beam size of 6 with 3 diverse groups and diversity penalty of 0.4 all same as in (Z. Zhang

and Zhu, 2021). We select 3 best questions for the evaluation because the average

number of questions generated by our method per input sentence is 3, to make the

comparison fair. In general, the more questions are generated, the lower the precision

but better the recall.
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• ProphetNet-single and ProphetNet-multi. ProphetNet (Qi et al., 2020) is another

Transformer-based SOTA model. In ProphetNet-single, ProphetNet is fine-tuned to

generate a single question. In ProphetNet-multi, it is fine-tuned to generate multiple

sequences from an input sequence by using <sep> tokens to separate the ground-truth

questions.

• MP-GSN (Zhao et al., 2018) An LSTM-based Seq2Seq QG model. We use the

sentence-level MP-GSN with the default setting in the implementation of MP-GSN in

(Lee, 2019).

• KPCNet (Z. Zhang and Zhu, 2021) A QG method that uses keyword and diverse-beam

search to generate multiple clarification questions. We report results for different

versions of this method. KPCNet(beam) and KPCNet(divbeam) use classical and

diverse beam search respectively as their generation method. KPCNet(sample) and

KPCNet(cluster) generate questions based on 2 groups of selected keywords. Each

variant produces 3 questions.

• Rule-based method with 75 rules based on semantic role labels to convert a sentence

into questions. An example rule is "Replace [ARG1] with what if it appears at the

beginning of the sentence".

Similar to the experiments in the last section, the hyper-parameters for all the Seq2Seq

methods are determined through random search.

Table 5.7 shows the results of these SOTA methods on SQuAD compared to our method

(Soft+L) with BART or T5 as the Seq2Seq model. As shown, our methods outperform all

the baselines in F-score and recall. It is also the best in precision in all underlying metrics

except for precision using METEOR where ProphetNet-single is the best and our methods

are the second best.
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Table 5.7: Comparison with SOTA models on SQuAD

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART-multi 15.2 18.4 12.9 41.8 44.5 39.3 20.0 21.2 18.8

T5-multi 14.9 16.5 13.6 40.5 42.2 39.0 19.3 20.9 17.9

BART-divbeam 17.5 19.2 16.1 46.7 46.9 46.5 22.6 21.7 23.5

T5-divbeam 17.6 19.2 16.3 46.3 46.4 46.1 22.4 21.8 23.1

ProphetNet-single 16.2 20.3 13.5 43.0 46.4 40.2 21.2 22.7 19.8

ProphetNet-multi 14.5 17.7 12.3 39.6 43.7 36.2 19.8 21.3 18.5

MP-GSN 12.1 17.0 9.5 39.5 43.9 35.8 17.7 19.1 16.5

KPCNet(beam) 6.7 6.6 6.8 35.9 34.3 37.6 13.9 12.0 16.5

KPCNet(divbeam) 6.0 5.3 6.9 34.2 31.4 37.4 13.3 11.2 16.4

KPCNet(sample) 6.7 6.4 7.1 35.3 33.8 36.9 13.8 12.2 15.9

KPCNet(cluster) 6.9 6.2 7.8 35.9 33.6 38.5 13.9 11.9 16.7

Rule Based 9.1 8.0 10.4 25.1 23.0 27.5 15.0 14.5 15.4

Soft+L (Ours with BART) 20.0 20.2 19.9 48.1 46.9 49.3 23.3 21.8 25.0

Soft+L (Ours with T5) 19.9 20.4 19.4 48.0 47.1 48.9 23.2 21.8 24.8

Compared to Seq2Seq-multi, our methods outperform them significantly in all metrics,

indicating using SRL to generate multiple questions is much more effective than using the

<sep> tokens in the output parts of the training sequences.

Our methods also outperform the diverse-beam-search-based methods for generating

multiple questions, indicating different SRL representations of a sentence can more effectively

lead to generation of diverse questions that cover different aspects of the input sentence.

KPCNet was chosen as a baseline because it uses both (diverse) beam search and keywords
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for generating diverse questions, and its keyword predictor is trainable. But KPCNet was

designed to generate clarification questions. We adapted the method by training it on SQuAD

to generate questions that can be answered by the input sentence (because the ground-truth

questions are answerable). Also, we do not use keyword filtering (which is an effort for

removing answerable questions). We notice that its keyword predictor tuned on SQuAD

produces repetitive keywords (e.g., year and type) almost for every input sentence. Thus,

many of their generated questions do not match with the ground-truth questions, which leads

to its poor performance on SQuAD.

Compared to the rule-based method, our method outperforms it significantly on all

measures with big margins. This indicates that SRL-based Seq2Seq model better captures

the relations between SRL representations of questions and those of answers than rules, which

complicated “rules” can be learned by Seq2Seq models.

Table 5.8: Average number of different generated questions per source sentence by our method

with BART and T5

QG Method Avg. # of questions

BART+Soft 3.3

BART+Soft+C 2.8

BART+Soft+L 3.0

T5+Soft 3.3

T5+Soft+C 2.7

T5+Soft+L 3.0

Table 5.8 provides the average number of questions generated by different versions of our

methods on the SQuAD dataset.
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Table 5.9: Three Examples showing the input sentence â, its ground-truth question qg, the question

generated by T5-divbeam (qtd), the questions qkb generated by KPCNet(beam), and the questions

qkdb generated by KPCNet(divbeam) on the SQuAD dataset

â: there are two categories of repetitive dna in genome : tandem repeats and interspersed repeats .

qg: what are two types of repetitive dna found in genomes ?

qtd: what are the two categories of repetitive dna in genome ?

what are the two categories of repetitive dna in the genome ?

how many categories of repetitive dna are in genome ?

qkb: what are three categories of coding dna ?

how many categories are there ?

are there three categories of coding dna found in dna ?

qkdb: what are three categories of coding dna ?

polymophism are usually categories of what ?

are there three categories of coding dna found ?

â: before the solar/wind revolution , portugal had generated electricity from hydropower plants on its rivers

for decades .

qg: through what renewable resource had portugal generated electricity before the solar/wind revolution ?

qtd: before the solar/wind revolution, portugal had generated electricity from what ?

before the solar/wind revolution, portugal generated electricity from what ?

what was portugal’s main source of electricity before the solar/wind revolution ?

qkb: in what year did the ottoman revolution take electricity ?

in what year did the merger take electricity from its river ?

what year did the empire take electricity ?

qkdb: in what year did the merger take electricity ?

how much did the ottoman revolution take electricity from ?

during what years did the merger take electricity from its river ?

â: the term parinirvana is also encountered in buddhism , and this generally refers to the complete nirvana

attained by the arahant at the moment of death , when the physical body expires .

qg: what term is used for the complete nirvana attained by the arahant at death ?

qtd: what term is also encountered in buddhism ?

what does parinirvana refer to ?

what does parinirvana mean ?

qkb: what is another term for the heian ?

what is the term for the term of pain ?

what is the term for the term ?

qkdb: what is another term for the term “ pregnancy ” ?

who is the term of a term ?

the term of what is used to be found in hinduism ?
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In Table 5.9, we show some sample questions generated by T5 with the diverse beam

search (T5-divbeam) and KPCNet. The results of our method on the same testing examples

are provided in Table 5.4.

5.5 Sensitivity Analysis

To see how the soft-matching threshold α affects the results, we experiment with different α

values ranging from 70 to 95 and use the resulting datasets to fine-tune T5. In this experiment,

we use the best configurations of the T5 model on the Car Manuals and SQuAD datasets.

Six α values of 70, 75, 80, 85, 90, and 95 are selected for this purpose.

Figure 5.1: BLEU-4, ROUGE-L and METEOR F-scores of T5 on SQuAD (SQ) and Car Manuals

(CM) using different alphas values.

Figure 5.1 shows how the F-score of BLEU-4, ROUGE-L and METEOR changes with α
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on SQuAD (SQ) and Car Manuals (CM). As can be seen, on SQuAD all the lines are quite

flat, indicating α values do not have much impact on the performance. This is likely due to

the best-matching n-gram in a ground-truth question either matches with the word/phrase

replaced by an SRL in the answer very well or very poorly, leading to insensitivity to the

threshold value between 70 and 95. Similar results are observed on the Car Manuals dataset

although the scores are increasing with the α on this dataset, but slowly.

5.6 Performance with Different Data Sizes

Among the 3 datasets, Car Manuals is the smallest (with 9,184 training examples), and the

improvements of our method on this dataset over the baselines are the largest. To further

investigate whether our method makes better improvement when the data set is small, we

conducted an experiment with one-quarter of the SQuAD dataset.

Figure 5.2 illustrates the relative improvement of our method over the T5 baseline in

F-measure, precision and recall. The relative improvement is computed as: scoreour−scoret5
scoret5

.

The blue bars in the figure represent the improvement on the one-quarter subset of SQuAD

and the yellow ones represent that on the whole SQuAD dataset. Clearly, the improvements

of our method over the T5 baseline are larger on the smaller dataset than on the whole

SQuAD dataset. This indicates that our SRL-based Seq2Seq method can better handle

smaller datasets than its Seq2Seq baselines due to the increase in training examples when we

label the QAs with SRLs.
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(a) F-measure

(b) Precision (c) Recall

Figure 5.2: Comparison of relative change (percent) between the first quarter of SQuAD and whole

SQuAD dataset using T5+C versus T5 with alpha=85%.
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5.7 Evaluation of Paragraph-level Seq2Seq+SRL method

To discover whether the use of SRL with Seq2Seq models on datasets including long and

complicated answers still leads to improvements over Seq2Seq models trained with original

datasets, we performed experiments with the same setting described in section 5.3.

The automatic and human results reported in the following subsections are part of my

4-months internship at iNAGO Corporation.

5.7.1 Datasets

We evaluate our method on 2 datasets. The first one contains QAs created by human

annotators from car manuals (of Ford, GM, Toyota, BMW, UC, and Tesla) and motorcycle

manuals (of KTM) denoted as Improved Manuals v1.4.1 provided by our industry partner.

The second dataset is SQuAD (Rajpurkar et al., 2016), containing QAs created by Amazon

Mechanical Turk crowd-workers from Wikipedia articles. We use the processed paragraph-level

SQuAD dataset (Du et al., 2017), where the answer in a QA pair is a paragraph.

Table 5.10: Statistics of Two Paragraph-level Datasets

Dataset training set test set development set

Improved Manuals v1.4.1 21,064 QAs 1,367 QAs 4,067 QAs

SQuAD 70,484 QAs 11,877 QAs 10,570 QAs

Table 5.10 gives the statistics of aforementioned datasets. In these two datasets, multiple

QA pairs may have the same answer paragraph but different questions.
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5.7.2 Automatic Evaluation

Table 5.11 shows the automatic evaluation results on Improved Manuals v1.4.1 with BART

and T5 as the baseline. Soft+C is our method with Soft-Question2SRL after sentence

segmentation plus using the original paragraph as the context with 80% as the soft-matching

threshold (α). Q&A Generator is iNAGO’s previous generator fine-tuned on Improved

Manuals v1.4.1 with T5-base model. Note that we use the smallest available model size of

T5 which is T5-small.

Table 5.11: Automatic evaluation results on Improved Manuals v1.4.1 with BART and T5 as

Baselines (P, R and F mean Precision, Recall and F-score in %). Soft+C is our method plus using

the original paragraph as the context with BART or T5 as the Seq2Seq model.

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART 40.3 49.4 34.1 57.1 64.7 51.2 35.8 39.2 33.0

Soft+C 53.5 53.9 53.0 71.4 72.9 70.1 41.4 41.6 41.2

T5 40.8 48.5 35.2 56.9 64.6 50.9 35.5 40.2 31.8

Soft+C 51.5 53.7 49.4 69.7 71.6 68.0 40.3 41.4 39.3

Q&A Generator 39.2 48.3 33.1 56.3 63.7 50.5 35.2 38.7 32.3

As shown in Table 5.11, using SRL representations to train a paragraph-level QG model

with either BART or T5 considerably improves the baseline performance on Improved Manuals

v1.4.1. Our method significantly increases the precision, recall and F-scores in all types of

measures (BLEU, ROUGE and METEOR). The percentage increase in precision, recall and

F-measure achieved by this method over the baseline ranges 3%-13%, 24%-55% and 14%-33%,

respectively.

Both baselines (BART and T5) outperform Q&A Generator gently in all metrics even
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though it is a larger model based on T5-base with 223 million parameters. To bear in

mind BART-base and T5-small have 139 and 60 million parameters respectively. It shows

random search (Bergstra and Bengio, 2012) over the same domain is able to find better

hyperparameters leading to better results even with smaller models.

Table 5.12: Automatic evaluation results on SQuAD with BART and T5 as Baselines (P, R and

F mean Precision, Recall and F-score in %). Soft+C is our method plus using the original paragraph

as the context with BART or T5 as the Seq2Seq model.

BLEU-4 ROUGE-L METEOR

QG Method F P R F P R F P R

BART 11.5 28.6 7.2 39.9 53.6 31.8 18.2 25.8 14.1

Soft+C 20.6 27.0 16.7 48.4 51.6 45.7 23.3 24.4 22.3

T5 11.0 24.3 7.1 37.3 51.0 29.4 16.5 26.1 12.1

Soft+C 19.5 24.0 16.3 46.2 50.0 42.9 22.1 25.2 19.8

The automatic evaluation results on the SQuAD dataset with BART and T5 as the

baseline are given in Table 5.12. We observe that our method significantly outperforms the

baseline on recall and F-score on this dataset. However, our method has lower precision

compared to the baseline owing to the fact that the ground truth questions in SQuAD are

incomplete. As explained in Section 5.3.1, many of the questions generated by our method

are good, but they do not match the ground truth questions in the dataset (Sultan et al.,

2020).
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Table 5.13: Three Examples showing the input paragraph â, its ground-truth question qg, the

question generated by BART (qb), and the questions q̂i generated by our Soft+C method with BART

and alpha=80% on the SQuAD dataset.

â: over time , electric lighting became ubiquitous in developed countries . segmented sleep patterns

disappeared , improved nighttime lighting made more activities possible at night , and more street

lights reduced urban crime .

qg: street lights help reduce ?

qb: what replaced segmented sleep patterns ?

q̂1: what became ubiquitous in developed countries ?

q̂2: how did more street lights reduced urban crime ?

q̂3: when did electric lighting become ubiquitous in developed countries ?

â: schwarzenegger has been a registered republican for many years . as an actor , his political views

were always well known as they contrasted with those of many other prominent hollywood stars , who

are generally considered to be a liberal and democratic-leaning community . at the 2004 republican

national convention , schwarzenegger gave a speech and explained why he was a republican .

qg: in what year did schwarzenegger speak at the republican national convention ?

qb: what political party does schwarzenegger belong to ?

q̂1: how long has schwarzenegger been a republican ?

q̂2: what political party did schwarzenegger belong to ?

q̂3: when did schwarzenegger speak at the republican national convention ?

â: schwarzenegger is considered among the most important figures in the history of bodybuilding , and

his legacy is commemorated in the arnold classic annual bodybuilding competition . schwarzenegger

has remained a prominent face in the bodybuilding sport long after his retirement , in part because

of his ownership of gyms and fitness magazines . he has presided over numerous contests and awards

shows .

qg: what bodybuilding competition is named after schwarzenegger ?

qb: who is considered among the most important figures in the history of bodybuilding ?

q̂1: when did schwarzenegger retire ?

q̂2: what is schwarzenegger’s legacy commemorated in ?

q̂3: what is the arnold classic annual bodybuilding competition ?

q̂4: how many contests and awards shows has schwarzenegger presided over ?

q̂5: who is considered among the most important figures in the history of bodybuilding ?
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Table 5.13 provides the generated questions for 3 testing examples from our method

(Soft+C) with BART and BART without SRL. As shown, our method generates more

questions covering different aspects of an input paragraph, while BART without SRL generates

only one question. In all the 3 examples, there is only one ground-truth question. When

precision is computed, the extra questions we generated have a low precision due to poor

match with the ground truth even though they are good questions. It was for that reason

that our methods have lower precision scores than the baselines.

5.7.3 Human Evaluation

The Content Team at iNAGO feed 95 randomly selected input paragraphs from different

chapters of car and motorcycle manuals (which means they are not included in Improved

Manuals v1.4.1 but have the same distribution) to Q&A Generator and Soft+C (with BART).

Two English speaker linguists rated the quality of generated questions from each method

in terms of recall, conciseness, structure, meaning and Q&A relatedness using the following

criteria.

For Recall, the ratings are:

• 1: The generated questions cover no fact or a small portion of the facts in the answer;

• 2: The generated questions cover around 50% of the facts in the answer;

• 3: The generated questions cover most of or all the facts in the answer.

For Conciseness, the ratings are:

• 1: The generated questions are vague and miss some information in the answer;

• 2: The generated questions are not concise but otherwise convey all information in the

answer;
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• 3: The generated questions are clear and simple, and convey all information in the

answer.

For Structure, the ratings are:

• 1: The generated questions have several major or minor grammatical errors (e.g.,

missing words, gibberish characters, bad sentence structure) that severely affect the

intent;

• 2: The generated questions have a few minor grammatical syntax errors (e.g., spelling,

switched words, incorrect punctuation) that could easily be fixed and do not otherwise

affect the intent;

• 3: The generated questions have no grammatical errors.

For Meaning, the ratings are:

• 1: The generated questions have a mismatch (e.g., can I close the engine?) between the

words being used;

• 2: The generated questions have words not used in a completely correct way but are

understandable;

• 3: The generated questions use the right word and completely make sense.

For Q&A Relatedness, the ratings are:

• 1: The generated questions contain relevant keywords/concepts (e.g., features, states,

parts) but are unrelated context to the answer;

• 2: The generated questions contain relevant keywords/concepts in a similar context to

the answer;

• 3: The generated questions are related to the answer.
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Table 5.14: Human evaluation results on 95 input paragraphs with the same distribution as in

Improved Manuals v1.4.1. Precision is the average of Conciseness, Structure, Meaning, and

Relatedness scores. F-measure is the harmonic mean of precision and recall scores.

QG System F-measure Precision Recall Conciseness Structure Meaning Relatedness

Score (1-3) Score (1-3) Score (1-3) Score (1-3) Score (1-3) Score (1-3) Score (1-3)

Q&A Generator 2.08 2.44 1.92 2.53 2.66 2.53 2.04

Soft+C (with BART) 2.36 2.57 2.28 2.72 2.63 2.56 2.39

Table 5.14 shows the averages of all the scores among two linguists on a scale of 1-3,

and the average score of the generated questions having each criteria for each method. The

precision score is the average among conciseness, structure, meaning and Q&A relatedness.

F-measure is the harmonic mean of precision and recall scores. The results show that our

method (BART+Soft+C) is significantly better in precision, recall and F-scores than the

Q&A Generator. It is worth noting that the Q&A Generator generates two questions for

each input paragraph using beam search with a beam size of 4.
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Chapter 6

Conclusions

6.1 Summary of the thesis

We proposed a novel QG method that learns a Seq2Seq model to convert an SRL representation

of an input sentence into an SRL representation of a question, which is then converted to a

natural language question. Similar to rule-based methods, our SRL-based Seq2Seq methods

can generate multiple questions from an input sentence, significantly improving the recall and

overall performance of Seq2Seq QG. It is also much better than rule-based methods because

better and more complicated "rules" can be learned via the Seq2Seq model. Our evaluation

on three real-world datasets shows that the proposed method significantly outperforms both

rule-based, original Seq2Seq methods and several other SOTA models, especially in recall

and overall performance.

In an effort to extend our SRL-based method to paragraph-level QG, we apply our

proposed sentence-level QG method after sentence segmentation of an input paragraph. In

this way, a Seq2Seq model is fine-tuned to map an SRL representation of an input sentence

along with its original paragraph into an SRL representation of a question, which is later
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transformed into a natural language question. As a result of both automatic and human

evaluations, we observe significant improvements compared to the original Seq2Seq methods

on two real-world datasets.

Both our sentence-level and paragraph-level methods offer better generalization (trained

with more generalized SRL labeled data) than Seq2Seq method which requires a large data

set to generalize well. Thus, the proposed method provides an effective way to deal with

limited training data.

6.2 Limitations and Future Work

A limitation of our method is that its performance depends on the SRL performance. If

the input sentences are not well-formed (e.g., not grammatically correct, as occurs often in

short social media messages, such as tweets), semantic role labeling may not produce correct

labels. Also, we found that some of the questions generated by our method for the same input

sentence may be similar or same in meaning with some minor differences in the use of words.

This may not be a problem if the application allows similar questions to be generated (e.g., for

reading comprehension). But in the application where duplicated questions are not allowed

or not desired, a post-processing step to remove questions with the same meaning is needed.

In addition, a grammatical correction module can be added as an extra post-processing step

in order to improve the quality of generated questions with minor grammar issues. Lastly,

sensitivity analysis, as discussed in Section 5.5, showed that the result does not depend on

the alpha value greatly. But in practice, it is better to select the best alpha value using the

development set, which we leave for future work.
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