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Abstract

The next generation of wireless networks is anticipated to be more complex and

heterogeneous due to higher transmission frequencies, massive antenna deployments,

ultra-dense access points, etc. Subsequently, optimized network planning and radio

resource management (RRM) solutions are critical for systematic resource utilization,

attaining data rate or quality-of-service (QoS) requirements, and minimizing network

capital and operational expenditures. Deep learning-enabled RRM is emerging as a

potential solution to reduce the time complexity of conventional optimization-based

solutions to constrained RRM problems. Since the unsupervised learning solutions do

not require high-quality training labels, this thesis will focus on developing a compre-

hensive deep unsupervised learning framework for QoS-constrained RRM problems

(e.g., user assignment, power control, and beamforming).

In the first part of this thesis, I developed a framework to solve the classical power

control problem with the QoS constraints using deep unsupervised learning with the

objective of maximizing the network sum-rate. Utilizing a differentiable projection

function, the proposed neural network outputs solutions that are always feasible.

Two approaches are pursued to define the projection function implicitly and explicitly

using mathematical optimization and an iterative process, respectively. The proposed

methods outperform the solutions of conventional neural network-based benchmarks,
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such as PCNet, in terms of the data rate and constraint violation probability.

In the second part of the thesis, the problem of joint power allocation and user

association to maximize the instantaneous sum-rate is addressed with users’ QoS and

base station quota constraints. User association problem is first transformed into

an equivalent linear program. The QoS constraint is handled by using a technique

called masking, which prevents the neural network to output an infeasible solution.

Similar to power control, two projection functions are designed using mathemati-

cal optimization and an iterative process to systematically handle the base station

quota constraint. A joint neural network-based solver is designed by cascading the

user association and power control neural networks. Experimental results showed

the superior performance of the proposed methods compared to conventional neural

network-based solvers and optimization-based benchmarks.

The source code for this thesis document is available at:

https://github.com/Mehrazin/thesis
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Chapter 1

Introduction

Optimized network planning and radio resource management (RRM) solutions have

remained an integral part of wireless network design since their evolution. The ef-

ficiency of RRM solutions is crucial for systematic resource utilization, attaining

quality-of-service (QoS) requirements, and minimizing network capital and opera-

tional expenditures. Nevertheless, the upcoming generation of wireless networks is

anticipated to be more complex than ever due to extremely high-frequency (EHF)

communication, massive antenna deployments, ultra-dense access points, etc. [3]. On

the one hand, the increasing heterogeneity of wireless networks produces higher de-

grees of freedom (e.g., different types of spectrum, massive antennas, beamforming

and power allocation, computational offloading decisions, etc.) which significantly

increases the size of RRM problems. On the other hand, the short channel coher-

ence time (the time during which the transmission channel stays the same) of EHF

links call for speedy and efficient RRM solutions. Thus, the immediate redesign of

conventional RRM solutions is warranted.

In what follows, the fundamental RRM problems in wireless communications are

explained in detail.
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1.1 Resource Management in Wireless Networks

Resource management can be described as a process in which the amount of re-

sources allocated to each wireless user will be determined [4]. There are various

types of network resources (e.g., spectrum, power, antennas, etc.) to support a large

number of users while satisfying their QoS requirements. Efficient and optimal re-

source management can play a huge role in the quality of communications. To date,

the most commonly used technique for formalizing RRM problems is mathemati-

cal optimization [4] where a predefined objective function is generally maximized or

minimized over the feasible space of the resource variables characterized by various

constraints [5]. Common objectives include minimizing the energy consumption [6],

maximizing the aggregate network data rate [6], etc.

Figure 1.1: An illustration of four fundamental radio resource management
problems in wireless networks.

In most wireless communication models, communication happens in a coherence

time-slot during which the channel conditions remain steady. The coherence interval
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varies based on the users’ mobility and environment characteristics [3, 4]. In each

time-slot, channel estimation happens at first and resource allocation is conducted

afterward by solving a predefined RRM problem given the estimated channel state

information (CSI). Once the resources are allocated, data transmission starts to take

place [4]. The objective and constraints in RRM problems can be classified as in-

stantaneous and statistical [7]. Instantaneous constraints refer to the conditions that

need to be satisfied in the current time slot, like the power budget constraints or

instantaneous rate requirements, while statistical constraints capture the conditions

that have to be met over time, e.g., fairness of connectivity in user scheduling, where

each user has to receive a fair amount of spectrum resources on average [7].

In the following, the four fundamental RRM problems are described.

1.1.1 User Assignment

In every wireless communication scenario, there are transmitters and receivers. Before

any communication happens, it should be determined which transmitter is going to be

connected to which receiver. This task is called user assignment and needs to happen

less frequently than other resource allocations. It basically happens when the relative

position of the transmitter and its receiver changes over time due to mobility, or if

the channel quality is no longer appropriate given the users’ data rate requirements.

For example, in the cellular network, there are users and base stations (BSs), and

the task of user assignment is to determine the set of users assigned to each BS

for communication purposes. Fig. 1.1 (top-left) shows a graphical example of user

assignment where user U1 is going to be assigned to one of the available base stations in

his vicinity. Once the assignment happened, in each time slot, each BS only considers
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its preassigned users for resource allocation and in turn data communications.

1.1.2 Power Assignment

Transmit power is one of the most important aspects of the transmitted signal. Trans-

mit power is the amount of power (in Watts) that a transmitter allocates to the com-

munication link [4]. In a wireless medium, signal propagates in many directions and

as the distance from the transmitter increases the received signal power decreases, due

to free space path-loss, obstacles, etc. Thus, the higher the transmit power the further

a signal can propagate into the space [4]. A rule of thumb is that the more transmit

power is allocated to a wireless link, the more powerful and reliable it becomes [4].

However, each wireless transmitter has a maximum power budget constraint which is

determined by its configuration and how it was manufactured [8].

In addition, in the shared wireless setup, where the medium is shared, the high

transmit powers result in interference. This is because of the limitation of resources in

code, time, and frequency, which makes a group of transceivers use the same wireless

resource to communicate over. As a result, every receiver will experience interference

from the other transmitters, which is going to be worse if they decide to transmit

with the highest power without any consideration [4,8]. Fig. 1.1 (bottom-left) shows

an example of data transmission, where user U2 gets the desired signal from BS4 and

interfering signals from BS5 and BS6. Lastly, every receiver has its own expectation

from the communication service in terms of the transmission rate and since there is a

direct connection between the assigned transmit powers in a communication session

and the achievable rate [4, 8], the transmission power should be allocated efficiently

for QoS provisioning.
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1.1.3 Bandwidth (or Sub-Channel) Allocation

Frequency spectrum or bandwidth is one of the fundamental resources in wireless

communications. The bandwidth of a transmission signal is the difference between

the highest and lowest frequency component of that signal. The amount of allocated

bandwidth to a user will put a fundamental limit on the potential data rate it can

realize. Moreover, the amount of available bandwidth in each BS is limited, which

makes it hard to satisfy all associated users’ demands without considering optimized

bandwidth allocation. Another important aspect of bandwidth is its relation to in-

terference. If two transmitted signals occupy a disjoint range of frequencies, they will

not interfere with each other and will be perfectly distinguishable at the receiver side.

On the contrary, if they share a range of frequencies they will interfere if the same

time slot and code are used [4]. Thus, the problem of bandwidth management plays

an important role in the users’ communication experience.

Fig. 1.1 (bottom-right) shows an example of bandwidth allocation to users of

BS7, where disjoint blocks of frequencies are distributed among the users. It should

be noted that since in the wireless communication environment, the same spectrum

is reused among multiple BSs, thus, in each transmission time slot, the transmitter

has to optimize bandwidth allocation to minimize interference [4].

1.1.4 Beamforming

The usage of multiple antennas on both the transmitter and receiver sides has become

attractive, as it increases the wireless medium’s capacity without additional transmit

power or bandwidth consumption [4]. The use of massive antennas is also identified

as a central physical layer technology for 5G and beyond. Based on the situation of
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the communication channel, the radiation beams from the antenna have to point to

certain directions, so that at the receiver side, the signal quality remains detectable.

The process of assigning the antennas’ directions is called beamforming. Beamforming

is done by determining beamforming vectors which are multiplied in transmitted or

received signals. These vectors will change the direction of the antenna lobes without

rotating the antenna mechanically [4]. Fig. 1.1 (top-right) shows an example of

beamforming from a base station with multiple antennas to single antenna users,

where the intensity of the color of each beam is relative to the amount of allocated

power to that beam.

1.2 Radio Resource Management (RRM) Challenges

As mentioned before, a formal way of looking at RRM problems is through mathemat-

ical optimization where every RRM problem can be formulated to find the optimal

allocation of the resources, while maximizing a predefined objective given the com-

plete or partial CSI [4]. Thus, an obvious way of solving such problems is to develop

algorithms using mathematical optimization principles. Although this approach has

worked well so far, it’s high computational and time complexity is a bottleneck for

the future generation of wireless systems [3]. The specific reasons are listed in the

following.

1.2.1 Increased Dimensionality

Due to the dense deployment of terrestrial and aerial BSs, massive devices, and mas-

sive antenna deployments, the number of variables over which the optimization has
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to occur in future networks will increase drastically [3]. This will increase the com-

putational complexity of the existing optimization-based algorithms that are already

computationally demanding. Since most of the RRM problems are non-convex and

NP-hard in their nature [8], it is typically hard to find globally optimal solutions

while escaping the local optimums in a reasonable amount of time.

1.2.2 Need of Extremely Fast RRM Solutions

The coherence time of wireless channels is going to become shorter in 6G. This is

mainly because of the use of extremely high-frequency spectrum, (i.e. millimeter

wave, THz, and visible light), where the frequencies are vulnerable to static and

dynamic blockages, scattering, molecular absorption, diffraction, etc. [9]. Moreover,

for some applications such as vehicular networks [5], due to the high mobility of

the users, the communication channel is going to change faster; thus resulting in

a shorter coherence time. Also, some particular applications like ultra-reliable low-

latency communication (URLLC) necessitate extremely fast decision-making. The

shorter coherence time makes the duration of the time-slots shorter, which requires

faster resource allocation.

1.2.3 Lack of Robustness

Another systematic deficiency of the conventional RRM algorithms is their inability

to utilize history to reduce computational complexity. In other words, if a given RRM

problem was solved in the past for a given CSI and the current CSI is very similar to

the previous one, there is no means to use the previous solution again. An alternative

approach is to extract patterns from the historical data and use them in computing
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the current solution. Moreover, most of these algorithms work very well under the

assumption of perfect CSI, which is not always the case. Therefore, a new method

that is more robust to CSI imperfection needs to be designed [9].

1.2.4 Joint Optimization of Multiple Resources

Another difficulty of wireless RRM problems is that certain resource allocation de-

cisions are not independent and affect each other’s optimality. For instance, power

control and user-BS assignment are perfect examples of this dependency. Solving

the two problems separately will only lead to sub-optimal solutions [8]. A popular

approach in dealing with this problem is to use alternating optimization, where an

iterative algorithm is designed in which all variables are optimized separately in each

iteration [8, 10]. During each step, a single variable is optimized given the values of

the other variables. After a number of iterations, the algorithm generally converges

and outputs a stationary point, which in most cases is not guaranteed to be globally

optimal [8,10]. Note that solving the problem via optimization in a truly joint manner

is typically exhaustive, thus not computationally feasible [8, 10].

1.3 Deep Learning for RRM in Wireless Networks

Traditionally, mathematical optimization is used to formulate and solve problems

in machine learning. Recently, ’Learning to Optimize (L2O)’ approach seeks to use

machine learning, in particular deep learning (DL), to solve optimization problems.

Recently, DL is emerging as a promising solution to design RRM solutions [11,12].

The convention in the wireless community is to formulate an RRM problem using vari-

able optimization, where for every data instance an optimization variable needs to be
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determined by solving an optimization problem. [13] proposed an equivalent formu-

lation where instead of finding the variables, the function that accurately describes

the mapping from the problem data to decision variables is determined. Thus, in-

stead of searching on the variable domain, one can search for every possible mapping

that exhibits the properties of the underlying implicit map. This approach is called

functional optimization.

Subsequently, artificial neural networks (ANN) based model is typically applied to

approximate the mapping between the environment and optimal resource allocations

via the training process. Once trained, the time complexity to get the results from

the ANN is much lower than the traditional optimization-based approaches. This is

because the main computation of the current neural networks involves matrix multi-

plication and point-wise non-linearity like tanh and Rectified Linear Units (ReLU) [5],

which enjoy efficient hardware implementations; thus resulting in lower online com-

putational complexity. In summary, DL offloads the computational complexity from

online to offline by training an ANN model offline and using it online to optimize

resources [5].

1.4 Scope of the Thesis

While DL can minimize the time complexity of the RRM algorithms, the structure

of the neural network hinders incorporating complex constraints. It is noteworthy

that most of the RRM problems come with various types of constraints, e.g., power

budget, QoS, etc, and efficient systematic incorporation of them in the architecture

of neural networks is a fundamental challenge. In this context, the current state-of-

the-art classifies constraints into two groups and applies different solution approaches
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for them, i.e.,

• The first group is the one that can be expressed analytically, e.g. ReLU and

Sigmoid functions impose non-negativity and membership in the interval rang-

ing between 0 and 1, respectively. Such constraints can be incorporated at the

final layer of the ANN in a straightforward manner. An example of this is the

power budget constraint [12]. Despite the guaranteed feasibility of the output,

this approach cannot be applied to complex constraints.

• The second group of constraints, which do not provide a closed-form function-

ality description, e.g. minimum-rate (or QoS) constraint, are incorporated in

the loss function in one of the following two ways. Either they are treated as

a penalty term [12] or customize the loss function as the Lagrangian of the

original problem, where the learnable dual variables penalize the violation of

constraints [7,13]. Although this approach produces reasonable results in terms

of loss minimization, it has its own downsides. First, resorting to the dual do-

main introduces the duality gap, meaning that even a globally optimal solution

to the dual problem might not be a global solution for the primal problem.

This introduces a systematic sub-optimality, especially when the RRM problem

is non-convex which is typical in practice [8]. Second, it does not provide a

guaranteed way of incorporating constraints and making sure that the results

are always feasible.

Also, in practice, RRM problems are a function of multiple inter-related resource

variables, i.e., there is more than one variable to optimize in RRM problems, e.g.

power control and user scheduling, beamforming design, spectrum assignment, etc.,
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which are best to be optimized jointly as they are not purely independent. This is

different from the traditional DL applications.

Due to the infancy of this line of research, most of the existing research works

consider simplified constraints belonging to the former group and single variable op-

timization problems. Thus, several questions need to be addressed before DL-based

methods can completely replace traditional optimization-based RRM algorithms, such

as (i) How to systematically incorporate convex/non-convex RRM constraints into

neural network architecture?, (ii) How to ensure a zero constraint violation proba-

bility?, (iii) What architectures are suitable for joint-optimization problems? In this

thesis, I aim to address the aforementioned questions.

1.5 Contributions

To this end, the main contributions of this thesis are as follows:

• I propose two novel DL-based solvers for the classical power control and user

association problems in a multi-user interference channel with QoS constraints.

The first is called Deep Implicit Projection Network (DIPNet), and the second is

called Deep Explicit Projection Network (DEPNet). The former utilizes convex

optimization to project the neural network’s output to the feasible set defined

by the QoS constraints and the latter uses an iterative process to achieve the

same.

• The proposed models were trained in an unsupervised manner and compared

with FCNNs like PCNet [12] as DNN-based benchmarks, and Geometric Pro-

gram (GP) [14] as the optimization-based benchmark. The network sum-rate,
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constraint violation probability, and online test time are used as the performance

evaluation metrics.

• Numerical results demonstrate that the proposed DIPNet and DEPNet achieve

zero constraint violation probability while outperforming PCNet in terms of

network sum-rate at the expense of slightly increased computational complexity.

• The user association networks are trained in an unsupervised manner and com-

pared with both DNN-based and optimization-based benchmarks. For the for-

mer, an FCNN with a softmax layer is used as in [15], and for the latter, a

mixed-integer programming solver from MOSEK package [16] is utilized. The

sum-rate, constraint violation probability, and online testing time are used as

the evaluation metrics.

• The user association DNNs are combined with the power control DNNs (chapter

3) to provide an alternating optimization-based solution for the joint power

control and user association problem, called JUPNet. For the comparison, the

mixed-integer solver from MOSEK package and Geometric Program (GP) is

used to solve user association and power control sub-problems, respectively, in

an alternating manner. The resulting optimization-based solver is used as the

benchmark.

1.6 Research Outcome

• M. Alizadeh and H. Tabassum, “Power Control with QoS Guarantees: A Dif-

ferentiable Projection-based Unsupervised Learning Framework,” (submitted)
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Chapter 2

Mathematical Preliminaries and Literature Review

In this section, a brief description of the relevant mathematical preliminaries is pro-

vided to lay the foundation for the subsequent sections. This is followed by a literature

review of the current state of the DL-enabled RRM techniques as well as the open

questions that are still unanswered.

2.1 Mathematical Preliminaries

Given the vivid success of deep neural networks (DNN) in finding high-quality near-

optimal solutions for complex tasks like image recognition, machine translation, etc.

[17] [18], many scholars have become interested in solving non-convex NP-hard opti-

mization problems using DNNs. The optimization problems are formulated typically

as follows:

y = argmax
y

f(y,x)

subject to g(y,x) ≤ 0

h(y,x) = 0

(2.1)
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where y ∈ Rn is the vector of optimization variables, x ∈ X ⊆ Rd is the problem data,

f : Rn×Rd −→ R is the objective function, g : Rn×Rd −→ Rq, and h : Rn×Rd −→ Rp

represent the q inequality and p equality constraints of the problem, respectively. As

the problem data varies frequently, (2.1) needs to be solved at every data point to

acquire the optimal value of y.

Figure 2.1: An illustrative example of the unconstrained version of problem (2.1) [1]

Although effective, this approach yields high computational complexity [2, 3]. As

mentioned in [13], I refer to such optimization problems as ’variable optimization’

problems. Another way to look at problem (2.1) as a mapping from the domain of

x to the domain of y, where for each x, I find the corresponding y by solving (2.1).

Fig. 2.1 shows an illustrative example of this outlook, where y∗(x) is the underlying

function between x and y, and the maximum of f(y,x) lies on y∗(x). Inspired by

this, researchers attempt to learn the implicit mapping from the problem data x to

the solutions y. This can be done by transforming (2.1) to its equivalent functional

optimization form, whose goal is to find an efficient function to map problem data to

the solutions given a class of functions.
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The functional optimization form of (2.1) can thus be given as [7]:

maximize
F (x)

Ex∼p(x)[f(F (x),x)]

subject to g(F (x),x) ≤ 0, ∀x ∈ X

h(F (x),x) = 0, ∀x ∈ X

(2.2)

where F is a function that maps the problem data to the solution space, i.e., y = F (x).

p(x) is a probability distribution over the possible values of x. As shown in [13], (2.1)

and (2.2) are equivalent, in a way that if F̂ (x) is a solution to (2.2), then for every

x ∈ X , y = F̂ (x) is a solution to (2.1).

Since DNNs are shown to be a very rich family of parametric functions, in the

sense that even an FCNN with one hidden layer has universal function approximators

property [19], I consider them for approximating F , i.e. F (x) = Ny(x;wy) where Ny

is a DNN, whose output is y, and wy is its parameters. Using the statistical learning

theory, the problem of finding wy via learning can thus be formulated as:

minimize
wy

Ex∼p(x)[l(Ny(x;wy),x)]

subject to wy ∈ Rd

(2.3)

where d is the dimension of wy, and l is the loss function and measures how good the

output of the neural network is for a given data point x. Now, the goal is to design

the loss function and DNN architecture so that the solution of (2.3) will be a solution

for (2.2) without violating any constraints of (2.2).

Remark: Regardless of the DNN’s architecture choice, the training can be done

in a supervised or unsupervised fashion. In the supervised training, the choice of loss
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Figure 2.2: An illustration of supervised (left) and unsupervised (right) learning for
solving the unconstrained version of (2.3) [1]

function becomes trivial. For instance, l2-norm of the difference between the solution

of (2.1) and the output of the DNNs is the widely-adopted loss function [2, 11]. Fig

2.2 (left figure) illustrates the dynamics of the supervised method, where the straight

red line indicates the values of the underlying function (F̂ (x)), i.e., the labels, and

the blue line shows the output of the DNN (Ny(x;wy)), i.e., the predictions. The

straight black lines are the difference between the labels and the predictions that are

quantified by the loss function and will be minimized during the training. Despite its

effectiveness, the main drawback of the supervised method is its dependence on the

availability of the optimal solutions of (2.1), which in most cases are hard to obtain

due to the potential non-convexity of (2.1) [2, 12].

An alternative is unsupervised training which relaxes the need for labels. Fig 2.2

(right figure) illustrates this approach, where the DNN is provided with some guidance

(black arrows) about the underlying function (F̂ (x)). This guidance signal is given

to the DNN via the loss function and informs the neural network about the quality

of the predictions. The widely-used candidate for the unsupervised loss function is
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as follows:

l(y,x) = −f(y,x) (2.4)

where y = Ny(x;wy) is the output of the DNN, and l(y,x) is the loss function. By

minimizing this loss during the training, the output of the DNN gets closer to the

points that maximize the objective function of (2.2). In other words, in this method,

the DNN learns to adjust its output so that it resembles the characteristics of the

underlying function (F̂ (x)). This choice is also motivated by the numerical results of

the previous works [2, 12,13].

Remark: It might be better to refer to the unsupervised method as self-supervised.

The reason is that there is a supervision signal that comes from the problem data

itself. However, since the literature of wireless communication uses the ’Unsuper-

vised’ to refer to this method, in this work, I used the term unsupervised to avoid

inconsistency with the current literature.

Figure 2.3: Combination of a deep neural network and a differentiable projection
function.

Regardless of the aforementioned supervised or unsupervised training methods,
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the feasibility of y cannot be guaranteed in the test time. A remedy for this is to

design a transformation that takes the output of the DNN and makes it closer to the

feasible set of (2.1). I refer to this transformation as Projection, denoted by Proj.

In this way, y becomes the output of the projection function and the output of the

DNN is denoted by z, i.e. y = Proj(z), z = Nz(x;wz) (Fig. 2.3). Although there are

different definitions for a projection function, I use the following definition throughout

this work:

Definition 1: A function Proj : Rm −→ Rn is called a projection function w.r.t

(2.1) if the following holds:

• The Jacobian of Proj can be evaluated, i.e., ∂y
∂z
. This is to make the end-to-end

training of the DNN possible using gradient-based methods [17].

• y meets the constraints of (2.1), i.e., h(y,x) = 0, g(y,x) ≤ 0.

The projection function can be defined implicitly or explicitly. I consider mathe-

matical optimization as a language to describe the projection function implicitly. On

the other hand, to define the explicit projection, I provide an overview of the analytic

and iterative approaches.

2.1.1 Implicit Projection via Mathematical Optimization

In the following, I implicitly define a projection function w.r.t. (2.1), i.e.,

y = argmax
y

k(y, z;θ)

subject to g(y,x) ≤ 0

h(y,x) = 0

(2.5)
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where k : Rn × Rm −→ R is a parametric objective function, θ ∈ Rt represents the

parameters of k, and g, h are the constraints of (2.1). Note that (2.5) describes a

parametric mapping from z to y, where θ denotes the parameters of this functionality.

The functionality described in (2.5) is a Projection function, as defined in Definition

1. This is because, given the implicit function theorem [20–22], the Jacobian of

the output w.r.t. the input, i.e., ∂y
∂z
, and the parameters, i.e., ∂y

∂θ
can be computed,

regardless of how the solution is derived. Moreover, since the constraints of (2.5) and

(2.1) are the same, they have the same feasible set, meaning that the solution of (2.5)

lies in the feasible set and satisfies the constraints of (2.1).

Figure 2.4: An illustration of using mathematical optimization to define a
projection function implicitly

The structure of (2.5) enables us to achieve the feasible output of the DNN by

designing k. To put it differently, k can be thought of as a score function, which gives
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different scores to the points in the feasible set, and the point with the highest score

will be chosen eventually. Fig. 2.4 portrays a graphical example of this method where

the underlying gray contour and blue polytope show the behavior of the objective and

constraints of the main problem (2.1) and the brown contour shows the behavior of

the objective function of (2.5). Following are the two examples of such projection

functions, i.e.,

k = −||y− z||22, k = yTz (2.6)

This approach requires an algorithm that can solve (2.5) in a computationally efficient

way. For example, if (2.5) is a non-convex problem, there is no general algorithm

that can provide polynomial time complexity. To make (2.5) convex, k should be

convex, like (2.6). Moreover, the constraints of (2.1) should be convex as well. In this

way, the projection function (2.5) becomes an instance of the differentiable convex

optimization layer introduced in [21]. The implementation details of this function and

its integration with automatic-differentiation frameworks like PyTorch are available

in [21,23].

2.1.2 Explicit Projection via an Analytic Expression

There is no doubt about the computational benefits of expressing a projection func-

tion with analytical and closed-form expressions. Once the closed-form expression of

functionality is available, it can be implemented and evaluated easily. Fig 2.5 shows

an example of having access to a closed-form projection function that can take the

output of the DNN (z) and map it to the constraint set (blue polytope). Although

tempting, in many cases, this computational benefit comes with a cost, which is the
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Figure 2.5: An illustration of an explicitly defined projection function

restriction over the class of projection functions. Without an intention to be ex-

haustive, in this section, I review some projection functions that their closed-form

expression is available. In the following, in each line, I first write the constraints, and

then the corresponding projection function.

• Projection onto the non-negative orthant (y ≥ 0): In this case, one can use

ReLU, i.e., y = Relu(z) = max(z, 0), as the projection function. As shown

in [24], ReLU is the answer to the euclidean projection problem, i.e., y =

argmin1
2
||y − z||22 s.t. y ≥ 0. The other choice is the exponential function,

i.e., y = ez. This choice always results in an interior-point of the non-negative

orthant, meaning that y is going to be positive and only becomes zero when x

approaches negative infinity.
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• Projection onto the unit hypercube (y ≥ 0, y ≤ 1): In this case, one can

use textbfy = max(min(x, 1), 0), which is the realization of the euclidean pro-

jection. The other choice, which outputs an interior-point, is Sigmoid, i.e.,

y = Sigmoid(z).

• Projection onto the (n − 1) simplex (1Ty = 1): In this case, Sparsemax [25]

realizes the euclidean projection, and Softmax, i.e., y = softmax(z), outputs an

interior-point of the probability simplex.

One may find other closed-form projections that meet different types of con-

straints. The benefit of the closed-form projection is that the output of the projection

function always lies in the feasible set, and enables us to find the optimal solution

of (2.1). The downside is that it does not provide a general way of tackling a broad

range of constraints.

2.1.3 Explicit projection via an Iterative Process

As explained in section 2.1.1, a parametric optimization problem, e.g. (2.5), can be

used to formalize a projection function. Despite its wide applicability and guaranteed

feasibility in case of convex constraints, its dependence on the efficient optimization

solver, and challenges in fully leveraging the parallel computational power of GPUs,

motivate the search for other alternatives.

Thus, I describe another way of incorporating constraints at the output of neural

networks. This method uses a differentiable iterative process to realize a projection

function. Fig. 2.6 demonstrates an example of this approach. One example of

this method is Sinkhorn normalization [26], which takes a positive-valued matrix

and after some iterations outputs a doubly stochastic matrix, i.e. a positive-valued
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Figure 2.6: An illustration of an iterative process as the projection function

matrix whose rows and columns sum to one. A detailed explanation of this process

is provided in chapter 4.

Inspired by the idea of an iterative process, recently, [2] proposed a new and general

method, called Deep Constraint Completion and Correction (DC3), which is compat-

ible with GPU-based training and doesn’t require the convexity of the constraint set.

In this method, the projection function is broken down into two processes called com-

pletion and correction. The pipeline of this method takes the following steps. First,

the DNN outputs a partial subset z of the solution variables of (2.1). The completion

process then completes the remaining variables such that the resulting solution y
′

meets the equality constraints of (2.1). The correction process, afterward, corrects

the solution by making it closer to the feasible set of (2.1). The resulting solution y

doesn’t violate both equality and inequality constraints of (2.1).
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Figure 2.7: An illustration of Completion and Correction process [2]

Following [2], first and second-order based methods are used to realize the correc-

tion process. It is not guaranteed that these methods always converge to a global or

local optimum. However, once initialized with a point close to the optimum solution,

these methods are expected to converge in a finite number of iterations. Thus, once

the training is done, the output of the backbone DNN should be close to the feasible

set, and applying the correction process afterward will result in a point that meets the

constraints. The effectiveness of this approach is supported by the numerical results

of the original paper [2], and the numerical results of this work, presented in chapter

3. Aside from gradient-based methods, investigated in [2], I used the newton method

at test time to accelerate the convergence. To address the instability of the hessian

matrix, I used regularization by adding the identity matrix. This is a widely-used

technique [27,28] that makes sure about the existence of the inverse of hessian, which

is required for calculating the updates for the correction process. Fig. 2.7 illustrates

the functionality of both completion and correction processes. In the following, the
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mathematical descriptions of the completion and correction processes are provided.

• Completion Process: The goal of this process is to take the output of the

neural network (z) and output a variable ŷ that meets the equality constraints.

I adopt the variable-elimination approach proposed in [2]. In this way, the op-

timization variable y is divided into two variables. The first one, the output

of the DNN, is an independent variable that has a lower dimension. Given the

independent variable, the other is calculated such that the resulting optimiza-

tion variable will meet the equality constraints. As pointed out in [2], it is more

efficient to have an independent variable, that has a lower dimension than the

original variable, than to output something with the same or higher dimension

and adjust its entries to satisfy the equality constraints.

Let z ∈ Rm denotes the output of the DNN, i.e., z = Nz(x;wz), and let m ≤ n,

where m is the dimension of z and n is the dimension of y, the solution of (2.1).

The completion process ϕ(z) : Rm −→ Rn−m takes the output of the DNN,

denoted by z, and using that output completes the n−m missing variables so

that the resulting n-dimensional vector satisfies the equality constraints, i.e.,

y
′
=

 z

ϕ(z)

 −→ h(y
′
,x) = 0 (2.7)

Doing this results in a point (ŷ) that always lives on the manifold of points that

satisfy the equality constraints. An explanation of the choice of m (dimension

of the z) and the correction process ϕ(.) is provided later. Now, the output of

the DNN can change independently in Rm, and the resulting ŷ will be adjusted

accordingly. In the case of linear equality constraints, i.e., h(y,x) = A(x)y −
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b(x), other choices than (2.7) are available as well [29]. For example, if A(x)

has a full row rank and the number of rows is smaller than the number of

its columns (under-determined equality constraint), one can find a projection

to the null space of A(x) like F(x), i.e., A(x)F(x) = 0. By applying that

projection to the output of the DNN, the resulting solution will satisfy the

equality constraints [30]. Since the approach proposed in [2] (dc3) provides a

general framework for dealing with constraints and is used in this work, the rest

of this section is focused on a detailed explanation of dc3 methodology.

The y
′
, acquired form (2.7), can be passed to the correction process, or be fed

directly to the loss function, in case there are no inequality constraints in (2.1).

Either way, for realizing end-to-end training of the DNN, i.e. Nz, the Jacobian

of y
′
w.r.t. z should be calculable. Using (2.7), I can write:

Jy
′

(z) =
∂y

′

∂z
=

 I

∂ϕ(z)
∂z

 (2.8)

where Jy
′
(z) : Rn×m denotes the Jacobian of y

′
w.r.t. z, and I ∈ Rm×m. As

denoted in [2], the Jacobian of ϕ w.r.t. z can be calculated as:

Jϕ(z) =
∂ϕ(z)

∂z
= −Jh

:,m:n(y
′
)−1Jh

:,0:m(y
′
) (2.9)

Jh(y
′
) : Rp −→ Rn denotes the Jacobian of h w.r.t. y

′
. If y

′
is then fed to a

loss function like l : Rn −→ R the derivative of loss w.r.t. z can be calculated

as follows:

dl

dz
=

∂l

∂z
− ∂l

∂ϕ(z)
Jh
:,m:n(y

′
)−1Jh

:,0:m(y
′
) (2.10)
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This derivative is necessary for using backpropagation for calculating the deriva-

tive of l w.r.t. DNN’s parameters, i.e. ∂l
∂wz

.

• Correction Process: Now that I have a point y
′
that satisfies equality con-

straints ((2.7)), I aim to satisfy inequality constraints as well. This is done via

the correction process. The correction process basically takes y
′
and outputs

y” after one iteration. y” is closer to the feasible set of inequality constraints

and lies in the manifold of points in Rn than satisfies equality constraints, i.e.

h(y”,x) = 0. By applying the correction process multiple times, a point y

that meets both equality and inequality constraints is achieved. The correction

process can be described mathematically as follows [2]:

ρ : Rn −→ Rn, ρ(y
′
) =

 z+∆z

ϕ(z) + ∂ϕ(z)
∂z

∆z

 (2.11)

In other words, I slightly move z by ∆z and at the same time update the

rest of the variables in a way that the resulting point also meets the equality

constraints. Later, different candidates for realizing ∆z are discussed. The

update is basically a move towards the direction of the first-order approximation

of ϕ, i.e.,

ẑ = z+∆z −→ ϕ(ẑ) ≈ ϕ(z) +
∂ϕ(z)

∂z
∆z (2.12)

where ∂ϕ(z)
∂z

is derived from (2.9). It should be noted that ∆z should be small

enough to make this approximation work. As shown in [2], choosing gradient-

based updates for ∆z is a good match with this approximation and works

even in the case of non-linear equality constraints. One can use higher-order
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approximations if this does not result in feasible points for equality constraints.

Choice of m: The dimension of z, given by m, can be determined based on the

chosen solver for the completion process (ϕ). In [2], they assumed that the main

problem (2.1) is not over-determined, meaning that the number of variables (n) is

greater than or equal to the number of equality constraints, i.e., n ≥ p. Thus, they

chose m = n− p for linear equality constraints. This is a wise choice from a practical

perspective, which will be explained later.

Choice of ∆z: Let us denote ||max(g(y,x), 0)||22 as Vx(y) : Rn −→ R, which

measures violation of inequality constraints for a datapoint x. Since y
′
is used as

the input to Vx, Vx becomes a function of z. let ∇Vx(z) ∈ Rm and HVx(z) ∈ Rm×m

denote the gradient and Hessian of the violation of inequality constraints w.r.t. z and

calculated, respectively, as follows:

∇Vx(z) = ∇z||max(g(y
′
,x), 0)||22 = 2Jg(z,x)Tmax(g(y

′
,x), 0), (2.13)

HVx(z) = 2I(max(g(y
′
,x), ), 0)TKg(z,x) + 2max(g(y

′
,x), 0)TTg(z,x) (2.14)

where

y
′
=

 z

ϕ(z)


Jg(z,x) = Jg

:,:m(y
′
,x) + Jg

:,m:n(y
′
,x)Jϕ(z,x) (2.15)

where I : R −→ R is an indicator function that is applied element-wise to max(g(y
′
,x), 0),
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i.e.,

I(x) =

 1, if x > 0

0, otherwise
, (2.16)

K ∈ Rq×m×m and T ∈ Rq×m×m are defined as follows:

Kg(z,x)k,i,j =
∂gk
∂zi

∂gk
∂zj

, T g(z,x)k,i,j =
∂2gk
∂zi∂zj

(2.17)

K and T are rank 3 tensors and both terms in (2.14) contain vector to tensor dot

product which result in a m×m matrix. The product is calculated as:

C = aTB −→ Ci,j =

q∑
k=1

akBk,i,j (2.18)

where B ∈ Rq×m×m, a ∈ Rq×1, and C ∈ Rm×m. Now that I have the first and second

order information of Vx w.r.t. z, ∆z can vary for different descent methods [31], such

as for vanilla gradient descent (∆z = −µ∇Vx(z)), where µ is the step size, or Newton

method (∆z = −HVx(z)−1∇Vx(z)) [31].

It should be noted that due to the usage of max(−, 0), a function with zero second

derivative, in the definition of Vx(.), the hessian includes lots of zeros, which makes

it non-invertible. To solve this issue, I used the regularized version of the newton

method, called Levenberg method [28]. In this way, the identity matrix is added to

the hessian, i.e., ∆z = −(HVx(z) + αI)−1∇Vx(z), where I ∈ Rm×m is the identity

matrix and α is a hyperparameter.
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2.2 Literature Review

The initial use cases of DL in wireless communications include channel estimation,

information decoding, localization, end-to-end learning-based transmitter, receiver

design, etc. [32]. However, in this section, a review of the existing DL solutions to

RRM problems, i.e., power control and user scheduling/association is provided.

2.2.1 DL-enabled Power Control

To date, most of the research works considered sum-rate or spectral efficiency max-

imization via power control, while considering simple BS power budget constraints.

For instance, [11, 33] used fully connected neural networks (FCNNs) and recurrent

neural networks (RNNs), respectively, with a supervised approach. The labels were

obtained from the famous weighted-minimum-mean-square-error (WMMSE) algo-

rithm [34]. The authors in [35] proposed the use of self-supervised learning with an

FCNN to improve the network sum-rate and sample efficiency compared to supervised

learning. On the other hand, [12, 36] applied unsupervised training of FCNNs. The

results showed improvements over WMMSE while relaxing the need for high-quality

labels. Leveraging the unsupervised approach, [6] and [37] studied the applications of

convolutional neural networks (CNNs) and graph neural networks (GNNs) for power

control, respectively. While the above-mentioned works considered the complete CSI

as the input of the DNN, which is composed of path-loss, shadowing, and fading

components, [36] demonstrated improved robustness of the solution by considering

only the path-loss component.

The aforementioned works handled the power budget constraint by either using

a sigmoid (in case of a single channel) or softmax (in case of multiple channels) at
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the output layer of the DNN. However, none of them considered incorporating more

complex constraints such as QoS constraints.

Recently, a handful of research works considered the problem of network sum-rate

maximization via power control with power budget constraint and minimum rate or

QoS constraint, indicating the required QoS of the users. The main theme of these

works is to handle the QoS constraint either by adding a penalty term to the loss

function [12], indicating the violation of these constraints, or by transforming the

problem into its Lagrangian and performing the learning in the dual domain [38,39].

To be more precise, [38] tried to develop a generic unsupervised learning framework

using random edge graph neural networks to address a wide range of RRM problems

with constraints. In their framework, the main problem was first transformed to

its functional form which then transformed into its Lagrangian. A gradient-descent

approach is used to iteratively update the primal variables, i.e. DNN parameters,

and the dual variables. A subsequent work [39] used the same neural network model

on the same problem, but introduced a slack variable that relaxes the minimum

rate constraints. The objective changed to maximizing the network sum-rate while

minimizing the slack variable. This new method, called counterfactual optimization,

was an attempt to provide a fair power allocation that sacrifices the network sum-rate

to provide QoS of the cell-edge users. Although the results of dual domain learning

are satisfactory in terms of performance, the satisfaction of constraints cannot be

guaranteed at inference. Moreover, resorting to Lagrangian comes with the duality

gap which is not zero in non-convex problems [8].

Very recently, [40] studied the sum-rate maximization via power control with

minimum rate and power budget constraints for an ad-hoc setup. To address the
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constraints, they tried to find a differentiable closed-form projection that takes the

output of the DNN and projects it into the feasible set. Although effective, this

approach cannot be generalized and be applied easily to other constraints. Thus, a

new generic framework that can systematically guarantee constraint satisfaction is

needed.

2.2.2 Deep Learning and User Association

User or cell association is one of the core problems in wireless resource allocation which

enables assigning BSs to users [32] in order to maximize a system-level performance

metric, e.g., network sum-rate. The typical constraints, considered for this problem

are BS quota and minimum rate (or QoS) constraints. BS quota determines the

number of users allowed to be associated with a BS, and QoS constraint determines

the minimum required rate that each user should experience after association.

One main difference between user association and power control is the discrete

nature of decision variables. Thus, the problem is combinatorial in nature [41], how-

ever, under some conditions the problem can be relaxed to its continuous counter-

part, which is a linear program, without the loss of optimality [42]. This transition

is possible when the constraints have uni-modular properties. This is the case when

there are only user-quota and BS-quota constraints [42]. However, this might not

be the case when dealing with user-imposed or soft constraints, e.g. minimum-rate

constraint. [41].

Similar to power control, the mapping between the problem data, i.e., potential

users’ achievable rate or the CSI, and user association decision can be learned by

a DNN [15, 43]. In this regard, using a fully-connected neural network and mean
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square error (MSE) loss, [44] applied supervised learning to solve the user association

problem in a MIMO setup to maximize the network sum-rate. The authors did not

consider the BS quota and QoS constraints.

Convolutional neural networks (CNNs) are used in [43] to solve the same problem

in a heterogeneous ultra-dense network while considering BS quota, fairness, and load

balancing constraints. Supervised training is used with a customized loss function

consisting of MSE and penalty terms for the violation of the constraints. At the

inference, however, their method failed to directly meet the BS quota constraints; thus

an iterative re-association took place to handle them. Following the same paradigm,

[45] tried to look at user association as a special case of a linear sum assignment

problem and used supervised learning to tackle this problem. They further divided the

original problem into sub-problems, solving the association for each user separately

by considering it as a classification problem. Although they made sure that each user

is only associated with one BS, the BS-quota constraints were left to be tackled via

a heuristic. Furthermore, [15] solved the same problem via unsupervised learning.

By tensor splitting at the final layer of the DNN and applying a softmax afterward,

they made sure that each user will be associated with only one BS. The BS-quota

constraints violation was added as a penalty term to the loss function. Although this

penalizing method will reduce the constraint violation probability in general, it does

not guarantee zero violation at the inference.

2.2.3 Joint optimization

As implied from the previous sections, power control and user association are two

dependent problems, where the solution of one can directly impact the solution of the
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other. This motivates the search for solvers that tackle these two problems simulta-

neously in a joint manner.

Another problem with future RRM problems is the existence of lots of co-dependent

variables, e.g. power allocation and user scheduling, which require jointly optimal so-

lutions [3]. Most of the well-known traditional works resort to solving a version of

coordinate descent that guarantees the convergence to a stationary point, which might

not have a good quality [10, 46]. To efficiently apply the L2O paradigm, a guiding

framework has to be in place to capture the essence of joint optimization. There are

very few L2O works that considered joint optimization of the resources [47, 48].
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Chapter 3

Optimized Power Control with QoS Guarantees: A

Deep Unsupervised Approach

Due to the practical relevance and non-convex nature of the network sum-rate maxi-

mization in wireless networks, in this chapter, I designed a DL-enabled power control

solution. To resemble a realistic scenario, minimum rate constraints, as an indication

of users’ required QoS, are considered alongside the BSs’ power budget constraint.

To effectively tackle this problem with guaranteed constraint satisfaction, I need to

make sure that the output of the DNN always lies in the feasible set of this problem.

The common practice in this situation is to project the output of the DNN onto the

feasible set. When the feasible set has a simple geometry, closed-form projection func-

tions can be utilized. Examples of which include, ReLU, sigmoid, and softmax, which

project the input onto the non-negative orthant, the interior of the unit hypercube,

and the interior of the (n-1))-simplex, respectively [24]. Although the power budget

constraint can be handled via these projection functions, the QoS constraint makes

the feasible set of the problem have more complex geometry, requiring more complex

projections.
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Recently, in the deep learning community, two approaches are introduced as means

of incorporating hard constraints at the DNN’s output. The first utilizes the language

of mathematical optimization to implicitly define the functionality of a layer [22,49].

Using the implicit function theorem, the layer alongside the rest of the network can

enjoy efficient end-to-end learning via gradient-based methods. In the same context,

[21] proposed the use of an implicit layer to realize convex optimization problems and

even developed a Python library for the so-called CVXPYLayer.

The second approach, called deep Constraint Completion and Correction (dc3),

has an iterative nature and treats equality and inequality constraints in a different

manner [2]. The DNN outputs a partial subset of the optimization variables. The

remaining variables are then completed to the full-dimensional variables by the com-

pletion process to satisfy the equality constraints. The resulting solution is then

corrected to satisfy the inequality constraints in an iterative manner. The direction

of the updates is designed to avoid the violation of the equality constraints while get-

ting closer to the feasible set. Another interpretation of this method is that the DNN

outputs a statistically good initial point which then is moved to reach the feasible

set. In this chapter, my contributions are as follows:

• I propose two novel DL-based solvers for the classical power control problem

in a multi-user interference channel with QoS constraints. The first is called

Deep Implicit Projection Network (DIPNet), and the second is called Deep Ex-

plicit Projection Network (DEPNet). The former utilizes convex optimization

to project the neural network’s output to the feasible set defined by the QoS

constraints and the latter uses an iterative process to achieve the same.

• The proposed models were trained in an unsupervised manner and compared
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with FCNNs like PCNet and ePCNet [12] as DNN-based benchmarks, and Geo-

metric Program (GP) [14] as the optimization-based benchmark. The sum-rate,

constraint violation probability, and online test time are used as the performance

evaluation metrics.

• Numerical results demonstrate that the proposed DIPNet and DEPNet guaran-

tee zero constraint violation probability while outperforming PCNet and ePC-

Net in terms of sum-rate at the expense of slightly increased computational

complexity.

3.1 System Model and Problem Statement

I consider a downlink wireless network composed of B single-antenna BSs where each

BS can serve Q users at maximum in Q orthogonal frequency channels. Due to

orthogonal channel allocation at each BS, the users that are being served by the same

BS will not interfere with each other, i.e., no intra-cell interference exists. However,

the BSs share the same frequency spectrum and they equally distribute the bandwidth

among their users, denoted by W . Thus, the inter-cell interference on each channel

of bandwidth W exists from the neighboring BSs. Without the loss of generality,

I consider a total of U single-antenna users in the system, where U = BQ. The

achievable rate of the user associated to channel q of BS b can thus be modeled as

follows:

Rb,q(P,H) = W log2 (1 + γb,q(P,H)) ,

where

γb,q(P,H) =
|Hb,q,b|2Pb,q∑B

b̂=1,b̂ ̸=b |Hb,q,b̂|2Pb̂,q + σ2
,
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where Hb,q,b̂ denotes the interfering channel between the BS b̂ and the user who is

assigned to channel q of BS b, Pb,q denotes the transmit power allocated to the user

scheduled on channel q of BS b, and γb,q denotes the received Signal-to-Interference-to-

Noise ratio (SINR) of the user scheduled on channel q of BS b. Note that P ∈ RB×Q

and H ∈ CB×Q×B denote the matrix and tensor containing all values of the transmit

powers and complex channel gains composed of distance-based path-loss, shadowing,

and fading, respectively. I assume that the perfect channel state information (CSI)

is available at the BS side. Also, σ2 refers to the thermal noise power at the users’

receivers, which is the same for all the users. I denote the set of all BSs and channels

as B = {1, · · · , B} and Q = {1, · · · , Q}, respectively. The sum-rate maximization

problem with QoS constraints can then be formulated as follows:

maximize
P

R(P,H) =
B∑
b=1

Q∑
q=1

Rb,q(P,H)

subject to Pb,q ≥ 0, ∀b ∈ B,∀q ∈ Q
Q∑

q=1

Pb,q ≤ Pmax, ∀b ∈ B

Rb,q(P,H) ≥ αb,q, ∀b ∈ B,∀q ∈ Q

(3.1)

where the first constraint ensures non-negative power allocations and the second con-

straint refers to the transmit power budget of each BS. Without loss of generality, I

assume the same maximum power budget Pmax for all the BSs. The third constraint

refers to the minimum rate requirement of the user scheduled on the channel q of BS

b (αb,q). The problem in (3.1) is known to be NP-hard and non-convex both in its

objective and the constraints set [8]; thus, finding an optimal solution is challenging.
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3.2 Problem Transformation and Differentiable Projection Framework

Since the implicit projection method, introduced in Section 3.3, requires the convexity

of the constraints and the explicit projection, introduced in Section 3.4, provides

improved results when the feasible set is convex, I first transform the problem to its

equivalent form with convex constraints. However, the non-convexity still arises from

the non-convex objective function.

3.2.1 Problem Transformation

The considered power control problem in (3.1) can be reformulated in two different

ways, i.e., either using the matrix version of power or using the vector form of the

power allocations. The matrix form of (3.1) is shown below:

maximize
P

R(P,H)

subject to P ≥ 0

P.1 ≤ Pmax1

γb,q(P,H) ≥ βb,q

(3.2)

where 1 = [1, 1, · · · , 1]T is a B-dimensional vector and βb,q = 2
αb,q
W −1 is the minimum

SINR to get the minimum rate requirement. To reformulate the problem in the vector

form, I convert P in a vector form using the following Definition-1.

Definition 1: For a given m×n matrix A on a given field F, i.e., A ∈ Fm×n, the

vectorization operation, a = Vec(A) : Fm×n −→ Fmn×1 is defined as Ai,j = a(j−1)m+i.

The resulting vector a ∈ Fmn×1 is a column vector obtained by stacking the columns

of A on top of each other.

39



Subsequently, p can be derived by stacking the Q columns of matrix P on top of

each other using Definition 1, i.e.,

Pb,q = p(q−1)B+b, (3.3)

The vector form of (3.2) is shown below:

maximize
p

R(p,H)

subject to p ≥ 0

Ap ≤ Pmax1

Cp ≥ d

(3.4)

where A ∈ RB×BQ is defined as follows:

Ai,j =

 1 if i ≡ j (mod B)

0 otherwise
(3.5)

The problem in (3.4) offers a linear (thus convex) formulation of the third constraint.

It is noteworthy that in the case of a single channel available per BS, i.e., Q = 1, the

formulation of C and d is straightforward and presented in traditional power control

works [8]. Nevertheless, when considering the case where each BS can serve multiple

users at a time and has a certain predefined users’ quota, the matrix C ∈ RU×U

becomes a block-diagonal matrix, where each block is related to one of the Q channels.
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The q-th block denoted by Mq ∈ RB×B is defined as follows:

M q

b,b̂
=

 |hb,q,b|2 if b = b̂

−βb,q|hb,q,b̂|2 if b ̸= b̂
, (3.6)

where C = diag(M1, ...,MQ), and d ∈ RU×1 is also derived by stacking the columns

of matrix D ∈ RB×Q, defined below, on top of each other, i.e.,

Db,q = βb,qσ
2, d = [DT

:,1, ...,D
T
:,Q]

T , (3.7)

The aforementioned transformations also show that the third constraint can be ex-

pressed as either a non-convex, non-linear, or linear constraint in (3.1), (3.2), and

(3.4), respectively [8]. In the following, I will leverage the aforementioned transfor-

mations in Section 3.3 and Section 3.4.

3.2.2 Functional Optimization Form

Despite the linearity of the constraints in (3.4), this problem is NP-hard due to the

non-convex objective function [8]. Thus, finding an optimal solution is challenging.

Traditionally, (3.4) is solved for each channel realization, i.e., for each realization ofH,

I solve (3.4) to get p which dictates an implicit mapping between H and p. Although

effective, this variable optimization approach yields high computational complexity.

To overcome this problem, I can approximate the implicit mapping between H and p

with an explicit function. This will significantly improve the computational complex-

ity as long as the explicit function has an efficient implementation, e.g., using neural
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networks [5]. The equivalent functional optimization form of (3.4) is [7]:

maximize
F (H)

EH∼p(H)[R(F (H),H)]

subject to F (H) ≥ 0, ∀H ∈ H

AF (H) ≤ Pmax1, ∀H ∈ H

CF (H) ≥ d, ∀H ∈ H

(3.8)

where F (·) represents the functionality that maps CSI to a power allocation. It has

been proven in [7] that the solution of (3.8) is also the optimal solution of (3.4). The

same transition can be written for (3.2). The output of F (·) is a matrix for (3.2) and

a vector for (3.4).

DNNs have been shown to be a very rich family of parametric functions, in a

sense that even an FCNN has universal function approximation property [19], and has

shown success in approximating the aforementioned mapping in supervised and unsu-

pervised ways. Thus, I consider them for approximating F , i.e. F (H) = Np(H;wp)

where Np is a DNN, and wp is a vector containing all trainable parameters, i.e.,

weights and biases, of the DNN. The output of the DNN appears as a subscript to

the DNN and its parameters. For example, if the output of the DNN is variable y,

the DNN and its parameters are denoted by Ny and wy, respectively.

As a result, using the statistical learning theory, the problem of finding wp via

learning can thus be formulated as:

minimize
wp

EH∼p(H)[l(Np(H;wp),H)]

subject to wp ∈ W
(3.9)
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Figure 3.1: A graphical illustration of the proposed differentiable projection
framework.

where l is the loss function and measures how good the output of the neural network

is for a given data H. Importantly, the design of the loss function is critical to solving

the constrained optimization problem. Most of the current research typically incor-

porates the power budget constraint into the output of the DNN by using bounded

activation functions like Sigmoid [12]. Other constraints are generally incorporated

by customizing the loss function using the dual problem formulation. The downside

of this choice is that there is no easy way to make sure the output of the neural

network always meets the constraints and lies in the feasible set of problem (3.4).

To overcome this issue, in what follows, I present a differentiable projection-based

framework that projects the DNN’s output into the feasible set of (3.8).

3.2.3 Differentiable Projection Framework

In this paper, I focus on designing a projection framework where I can add a special

layer to the DNN, which projects the output of the DNN to the feasible set of (3.4)
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Figure 3.2: An illustration of the proposed projection methods: Implicit projection
via mathematical optimization (left) - Explicit projection via an iterative process

(right).

or (3.8). I refer to this transformation as Projection, i.e.,

p = Np(H;wp) = Proj(r); r = Nr(H;wr), (3.10)

where r is the output of the backbone DNN without the projection layer, and Proj :

RU −→ RU is a projection function unto the feasible set of (3.8). Fig. 3.1 shows the

graphical illustration of this framework. Since I do not consider parametric projection

functions, the parameters of Np and Nr are considered as the same, i.e., wp = wr.

Remark: A function Proj : RU −→ RU is a differentiable projection function w.r.t.

(3.8), if its Jacobian can be evaluated, i.e., ∂p
∂r

and p meets the constraints of (3.8).

Being differentiable is critical to make the end-to-end training of the DNN possible

using gradient-based methods [17].

The projection function can be defined implicitly or explicitly as in the following,

respectively.

• Differentiable Implicit Projection: in which a differentiable convex opti-

mization (DCO) layer, a type of implicit layer in DNN, is applied to project

the output of the Nr to the feasible set. By doing this, I make sure that the
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output of Np always satisfies the constraints. A detailed explanation of DNN

architecture is in Section IV. Now that the output of DNN always satisfies the

constraints, l(Np(H;wp),H) can take the form of −R(Np(H;wp),H) to directly

optimize (3.8).

• Differentiable Explicit Projection: uses a differentiable iterative process to

realize the projection function (Proj) and moves the output of the Nr closer

to the feasible set. Each iteration uses a process, called correction process [2],

which corrects the previous output towards lesser violation of the constraints.

This approach uses soft-loss during training and shows faster performance rel-

ative to the first approach at the expense of the lack of the provable feasibility

of the results. Experimental evaluations, however, confirm the zero constraint

violation probability, as detailed in Section VI.

Remark: Let f : Rm −→ Rn be a function such that y = f(x). If the pro-

cess of evaluating the output y from an input x is known and the derivative of the

output w.r.t. the input is calculated explicitly, I refer to the function as explicit,

whereas the implicit function means that the output evaluation process from the

input is unknown to the user and the derivatives are calculated implicitly at the so-

lution point. The term Explictly-defined is mostly used when a closed-form analytic

expression of a function is available, which might contradict its usage for an iterative

process. However, in this work, I use it to highlight the use of explicit and implicit

differentiation.
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3.3 Differentiable Implicit Projection Framework

In this section, I describe the systematic incorporation of the QoS constraint into the

DNN architecture. To be more specific, I utilize the newly introduced DCO layer [21]

to project the output of the neural network to the feasible set defined by the QoS or

minimum rate constraints. I call this layer a projection layer. DCO and other types of

layers that describe an implicit functionality between input and output space lie under

the umbrella of implicit layers, as explained in chapter 2. In the following, a brief

description of the projection layer is provided followed by the proposed projection

function and the neural network architecture.

3.3.1 Projection Layer

I define the projection function implicitly using the concept of DCO which requires

reformulating the constraints of the original problem as convex constraints and choos-

ing a convex objective function for this layer. Using the affine formulation of the

constraints of (3.1), as defined in (3.4) or (3.8), the optimization problem that char-

acterizes the projection layer is formulated as:

p = argmin
p̂

1

2
||p̂− r||22

subject to p̂ ≥ 0

Ap̂ ≤ Pmax1

Cp̂ ≥ d

(3.11)

where (3.11) implicitly defines the projection function (p = Proj(r)). This projection

takes the form of the euclidean projection [31] unto a set, defined by the constraints
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of (3.8). Given the implicit function, theorem [20–22], the Jacobian of the output

w.r.t. the input, i.e., ∂p
∂r
, can be computed, regardless of how the solution is derived.

Moreover, since the constraints of (3.11) and (3.8) are the same, they have the same

feasible set, i.e., the solution of (3.11) satisfies the constraints of (3.8). Note that, as

long as the convexity is preserved, one can choose other objective functions for (3.11)

as well. The main role of this objective is to formalize the similarity between r and

the points in the feasible set of (3.8). Once the formalization is there, the output

of the projection function will be the point with the highest similarity. In (3.11),

the distance, measured by the euclidean norm, is chosen to measure the similarity,

i.e., the lower the distance, the higher the similarity. The upside of this choice is

that (3.11) becomes a quadratic program, which can be solved efficiently [31]; thus

offering a reasonable evaluation complexity once composed with Nr. Fig. 3.2 (left

one) illustrates how (3.11) works. The projection function (3.11) is an instance of

the DCO layer. The implementation details of this function and its integration with

automatic-differentiation frameworks like PyTorch are available in [21,23].

3.3.2 Neural Network Architecture

As depicted in (3.10), the overall neural network (Np) is the composition of the

projection function (Proj) and a backbone neural network (Nr). Since the focus of

this work is on the design of the projection function, I consider a neural network

with fully connected layers as the backbone. The overall architecture is presented in

Fig. 3.1. The architecture is composed of fully connected layers with ReLU activation

function at the hidden layers. The input to the neural network is the vector form of

tensor H which is obtained using Definition 2 as given below:
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Definition 2: For a given tensor T ∈ Fm×n×p, the vectorization operation, t =

Vec(T) : Fm×n×p −→ Fmnp×1, is defined as Ti,j,k = t(j−1)mp+(k−1)m+i. The vector

t ∈ Fmnp×1 is a column vector obtained by first gathering a mp × n matrix whose

column j is obtained by vectorizing the matrix T:,j,:. The resulting mp× n matrix is

then vectorized to get t.

Subsequently, the input dimension is BU . The output will have the same dimen-

sion as the power vector, i.e., U . The final layer’s activation function is sigmoid to

bound the output of Nr between zero and one. Experiments showed that doing this

improves the computation time of the optimization problem of the projection layer

(3.11). Since the final neural network (Np) uses an implicit projection, I refer to it as

Differentiable Implicit Projection NETwork, or for short DIPNet. The proposed

framework is agnostic to the DNN architecture; thus, one can extend to other DNN

architectures to enhance the performance even further.

3.4 Differentiable Explicit Projection Framework

In this section, I describe another way of incorporating constraints at the DNN’s

output. Specifically, I design a projection function via an iterative process. This

idea is inspired by [2], where a process called correction is applied iteratively to the

output of the DNN to make it fall onto the feasible set of inequality constraints.

By choosing a differentiable and explicitly-defined correction process, the resulting

projection function will be differentiable and explicitly-defined as well, which projects

the input to the feasible set of the problem.
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3.4.1 Differentiable Iterative Projection

Consider the following formulation of (3.4) or (3.8) , where all the constraints are

concatenated to form a single vector and are denoted as g(p,H) ≤ 0, i.e.,

maximize
p

R(p,H)

subject to g(p,H) ≤ 0

(3.12)

where g : RU × RBU −→ RG contains all the inequality constraints of the main

problem (G = UBU). Based on (3.4), g is an affine transformation w.r.t. p. Let us

define VH : RU −→ R as a measure of the constraint violation, i.e.,

VH(p) = ||ReLU(g(p,H))||22 (3.13)

This means that given two arbitrary points x1,x2 ∈ RU if VH(x1) ≤ VH(x2), x2

violates the constraints of (3.12) more than x1. In what follows, I define the correction

process.

Definition 3: An explicitly defined function ρ : RU −→ RU that has the following

properties is called correction process: if y = ρ(x), then VH(y) < VH(x), and
∂y
∂x

is

calculable. The former condition makes sure that the output of the correction process

is closer to the feasible set than its input, and the latter guarantees the differentiability

of the correction process.

I also denote ρt as applying ρ for t times. Based on the first condition in Definition

3, by applying ρ iteratively, I will end up with a point that meets the constraints i.e.,

p = Proj(r) = lim
t−→∞

ρt(r). (3.14)
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Since ρ is explicitly defined and differentiable, ρt and Proj are also explicitly defined

and differentiable, and their Jacobian can be derived using the chain rule. Thus, the

resulting projection function in (3.14) is explicitly defined and follows the definition

of the differentiable projection function. In other words, given an input r ∈ RU and

output p ∈ RU of the projection function, i.e., p = Proj(r), VH(p) = 0 and the

Jacobian of p w.r.t r, i.e. ∂p
∂r

is derivable. The former condition enables end-to-end

training of the whole system, i.e. letting the gradients of the loss function w.r.t. the

DNN’s parameters be calculated via backpropagation [17].

Due to the infinite limit, the projection function as defined in (3.14) cannot be

realized in practice. Hence, similar to [2], I use the truncated version of it, i.e.

Proj(.) = ρt(.) for some finite t. Due to truncation, the output of the projection

function may not lie on the feasible set. However, I can speed up the convergence

rate of ρt by carefully designing ρ, discussed later, and choosing the initial point r.

The latter can be handled by making the output of the backbone neural network Nr

closer to the feasible set. To do this, I use the following loss function, called soft-loss,

during training, i.e.,

lsoft(p,H) = −R(p,H) + λVH(p), (3.15)

where p = ρt(Nr(H;wr)), t is a finite number, and λ is a hyperparameter controlling

the constraint satisfaction relative to objective optimization. The second term is

added to the loss function to penalize the points that violate the constraints, which

will make Nr to output a good initial point to ρt. Moreover, since it is not necessary

to fully satisfy the constraints during training, fewer iterations can be used to speed

up the training process. During the test time, however, the number of iterations is

increased to output a feasible point [2].
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3.4.2 Design of the Correction Process (ρ)

Following [2], I use gradient-descent-based methods to realize the correction process

ρ. Let ∇VH (x) ∈ RU and HVH (x) ∈ RU×U denote the gradient and Hessian of VH

w.r.t. x and defined, respectively, as follows:

∇VH (x) = ∇x||max(g(x,H), 0)||22 = 2Jg(x,H)Tmax(g(x,H), 0). (3.16)

HVH (x) = 2I(max(g(x,H), 0))TKg(x,H) + 2max(g(x,H), 0)TTg(x,H). (3.17)

where Jg(x,H) ∈ RG×U is the Jacobian of g w.r.t. x. Moreover, I : R −→ R,

K ∈ RG×U×U , and T ∈ RG×U×U are defined as shown in the following.

I(x) =

 1 if x > 0

0 otherwise
, Kg(x,H)k,i,j =

∂gk
∂xi

∂gk
∂xj

, T g(x,H)k,i,j =
∂2gk

∂xi∂xj

.

(3.18)

where I is an indicator function that is applied element-wise to max(g(x,H), 0), K,

and T are rank-3 tensors. The definition of Hessian in (3.17) contains vector to tensor

dot product, resulting in a U × U matrix. The product is computed as follows:

C = aTZ −→ Ci,j =
G∑

k=1

akZk,i,j, (3.19)

where Z ∈ RG×U×U , a ∈ RG×1, and C ∈ RU×U .

The feasible set of (3.1) can be presented with linear constraints, i.e., a polyhedron,

as can be seen in (3.4). Thus, in the following, I derive the above-mentioned formulas

in case that g is an affine function, i.e. g(x,H) = Mx + n, where M : RG×U and
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n ∈ RG×1 are functions of H.

g(x,H) = Mx+ n −→


Jg(x,H) = M

Kg(x,H)k,i,j = Mk,iMk,j

T g(x,H)k,i,j = 0

(3.20)

Remark: Unlike DIPNet, DEPNet does not have a convexity requirement.

Now that I have access to the first and second-order information of VH w.r.t. x,

the correction process can be formulated as follows:

ρ(x) = x+∆x, (3.21)

where ∆x can take the form of variations of descent methods [31]. Examples of

which include vanilla gradient descent (∆x = −γ∇VH (x)) or Newton method (∆x =

−HVH (x)−1∇VH (x)) [31]. Here, I used gradient-descent with momentum [27] during

training and the Newton method during test for faster training and lower violation

probability at test. In the following, the correction process formulation for these

choices are provided.

Let ∆xt be the step of the correction process that is applied at the iteration t of

the projection function. The update rule for gradient descent with momentum can

be given as follows:

∆xt = −γ∇VH (x)− µ∆xt−1, (3.22)

where γ is called step-size or learning rate and µ is called the momentum. To avoid

confusion with the learning rate involved in training DNNs, I refer to γ as the step-size.

It should be noted that γ is chosen prior to training and is fixed during the training.
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This is to make the execution time of the correction process faster and the calculation

of its derivatives easier during the training. In this case, having momentum will help

the convergence of gradient descent by making it less vulnerable to the oscillations of

noisy gradients [27].

One can use other alternatives like exact or backtracking line-search [31] for choos-

ing γ in each iteration. Although it helps with convergence, it introduces more com-

putational complexity during the training, and the calculation of the derivative of

the correction process will not be as straightforward as using a fixed value for the

step-size. At the test time, however, I can use these techniques to fasten the con-

vergence rate of the correction process and get feasible solutions from the projection

function. Inspired by this idea, instead of using gradient descent at the test time,

I use Newton method, which has a faster convergence rate [31]. Since max(−, 0) is

used in the definition of VH(.) and its second derivative is zero, the hessian matrix is

poorly conditioned and has lots of zeros, making it not invertible. To deal with this

issue, I regularize the hessian matrix by adding a small value α to its diagonal [28].

Thus, the update rule becomes:

∆xt = −(HVH (x) + αI)−1∇VH (x) (3.23)

where I ∈ RU×U is the identity matrix. In the following, for simplicity, I refer to

(3.23) as the Newton method update rule. (3.23) uses the second-order information

of the objective at hand. As proven in [31] and shown in my experiments, Newton

method has a faster convergence rate than gradient-descent. The only downside of

it is that the calculation of the derivative of its steps is not straightforward due to

matrix inversion in (3.23). Thus, I only used it at test time, and utilized gradient
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descent during training.

3.4.3 Neural Network Architecture

For consistency and the sake of fair comparison, I use the same DNN architecture, as

described in Section IV, with minor modifications. As depicted in Fig. 3.1, after the

last affine transformation, there is a sigmoid non-linearity followed by a projection

function. Using sigmoid at the final layer of Nr showed faster convergence of this

projection method in the experiments. Since this model uses an explicitly defined

differentiable transformation to realize the projection, I call it Differentiable Explicit

Projection NETwork (DEPNet).

3.5 An enhancement: Frank-Wolfe Algorithm

The optimality of the output of the projection function is dependent on the quality

of the initial point (r) and the projection method. Although the quality of the initial

point will improve during the training, it might show sub-optimality. This means that

the final power profile is feasible, but might not be optimal. A remedy is to apply

constrained optimization algorithms, where the output of the projection function is

passed as the initial point of the chosen algorithm (p0). The algorithm, then, outputs

an enhanced power profile that achieves a higher sum-rate than p0.

Among several variants of general constraint optimization algorithms, I select

Frank-Wolfe [50], a.k.a conditional gradient descent due to its low computational

cost in each iteration of the algorithm. Compared to other alternatives like pro-

jected gradient descent which requires solving a quadratic program in each iteration,

Frank-Wolfe only solves a linear program in each iteration [50]. In the following, the
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description of Frank-Wolfe algorithm is provided.

As mentioned earlier, the initial point of this algorithm will be the output of the

projection function, i.e., p0 = Proj(r). The algorithm is agnostic to the projection

method and only requires a feasible initial point. Thus, it can be used with both

DIPNet and DEPNet. The final power profile will be the output of this algorithm.

Let us denote the output of the Frank-Wolfe algorithm after t and t+1 iterations

as pt and pt+1 ∈ RU , respectively. They belong to the feasible set of (3.4) and the

relation between them is:

pt+1 = pt + λpt+ 1
2 , λ ∈ [0, 1] (3.24)

where pt+ 1
2 is an intermediate variable derived as follows:

pt+ 1
2 = argmin

p̂
< p̂,∇pR(pt,H) >

subject to p̂ ≥ 0

Ap̂ ≤ Pmax1

Cp̂ ≥ d

(3.25)

where the objective is the euclidean dot product of the optimization variable and the

gradient of sum-rate (R(p,H)) w.r.t pt. Since (3.25) is solved over the feasible set

of (3.4), pt+ 1
2 belongs to the feasible set of (3.4) as well. Following (3.24), a convex

combination of pt+ 1
2 and pt is chosen as the output of the t + 1 iteration. Since the

feasible set of (3.4) is convex, pt+1 will be a feasible power profile. λ is the step size

that can be chosen via line search or adaptive methods [50].
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3.6 Experimental Set-up and Benchmarks

In this section, I describe the dataset generation procedure, system set-up, and rele-

vant benchmarks to evaluate the performance of the proposed DIPNet and DEPNet.

3.6.1 DataSet Generation

For the experimental evaluation, I created two datasets. The first one, called Gaus-

sian Dataset, follows the symmetric interference channel model with independent

and identically distributed (i.i.d.) Rayleigh fading for all channels coefficients, i.e.,

hb,q,b̂ ∼ CN (0, 1). The maximum power is set to 1 mW, the transmission bandwidth

is 5 MHz, and the thermal noise power is assumed to be 0.01µW [51]. This model is

widely adopted in the literature to evaluate resource allocation algorithms [11,12,51].

The second dataset, called Path-loss Dataset, has channel coefficients that are com-

posed of large-scale path-loss, shadowing, and fading. The dataset generation has the

following steps. First, the locations of the BSs and users are determined by random

sampling from a 500 m ×500 m area. I consider that the distance between the two

closest BSs, BSs and user, and between closest users, should be at least 100 m, 5 m,

and 2 m, respectively. The carrier frequency is 2.4 GHz, the transmission bandwidth

is 5 MHz, and the noise spectral density is set to -169 dBm. The remaining details

of the channel model can be found in [52].

For both datasets, once a datapoint or channel realization is generated, I associate

the best Q users to the first BS in terms of their channels. These users are then

excluded from the user set. Then, the users’ of the next BS are determined by the

same process. This process is continued until all the users are associated with a BS.

After that, for each BS, the allocated set of users is sorted out based on their channel
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gains, and then gets assigned to the channels such that the first channel of each BS

has the strongest user of that BS.

Different datasets are generated under different configurations. For each configu-

ration, 100,000 data samples are generated and divided to train, validation, and test

with 0.9, 0.05, 0.05 ratios, respectively. Unless stated otherwise, the number of BSs

is set to B =4. Also, I set the minimum users’ rate requirement to α = 2.5 Mbps

unless stated otherwise.

To provide a comprehensive quantitative analysis, additional datasets are gen-

erated under different configurations listed in Table II. Dataset ID is used to refer

to different configurations, where the quota of each BS is given as Q = U/B. All

datasets in Table II are following the Path-loss models. The number of BSs, users,

and the minimum rate are different among them.

3.6.2 Feasibility Check

In the dataset preparation process, I need to make sure that all data points are

feasible, i.e., there exists a power profile that meets the constraints of problem (3.1).

For that, I use the approach mentioned in [8] and used in [12, 51]. The approach

provides feasible transmit powers, as well as minimum, transmit powers that can

fulfill the minimum rate constraints. Originally, this approach is not designed for

the case where there is more than one channel, i.e., Q > 1. However, since channels

on a given BS are orthogonal, I can break (3.1) into Q sub-problems, and apply the

feasibility check approach with slight modifications. The description of the approach
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is defined next. Let us define matrix Bq as follows:

Bq

b,b̂
=

 0 b = b̂

βb,q |hb,q,b̂|
2

|hb,q,b|2
b ̸= b̂

, (3.26)

If the maximum eigenvalue of Bq is larger than 1, there is no feasible solution. That

is, I can not find a power vector for channel q that can satisfy the minimum rate

requirement of the users associated with this channel. Otherwise, I can find a feasible

power allocation profile as:

P:,q = (I−Bq)−1uq, (3.27)

where P:,q is the transmit power vector over channel q, I is a B ×B identity matrix,

and uq is a B×1 vector with jth element given as uq
b =

βb,qσ
2

|hb,q,b|2
. Once all power vectors

are calculated for q ∈ Q, I create the final power matrix in the following manner. If

P meets the first and second constraints of (3.1), i.e., all elements of P are greater

than zero and the sum of each row is lesser than Pmax, P is a feasible solution of (3.1).

Otherwise, (3.1) is not feasible.

3.6.3 Benchmarks

I consider two main benchmarks. The details of these benchmarks are given below:

• PNet: is a neural network model exactly like DIPNet and DEPNet, but without

the projection layer, i.e. FCNN. This model is an extension of PCNet [12] that

works for the multi-channel scenario. The power budget constraint was handled

by having softmax as the activation function of the final layer. The violation

of QoS constraint was added as a penalty term to the loss function, similar to

the soft loss as in Section VI. This DNN-based benchmark does not utilize the
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proposed projection methods.

• GP: is an optimization-based solution that uses the high-SINR assumption to

transform the main problem (3.1) to a geometric program [14]. The high-SINR

assumption can be relaxed by using GP with successive convex approximation

technique which results in solving series of GPs until finding a stationary point

of (3.1) [14]. Other alternatives like MAPEL [51] perform an implicit exhaustive

search to find the globally optimum point of (3.1). Since these methods result

in non-practical computational complexity, which dramatically increases with

problem size [12], I chose GP with high-SINR assumption as the optimization-

based benchmark.

3.7 Numerical Results and Discussions

In this section, I present the performance of the proposed methods (DIPNet and

DEPNet) with the conventional benchmarks. The considered performance metrics

include network sum-rate, QoS violation probability, and per sample test time. To

get a good estimate of the computation time, the overall computation time of each

model is measured over the test set. Per-sample computation time is then calculated

by averaging over the data points.

In all the experiments, an FCNN with three 200-dimensional hidden layers is

used as the backbone of DIPNet and DEPNet (Nr). Batch normalization [53] and

Dropout [54] are used to accelerate the training and prevent over-fitting. The same

neural network is used for the PNet as well. For the correction process of DEPNet,

I used gradient descent with momentum for the training and Newton method for

the testing. The momentum is set to 0.5 for all the datasets, and the step size is
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fine-tuned for each dataset individually from the interval of 0.5 to 0.0005. Similarly,

the parameter λ in soft-loss (3.15) is chosen from the interval of 10 to 10000 for each

dataset individually. The number of iterations in the iterative projection is set to 5

and 100 for the training (with Gradient Descent method) and testing (with Newton

method), respectively. α, used for regularizing the hessian in Newton method (3.23),

is set to 10−8 for all the experiments.

For all DNNs, I used learning rate of 0.001, batch size of 10, and learning rate

decay rate of 0.99. ADAM is also used for training the DNNs. All DNNs are trained

for 20 epochs, and early stopping is used to pick the model with the best performance.

That is, after each epoch I check the performance of the model over the validation set

based on a metric like sum-rate. Then, I pick the model that has the best performance

among all epochs. The performance metric for DIPNet and DEPNet is the network

sum-rate. For the PNet, I pick the model that has the minimum QoS violation

probability. This is because choosing network sum-rate as the selecting criteria will

result in a model that has a significant QoS violation probability, which will not be

comparable with DIPNet and DEPNet. Moreover, based on the experiments, λ in the

soft-loss of PNet is set to 1000 for Gaussian datasets and 10000 for path-loss datasets.

This results in a model that has comparable performance in terms of network sum-rate

and QoS violation with DIPNet and DEPNet.

For the implementation, I used PyTorch [55] as the automatic differentiation en-

gine. For implementing the implicit projection in DIPNet, I used the CVXPYlayer

package [21]. ECOS [56] is chosen as the optimization solver of this layer among

the available options. To make the implementation consistent, GP is implemented in

Python using CVXPY package [57]. MOSEK [16], a commercial solver, is used as the
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Table 3.1: A comparative analysis of the proposed DIPNet, DEPNet, and
optimization-based benchmark in terms of sum-rate (in Mbps) and computation

time (in msec).

Dataset ID
Configuration DIPNet DEPNet GP
BSs Users Quota Target Rate Sum-rate Time Sum-rate Time Sum-rate Time

1 5 5 1 10 104.15 2.91 107.35 0.69 119.6 478.47
2 2 6 3 2.5 243.35 2.70 244.6 0.46 244 224.22
3 4 20 5 5 510.05 4.06 515.2 3.06 569.6 7852.19
4 4 20 5 2.5 456.1 4.02 458.95 3.05 512.9 7864.58
5 6 24 4 5 441.25 5.85 444.2 4.99 515.4 35607.32
6 6 24 4 2.5 397.7 6.05 399.85 5.81 466.55 36338.41
7 5 5 1 2.5 55.7 2.92 57.4 0.66 68.35 530.52
8 4 12 3 2.5 258.7 3.82 261.9 1.73 297 2244.52

backbone solver of CVXPY for both GP and Frank-Wolfe. The maximum number

of iterations for Frank-Wolfe is set to 50 and the threshold is set to 0.001. Since the

output of DIPNet is always feasible, I only applied Frank-Wolfe to the output of DIP-

Net, referred to as DIPNet+FW. The experiments are done on a desktop computer

with an Intel Core i7-8700 CPU 3.20GHz and 8GB of RAM.

Figure 3.3: A comparison of sum-rate for GP, PNet, DIPNet, DIPNet+FW, and
DEPNet considering Gaussian datasets.
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Figure 3.4: A comparison of sum-rate for GP, PNet, DIPNet, DIPNet+FW, and
DEPNet considering Path-loss datasets.

3.7.1 A Comparison to Optimization-based Benchmark

Starting with the Gaussian datasets, Fig. 3.3 demonstrates the performance of DIP-

Net and DEPNet in terms of the achievable aggregate network sum-rate as compared

to the conventional GP-based optimization solution. Both DIPNet and DEPNet

demonstrate a close sum-rate to GP while showing zero QoS violation probability (as

shown in Fig. 3.5 (left)). By increasing the problem size, the required computation

time of GP increases drastically (as shown in Fig. 3.6 (left)). DIPNet and DEPNet,

on the other hand, have much reduced computational complexity.

Considering the Path-loss datasets, Fig.3.4 shows that GP outperforms both DIP-

Net and DEPNet in terms of network sum-rate. The difference in network sum-rates
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starts to grow as the problem size increases. When it comes to feasibility and con-

straint satisfaction, the solutions of GP are always feasible, i.e., the constraint viola-

tion probability is zero. The same is true for DIPNet and DEPNet (as shown in Fig.

3.5 (right)). The computation time complexity follows the same trend as Gaussian

case and the time complexity of GP increases exponentially when the problem size

increases (as shown in Fig. 3.6 (right)). Once the Frank-Wolfe algorithm is applied

to DIPNet results, I can observe an apparent boost in the network sum-rate for both

Gaussian and Path-loss datasets (as can be seen in Fig. 3.3 and 3.4). Compared to

GP, it can be seen that the results of DIPNet with Frank-Wolfe enhancement sur-

passes GP across all the datasets. The cost of this boost is an increase in computation

time compared to DIPNet (as can be seen in Fig. 3.6). Although the computation

time of Frank-Wolfe-based DIPNet is higher than other DNN-based methods, it is

still lower than GP, especially when the number of users increases (as in Fig. 3.6).

Finally, Table 3.1 provides more experimental results of the DIPNet, DEPNet, and

GP across various network configurations. Similar to Fig 3.4, GP also, outperforms

DEPNet and DIPNet in terms of network sum-rate. The difference becomes less

significant when the minimum rate and the problem size are small. The main reason

behind the better performance of GP is that the proposed projection methods tend

to find points at the boundary of the feasible set. GP, on the other hand, can search

within the feasible set to find solutions with a higher network sum-rate.

3.7.2 A Comparison to Conventional PNet (Enhanced PCNet)

As shown in Fig. 3.3, PNet always outputs a solution that achieves a lower sum-rate

than DIPNet and DEPNet for Gaussian dataset. On the other hand, for Path-loss
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Figure 3.5: QoS violation probability for GP, PNet, DIPNet, DIPNet+FW, and
DEPNet (Left: Gaussian Dataset - Right: Pathloss Dataset).

Figure 3.6: Computation time comparison for GP, PNet, DIPNet, DIPNet+FW,
and DEPNet (Left: Gaussian Dataset - Right: Pathloss Dataset).

datasets, PNet attains a higher network sum-rate than DEPNet and DIPNet. The

sum-rate performance of PNet can be improved by reducing the γ in the soft-loss.

However, that will result in an increase in the QoS violation probability. In Fig 3.5,

I note that the violation probability of PNet increases with the dimension of the

problem (number of users). Comparing Path-loss and Gaussian datasets, I can see

that the QoS violation probability of PNet increases dramatically while working on

a more realistic dataset, i.e. Path-loss dataset. This is due to the fact that there is

no mechanism in the architecture of PNet to satisfy the QoS constraints. Since PNet

doesn’t utilize any projection functionality, the computation time of PNet is lesser
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than DIPNet and DEPNet (as can be seen in Fig. 3.6).

Considering all these factors, I can conclude that PNet is the best option when

there is no complex hard constraint like QoS. However, once the QoS constraint is

introduced, a projection function has to be utilized to properly handle this constraint

and reduce the violation probability.

3.7.3 DIPNet vs DEPNet

The main difference between DIPNet and DEPNet is the projection function used in

them to satisfy the QoS constraint. Since the DIPNet uses an optimization solver

to incorporate the constraint, the violation probability is always zero. Moreover, it

is easier to implement and does not require tuning some hyperparameters for the

projection function.

DEPNet, however, uses an iterative process to realize the projection functional-

ity. Thus, the feasibility of the final solutions is a function of the iterative process

convergence rate. I used gradient descent with momentum during the training with

five iterations. This choice is computationally efficient and leads to fast training.

However, the step-size of gradient-descent needs to be tuned for each dataset; thus

requiring experimentation. At the test time, I used Newton method, which has a

faster convergence rate than gradient descent, with 100 iterations to make sure the

output is always feasible. As shown in Fig. 3.5, DEPNet achieves zero violation

probability and is more computationally efficient than DIPNet (as can be noted from

Fig. 3.6).

When it comes to sum-rate, the performance of DIPNet is better than DEPNet

in Gaussian datasets but is worse for the Path-loss dataset. This is because the
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Figure 3.7: The comparison of sum-rate during training using different activation
functions for the last layer of (Left: DIPNet - Right: DEPNet).

Figure 3.8: The comparison of constraint violation probability during training using
different activation functions for the last layer of (Left: DIPNet - Right: DEPNet).

iterative process used to define the projection function in DEPNet provides a better

gradient for the backbone neural network. The same trend can be observed in Table

3.1. Although tempting, the better performance of DEPNet comes at the cost of the

careful configuration of the parameters of its projection function.

The computation time of DEPNet is faster than DIPNet in all the experiments

consistently (Fig. 3.6). This is because DIPNet requires solving a quadratic program

in each step. Moreover, since the iterative process used in DEPNet is based on

Newton method and only requires gradient, Hessian, matrix inversion, and matrix

multiplication, DEPNet can be run on GPU as well, which can significantly improve
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the computation time of DEPNet. DIPNet, however, uses an optimization solver for

the projection function, which is not GPU friendly. Hence, DEPNet is superior to

DIPNet in terms of time complexity, but DIPNet is easier from an implementation

perspective.

3.7.4 Activation function of the Final layer of the backbone DNN (Nr)

In this section, I examine the effect of using different activation functions for the last

layer of DIPNet and DEPNet Nr. The experiments are conducted on dataset number

three (12 users) which follows the Path-loss model. For each activation, I recorded

the performance (network sum-rate and QoS violation probability) of the model on

the test dataset after each epoch. I tested the following activations: affine, i.e. not

using any activation, ReLU, Sigmoid, and Softmax, where it is applied in a way to

satisfy the second constraint of (3.4) (Ar ≤ Pmax1).

Starting with the network sum-rate, I can observe that Sigmoid and Softmax

outperform the other activation functions for both DIPNet and DEPNet (as shown

in Fig. 3.7). Comparing these two together, I can see that sigmoid reaches higher

network sum-rate for DIPNet and DEPNet. Coming to the QoS violation probability,

I can see that ReLU and Sigmoid has the least violation in DEPNet (Fig. 3.8 (Right)),

and Softmax and Sigmoid have the least violation in DIPNet (Fig. 3.8 (Left)). Thus,

I can conclude that Sigmoid has the best performance overall.

3.7.5 Gradient Descent (GD) vs Newton method

In this section, I show a comparison of the convergence rate of gradient-descent (GD)

with different step-sizes and Newton method. The experiments are done on the test
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set of dataset number three which follows the Path-loss model. The input to the

algorithms (r) is the output of the backbone neural network (Nr) before training and

after training. The training is conducted with the step-size of 0.007 as it has the best

convergence rate among the others. Moreover, the momentum is set to 0.5 for all the

gradient-descent configurations.

Figure 3.9: The comparison of the convergence rate of different correction processes
before training. GD refers to gradient-descent and the number is the step-size.

Fig. 3.9 shows the dynamics of the projection function before the training. As I

can see, Newton method is the only correction process that can achieve zero violation

probability. Among different step-sizes for GD, I can observe that step size 0.01 and

0.007 achieve lower violation probability than others. I can see that having very large

and small step-sizes (0.1 and 0.0001) results in no progress. Thus, the step-size should

be chosen with experiments to find the right range that helps the convergence of the

projection function. Based on Fig. 3.9, I see that a step-size between 0.001 and 0.01

will work for this dataset. After trying over more datapoints, I chose the step-size of
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0.007 to enjoy fast convergence and avoid any diverging issues.

Figure 3.10: The comparison of the convergence rate of different correction
processes after training.

Fig. 3.10 shows the dynamics of the projection function of DEPNet with different

correction processes after the training is completed. I can see that the gradient-

descent with step-size 0.01, 0.007, and 0.001, achieves better results than before

(without training). I can see that step-size of 0.01 and 0.007 achieve to near 0.25

violation probability, which is a considerable improvement over the 0.8 violation I

observed before training. The Newton method still is the winner of the game by

achieving zero violation probability. Compared to Fig. 3.9, I can see that the conver-

gence of Newton method is improved after training and it converges after almost 10

iterations, which took about 20 iterations to happen before the training. Moreover,

considering the dynamics of the Newton method, I can observe that after training,

I don’t have any oscillations before the convergence. This implies that by training,

the backbone neural network learns to output points that are already very close to
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the feasible set, and just taking a few steps of Newton method will land them on the

feasible set.

3.8 Summary

In this chapter, a novel neural network-based solver is proposed to address the network

sum-rate maximization using power control with QoS and power budget constraints.

To achieve zero constraint violation probability, a differentiable projection framework

is utilized, which uses a projection function to project the output of the backbone

neural network to the feasible set of the problem. The projection function is defined

implicitly using convex optimization and explicitly using an iterative process. The

resulting DIPNet and DEPNet are tested against optimization-based and neural-

based benchmarks. Numerical experiments confirmed zero violation probability of

the output of the proposed models while outperforming the neural-based benchmark

in terms of sum-rate and GP in terms of the computation time. In realistic setups,

however, GP outperformed the proposed models in terms of network sum-rate. The

main reason behind this is the tendency of the proposed projection functions to find

solutions at the boundary of the feasible set. The performance can be improved by

designing other projection functions that can search within the feasible set to improve

the performance.
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Chapter 4

Optimized User Association with QoS Guarantees

User association and power control are two co-related resource management problems

in wireless communication. Thus, solving one without considering the other will result

in a sub-optimal solution. The sole power control was addressed in the previous

chapter with the assumption that user association was already performed. In this

chapter, I consider the problem of joint user association and power control with QoS

constraints which is a non-convex mixed integer non-linear programming (MINLP)

problem.

The considered joint problem is decomposed into power control and user asso-

ciation sub-problems. The power control sub-problem is solved using the discussed

method in the previous chapter. For the user association sub-problem, a DNN-based

solver is developed which uses the discussed projection methods in chapter 3 to handle

the constraints. More specifically, two projection methods are designed for this prob-

lem. The first one uses convex optimization to define the projection implicitly. The

second one uses an iterative algorithm to project the output of the neural network to

the Birkhof polytope [58] using the so-called Sinkhorn normalization [26].

To summarize, the contribution of this chapter are as follows:
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• I propose two DL-based solvers for the user association sub-problem in a multi-

user interference channel with QoS constraints. Two DNNs called Deep Implicit

Projection User Network (DIUNet) and Deep Explicit Projection User Network

(DEUNet) are designed to provide feasible solutions for user association prob-

lem. They use convex optimization and iterative processes, respectively, to

realize the projections.

• The user association networks are trained in an unsupervised manner and com-

pared with both DNN-based and optimization-based benchmarks. For the for-

mer, an FCNN with a softmax layer is used as in [15], and for the latter, a

mixed-integer programming solver from MOSEK package [16] is utilized. The

sum-rate, constraint violation probability, and online testing time are used as

the evaluation metrics.

• The user association DNNs are combined with the power control DNNs (chapter

3) to provide an alternating optimization-based solution for the joint power

control and user association problem, called JUPNet. For the comparison, the

mixed-integer solver from MOSEK package and Geometric Program (GP) is

used to solve user association and power control sub-problems, respectively, in

an alternating manner. The resulting optimization-based solver is used as the

benchmark.

4.1 Problem formulation

I consider the problem of joint power control and user association in a downlink

wireless network with B single-antenna base stations (BSs) and U users. Each BS can

serve Q users at maximum in Q orthogonal frequency channels and BSs are operating
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over the same frequency spectrum. The overall bandwidth is equally distributed

amongst the users of the same BS. While the orthogonal channel allocation at each

BS prevents the intra-cell interference, the inter-cell interference on each channel is

experienced from the neighboring BSs. Thus, the achievable rate of the user u if being

associated to the channel q of BS b, i.e. Rb,q,u, can be modeled as follows:

Rb,q,u(P,H) = W log2 (1 + γb,q,u(P,H)) , γb,q,u(P,H) =
|Hb,q,u|2Pb,q∑B

b̂=1,b̸̂=b |Hb̂,q,u|2Pb̂,q + σ2

where Hb,q,u denotes the channel from channel q of BS b to user u, Pb,q denotes the

transmit power of BS b over channel q, W denotes the amount of bandwidth allo-

cated to the user, and γb,q,u denotes the Signal-to-Interference-to-Noise ratio (SINR)

experienced by user u on channel q of BS b. P ∈ RB×Q and H ∈ RB×Q×U denote

the matrix and tensor containing all values of transmit powers and complex channel

gains composed of distance-based path-loss, shadowing, and fading, respectively. I

assume that the perfect CSI is available at the BS side. Also, σ refers to the thermal

noise power experienced at the users’ receivers, which is the same for all the users. I

also denote the set of all users, BSs, and channels as U = 1, . . . , U , B = 1, . . . , B, and

Q = 1, . . . , Q, respectively. The association decisions are formalized as follows:

Ab,q,u =

 1 if user u if associated to channel q of BS b

0 otherwise
(4.1)
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Moreover, the tensor A ∈ RB×Q×U denotes the collection of all association decisions.

The network sum-rate maximization problem with QoS constraints can then be for-

mulated as follows:

maximize
P,A

R(P,A,H) =
U∑

u=1

Ru(P,A,H) =
U∑

u=1

Q∑
q=1

B∑
b=1

Ab,q,uRb,q,u(P,H)

subject to Pb,q ≥ 0, ∀b ∈ B,∀q ∈ Q
Q∑

q=1

Pb,q ≤ Pmax, ∀b ∈ B

Ab,q,u ∈ {0, 1}, ∀b ∈ B,∀q ∈ Q,∀u ∈ U
U∑
u

Ab,q,u = 1, ∀b ∈ B,∀q ∈ Q

Q∑
q

B∑
b

Ab,q,u = 1, ∀u ∈ U

Ru(P,A,H) ≥ αu, ∀u ∈ U

(4.2)

where the first constraint ensures the non-negative power allocations, and the second

one refers to the transmit power budget of each BS which is considered to be the

same without the loss of generality. The third constraint ensures that the association

variables are binary. The fourth and fifth constraints, respectively, ensure that each

channel of each BS gets exactly one user, and each user is associated with only one

BS and one channel of it. Finally, the sixth constraint ensures the minimum rate

requirement of each user, denoted by αu. This optimization problem has a non-

convex objective and constraint set and involves both continuous (P) and discrete

(A) variables, which makes it MINLP as mentioned before.

To solve this problem, I first decompose (4.2) into two sub-problems to deal with

74



power allocation and user association decisions separately in an alternating manner.

Given a certain Â denote a user association decision, the power control sub-problem

can be formalized as follows:

maximize
P

R(P, Â,H)

subject to Pb,q ≥ 0, ∀b ∈ B,∀q ∈ Q
Q∑

q=1

Pb,q ≤ Pmax, ∀b ∈ B

Ru(P, Â,H) ≥ αu, ∀u ∈ U

(4.3)

where the objective is to find the power allocation P that maximizes the network

sum-rate and meets the QoS constraints. This problem is derived from (4.2) by

assuming that the user association has already happened. The DNN-based solvers

for the aforementioned problem are already discussed in chapter 3.

The user association sub-problem, given the power allocations P̂, is given as fol-

lows:

maximize
A

R(P̂,A,H)

subject to Ab,q,u ∈ {0, 1}, ∀b ∈ B, ∀q ∈ Q,∀u ∈ U
U∑
u

Ab,q,u = 1, ∀b ∈ B,∀q ∈ Q

Q∑
q

B∑
b

Ab,q,u = 1, ∀u ∈ U

Ru(P̂,A,H) ≥ αu, ∀u ∈ U

(4.4)

In what follows, I develop a DNN-based solution for (4.4). For that, I first ensure the

third constraint through a transformation to an equivalent problem. The resulting
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problem is then relaxed to its linear program (LP) counterpart. Due to the special

structure of the constraint set of (4.4), this relaxation will not hurt the optimality

or feasibility of the solution [59]. The resulting LP is then solved using a DNN that

utilizes a projection method for ensuring the feasibility of its output.

4.2 Problem Transformation and its Equivalence

Due to the reliance on gradient-based methods for training DNNs, the continuity

of the variables involved in DNN training is a necessity. Thus, (4.4) with discrete

variables has to undergo some transformations to become suitable for a DNN-based

solver. The first step is to ensure the minimum rate constraint of (4.4). This is done by

formulation of an equivalent problem, whose optimal solution is the optimal solution

of (4.4). The resulting problem has only the first three constraints of (4.4), and takes

the form of the linear sum assignment problem (LSAP) whose feasible set is the set

of permutation matrices [59]. This LSAP can then be converted to its linear program

counterpart by letting the association variables take continuous values between zero

and one. As shown in [59], solving the resulting LP gives a binary-valued solution,

which is the solution of (4.4).

4.2.1 Problem Transformation

Let a new variable Ub,q,u is defined as follows:

Ub,q,u(P̂,H) =

 Rb,q,u(P̂,H) if Rb,q,u(P̂,H) ≥ αu

−S(P̂,H) otherwise
(4.5)
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where S(P̂,H) =
∑U

u=1

∑Q
q=1

∑B
b=1 Rb,q,u(P̂,H). The considered problem can then

be transformed into an LSAP form as shown below:

maximize
A

U(P̂,A,H) =
U∑

u=1

Uu(P,A,H) =
U∑

u=1

Q∑
q=1

B∑
b=1

Ab,q,uUb,q,u(P̂,H)

subject to Ab,q,u ∈ {0, 1}, ∀b ∈ B,∀q ∈ Q,∀u ∈ U
U∑
u

Ab,q,u = 1, ∀b ∈ B,∀q ∈ Q

Q∑
q

B∑
b

Ab,q,u = 1, ∀u ∈ U

(4.6)

The main difference between (4.4) and (4.6) is that the minimum rate constraint is

removed from the feasible set of (4.6) and incorporated to the objective of (4.6).

4.2.2 Proof of Equivalence

In the following, I prove that (4.4) and (4.6) are equivalent mathematically.

Theorem 1: Let Â be the solution of (4.6) for a given power allocation P̂ and

channel H. (4.6) and (4.4) are equivalent if and only if:

• Â is the optimal solution of (4.4) for P̂ and H.

• U(P̂, Â,H) = R(P̂, Â,H)

Proof: Let CU and CR denote the feasible set of (4.6) and (4.4), respectively. Since

(4.6) has all the constraints of (4.4) except for the minimum rate, I have:

CR ⊆ CU (4.7)
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Moreover, for an arbitrary A ∈ CU , I have:

U∑
u=1

Q∑
q=1

B∑
b=1

Ab,q,u =
U∑

u=1

(

Q∑
q=1

B∑
b=1

Ab,q,u) =
U∑

u=1

1 = U (4.8)

Where the second term is true due to the third constraint of (4.6), i.e.
∑Q

q=1

∑B
b=1Ab,q,u =

1. Since A is a binary-valued matrix, (4.8) implies that A has U ones and U(BQ -

1) zeros. Since for the case of one BS and one channel, there is no user association

problem, BQ is greater than one. This means that A always has zeros. Therefore:

R(P̂,A,H) =
U∑

u=1

Q∑
q=1

B∑
b=1

Ab,q,uRb,q,u(P̂,H) <
U∑

u=1

Q∑
q=1

B∑
b=1

Rb,q,u(P̂,H) = S(P̂,H)

(4.9)

where the inequality is strict since A contains zeros and rates are all positive.

Now, I prove that the solution of (4.6) belongs to CR. Consider two arbitrary

points A1 ∈ CR and A2 ∈ CU/CR. Since A2 belongs to CU but not CR, there is at

least a user who does not receive his minimum rate with A2 association. If I denote

this user by û and its associated BS and channel by b̂ and q̂, I have:

Rû(P̂,A2,H) =

Q∑
q=1

B∑
b=1

Ab,q,ûRb,q,û(P,H) = Rb̂,q̂,û(P,H) < αû (4.10)

Thus, following (4.5), I have:

Uû(P̂,A2,H) = Ub̂,q̂,û(P,H) = −S(P̂,H) (4.11)
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Moreover, based on (4.5), I know:

Ub,q,u(P̂,H) ≤ Rb,q,u(P̂,H) −→ Uu(P̂,A,H) ≤ Ru(P̂,A,H) (4.12)

where the equality occurs when the user association A satisfies the minimum rate

requirement of user u, i.e. αu. Therefore:

U(P̂,A2,H) =
∑U

u=1,u ̸=û Uu(P̂,A2,H)− S(P̂,H)

≤
∑U

u=1,u̸=û Ru(P̂,A2,H)− S(P̂,H)

< R(P̂,A2,H)− S(P̂,H) < 0

U(P̂,A2,H) < 0

(4.13)

This means that for every user association A2 that doesn’t satisfy the minimum rate

constraint for all the users, U(P̂,A2,H) becomes negative. On the other hand, based

on (4.12), if a user association, like A1, satisfies the minimum rate requirement of all

the users, U(P̂,A1,H) becomes equal to network sum-rate; thus positive. In other

words:

U(P̂,A,H)

 < 0 if A ∈ CU/CR

= R(P̂,A,H) > 0 if A ∈ CR
(4.14)

Thus, the optimal solution of (4.6) should belong to CR, i.e. Â ∈ CR. Since the

objective of (4.6) is equal to (4.4) when A ∈ CR, Â maximizes (4.4) as well. This

means that Â is the optimal solution of (4.4) and based on (4.14), U(P̂, Â,H) =

R(P̂, Â,H). End of proof.

Theorem 1 shows that I can solve (4.6) instead of (4.4) and get the same optimal

user association.
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4.2.3 LP Relaxation and Equivalence

Now, I show that solving the continuous relaxation of (4.6) results in the optimal

solution of (4.6). This is an important step since it allows us to use a DNN as

the solver. To perform this transition, I first rewrite (4.6) by representing the user

association decision as a matrix and vector.

Let us denote the matrix version of user association, decision as A, which can be

derived as follows:

Ak,u = Ab,q,u :

 b = (reminder of k w.r.t. B) + 1

q = ⌊k−1
B

⌋+ 1
(4.15)

Now, I can see that k goes from 1 to BQ. Since BQ is equal to U, I denote the set of

all values of k as K = {1, . . . , U}.

I can apply the same transformation as (4.15) to Ub,q,u as well. Thus, I can rewrite

(4.6) w.r.t. A as:

maximize
A

U(P̂,A,H) =
U∑

u=1

Uu(P,A,H) =
U∑

u=1

U∑
k=1

Ak,uUk,u(P̂,H)

subject to Ak,u ∈ {0, 1}, ∀k ∈ K,∀u ∈ U
U∑

u=1

Ak,u = 1, ∀k ∈ K

U∑
k=1

Ak,u = 1, ∀u ∈ U

(4.16)

This equation takes the form of LSAP [59]. I can relax the first constraint, letting Ak,u

to be continuous and belong to the interval between zero and one, i.e. Ak,u ∈ [0, 1].
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By doing this, (4.16) becomes a linear program (LP):

maximize
A

U(P̂,A,H)

subject to Ak,u ∈ [0, 1], ∀k ∈ K,∀u ∈ U
U∑

u=1

Ak,u = 1, ∀k ∈ K

U∑
k=1

Ak,u = 1, ∀u ∈ U

(4.17)

The feasible set of this LP is the set of all matrices with values between 0 and 1

whose rows and columns sum to 1. This set is denoted as either Birkhoff polytope or

the set of doubly stochastic matrices [59,60]. Formally, I can write this set as follows:

CB = {A|A ∈ RU×U , A.1 = AT .1 = 1, Ak,u ∈ [0, 1]} (4.18)

where 1 ∈ RU is the vector of all ones. As mentioned in [59], solving the resulting LP

(4.17) results in an integral solution, i.e. a matrix with binary values, that is also the

optimal solution of (4.16). In other words, (4.17) is equivalent to (4.16). Therefore,

I show that instead of solving (4.4), I can solve (4.17).

4.3 Neural network solutions

In this section, I try to develop a DNN-based solution for (4.17). The procedure to

transform a variable optimization problem into a learning problem is described in

detail in Chapters 2 and 3. Thus, I only demonstrate the conclusion of this process.

The main goal is to use a DNN to approximate the functionality between H and

A that implicitly defined in (4.17) using unsupervised learning. For ease of notation,
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I first write the vectorized form of (4.17). Let a ∈ RU2
be the vector derived from

stacking the columns of A ∈ RU×U on top of each other, i.e.

a(u−1)U+k = Ak,u (4.19)

Using (4.19), I can rewrite (4.17) as follows:

maximize
a

U(P̂, a,H)

subject to a ∈ [0, 1]U
2

Da = 1

Ca = 1

(4.20)

Where D,C ∈ RU×U2
are defined as follows [59]:

Ci,j =

 1 if i = ⌊ j−1
U
⌋+ 1

0 otherwise
, Di,j =

 1 if i ≡ j (mod U)

0 otherwise
(4.21)

Let U(P̂,H) ∈ RU×U be a matrix containing all possible values of Uk,u(P̂,H) for

a given datapoint H. Considering (4.20), I have the following:

A = f(P̂,H) = g(U(P̂,H)) (4.22)

Where f : RB×Q×U −→ RU×U is the underlying functionality of (4.20). Since I already

know functionality from H to U (4.5), I try to approximate g : RU×U −→ RU×U using

a DNN.

let NA denote the neural network who gets U and outputs the user association
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vector a. Similar to chapter 3, I have:

a = Na(U,wa) = Proj(r), r = Nr(H,wr) (4.23)

Where r ∈ RU2
is the output of the previous layer and Nr is called the backbone

neural network. Proj : RU2 −→ RU2
. Similar to chapter 3, the projection function

needs to be differentiable to enable the end-to-end training of Na.

In the following, two methods to realize the projection function is explored. The

first method uses convex optimization to implicitly define the projection function.

The second one, uses the Sinkhorn algorithm [26, 61], to explicitly implement the

projection function. A detailed description of these methods are provided in the

following sections.

4.3.1 Implicit Projection

In this section, I use mathematical optimization to define the projection function.

Similar to chapter 3, differentiable convex optimization layer (DCO) [21] is used for

the implementation. Since the feasible set of (4.20) is linear; thus convex, I define

the projection function as follows:

maximize
a

rTa

subject to a ∈ [0, 1]U
2

Da = 1

Ca = 1

(4.24)
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Where r ∈ RU2
is the output of the previous layer. For this projection, the dimension

of r is equal to the dimension of the user association vector. As can be seen, (4.24)

implicitly define the projection of a vector r to the feasible set of (4.20). Moreover,

if I use (4.19) to transform a to a matrix A, I can see that this matrix belongs to

the Birkhoff polytope (CB). Therefore, (4.24) defines a projection unto the Birkhoff

polytope.

Another interesting property of (4.20) is that if I concatenate C and D in a matrix

called T, T will be a unimodular matrix [59]. As a result, the solution of (4.24) will be

integral, i.e. only containing zeros and ones [59]. Thus, the output of this projection

layer will be a valid association matrix (A).

I call the DNN with this layer Deep Implicit projection User association Network

(DIUNet). Since the output of DIUNet always belongs to the Birkhoff polytope, the

loss function used for training DIUNet takes the following form:

l(P̂,A,H) = −U(P̂,A,H) (4.25)

4.3.2 Explicit Projection

In this section, I define a projection function explicitly. Considering (4.17), the main

goal of the projection function is to project the output of Nr to the Birkhoff polytope.

One way to do this is to use the well-known Sinkhorn normalization. Sinkhorn nor-

malization (operator) [26,61] is an iterative process that starts from a given positive-

valued matrix and by iteratively normalizing its rows and columns outputs a matrix

that belongs to the Birkhoff polytope. As mentioned in [61], Sinkhorn operator is also
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differentiable, making it a good fit for the projection function. The detailed descrip-

tion of this operator can be found in [26]. In the following, I give a brief explanation

of this algorithm.

Let R ∈ RU×U denote a U dimensional square matrix. The Sinkhorn operator,

denoted by S(R) is defined as follows:

S0(R) = exp(R),

Sl(R) = T c(T r(Sl−1(R))),

S(R) = lim
l→∞

Sl(R).

(4.26)

The first line (S0) is the initialization of this algorithm, proposed in [26]. T c and T r

are operators that normalize the columns and rows of the input matrix, respectively.

These operators are defined below:

T c(R) = R⊘ (R11T ), T r(R) = R⊘ (11TR) (4.27)

Where 1 ∈ RU×1 is a U dimensional column vector of ones and ⊘ is the element-wise

division operation. As proved in [26], I have:

A = lim
t→0

S(
R

t
) (4.28)

WhereA is an association (permutation) matrix, i.e. a binary-valued doubly-stochastic

matrix. In other words, when t gets close to zero, the output of Sinkhorn operator

becomes close to a vertex of Birkhoff polytope. This is an interesting theoretical

property of this process.
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In practice, however, I cannot realize the infinite iterations of (4.26) or zero lim-

its of (4.28). The latter is addressed by using the truncated version of Sinkhorn

normalization [61] and the former is realized by choosing a small t. The truncated

version performs a finite number of iterations, denoted by SL. As mentioned in [61],

the truncated version of Sinkhorn normalization (SL) is differentiable; thus can be

incorporated with the backbone neural network, and enjoy the end-to-end training.

The projection function, therefore, can be defined as follows:

A = Proj(R) = SL(R) (4.29)

Where R is the matrix version of r, and can be derived via (4.19). A is a doubly

stochastic matrix. Since this DNN uses an explicit projection function, I call it Deep

Explicit projection User association Network (DEUNet). The following loss function

is used for training:

l(P̂,A,H) = −U(P̂,A,H) + λ(||1−A11T ||22 + ||1− 11TA||22) (4.30)

Since finite iterations of Sinkhorn operator are used for the projection purpose, there

is no guarantee that the output lies inside the Birkhoff polytope. Thus the second

term is added to the loss to penalize the output if it does not belong to the Birkhoff

polytope. Moreover, λ is a hyperparameter that controls the relative importance of

minimizing the second term versus the first term.
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4.3.3 Neural Network Architecture

Since the main concern of this work is the design of the projection functions, I use

a fully connected neural network (FCNN) as the backbone (Nr). The architecture is

composed of fully connected layers with ReLU activation function for all the layers.

The input to the neural network is the vectorized version of Û(P̂,H). Û(P̂,H) is a

tensor containing all possible rates Rb,q,u(P̂,H) in which every entry that is smaller

than αu is set to zero. In other words, the input if similar to U(P̂,H), but I replaced

the −S(P̂,H) with zero. The input is further normalized across the datapoints to

fasten the training of DNN.

The dimension of the output layer (d) is set to U2 for both of the projection

methods. Moreover, I added a sigmoid non-linearity to Nr for the implicit projection.

The reason behind this is that it helps the optimization problem of the implicit

projection to be solved faster.

During the training, the output of the DIUNet and DEUNet (A) is directly fed to

the loss function. At the inference, however, I pick the highest value in each column

of A and replace it with one. The other values will be replaced with zero to get a

clean binary matrix. This may result in BS’s quota violation, i.e. a BS may get more

than Q users. This metric is used as a comparison metric in the experiments.

4.3.4 Ensuring the QoS by masking

I use a trick to prevent the DNNs to output an association that violates the QoS

constraints in (4.4). The main idea behind this trick is to change the output of the

backbone neural network (r) in a way that prevents the projection function to output

an association matrix that violates the minimum rate constraint. At the same time,
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this change should not affect the acceptable user association decisions. I call this trick

QoS-Masking.

Given a datapoint H, I can calculate all possible rates (Rb,q,u(P̂,H)) that users

can experience under every possible assignment. As a result, I already know which

rates are smaller than the minimum rate requirement of a user u (αu). Thus, similar

to (4.5), I can define the following quantity:

Ib,q,u(P̂,H) =

 0 if Rb,q,u(P̂,H) ≥ αu

−∞ otherwise
(4.31)

Now by applying (4.15) and (4.19), I can reshape I ∈ RB×Q×U to i ∈ RU2
. In this

way, i has the same dimension as r and can be added to it:

r̂ = r+ i (4.32)

Where r̂ only differs from r in the elements that correspond to a rate should not be

selected. In the following, I show that if I input r̂ to both of the projection functions,

introduced before, the resulting association matrix won’t violate the QoS constraint.

For the implicit projection, I can see that the goal of the objective function of

(4.24) is to maximize r̂Ta. Consider an element of r̂ like rj which is −∞. Since all

the elements of a are between zero and one, the corresponding element of a to rj (aj)

has to be zero to prevent the objective function of (4.24) to become −∞. Thus, the

entries of the resulting association matrix will be zero for wrong decisions.

For the explicit projection, first, I reshape r̂ to a matrix R̂ following (4.19). Con-

sidering the initialization of the Sinkhorn normalization the output of S0 = exp(R̂)
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will be zero for the elements of R̂ that are −∞. Moreover, since every iteration of

Sinkhorn normalization only involves dividing the elements of the input matrix by

some values, if an element of the matrix becomes zero it will stay as such after the

subsequent iterations. Thus, the resulting association matrix will have zero values

for the incorrect decisions. The same is true if I apply a column-wise softmax. Thus,

by using this trick, I will prevent the DNNs to output an association that does not

guarantee the QoS requirement of the users.

4.4 Experimental Set-up and Benchmarks

In this section, the dataset specifications, system set-up, and relevant benchmarks to

evaluate the performance of DIUNet and DEUNet are presented.

4.4.1 DataSet Generation

For the experimental evaluation, I created six datasets following Gaussian and Path-

loss models, as described in chapter 3. To be more specific, in Gaussian datasets,

the channel coefficients follow the symmetric interference channel model with inde-

pendent and identically distributed (i.i.d.) Rayleigh fading, i.e. hb,q,u ∼ CN (0, 1).

The maximum power is set to 1mW and the thermal noise power is assumed to be

0.01µW [51], and the transmission bandwidth is 5 MHz. For Path-loss, channel co-

efficients that are composed of large-scale path-loss, shadowing, and fading. The

dataset generation has the following steps. First, the locations of the BSs and users

are determined by random sampling from a 500 m ×500 m area. I consider that the

distance between the two closest BSs, BSs and user, and between closest users, should

be at least 100 m, 5 m, and 2 m, respectively. The carrier frequency is 2.4 GHz, the
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transmission bandwidth is 5 MHz, and the noise spectral density is set to -169 dBm.

The remaining details of the channel model can be found in [52].

In total, six datasets were generated. For Gaussian, the number of BSs in all

the datasets is set to 2 (B = 2) and the minimum rate is set to 2.5Mbps. Different

configurations are specified with dataset id. ID 1 - 3 refers to dataset with 2, 4, and

6 users, respectively, where Q = U/B. For Path-loss, the number of BSs is set to 4

and the minimum rate is set to 2.5Mbps, and the number of users ranges form 4 to

12. For each configuration, 100,000 data samples are generated and divided to train,

validation, and test with 0.9, 0.05, 0.05 ratios, respectively.

For each configuration, I apply the same feasibility check as chapter 3 to filter

out the datapoints for which there is no combination of user association and transmit

power that can ensure the minimum rate constraint. Moreover, I use the MinPower

algorithm introduced in section 3.6.2 to generate the minimum transmit power re-

quired to fulfill the QoS constraint. This transmit power is used as P̂ in (4.17).

4.4.2 Benchmarks

Three benchmarks are used for the evaluation purpose: UNet, similar to the model

proposed in [15], an Integer linear program solver (ILP) (fromMOSEK’s package [16]),

and a linear program solver (LP) (from ECOS’s package [56]) as the neural network

and optimization-based benchmarks, respectively. The details of these benchmarks

are presented below:

• UNet: an FCNN that has the same backbone architecture as DIUNet and

DEUNet, which was introduced in [15], is used as the neural network solver.

Instead of using the introduced projections, UNet applies a row-wise softmax

90



on the rows of the output matrix; ensuring that the sum of the rows of the

output matrix is one. Similar to DEUNet’s loss function, a term is added to its

loss function to penalize its output of it in case its columns do not sum to one.

• ILP and LP: are used to solve the user association problem in its original form

(4.4) and transformed version (4.17), respectively.

4.5 Results and Discussion

In this section, the experimental results of the comparison of the proposed methods

(DIUNet and DEUNet) with the benchmarks are provided. Average network sum-

rate, qos violation probability, quota violation probability, and per sample test time

are used as the comparison metrics. Similar to chapter 3, the methods are tested over

two thousand datapoints and the computation time was obtained by averaging over

ten independent trials over the datapoints.

In all the experiments, an FCNN with three 200-dimensional hidden layers with

ReLU activation is used as the backbone DNN (Nr). To accelerate the training and

prevent over-fitting, Batch normalization [53] and Dropout [54] are used, respectively.

All DNNs are trained for 20 epochs with learning rate of 0.001 and batch size of 10 and

learning rate decay of 0.99 using ADAM optimization algorithm [62]. The λ is set to 1

for DEUNet and UNet. Furthermore, PyTorch [55] is used for DNN’s implementation.

For ILP and LP, I used the CVXPY [57] package with MOSEK’s [16] and ECOS’s [56]

solver’s backbone, respectively. The experiments were done on a desktop computer

with an Intel Core i7-8700 CPU 3.20GHz and 8GB of RAM. In the following, I

compare the performance of all the methods.
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4.5.1 ILP and LP vs DIUNet and DEUNet

Besides Theorem 1, the equivalency of (4.4) and (4.17) can be experimentally verified

by considering Fig. 4.1 and 4.4.

As expected, solving the equivalent linear program (4.17) instead of the original

integer program (4.4) is computationally more efficient (Fig. 4.3).

Figure 4.1: Comparison of network sum-rate for ILP, LP, DIUNet, DEUNet, and
UNet. (Left: Gaussian Dataset - Right: Pathloss Dataset).

Considering the DIUNet, I can observe that it results in a network sum-rate that

is very close to ILP and LP for both Gaussian and Path-loss datasets (Fig. 4.1).

Although the computation time of DIUNet is significantly lower than ILP, it is slower

than LP. The main reason is that a linear program is used to formulate the projection

function of DIUNet (4.24). Both linear programs can be solved in the same time, but

DIUNet has a DNN backbone as well. This explains the difference between the

computation time of DIUNet and LP.

DEUNet, on the other hand, performs very close to ILP and LP in terms of

network sum-rate, but has a lower time complexity than LP. The downside of it is

that once the number of users starts to increase the BS quota constraints start to get

violated (Fig. 4.5). The violation is negligible comparing to computational benefit of
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Figure 4.2: Comparison of QoS violation probability for DIUNet, DEUNet, and
UNet with and without using the masking technique.

it; thus, in applications where time is a critical factor, DEUNet can be used instead

of LP.

4.5.2 UNet vs DIUNet vs DEUNet

Comparing DIUNet and DEUNnet, I can see that they perform very closely in terms

of network sum-rate. However, DEUNet is faster than DIUNet since it doesn’t require

solving an optimization problem for the projection function. When it comes to the

BS quota violation, however, I can see that DIUNet never violates this constraint,

but DEUNet has a negligible probability of violating it.

Comparing both of the models with UNet, I can see that it always violates the

BS quota constraint a probability that grows as the problem size increases. This

becomes a significant downside once considering a realistic setup with high number of

users like 8 and 12 users of Path-loss datasets (Fig. 4.5 (right figure)). The network

sum-rate of UNet gets better than even LP once the problem size increases. This is,
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Figure 4.3: Comparison of computation time for ILP, LP, DIUNet, DEUNet, and
UNet. (Left: Gaussian Dataset - Right: Pathloss Dataset).

however, at the cost of violating the BS quota constraint. Moreover, I can observe

that since UNet doesn’t have a complex projection function, it can outperform all of

the methods in terms of computation time.

Figure 4.4: Comparison of QoS violation probability for ILP, LP, DIUNet, DEUNet,
and UNet. (Left: Gaussian Dataset - Right: Pathloss Dataset).

As a final note, I can conclude that if the BS quota constraint is not strict and

time is a critical factor, the best method is UNEt. Otherwise, the best choice is

LP. DEUNet, as mentioned before, lies in between. Moreover, by considering all the

DNN-based methods, I can see the effect of the masking trick in Fig. 4.2, which

results in zero QoS violation probability.

94



Figure 4.5: Comparison of BS quota violation probability for ILP, LP, DIUNet,
DEUNet, and UNet. (Left: Gaussian Dataset - Right: Pathloss Dataset).

4.5.3 Alternating Optimization vs DIPNet + DIUNet

In this experiment, I use DIPNet from the previous chapter and DIUNet to solve

power control and user association in a joint manner (problem (4.2)). Starting from

DIUNet, I get the user association decision, which is then passed to DIPNet to get

the transmit powers. I call this method JUPNet. For the optimization-based solver,

called ALT, I used the LP solver from this chapter and GP from the previous chapter.

They work in an alternating manner, starting from user association, for five iterations

to solve this problem.

Table 4.1: Joint User Association and Power control

Dataset ID JUPNet Alternating Optimization (ALT)

Rate Violation Test time Rate Violation Test time

1 4.44 0 0.91 4.39 0 124.45

2 8.95 0 1.05 8.69 0 481.27

3 13.06 0 1.14 12.87 0 1076.92

95



Figure 4.6: A comparison of DNN (JUPNet) and ALT (Left: network sum-rate -
Right: Computation Time).

As I can see from Table 4.1, the DNN-based solver outperforms the alternating

optimization approach in both network sum-rate and time complexity, while achieving

zero QoS violation probability.

4.6 Summary

In this chapter, the user association problem with QoS constraint is addressed. The

problem is first transformed to its continuous equivalent to make it a good fit for

DNN-based solvers. A trick called masking is developed for DNNs to systematically

address the QoS constraints. Two projection function is further designed to project

the output of the DNN to Birkhoff polytope, resulting in DIUNet and DEUNet.

Experimental results showed superior performance of the proposed methods compared

to the DNN-based benchmark in terms of BS quota violation. Cascading DIUNet

and DIPNet from the previous chapter resulted in a joint solver of user association

and power control, which outperformed the optimization-based benchmark in terms

of time complexity and network sum-rate. The solution can be applied to various

problems in 6G Terahertz networks [63,64].
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Chapter 5

Conclusions and Future Directions

5.1 Conclusion

In this work, I utilize DNNs to solve power control and user association problems

in wireless communication systems. To handle the constraints of the optimization

problems, specific projection functions were designed. For both of the problems, I

utilized both an optimization problem and an iterative process to define the projection

functions implicitly and explicitly, respectively.

For the power control, I observed that using a DNN with implicit or explicit

projection can significantly reduce the computation time while ensuring the QoS

constraint. Although the implicit projection function always satisfied the constraints,

the explicit projection showed some violation probability for more complex channel

models (Path-loss). The upside of the explicit projection is its faster speed and GPU-

friendly implementation. Moreover, the Frank-Wolfe algorithm was added after the

DNNs, and I observed a boost in terms of network sum-rate. The cost was an increase

in time complexity, which still was lower than the optimization-based benchmark. The

solution can be used for scheduling problems such as [65–67]
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Despite the continuous nature of power control, user association deals with discrete

variables. To make it a good fit for DNNs, I applied a new transformation, which

transformed the original integer program into a linear program (LP). I proved that

the optimal solution of LP is the same as the original problem and will satisfy the QoS

constraint. Two projection functions were proposed, afterward, to solve this problem

with DNNs. The implicit projection uses mathematical optimization for defining the

projection function. The explicit one, on the other hand, uses an iterative process.

Furthermore, a new trick called masking was used to make sure that the output

of DNN-based solvers won’t violate the QoS constraint. In the experiments, both

projection methods performed very close to optimization-based solvers in terms of

network sum-rate. Moreover, I observed that the implicit one had a higher time

complexity than LP, but the explicit one had lower time complexity. The cost of it was

that explicit projection violates the BS quota constraint as the problem size grows,

which was negligible. Finally, the DNNs with implicit projection were combined

to solve the joint power control and user association problem. The results showed

zero QoS violation probability and a close network sum-rate to optimization-based

approaches while having low computational complexity. The solution can be used for

wireless scheduling problems in various context such as [65–68]

5.2 Future Directions

5.2.1 Synthetic vs Real-world data

Although the proper choice of architecture can provide lower sample complexity, bet-

ter generalization, and scalability, other considerations have to be taken into account

before moving toward the practicality of L2O. Most of the existing works made an
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assumption of accessibility of the perfect channel state information (CSI) [12,37], and

used synthetic data to train and validate their model. This is not true in practice and

an estimation error is always at place [37]. Moreover, there is no consensus on what is

the appropriate data to use. Although most of the works released their experiments

on CSI, consisting of path-loss shadowing and fading effects, some works tried only

path-loss or GPS information to come up with RRM solutions [69].

5.2.2 Injection of prior knowledge

It is well-known theoretical evidence that FCNNs with at least one hidden layer are

universal function approximators [19]. This means that as long as the mapping that

I am trying to approximate shows some qualities, e.g. smoothness, [27], the FCNNs

family contains a function that satisfies the chosen approximation error. To find this

function via learning, I can either cover most of the input space, which is impossible

for higher dimensions due to the curse of dimensionality [27], or reduce the search

space of the potential functions [70]. This means that I first identify the more specific

conditions that the desired mapping has, and then try to search over the ANNs that

systematically satisfy those conditions, this will reduce the sample complexity while

providing a better generalization ability [27,70].

This is known as finding proper inductive biases or priors for the task at hand. One

successful example is the use of convolution layers on images since both demonstrate

the transition equivariance property [70]. The quest for identifying priors of RRM

problems in wireless is still in its infancy but has shown good results over just using

FCNN [12] or blindly applying architectures that have worked well on the other

domains [6].
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Since the data domain in RRM problems are different from image or text in com-

puter vision (CV) and natural language processing (NLP), a skeptical mindset needs

to be in place while applying neural network-based models adopted from DL com-

munity to RRM problems. This has to be followed with an effort toward identifying

underlying prior knowledge of RRM problems and designing models based on these

priors. An example of this is the works in [71], [37], where the permutation equivari-

ance of wireless tasks is identified and utilized by designing permutation equivariant

linear maps and using graph neural networks, respectively. This resulted in lower

training sample complexity and enhanced scalability.

5.2.3 Unified Optimization to DL Conversion

Another major issue is the lack of a unified framework for converting optimization

problems in RRM into learning problems with clear guidance on the prepossessing

of the data (CSI), levels of supervision, choice of the loss function and evaluation

metrics, and the architectural design of the neural network.

5.2.4 Customized Projections

One can design a better objective function by making k to have learnable parameters

or to reflect the qualities of a potential maximizer of (2.1). By parametrizing k, I can

have parameters in the objective that can potentially be a function of the problem

data, i.e. θ = a(x). I can go one step further and make these parameters learnable,

i.e. θ = a(x;wθ) where a is a parametric function which can be realized by a DNN.

Furthermore, one can redefine (2.5) to have different constraints or reformulation of

the main problem’s constraints. One example is to use a convex approximation in the
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presence of non-convexity in the original problem’s feasible set. This can be beneficial

from a practical perspective and will expand the applicability of (2.5) as a projection

function. These are directions left for future endeavors.
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