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ABSTRACT 
 

Rock mechanics engineers have increasing access to large quantities of data from underground 

excavations as sensor technologies are developed, data storage becomes cheaper, and computational 

speed and power improve. Machine learning has emerged as a viable approach to process data for 

engineering decision making. This research investigates practical applications of machine learning 

algorithms (MLAs) to underground rock engineering problems using real datasets from a variety of rock 

mass deformation contexts. It was found that preserving the format of the original input data as much as 

possible reduces the introduction of bias during digitalization and results in more interpretable MLAs.  

A Convolutional Neural Network (CNN) is developed using a dataset from Cigar Lake Mine, Saskatchewan, 

Canada, to predict the tunnel liner yield class. Several hyperparameters are optimized: the amount of 

training data, the convolution filter size, and the error weighting scheme. Two CNN architectures are 

proposed to characterize the rock mass deformation: (i) a Global Balanced model that has a prediction 

accuracy >65% for all yield classes, and (ii) a Targeted Class 2/3 model that emphasizes the worst case 

yield and has a recall of >99% for Class 2. The interpretability of the CNN is investigated through three 

Input Variable Selection (IVS) methods. The three methods are Channel Activation Strength, Input 

Omission, and Partial Correlation. The latter two are novel methods proposed for CNNs using a spatial and 

temporal geomechanical dataset. Collectively, the IVS analyses indicate that all the available digitized 

inputs are needed to produce good CNN performances.  

A Long-Short Term Memory (LSTM) network is developed using a dataset for Garson Mine, near Sudbury, 

Ontario, Canada, to predict the stress state in a FLAC3D model. This is a novel method proposed to semi-

automate recalibration of finite-difference models of high-stress environments. A workflow for optimizing 

the hyperparameters of the LSTM network is proposed. The performance of the LSTM network predicting 

the three principal stresses is improved as compared to predicting the six-component stress tensor, with 

corrected Akaike Information Criterion (AICc) values of -59.62 and -45.50, respectively.  

General recommendations are made with respect to machine learning algorithm development for practical 

rock engineering problems, in terms of how to format and pre-process inputs, select architectures, tune 

hyperparameters, and determine engineering verification metrics. Recommendations are made to 

demonstrate how algorithms can be rendered interpretable with the application of tools that already exist in 

the field of machine learning. 
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CHAPTER 1.   INTRODUCTION 
 

1.1 Research Motivation 

A significant cost of developing underground excavations is maintaining their stability by maximizing the 

utilization of the natural stress redistributions around the excavation and minimizing the need for human-

made ground support. Conventional rock engineering favours two categories of analysis: support 

recommendations based empirical design charts, and numerical modelling based on a constitutive 

framework. In the former, case studies have been assembled to represent common rock mass deformation 

mechanics and are used to recommend rock support schemes, for example the Q tunneling index (Barton 

et al., 1974) and the Rock Mass Rating system (Bieniawski, 1993). In the latter, a numerical model is 

developed using a constitutive behaviour that most closely represents the observed rock mass behaviour. 

For example, the Hoek-Brown failure criteria modified by the Geological Strength Index (GSI) (Hoek & 

Brown, 2019) or the Damage Initiation and Spall Limit (DISL) (Perras & Diederichs, 2016) approaches used 

for brittle failure, or the phenomenological approach for squeezing ground (Barla & Borgna, 1999).  

In general, empirical approaches are used in preliminary stages of design and then refined using numerical 

approaches in later stages of detailed design. In both cases, site specific data is used to validate the outputs 

of the approach being used. In the case of an observational design approach, as the project progresses 

more data becomes available and is used to calibrate the models and update design criteria (Peck, 1969). 

However, the calibration of physically based models is generally time-consuming, tedious, and in practice 

is often done using deterministic values or brute-force statistical methods. Uncertainty is introduced 

because it is uncommon that a complete dataset is available to evaluate rock mass behaviour, due to the 

time constraints on doing so (i.e., developing multiple models with all permutations of input data). Numerical 

model performance is evaluated by comparing observed ground conditions to modelled conditions, where 

inputs are manipulated until observed conditions are reproduced as closely as possible. Issues arise when 

the initially chosen framework does not capture the full range of the observed rock mass behaviour. In this 

case, the modelling technique chosen cannot account for all observed phenomena, and at times model 

refinement or redevelopment is time prohibitive.  

There is often insufficient time, project schedule, and computational/expert resources to investigate 

complex rock mass phenomena in detail, particularly once a project is in progress. The large amount of 

multivariate data that characterizes complex and nuanced patterns of rock mass behaviour creates the 

ideal conditions to use machine learning algorithms. Machine learning allows for quick and efficient 

computation of large, multi-variate datasets to extract relationships between input variables and the chosen 

target. In the context of rock engineering, this allows practitioners to make use of all available data relevant 

to the predictand, and then analyze the trained algorithm to determine the most influential parameters to 

the present rock mass deformation mechanism. This understanding of the physical system can then be 
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used to inform design decisions, determine which data should be collected and in how much detail, and 

predict rock mass behaviour as additional data is collected to forecast excavation stability. 

The purpose of this research is to advance the applications of machine learning algorithms, and Artificial 

Neural Networks (ANNs) in particular, to practical underground rock engineering design in a way that is 

useful and accessible for practicing rock engineers. To accomplish this, two datasets from mines 

representing endmember rock mass behaviour are used to develop algorithms to forecast targets relative 

to excavation behaviour. 

The first dataset is from Cigar Lake Mine, located in northern Saskatchewan, Canada and owned by 

Cameco Inc. Cigar Lake Mine is situated in a challenging squeezing ground environment, and the ore 

extraction tunnels experience high tunnel convergences. For this dataset, conventional geotechnical 

mapping as well as radial tunnel survey measurements are used to forecast yield to tunnel liner elements 

such as shotcrete and rock bolts. The Cigar Lake Mine ground control engineers typically allow the tunnel 

convergence to occur up to a given threshold, and then budget to complete rehabilitation at necessary 

intervals. A Convolutional Neural Network (CNN) is developed for Cigar Lake Mine to forecast the tunnel 

liner yield classes to improve the mine’s ability to schedule and budget for these rehabilitation activities.  

The second dataset is from Garson Mine, located near Sudbury, Ontario, Canada and owned by Vale. 

Garson Mine experiences seismic events related to the high-stress environment and stope mining. This 

dataset consists of a database of microseismic events and a previously calibrated FLAC3D model of the 

mine. A consultant to the owner of the mine has developed the FLAC3D model to back-calculate the 

stresses in the mine using the major seismic events. This stress model is then used to determine stope 

removal sequencing to keep mine personnel and assets safe as mining progresses. Model recalibration is 

tedious, time-consuming, and computationally expensive, and so a Long-Short Term Memory (LSTM) 

network is developed to use the time-series microseismic data to forecast the stresses in the FLAC3D 

model, thereby allowing for real-time model recalibration as new microseismic events occur. 

These case studies are used to demonstrate practical approaches to developing machine learning 

algorithms for application to real-world geomechanical data and rock mass phenomena. Based on these 

and a literature review, tools are recommended for the development of machine learning algorithms for 

practical rock engineering problems. 

1.2 Background 

This dissertation contains research on applying machine learning to time-dependent squeezing and high-

stress seismogenic rock masses. Both rock mass deformation types are introduced briefly below, including 

the current state of the practice in terms of failure mechanism identification, characterization, and numerical 

modelling. These topics are provided as context for this dissertation and are not investigated in detail as 

part of the research scope. A brief introduction to machine learning in the context of rock engineering is 

also provided. 
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1.2.1 Time-Dependent Squeezing 

Squeezing ground can be identified as large time-dependent convergence during tunnel excavation due to 

induced stresses and the material properties and takes place when the rock mass around the tunnel is 

pushed beyond the limiting shear stress and creep is initiated (Barla, 2002). The magnitude of tunnel 

convergence is related to geological conditions, in-situ stress relative to rock mass strength, and ground 

water and pore pressure. Excavation and ground support also play a crucial role in this time-dependent 

yielding process. For example, if support is installed immediately, it will build-up load, whereas if its 

installation is delayed after excavation, then stress redistribution occurs and the rock mass moves into the 

tunnel.  

Empirical approaches exist to classify squeezing, for example Singh et al. (1992) based on Barton’s Q 

(Barton et al., 1974), or Goel et al. (1995) based on the rock mass number Terzaghi’s N. In general, 

squeezing is categorized by the tunnel convergence as a percentage of the tunnel diameter (Singh & Goel, 

1999): mild squeezing is 1-3%, moderate squeezing is 3-5%, and high squeezing is >5%. Semi-empirical 

approaches have also been developed to further constrain these classifications (Aydan et al., 1993; Hoek 

& Marinos, 2000; Jethwa et al., 1984). Although these semi-empirical approaches are useful for estimating 

potential tunnelling problems due to squeezing conditions, they are not a substitute for more sophisticated 

methods of analysis (Barla, 2002). 

Several computational models, such as the Convergence–Confinement Method (CCM) (Panet et al., 2001), 

axisymmetric models, and three-dimensional (3D) Finite Element and Finite Difference simulations, have 

been developed in the literature to represent tunnelling in rock with high squeezing potential (K. Zhao et 

al., 2015). Research has suggested that when the underlying assumptions of CCM or axisymmetric models 

are violated, true 3D modelling is required (Schürch & Agnagnostou, 2012). Ongoing research attempts to 

further improve 3D numerical modelling approaches to squeezing ground (e.g., Hasanpour et al., 2018; 

Kabwe et al., 2020), however these can be computationally expensive and difficult to parameterize 

correctly. 

1.2.2 High-Stress Seismicity 

Large seismic events are one of the greatest risks in deep hard rock excavations, particularly mines. These 

events have the potential to generate violent rocks bursts, which pose a risk to excavation stability, 

equipment, and personnel safety. Seismic hazard is defined as the likelihood of occurrence of a seismic 

event of a particular size (L. G. Brown et al., 2020), and each event gives information about the rock mass 

conditions at time of failure, such as increasing stress or yielding geological features (Hudyma et al., 2008).  

Microseismic monitoring systems have gained popularity as a means of strategic risk mitigation (Yao & 

Moreau-Verlaan, 2010), with more than 70% of underground hard rock mines in Ontario, Canada using 

them (Hudyma & Brown, 2020). When the frequency of events is plotted versus their magnitude, the slope 

(or b-value) can be used to determine the mechanism of the seismicity occurring (e.g., fault slip, direct 

stress change due to mine blasting) (Hudyma et al., 2008). Frequency-magnitude analysis of seismic 
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events is one of the most widely used techniques for seismic hazard analysis. More sophisticated 

techniques, such as sequential spatial clustering and fractal dimension (Cortolezzis & Hudyma, 2018), have 

also emerged in recently to analyze microseismic data and extract information about the rock mass 

behaviour. 

The data collected from microseismic monitoring systems can be combined with numerical modelling 

methods to improve the overall understanding of the rock mass behaviour. Numerical back analysis is a 

common approach to developing a model that replicates the observed ground behaviour, thus providing an 

estimation of the stress regime changes as mining progresses (Ju et al., 2019; Kalenchuk, 2017; Kalenchuk 

et al., 2014; Ma et al., 2018; Xue et al., 2021). Reducing numerical uncertainty of these complex numerical 

models is achieved via calibration, which must be undertaken with care and keeping in mind the practical 

limitations of the numerical models (Kalenchuk, 2019). 

1.2.3 Machine Learning in Rock Engineering 

Machine learning algorithms are tools that have gained popularity over the last several decades across 

medicine, technology, applied science, and engineering fields due to their flexibility in predicting a given 

output in the presence of appropriate input data. These data driven approaches are capable of processing 

large volumes of data with greater precision and accuracy than manual data analysis techniques (Liu & 

Yang, 2005; Marsland, 2014; Papadopoulos et al., 2000). Artificial Neural Networks (ANNs) are an 

algorithm type comprised of a series of highly interconnected nodes and a series of parallel nonlinear 

equations, and are particularly powerful for pattern recognition (M. Khan et al., 2017c; Lecun et al., 2015; 

Marsland, 2014). The two ANNs explored in detail in this dissertation are the CNN and the LSTM network.  

CNNs are efficient at processing spatial and temporal dependencies in image or raster datasets. They were 

originally developed for handwritten digit classification (LeCun et al., 1989), and have evolved into a 

common tool in the field of computer vision (Zeiler & Fergus, 2014). CNNs incorporate spatial dependencies 

by extracting features from adjacent pixels, as well as their change over time, during the algorithm training 

process. LSTM networks are designed to process entire sequences of data using recurrent nodes, which 

allows them to “remember” and “forget” information during algorithm training (Mandic & Chambers, 2001). 

This allows the algorithm to retain useful parts of a time series input history, and discard information that is 

not useful for good prediction of the output.  

To date, research at the intersection of machine learning and rock engineering has included predicting: 

rock mass properties (Sklavounos & Sakellariou, 1995; Song et al., 2015), constitutive behaviour (Kumar 

et al., 2013; Millar & Clarici, 2002), slope stability (Ferentinou & Fakir, 2018; Hibert et al., 2017; Mayr et al., 

2018), tunnel performance (Delisio et al., 2013; Koopialipoor et al., 2019; Mahdevari & Torabi, 2012), and 

rock bursts (Pu et al., 2018; Ribeiro e Sousa et al., 2017). However, machine learning applications in rock 

engineering practice are in their infancy despite being widely used and generally accepted for decades in 

other risk assessment fields, such as flood forecasting (Abrahart et al., 2012).  
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A comprehensive review on machine learning in underground rock engineering was published (Morgenroth 

et al., 2019) and is presented in CHAPTER 2.  An Overview of Opportunities for Machine Learning Methods 

in Underground Rock Engineering Design. 

1.3 Thesis Objectives 

Specific objectives for this research have been identified based on gaps in the current literature and in 

standard engineering practice. While there are increasing publications in the academic literature on the 

development of machine learning solutions to rock engineering problems, these have not yet become 

standard practice due to the perceived opacity of machine learning algorithms. This research aims to 

demonstrate the development of interpretable machine learning for both classification and regression 

problems. Objectives 1 and 2 are concerned with a classification algorithm developed for Cigar Lake Mine, 

where data sparsity is an obstacle. The input data is formatted similarly to familiar tunnel mapping, and an 

investigation and ranking of input variables is completed to uncover how the data is used in the algorithm. 

Objective 3 addresses a regression problem with an application to numerical model calibration for Garson 

Mine. Input data is formatted to preserve the spatial and temporal dependencies, and the algorithm outputs 

are imported into an industry-standard numerical modelling code. Objective 4 makes use of the lessons 

learned in fulfilling Objectives 1-3 to recommend machine learning tools and processes that can be applied 

to solving practical rock engineering problems. 

The dissertation objectives are as follows: 

1. Develop a classification machine learning algorithm using standard geotechnical mapping data from a 

real project 

The first objective of this research is to develop a classification machine learning algorithm that takes 

standard geotechnical mapping data as inputs to forecast and classify yield to tunnel liner support elements. 

The aim of the algorithm is to forecast the worst liner yield, so that the ground control engineers can 

intervene in advance to prevent the need for complete tunnel reprofiling. This is currently a reactive and 

manual intervention process, whereby the intervention occurs after the yield is critical and the mine drifts 

cannot be accessed for ore extraction without rehabilitation. The motivation for this objective is to 

demonstrate that well-performing machine learning algorithm can be developed while preserving the 

original format of the tunnel mapping data familiar to practicing geotechnical engineers. A Convolutional 

Neural Network (CNN) approach is developed to process tunnel mapping images for tunnel liner yield 

forecasting, where the priority is to predict the worst-case tunnel liner yield. The approach must allow for 

the combination of numerical and categorical input variables. 

The aim of this objective is to determine how much data should be digitized to obtain good predictive 

performance, to develop a hyperparameter optimization approach for the algorithm, and to ensure the 

engineering verification metrics for the algorithm align with the desired outcome for the ground control 

engineers.  
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2. Develop and implement a methodology for assessing interpretability of machine learning algorithms 

applied to rock engineering 

The second objective is to investigate algorithm interpretability using Input Variable Selection (IVS) 

approaches. The developed IVS approaches must contribute to the two broad categories of algorithm 

interpretability: (1) algorithm transparency, and (2) post-hoc interpretations. The former category is 

concerned with understand how the model works, by considering the understanding of the entire model, 

the hyperparameters, and the training algorithm. The latter category reveals useful information about the 

model after it has been developed through visualization of learned features, as well as explanations by 

example.  

The motivation for this objective is to debunk the perception that machine learning algorithms are “opaque” 

or “black boxes”, and that in fact much of how the algorithms use the provided input data parallels widely 

understood rock engineering principles. Three IVS methods will be developed and applied to demonstrate 

algorithm interpretability, including both model-based and model-free methods. The IVS methods must rank 

the available inputs in terms of importance for model performance and must inform the user about the 

sensitivity of the trained algorithm to the selected input variables. The IVS must be customized to account 

for the format of the tunnel images used to train the CNN algorithm, where each image channel is a discrete 

input.  

3. Develop a regression machine learning algorithm using standard geotechnical sensor data from a real 

project 

This research objective is to develop a regression machine learning algorithm that takes a large volume of 

sensor data as inputs to forecast the stress state in a seismogenic mining environment. The developed 

machine learning approach must highlight the formatting of time series data into sequences that can be 

combined with static categorical inputs, such as geology, for predictive modelling. The aim of this approach 

is to assist in the calibration of a finite difference model, which is typically recalibrated manually and only 

with the largest microseismic events, when new microseismic sensor data becomes available. A Long-

Short Term Memory (LSTM) network is developed to process the microseismic event time-series and 

combine them with the static geomechanical and geological parameters to predict the stress state in a finite 

difference model. The approach must facilitate the calibration of the finite difference model while making 

use of as much useful microseismic data as possible.  

The aim of this objective is to demonstrate the practical development of a regression algorithm, highlighting 

the pre-processing and formatting of input variables, the hyperparameters that should be investigated 

during algorithm development, and the integration of machine learning algorithms into standard rock 

engineering design processes. 
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4. Formulate a guide for rock engineering practitioners in the selection, development, and engineering 

verification of machine learning algorithms for underground rock engineering problems 

The final objective is to combine all the lessons learned from the previous objectives to formulate a guide 

of tools and best practices for machine learning algorithms applied to underground rock engineering. The 

guide will also include recommendations from other authors publishing at the intersection of these fields. 

The framework will look at holistic machine learning algorithm development, from data pre-processing and 

balancing; to algorithm architecture selection; to engineering verification metric selection. Machine learning 

has not yet been widely adopted by the practicing rock engineering community, which would make this 

guide one of the first of its kind. 

1.4 Research Significance 

This research attempts to bridge the gap between two fields that are not yet intertwined, despite the 

opportunities to improve excavation safety and stability using techniques from machine learning. Perceived 

lack of algorithm interpretability is a major source of skepticism in the rock engineering community, and this 

dissertation aims to provide insight into how algorithms can be developed prudently and with appropriate 

engineering verification metrics. 

Machine learning algorithms have the potential to ease the burden of data analysis, and also provide the 

advantage of reducing error and/or bias that can be introduced when data is manipulated manually. If the 

algorithm is developed with consideration, complex and nuanced relationships may be extracted that 

describe how a rock mass behaves and interacts with surrounding structures. Data driven methods do not 

require the dataset to conform to pre-determined empirical or constitutive frameworks, increasing the 

likelihood that the site-specific rock mass behaviour is captured accurately as compared to some 

conventional numerical modelling methods.  

The contributions of this research are particularly relevant to the industries that rely on underground 

infrastructure, both in Canada and abroad, such as utility owners, mining companies, and transit projects. 

If rock mechanics practitioners can use machine learning to predict catastrophic rock mass behaviours 

earlier and more accurately, this could translate to cost savings in terms of reducing equipment loss, 

increasing efficiency of resource extraction or excavation rates, minimizing delays and shutdowns due to 

rock failure, and most importantly, increased safety for underground personnel and the public. All the data 

used in this research was supplied by partners in the mining industry In Ontario alone, mining is a $10.7 

billion industry (2020), with 38 mining companies and 900 affiliated companies (Ontario Mining Association, 

2022). Pushing the frontier of underground design using these emerging machine learning methods 

positions these mining companies to be more competitive in the international market, and presents the 

opportunity for safer, more economic underground excavations across the mining, infrastructure, and 

energy sectors. 
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1.5 Dissertation Outline 

Several chapters of this dissertation are modified versions of journal or conference articles. Those chapters 

have their own introduction, methods, results, and discussions. Chapters that are not published elsewhere 

are included to enrich the context of the research presented in this dissertation.  

Chapter 2 presents an in-depth literature review of machine learning applied in underground rock 

engineering, for audiences coming from both rock engineering and machine learning backgrounds. Thus, 

introductions of relevant rock engineering principles, as well as an introduction to the mechanics of common 

machine learning algorithms are provided. The opportunities for applying machine learning in rock 

engineering are highlighted, and relevant research published to date is cited to illustrate these opportunities. 

Chapter 3 introduces the datasets and case studies used in the remainder of the dissertation, including 

sources, digitization, formatting, and project context. Chapter 4 describes the preliminary case studies 

conducted with the datasets presented in Chapter 3, and summarized the lessons learned for the 

development of subsequent, more sophisticated algorithms. 

Chapter 5 contains the input data analysis and hyperparameter optimization performed to develop the Cigar 

Lake Mine CNN (related to Objective 1). The digitization of the input variables (geotechnical zones, primary 

installed support class, locations of ground freezing, and measured radial tunnel displacement) and their 

subsequent formatting into channels of a tunnel image are discussed. Convolution filter sizes, amount of 

training data, and error weighting schemes are evaluated based on a sensitivity analysis to determine the 

optimal hyperparameters for predicting the tunnel liner yield. Chapter 6 presents the IVS methods 

developed to enhance the interpretability of the Cigar Lake Mine CNN (related to Objective 2). Three IVS 

methods are developed: Channel Activation Strength (CAS), Input Omission (IO), and Partial Correlation 

(PC), where the latter two methods are novel approaches applied to CNNs. The input rankings resulting 

from the IVS methods are compared and contrasted in the context of the CNN algorithm’s transparency 

and the post-hoc interpretations offered. 

In Chapter 7, the development of the Garson Mine LSTM network is presented (related to Objective 3). The 

vast amount of available microseismic data is formatted to be compatible with the geomechanical properties 

obtained from a previously developed FLAC3D model. The iterative approach to the LSTM network 

development is thoroughly documented, including the choice of data pre-processing, hyperparameter 

optimization, and engineering verification metric selection. 

Chapter 8 focuses on presenting the practical guide to best practices when developing a machine learning 

algorithm for a rock engineering problem (related to Objective 4). Recommendations are made in terms of 

holistic machine learning algorithm development, from data digitization, pre-processing, and formatting; to 

algorithm architecture selection and hyperparameter optimization; to engineering verification metric 

selection and output integration into standard design practice. 
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Chapter 9 summarizes major conclusions from each chapter and novel contributions of this dissertation. 

Suggestions for future work are also presented. 

References for the entirety of this research, including chapters that were previously published, are included 

at the end of the dissertation. Appendix A includes the proofs of concept discussed in Chapter 4, 

Appendices B and C include the MATLAB code for the Cigar Lake Mine and Garson Mine datasets, 

respectively, and Appendix D includes a list of all the publications resulting from this dissertation. 
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CHAPTER 2.   AN OVERVIEW OF OPPORTUNITIES FOR MACHINE 
LEARNING METHODS IN UNDERGROUND ROCK 
ENGINEERING DESIGN 

 

2.1 Preface 

This chapter focuses on a literature review on the state of the art of machine learning in underground rock 

engineering and related publications at the time of writing. The paper was published to a mixed audience 

of machine learning experts and rock mechanics engineers, and therefore explanations of standard practice 

for modelling in both machine learning and rock engineering are presented. Section 2.4 Current Practices 

in Rock Engineering Design focuses on standard numerical modelling methods and their applications to 

rock engineering design, while section 2.5 Review of Machine Learning Algorithms presents an overview 

of common machine learning algorithms and how the are parameterized. Section 2.6 Discussion of Machine 

Learning for Rock Engineering Design presents a discussion of where the fields of machine learning and 

rock engineering may intersect, as well as highlighting opportunities for the use of machine learning in rock 

engineering design. The content of this chapter was published in Geosciences in 2019 as follows:  

Morgenroth, J., Khan, U. T., & Perras, M. A. (2019). An overview of opportunities for machine learning 

methods in underground rock engineering design. Geosci J, 9(12), 504–524. 

https://doi.org/10.3390/geosciences9120504  

The contributions of the authors in the current chapter are as follows: 

Josephine Morgenroth has conducted the literature review, and prepared and wrote the original 

manuscript of this publication. Usman T. Khan has supervised the research, provided the funding, 

contributed to the writing and editing the manuscript. Matthew A. Perras has supervised the research, 

provided the funding, contributed to writing and editing the manuscript.  

This work would not have been possible without funding in part from the Natural Sciences and Engineering 

Research Council of Canada (NSERC) through the Discovery Grant program (funding reference numbers 

RGPIN-2018-05918 and RGPIN-2017-05661) and the National Research Council Canada’s Industry 

Research Assistance Program – Artificial Intelligence Industry Partnership Fund. We would like to thank 

our industry partners, Yield Point Inc., RockEng, and Cameco for insightful conversations on the topic.  

  

https://doi.org/10.3390/geosciences9120504
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2.2 Abstract 

Machine learning methods for data processing are gaining momentum in many geoscience industries. This 

includes the mining industry, where machine learning is primarily being applied to autonomously driven 

vehicles such as haul trucks, and ore body and resource delineation. However, the development of machine 

learning applications in rock engineering literature is relatively recent, despite being widely used and 

generally accepted for decades in other risk assessment-type design areas, such as flood forecasting. 

Operating mines and underground infrastructure projects collect more instrumentation data than ever 

before, however only a small fraction of the useful information is typically extracted for rock engineering 

design and there is often insufficient time to investigate complex rock mass phenomena in detail. This 

chapter presents a summary of current practice in rock engineering design, as well as a review of literature 

and methods at the intersection of machine learning and rock engineering. It identifies gaps, such as 

standards for architecture, input selection and performance metrics, and areas for future work. These gaps 

present an opportunity to define a framework for integrating machine learning into conventional rock 

engineering design methodologies to make them more rigorous and reliable in predicting probable 

underlying physical mechanics and phenomenon. 

2.3 Introduction 

The study of rock mechanics encompasses the theoretical and applied science of the mechanical behaviour 

of rock in response to its physical environment, and was formalized as a field of study in the 1960s (Hoek, 

1966). Due to the high degree of variability in natural materials, a precise rock engineering design within a 

narrow tolerance is difficult to produce. Experience and expert knowledge are heavily relied upon in rock 

engineering practice and empirical design charts have become prolific for preliminary stage design. 

Numerical modelling methods, such as continuum and discrete methods, are also conventional tools in rock 

engineering design. These methods represent important tools for understanding rock mass behaviour and 

predicting its response to its environment and changes in in-situ stress conditions. In practice it is often 

difficult to integrate all the data collected into empirical and numerical models effectively due to time and 

budget constraints, as well as limitations in how constitutive behaviour is defined. Furthermore, it is 

sometimes not feasible to collect the quality and quantity of data needed, so extrapolation and interpolation 

techniques are often used. 

Prior to the advent of “big data” and advances in machine learning, it was appropriate to base rock 

engineering design primarily on empirical data and expert knowledge because the geology, discontinuity, 

and in-situ stress data available for projects were generally sparse. Now, increasing amounts of some forms 

of data, such as displacements and pore water pressures, are being collected relatively inexpensively, while 

others are still infrequently collected because of the complexity and cost of the measurement methods, 

such as those used for stress measurement. Herein lies an opportunity to integrate machine learning into 

the existing rock engineering best practices to evaluate datasets more efficiently and to maximize the value 

(or information) extracted from the data. Machine learning algorithms are especially powerful because 
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simultaneous hypotheses can be tested much quicker than by a human being (Mitchell, 2015). This frees 

up the expert user or engineer to devote their judgment to selecting inputs and validating outputs in a more 

rigorous way, rather than manipulating data, which can be more time consuming and poses the risk of 

introducing bias. 

Although machine learning has been used in other fields that rely heavily on numerical modelling, such as 

flood forecasting, for over 20 years (Abrahart et al., 2012), comparatively it is in its infancy in rock 

engineering applications. Some professionals in the mining industry believe the community is reluctant to 

accept data driven methods because they are not as interpretable as applying conventional design criteria 

determined by previous experience and empirical evidence (PDAC, 2019a). Work is being done to produce 

scientifically interpretable data driven models (Karpatne et al., 2017), however these frameworks have not 

migrated into engineering practice yet. Expert judgment is given much credence in the rock engineering 

industry, and empirical relationships form the foundation of fundamental rock engineering methods (W. J. 

Mcgaughey, 2019). 

The progression of the design process is constrained by the analysis of the data that is collected. Machine 

learning algorithms have the potential to ease the burden of data analysis. If geotechnical professionals are 

able to predict geomechanical events or behaviours earlier and more accurately, this could translate to 

increased safety for underground personnel as well as cost savings in terms of reducing equipment loss, 

increasing efficiency of resource extraction or excavation rates, and minimizing delays and shutdowns.  

This chapter aims to summarize the most common practices in rock engineering design and presents the 

opportunities for integrating machine learning into existing geomechanical design frameworks. It also 

presents a review of common machine learning algorithms and how they are currently being applied to rock 

engineering problems in the literature, as well as future opportunities for data driven approaches. 

2.4 Current Practices in Rock Engineering Design 

The inherent variability associated with natural materials makes standardization across geomechanical 

design processes difficult. Recent work to develop a geomechanical design framework has resulted in the 

publication of Eurocode 7 (LimiteStateInc., 2013). This code provides guidelines for tunnelling and 

underground excavations using a limit state approach, however in general customized designs are 

developed for most projects. Two of the most common categories of design approaches used in rock 

engineering design are: (i) empirical methodologies, and (ii) numerical modelling. These usually fall into a 

workflow together depending on the stage of the design, from prefeasibility to detailed design. Empirical 

design recommendations are often taken as a first estimate and are then verified and updated using the 

appropriate numerical tools, which are based on the geometry and complexity of the problem. For both 

these approaches, rock engineers use their judgement to combine numerical data (e.g. rock mass 

properties, stress conditions, pore water pressure) and categorical data (e.g. geological mapping, 
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discontinuity conditions) into an empirical or numerical framework. As context for the remainder of this 

chapter, both categories of conventional methodologies are briefly described below. 

2.4.1 Empirical Design 

In the early stages of conventional rock engineering design, it is common to turn to an established empirical 

rock support recommendation method to inform the design. The designed rock support may consist of a 

combination of rock or cable bolts, shotcrete, steel mesh, steel straps, concrete liner segments, etc. These 

methods are generally dependent on the size of the excavation and the quality of the rock mass and are 

used only as a first estimate followed by analytical or numerical methods to verify the design. It is typical to 

use multiple empirical methods and a range of input parameters representing the best and worst case to 

obtain a range of rock support recommendations. In this section, two common empirical rock support 

methodologies are described: the Rock Mass Rating (RMR) (Bieniawski, 1993) and the Q Tunnelling Index 

(Barton et al., 1974). These systems have been in wide use in the tunnelling and mining industries for 45 

years, and have become engrained in standard rock engineering practice (Barton & Bieniawski, 2008). 

However, previous researchers (Barton & Bieniawski, 2008) advocate for exercising caution when using 

these empirical systems, and for practicing engineers to use them in the spirit for which they were developed 

– to assist with the design of excavations, but not as the sole tool for designing underground support. Both 

these classification systems result in a recommended category for rock support, which is meant to 

encompass the range of rock mass conditions found within that category. 

2.4.1.1 Empirical Support Recommendation – Rock Mass Rating 

Bieniawski was among the first to assert that no single index, such as Deere’s Rock Quality Designation 

(Deere, 1963), was enough to capture that aggregate behaviour of the rock, and so developed the Rock 

Mass Rating (RMR) system (Bieniawski, 1993) to combine several measurable parameters. This system is 

the sum of five basic parameters to arrive at a score ranging from 0 to 100: 

• Strength of intact rock 

• Rock Quality Designation (RQD) (Deere, 1963) 

• Spacing of joints 

• Condition of joints 

• Groundwater conditions 

This information is obtained through field mapping and site investigations. The site engineer or geologist 

collects a score for each of the parameters using the scoring scheme set out by Bieniawski (Bieniawski, 

1993). A statistical analysis is conducted to determine the appropriate value, or more likely values, for each 

parameter and then sums them to obtain an RMR. The RMR corresponds to a rock quality categorization 

that ranges from very good to very poor rock with five classes overall based on a linear relationship with 

the RMR value. Bieniawski created support guidelines based on the quality of the rock mass, i.e. the RMR 

value, and the stress condition the excavation is exposed to (Bieniawski, 1993). For example, low stress 

environments only require heavy support if the rock is of poor quality. 
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2.4.1.2 Empirical Support Recommendation – Q Tunnelling Index 

The Q Tunnelling Index was developed primarily to predict the appropriate support for tunnels (Barton et 

al., 1974), and is defined by multiplication of three quotients: the rock block size, the roughness and frictional 

resistance, and a stress quotient. As with RMR, the parameters are collected during the site investigation 

stage of a project, and subsequently a statistical analysis is performed to determine the most representative 

value or values. The Q Tunnelling Index is a value that ranges from 0.001 to 1000, and the formula is given 

in Equation 2-1. 

𝑄 = (
𝑅𝑄𝐷

𝐽𝑛

) ∗ (
𝐽𝑟

𝐽𝑎
) ∗ (

𝐽𝑤

𝑆𝑅𝐹
) 

Where:  

RQD = Rock Quality Designation (Deere, 1963) 

Jn = Number of joint/fracture sets 

Jr = Roughness of most unfavourable joints 

Ja = Alteration or infilling of joints 

Jw = Water inflow 

SRF = Stress reduction factor, quantifies stress conditions 

Equation 2-1 

The major difference between the Q Tunnelling Index support recommendation and others (such as RMR) 

is the inclusion of a parameter called the equivalent dimension, which uses an excavation support ratio to 

modify the span, or width, of the underground opening to capture a factor of safety correlating to the end 

use of the tunnel.  

2.4.2 Numerical Methods 

Numerical modelling is crucial for understanding fundamental intact rock and rock mass behaviour, 

assessing rock-structure interactions, and completing rock engineering designs (Jing & Hudson, 2002). 

These methods offer the tools to capture the mechanisms that are causing observed phenomena in a rock 

mass or intact rock sample, and subsequently incorporate them into design. Choosing inputs, geometry, 

boundary and stress conditions, among other defining aspects of a numerical model requires significant 

engineering judgement and the combination of qualitative and quantitative site observations.  

A typical approach is to use back analysis of numerical models to calibrate their behaviour against observed 

site conditions. These calibrated models are then used to forward predict the excavation behaviour as the 

excavation is advanced, or as a new excavation is being designed in the same rock mass but at a different 

location (M. A. Perras et al., 2015a). Figure 2-1 illustrates this process, summarized as follows: 

1. Site observations 

2. Measurements and model calibration 
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3. Conceptual translation of the calibrated behaviour to the new site location 

4. Compare with empirical approaches (Diederichs, 2007) to validate the new design. 

For example, the observed overbreak, or damage beyond the designed diameter, of a tunnel can be back 

analyzed using a numerical modelling approach. Individual parameters, such as tunnel depth, are 

manipulated independently of the other input variables in order to calibrate them, by taking measurements 

along the tunnel axis at multiple locations, for example. This calibration process ensures that a robust set 

of input parameters are determined based on their individual impacts on the measured site conditions at a 

variety of locations along the tunnel alignment. The empirical knowledge from the tunnel site is translated 

conceptually to the new site in order to understand what similarities and difference may exist. With this 

conceptual understanding, a variety of models of the new site can be developed and the results compared 

to other empirical approaches, such as the damage depth prediction of Diederichs (Diederichs, 2007).  

The most common numerical methods for rock engineering problems are (Jing & Hudson, 2002): 

• Continuum methods – finite element modelling (FEM), finite difference modelling (FDM), boundary 

element modelling (BEM) 

• Discrete methods – discrete element modelling (DEM), discrete fracture network (DFN) modelling 

• Hybrid continuum/discrete methods 

The choice between methods is made based primarily on the scale of the problem and the geometry of the 

discontinuity, or fracture, system in the rock mass (Jing & Stephansson, 2007). Continuum methods are 

most appropriate when detachment of discrete blocks is not a significant factor. Discrete methods are 

generally chosen when the number of fractures is too large to treat the rock mass as a continuum with 

fracture elements, or if discrete block detachment is anticipated. Hybrid models are selected to avoid the 

pitfalls of each of the former two approaches. Each of these methods, their applications, and limitations are 

briefly introduced. 
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Figure 2-1. An illustration of a numerical modelling approach used to predict the overbreak depth around a vertical shaft 

(modified from (M. A. Perras et al., 2015a)). Step 1. Observed overbreak beyond the designed perimeter of the tunnel 

(M. A. Perras et al., 2015b). Step 2. Measured overbreak depths versus various numerical model results (Diederichs, 

2007; ITASCA Consulting Group Inc., 2015; Perras, 2009; Perras & Diederichs, 2016). Step 3. Translation of the 

yielding behavior from the tunnel in the horizontal beds to a vertical shaft in the same rock mass. Step 4. Comparison 

of calibrated models and conceptual behaviour to an empirical approach for predicting normalized overbreak depth 

(r/R) using the maximum tangential stress (σmax) calculated from the maximum and minimum horizontal stresses, σH 

and σh, respectively (NWMO, 2011; M. A. Perras et al., 2015a). 
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2.4.2.1 Continuum Methods 

The basic concept for continuum methods is to discretize the material being modelled into a grid governed 

by partial differential equations. The partial differential equations at the grid points are in close enough 

spatial proximity that the errors introduced between them are insignificant and thus, acceptable.  

The FDM is the most direct way to discretize a continuum, where points in space are replaced with discrete 

equations called finite difference equations. These equations are used to calculate displacement, strain, 

and stress in the material in response to conditional changes in the rock mass (Garza-Cruz et al., 2014). 

Solutions are formulated at grid points at the local scale, so no global matrix inversion is required, thus 

saving computational time and intensity. Complex constitutive behaviour can be captured without iterative 

solutions. However, FDM is inflexible with respect to fractures, complex boundary conditions, and material 

heterogeneity. FDM was historically unsuitable for rock mechanics problems due to these limitations, 

however advancements in irregular grid shapes gave rise to related Finite Volume Modelling (FVM) 

techniques (Jing & Hudson, 2002). FVM is more flexible in handling heterogeneity and boundary conditions 

and has been regarded as the bridge between FDM and FEM (ITASCA Consulting Group Inc., 2015). 

Commonly used commercial FDM software includes FLAC in two-dimensions and FLAC3D in three-

dimensions (ITASCA Consulting Group Inc., 2015). 

FEM is the most widely applied numerical method in science and engineering (Jing & Hudson, 2002). FEM 

also involves discretizing a continuum into a grid, however here the material is subdivided into parts called 

finite elements. The partial differential equation at each element is informed by the elements adjacent to it, 

allowing FEM to handle heterogeneity, plasticity and deformation, complex boundary conditions, in situ 

stresses and gravity (Hoek et al., 1990). However, detachment of the elements is not permitted since these 

models are based on continuum assumptions. The treatment of fractures has been the largest limitation of 

FEM in the past, and modern software packages include special algorithms to overcome this. Commercial 

FEM software available are RS2 (Rocscience, 2019), SIGMA/W (GEO-SLOPE, 2016), Plaxis 2D (Bentley, 

2019), and ABAQUS (Dassault Systems, 2019), while open source options include Adonis (Geraili Mikola, 

2019), OpenSees (UCRegents, 2006), and Code-Aster (EDF, 2019).  

BEM differs from FDM and FEM in that is first seeks an approximate global solution. Initially, BEM was 

developed for underground stress and deformation analysis, soil-structure interactions, groundwater flow, 

and fracturing processes (Jing & Hudson, 2002). BEM approximates the solution of a partial differential 

equation inside an element by looking to the solution on the boundary and using that to inform the solution 

inside the element (Laforce, 2006). The main advantage of BEM over FDM or FEM is the simpler mesh 

generation and decreased computational expense. However, BEM is less efficient than FEM in handling 

material heterogeneity and plasticity. BEM has been used for: stress analysis of underground excavations, 

dynamic problems, back analysis of in situ and elastic properties, and borehole permeability tests (Jing & 

Hudson, 2002). Commercially available BEM software include Examine2D (Roscience Inc., 2019) and 

Map3D (Map3D, 2019), while open source BEM libraries are also available (Wieleba & Sikora, 2009). 
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2.4.2.2 Discrete Methods 

Rock mechanics is one of the fields that originated DEM modelling, because highly fractured rock masses 

are not easily described mechanistically by a continuum approach. In discrete element approaches, the 

material is treated like an assemblage of rigid or deformable blocks or particles, the contacts between which 

are updated during the modelling process (Jing & Hudson, 2002). DEM solutions combine implicit and 

explicit formulations, based on FEM and FDM discretization, respectively. The main difference between 

DEM and continuum approaches are that the contacts between the elements are continuously changing, 

while they remain static for the latter. DEM methods are computationally demanding, however they offer an 

advantage when the rock mass experiences loss of continuity (from progressive failure, for example), as 

continuum constitutive models are inappropriate in that case (Lisjak et al., 2014). DEM methods have been 

popular for modelling a variety of rock engineering problems, including: underground works, rock dynamics, 

rock slopes, laboratory tests, hard rock reinforcement, borehole stability, acoustic emissions in rock, among 

others. Commercially available DEM codes include UDEC (ITASCA Consulting Group Inc., 1992) and PFC 

(ITASCA Consulting Group Inc., 2019b) for two-dimensional problems, and 3DEC (ITASCA Consulting 

Group Inc., 1994) and PFC3D (ITASCA Consulting Group Inc., 2019c), three-dimensional problems, 

respectively. Open source alternatives include Yade (Šmilauer, 2009) and LAMMPS (Sandia National Labs 

and Temple University, 2019). 

The DFN model is a discrete method focused on fracture pattern simulation. It takes in statistical information 

about the fracture sets and can be used to generate a network for input into DEM codes for use in its 

behaviour, such as considering fluid flow through a series of interconnected fractures. It is a powerful 

method for studying fractured materials where an equivalent continuum cannot be established. DFN codes 

have been applied to the following problems: developments for multiphase fluid flow, hot dry rock reservoir 

simulations, permeability of fractured rock, and water effects on underground excavations and rock slopes 

(Jing & Hudson, 2002). Commercial DFN softwares include FracMan (Golder Associates Inc., 2019) and 

MoFrac (Miraco Mining Innovation, 2019), while open source options include ADFNE (Alghalandis 

Computing, 2019). 

Discrete approaches are limited by the modeller’s knowledge of the geometry of the fracture network, which 

can only be estimated based on geological mapping and interpretation of in situ information.  

2.4.2.3 Hybrid Continuum/Discrete Methods 

Hybrid numerical models have gained popularity to overcome the limitations of each of the numerical 

methods previously described. Hybrid methods are commonly used to address limitations in how fracture 

growth is addressed by the other methods. Some hybrid methods add fractures discretely and the mesh is 

adjusted dynamically as the crack propagates, while others have a very fine mesh and the fractures 

propagate along the boundaries. Care must be taken where two methods interact to ensure compatibility 

of the underlying assumptions. 
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The most common hybrid models are BEM/FEM (Varadarajan et al., 1985), DEM/FEM (Lorig et al., 1986), 

and DEM/BEM (Pan & Reed, 1991). There are many advantages to hybrid numerical models when applied 

correctly, for example the coupled DEM/FEM method explicitly satisfies equilibrium conditions of 

displacement at the interface between two domains. The FEM/DEM approach has been shown to 

realistically model the dynamic response of rocks, and simulations show good agreement with laboratory 

observations (Mahabadi et al., 2010). New developments in DEM/FEM approaches allow the modelling of 

rock masses with anisotropic strength and deformation characteristics, as well as the explicit modelling of 

fracture growth (Li, Kim, et al., 2019; Lisjak et al., 2014). Irazu is a commercially available DEM/FEM hybrid 

software package that explicitly models fracture processes in brittle materials, capturing complex non-linear 

behaviour (Geomechanica, 2019). In addition to Irazu, other commercially available software include the 

Hybrid Optimization Software Suite (Knight et al., 2014) and Elfen (Rockfield, 2019), while open source 

alternatives include Y-GEO (Grasselli’s Geomechanics Group, 2019). 

The choice of numerical method depends on the data available and the complexity of the problem being 

solved, and sometimes multiple methods may be explored before one is selected to use in subsequent 

design activities. Similar to empirical design approaches, significant expert judgement is required to 

determine the model inputs and interpret the outputs. 

2.4.3 Discussion of Current Practices 

Both empirical and numerical methods are strongly rooted in conventional rock mechanics design and lend 

insight into anticipated rock mass response to the construction of an excavation. The issues often arise not 

from the methods themselves, but rather how the data collected is used to make support decisions or how 

it is input into numerical models. The inherent variability of geomechanical datasets, as well as the variety 

of types (numerical measurements, categorical descriptions, photos) introduce error to the design process. 

When making use of empirical support recommendations, it is common practice to determine the rock mass 

classification value based on a statistical analysis or using the best- and worst-case values. While this is 

appropriate for a prefeasibility estimate, these values are sometimes carried forward into detailed design. 

A data driven method would allow the design engineer to make use of all the data to inform the most 

appropriate parameters for further use. Some research has been conducted using Artificial Neural Networks 

(ANNs) to classify rock masses (Sklavounos & Sakellariou, 1995), determine strength properties (V. K. 

Singh et al., 2001), and model stress-strain behaviour (Millar & Clarici, 2002). 

Numerical modelling of rock mass behaviour is difficult because rock is a discontinuous natural material 

with inherent variability and inhomogeneous properties. These need to be captured by fundamental 

equations and constitutive models which have geometrical and physical constraints. This can be overcome 

using data driven methods such as ANNs because the data trends are not conformed to these constraints, 

which sometimes understate the complexity of the problem (Jing & Hudson, 2002). Research has been 

performed using ANNs for predicting tunnel convergence (Mahdevari & Torabi, 2012) (inward radial 

displacement of the tunnel), rock bursts (Afraei et al., 2019) (an accumulation and sudden release of strain 
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energy), open pit stability (Ferentinou & Fakir, 2018) (stability of the mine slope geometry), among other 

applications. 

2.5 Review of Machine Learning Algorithms 

Machine learning is a branch of artificial intelligence that aims to program machines to perform their jobs 

more skillfully (Mitchell, 2015). This is done by using intelligent software that takes inputs to train a model 

to produce the desired result, thus replicating learning. Machines are better at performing repetitive tasks 

than humans, so harnessing this potential has been at the forefront of almost every industry since the 

beginning of the technological age. Sometimes the model is intuitively understandable, and other times the 

workings of the model cannot be easily explained. The choice of machine learning techniques is informed 

by what the output is, and what data is available (Mohammed et al., 2016a):  

• Supervised learning: data is labelled, i.e. the training samples contains inputs with a corresponding 

output 

• Unsupervised learning: data is unlabeled, i.e. the training samples do not have an associated output 

• Semi-supervised learning: mixture of labelled and unlabeled data 

• Reinforcement learning: no data; the algorithm maps situations to actions to maximize a reward 

(Marsland, 2014) 

Before machine learning can be implemented in a project, the data must be acquired from various sources 

and cleaned for use. Data cleaning involves identifying incomplete, incorrect, inaccurate or irrelevant parts 

of the dataset and then replacing, modifying, or deleting raw data. Oftentimes the data acquisition and 

preparation are the most time consuming and onerous part of the process. Unlike other industries where 

machine learning already has a solid foothold or is widely used in practice, in rock engineering this is not 

yet the case (W. J. Mcgaughey, 2019).  

Machine learning algorithms present an opportunity to reduce the error associated with data manipulation, 

and offer predictive capabilities to increase the efficiency of the design process. As discussed previously, 

early work has shown their suitability for determining rock mass parameters and constitutive behaviours, 

as well as predicting geomechanical phenomena and instabilities. This section presents a brief overview of 

the most common types of machine learning algorithms, with an emphasis on ANNs. These are broadly 

divided into categorical prediction models and numerical prediction models.  

2.5.1 Categorical Prediction Models 

Categorical machine learning algorithms are useful for classifying data or making a categorical prediction. 

For example, given a dataset comprised of site-specific inputs for RMR or Q classifications, the algorithm 

can predict what the RMR or Q value is for a point ahead of the excavation face (i.e. the current extent of 

the excavation). 
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2.5.1.1 Decision Trees 

The Decision Tree approach is a supervised machine learning algorithm that places data into classes and 

presents the results in a flowchart. The data flows through a query structure from the “root,” or selected 

attributes, through subsequent partitioning until it reaches a “leaf” where no sample remains, no attribute 

remains, or the remaining samples have the same attribute (Mohammed et al., 2016b). The goal of creating 

a Decision Tree is to have a generalizable model that can classify unlabeled samples. Attribute selection is 

a crucial step when applying decision tree algorithms, as they must be meaningful to split the dataset at 

hand in to “purer” subsets (Einstein et al., 1978). A simple schematic is shown in Figure 2-2. 

 

Figure 2-2. Decision Tree schematic showing root node, decision nodes, and leaf nodes. 

In one case study, a Decision Tree method was employed to predict rock burst potential in a kimberlite pipe 

diamond mine (Pu et al., 2018). Here, the root is the linear elastic energy, the decision node is ratio between 

maximum tangential stress and unconfined compressive strength (UCS), and the decision node is the ratio 

between the UCS and the uniaxial tensile stress. This led to a classification, or leafs, of “no rockburst”, 

“moderate rockburst”, “strong rockburst”, and “violent rockburst”. The authors trained the algorithm with 132 

training samples from real rockburst cases around the world, and subsequently the accuracy of the 

validation samples was shown to be 93%. Validation samples are those that have not been used to train 

the algorithm, and are therefor a metric for generalizability. The results of the study found that the mine 

under study was susceptible to moderate bursts, which matched the observed conditions. 

2.5.1.2 Naïve Bayesian Classification 

Bayesian networks are nodal networks that graphically represent probabilistic relationships between input 

variables, using particular simplifying assumptions. This technique is founded in Bayes’ theorem, where the 

posterior probability of an event occurring is updated based on new evidence (M. Khan et al., 2017a): 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑃𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑦 ∗ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 Equation 2-2 

Naïve Bayesian classifiers are a type of Bayesian network that uses simple probabilistic classifiers that 

assumes independence between predictor variables (hence “naïve”) (Araghinejad, 2014), as shown in 

Figure 2-3. To complete the classification, the numerator of Equation 2-2 is compared to each sample since 
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the evidence remains constant (M. Khan et al., 2017a). Though this type of algorithm can be advantageous 

because it is a simple representation of a problem and therefore easy to implement (W. J. Mcgaughey, 

2019), a common criticism is that they assume independence between the input attributes (Ribeiro e Sousa 

et al., 2017). 

 

Figure 2-3. Naïve Bayesian classifier schematic showing predicted class and independent input variables. 

A case study comparing different types of Bayesian network classifiers found that all the developed models 

showed a high accuracy rate when applied to predicting the magnitude of rock bursts for the dataset 

consisting of 60 cases (Ribeiro e Sousa et al., 2017). The naïve inputs included type and rock strength, 

geometry, stress state, and construction method, which were used to predict the magnitude of the rockburst. 

The naïve Bayesian model in particular classified 100% of overbreak cases, 83% of strong rock bursts, 

25% of moderate rock bursts and 87.5% of slight rock bursts correctly, respectively. 

2.5.1.3 k-Nearest Neighbours Classification 

The k-nearest neighbours (k-NN) clustering algorithm is used for classification and is among the simplest 

of the machine learning algorithms. The k-NN approach can also be used to determine a numerical output 

using regression, as discussed in Section 0. The input consists of the k closest training examples and the 

output is a class membership. An object is classified by a majority vote of its closest neighbours, where the 

most common classifier is assigned (M. Khan et al., 2017b), as shown in Figure 2-4. The function is 

approximated locally, and computation is deferred until classification is complete. The user can assign 

weight to the contributions of the neighbours as a function of distance, for example. This algorithm is 

sensitive to the structure of the data, which may pose a limitation. 
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Figure 2-4. kNN classification schematic, showing k = 3 and therefore the three nearest neighbours are used to make 

the classification. 

Work has been done comparing k-NN to four other supervised machine learning algorithms to classify 

geology using remotely sensed geophysical data (Cracknell & Reading, 2014). Inputs included a Digital 

Elevation Model, Total Magnetic Intensity, and four Gama-Ray Spectrometry channels, and the parameter 

k (number of nearest neighbours used for classification) was varied from 1 to 19. The authors conclude that 

as the spatial distribution of training data increases, the accuracy of the classifications also increase. They 

also conclude that explicit spatial information (coordinates) should be combined with geophysical data so 

that predictions are geologically plausible. 

2.5.1.4 Support Vector Machine 

Support Vector Machines (SVMs) are supervised clustering machine learning algorithms used for 

classification analysis (M. Khan et al., 2017d). The SVM maps the labelled training dataset as points in 

space divided into categories separated by a clear gap. New examples are mapped into the same space 

and are categorized depending on which side of the gap they fall into. The gap is defined by a hyperplane 

in two or three dimensions, depending on how many features are being used to classify the data. The main 

goal of the SVM is to find the hyperplane that maximizes the margin between the classes, as shown in 

Figure 2-5. 
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Figure 2-5. SVM schematic showing a two-dimensional classification problem, and the optimal hyperplane that should 

be used to classify future unlabeled data based on the smallest margin between the two closest data points. 

A recent study applied SVM to predict tunnel squeezing based on four parameters: diameter, buried depth, 

support stiffness, and the Q Tunnelling Index (Sun et al., 2018). An 8-fold cross validation was used to 

create multiple models (called an ensemble) to get a measure of performance of the model. Cross validation 

is a common technique used in data driven methods to determine how well generalized the model is to an 

independent dataset, and how accurately the model will perform in practice. This process highlights whether 

the model is overfitting or if there is input selection bias. The resulting average performance of the algorithm 

was 88% and importantly this performance decreased to 74% when the support stiffness was not included 

in the SVM. The authors concluded that this method produced better performance in prediction accuracy 

as compared to existing empirical approaches, similar to other uses of the SVM cited there in. They were 

also able to estimate the severity of the potential squeezing based on the predicted squeezing class by 

introducing a multiclass SVM classifier trained using a database of 117 case histories. The multiclassifier 

was used to classify the database into the severity of the squeezing problem, similar to empirical 

classification schemes based on the strain or convergence.  

2.5.1.5 Random Forests  

Random Forest (RF) is a supervised ensemble classifying method that consists of many decision trees. 

The output is the majority vote of the classes output by the individual trees, as shown in Figure 2-6. Each 

decision tree is an individual learner, and the aggregate of each individual yields the prediction of the 

algorithm (PDAC, 2019a). RF is considered to be one of the most accurate classifying algorithms, running 

efficiently on large databases and effectively estimating missing data (PDAC, 2019b). However, RF has 

been noted to overfit for noisy datasets, and tends to be biased towards categories that are over 

represented in the training dataset. 
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Figure 2-6. Random Forest schematic, showing an ensemble of tree decision tree classifications and the majority voting 

that determines the final class. 

One case study applied a RF algorithm to predicting hanging wall stability, using a training dataset 

consisting of 115 cases (Qi et al., 2018). The inputs were subdivided into hanging wall geometry (stope dip, 

strike and height), geological properties (RQD, joint set number, joint set roughness, joint set alteration, 

dilution graph factors A, B, and C), and construction parameters (stope design method, undercut area, and 

stress category). Each of these inputs represents a “branch” of the RF structure. A 5-fold cross validation 

method was applied, and the grid search method was used to tune the hyper parameters. A common 

performance metric, the area under the receiver operating characteristic curve (ROC-AUC), was used to 

evaluate the accuracy of the classifications made by the RF algorithm and was shown to be 0.873 (out of 

a maximum of 1.0) for the testing dataset (the data subset withheld to ensure the generalized performance 

of the model). The authors state that this indicates their optimum RF model is excellent at predicting hanging 

wall stability, where “stability” is defined by the equivalent linearoverbreak\slough.  

2.5.2 Numerical Prediction Models 

Numerical prediction models are useful for obtaining an estimate where not enough information is available 

to do a conventional calculation (i.e. a discrete analytical solution), or where the relationships between the 

inputs and output are too complex for an analytical solution. For example, an algorithm trained on site-

specific rock mass parameters and the in-situ stress field could predict the radial convergence of a tunnel 

before it is constructed. Or, a trained algorithm using an existing dataset comprised of typical rock mass 

parameters could determine the rock mass strength of an unmapped location. While other numerical 

predictors are briefly discussed, this chapter focuses on ANNs as a prediction tool, as they have been the 

focus of the research performed in machine learning methods for rock engineering design. 

2.5.2.1 Support Vector Clustering 

Support Vector Clustering (SVC) is an expansion of Support Vector Machines that is used when data is 

unlabeled or only some data is preprocessed (M. Khan et al., 2017d). SVC maps data points into a multi-

dimensional feature space (where each feature is an input variable) using a kernel function (Ben-Hur et al., 
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2001). The algorithm then searches for the smallest sphere that encloses the data in the feature space, 

and maps it back to the dataspace, where the sphere is transformed into contours that enclose the data 

that form part of the same group. Now unlabeled data has been classified. 

Little work has been done applying SVC to geomechanical problems, however a case study from water 

quality literature is discussed here. A SVC algorithm was employed to model the electric conductivity and 

total dissolved solids in a river system, and was compared against a more conventional /genetic 

programming algorithm (Bozorg-Haddad et al., 2017). The authors concluded that the SVC method has 

better accuracy for modelling water quality parameters than the genetic programming algorithm (Jing & 

Stephansson, 2007). 

2.5.2.2 k-Nearest Neighbours Regression 

The k-nearest neighbours (k-NN) algorithm is used for regression, where the input consists of the k closest 

training examples and the output is the property value for the object (Khan et al., 2017). Similar to k-NN 

classification, the value is the average of its nearest neighbours, except the output is a numerical value 

rather than a classification. 

Little work has been done applying k-NN regression to geomechanical problems, however an analogous 

case study completed to forecast the municipal solid waste (MSW) generated by a city (Abbasi & El 

Hanandeh, 2016). Four machine learning algorithms were compared: SVM, ANN, adaptive neuro-fuzzy 

inference systems, and kNN regression. The authors found that the prediction ability of the kNN regression 

algorithm was in the middle in terms of matching the observed data and peaks in the trends, however it 

was the best at predicting the monthly average values of MSW generated. 

2.5.2.3 Artificial Neural Networks 

ANNs are inspired by biological neural networks, where a series of highly interconnected nodes and a 

series of parallel nonlinear equations are used simultaneously to process data and perform functions quickly 

(Khan et al., 2017). ANNs are known as universal predictors and can approximate any continuous function 

under certain conditions (e.g. availability of appropriate input parameters). ANNs are powerful for real-time 

or near real-time scenarios as they can function with high volumes of data as it is collected (Bell, 2015). 

In general terms, ANNs are comprised of an input layer, hidden layers, and an output layer. Each node is 

linked to all the nodes in the layer preceding and following it, where each link has a function defined by a 

weight and bias (Figure 2-7). Each node also has an activation function, which compares the weighted sum 

of all the inputs to that node and compares it to a predetermined threshold. If the threshold is exceeded the 

node fires and the input is transmitted further in the network through the activation function. The most 

common activation functions are the step, sign, linear and sigmoid functions (Khan et al., 2017). Activation 

functions should be chosen with care as they inform the response of the network to the inputs, and therefore 

the resulting output. 
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Figure 2-7. Simple schematic of an ANN 

Multi-Layer Perceptron (MLP) are the simplest and most common form of ANN, and employ a learning 

technique called back propagation (Mahdevari & Torabi, 2012). Back propagation, short for backward 

propagation of errors, is used to adjust the weights and biases of the ANN by minimizing the error at the 

output. Back propagation is widely used in engineering and science because it is the most versatile and 

robust technique to find the global minima on an error surface (Trivedi et al., 2015). Back propagation 

consists of two steps: the propagation phase and the updating of the weight (Khan et al., 2017). In the 

propagation phase, the inputs are fed into the ANN and the values at the hidden and output nodes are 

calculated. In the second phase, the error is calculated at the output and then propagated backward to 

update the weights at the nodes using deterministic optimization to minimize the error sum (Bell, 2015). 

The ANN is trained using a dataset to create a model that is able to make predictions using new information. 

In the case of an MLP, the network is inputs are fed forward and the error is back propagated to update the 

ANN iteratively until a solution is converged upon that matches the observed data within the error tolerance 

(M. Khan et al., 2017c). A concern with ANN development is “overfitting”, where the ANN predictions match 

all the observed data too closely and cannot handle new information well (Marsland, 2014). This can be 

avoided by using data partitioning techniques to avoid creating a biased model, which is a common 

approach for machine learning methods in general. The partitioned subsets are called the “training,” 

“validation,” and “testing” subsets. The testing set is withheld entirely during the ANN development. The 

training and validation sets can be used to create multiple models (called an ensemble) to get a measure 

of the performance of the model, called k-fold cross validation (Figure 2-8). This is good practice in ANN 

model development but currently rarely used in ANN applications in various engineering sub-disciplines 

(Abrahart et al., 2012). 
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Figure 2-8. Example of data partitioning, showing 5-fold cross validation 

ANN model uncertainties come from the choice of ANN architecture (i.e. number of hidden layers, number 

of neurons, choice of activation function, type of training algorithm, and data partitioning), as well as the 

performance metric chosen. Due to the data-driven nature of these models, propagating these uncertainties 

is easier (Khan & Valeo, 2016, 2017). One method of quantifying this uncertainty is by using fuzzy numbers 

to quantify the total uncertainty in the weights, biases, and output of the ANN (Khan et al., 2018; Khan & 

Valeo, 2017; Mosavi et al., 2018). This technique is useful for dealing with limited or imprecise datasets, 

and can be used to conduct risk analysis (Deng et al., 2011). 

ANNs offer predictive and descriptive capabilities and have been applied to a range of rock property 

definition and rock engineering problems, including: intact rock strength, fracture aperture, rock mass 

properties, displacements of rock slopes, tunnel support, earthquake analysis, tunnel boring machine 

performance, among others (Jing & Hudson, 2002). Despite its wide applications, ANNs have not yet been 

proven to be a viable alternative to conventional methods to the rock engineering community.  

2.6 Discussion of Machine Learning for Rock Engineering Design  

As with all machine learning problems, the size and quality of the geomechanical datasets should inform 

the algorithm chosen for a given problem. The desired output is also a determining factor as to which 

algorithm is best suited to making the prediction. A summary of MLAs that have been researched for 

application to rock engineering problems are presented in Table 2-1.
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Table 2-1 MLAs applied to various rock engineering problems 

Rock Engineering 
Problem 

MLAs Opportunities 

Rock mass 
properties 

Categorical ANNs (Ching et al., 2019; 
Sklavounos & Sakellariou, 1995; Song 
et al., 2015) 

Backwards predict rock mass properties based 
on observed site conditions 
Predict rock mass scale properties based on 
lab scale properties and rock mass behaviour 

Laboratory testing 
and constitutive 
behaviour 

Numerical ANNs (Kumar et al., 2013; 
Millar & Clarici, 2002) 
SVM (Kumar et al., 2013) 

Use geology and peak Unconfined 
Compressive Strength to predict crack initiation 
and crack damage thresholds 
Use laboratory tests and field observations to 
predict constitutive behaviour  
Use rock mass scale classification (e.g. Q, 
RMR) to predict lab scale properties 

Slope stability Categorical ANNs (Fakir & Ferentinou, 
2017; Ferentinou & Fakir, 2018) 
SVM (Kumar & Samui, 2014) 
RF (Hibert et al., 2017; Mayr et al., 
2018) 
Clustering (Janeras et al., 2017) 

Predict slope movements based on geometry, 
piezometers, inclinometer data, etc. 
Predict volume of structurally controlled failure 
based on mapped discontinuities 

Point cloud analysis RF (Weidner et al., 2019) 
kNN (Li et al., 2019) 

Use successive tunnel scans to get volume 
differences and predict time-dependent 
deformations 

Tunnel performance Numerical ANNs (Bizjak & Petkovšek, 
2004; Koopialipoor et al., 2019; 
Mahdevari & Torabi, 2012; Santos & 
Celestino, 2008) 
Categorical ANNS (Leu et al., 2001; Y. 
Xue & Li, 2018) 
SVM (Sun et al., 2018) 
RF (Einstein et al., 1978; Qi et al., 2018) 

Predict stress/strain fields for input into 
numerical models 
Use preliminary/incomplete field mapping to 
prediction rock mass classification (e.g. Q, 
RMR) 
Predict tunnel support class based on rock 
mass classification (e.g. Q, RMR) 
Predict rock support performance based on 
geology, excavation method, environmental 
conditions, etc. 
Use microseismic monitoring arrays to predict 
rock mass deformation as excavation is 
developed 

Rock bursts Categorical ANNs (Ribeiro e Sousa et 
al., 2017) 
Naïve Bayesian classifiers (Ribeiro e 
Sousa et al., 2017) 
kNN (Ribeiro e Sousa et al., 2017) 
RF (Dong et al., 2013) 
SVM (Ribeiro e Sousa et al., 2017; Zhou 
et al., 2012) 
Decision Trees (Pu et al., 2018) 

Predict magnitude and location of events using 
3D excavation geometry, time series seismic 
events, mapped geology, etc. 
Use previous rock burst events, geology, etc. to 
predict magnitude of failed material and 
performance of rock support 
Use mapped rock classification (e.g. Q, RMR) 
to predict probability of rockburst 

Blasting Categorical ANNs (Liu & Liu, 2017; 
Vallejos & McKinnon, 2013) 
Numerical ANNS (Liu & Liu, 2017) 
SVM (Dong et al., 2011; Zhou et al., 
2012) 
RF (Dong et al., 2011) 

Use blast parameters and damage extent to 
predict optimum parameters for future blasts 
Predict blast parameters using mapped rock 
classification (e.g., Q, RMR) 

 

In Table 2-1, column two summarizes the MLAs discussed in Section 2.5, while columns one and three tie 

these to various rock engineering problems discussed in Section 2.4. Note that the majority of the 

applications of MLAs are for categorical problems. To date, a variety of MLAs have been applied to classify 
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rock mass properties, rock bursts, and tunnel performance. The research that has been performed using 

MLAs to scale lab data and field observations to rock mass properties have been primarily categorical, as 

the rock mass classification schemes presented in Section 2.4.1 represent an industry accepted 

classification scheme. It is common for a project to have an incomplete dataset due to the cost associated 

with lab testing or field data collection. In practice, a basic statistical analysis may be performed to obtain 

conservative estimates of these properties, which are then scaled up to the rock mass scale properties 

using empirical or analytical methods. MLAs present an opportunity for determining the relationship 

between the lab scale and the rock mass scale properties, and potential to avoid the bias that can be 

injected by doing this manually. The algorithms for rock bursts and tunnel performance have been 

developed using inputs that represent physical properties, which that have been binned into categories that 

correspond to the severity of the rock bursts or tunnel deformation being predicted. Based on the 

classification schemes discussed in Section 2.4.1, the bins for these and other rock mass properties are 

already defined in engineering practice, and therefore practical to apply to a classification problem such as 

these. In practice, these properties are combined to calculate an overall quality score and then the support 

is designed based on this. MLAs present the opportunity to perform the rock support determination even if 

the dataset is incomplete, and allows the rock engineer to quantify the uncertainty associated with those 

predictions. 

Little work in the literature has been done applying MLAs to the numerical modelling methods described in 

Section 2.4.2. Although sensitivity analyses are performed in practice, in general the numerical calibration 

process consists of manually adjusting the model parameters in a systematic manner until the numerical 

model outputs match the field observations. This requires careful adjustment of the input parameters 

followed by computation of the model to check the output against the observation or measured behaviour. 

For complex problems, running the model repeatedly is time consuming and therefore not done regularly 

in practice. MLAs present an opportunity to define the complex relationships between the input parameters, 

the numerical model behaviour and observed rock mass phenomena, and subsequently to conduct a more 

precise sensitivity analysis of the model inputs to ensure the rock mechanics relationships are being 

captured. An avenue for future research is surrogate modelling, where an MLA is used in conjunction with 

the numerical model outputs to systematically iterate through a distribution of inputs until the numerical 

model result matches the field observations. The MLA model may be used to calibrate the numerical model 

or simply for predicting an unknown state – hence the term “surrogate model”. 

As shown in Table 2-1, several authors have found success applying ANNs to model complex rock mass 

behaviour over other algorithms, which is why they are emphasized herein. To date, the most common 

ANNs researchers are using are MLPs with one or two hidden layers (Trivedi et al., 2015). The main 

advantage of ANNs is that geometrical and physical constraints that govern rock mass constitutive 

behaviour and cause problems in numerical modelling approaches are not as problematic. This is because 

the data driven method does not rely on a function to capture all the anticipated rock mass behaviour, but 
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rather learns from the specific cases it is given to inform future predictions. An additional advantage is that 

ANNs can incorporate judgments based on empirical methods and can mimic the “perception” the human 

brain is capable of (Marsland, 2014). However, ANNs are limited to making predictions within the training 

parameters, meaning that they cannot make predictions outside the dataset it is given to train on. In other 

words, if there are not catastrophic events, such as a rock burst or falls of ground, included in the training 

dataset, then the ANN may not be able to predict these events given new data. Since ANNs are 

fundamentally a complex curve fitting algorithm, overfitting or underfitting may pose a concern to the general 

applicability of the final model. It is up to the developer of the ANN to ensure that the network has been 

validated and tested appropriately, and that suitable performance metrics (for example, the coefficient of 

determination (R2), root mean square error (RMSE), precision/recall, receiver operating characteristic 

(ROC) curve) have been used to ensure the general applicability of the final network. Since ANNs are 

relatively new in the field of rock engineering design, there is a lack of verification and validation of ANN 

outcomes in the literature, and therefore cross-disciplinary literature review and independent validation 

using conventional design tools is necessary to prove their validity. 

A unique challenge for rock engineering problems is the inherent spatial dependency of the variables, 

particularly when dealing with anisotropic and non-homogeneous rock mass properties. This may be 

considered explicitly as coordinate inputs, or implicitly by including inputs that are spatially variable. Some 

work has been done to determine the effects of these two input methods for ANNs, and it was noted that 

the model performed better when the spatial coordinates were included implicitly (Cracknell & Reading, 

2014). An analogous problem has been addressed and is far more advanced in the field of image 

recognition, where the image is treated as a two-dimensional raster and inputs, or features, are mapped to 

a point in two-dimensional space on the image that is being processed. The techniques being used in that 

field may be applicable for encoding 2D and 3D spatial information in the geomechanical context. There is 

ample opportunity for further research in this area.  

Time-dependent rock mass behaviour can be challenging to capture using numerical models 

(Paraskevopoulou & Diederichs, 2018). However, there may be an opportunity to couple an ANN with 

numerical models, particularly because ANNs can take time lagged variables as an input. Furthermore, 

convolutional layers may be added between the input node and the first hidden layer to allow a variety of 

input types (numerical, categorical, time-dependent) to be preprocessed and then combined to make a rock 

mass behaviour prediction by one network (Spence, 2018). A recurrent neural network (RNN) may also be 

developed, which allows the network to “remember” previous predictions made and use them to make 

further predictions (Mandic & Chambers, 2001). Further work in this avenue will have applications to solve 

both the time-dependent and spatial issues inherent to rock engineering modelling problems. 

A continuum of data quantity and redundancy for geomechanical datasets is presented in Figure 2-9, based 

on this literature review and the authors’ collective experiences in both machine learning and rock 

mechanics. The data methods discussed in this chapter and those used in practice are plotted on this 
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continuum to show how much data and how many redundant data points are required to effectively use a 

particular data manipulation technique. Data redundancy indicates how many samples of a particular 

phenomenon or rock mass behaviour are required in order for the data method to be able to reliably 

calculate or predict it. Deterministic methods are located in the top left corner of Figure 2-9, with the lowest 

amount and redundancy of data required. This means that, if the correct data is available (through field or 

lab measurements), a deterministic method (e.g., a physics-based equation) can be easily implemented. 

However, common methods like regression have a higher data redundancy: several series of observations 

are required in order to “train” or “calibrate” a regression based model. The higher the redundancy in the 

dataset, the more confidence in the predictions of the regression model. The commonly used deterministic 

or probabilistic methods are usually supplemented by expert judgment or typical values when completing 

analytical or numerical rock engineering designs. Probabilistic, kNN, SVM, Decision Trees all have a 

relatively higher amount of data requirements than standard deterministic and are not generally suitable for 

smaller datasets, however reinforcement learning techniques (not covered herein) may become applicable 

as the algorithms become more advanced. Larger, more comprehensive, datasets, such as those collected 

in mining environments, are well suited to the machine learning algorithms discussed in this chapter, 

especially ANNs. 

Operating mines often collect data continuously over time, for example: geological conditions, microseismic 

events, extensometer or crack meter data, in-situ stress measurements, groundwater and pore water 

pressure monitoring, among many, many others. This kind of multivariate dataset, where each parameter 

is intertwined and related to the overall stability in a complex way, is ideal for implementing an ANN. This 

is especially true if there are geomechanical events of interest that are ongoing, such as rock bursts or 

spalling, that have occurred over the life of the mine and were captured by some or all the instrumentation.  
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Figure 2-9. Comparison of data needs for machine learning algorithms included in this review (black) and some 

conventional rock engineering methods (red) in terms of amount of data and data redundancy required. Data 

redundancy indicates the representation of samples of the behaviour the data method should capture. 

No matter the size or redundancy of the input dataset, it is crucial that the input selection and data 

partitioning scheme are appropriate for the problem to prevent overfitting and to ensure generalizability of 

the resulting model (Solomatine & Ostfeld, 2007a). Input variable selection is often done on an ad hoc basis 

(Abrahart et al., 2012), or using expert judgement and simple linear models (Martins & Miranda, 2013). 

Research in other geoscience fields suggests that input selection be done using a systematic approach 

based on a rigorous input ranking (Snieder et al., 2019). Formal input selection methods are used to 

determine which inputs from the larger input dataset are most useful in terms of relevance to the desired 

output prediction, while minimizing redundancies between input variables (Snieder et al., 2019). The 

framework for input selection has not been formalized and rarely receives the requisite attention (Maier et 

al., 2010a; Maier & Dandy, 2000; May et al., 2010).  

While the importance of appropriate data partitioning is widely accepted (Shu & Burn, 2004), this process 

has not been formalized and is sometimes done arbitrarily (Maier et al., 2010b; Shahin et al., 2004). Poor 

data partitioning may result in a model with poor performance, and some work has been done to quantify 

the variability in the quality of training, validation, and testing subsets and their impacts on model 

performance (Daszykowski et al., 2002; May et al., 2010; Shahin et al., 2004). In particular, four main data 

division methods are prevalent in the literature:  
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1. Random data division 

2. Data division ensuring statistical consistency within subsets 

3. Data division using self-organizing maps 

4. Data division using fuzzy logic methods 

A thorough comparison on the impacts of these methods on model performance specifically for rock 

engineering datasets is needed to develop a framework for further application of machine learning methods 

in this field. 

Model architecture and hyper parameter (i.e. number of hidden nodes, activation function, weights and 

biases, etc.) optimization are often done informally, despite the impact of these decisions on model 

behaviour (Maier et al., 2010a). Given that this approach is the accepted norm, Abrahart et al. (2012) asks 

if obtaining an optimal model structure is feasible or if the efforts required to acquire it are warranted 

(Abrahart et al., 2012). The authors go on to state that since many permutations of hyper parameters and 

architecture yield similar performances, and ad hoc approach may be appropriate for practical applications. 

However, if a more detailed and complex solution is required, numerous hyperparameter optimization 

methods exist, and have been applied in other geoscience fields, such as: k-fold cross validation to produce 

and ensemble of models (Xie & Peng, 2019), parameter regularization (Kumar & Samui, 2014), and 

metaheuristic optimization algorithms (Chou & Thedja, 2016). 

2.7 Conclusions 

This chapter briefly summarizes the current state of rock engineering design and presents the opportunities 

to integrate machine learning algorithms into the existing geomechanical design frameworks. A literature 

review has been conducted on the work that has been done specifically using ANNs on geomechanical 

datasets, and areas for future work have been identified. In practice, stability analyses are often performed 

relying on past experience and observational methods rather than on new data being collected on the 

geology and construction progress (Leu et al., 2001). ANNs are suitable for modelling complex rock mass 

behaviour and have been shown to be more efficient than regression functions (Leu et al., 2001). ANNs 

are especially powerful for repetitive construction processes as they can use real time data to update 

predictions ahead of the current stage of excavation. Future work on convolutional neural networks and 

recurrent neural networks will be invaluable to addressing spatial and temporal rock mass behaviour 

explicitly using ANNs.  

Based on the body of literature available at this time, this review has found that there is a lack of 

standardization of the input selection process, data partitioning methods, model architecture and hyper 

parameter optimization, and performance measures in ANNs for rock engineering. These gaps present an 

opportunity to define a framework for integrating machine learning into rock engineering design to make 

the process more rigorous and reliable. 



35 
 

 

CHAPTER 3.   DATASETS AND PROOFS OF CONCEPT 
 

3.1 Chapter Introduction 

This chapter presents a discussion of the two major datasets used to achieve the dissertation objectives, 

as well as the subsequent proofs of concept developed. A discussion of early work comparing ANNs to a 

Bayesian Belief Network (BBN) is also presented. 

Two main datasets were used to complete the research in the present thesis, provided by research partner 

from mines in Canada with end member rock mass deformation behaviour. The Cigar Lake Mine data 

provided by Cameco Inc. represents a squeezing ground environment, while the Garson Mine data provided 

by Vale S. A. represents a high stress environment. These two datasets present different challenges with 

respect to developing machine learning algorithms, both in terms of developing the algorithm architecture 

to forecast the desired output and the data pre-processing and formatting requirements. This chapter 

introduces the datasets used in the remainder of the dissertation, including sources, digitization, formatting, 

and project context. 

As with other types of model development, the development of a machine learning algorithm benefits from 

a gradual increase in complexity to ensure that the implications of the inputs selected, algorithm 

architecture, performance metrics, and engineering verification are understood and justified. This stepwise 

approach ensures that physical phenomena and sensitivity of model parameters are not overlooked. It is 

also important to understand the available data and its trends prior to increasing the complexity of the 

model. This chapter highlights some of the lessons learned during the data analysis and proof of concept 

stages of the research contained in this dissertation. These proofs of concept represent an experimental 

stage where alternative data driven tools, algorithm architectures, and output interpretations were explored 

prior to developing more sophisticated machine learning algorithms. 

3.2 Comparison of Bayesian Belief Network and Artificial Neural Network 

Early research was conducted to compare a probabilistic modelling tool, the BBN, with a simple machine 

learning algorithm, the ANN, as published in Morgenroth, Snieder, et al. (2019). The BBN and ANN tools 

were compared using a dataset from the Kemano hydroelectric power facility near Kitimat, British Columbia. 

The BBN developed was the subject of previously published research (Morgenroth, 2016). A data driven 

approach (the ANN) was developed to evaluate the prediction accuracy and level of effort required to 

develop it compared to the BBN, and to assess the comparative ease of data analysis for rock engineering 

purposes.  

BBNs are compact, graphical representations of variables (called nodes) that are conditionally dependent 

on each other with direct links that reflect cause-effect relationships (Sousa & Einstein, 2012). The BBN 

nodes and conditional relationships are defined by the user, and inferences are made in the network using 

a priori knowledge to compute the query made to the BBN. BBNs have been applied in tunnel engineering 
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to forward predict and simulate tunnel construction progress as new data becomes available (Einstein et 

al., 1999; Sousa & Einstein, 2012; Špačková & Straub, 2013). The Kemano BBN was developed based on 

the geotechnical, topographical and geometrical aspects of the tunnel, to predict two Kemano-specific 

failure mechanisms: stress driven spalling failure and gravity/structure driven ravelling failure.  

The Kemano ANN developed used the same inputs as the BBN: joint data (roughness, weathering, infilling, 

orientation), structure, groundwater, rock type, and in situ stress (major and minor principal stresses and 

orientations). The architecture was relatively simple consisting of one hidden layer with 8 neurons. Input 

data was partitioned into training (80%), validation (10%), and testing (10%) data. Bootstrap aggregating, 

called “bagging”, was utilized to generate an ensemble of ANN models and generate confidence estimates 

for prediction rates (Breiman, 1996). The Kemano ANN demonstrated overall classification accuracies of 

88.2%, 81.7%, and 87.5% across the calibration, test, and complete datasets, respectively. 

The BBN has the advantage of being capable of handling a mosaic of certainties in the data inputs and 

outputting a statistical distribution as an output instead of a deterministic value. The network can incorporate 

various degrees of certainty of inputs: single deterministic values, the likelihood of a particular state 

occurring, or a distribution that represents the possible values. The BBN is also transparent in that it allows 

the user to see the relationships between all the input nodes, the intermediary nodes, and the output nodes. 

All the conditional relationships can be controlled and coded according to empirical or analytical relationship 

that are widely accepted in literature, or according to the user’s expert judgment.  

The BNN is a powerful tool if the rock deformation phenomena are fully understood, and the network is 

explicitly designed to capture that behaviour. However, developing and calibrating a BBN is time consuming 

and delicate work. It is difficult to develop a BBN that is generalized enough to apply to a multitude of sites. 

Due to the manual method of the network’s creation, it is difficult to avoid building in some form of bias into 

the BBN, leading to skewed outputs that may not capture the entire range of possible behaviours. Another 

limitation of BNNs and probabilistic methods in general is that the prior distributions of the input nodes must 

be specifically defined before their application. Often simplified distributions, such as a Gaussian curve, are 

selected for convenience. This has the potential for producing erroneous results. 

ANNs also represent an advantage over conventional analytical approaches in terms of handling input 

uncertainty, in that inputs can be assigned a probabilistic distribution as opposed to a single, deterministic 

value. However, ANNs differ from BBNs because the user does not introduce bias into the model by 

encoding empirical or analytical relationships. Instead, the internal relationships between input parameters 

are determined by an objective training function. Machine learning methods can be used to identify useful 

inputs, validate results, and estimate uncertainty. The use of such methods facilitates model development 

compared to conventionally used models, as models can be trained and adapted with little expert 

knowledge. Instead, expert judgement is reserved for identifying candidate input parameters and 

interpreting model results. 
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Both BBNs and ANNs are powerful tools to streamline the data available for a tunneling project, though 

they differ is on the degree of oversight that is desired by the user. BBNs are entirely customizable and 

appear more transparent to a user that is unfamiliar with data driven methods. However, ANNs have the 

ability to learn complex patterns between inputs and the desired output which may not be easily discernible 

by the expert user, and where the anticipated geomechanical behaviour is too complex to be captured by 

a simplified network. This study comparing the two methods was found to be a validation of conducting 

further research on machine learning algorithms for geomechanical datasets. 

The paper detailing the Kemano proof of concept is found in APPENDIX A. Proofs of Concept and is entitled 

Comparison of Bayesian Belief Networks and Artificial Neural Networks for prediction of tunnel ground 

class.  

3.3 Cigar Lake Mine 

3.3.1 Background 

Cigar Lake Mine is owned and operated by Cameco, and is located in northern Saskatchewan, Canada 

(Figure 3-1). It is the world’s second-largest uranium mine, with an ore grade approximately one hundred 

times the global average (Bishop et al., 2016). The ore body is unique due to its size, high grade, intensity 

of alteration, and a high degree of associated hydrothermal clay alteration (Bishop et al., 2016). 

 

Figure 3-1. The location of Cigar Lake Mine in Saskatchewan, Canada (adapted from Geological Survey of Canada, 

2009).  

The geology of the Cigar Lake uranium deposit and environs is described in detail in CHAPTER 4.  A 

Convolutional Neural Network approach for predicting tunnel liner yield at Cigar Lake Mine and is 

summarized here for context.  
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The uranium at Cigar Lake Mine is found in an unconformity type deposit. The deposit and host rock consist 

of three geological elements that also define the geotechnical domains: the deposit and associated 

hydrothermally altered clay cap, the overlying sandstone unit (Athabasca Group), and the underlying 

metamorphic basement rock (Wollaston Domain). The deposit and sandstone are highly fractured and 

water bearing, while the basement rock is impervious. The basement rock is composed mainly of pelitic 

metasedimentary gneisses and is considered the most favourable unit for uranium mineralization. In 

general, the Cigar Lake Mine operation and production tunnels are in three main rock mass types (Paudel 

et al., 2012): weak, highly weathered and saturated basement rock containing sand and clay; moderately 

weathered saturated basement rock; and strong unweathered basement rock. 

The ore body is located above the 5.0 m lined diameter ore extraction tunnels, which are excavated using 

drill and blast. There are two main challenges facing the stability of the Cigar Lake Mine excavations: (i) 

controlling groundwater inflow, and (ii) supporting areas of weak rock (Bishop et al., 2016). The mine 

operators decided to freeze the rock mass surrounding the orebody to improve rock mass properties and 

to restrict groundwater inflow into excavated areas. However, the ground freezing operation results in 

complex time-dependent rock mass behaviour that is difficult to predict and presents challenges when 

designing support (Golder Associates, 2001; Roworth, 2013). The cavities created from the extraction of 

the ore are backfilled with concrete, and therefore provide additional ground support once they reach their 

full strength (Bishop et al., 2016). The general layout of the ore body and extraction method are shown in 

Figure 3-2. 

 

Figure 3-2. Schematic of the mining method at Cigar Lake Mine, showing a section view of the ore extraction tunnel 

and freeze holes from surface. The ore extraction tunnels are below the high grade ore body. Ground freezing is 

implemented to stabilize the excavations in the adverse geology and to manage ground water inflow from the Athabasca 
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Sandstone. Tunnel convergence is monitored using survey targets placed on the ground support around the 

circumference of the tunnel. Adapted from Morgenroth et al. (2022). 

3.3.2 Data Preparation 

The Cigar Lake Mine dataset is comprised of tunnel mapping, in the form of Ground Management Plans 

(GMPs), and survey data from the circumferential displacement measurements. The GMPs are produced 

at 6 to 8 weeks intervals depending on availability of geotechnical staff and ongoing mining operations. The 

GMPs contain data for an interval of time, including mapped geotechnical zones, observed damage or yield 

to tunnel support elements, surface and underground freeing operations, geotechnical monitoring stations, 

and locations of tunnel displacement monitoring. Figure 3-3 presents a typical GMP for Cigar Lake Mine.  
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Figure 3-3. Sample Ground Management Plan (GMP) that was digitized to extract inputs for development of a Cigar Lake Mine machine learning algorithm (courtesy 

of Cameco). 
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The GMPs are essentially images, where the coordinates of the tunnel can be associated with pixel 

coordinates and various data can be translated to pixel intensity values. This allows for the translation of 

3D spatial information into a 2D array of numerical or categorical values, which is a machine-readable form. 

This digitization exercise requires a coordinate system that will map locations on the tunnel to pixel 

coordinates, as well as a set of rules that will translate qualitative and categorical information to numerical 

values. Thus, the available datasets were digitized at a spatial resolution of 164 m (length of the tunnel) by 

13 elements (representing elements around the circumference of the tunnel) as seen in Figure 3-4.  

 

Figure 3-4: Nomenclature of mapped tunnel data  

The GMPs correspond to 2015 Week 42, 2015 Week 50, 2016 Week 02, 2016 Week 10, and 2016 Week 

24. This represents almost one year’s worth of data. The input data that were digitized are: (i) the mapped 

geotechnical zones (GEO); (ii) as-built ground support class (SUPCL); (iii) ground freezing patterns 

(FREEZE); and (iv) radial tunnel displacement (DISP). Of the four inputs, GEO and SUPCL are spatially 

variable (i.e., inputs have a resolution of 164 m x 13 elements), while FREEZE and DISP are temporally 

variable (i.e., inputs have a resolution of 164 m x 13 elements x 5 time steps). A summary of each input 

digitized from the GMPs, and their corresponding definitions, are shown in Table 3-1. The categorical and 

binary inputs (GEO, SUPCL, FREEZE) were taken directly as presented on the GMP. These were the 

simplest to digitize. The DISP input was obtained from the displacement that is monitored using survey 

points around the circumference of the tunnel at 19 rings, with spacing between rings ranging from 4 to 12 

m. Each ring has between 5 and 9 survey points that are captured when displacement measurements are 

taken. These measurements were interpolated around the tunnel circumference so that each tunnel 

element at each of the 19 rings had a DISP value. No interpolation between the measurement rings along 

the tunnel alignment was made, and instead the locations without measurements were assigned “not a 

number” during digitization. This prevents bias from being introduced, which would be possible if an 

analytical or numerical method was used to interpolate the magnitude of displacement between the 

measurement locations. This also results in a training dataset that is as “raw” as possible. 
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Table 3-1. Summary of inputs digitized from Cigar Lake Mine Ground Management Plans (GMPs). 

GEO 
(164 x 13) 

SUPCL 
(164 x 13) 

FREEZE 
(164 x 13 x 

5) 

DISP 
(164 x 13 x 5) 

1 – stiff homogeneous crystalline rock 
2 – fissured fresh crystalline rock 
3 – transition from fresh to metamorphosed 
crystalline rock 
4 – metamorphosed crystalline rock 
5 – stiff to very stiff coarse-grained soil, 
structure well preserved 
6 – fine-grained soil, structure not seen 

1 – class 1 support 
2 – class 2 support 
3 – class 3 support 
4 – class 4 support 
5 – class 5 support 

0 – freezing 
off 
1 – freezing 
on 

Measured radial distance, 
in mm 

 

The digitized output for this dataset was the yield to tunnel support elements (YIELD). The classes of YIELD 

are: Class 0 – no yield; Class 1 – minor yield; Class 2 – major yield; and Class 3 – total tunnel reprofiling 

required. These classes correspond with the amount of time, effort, and cost is associated with the required 

rehabilitation, and were defined in consultation with ground control engineers at Cameco. Based on these 

discussions, the YIELD classes were digitized from the GMPs as shown in Table 3-2. 

Table 3-2. Summary of output digitized from Ground Management Plans (GMPs). 

YIELD 
(164 x 13 x 5) 

Class Criteria 

Class 0 No yield recorded 

Class 1 Minor isolated cracks in shotcrete, single water ingress spots, minor spalling of lining or yield elements 

Class 2 
High concentration of minor cracks, low number of major cracks, extensive spalling of the lining, 
spalling of yield elements, combination of cracks OR spalling AND water ingress, rock bolt yield 

Class 3 
Extensive spalling and major cracks, spalling AND cracks AND water ingress, cracks or spalling and 
rock bolt damage, squeezed yielding element, horizontal movement of yielding element 

 

A detailed summary of all the digitized data and their distributions are presented in CHAPTER 4.  Section 

4.6.1 Cigar Lake Mine Data. 

3.3.3 Lessons Learned from Proof of Concept 

The Cigar Lake Mine algorithm development followed a stepwise process can be divided into three distinct 

phases: (i) preliminary data analysis and simple ANN development; (ii) CNN development and 

hyperparameter tuning; and (iii) Input Variable Selection (IVS) analysis. The onset of each of these phases 

is marked by a proof of concept, all of which are included in their entirety in APPENDIX A. Proofs of 

Concept. The relevant findings are summarized in this section. 

Early study of the data patterns within the Cigar Lake Mine dataset, described in section 3.2 Comparison 

of Bayesian Belief Network and Artificial Neural Network, attempted to characterize spatial correlations by 

analyzing the relationship between inputs in neighbouring pixels, not only focusing on a pixel-by-pixel study 

of the available tunnel mapping. This work was published in Morgenroth, Perras, et al., (2020). The mapping 
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data was treated as a raster, where correlations between a central pixel and its immediate neighbours were 

evaluated. For example, for pixel (i, j) the data from pixels (i±1, j±1) were also analyzed. The general data 

trends identified were as follows: 

• Over time the severity of YIELD increases for all GEO classes, though the highest impact is to the 

areas with the poorest GEO. 

• There is some variation of SUPCL assigned within each GEO class that impacts the severity of 

YIELD sustained at that location. This nuanced relationship is difficult to quantify from visual data 

inspection. 

• YIELD in areas beneath where ground freezing is being implemented is higher than where the 

ground is not frozen. However, YIELD increases everywhere with time, indicating that other input 

variables are implicit drivers of yield.  

• Poorer GEO classes experience higher values of DISP and therefore higher degrees of YIELD. 

Prior to formatting the Cigar Lake Mine dataset as images, as described in section 3.3.2 Data Preparation, 

a preliminary ANN was developed where the ANN was trained using 28 discrete inputs. The inputs are the 

GEO and SUPCL for pixel (i, j) and pixels (i±1, j±1), as well as the FREEZE and DISP across five timesteps. 

The ANN target was the YIELD at the fifth timestep. A relatively simple ANN architecture with one hidden 

layer containing 6 neurons was found to predict class 1 rock support damage reliably (84%), while over 

predicting class 0, under predicting class 2, and not being able to predict class 3. This inconsistent 

performance was theorized to indicate that the relative proportions of each of the YIELD classes is not 

adequately represented in the training dataset, and that the simplified method of including the pixels 

(i±1, j±1) was not sufficient to characterize the rock mass deformation phenomena. Thus, this proof-of-

concept study determined that future work should focus on increasing or balancing the input dataset, 

investigating alternative ANN types and architectures, and validating the input selection.  

Due to the limitations of the simple ANN developed for the Cigar Lake Mine dataset, an alternative algorithm 

architecture was selected for experimentation, to capitalize on the nuance in the spatial-temporal data and 

produce improved predictive performance. A CNN architecture was developed, where two main 

hyperparameters were investigated: the amount of temporal training data, and the convolution filter size. 

This proof-of-concept study is published in  Morgenroth et al. (2020). The training data was varied so that 

the CNN was trained only on GMP 1 and tested on GMP 2, trained on GMPs 1-2 and tested on GMP 3, 

trained on GMPs 1-3 and tested on GMP 4, and finally trained on GMPs 1-4 and tested on GMP 5. The 

intention of this was to determine how many time steps are needed to get the most accurate prediction of 

YIELD. The convolution filter size was also varied from [2 m by 2 m] to [50 m by 50 m]. This meant that the 

YIELD was classified using information ranging from 2 to 50 m in distance from the pixel for which the 

classification was made, determining spatial sensitivity. This CNN proof-of-concept determined that the 

more temporal information the CNN is trained on, the more accurate the predictions become for all YIELD 

classes. This is because the CNN creates more robust relationships between the inputs and the output with 



44 
 

 

the addition of more temporal data. The optimal filter size was found to be [30 m by 30 m], which correspond 

to approximately 3 tunnel diameters (5 m tunnel diameter x 3 = 15 m in each direction).  

Overall, this preliminary CNN was able to predict YIELD Classes 0-2 with >87% accuracy, however, was 

only able to predict Class 3 with 44% accuracy. Therefore, this study indicated that the CNN architecture 

was more suitable than the simpler ANN developed previously, however additional work was needed to 

achieve good prediction accuracy across all YIELD classes. A detailed study was conducted to fine tune 

several hyperparameters, including implementing an error weighting scheme, and further sensitivity 

analysis on the convolution filter size and the amount of training data. These detailed analyses are beyond 

proof of concept stage and are included in their entirety in CHAPTER 4.  A Convolutional Neural Network 

approach for predicting tunnel liner yield at Cigar Lake Mine, which is also published in Morgenroth et al., 

2021a. 

The finalized Cigar Lake Mine CNN consists of two architectures: (i) a Global Balanced CNN, which uses 

an inverse frequency error weighting scheme to balance the dataset and achieve good prediction accuracy 

across all YIELD classes, and (ii) a Targeted Class 2/3 CNN, which uses a sigmoid error weighting scheme 

to prioritize Class 2 and 3 YIELD during training. In an attempt to increase the interpretability of these two 

CNNs, an IVS approach called Input Omission (IO) was adapted and applied as a proof of concept to 

increase algorithm transparency. This IO study was published in Morgenroth et al. (2021b) and is 

summarized here. 

The IO method is a model-based IVS approach that estimates the usefulness of each input by iteratively 

examining model performance when an input is left out from the full set on which the model has been 

trained (Setiono & Liu, 1997). The significance, or lack thereof, of each input can then be compared based 

on the performance that is produced by leaving it out. Excluding redundant or irrelevant inputs from the 

CNN results in a model with a higher generalization capability (R. May et al., 2011). It is uncommon to apply 

IO to CNNs. This is because typical channels in input images are RGB or BW values, and for typical image 

processing it is not logical nor necessary to “turn off” individual channels. However, in the case of the Cigar 

Lake Mine CNN, each of the channels is a discrete and independent geotechnical input that has been 

formatted into an image channel. Therefore, a novel IO approach was adapted and tested as an IVS method 

for the Cigar Lake Mine CNN, as described in Morgenroth et al. (2021b). 

The IO approach revealed that of the four categories of inputs used to develop the Cigar Lake Mine CNN, 

none of them could be omitted entirely to achieve better performance. The results also indicated that GEO 

and DISP contain the strongest signals for forecasting the severity of YIELD at Cigar Lake Mine. Practically 

speaking, these early IVS results indicated that the special emphasis should be placed on collecting the 

geotechnical zones in detail and the radial tunnel displacements with high temporal regularity. These results 

also suggested that the application of model-free IVS methods may offer further insights into the 

interpretation of the Cigar Lake Mine CNN, specifically with respect to post-hoc interpretation. This 

preliminary IO IVS study resulted in more in depth development of two further IVS methods. 
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The complete papers containing the Cigar Lake Mine proofs of concept described above are found in 

APPENDIX A. Proofs of Concept and are entitled: 

• An Artificial Neural Network approach for predicting rock support damage at Cigar Lake Mine: A 

Case Study (Morgenroth et al., 2020) 

• Convolutional Neural Networks for predicting tunnel support and liner performance: Cigar Lake 

Mine case study. (Morgenroth et al., 2020) 

• An Input Variable Selection approach for a Convolutional Neural Network that forecasts tunnel liner 

yield at the Cigar Lake Mine (Morgenroth et al., 2021) 

3.4 Garson Mine 

3.4.1 Background 

Garson Mine is a cooper-nickel mine owned and operated by Vale, and is located near Sudbury, Ontario, 

Canada (Figure 3-5). Garson Mine has been under development for over 100 years, with the first shaft sunk 

in 1907 (Sudbury.com, 2008). The mine is located on the southeast rim of the Sudbury Basin, and mining 

methods used are blasthole stoping and uppers retreat (Mining Data Solutions, 2022). 

 

  

 

Figure 3-5. The location of Garson Mine near Sudbury, Ontario, Canada (adapted from Geological Survey of Canada, 

2009).  

The copper-nickel sulphide deposits at Garson Mine are hosted in parallel shears, which are offset by later 

stage dyke intrusions. The footwall is typically the lower zone norite of the Sudbury Igneous Complex and 
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Greenstone/Metabasalt metavolcanics, and the hangingwall consists of metasediments. The Garson Mine 

orebodies are more deformed than any other orebodies of the Sudbury Basin, and strike approximately 

east-west and dip south 75°. This research is focused on the #1 Shear West (1SHW) area of the mine, 

which is characterized by massive sulphide mineralization with sharp hangingwall and footwall contacts.  

In response to large seismic events that occurred at Garson Mine between 2006 and 2008, strategic and 

tactical mitigation measures were implemented as a risk management approach to withstand future seismic 

impact (Yao & Moreau-Verlaan, 2010). The strategic measures relevant to this research are (i) the 

installation of a microseismic monitoring system to monitor ground movement and ground support 

effectiveness in high risk areas, and (ii) the ongoing numerical modelling that aimed to re-examine mining 

sequences. A microseismic monitoring system was installed to collect and evaluate continuous waveforms 

in real time, allowing for source-location and calculation of source parameters as events occur (Vale, 2015). 

In 2017 and 2018 the mine experienced an increase in frequency of large-magnitude seismic events in the 

1SHW area. A FLAC3D model was developed by geomechanical consultants to back analyze the 

mechanisms that triggered these events, allowing for the evaluation of seismogenic risk associated with 

past, present, and future mine-induced stress evolution. The scope of the numerical modelling efforts 

included assessing the stability of the underground excavations and thus suggest operational changes to 

improve safety, reduce costs, and increase profitability (K. S. Kalenchuk, 2018). A sample simulation of this 

FLAC3D model is shown in Figure 3-6. 

 

Figure 3-6. Garson Mine FLAC3D model, showing sequence of forward simulations with respect to stope mining. The 

intention of this simplified sequence was to demonstrate ongoing stress loading within the diminishing pillar over the 

remaining production in this stope block. (K. S. Kalenchuk, 2018). 



47 
 

 

3.4.2 Data Preparation 

The Garson Mine dataset is comprised of the microseismic database dating from 2015-2018 and the 

previously calibrated FLAC3D model. The approach taken was to use microseismic events up to the date 

of the last manual FLAC3D model calibration to forecast the stresses at each zone in the FLAC3D model.  

The microseismic parameters characterize the evolution of the stress regime leading up to larger seismic 

events and rock bursts, and inputs from the Garson Mine microseismic database were chosen following 

work by Zhang et al. (2021). However, a proof-of-concept study found that the microseismic data alone is 

not enough to accurately predict the stresses in the FLAC3D model, because all the seismic parameters in 

the database are highly correlated to each other (see 3.4.3 Lessons Learned from Proof of Concept). For 

this reason, additional parameters from the FLAC3D model (e.g., material properties, geological zones, 

constitutive model) were added to the Garson Mine dataset to increase the variability and uniqueness within 

the dataset. The targets were the stresses from the FLAC3D model at each zone centroid. Two sets of 

targets were extracted for comparison: the principal stress tensor, and the six-component stress tensor. A 

list of all variable comprising the Garson Mine dataset is shown in Table 3-3. 

The seismic database was filtered to the same Northing, Easting and Elevation as the FLAC3D model, to 

ensure the seismic events remaining in the database occurred near the 1SHW developments. Any seismic 

events with a source-location error greater than 20 ft (6 m) were removed from the database, to improve 

reliability of the data points.  

Table 3-3. Summary of Garson Mine inputs (from microseismic database and FLAC3D model) and targets (from 

FLAC3D model). 

Inputs  Targets 

Time stamp 
Microseismic event location (N, E, El.) 
Moment magnitude 
Seismic moment 
Energy 
Es/Ep 

Apparent stress 
Source-location error 
Geological group 
Constitutive model 
Elastic modulus 
Poisson’s ratio 
Hoek Brown mb, s and a 

Accumulated plastic strain 

Major Principal Stress, σ1 

Intermediate Principal Stress, σ2 

Minor Principal Stress, σ3 

 
Normal Stress, σxx 

Shear Stress, σxy 

Shear Stress, σxz 

Normal Stress, σyy 

Shear Stress, σyz 

Normal Stress, σzz 

 

The Garson Mine dataset required formatting prior to processing by a machine learning algorithm. In this 

case a time-series (the microseismic events) will be used to perform a regression to values representing 

the stress state. Each microseismic event in the database was matched to the nearest zone centroid in the 

FLAC3D, then the seismic events that occurred near the same zone centroid were ordered into a sequence 

of seismic events (Figure 3-7).  
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Figure 3-7. FLAC3D zone centroids, with 1SHW area indicated by the red cube. Seismic events (red points) were 

matched to the nearest zone centroid to train the Garson Mine LSTM network. 

A detailed summary of the dataset and their distributions are presented in CHAPTER 6.  Section 6.5.1 Input 

Data.  

3.4.3 Lessons Learned from Proof of Concept 

A simple preliminary LSTM network was developed for Garson mine due to the complex nature of the 

dataset, which is comprised of multivariate time-series microseismic data, as well as the desired outputs, 

namely the stress state in a complex FLAC3D model. This initial step was taken in advance of more complex 

sensitivity analyses and hyperparameter tuning. The preliminary LSTM network offered the opportunity to 

test the input data formatting described in section 3.4.2 Data Preparation, as well as giving an initial 

indication about whether the microseismic database inputs were sufficient to provide good prediction of the 

stresses.  

A simple sequence-to-one regression LSTM network was developed using the Garson Mine dataset, as 

described in Morgenroth et al. (2021). Two input format settings were investigated: the minimum number 

of seismic events that are included in a sequence for training, and the number of FLAC3D zone centroids 

that each discrete seismic event is assigned to. The former was an investigation of the minimum amount 

of temporal seismic data needed to make a reasonable forecast of the principal stresses. The latter was an 

investigation of one method to enhance the learning dataset, by assigning the same seismic event to 

multiple locations in the rock mass (represented by the FLAC3D zone centroids). This allows for more of 

the same seismic events to be included in multiple training sequences, creating richer sequences used for 

training the Garson Mine LSTM network. 

A key finding of this proof of concept was that despite the large volume of microseismic data available, the 

input dataset is underdispersed. Underdispersion exists when outputs exhibit less variation than expected 

based on its distribution, and can occur when inputs are highly correlated with each other. This finding from 

the proof of concept was addressed in the subsequent Garson Mine LSTM network refinement. This is 

discussed in detail in Morgenroth et al. (2021) and is summarized here. 
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The problem of underdispersion found in the proof of concept stage was managed by increasing the number 

of inputs in the Garson Mine dataset. This provides the variability the LSTM network requires to learn the 

nuanced relationships between the inputs and targets. In the case of the Garson Mine LSTM network, the 

available inputs were increased by including additional parameters from the FLAC3D model (e.g., material 

properties, geological zones, etc.) in the dataset. The Garson Mine LSTM network was also developed to 

sample randomly with replacement during algorithm training, to allow all the training sequences to be used 

for both raining and calibration. Finally, four different loss functions were compared in order to select which 

function was best for capturing the non-normally distributed targets. 

The paper detailing the Garson Mine proof of concept is found in APPENDIX A. Proofs of Concept and is 

entitled Forecasting principal stresses using microseismic data and a Long-Short Term Memory network at 

Garson Mine. 
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CHAPTER 4.   A CONVOLUTIONAL NEURAL NETWORK APPROACH FOR 
PREDICTING TUNNEL LINER YIELD AT CIGAR LAKE MINE 

 

4.1 Preface 

This chapter focuses on the development of a Convolutional Neural Network (CNN) Cigar Lake Mine, 

Saskatchewan, Canada, to predict tunnel liner yield. Four inputs are used inn the CNN to make this 

prediction: geotechnical zone mapping, primary support class, ground freezing pattern, and measured 

tunnel displacement. A sensitivity analysis of CNN training parameters, called hyperparameters, is 

completed to optimize the final CNN performance. Hyperparameters analyzed include: the amount of 

training data, the convolutional filter size, and the error weighting scheme. Two final models are developed, 

one balanced model able to accurately predict tunnel liner yield across all classes of severity, and one 

targeted model that is calibrated to predict the higher classes of tunnel liner yield particularly well. This CNN 

represents a contribution towards Objective 1, which is to develop a classification machine learning 

algorithm using standard geotechnical mapping data from a real project. 

The content of this chapter was published in Rock Mechanics and Rock Engineering in 2021 as follows:  

Morgenroth, J., Perras, M. A., & Khan, U. T. (2021). A Convolutional Neural Network approach for 

predicting tunnel liner yield at Cigar Lake Mine. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-021-

02563-3  

The contributions of the authors in the current chapter are as follows:  

Josephine Morgenroth has conducted the literature review, performed the data collection and preparation, 

developed the algorithm using the required software to perform the analysis and modelling, validated and 

visualized the results, and prepared and wrote the original manuscript of this publication. Matthew A. 

Perras has supervised the research, provided the funding, and contributed to writing and editing the 

manuscript. Usman T. Khan has supervised the research, provided the funding, and contributed to the 

writing and editing the manuscript.  

The authors would like to extend special thanks to Cameco, and particularly Chris Twiggs, Imre Bartha and 

Kirk Lamont for their constructive feedback and informative conversations. This work is funded in part by 

the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant program 

and the joint Innovation York and National Research Council Canada’s Industry Research Assistance 

Program – Artificial Intelligence Industry Partnership Fund, in partnership with Yield Point Inc. This work is 

also funded by the Ontario Graduate Scholarship program. 

4.2 Abstract 

As underground instrumentation improves and the storage of large volumes of data becomes more cost 

effective, the rock engineering community has access to larger datasets than ever before. Machine learning 

https://doi.org/10.1007/s00603-021-02563-3
https://doi.org/10.1007/s00603-021-02563-3
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algorithms (MLAs) present an opportunity to uncover nuanced rock mass deformation mechanics more 

efficiently than conventional data analysis tools, resulting in increased reliability of underground 

excavations. MLAs require appropriate pre-processing of inputs as well as ground truth validation of 

outputs. CNNs are an MLA that allow for the preservation of spatial and temporal dependencies within a 

dataset. CNNs were developed for image recognition and segmentation, such as video processing, and 

are efficient at analyzing sequential snapshots of an excavation as the environmental and in-situ factors 

change.  

Herein a CNN is developed for Cigar Lake Mine, Saskatchewan, Canada, to predict tunnel liner yield. The 

mine experiences a complex time-dependent ground squeezing behaviour resulting from the poor 

geological conditions and the artificial ground freezing implemented to stabilize the ore cavities and to 

control ground water during the ore extraction process. A sensitivity analysis of the CNN training 

parameters, called hyperparameters, is completed to optimize the final CNN performance. 

Hyperparameters analyzed include: the amount of training data, the convolutional filter size, and the error 

weighting scheme. Two final models are developed, one balanced model able to accurately predict tunnel 

liner yield across all classes of severity, and one targeted model that is calibrated to predict the higher 

classes of tunnel liner yield particularly well. Model results demonstrate that the CNN is a promising tool for 

preserving the spatial and temporal dependencies between input variables, and for predicting tunnel liner 

yield. This is a novel approach for geomechanical datasets. In combination, the two final CNNs achieve a 

prediction precision of >87% across all classes and a recall of up to 99.9% for the higher yield classes. The 

activation strengths of the inputs were studied, and it was determined that the primary installed support 

class is the most dominant predictor of tunnel liner yield. 

4.3 Introduction 

Decision making in the field of rock engineering is challenging due to the inherent uncertainty associated 

with the behaviour of natural earth materials. Since the 1960s when rock mechanics was formalized as a 

field of study (Hoek, 1966), many empirical and numerical methods have emerged. These methods tend to 

base design decisions on previous knowledge of similar materials or locations and to account for the 

uncertainty by examining ranges of material properties (Jing & Hudson, 2002). Empirical tools proved to be 

a useful way of incorporating previous experience for otherwise unknown conditions, and numerical tools 

allowed for efficient computation of scenario analyses. While both these methods have many strengths, 

there is a common weakness: in practice, the data of the problem at hand is often conformed to a framework 

that does not exactly describe the local rock deformation phenomena. In empirical underground design 

methods (e.g., Barton et al., 1974; Bieniawski, 1993), the ground support recommendations are based on 

ground conditions from numerous case studies from around the world but may not match the rock 

deformation mechanics at the site for which the support is being designed. Numerical modelling, such as 

the Finite Element Method, Finite Difference Method, Discrete Fracture Network modelling, and hybrid 

methods, all rely on constitutive behaviours that may not capture the combination of factors that result in 
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the observed rock deformation mechanics (Morgenroth, Khan, et al., 2019). There is a risk of introducing 

bias to engineering decision making, because the actual rock mass deformation phenomena may be overly 

simplified or mischaracterized as a result of fitting the site-specific data available to an empirical or 

constitutive behaviour that does not capture all the observed rock mass deformation mechanics. This is 

commonly overcome at present by examining several scenarios, which increases the time needed to 

develop a suitable design.  

These limitations may be overcome by applying a data driven approach, such as statistical or machine 

learning methods. Statistical methods, such as reliability-based design (Baecher & Christian, 2003; 

Bozorgzadeh et al., 2018; Langford, 2013), have been developed to quantify uncertainty in geomechanical 

datasets and build variable relationships that help engineers understand the associated rock and rock mass 

behaviour. Machine learning methods can identify patterns or relationships between datasets and does not 

require expert intervention to form inter-variable relationships (Khan & Valeo, 2017; Solomatine & Ostfeld, 

2007). Instead, the expert’s judgment is reserved to choose the relevant input data and to evaluate whether 

the outputs are mechanistically viable.  

MLAs have emerged as a tool to be added to the rock engineering toolbox for investigating complex rock 

deformation mechanics (Morgenroth, Khan, et al., 2019), though they are not yet prevalent in rock 

engineering practice. MLAs are advantageous because of their ability to compute large volumes of 

numerical and categorical data (Marsland, 2014) – which today is collected at an increasing rate but is often 

not examined efficiently and thoroughly. MLAs provide a process to extract more value from the collected 

data, and to ease the burden of manual data manipulation and analysis. The availability of adequate and 

relevant data is a prerequisite for developing a well generalized and robust MLA. To date, research at the 

intersection of machine learning and rock engineering has included predicting: rock mass properties 

(Sklavounos & Sakellariou, 1995; Song et al., 2015), constitutive behaviour (Kumar et al., 2013; Millar & 

Clarici, 2002), slope stability (Ferentinou & Fakir, 2018; Janeras et al., 2017; Kumar & Samui, 2014), tunnel 

performance (Bizjak & Petkovšek, 2004; Leu et al., 2001; Qi et al., 2018; Sun et al., 2018), rock bursts (Pu 

et al., 2018; Ribeiro e Sousa et al., 2017), and blasting (Dong et al., 2011; Liu & Liu, 2017). These studies 

have been completed using a variety of MLAs, ANNs, a variation of which will be used in the present 

research. 

Geomechanical datasets are generally challenging to work with due to the combination of data types and 

formats, including categorical (e.g., rock mass classification), numerical (e.g., instrumentation readings), 

spatial (e.g., geological mapping), and temporal (e.g., seismic monitoring) data. Combining these various 

data is challenging in most data driven methods due to the preprocessing required, which in addition to 

being time consuming and tedious, presents the risk of inadvertently injecting bias (Morgenroth, Khan, et 

al., 2019). This chapter presents the novel development and application of a CNN, which was originally 

designed for image classification and computer vision applications, and explores its suitability for 

processing rock engineering data with spatial and temporal dependencies. 
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Herein a CNN is developed and applied to a spatially and temporally dependent dataset pertaining to Cigar 

Lake Mine, located in northern Saskatchewan, Canada, where the ore production tunnels are experiencing 

squeezing ground conditions resulting in yield of the tunnel lining. The CNN was developed to predict the 

yield of the tunnel lining, where liner yield is defined as combined failure state of the rock support elements 

including shotcrete, mesh, and rock bolts.  Four inputs are used inn the CNN to make this prediction: 

geotechnical zone mapping, primary support class, ground freezing pattern, and measured tunnel 

displacement. The CNN model was designed to predict high tunnel liner yield as accurately as possible, 

however, the overall performance of the model for lower classes of yield must not decrease as a result. In 

addition to prediction accuracy, the time-dependency of the input data is quantified by analyzing the impacts 

of the extent of historical data on model performance, i.e., how far back in time data is needed to make an 

accurate forecast. Additionally, the parameters used to train the CNN (called hyperparameters) were 

calibrated to determine the optimal values that result in the best model performance. Finally, the activation 

strengths of the CNN model inputs (geology, support class, ground freezing, tunnel displacement) were 

evaluated to determine the inputs that are the strongest predictor of tunnel liner yield at the Cigar Lake 

Mine. 

4.4 Machine Learning and Underground Rock Engineering 

Data driven machine learning methods have emerged as powerful tools because they are able to handle 

complex problems with large datasets much more efficiently and with a higher accuracy than manual data 

analysis techniques (Liu & Yang, 2005; Marsland, 2014; Papadopoulos et al., 2000). MLAs offer predictive 

abilities for nuanced data patterns within a framework that allow the developer to ensure that a generalized 

solution is found. These data driven methods pose an opportunity to the rock engineering community 

because complex rock mass phenomena are not constrained by generic constitutive behaviours, and so 

more complex behaviours may be captured by the algorithm (Morgenroth et al., 2019). However, their 

application in practical rock engineering is only in its initial stages.  

Many types of MLAs exist – the choice of which one to use is a function of the question to be answered. 

For example, ANNs are well-suited to time series data and numerical predictions, Random Forests or k-

Nearest Neighbours for classification, and Self-Organizing Maps for partially or completely unlabeled data 

(Morgenroth et al., 2019). In particular, a type of MLA, called ANNs, are gaining popularity in the research 

literature.  Examples of specific rock mechanics research using ANNs include: classifying rock masses 

(Sklavounos & Sakellariou, 1995); determining rock strength properties (Singh et al., 2001); modeling 

stress-strain behaviour (Millar & Clarici, 2002); predicting tunnel convergence (Mahdevari & Torabi, 2012); 

predicting tunnel-induced ground settlement (Chen et al., 2019); back-analyzing geomechanical properties 

(Song et al., 2015); and predicting rock bursts (Afraei et al., 2019). 

ANNs consist of a series of interconnected nodes in consecutive layers, represented by a set of parallel 

nonlinear equations, which are used to simultaneously process data and perform functions (Khan & Valeo, 

2016). In their simplest form, they are analogous to linear or logistic regression. Thus, ANNs are objective 
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in the sense that the can recreate data trends by applying an optimizer for a given dataset, and no additional 

subjectivity is introduced beyond what already exists in the input data. The structure of these networks is 

inspired by biological neural systems, mimicking neural activity in human brains. Activation functions are 

used in ANNs to transform the input signals into an output or “activation strength” (Marsland, 2014). For 

example, a series of rock mass conditions may be the inputs used to predict rock mass deformation as 

shown in Figure 4-1. This architecture allows the algorithm to learn data patterns by back-propagating the 

error between a predicted output and the corresponding observed values. The calibration parameters, 

known as weights and biases, define the connections between the neurons, and are updated to minimize 

the error between the predicted and observed data (Marsland, 2014). These weights and biases are 

initialized randomly and converge on a solution through back-propagation during the learning process (also 

known as training). 

 

Figure 4-1. A schematic of an Artificial Neural Network (ANN) and its architectural elements, including the inputs and 

outputs, the calibration parameters (the weights and biases), and the activation functions. 

A main concern when developing an ANN is overfitting the model to the dataset, i.e., producing an over 

parameterized model that matches the input data too closely without being generalized enough to tolerate 

new data (Snieder et al., 2019) This is undesirable because an overfitted model will reproduce the training 

data reliably, while not being able to generalize to an independent dataset (e.g., a new area of a mine). 

This pitfall is reduced by partitioning the dataset used for model development into training/validation and 

testing subsets (Khan et al., 2018). The training subset is used to teach the model the data patterns and to 

calibrate the model parameters, and the validation subset is used to determine when the model has been 

sufficiently trained and the stopping criteria has been met. Lastly, the testing subset is withheld entirely 

during this process, hence is an independent dataset, and is only used to determine the performance of the 

model once the final calibration parameters have been determined. This data partitioning exercise can be 

completed multiple times, using randomly reinitialized weights and biases each time, to create an ensemble 
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of models, each of which converge to a different solution. This ensemble-based approach makes it possible 

to quantify the uncertainty of the ANN.  

ANNs are only able to make predictions that are included in the dataset used for training (Marsland, 2014). 

It is common that the phenomena the algorithm is trying to predict are under-represented in the training 

dataset, for example catastrophic events like rock bursts or large falls of ground. The imbalanced nature of 

typical rock engineering datasets means that trained ANNs will be most sensitive to the most represented 

phenomenon. This can be avoided by introducing error weighting, which instructs the algorithm which 

classification of the output should be given preference during the training phase (Seif, 2018). For example, 

an algorithm being trained to predict rock bursts would receive the highest weight on the error between the 

predicted large rock bursts and actual large rock bursts. This way the ANN prioritizes reducing this error for 

large rock bursts during the training process, whilst giving relatively lower priority to smaller or non-rock 

burst events. This leads to improved model performance in predicting large rock burst events.  

This research focuses on CNNs, a type of ANN, which are efficient for processing spatial and temporal 

dependencies in image or raster datasets. CNNs were first developed for handwritten digit classification 

and have rapidly gained success in the field of computer vision since their introduction in the late 1980s 

(LeCun et al., 1989). They are a popular choice because they are computationally efficient at processing 

each pixel in an image, while considering both the surrounding pixels and their change over time. For 

example, in a video the frames before a selected frame can be used to train the network to increase its 

prediction accuracy of the image in the selected frame. This is relevant to rock engineering problems 

because the data usually contains a mapping component (e.g., mapped geology) onto which other data 

(e.g., measured displacement or groundwater inflow) can be transferred as a two-dimensional array and 

therefore plotted as an image or a map. These maps are akin to frames of a video, where some data (e.g., 

mapped geology) stay constant with time, while others (displacement and groundwater), change with each 

frame.  When developing any kind of rock mechanics model, the spatial and temporal relationships between 

the various inputs must be preserved, and thus, CNNs are well suited for these types of datasets. Previous 

work utilizing the Cigar Lake Mine dataset presented a simple Multi-Layer Perceptron (MLP) ANN, and 

resulted in a poor classification accuracy for higher classes of tunnel liner yield (Morgenroth, Perras, Khan, 

et al., 2020). 

CNNs allow for the tunnel mapping to be used as an image input, without any further processing required. 

CNNs process images by using a filter to scan, or convolve, over the pixels of the input image to create a 

feature map and which is then correlated to the output. Specifically, a square search area (i.e., the filter) is 

used to identify the presence of a feature of interest (e.g., a crack in the shotcrete liner) to produce a feature 

map. This feature map is then correlated to the predictor (e.g., the degree of yield the tunnel liner has 

sustained over time). The CNN will produce multiple feature maps that identify the combination of factors 

that produce the output, e.g., unfavourable geology plus other input data in a certain area results in a 

classification of high hazard within that area (a schematic of this process is shown in Figure 4-2). In addition 
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to processing images efficiently, CNNs have demonstrated success at more challenging computer vision 

tasks involving classifying objects in an image or video (Zeiler & Fergus, 2014), called segmentation. This 

type of CNN architecture allows for classification of multiple phenomena within an input as opposed to 

classifying the image as a whole (Morgenroth et al., 2020). For example, the CNN with segmentation will 

not classify an entire tunnel map with one level of deformation but rather identifies areas within the map 

with various amounts of deformation.  

Along with the size of the filter used to convolve over the inputs, there are two other parameters to consider 

when developing a CNN: the stride and the padding. The stride is the amount by which the filter shifts when 

convolving over the input (i.e., how many cells it traverses at a time). When the stride is greater than 1, the 

size of the feature map becomes smaller than the size of the input image after convolution due to the 

overlap at the edges of the input image. The padding parameter adds a border of nonvalues around the 

input layer, so that the input and the feature map remain the same size, and the information contained in 

the original input is preserved. In the example shown in Figure 4-2, a 3 by 3 filter with a stride of 2 is used 

to convolve over the inputs. No padding is required in this example because the size of the input (12 by 12) 

agrees with the calculated size of the feature map (5 by 5) using those chosen filter parameters. Spatial 

and temporal relationships are crucial to the understanding of rock deformation mechanics, especially in a 

squeezing ground environment where progressive failure is occurring. Thus, it follows that the application 

of a machine learning approach that preserves these relationships should be chosen to address this type 

of problem. The complex nature of the rock mass deformations, as well as the time-dependency of the rock 

mass behaviour, resulted in the selection of a CNN for forecasting tunnel liner yield at the Cigar Lake Mine. 

 

Figure 4-2. A schematic of a Convolutional Neural Network (CNN), where a 3 by 3 filter with a stride of 2 is used to 

convolve over the inputs to generate the feature maps. The example input shown is a 12 by 12 geologic map, with the 

colours representing the lithology. The 3 by 3 filter creates a 5 by 5 feature map that condenses that geology, in order 

for it to be combined with the feature maps produced for the other inputs. The CNN uses the feature maps to make a 

pixel-by-pixel classification based on whether the combined inputs of a particular cell has a high, medium, or low hazard 

level, which is defined when the CNN is developed. 
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MLAs are not infallible, and critical thinking must be applied when choosing them out of the toolbox of 

possible approaches or combination of approaches that may be applied to a geomechanical problem (Elmo 

& Stead, 2020). The hesitancy to adopt data driven methods in rock engineering practice is due in part to 

the perceived “black box” nature of the algorithms, and as with any modelling endeavour, there are 

challenges associated with developing MLAs. Standardized methods, such as those presented in 

(Mcgaughey, 2019), should be applied to the MLA workflow to avoid common pitfalls. It is crucial to 

understand the relationships between data streams, uncover how the data inputs are used to train the 

algorithms, examine the physical implications of the algorithm architecture, and to verify that the outputs 

are aligned with the knowledge and experience of the collective field of rock mechanics. MLAs are not an 

automated problem-solving machine – they require user insights just like any other model development. 

Developing MLA workflows and best practices is an intensive field of research in computational science, 

ranging in applications from health sciences, to computer vision, to transportation engineering. The rock 

engineering community has the advantage of reaping the benefits of fields that have already grappled with 

analogous problems, such as: handling noisy datasets with CNNs to extract insights into the physical 

system (e.g., labelling aerial imagery from maps (Mnih & Hinton, 2012), or using bootstrapping to label 

noise (Reed et al., 2015)), maximizing the benefit of small datasets (e.g., detecting diabetic retinopathy 

using small datasets (Samanta et al., 2020)), and deciding which of the available inputs to include in an 

MLA to minimize complexity and maximize performance (e.g., identifying salient inputs in an ANN using a 

variety of approaches (May et al., 2011)). With respect to the last point, Input Variable Selection (IVS) 

methods are one option for looking inside the algorithm and justifying the use of a subset of available inputs 

when developing MLAs for rock engineering problems (May et al., 2011). In this chapter, an analysis of the 

activation strengths of the inputs is presented as one possible IVS method. Methods such as this 

demonstrate how the MLA is a mathematical representation of the physical system being modelled, 

demystifying its internal workings. 

4.5 Background – Cigar Lake Mine 

Cigar Lake Mine is owned and operated by Cameco, and is located in northern Saskatchewan, Canada 

(Figure 4-3). It is the world’s second-largest uranium mine, with an ore grade approximately one hundred 

times the global average (Bishop et al., 2016). The ore body is unique due to its size, high grade, intensity 

of alteration, and a high degree of associated hydrothermal clay alteration (Bishop et al., 2016). 
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Figure 4-3. The location of Cigar Lake Mine in Saskatchewan, Canada showing regional geology, faults, shear zones, 

and other geological domains (adapted from Martz et al. (2017)), with the following abbreviations: TD Talston Domain, 

WMTZ Wollaston-Mudjatik Transition Zone, WWD West Wollaston Domain, EWD East Wollaston Domain, VRSZ Virgin 

River shear zone, BLSZ Black Lake shear zone. For detailed geological reference, the reader is referred to Martz et al. 

(2017) and Jefferson et al. (2007). 

The geology of the Cigar Lake uranium deposit and environs has been described by (Bishop et al., 2016) 

and is summarized as follows. The uranium is found in an unconformity type deposit situated between the 

Athabasca Group (Athabasca Basin in Figure 4-3) and the underlying metasedimentary Proterozoic 

Wollaston Domain (WWD and EWD), in the Wollaston-Mudjatik Transition Zone (WMTZ in Figure 4-3). The 

deposit and host rock consist of three geological elements that also define the geotechnical domains: the 

deposit and associated hydrothermally altered clay cap, the overlying sandstone unit (Athabasca Group), 

and the underlying metamorphic basement rock (Wollaston Domain). There are three distinct styles of 

mineralization within the ore body: high grade mineralization at the unconformity, fracture-controlled 

mineralization in the sandstone, and fracture-controlled mineralization in the basement rock. The clay 

alteration of the ore body, a defining criterion of the geotechnical domains, is closely associated with major 

fault zones located within the deposit area. The deposit and sandstone are highly fractured and water 

bearing, while the basement rock is impervious. The basement rock is composed mainly of pelitic 

metasedimentary gneisses belonging to the Wollaston Domain. The Wollaston Domain is considered to be 

the most favourable unit for uranium mineralization. In general, the Cigar Lake Mine operation and 

production tunnels are located in three main rock mass types (Paudel et al., 2012): weak, highly weathered 

and saturated basement rock containing sand and clay; moderately weathered saturated basement rock; 

and strong unweathered basement rock. 

The ore body is located above the 5.0 m lined diameter ore extraction tunnels, which are excavated using 

drill and blast. There are two main challenges facing the stability of the Cigar Lake Mine excavations: 
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controlling groundwater inflow, and supporting areas of weak rock (Bishop et al., 2016). The mine operators 

decided to freeze the rock mass surrounding the orebody to improve rock mass properties and to restrict 

groundwater inflow into excavated areas. A customized non-entry extraction method is used to extract the 

ore, where cutting cavities of frozen ore are created upwards from the ore extraction tunnels below with a 

high-pressure water jet, and then the ore is mixed with water to make a pumpable slurry (WSP (formerly 

Parson Brinkerhoff Quade & Douglas Inc.), 1999). However, the ground freezing operation results in 

complex time-dependent rock mass behaviour that is difficult to predict and presents challenges when 

designing support (Golder Associates, 2001; Roworth, 2013). A customized non-entry extraction method 

called the Jet Boring System (JBS) is used to extract the ore from the deposit. JBS consists of cutting 

cavities of frozen ore with a high-pressure water jet and then mixing the ore with water to make a pumpable 

slurry (WSP (formerly Parson Brinkerhoff Quade & Douglas Inc.), 1999). The cavities created from the 

extraction of the ore are backfilled with concrete to achieve early strength in frozen ground and therefore, 

provide additional ground support (Bishop et al., 2016).  

Cigar Lake Mine was found to be an appropriate case study for a machine learning application because 

there are several phenomena that coalesce into a complex tunnel deformation, which is difficult to predict 

using existing techniques to anticipate squeezing ground (Barla, 2002; Barla et al., 2011; Barla & Borgna, 

1999; K. Zhao et al., 2015). The combination of unfavourable geology (i.e., the weak and altered sandstone 

and basement rock) and the locally variable structural geology produces differential radial squeezing over 

the length of the ore extraction tunnels. The ground freezing regime, which is effective at stabilizing the 

rock mass for ore extraction, adds to the complex rock deformation mechanics by increasing the 

background stress during its implementation. These factors combine to result in tunnel liner and support 

yield that is difficult to forecast, which causes delays in production and adds complications for support 

rehabilitation scheduling and budgeting. Thus, accurately predicting tunnel liner and support yield is critical 

for the safe operation of the tunnel and for forecasting rehabilitation works needed to maintain operations. 

The CNN proposed herein is one approach to do this.  

Previous experience developing a MLP ANN using this dataset (Morgenroth, Perras, Khan, et al., 2020) 

resulted in an average match of 40% between the predicted and observed tunnel liner yield, however poor 

performance was achieved for Class 2 and 3 yield (recalls of 18% and 0%, respectively). It was observed 

that the spatial dependencies in the dataset were cumbersome to include and were not preserved in the 

MLP ANN, and this led to the decision to use a CNN to analyze the Cigar Lake Mine dataset. To reduce 

the amount of data preprocessing and to limit the amount of bias introduced, image recognition and 

segmentation algorithms were explored, and the CNN was deemed to be a viable algorithm (Morgenroth 

et al., 2020). This resulted in a relatively simple digitizing and formatting process to transform the GMPs 

into images that could be processed by the CNN. This novel method for processing tunnel data and 

forecasting tunnel liner yield is advantageous because the complex behaviour is not constrained by a 

constitutive framework, and the data does not require interpretation or preprocessing that may inject bias. 
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4.6 Application of a CNN to the Cigar Lake Mine 

4.6.1 Cigar Lake Mine Data 

As part of their standard practice, Cigar Lake Mine produces as-built and production Ground Management 

Plans (GMPs) over the life of an ore extraction tunnel. The as-built GMPs summarize each tunnel’s specific 

geotechnical domains as well as the installed support and ground freezing network layout, while the 

production GMPs track liner and support yield, ground freezing activity and tunnel rehabilitation efforts over 

time. In addition, tunnel displacement is monitored using survey points around the circumference of the 

tunnel. These are surveyed on an approximately weekly basis to determine the displacement of the 

extraction tunnel walls. The data from the GMPs as well as displacement measurements are used as the 

input dataset for the CNN developed herein. The GMPs and their corresponding dates are as follows: 

• GMP 1 = Week 42 2015, 732 days elapsed since first displacement measurement 

• GMP 2 = Week 50 2015, 56 days elapsed since GMP 1 

• GMP 3 = Week 02 2016, 35 days elapsed since GMP 2 

• GMP 4 = Week 10 2016, 56 days elapsed since GMP 3 

• GMP 5 = Week 24 2016, 98 days elapsed since GMP 4  

The dataset is comprised of a combination of spatial and temporal data that is both categorical (e.g., the 

support class, which is categorized as Class 1, 2, 3, etc.) and numerical (e.g., measured radial displacement 

within the tunnel). This study uses data from Cigar Lake Mine crosscut tunnel 765 to calibrate and test the 

CNN to predict tunnel liner yield forward in time. The dataset for tunnel 765 was digitized from the GMPs 

at a spatial resolution of 164 m, the length of the tunnel, by 13 elements, representing elements around the 

circumference of the tunnel, as illustrated in Figure 4-4. Three inputs were digitized from the GMPs for use 

in this case study: the mapped geology (GEO), as-built ground support class (SUPCL), and ground freezing 

patterns (FREEZE). The radial tunnel displacement (DISP) was obtained from the survey point 

measurements. The four inputs (GEO, SUPCL, FREEZE, DISP) were formatted into one image per GMP 

(Figure 4-5) and used to train the CNN to predict the tunnel liner yield (YIELD), which was also mapped on 

the GMPs. GEO and SUPCL are categorical inputs with an ordinal structure, and therefore have been 

encoded using integer values. FREEZE is a binary categorical input, while DISP is a numerical input. The 

YIELD categories represent the combination of damage to the liner elements (shotcrete, rock bolts, mesh) 

that would result in no rehabilitation time (Class 0), one day’s rehabilitation work (Class 1), several days’ 

rehabilitation work (Class 2), or total reprofiling of the tunnel (Class 3). A summary of each input, the output, 

and the corresponding digitized values, are presented in Table 4-1. 
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Figure 4-4. Nomenclature of digitized tunnel data, where r is the radius of the tunnel, showing the radial elements (1 to 

13), along the 164 m length of the tunnel (Morgenroth et al., 2020). 

 

Figure 4-5. This image represents the digitized Ground Management Plan (GMP) 5. One digitized GMP image is 

formatted into four channels: geotechnical zones (GEO), primary installed support class (SUPCL), ground freezing 

(FREEZE), and radial tunnel displacement (DISP). This figure illustrates that the first three channels are integer-

encoded categorical inputs. The fourth channel, DISP, is a numerical input and is only measured at particular locations 

along the tunnel. Where there is no DISP data, the pixel is assigned a value of not-a-number (NaN) and is not used by 

the Convolutional Neural Network during training. 
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Table 4-1. A summary of input variables (mapped geology, GEO; as-built ground support class, SUPCL; ground 

freezing patterns, FREEZE; and radial tunnel displacement, DISP) and output (tunnel liner yield, YIELD) used for the 

development of the CNN (Morgenroth et al., 2020). 

Inputs Output 

GEO 
(categorical) 

SUPCL 
(categorical) 

FREEZE 
(categorical) 

DISP 
(numerical) 

YIELD 
(categorical) 

Class Description Class Description Class Description Description Class Description 

1 stiff crystalline rock 1 Class 1 support 
(lightest support) 

0 freezing off Measured radial 
displacement, 
ranging from 
0 to 250 mm 

0 no yield 

2 fissured fresh 
crystalline rock 

2 Class 2 support 1 freezing on 1 minor yield 

3 transition from 
fresh to 
metamorphosed 
crystalline rock 

3 Class 3 support 2 major yield 

4 Class 4 support 3 yield 
requiring 
total re-
profiling 

4 metamorphosed 
crystalline rock 

5 Class 5 support 
(heaviest support) 

5 stiff to very stiff 
coarse-grained 
soil, structure well 
preserved 

6 fine-grained soil, 
structure not seen 

 

Three of the four inputs are objectively measured data: SUPCL represents the as-built support geometry, 

FREEZE represents the locations where thermistors indicate that the ground is frozen, and DISP is the 

measured radial tunnel displacement. GEO is slightly more subjective; however, the assigned geotechnical 

zones are standard across the mine site and are therefore based on site-specific experience. Of the four 

inputs, GEO and SUPCL are spatially variable (i.e., inputs have a resolution of 164 m by 13 elements), 

while FREEZE and DISP are temporally variable (i.e., inputs vary for each GMP). The time steps 

correspond to the five GMPs (Week 42 2015, Week 50 2015, Week 02 2016, Week 10 2016, and Week 24 

2016). In tunnel 765, there are 19 rings where displacement measurements are taken with spacing between 

rings ranging from 4 to 12 m. The displacement survey targets are located around the circumference of the 

tunnel in Figure 4-4 at stations 0+002, 0+012, 0+022, 0+032, 0+042, 0+046, 0+053, 0+064, 0+072, 0+082, 

0+092, 0+104, 0+112, 0+122, 0+126, 0+132, 0+142, 0+150, and 0+162. No interpolation between rings 

(i.e., along the length of the tunnel) was made in order to preserve the original form of the data available, 

and to prevent the introduction of bias. In cells where displacement measurements are not available, no 

value is given to the CNN. The displacement input is the maximum radial displacement at each survey point 

(7 survey points around the circumference of the tunnel) for the elapsed time between two consecutive 

GMPs.  

The distribution of the parameters used to develop the Cigar Lake Mine CNN is shown in Figure 4-6 , 

including the four inputs (GEO, SUPCL, FREEZE, DISP) and the output (YIELD). Each column represents 
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a GMP, or snapshot in time of tunnel 765. The exceptions are GEO and SUPCL which do not vary with 

time. The third row, FREEZE, shows timing of the ground freezing front that was implemented in order to 

stabilize the ground and mitigate high groundwater inflows during the ore extraction process. The fourth 

row, DISP, shows a stacked bar graph where the magnitudes of displacement are differentiated by GEO 

class. As expected, the worse geologies experience higher displacement over time. It is also worth noting 

that Class 6 geology is not represented where the geology and displacement measurements intersect, i.e., 

the displacement measurement rings do not exist where Class 6 geology exists. The final row is YIELD, 

which shows that the tunnel liner support yield increases with time and progresses to high support classes 

as a consequence.  

As with any modelling endeavour, the end goal is to reproduce as closely as possible the true rock mass 

behaviour observed. Because visualization of internal CNN processes can be difficult, an analysis of the 

input data from the GMPs and displacement measurements was completed prior to model development to 

identify both the dominant and subtle data trends. These data trends shown in Figure 4-6 are summarized 

as follows, as described by Morgenroth, Perras, Khan, et al. (2020). Over time the severity of the liner yield 

increases for all the geology classes, though the highest impact is to the areas with the poorest geology. 

There is some variation of support class assigned within each geology class that impacts the degree of 

liner yield sustained at that location. This nuanced relationship is difficult to quantify from visual data 

inspection. Liner yield where ground freezing is being implemented is higher than where the ground is not 

frozen, however, the liner yield increases everywhere with time indicating that other variables are implicit 

drivers of liner yield. Poorer quality geotechnical zones experience higher values of displacement and 

therefore, higher degrees of liner yield. 
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Figure 4-6. Histograms of Cigar Lake Mine dataset showing the distribution of each input for each of the five Ground 

Management Plans (GMPs), where each column of ground freezing, displacement, and liner yield histograms 

represents a GMP. The displacement histograms indicate the distribution of geology classes for each GMP. It is 

important to note that the rings where displacement is measured does not span areas where geology Class = 6, and 

as a result this class is not represented in the displacement bars. 

A visualization of the tunnel liner yield with time is presented in Figure 4-7 , where each row represents a 

successive GMP for tunnel 765. Over time the areas of Class 3 yield (shown in red) increase, with the 

highest area of Class 3 yield occurring in GMP 5. It is important to note that the time elapsed between 

GMPs 4 and 5 is the largest, at almost double the time elapsed between any other consecutive pairs of 

GMPs. As shown in the figure, there is an imbalance of tunnel yield class in the GMPs: overall tunnel yield 

Class 3 is less represented across the GMPs, whereas Classes 0 to 3 are more uniformly represented. 

This demonstrates both the need for error weighting to account for this data imbalance problem, and the 

need for sensitivity analysis to determine how much of the historical (i.e., previous GMP) data is needed for 

accurate predictions. These analyses are detailed in Section 4.6.3. 
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Figure 4-7. Tunnel maps of the tunnel liner yield (YIELD) for each successive GMP, showing the evolution of the YIELD 

with time. 

The CNN was developed to predict the tunnel liner yield after the tunnel has been completed and the ore 

extraction process above the tunnel is underway, including the implementation of ground freezing. For this 

reason, data splitting was restricted to the temporal realm (i.e., subsequent GMPs) instead of spatially (i.e., 

along the length of the tunnel). The CNN needed to capture the data trends (i.e., the relative change in the 

inputs), ensuring that the time-dependent Cigar Lake Mine rock mass behaviour and subsequent tunnel 

liner yield are characterized properly for use in forecasting future yield. Forecasting the yield of the tunnel 

liner elements will allow Cameco to conduct more timely tunnel rehabilitation, minimize down time during 

repairs, and therefore increase confidence in costing and scheduling.  

4.6.2 CNN Development 

The CNN presented is designed to predict tunnel liner yield at the Cigar Lake Mine ore extraction tunnels. 

The CNN was developed in MATLAB R2019b (MathWorks Inc., 2019) using the Deep Learning and 

Computer Vision toolboxes. The goal of this model is to predict Class 2 and 3 tunnel liner yield as accurately 

as possible, as these are the levels of yield that require the most significant schedule and budget investment 

to mitigate. However, the overall performance of the model for other classes must not suffer as a result of 

the emphasis on Class 2 and 3. 

The four inputs (GEO, SUPCL, FREEZE, DISP) were formatted into images for use in the CNN. Each 

image, made up of four channels that represent the four inputs, represents one GMP or point in time. As a 

result of this data formatting, there were 5 GMP images available for training and testing the CNN. Data 
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partitioning was applied by training on a subset of GMP images and withholding the rest. In order to test 

the CNN’s ability to predict tunnel liner yield forward in time it was trained on the GMPs preceding the GMP 

for which the prediction was made, e.g., if the CNN is predicting yield for GMP 4, it would be trained on 

GMPs 1, 2 and 3. In order to test the sensitivity of the CNN’s performance as a function of the amount of 

data it was trained on, an analysis was completed wherein the CNN was given a variety of preceding GMPs 

for training and the corresponding performance was compared. The ten permutations of training and testing 

datasets are shown in Table 4-2. These permutations simulate an operational scenario where the mine 

operators would use the available GMPs to date to forecast future yield. 

Table 4-2. Summary of training and testing dataset permutations for the Cigar Lake Mine CNN. 

Permutation Training Dataset Testing Dataset 

1 GMP 1 GMP 2 

2 GMP 2 
GMP 3 

3 GMPs 1 and 2 

4 GMP 3 

GMP 4 5 GMPs 2 and 3 

6 GMPs 1, 2 and 3 

7 GMP 4 

GMP 5 
8 GMPs 3 and 4 

9 GMPs 2, 3 and 4 

10 GMPs 1, 2, 3 and 4 

 

The architecture of the CNN developed for the ore extraction tunnels at Cigar Lake Mine is shown in Figure 

4-8, and consists of six layers. The first layer is the image input layer. Each image is sized 164 by 13 by 4 

pixels corresponding to the tunnel map, which is 164 m long by 13 elements around the circumference for 

each of the 4 inputs for each GMP. Next is the 3D convolution layer, which uses a filter of varying sizes to 

convolve through each image with a stride of 1, and a padding value that is automatically generated to 

produce a feature map that is the same size as the input, which ensures all the input data is being used. 

This layer is followed by a rectified linear unit (ReLu) activation function, which performs a threshold 

operation on each pixel of the input and sets any value less than zero to zero. Next the transposed 3D 

convolution layer up-samples (or deconvolves) the feature maps using a cropping value (cropping is the 

opposite of padding) that is automatically generated to produce an output that is the same size as the input. 

This is given to the SoftMax activation function (a tan-sigmoid function), which normalizes the value of the 

input such that it sums to one, effectively producing a probability distribution that can be used for 

classification. Both ReLu and SoftMax activation functions are commonly used in CNN development (Bell, 

2015). Finally, these probabilities are used by the pixel classification layer to assign a user-defined class 

for each pixel. It is here that the CNN makes the classification whether the predicted pixel is Class 0, Class 

1, Class 2 or Class 3. 
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Figure 4-8. A graphic representation of the Cigar Lake Mine CNN, showing the six layers and their respective properties. 

The size of the filter the convolution layer uses to convolve through the input images has a spatial and 

temporal significance. For a filter sized [x y c] the x and y represent the two-dimensional surface area of 

the filter, or the area around the pixel from which the CNN is drawing data to make a prediction on the rock 

mass behaviour at that pixel. The third dimension of the filter size, c, corresponds to the number of channels 

the filter should convolve through and therefore, the number of feature maps the convolution layer should 

create. In this study the input images have four channels (GEO, SUPCL, FREEZE, DISP) and the filter 

convolved through all of these to learn their internal relationships, therefore c was fixed at 4.  

An important consideration for the Cigar Lake Mine CNN is the imbalance in the representation of the 

classes the CNN is predicting. The class representing the highest magnitude of tunnel liner yield, Class 3, 

is underrepresented by an order of magnitude as compared to the other classes. Specifically, the ratio of 

Class 0 to Class 3 representation is 1:90 in the training permutation where GMPs 1 through 4 are used to 

predict GMP 5. Other geomechanical datasets are liable to have similar problems, since there is generally 

the least amount of data for the most severe rock mass behaviour. For example, a dataset being used to 

predict rock bursts will have far more smaller magnitude rock bursts as compared to catastrophic rock 

bursts (Afraei et al., 2019). To address this, error weights may be assigned to the classes during the training 

phase in order to force the CNN to focus its prediction ability on whichever prediction the user deems to be 

most important. It does this by placing an emphasis on the errors that are backpropagated into the network 

of certain classes over others during training. In this study, four error weighting schemes were compared: 

uniform, linear, sigmoid, and inverse frequency (illustrated in Figure 4-9). The uniform weighting scheme 

gives equal preference to all the classes. The linear weighting scheme gives each successive class a higher 

weight on a linear scale. In this case, the sigmoid weighting scheme gives a much higher preference to 

Class 2 and 3, which correspond to the highest liner yield, where the weights are calculated using the 

sigmoid function shown in Equation 4-1. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝐶𝑙𝑎𝑠𝑠 𝑊𝑒𝑖𝑔ℎ𝑡 =
1

1 + 𝑒−(𝑥−50)
 Equation 4-1 

The inverse frequency scheme calculates the frequency of pixels of each class in the training images and 

assigns a preference inverse to this frequency. 
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Figure 4-9. Four different error weight schemes applied to the classes in the training phase of the Cigar Lake Mine 

CNN. 

Each combination of hyperparameters was run 20 times, using a different randomized set of initial weights 

and biases, to create an ensemble of models, allowing for a determination of confidence in the model 

predictions and a comparison between model ensembles. The accuracy of a model is determined by how 

often the predicted class matches the ground truth class. The performance of each ensemble is discussed 

in detail in Section 4.6.4. 

4.6.3 CNN Sensitivity Analyses 

To optimize the architecture for the Cigar Lake Mine CNN, a sensitivity analysis of three key 

hyperparameters is presented: the amount of training data, the filter size, and the error weighting scheme. 

To generate confidence intervals for each combination of model parameters, each permutation is run 20 

times (the ensemble) for a total of 7200 CNN models. Recall that the best model in this context is defined 

as the model that has the highest recall of Class 2 and 3 tunnel liner yield, as these are the levels of yield 

that require the most significant schedule and budget investment to mitigate.  

The parameters explored while designing the Cigar Lake Mine CNN were: the amount of data used for 

training, the size of the convolution filter, and the error weighting scheme. The filter size was varied from 

10 by 10 by 4 through 50 by 50 by 4. Four different error weighting schemes are evaluated to determine 

which produced the best prediction accuracy on the test dataset – uniform, linear, sigmoid, and inverse 

frequency. Finally, the permutations of GMPs preceding the test dataset needed to make the most accurate 

predictions across all classes was analyzed (Table 4-2). Figure 4-10 shows a summary of the sensitivity 

analysis of the error weighting scheme, and Figure 4-11 shows a summary of the sensitivity analysis for 

filter size equal to 30 by 30 by 4. Figure 4-16 to Figure 4-19 in the Appendix show the detailed results of 

these analyses for all hyperparameters.  

Figure 4-10 shows a representative comparison of the trends across error weighting schemes, where the 

CNN is trained on GMPs 1, 2, 3 and 4 and tested on GMP 5 for all filter sizes. Each box plot represents 

results from the ensemble with the same CNN parameters, where the box shows the 25th to 75th percentiles 

and the whiskers show the full range of performances for that suite of models. Each subplot shows the 

performance range for Class 0 (red), Class 1 (green), Class 2 (blue) and Class 3 (purple) predictions as 

well as the model’s global performance (black). The global performance can be used as an indicator of the 
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overall model performance, and when compared across the four figures gives an indication of the impact 

of altering the CNN’s weighting scheme. In general, the variance in model performances (indicated by the 

width of the box plots) decreases with increased training data (more GMPs used for training). It is also 

important to note that while increased data results in a narrower performance variance, convergence of the 

CNN to a global minimum is more difficult numerically, and therefore more time consuming. With respect 

to filter size, the performance for all combinations of error weighting schemes and data permutations 

plateau at a dimension of 30 by 30 by 4. Figure 4-11 shows all ten permutations of training and testing data 

and all error weighting schemes for a filter size of 30 by 30 by 4. 

 

Figure 4-10. Summary of Cigar Lake Mine CNN hyperparameter sensitivity analyses, showing all error weighting 

schemes for models trained on GMPS 1, 2, 3, and 4 to predict GMP 5 for all filter sizes. 

The uniform error weighting scheme assigns an equal weight to each YIELD class during the training 

process. Since all the classes are weighted the same the signals that are being learned by the CNN from 

each GMP is more clearly evident. For example, in Figure 4-11a GMP 1 contains almost no Class 3 damage 

for the CNN to learn, and so the performance is zero when using it to predict GMP 2. However, when using 

GMP 4 to predict GMP 5 (Figure 4-11d) the performance for Class 3 increases slightly because GMP 4 has 

more Class 3 samples for the CNN to learn. As shown in Figure 4-6, there is poor correlation between DISP 

and GEO Class 6, which is the worst geology, and which undergoes the highest deformation. This 

contributes to the overall poor performance of Class 2 and Class 3 YIELD seen in Figure 4-11 where uniform 

weighting is applied, i.e., no preferential weighting is applied. The uniform weighting scheme also 

demonstrates that GMP 5 (Figure 4-11d, g, i, j) is the most difficult to predict , because it contains the most 

extensive tunnel liner yield (Figure 4-7), which is not present in prior GMPs. This further reinforces the need 

for a weighting scheme that prioritizes the higher YIELD classes, as this signal is underrepresented in the 

GMPs 1 through 4. 

The linear error weighting scheme results show the change in model performance that can be achieved by 

applying an emphasis on higher YIELD classes. For these models, a simple linear scheme is applied, where 

each YIELD class is weighted 25% higher than the one preceding it. The variance of each box plot is lower 

than the uniform weighting scheme, indicating that the CNN is converging on a similar result with each run. 

In general, the YIELD Class 0 and 1 predictions drop slightly as compared to the uniform weighting, while 

there is an increase in Class 2 and 3 performance, so the global performance remains unchanged. While 

the linear error weighting scheme presents an improvement over the uniform scheme, it still does not place 
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sufficient emphasis on Class 2 and 3 YIELD to adequately capture these advanced stages of deformation 

(i.e., Class 2 and 3 still have lower performance than the other classes). 

The sigmoid error weighting scheme is the most extreme scheme, where Class 0 and 1 are weighted close 

to 0% and Class 2 and 3 are weighted close to 100% (Equation 4-1). For all ten data splitting permutations, 

the performance for Class 2 predictions is close to 100%. Using the sigmoid scheme, Class 3 performance 

is increased as compared to the uniform and linear schemes. The improvement in Class 2 and 3 comes at 

the expense of Class 0 and 1 performance, which even the best of these models is only able to predict to 

a maximum of 20% accuracy. In general, the models trained on more data (i.e., each successive row) have 

a lower variance. Of note is that the difference between the performance for predicting GMP 4 (Figure 

4-11c, f and h) and predicting GMP 5 (Figure 4-11d, g, i and j) is significantly lower as compared to the 

uniform and linear schemes. This is because the CNN prioritizes the performance of Class 2 and 3. Overall, 

the CNN with the sigmoid error weighting scheme can be applied to predict the worst of the tunnel liner 

YIELD.  

The inverse frequency error weighting scheme results show the influence of weighting the CNN 

proportionally to the distribution of classes within the training samples. Class 3 YIELD is underrepresented 

in the input training data by an order of magnitude, and therefore shows poor prediction performance using 

a uniform weighting scheme. As with the previous schemes, the variance decreases as the amount of data 

increases (i.e., one GMP used in Figure 4-11d versus fours GMPs used in Figure 4-11j).  The application 

of the inverse frequency scheme results in the highest global performance. While not as high as the sigmoid, 

Class 2 performance is higher than the uniform and linear schemes. In contrast to the sigmoid scheme, the 

inverse frequency scheme still allows the CNN to find a global optimum for all the Classes and not just for 

Class 2 and 3. For this reason, the inverse frequency weighting scheme results in the best global model 

performance of the four error weighting schemes investigated. 
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Figure 4-11. Cigar Lake Mine CNN sensitivity analysis results for filter size equal to 30 by 30 by 4, for different training 

data and error weighting schemes. Detailed results for all filter sizes are shown in the Appendix. 

4.6.3.1 Input Activation Strengths 

By extracting the activation strengths for each combination of model hyperparameters, it is possible to 

determine which of the four input parameters contain the strongest signal that is used by the CNN to make 

its classification, i.e., the most dominant input parameter(s). This analysis identifies which inputs are 

emphasized in the learning process. The results of this analysis are shown in Figure 4-12, where the most 

dominant input when predicting each GMP is shown as a percentage of the total models predicting the 

same GMP. This analysis is shown for the sigmoid and inverse frequency models, as these had the highest 

performance accuracy. SUPCL is the dominant input for this dataset, regardless of which GMP is being 

predicted or which error weighting scheme is applied. The DISP input shows slightly more dominance in 

the sigmoid scheme because these models emphasize YIELD Class 2 and 3 during training, which are 

more strongly correlated with DISP. In general, this analysis showed that GEO is never the strongest signal 

used by the CNN to predict YIELD. This may seem counter intuitive, since it is widely known in the rock 

mechanics community that geology plays a crucial role in rock mass deformation. However, in machine 

learning parlance this indicates that there is another input that is conveying the same information (either 

implicitly or explicitly) to the network or has a stronger correlation than GEO. In this case it is likely that the 
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SUPCL input is providing this signal, as the primary installed support is installed based on the observed 

geology during tunnel excavation and mine operation experience.  

The activation strength analysis is a useful demonstration that some inputs that are known to be important 

from a physical perspective are not as important from a machine learning perspective due to redundancies 

or correlation in similar inputs. However, these results do not conclusively demonstrate that any of the 

inputs should be removed to reduce model complexity, as improved performance by removing them has 

not been demonstrated by this IVS method. 

 

Figure 4-12. Input dominance for sigmoid and inverse frequency error weighting schemes, for each GMP that is being 

predicted. Dominance is shown as a percentage of the models predicting the same GMP. 

4.6.4 CNN Performance 

As a result of the sensitivity analyses, two CNN architectures were selected to predict the deformation 

phenomena at Cigar Lake Mine, depending on which Yield Class prediction is prioritized: the “Balanced 

Global” model and the “Targeted Class 2/3” model. The optimal model parameters are as shown in Table 

4-3. Figure 4-13 and Figure 4-14 show visualizations of the CNN with both sigmoid and inverse frequency 

weighting schemes when using GMPs 1-3 to predict GMP 4, with smoothing applied for improved 

interpretability. The model accuracy is shown in Figure 4-13, where the white pixels have been identified 

correctly in all 20 models, the black pixels have been identified incorrectly in all 20 models, and the 

greyscale shows the percentage of the 20 models that were identified correctly. For each ensemble of 20 

models, the pixel accuracy in the figure is defined as shown in Equation 4-2. The pixel score, indicating the 

number of correctly or conservatively identified pixels, is shown in Figure 4-14. White pixels represent where 

the models predict the YIELD class correctly or overpredicts it (i.e., the prediction is conservative), the black 
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pixels represent where the models under predict the YIELD class, and the greyscale shows the proportion 

of the 20 models that make a correct or conservative prediction for a given pixel. The score for each pixel 

in the figure is defined as shown in Equation 4-3. 

Table 4-3. Summary of Cigar Lake Mine CNN architectures for the two models (the “Balanced Global model and the 

Targeted Class 2/3 model), showing the optimal error weighting and filter size hyperparameters, as well as the best 

GMPs to use for training to predict each GMP. GMP 2 is omitted because it can only be trained using GMP 1. 

CNN Model Name 
(Model Goal) 

Error Weighting 
Scheme 

Filter Size 
Training/Testing Permutation 

To predict… …train using… 

“Balanced Global” 
(Best Overall Accuracy) 

Inverse Frequency 
Greater than 
30 x 30 x 4 

GMP 3 GMP 2* 

GMP 4 GMPs 1 to 3 

GMP 5 GMPs 1 to 4 

“Targeted Class 2/3” 
(Best Class 2 and 3 
Accuracy) 

Sigmoid 
Greater than 
30 x 30 x 4 

GMP 3 GMP 2* 

GMP 4 GMPs 1 to 3 

GMP 5 GMPs 1 to 4 

*GMP 3 is best predicted without GMP 1 because there is a minimal difference between GMPs 1 and 2, and 
therefore no new information is provided for the network to learn. 

 

𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑚𝑜𝑑𝑒𝑙

20
𝑚𝑜𝑑𝑒𝑙=1

20
 Equation 4-2 

𝑃𝑖𝑥𝑒𝑙 𝑆𝑐𝑜𝑟𝑒 =  ∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑚𝑜𝑑𝑒𝑙

20

𝑚𝑜𝑑𝑒𝑙=1

 + ∑ 𝑂𝑣𝑒𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑚𝑜𝑑𝑒𝑙

20

𝑚𝑜𝑑𝑒𝑙=1

 Equation 4-3 

Combined, Figure 4-13 and Figure 4-14 illustrate that the sigmoid scheme is better at predicting Class 2 

and 3 while over predicting the other classes, as expected due to the error weighting scheme. However, if 

a global prediction accuracy is desired then the inverse frequency scheme is preferable based on model 

performance. For example, in Figure 4-13 the sigmoid scheme misclassifies Class 0 and 1 between 0+060 

and 0+085 (i.e., pixels are black), while the inverse frequency scheme generally classifies these pixels 

correctly (i.e., pixels are white). Upon examining this same chainage in Figure 4-14 for the sigmoid scheme, 

it is noted that the misclassified pixels are generally over predicted (i.e., these pixels are now white), 

indicating that the model is making a conservative forecast. However, the Class 3 pixels at tunnel element 

13 between chainages 0+060 and 0+075 are not predicted correctly by either the sigmoid or the inverse 

frequency scheme, as indicated by the black pixels. Similarly, the Class 3 pixels at tunnel elements 6-9 

between chainages 0+110 and 0+115 are not predicted correctly by either scheme. 
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Figure 4-13. Pixel accuracy of Cigar Lake Mine CNN with sigmoid and inverse frequency schemes for predicting GMP 

4 when the CNN is trained on GMPs 1 to 3, showing how often the model is correct across the 20 models.  

 

Figure 4-14. Pixel score of the Cigar Lake Mine CNN with sigmoid and inverse frequency schemes for predicting GMP 

4 when the CNN is trained on GMPs 1 to 3, showing how often the model is correct or conservative across 20 models. 

The performance of a classification model is commonly visualized using a confusion matrix (Figure 4-15). 

This type of visualization identifies where the system is confusing two classes, or mislabels one as another. 



75 
 

 

For example, the Balanced Global model (with the inverse frequency error weighting scheme) confuses 

actual Class 0 by predicting it as Class 1 a total of 25 times. The on diagonal values (3699, 3084, 877, 60) 

indicate how often the CNN makes correct classifications. The summary column on the right side of the 

confusion matrix shows how often the CNN correctly predicts a class as checked against the ground truth 

class. This is called the true positive rate or the recall. In this case, when Class 2 is predicted by the model, 

the ground truth (actual) is Class 2 (the prediction is correct) a total of 89.1% of the time. This metric gives 

an overall indication of how well the CNN is predicting the observed tunnel liner yield. For the Balanced 

Global model, Class 3 is predicted correctly with a recall of 24.6%. The summary row at the bottom of the 

confusion matrix indicates how often the CNN predicted a particular class correctly as a ratio of the total of 

the amount of times that class was predicted, whether the prediction was correct compared to the observed 

value or not. This is called the positive prediction rate or the precision. For example, this model has a Class 

2 precision of 96.1% of the time out of the total number of times it predicted Class 2, i.e. it is correct 96.1% 

of the time, as compared to its own predictions.  

 

Figure 4-15. Confusion matrices for the Balanced Global model (left) and Targeted Class 2/3 model (right) for predicting 

GMP 4 when the CNN is trained on GMPs 1-3. 

When comparing the confusion matrices for the Balanced Global and Targeted Class 2/3 (with the sigmoid 

error weighting scheme) models, it is evident that the Balanced Global model has higher classification 

precision across all the YIELD classes than the Targeted Class 2/3 model, as expected. It also has higher 

recall for Class 0 and 1, as it is not penalized for these during training. The Balanced Global model also 

has a slightly higher recall for Class 3 Yield as compared to the Targeted Class 2/3 model, which is 

attributed to the equal weighting of Class 2 and 3 received in the latter. In other words, convergence to a 

solution with a better total performance across Classes 2 and 3 was achieved by sacrificing a slight 

improvement to Class 3 recall from 24.6 to 23.8%  for a 10% increase to Class 2 recall from 89.1 to 99.9%. 

The Targeted Class 2/3 model cannot predict Class 0 and 1 at all, which is to be expected since these 

classes were given a 0 weighting in the training process. The low precision of the Targeted Class 2/3 model 

reflects the inclusion of over-predicted pixels, which was deemed acceptable in order to attain a high recall 

for Class 2 pixels (i.e., minimal under-prediction). Class 2 pixels represent future Class 3s, and over-
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predicting them may result in earlier rehabilitation intervention and therefore cost savings before total 

reprofiling is necessary (Class 3 occurs). Under-predicting Class 2 is not acceptable, as Class 3 represents 

a significant increase in cost for rehabilitation. 

4.7 Discussion 

It is imperative that the CNN be designed to appropriately address the problem it is intended to solve. A 

problem definition framework should be developed to ensure that the architecture of the CNN, in this case, 

is suited to making the predictions that were intended at the outset while maximizing the utility of the 

available inputs. In addition, the metric for sufficient performance should be defined. For the Cigar Lake 

Mine problem, the CNN was developed to predict the tunnel liner yield as a function of the geotechnical 

mapping and monitoring data available on the GMPs that were already produced. The measure of success 

was how well the model could predict all YIELD classes, with particular emphasis on Class 2 and Class 3 

as these represent the highest capital investment for rehabilitation. High model performance for Class 2 in 

particular was targeted as these represent the future Class 3, and due to the difference in cost and 

scheduling associated with major repairs (Class 2) versus total reprofiling (Class 3). 

The primary source of information for the Cigar Lake Mine are the GMPs that are produced at irregular 

intervals as tunnel maps, showing the geology, installed support, and progression of the ground freezing 

and tunnel liner yield. This study compared a combination of several hyperparameters for the CNN: ten 

permutations of data partitioning, convolution filter sizes ranging from 10 x 10 x 4 to 50 x 50 x 4, four error 

weighting schemes, and an ensemble of 20 models each, for a total of 7200 CNN models. In general, it 

was found that increased training data results in increased performance across all YIELD classes, as 

expected. The notable exception is when predicting GMP 5. This is attributed to the large gap in time 

between GMP 4 and 5, where a significant development in YIELD occurred throughout the tunnel. The CNN 

cannot predict a severity of YIELD that it has not seen before, and therefore some fine tuning of the 

hyperparameters is needed to improve Class 2 and 3 performance. For future work, GMPs could be 

produced at more regular time intervals in order to improve the CNN prediction accuracy and to capture the 

rock mass deformation mechanisms more continuously.  

The error weighting scheme has a significant impact on the performance on the individual class 

performances. The uniform scheme was used as a baseline for comparison, as this represents the models 

where no emphasis on a particular class is introduced. The linear scheme represented a minor 

improvement in performance, and significant improvement in variance of each suite of models. The sigmoid 

scheme represents the best performance for Class 2, which is a good barometer for the support 

rehabilitation intervention that will be needed imminently. The inverse frequency scheme represents the 

best performance across all YIELD classes. 

The Cigar Lake Mine deformation mechanisms and subsequent tunnel liner yield can be best described 

and predicted by two models – a Balanced Global model and a Targeted Class 2/3 model. The Balanced 
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Global model represents good prediction accuracy across all YIELD classes. This is achieved by applying 

an inverse frequency error weighting scheme during training to balance the samples of each class in the 

training dataset. This scheme results in the highest global prediction accuracy, and the error weights are 

adaptive to the distribution of samples within the training images. This means that the scheme updates 

itself for each new image that is added during training. The Targeted Class 2/3 model represents the best 

combined recall for Class 2 and 3, with a particularly high recall for Class 2. This is achieved using a sigmoid 

error weighting scheme that emphasizes those two classes during training over the others. The Targeted 

Class 2/3 model can be used when the mine operators are targeting high capital tunnel liner rehabilitation, 

and was developed to have as high a recall for Class 2 as possible. Over-predictions were deemed 

acceptable, while under-predictions were minimized since they are more detrimental to tunnel liner 

rehabilitation scheduling. From an operational standpoint, the Targeted Class 2/3 model can be used to 

plan and execute routine underground inspections. For example, the locations where Class 2 is predicted 

is added to a database where inspection by a ground control engineer is needed. If upon inspection a 

particular location’s YIELD is less than Class 2 (i.e., over-predicted by the model), that location stays on 

the “watch list” but no rehabilitation action is taken. It would be far less desirable for the model to have 

under-predicted that location and it has already reached Class 3 YIELD, as that indicates that the optimal 

time for rehabilitation has already passed. 

The dominance of each of the four model inputs (GEO, SUPCL, FREEZE, DISP) as predictors within the 

CNN were compared by analyzing their respective activation strengths as measured for each channel (i.e., 

the input) of the image. This analysis was focused on the models using the sigmoid and inverse frequency 

error weighting schemes, as these had shown the best performance during the sensitivity analysis of the 

hyperparameters. The analysis showed that support class was overwhelmingly the most dominant input 

parameter for the Cigar Lake Mine CNN, regardless of which GMP was being predicted and which error 

weighting scheme was employed. It is intuitive that this input has a strong correlation with the tunnel liner 

yield (the CNN output), as the suitability of the type and extent of primary rock support is highly relevant to 

the yield that it experiences as the rock mass deforms. This result does not demonstrate that any of the 

CNN inputs can be removed to reduce model complexity, as it only shows which inputs are the most 

dominant, and not which are not used by the CNN at all. Future work will explore how input dominance may 

be used as an IVS method. 

In the context of tunnel design generally, and with respect to other rock mass deformation environments 

and mechanisms, there are some transferable learnings from the Cigar Lake Mine CNN and the mine’s 

squeezing environment. The primary learning is that the spatial and temporal characteristics that are 

important to the mechanism at hand must be represented in the dataset used to develop the CNN. For 

example, the deformation mechanics at Cigar Lake Mine are known to depend on the nuanced relationship 

between the adverse geology and the ground freezing implemented during ore extraction. Thus, these data 

are explicitly given to the CNN as inputs. Similarly, in a gravity controlled failure environment, it may be 
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necessary to include explicit discontinuities as inputs into the CNN, rather than just the geotechnical zones, 

in order to be able to predict falling blocks at the excavation scale. In a bursting environment where stress 

accumulation is problematic, the CNN may need a stress related dataset (e.g., microseismic data) explicitly 

as this is the main driver of the mechanism that is observed locally at the excavation. This example raises 

a further degree of complexity in that stress is a 3D problem, and therefore a CNN that performs four-

dimensional convolution (where the dimensions are x, y, z, and time) may need to be developed to capture 

the stress redistribution in three dimensions.  

The amount of training data has also been found to be a sensitive CNN parameter, particularly in the 

temporal domain. For Cigar Lake Mine, it was generally true that as much displacement history as possible 

was needed for an accurate prediction, but this may not be the case for another rock mass deformation 

mechanism. For example, in a stress controlled environment only the seismic data collected just before the 

latest blast may be of consequence.  

CNNs are powerful tools born in the field computer vision and segmentation, which present an exciting 

opportunity for processing geological and geomechanical data. The datasets that are traditionally collected 

in rock engineering practice do not require complex formatting for use, as their spatial nature is conducive 

for CNN processing. Geological mapping or geotechnical domains may be used as the baseline for the 

“images” that the CNN uses as an input, and instrumentation data can be overlaid and resampled to the 

resolution of the image pixels. This approach also allows for the combination of numerical and categorical 

information to be used within a single algorithm, which is novel at the intersection of rock engineering and 

machine learning  (Morgenroth, Khan, et al., 2019). Also, this approach has the advantage of being intuitive 

to professionals that are not data scientists by training, because the data format is familiar and can be 

related to physical properties and mechanisms that are widely accepted. This study demonstrates that 

reasonable agreeance between CNN generated predictions and actual tunnel liner yield can be achieved, 

and that a CNN can be used to forecast future tunnel liner yield. This finding has powerful implications for 

mine operational planning, budgets and scheduling, and above all improved safety in underground 

excavations. 

4.8 Conclusions 

This chapter presents the novel application of a computer vision machine learning algorithm, the 

Convolutional Neural Network, to the rock engineering problem of predicting tunnel liner yield in the 

squeezing ground conditions of Cigar Lake Mine in Saskatchewan, Canada. Four conventional geological 

and geomechanical inputs were used in the CNN development: geology class, primary support class, 

ground freezing, and tunnel displacement. These data were obtained from the GMPs prepared by the mine 

and from tunnel liner displacement surveys. Previous work done to analyze these inputs revealed that there 

are nuanced and complex rock mass deformation mechanics at play, resulting from the ground freezing 

program interacting with the weak and faulted rock mass. These nuanced relationships are difficult to 

capture using a conventional numerical method, where the real constitutive behaviour may be overprinted 
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by one imposed by the numerical analysis, which provided the justification for exploring a machine learning 

algorithm.  

The Cigar Lake Mine CNN was developed through a sensitivity analysis of three network hyperparameters: 

the amount of training data, the convolution filter size, and the error weighting scheme. A total of 7200 

models were analyzed to determine the best combination of these parameters for this problem. It was found 

that an error weighting scheme was necessary to offset the imbalance of samples for each class in the 

dataset. A sigmoid error weighting scheme, which prioritizes Class 2 and 3 errors during training, was used 

to develop a Targeted Class 2/3 model that has higher recall for Class 2 and 3 tunnel liner yield. An inverse 

frequency error weighting scheme, where the proportion of samples in each class is used to determine the 

error weights, was used to develop a Balanced Global model that has reasonable prediction accuracy 

across all yield classes (average model accuracy >65% for all training data permutations).  

Machine learning algorithms are another tool to add to the rock engineering toolbox, one that is filling the 

need for accessible tools to use when the rock mass deformation characteristics are complex and nuanced 

behaviour may be overlooked. The internal relationships between the parameters that are known to be 

important can be disentangled by a numerical system that is built on interconnectivity, a method which 

allows for more informed decisions when designing, excavating, and rehabilitating underground 

excavations. Pushing this frontier forward does not only present an exciting innovation of combining data 

science and rock engineering, but also an opportunity for more economic and safer underground 

excavations. 



80 
 

 

Appendix 

 

Figure 4-16. Cigar Lake Mine CNN results for the uniform error weighting scheme, for different training data and filter 

sizes. 

 

Figure 4-17. Cigar Lake Mine CNN results for linear error weighting scheme, for different training data and filter sizes. 
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Figure 4-18. Cigar Lake Mine CNN results for sigmoid error weighting scheme, for different training data and filter sizes. 

 

Figure 4-19. Cigar Lake Mine CNN results for inverse frequency error weighting scheme, for different training data and 

filter sizes. 
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CHAPTER 5.   ON THE INTERPRETABILITY OF MACHINE LEARNING USING 
INPUT VARIABLE SELECTION: FORECASTING TUNNEL 
LINER YIELD 

 

5.1 Preface 

This chapter focuses on three Input Variable Selection (IVS) methods developed and applied to the Cigar 

Lake Mine CNN developed in CHAPTER 4.  A Convolutional Neural Network approach for predicting tunnel 

liner yield at Cigar Lake Mine. IVS is an approach that examines how the CNN uses the given data, or 

inputs, to forecast rock mass behaviour. The three IVS methods investigated were Channel Activation 

Strength (CAS), Input Omission (IO), and Partial Correlation (PC). The IO and PC approaches proposed 

are novel for CNNs using a spatial and temporal geomechanical dataset. These IVS methods represent an 

approach to improve algorithm interpretability, both in terms of transparency and post-hoc interpretations, 

by providing insight into how the IVS methods are used and their impact on model performance. 

The content of this chapter was submitted to Rock Mechanics and Rock Engineering in 2021 as follows:  

Morgenroth, J., Perras, M. A., & Khan, U. T. (2022). On the Interpretability of Machine Learning Using 

Input Variable Selection: Forecasting Tunnel Liner Yield. Rock Mech Rock Eng. 

https://doi.org/10.1007/s00603-022-02987-5  

The contributions of the authors in the current chapter are as follows:  

Josephine Morgenroth has conducted the literature review, developed the IVS methods, applied the IVS 

methods using the required software, validated and visualized the results, and prepared and wrote the 

original manuscript of this publication. Matthew A. Perras has supervised the research, provided the 

funding, and contributed to writing and editing the manuscript. Usman T. Khan has supervised the 

research, provided the funding, and contributed to the writing and editing the manuscript.  

The authors would like to extend special thanks to Cameco, and particularly Chris Twiggs, Imre Bartha and 

Kirk Lamont for their constructive feedback and informative conversations. This work is funded in part by 

the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant program 

and the joint Innovation York and National Research Council Canada’s Industry Research Assistance 

Program – Artificial Intelligence Industry Partnership Fund, in partnership with Yield Point Inc. This work is 

also funded by the NSERC Postgraduate Scholarships – Doctoral program. 

5.2 Abstract 

To validate the application of Machine Learning (ML) to rock engineering practice, it is crucial that algorithm 

developers use appropriate methods to quantify how closely the ML reproduces the observed rock mass 

deformation. Input Variable Selection (IVS) is one approach that examines how ML uses the given data, or 

inputs, to forecast rock mass behaviour. Three IVS methods were developed for two Convolutional Neural 

Network (CNN) architectures that predict tunnel liner yield at the Cigar Lake Mine, which exhibits time-

https://doi.org/10.1007/s00603-022-02987-5
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dependent squeezing deformation. One model architecture focused on accurately predicting the higher 

tunnel liner yield classes, while the second architecture prioritized prediction accuracy across all tunnel liner 

yield classes. The three IVS methods investigated herein were Channel Activation Strength (CAS), Input 

Omission (IO), and Partial Correlation (PC). The IO and PC approaches proposed are novel approaches 

proposed for CNNs using a spatial and temporal geomechanical dataset. Performance of all models was 

compared using the Corrected Akaike Information Criterion (AICc), where lower values indicate better 

performance.  

Each IVS method was used to produce a unique ranking for each model architecture and training/testing 

data split: CAS produced an Activation Ranking, IO produced an Omission Ranking, and PC produced a 

Correlation Ranking. The Activation Rankings showed that the geotechnical zones input had the lowest 

activation strength in the CNN relative to the other inputs (ground freezing, primary installed support class, 

and radial tunnel displacement). Geology had the highest Omission Ranking, resulting from it having the 

most negative impact on performance as compared to the other inputs when it was omitted from the models 

entirely. The PC approach, using the Correlation Rankings, found that the highest model performances 

were reached when the most recent radial tunnel displacement was added into the pool of candidate inputs. 

The three IVS approaches and their respective rankings proved to be useful for analyzing the CNN inputs 

in terms of importance and confirming underlying assumption about the deformation mechanics at Cigar 

Lake Mine. Collectively, the IVS analyses indicated that all of the available digitized inputs for the Cigar 

Lake Mine CNNs are needed to produce good model performances. Each IVS method revealed different 

insights into this CNN development. Undertaking IVS for ML developed using geomechanical datasets 

allows for verification of the algorithms and thereby a better understanding of the nuance of the rock mass 

deformation. At Cigar Lake Mine, these findings may be used to assist in forecasting the schedule and 

budget for ground support rehabilitation. 

5.3 Introduction 

The rock engineering community has access to increasing volumes of data concerning underground 

infrastructure and rock mass behaviour, which are collected both manually by geomechanical professionals 

and automatically through instrumentation. These datasets present opportunities to explore rock mass 

deformation phenomena more efficiently and in more detail than ever before. However, using conventional 

empirical or numerical methods may be inefficient or may introduce bias to engineering decision making if 

they are not used correctly (Elmo et al., 2020; Elmo & Stead, 2021). Conventional methods can oversimplify 

or mischaracterize the rock mass behaviour due to fitting the site-specific data to an empirical or constitutive 

behaviour that does not capture all the complex deformation mechanics. In practice, this is commonly 

overcome by examining several scenarios (i.e., worst, median, best cases), which increases the time 

needed to come to a suitable engineering decision.  

Data driven methods, and Machine Learning Algorithms (MLAs) in particular, have emerged as an 

alternative approach to rock engineering analysis in research literature to increase the efficiency of data 
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analysis and obtain new insights into data trends (Elmo et al., 2020; Lawal & Kwon, 2020; Mcgaughey, 

2019; Morgenroth et al., 2019). Geomechanical datasets are generally complex and challenging to work 

with due to the combination of data types and formats, including categorical (e.g., rock mass classification), 

numerical (e.g., instrumentation readings), spatial (e.g., geological mapping), and temporal (e.g., seismic 

monitoring) data. MLAs offer a new tool in the rock engineering toolbox to combine these complex datasets 

to characterize rock mass deformations, and to quantify the uncertainty associated with each datatype 

within the machine learning model.  

MLAs are not often applied in rock engineering practice, despite representing an opportunity for rock 

engineering professionals to explore the site-specific data that is collected without introducing the inherent 

bias of constitutive frameworks and conventional numerical methods (Morgenroth et al., 2019). MLAs can 

identify patterns or relationships between datasets and do not require expert intervention to form inter-

variable relationships (Khan & Valeo, 2017). Instead, the expert’s judgment is reserved to choose the 

relevant input data and to evaluate whether the outputs are mechanistically possible in the context of the 

physical system. To date, research at the intersection of machine learning and underground rock 

engineering have successfully applied a variety of MLAs, including ANNs, a variation of which will be used 

in the present research. ANNs have been researched for predicting: rock mass properties (Sklavounos & 

Sakellariou, 1995; Song et al., 2015), constitutive behaviour (Kumar et al., 2013; Millar & Clarici, 2002), 

tunnel performance (Bizjak & Petkovšek, 2004; Leu et al., 2001; Qi et al., 2018; Sun et al., 2018), rock 

bursts (Pu et al., 2018; Ribeiro e Sousa et al., 2017), and tunnel blasting damage zones (Liu & Liu, 2017).  

The hesitancy to adopt these data driven methods in rock engineering practice is due in part to the 

perceived opaque nature of the algorithms (Mcgaughey, 2019). In order to increase confidence in the MLA 

developed, it is important to uncover how the data inputs are used to train the algorithms, examine the 

physical implications of the algorithm architecture, and to verify that the outputs are aligned with the 

knowledge and experience of the collective field of rock mechanics. As with any model development, there 

are best practices associated with developing MLAs. These best practices have been an intensive field of 

research in computational science, with applications ranging from health sciences, to computer vision, to 

transportation engineering. The rock engineering community has the advantage of borrowing MLA 

architectures and techniques from fields that have already grappled with problems associated with data 

uncertainty and variability. For example: handling large noisy geospatial datasets (e.g., labelling aerial 

imagery from maps (Mnih & Hinton, 2012), or using bootstrapping to label noise to improve image 

segmentation (Reed et al., 2015)), maximizing the benefit of small datasets (e.g., detecting diabetic 

retinopathy using small datasets (Samanta et al., 2020)), or deciding which of the available inputs to include 

in an MLA to minimize complexity and maximize performance (e.g., identifying salient inputs in an ANN (R. 

May et al., 2011)). The type of MLA proposed herein is a CNN, which was originally designed for image 

classification and computer vision applications. CNNs are efficient for geospatial datasets because the 

geological context forms an image-like backdrop for the datasets (Morgenroth et al., 2021).  
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Numerical modelling approaches are based on constitutive equations, where the underlying physical 

behaviour of the model is based on rock properties and other inputs derived from an interpretation of the 

most relevant parameters, from laboratory testing, field observations, experience. MLA modelling 

approaches do not benefit from this advantage, and instead the input variables are selected from the 

available data, and the MLA is developed subsequently. This presents challenges when developing MLAs 

where there is a large pool of candidate input variables, giving rise to a higher potential for correlation or 

redundancy between candidates. More input variables result in an MLA with higher complexity, and thus 

potentially poorer model performance due to the presence of candidate variables that have low or no 

predictive capacity (May et al., 2011).  

Input Variable Selection (IVS) can be used to overcome these challenges. IVS methods typically identify 

the most useful inputs from a candidate pool of inputs, where usefulness is defined as having the maximum 

relevance to the output while minimizing the redundancy between the other inputs (May et al., 2011). The 

IVS process also allows for refinement of the hyper parameters of the data-driven model, resulting in less 

frequent convergence to local minima during algorithm training, and thereby reducing the variability of the 

model output (May et al., 2008). Completing this analysis is valuable in the context of rock engineering 

because it allows the user to rank the inputs with respect to their ability to accurately predict the output (i.e., 

which variables have the strongest link to the phenomena being predicted). This may inform decisions 

about parallel modelling efforts, such as choosing variables for conventional numerical models, and about 

which data should be collected how, and how frequently, such as determining the type and layout of 

instrumentation.  

Recent research has shown the utility of CNNs for predicting tunnel liner yield for the Cigar Lake Mine in 

northern Saskatchewan, Canada (Morgenroth et al., 2021). However, further work was needed to determine 

which CNN inputs were most important to obtain higher prediction accuracy, and therefore and IVS analysis 

was needed to improve model performance and determine which data should be emphasized for 

forecasting. The CNN used in this research was developed to predict the yield of the tunnel lining based on 

four inputs: geotechnical zone mapping (spatially variable), primary support class (spatially variable), 

ground freezing pattern (temporally variable), and measured radial tunnel displacement (temporally 

variable). The CNN as designed to predict high tunnel liner yield as accurately as possible, however, the 

overall performance of the model for lower classes of yield must not decrease as a result. Three IVS 

methods are explored herein for the Cigar Lake Mine CNN: Channel Activation Strength (CAS), Input 

Omission (IO), and Partial Correlation (PC). The latter two of these methods are novel approaches that 

have been developed for application to CNNs using spatial and temporal datasets by the authors. A detailed 

explanation of these novel methods is provided to allow geomechanical engineers to apply IVS to data 

formats that are familiar in the industry, such as the tunnel mapping that is used herein. The IVS methods 

allow for ranking of the inputs in terms of their relative importance on determining the tunnel yield at Cigar 

Lake Mine. Three IVS methods and their respective rankings (Activation Ranking, Omission Ranking, and 
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Correlation Ranking) were compared and contrasted to extract a better understanding of the inputs that 

produce the complex rock mass deformation at the Cigar Lake Mine. This information can be used to inform 

how data is collected, and to better understand the factors influencing the rock mass deformation at the 

Cigar Lake Mine.  

The remainder of this chapter is organized as follows: Section 2 contains the background and context of 

the Cigar Lake Mine case study; Section 3 explains the development and architecture of the Cigar Lake 

Mine CNN used for this IVS research; Section 4 explains in detail the mechanics of the three IVS methods 

that were developed and applied; Section 5 contains the IVS study results; and Sections 6 and 7 comprise 

the discussion and conclusions, respectively. 

5.4 Background 

5.4.1 Cigar Lake Mine 

The Cigar Lake Mine is located in northern Saskatchewan, Canada. It is the world’s second-largest uranium 

mine, with an ore grade approximately one hundred times the global average. The ore body is unique due 

to its size, high grade, intensity of alteration, and a high degree of associated hydrothermal clay alteration 

(Bishop et al., 2016).  

The geology of the Cigar Lake uranium deposit and environs is described in (Bishop et al., 2016) and is 

summarized as follows. The uranium is found in an unconformity type deposit situated between the 

Athabasca Group and the underlying metasedimentary Proterozoic Wollaston Domain. The deposit and 

host rock consist of three geological units that double as the geotechnical domains: the deposit and 

associated hydrothermally altered clay cap, the overlying sandstone unit (Athabasca Group), and the 

underlying metamorphic basement rock (Wollaston Domain). The overlying sandstone unit is part of the 

Manitou Falls Formation within the Athabasca Group, which is on the eastern side of the sedimentary basin. 

There are three distinct styles of mineralization within the ore body: high grade mineralization at the 

unconformity, fracture-controlled mineralization in the sandstone, and fracture-controlled mineralization in 

the basement rock. The deposit and sandstone are highly fractured and water bearing, while the basement 

rock is impervious. The basement rock is composed mainly of pelitic metasedimentary gneisses belonging 

to the Wollaston Domain. The Wollaston Domain is considered to be the most favourable unit for uranium 

mineralization. In general, the Cigar Lake Mine operation and production tunnels are located in three main 

rock mass types (Paudel et al., 2012): weak, highly weathered and saturated basement rock containing 

sand and clay; moderately weathered saturated basement rock; and strong unweathered basement rock. 

The high grade ore body is located above the 5.0 m diameter lined ore extraction tunnels (Figure 5-1), 

which are excavated using drill and blast methods. There are two main challenges facing the stability of the 

Cigar Lake Mine excavations: controlling groundwater inflow, and supporting areas of weak rock (Bishop 

et al., 2016). The mine operators freeze the rock mass surrounding the orebody downward from surface to 

improve rock mass properties and to restrict groundwater inflow into excavated areas (Figure 5-1). Tunnel 
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convergence is monitored using survey targets around the circumference of the tunnel. A customized non-

entry extraction method is used to extract the ore, where cutting cavities of frozen ore are created upwards 

from the ore extraction tunnels below with a high-pressure water jet, and then the ore is mixed with water 

to make a pumpable slurry (WSP (formerly Parson Brinkerhoff Quade & Douglas Inc.), 1999). The cavities 

created from the extraction of the ore are backfilled with concrete with a custom mix design to achieve early 

strength in the frozen ground and therefore, provide additional ground support (Bishop et al., 2016). The 

ground freezing operation results in complex time-dependent rock mass behaviour that is difficult to predict 

and presents challenges when designing support (Golder Associates, 2001; Roworth, 2013).  

 

Figure 5-1. Schematic of the mining method at Cigar Lake Mine, showing a section view of the ore extraction tunnel 

and freeze holes from surface. A customized non-entry extraction method is used to extract the ore from the ore 

extraction tunnels which are below the high grade ore body. Ground freezing is implemented to stabilize the excavations 

in the adverse geology and to manage ground water inflow from the Athabasca Sandstone. Tunnel convergence is 

monitored using survey targets placed on the ground support around the circumference of the tunnel. The geotechnical 

zones (GEO), installed primary ground support class (SUPCL), ground freezing (FREEZE), and surveyed 

displacements (DISP) are used as inputs into in the proposed Convolutional Neural Network. 

The Cigar Lake Mine was found to be an appropriate case study for an ML application because there are 

several phenomena that coalesce into a complex tunnel deformation, which is difficult to predict using 

existing techniques to characterize squeezing ground (Barla, 2002; Barla et al., 2011; Barla & Borgna, 

1999; K. Zhao et al., 2015). The combination of unfavourable geology (i.e., the weak and altered sandstone 

and basement rock) and the locally variable structural geology produces differential radial squeezing over 

the length of the ore extraction tunnels. The ground freezing regime, which is effective at stabilizing the 
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rock mass for ore extraction, adds to the complex rock deformation mechanics by increasing the total stress 

during its implementation (Roworth, 2013). These factors combine to result in tunnel liner and support yield 

that is difficult to forecast, which causes delays in production and adds complications for support 

rehabilitation scheduling and budgeting. The priority for the CNN approach for Cameco, the mine operator, 

was to accurately predict tunnel liner and support yield, which is critical for the safe operation of the ore 

extraction tunnels and for forecasting rehabilitation works needed to maintain operations. The IVS 

approaches presented herein indicate which input variables have the highest impact on predicting the 

tunnel liner and support yield, thus giving the mine operators insight into which variables should be 

monitored and recorded more accurately, and which are not as strongly related to the yield. This information 

may help the mine prioritize its data collection and analysis efforts in order to forecast their annual 

rehabilitation budget and schedule more accurately. 

5.4.2 Convolutional Neural Network 

CNNs are a type of ANN that are efficient at processing spatial and temporal dependencies in image or 

raster datasets. Since their introduction in the late 1980s for handwritten digit classification (LeCun et al., 

1989), CNNs have rapidly gained success in the field of computer vision as well as in other engineering 

applications (Zeiler & Fergus, 2014). They are computationally efficient at incorporating spatial 

dependencies in images by using data from surrounding pixels and their change over time in a pixel-by-

pixel analysis. This is applicable to rock engineering problems because the data usually contains a mapping 

component, such as geology, onto which other data, such as measured displacement or groundwater 

inflow, can be transferred or overlain. Thus, some data stays constant with time while others change with 

each subsequent timestep. This approach maintains the spatial dependencies between the static and 

variable inputs, while also capturing the temporal change in the variable inputs. When developing any kind 

of rock mechanics model, the spatial and temporal relationships between the various inputs must be 

preserved, and thus, CNNs are well suited for these types of datasets.  

CNNs processes conventional images in a similar manner to the manual processing of spatial 

geomechanical data and raster analysis in Geographic Information Systems. During convolution, CNNs 

scan the pixels of an input image using a square search area called a filter to identify the presence of a 

feature of interest, for example a crack in the shotcrete liner, to produce a feature map. This feature map is 

then correlated to the output, for example the degree of yield the tunnel liner has sustained over time. The 

CNN will produce feature maps that together identify the factors that produce the output. CNNs have also 

demonstrated success at more challenging computer vision tasks involving classifying objects in an image 

or video (Zeiler & Fergus, 2014), called segmentation. This type of CNN architecture allows for classification 

of multiple phenomena within an input image as opposed to classifying the image as a whole. For example, 

a CNN with segmentation can segment and identify areas within the input tunnel map with various amounts 

of ground support damage, producing an output image that is akin to a hazard map.  
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The Cigar Lake Mine CNN was developed in MATLAB R2019b (MathWorks Inc., 2019) using the Deep 

Learning and Computer Vision toolboxes. The input data was formatted as labelled images, which were 

passed to the built-in MATLAB function trainNetwork along with the desired algorithm architecture and 

hyperparameters to train the Cigar Lake Mine CNN. The MATLAB code for this research is publicly available 

(Morgenroth, 2021a).  

The objective of the Cigar Lake Mine CNN is to forecast the ore extraction tunnel liner yield forward in time, 

in order to optimize the schedule and budget for liner rehabilitation. The dataset used to develop the Cigar 

Lake Mine CNN is comprised of a combination of spatial and temporal data that is both categorical (e.g., 

the geotechnical zones, which are categorized as Class 1, 2, 3, etc.) and numerical (e.g., measured radial 

displacement within the tunnel). This study used data from Cigar Lake Mine crosscut tunnel 765 to calibrate 

and test the CNN to predict tunnel liner yield forward in time. The dataset for tunnel 765 was digitized from 

five Ground Management Plans (GMPs) spanning from October 2015 to June 2016, at a spatial resolution 

of 164 m, the length of the tunnel, by 13 elements, representing elements around the circumference of the 

tunnel. Three inputs were digitized from the GMPs for use in this case study: the mapped geotechnical 

zones (GEO), as-built ground support class (SUPCL), and ground freezing patterns (FREEZE). The radial 

tunnel displacement (DISP) was obtained from survey point measurements made around the circumference 

of the tunnel. The inputs used to train the Cigar Lake Mine CNN are indicated in Figure 5-1, and their 

categories and values are presented in Figure 5-2. The GEO classes are defined as follows: Class 1 is stiff 

crystalline rock; Class 2 is fissured fresh crystalline rock; Class 3 is transition from fresh to metamorphosed 

crystalline rock; Class 4 is metamorphosed crystalline rock; Class 5 is stiff to very stiff coarse-grained soil, 

structure well preserved; and Class 6 is fine-grained soil, structure not seen. The SUPCL classes are 

defined as follows: Class 1 support (lightest support); Class 2 support; Class 3 support; Class 4 support; 

Class 5 support (heaviest support). The FREEZE input is binary: 0 is freezing is off at that tunnel station; 

and 1 is freezing is on at that tunnel station. Finally, DISP is the measured radial displacement, ranging 

from 0 to 250 mm. 
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Figure 5-2. Histograms of Cigar Lake Mine dataset showing the distribution of each input for each of the five Ground 

Management Plans (GMPs), where each row of ground freezing, displacement, and liner yield histograms represents 

a GMP. The displacement histograms indicate the distribution of geology classes for each GMP. It is important to note 

that the rings where displacement is measured does not span areas where geology Class = 6, and as a result this class 

is not represented in the displacement bars (adapted from Morgenroth et al., 2021a). 

The four inputs (GEO, SUPCL, FREEZE, DISP) were used to predict the tunnel liner yield (YIELD), which 

was also mapped on the GMPs in the form of failed rock bolts, spalled shotcrete, and compressed yield 

packs. YIELD classes are defined from discussions with Cameco as follows (Morgenroth et al., 2021): 

• Class 0 – no yield of tunnel liner elements 

• Class 1 – minor yield: minor cracks in shotcrete; isolated water ingress; minor spalling of lining or 

yield elements 

• Class 2 – major yield: high concentration of shotcrete cracks; localized major shotcrete cracks; 

extensive spalling of lining; combination of cracks and/or spalling and/or water ingress; damaged 

rock bolts 
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• Class 3 – total reprofiling required: extensive liner spalling and major shotcrete cracks; combination 

of spalling, shotcrete cracks, and water ingress; compressed yield elements 

The optimization and development of the CNN architecture for the Cigar Lake Mine is detailed in 

(Morgenroth et al., 2021), summarized here and illustrated in Figure 5-3. Each of the four inputs are 

formatted into an image, where each input represents a channel of the image, similar to how RGB values 

represent each of the three channels of a typical image, i.e., the image for GMP 1 consists of four channels 

which are GEO, SUPCL, FREEZE and DISP all digitized from GMP 1. The Cigar Lake Mine CNN is trained 

on a subset of GMP images and then tested on the subsequent GMP image, to simulate prediction tunnel 

liner yield forward in time. Specifically, the data was split temporally and not spatially, as the liner yield is 

being forecasted after the tunnel was complete during the ore extraction process. Ten permutations of 

training/testing data splitting were analyzed: train on GMP 1, test on GMP 2; train on GMP 2, test on GMP 

3; train on GMP 3, test on GMP 4; train on GMP 4, test on GMP 5; train on GMPs 1 and 2, test on GMP 3; 

train on GMPs 2 and 3, etc. Detailed discussion of the Cigar Lake Mine input dataset and image formatting 

can be found in Morgenroth et al. (2020) and Morgenroth et al. (2021). 

 

Figure 5-3. A schematic of the Cigar Lake Mine Convolutional Neural Network (CNN), where a filter is used to convolve 

over the inputs to generate the feature maps. The inputs are mapped geotechnical zones (GEO), primary installed 

support class (SUPCL), ground freezing (FREEZE), and radial tunnel displacement (DISP). The CNN uses the feature 

maps created in the convolution layer to make a pixel-by-pixel classification based on whether the combined inputs of 

a particular cell results in Class 0, 1, 2, or 3 tunnel liner yield (adapted from Morgenroth et al. (2021b)). 

The Cigar Lake Mine CNN was developed through a sensitivity analysis of three network hyperparameters: 

the amount of training data, the convolution filter size, and the error weighting scheme (Morgenroth et al., 

2021). A total of 7200 models were analyzed to determine the best combination of these parameters for 

this problem. It was found that more data in the temporal realm resulted in better performance, and the 

optimal filter size was determined to be 30 by 30 pixels. It was found that an error weighting scheme was 

necessary to offset the imbalance of samples for each class in the dataset. A sigmoid error weighting 

scheme, which prioritizes Class 2 and 3 errors during training, was used to develop a Targeted Class 2/3 

model that has stronger prediction accuracy for Class 2 and 3 tunnel liner yield (model accuracy of 99.9% 

for Class 2). An inverse frequency error weighting scheme, where the proportion of samples in each class 
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is used to determine the error weights, was used to develop a Balanced Global model that has reasonable 

prediction accuracy across all yield classes (average model accuracy >65% for all training data 

permutations).  

Herein, three IVS techniques are applied to both the Targeted Class 2/3 model and the Balanced Global 

model that were developed for the Cigar Lake Mine CNN, including one standard approach (CAS) and two 

novel approaches (IO and PC). In order to obtain a distribution of performances for each IVS method, an 

ensemble of 30 models was computed for each set of hyper parameters. Modelling an ensemble also allows 

for the quantification of uncertainty for each model. This approach resulted in 300 CAS models, 2,400 IO 

models, and 48,000 IO models analyzed as part of this study. 

5.4.3 Performance Metrics 

The performance metric selection for an MLA depends on the model architecture and the amount of training 

data. For this study it was important that the performance metric used to compare the models, and therefore 

the IVS methods, included the number of model parameters in its formulation. This is because the three 

IVS methods have different numbers of parameters associated with them, depending on the number of 

inputs used and the amount of training data. The chosen performance metric was the Corrected Akaike 

Information Criterion (AICc) (Hurvich & Tsai, 1989), which is based on the Sum of Squared Errors (SSE), 

number of samples, and number of model parameters, as described below. 

The SSE is a measure of the variation of modeling errors, i.e., a measure of how the variation in the 

dependent variable in a model cannot be explained by the model. Generally, a lower SSE indicates that the 

regression model can better explain the data while a higher residual sum of squares indicates that the 

model poorly explains the data. The SSE calculation is shown in Equation 5-1, where 𝑦𝑖 is the ground truth 

(observed data) and �̂�𝑖 is the predicted value. 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 Equation 5-1 

The Akaike Information Criterion (AIC) evaluates the model’s fit on the training data, and adding a penalty 

term for the complexity of the model (Akaike, 1969). The desired result was to find the lowest possible AIC 

(the absolute value was not significant since the objective is to compare performance), which indicates the 

best balance of model fit with generalizability. Essentially, AIC is a measure of the model’s entropy and is 

most frequently used in situations where one is not able to easily test the model ’s performance on a test 

set in standard ML practice (e.g., small dataset, time series data). The AIC calculation is shown in Equation 

5-2, where 𝑛 is the number of training samples and 𝑝 is the number of parameters (weights and biases). 

𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑜𝑔
𝑆𝑆𝐸

𝑛
+ 2 ∗ 𝑝 Equation 5-2  

AIC assumes that the same data is used between models, the same outcome variable is predicted between 

models, and that the sample is of infinite size. This final assumption gave rise to a sample-size adjusted 
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formula known as the Corrected Akaike Information Criterion (AICc), which adds a correction term that gives 

a more accurate answer for smaller datasets, and which is used herein (Hurvich & Tsai, 1989). The AICc 

calculation is shown in Equation 5-3. 

𝐴𝐼𝐶𝑐 = 𝑛 ∗ 𝑙𝑜𝑔
𝑆𝑆𝐸

𝑛
 +

𝑛 + 𝑝

1 −
𝑝 + 2

𝑛

 Equation 5-3  

AICc should be used when the ratio of training samples (𝑛): number of parameters (𝑝) is less than 40 

(Burnham & Anderson, 2002), i.e., when there are less than 40 samples of data for every training parameter 

in the model. The AICc approaches and converges to the AIC value as the number of training samples 

approaches infinity. 

5.4.4 Algorithm Interpretability 

MLAs must be trained and validated in the specific context of the site for which they are developed and 

should not be transferred directly from another project context without revisiting its validation (Elmo et al., 

2020), just as is done with numerical models in rock engineering practice currently. To this end, it is 

important to select engineering verification metrics for the algorithm outputs in advance of developing it to 

avoid confirmation bias, and also to select methods to interpret the inner workings of the MLA. Algorithm 

interpretability falls into two categories: model transparency (how does the model work?), and post-hoc 

explanations (what can be learned after its development?) (Lipton, 2016). An algorithm is interpretable if 

there is an understanding of how the model makes decisions based on its inputs and the learned 

components such as hyperparameters and architecture (Molnar, 2022).  

Recent research literature has highlighted several options for algorithm interpretation, such as: input 

importance ranking, partial dependence among inputs, input interaction, and developing a secondary 

algorithm to recover features within inputs that are used by the algorithm (Fathipour-Azar, 2021; Isleyen et 

al., 2021; Pu et al., 2019). Researchers also place emphasis on practitioners focusing on developing the 

proper inputs for rock engineering applications, instead of focusing on the algorithms themselves 

(Mcgaughey, 2020). The IVS methods in this chapter were selected with the aim of making the Cigar Lake 

Mine CNN more interpretable, by uncovering both how the model works and what can be learned from it 

after its development.  

5.5 Input Variable Selection Methods 

The IVS process is not standard practice during MLA development, however it can serve to link these data-

driven approaches to the physical system that is being modelled, thereby increasing user confidence that 

the MLA is producing results consistence with the fundamental principles of their field. For the Cigar Lake 

Mine CNN, the primary purpose of undertaking IVS is not to reduce the number of inputs, but rather to rank 

the available candidate variables to determine their relative importance in predicting tunnel liner yield.  

IVS can be separated into two broad categories: model-based and model-free, as illustrated in Figure 5-4. 

Model-based methods are embedded into the training of the algorithm, while model-free methods are 
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distinct from the algorithm training and aims to measure the relevance and redundancy of individual input 

variables. For a more detailed taxonomy of IVS methods, the reader is referred to May et al. (2008). The 

IVS methods considered herein are channel activation strength (model-based), input omission (model-

based), and partial correlation (model-free). These are explained in more detail in the subsequent sections. 

 

Figure 5-4. Conceptual schematics showing the implementation of model-free and model-based Input Variable 

Selection methods (adapted from May et al., 2008). 

In the case of the Cigar Lake Mine dataset and CNN introduced above, the four input variables are not 

independent. In practice, SUPCL and FREEZE are chosen by the ground control engineers based on GEO, 

which result in DISP. Therefore, the use of IVS can uncover not only the significance of each individual 

input on predicting the target, but also how the interdependence among the inputs impacts overall model 

performance. The relationship between input variables is itself information the CNN can learn during 

training. For example, a tunnel location with a “worse” GEO class is correlated with a higher SUPCL, and 

over time may experience more tunnel liner yield. IVS can reveal whether the input correlations are 

additional useful information to the CNN, or redundancies that reduce model performance. To draw a 

parallel between the CNN and more conventional numerical modelling, for example, a finite difference 

model of the mine excavations would be initiated using the relevant GEO and FREEZE rock mass 

parameters and the SUPCL elements would be included explicitly. The model would be computed to 

determine DISP and after a predetermined amount of time and the resulting YIELD, which is compared to 

the observed tunnel liner behaviour. The input parameters are calibrated until the model output matches 

the true ground behaviour. In this example, the IVS analysis is comparable to completing a stress history 

analysis of the computation. 

One possible approach to using non-independent input variables is to apply principal component analysis 

(PCA) to reduce the dimensionality of a dataset, with the goal of obtaining lower dimensionality data while 

preserving its variation. However, there are limitations to applying PCA to capture non-linear correlations, 
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such as those encountered in most geomechanical datasets. PCA is disadvantaged if the data has not 

been standardized, and if not performed properly there is a high likelihood of data loss (Shlens, 2014). For 

these reasons, caution should be used in applying PCA in rock engineering without first completing an input 

data analysis. 

Each of the IVS methods explored as part of this research produced a different type of ranking that reveals 

information about the “usefulness” of each input to the CNN, and together provide a more comprehensive 

interpretation of the CNN. For clarity each ranking has been given a distinct name. CAS was used to 

produce an Activation Ranking, IO was used to produce an Omission Ranking, and PC was used to produce 

a Correlation Ranking. These are described in more detail in the following sections.  

5.5.1 Channel Activation Strength (CAS) 

The CAS method is a “model-based” approach that examines the activations of each channel for a particular 

layer within the CNN, revealing which features the network learns and which channels have the strongest 

impact on learning (Kudo et al., 1999). In other words, CAS measures the sensitivity of each input in an 

algorithm trained with all inputs. The activations of each input are their value after they are passed through 

the activation function, as illustrated in . The activations can be used to produce an Activation Ranking of 

all the candidate inputs. In the context of this research, the Activation Ranking reveals which input has the 

strongest impact on the predictand and therefore, which data is the most important indicator for a particular 

rock mass deformation mechanism within the constraints of the model. In the CAS approach, the candidate 

inputs are not being manipulated, left out, or inserted in any way. By examining the channel activations for 

each combination of model variables in the Cigar Lake Mine CNN, it is possible to determine which of the 

four inputs contain the strongest signal that is used by the CNN to make its classification for the Cigar Lake 

Mine tunnel. This type of analysis allows the CNN developer to see which inputs are emphasized in the 

learning process, and what the network learns at each layer. 

5.5.2 Input Omission (IO) 

The IO method is a “model-based” approach, which estimates the usefulness of each input by iteratively 

examining model performance when an input is left out from the full set on which the model has been 

trained (Setiono & Liu, 1997). In other words, IO measures the algorithm’s sensitivity to removing an input 

entirely. This is illustrated in Figure 5-5, where each of the four input channels of one training GMP are 

iteratively left out. The significance, or lack thereof, of each input can then be compared based on the error 

that is produced by leaving it out. An Omission Ranking can be produced whereby the input with the highest 

negative impact it ranked first, and so on. It is generally understood that excluding redundant or irrelevant 

inputs from the CNN results in a model with a higher generalization capability (May et al., 2011). Relevant 

and irrelevant inputs are differentiated by their impact on performance, and inputs are selected for removal 

based on their saliency (Setiono & Liu, 1997). The saliency of an input is based on the derivative of the 

network error function, the weights of the network, or both. In order to obtain a confidence interval on the 

mean saliency value of a network, the network should be retrained with random weights at least 30 times 
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(Setiono & Liu, 1997). In this study, the saliency measure is the accuracy of the network when removing 

each of the inputs. The Omission Ranking and accuracy can be used in combination to determine if any 

inputs should be removed to improve overall model performance. 

Herein, the IO method has been developed from its traditional application, where each input is a discrete 

value entered into the algorithm, to a format where each individual channel of an image is being omitted. 

This is a novel approach to the IO method because it is generally not desired to omit individual image 

channels in typical CNN image segmentation, as defined in section 5.4.2 Convolutional Neural Network. 

 

Figure 5-5. Conceptual schematic of the Input Omission (IO) method adopted for the Cigar Lake Mine Convolutional 

Neural Network (CNN), where one Ground Management Plan (GMP) image comprised of 4 channels is used as the 

training image for the subsequent GMP. The CNN is iteratively trained with one input channel omitted, and the resulting 

CNN performances are compared to discern whether any of the input candidates are not strictly required to obtain good 

model performance. 

5.5.3 Partial Correlation (PC) 

The PC method is an IVS method that it does not depend on a pre-existing model, hence “model-free”. This 

method iteratively selects inputs using a feed-forward algorithm in which the partial correlation between 

candidate inputs and the target are calculated. Subsequently a Correlation Ranking is produced by placing 

the candidate inputs in the order of highest correlation to lowest correlation, where the absolute value of 

the correlation is used for ranking to prevent strong negative correlations for being ranked the lowest. The 

inputs are then iteratively added to the pool of inputs used in training the model according to their respective 

Correlation Ranking (Figure 5-6). This selection process is repeated until the performance criterion does 

not improve, the desired number of inputs is reached, or there are no more candidate inputs (He et al., 

2011). This method is not as sophisticated as methods that employ non-linear algorithms, however it is 

advantageous due to its low computational expense and reasonable accuracy (Snieder et al., 2019). This 

method is suitable for large candidate input sets, especially where little to no expert knowledge of the 

system exists. Currently, no formulation of the partial correlation exists for CNNs in the literature, and 

therefore it was developed for this study.  
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Similar to the IO method presented, the PC method developed in this study is novel in its application to 

CNNs. This is because each channel of all the available input GMPs is treated as a separate input for the 

initial partial correlation calculation, and the channels are added into the CNN regardless of which GMP 

image they originally belonged to. In other words, if the Correlation Ranking interweaves channels from 

different GMPs, they are added in that order without including the other channels from the same GMP at 

the same time. Like with the IO method, this is not generally desired in typical image segmentation 

algorithms. 

 

Figure 5-6. Conceptual schematic of the Partial Correlation (PC) method adopted for the Cigar Lake Mine Convolutional 

Neural Network (CNN), where one Ground Management Plan (GMP) image is used as the training image for the 

subsequent GMP. First, the candidate inputs are ranked based on their PC with the output (ρ) in the Correlation 

Ranking. Then the CNN is trained starting with the candidate input with the highest Correlation Ranking, iteratively 

adding the next input until all candidates have been added.   

5.6 Results and Discussion 

The three IVS methods described above were applied to two Cigar Lake Mine CNN architectures: the 

Global Balanced model, and the Targeted Class 2/3 model. All ten permutations of training/testing data 

splitting were analyzed for each IVS method. The results of each analysis are discussed in this section. All 

AICc values computed are presented in Table 5-4, Table 5-5, and Table 5-6 in the Appendix for the CAS, 

IO, and PC methods, respectively. 

5.6.1 Channel Activation Strength (CAS) 

The results of the CAS approach are shown in Figure 5-7. Each box in the figure represents an ensemble 

of models, and the whiskers represent the 25th and 75th percentiles for each ensemble. A total of 300 model 

runs were included in the CAS analysis. The left column of subplots (Figure 5-7a, c, e, g) shows AICc 

boxplots for each GMP that is predicted, i.e., Figure 5-7b shows Targeted Class 2/3 and Balanced Global 

model performance when GMP 3 is being predicted, where the boxplots represent the aggregate of the 
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models trained using only GMP 2 and GMPs 1-2. This performance represents the base line or control 

group of this IVS study, because for the CAS approach all the candidate inputs are included. The right 

column of subplots (Figure 5-7b, d, f, h) shows the activation strengths of the model inputs as a percentage 

of the total models predicting a particular GMP, aggregated across all combinations of training data, i.e., 

Figure 5-7d shows the Targeted Class 2/3 and Balanced Global input activation strengths for all models 

where GMP 3 is being predicted.  

The left column of subplots showing the performance of the models in terms of AICc indicate that for all 

GMPs being predicted, the addition of more data results in a better performance in the form of a lower AICc. 

For example, Figure 5-7g shows that the AICc decreases when predicting GMP 5 using GMP 4 (AICc = -

579 and -2001 for the Targeted Class 2/3 and Global Balanced models, respectively) versus predicting 

GMP 5 using GMPs 1 through 4 (AICc = -16278 and -26361 for the Targeted Class 2/3 and Global Balanced 

models, respectively). This confirms the intuitive notion that more information on the rock mass deformation 

with time will increase the model’s ability to predict its behaviour forward in time. These plots also show that 

overall prediction ability increases with each subsequent GMP, i.e., where GMP 2 is being predicted in 

Figure 5-7a the AICc is higher (AICc = -403 and -3025 for the Targeted Class 2/3 and Global Balanced 

models, respectively) than Figure 5-7g where GMP 5 is being predicted (AICc = -579 to -16278 for the 

Targeted Class 2/3 and -2001 to -26361 for the Global Balanced models). Generally, the Targeted Class 

2/3 models have poorer performance than the Global Balanced model for the same training/testing data 

split, e.g., Figure 5-7c where AICc = -442 and -4200 for the Targeted Class 2/3 and -3153 and -11727 for 

the Global Balanced models. This is expected as the Targeted Class 2/3 model was designed to have high 

accuracy in the higher tunnel yield classes while the Global Balanced model is trained to have good 

performance across all yield classes. The mean AICc values for all ensembles computed for the CAS 

approach are reported in Table 5-4 in the Appendix. 

The right column of subplots in Figure 5-7 show the activations of each input and indicate that the primary 

support class (SUPCL) is the dominant input for this dataset, regardless of which GMP is being predicted 

or which of the two model architectures is being evaluated. The radial tunnel displacement (DISP) input 

shows approximately 5% higher strength on average in the Targeted Class 2/3 models because these 

models emphasize YIELD Class 2 and 3 during training, which are more strongly correlated with DISP 

(Morgenroth et al., 2021). In general, this analysis shows that geology class (GEO) is never the strongest 

signal used by the CNN to predict tunnel liner yield (YIELD). This may seem counter intuitive, since in the 

rock mechanics community it is known that geology plays a crucial role in rock mass deformation, but in 

ML parlance this indicates that there is another input that is conveying the same information to the network 

or has a stronger correlation than GEO, i.e., there may be redundancy amongst the inputs. In this case it is 

likely that the SUPCL input is also providing this signal, as the primary installed support is installed based 

on the observed geology during tunnel excavation.  
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Figure 5-7. Results of the Channel Activation Strength (CAS) Input Variable Selection (IVS) approach for Cigar Lake 

Mine. The left column of plots shows the 30 model ensemble performance, AICc, for the Targeted Class 2/3 and 

Balanced Global models, for each permutation of training and testing Ground Management Plans (GMPs). The right 

column of plots shows the activations for each of the four inputs, for each GMP being predicted where the number of 

models in the ensemble is indicated at the bottom of the subplot. 

Based on the CAS results, the Activation Ranking of the CNN inputs is SUPCL, DISP, FREEZE, GEO 

(Table 5-1). This ranking indicates which input signal is relied on most by the CNN to make a prediction of 

YIELD once it has been trained. It is important to note that the first three inputs are extremely close in terms 

of activation value (within 20%), while GEO is much less dominant with respect to the activation strength. 

The remaining IVS methods, namely IO and PC, can be used to determine whether this difference is 

attributed to input redundancy (i.e., redundant signals between inputs) or to GEO not being used at all 

during CNN training (i.e., it can be removed from the input pool altogether). 
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Table 5-1. Activation Rankings for both the Targeted Class 2/3 and Global Balanced models, produced by the Channel 

Activation Strengths (CAS) method. 

 

The first IVS method investigated was the CAS approach, which was the simplest to implement with 300 

models run. This approach extracted the channel activations from the trained CNN to determine which 

inputs had the most influence on the output. This approach was not intended to determine which input 

should be removed, but rather produced an Activation Ranking to determine which inputs are used most, 

and are therefore the most dominant, in the Cigar Lake Mine CNN. The Activation Ranking was similar for 

both the Targeted Class 2/3 models and the Global Balanced models: SUPCL, DISP, FREEZE, GEO. The 

results indicated that GEO was by far the least important input in the CNN, followed by FREEZE, and then 

DISP and SUPCL which were separated by small margins. This indicates that the latter three inputs all had 

unique information with minimal redundancy between them, information which the CNN needed in order to 

have good performance. In comparison, GEO shared redundancy with some or all of the other three 

parameters, and therefore its activation strength was not as high. Since the primary installed support class 

was determined based on the geotechnical zone observed in the tunnel, it is intuitive that these two inputs 

had redundancy in terms of the signals they convey to the CNN. In practical terms, these findings indicate 

the ground freezing regime implemented and primary installed support class are strong determinants of 

tunnel liner yield, which is observed in the radial tunnel displacement over time. 

5.6.2 Input Omission (IO) 

The results of the IO approach are shown in Figure 5-8. Each column of subplots represents a different 

GMP being predicted, with an increasing amount of training data in each row, i.e., Figure 5-8b in the second 

column shows GMP 3 being predicted using GMP 2, while Figure 5-8e shows GMP 3 being predicted using 

GMPs 1 and 2. Within each subplot, the results for both the Targeted Class 2/3 model and the Global 

Balanced model are shown. Four boxplots are shown, where each represents an input that is being omitted 

Train Test GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP

GMP 1 GMP 2 4 3 1 2

GMP 2 GMP 3 4 3 1 2

GMP 3 GMP 4 4 3 1 2

GMP 4 GMP 5 4 3 2 1

GMP 1&2 GMP 3 4 3 1 2 4 3 1 2

GMP 2&3 GMP 4 4 3 1 2 4 3 1 2

GMP 3&4 GMP 5 4 3 1 2 4 3 1 2

GMP 1-3 GMP 4 4 2 1 3 4 2 1 3 4 2 1 3

GMP 2-4 GMP 5 4 3 1 2 4 3 1 2 4 3 1 2

GMP 1-4 GMP 5 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2

GMP 1 GMP 2 4 3 2 1

GMP 2 GMP 3 4 3 1 1

GMP 3 GMP 4 4 3 1 1

GMP 4 GMP 5 4 2 3 1

GMP 1&2 GMP 3 4 3 1 2 4 3 1 2

GMP 2&3 GMP 4 4 3 1 2 4 3 1 2

GMP 3&4 GMP 5 4 3 1 1 4 3 1 1

GMP 1-3 GMP 4 4 2 1 3 4 2 1 3 4 2 1 3

GMP 2-4 GMP 5 4 3 1 2 4 3 1 2 4 3 1 2

GMP 1-4 GMP 5 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2
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– radial tunnel displacement (DISP), ground freezing (FREEZE), geology class (GEO), and primary support 

class (SUPCL). For example, in Figure 5-8a, the fifth boxplot from the left shows the results for omitting 

DISP from the Global Balanced model when GMP 2 is being predicted using GMP 1. Each box in the figures 

represents an ensemble of 30 models, and the whiskers represent the 25th and 75th percentiles for each 

ensemble. A total of 2,400 model runs are included in the IO analysis. 

When examining the results, it is important to remember that the training goals between the Targeted Class 

2/3 models and the Global Balanced models are different – the former has emphasis on only the two higher 

tunnel yield classes during training due to the sigmoid error weighting scheme, while the latter is fitting a 

solution to all four yield classes using an inverse frequency error weighting scheme. The IO results indicate 

that the performance of Targeted Class 2/3 models is generally unaffected by the IO approach, as 

evidenced by the insignificant change to the AICc when subsequent inputs were removed. This confirms 

the strong correlation between all inputs and higher tunnel yield Class 2 and 3, which are given preferential 

treatment during the training of the Targeted models using the sigmoid error weighting scheme. The notable 

exceptions are Figure 5-8d, g, and j, where the variance when GEO is omitted is higher than when other 

inputs are omitted, although the mean performance when GEO is omitted is comparable to omitting the 

other inputs. The performance of the Global Balanced models is much more sensitive to the IO approach. 

For the Global Balanced models, when GEO is omitted, the models perform worst and have the largest 

variance as compared to omitting the other inputs, indicating that GEO contains information that is required 

for overall performance and precision. An example of this is Figure 5-8i, where AICc = 19.2 when GEO is 

omitted, and AICc = 19.0, 18.9, and 19.1 when FREEZE, SUPCL, and DISP are omitted, respectively. With 

a few exceptions (Figure 5-8e, h, j), removing DISP generally has the lowest impact on the performance, 

likely because this input is not as strongly correlated to all tunnel yield classes. The mean AICc values for 

all ensembles computed for the IO approach are reported in Table 5-5 in the Appendix. 
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Figure 5-8. Results of the Input Omission (IO) Input Variable Selection (IVS) approach for Cigar Lake Mine. The model 

performance, AICc, is shown for the Targeted Class 2/3 and Balanced Global models for each permutation of training 

and testing Ground Management Plans (GMPs). Each boxplot represents an ensemble of 30 models, and the 

performance of the model with all inputs is shown a the top of the plots for reference. 

Based on only the IO results, the Omission Ranking of the CNN inputs was GEO, DISP, FREEZE, SUPCL 

for the Targeted Class 2/3 model, and GEO, DISP, SUPCL, FREEZE for the Global Balanced Model (Table 

5-2). This ranking indicates which inputs have the most negative impact on the overall CNN performance 

when they are removed entirely. Note that this ranking differs from the ranking produced by the CAS 
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approach indicating that none of the candidate inputs can be removed entirely, as the CNN learns the inter-

dependencies between them during training in order to arrive at a YIELD prediction. This further implies 

that each of the four inputs is providing unique information to the CNN and therefore cannot be removed 

without decreasing overall performance. The difference in Omission Ranking between the two model 

architectures also indicates that SUPCL contains slightly less important data than FREEZE when choosing 

the Targeted Class 2/3 model to focus on areas of high tunnel liner yield. 

Table 5-2. Omission Rankings for both the Targeted Class 2/3 and Global Balanced models, produced by the Input 

Omission (IO). 

 

The IO approach was the only IVS method investigated herein that iteratively omitted each individual input 

to determine its impact on performance, with a total of 2,400 models run. The goal was to determine whether 

the CNN was unaffected by the absence of one of the inputs, in which case that input could be removed 

from the input candidate pool. This IVS approach also produced an Omission Ranking, which revealed the 

relative importance of each input’s presence in the training dataset for overall model performance. The 

Omission Ranking can assist in determining whether any of the data being collected is redundant or 

unnecessary, thus streamlining the data acquisition process and potentially resulting in cost savings. The 

Omission Ranking for the Targeted Class 2/3 model is GEO, DISP, FREEZE, SUPCL. The IO study had 

less impact on the performance of the Targeted Class 2/3 models as compared to the Global Balanced 

models, likely because they were less sensitive due to being trained to emphasize performance of Class 2 

and 3 tunnel liner yield only and there being a higher correlation between those classes and the inputs 

(Morgenroth et al., 2021). For the Global Balanced models, the Omission Ranking was GEO, DISP, SUPCL, 

FREEZE. This ranking showed that omitting GEO had the highest negative impact on the model 

performance (i.e., the highest AICc), indicating that while it may have the lowest activation strength in the 

Train Test GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP

GMP 1 GMP 2 1 4 1 3

GMP 2 GMP 3 1 3 4 2

GMP 3 GMP 4 1 3 4 2

GMP 4 GMP 5 1 2 4 3

GMP 1&2 GMP 3 1 3 4 2 1 3 4 2

GMP 2&3 GMP 4 1 2 4 3 1 2 4 3

GMP 3&4 GMP 5 1 3 4 2 1 3 4 2

GMP 1-3 GMP 4 1 3 4 2 1 3 4 2 1 3 4 2

GMP 2-4 GMP 5 1 2 4 3 1 2 4 3 1 2 4 3

GMP 1-4 GMP 5 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2

GMP 1 GMP 2 1 3 2 4

GMP 2 GMP 3 1 3 2 4

GMP 3 GMP 4 1 3 2 4

GMP 4 GMP 5 1 3 2 4

GMP 1&2 GMP 3 1 4 3 2 1 4 3 2

GMP 2&3 GMP 4 1 3 2 4 1 3 2 4

GMP 3&4 GMP 5 1 4 3 2 1 4 3 2

GMP 1-3 GMP 4 1 4 3 2 1 4 3 2 1 4 3 2

GMP 2-4 GMP 5 1 4 3 2 1 4 3 2 1 4 3 2

GMP 1-4 GMP 5 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2

IVS Method & Data Split

Targeted Class 2/3 Model

Global Balanced Model
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CNN (as found by the CAS approach), it cannot be removed as it contains crucial information the CNN 

requires to make an accurate prediction of tunnel liner yield. This highlights the need for more than one IVS 

method to determine the saliency of all the candidate inputs. The second input in the Omission Rankings 

for both CNN architectures was DISP, which is the finest resolution time-dependent input. DISP is the only 

input that measures the tunnel liner deformation directly and has a relatively low level of subjectivity 

associated with it. The IO approach revealed that of the four inputs used to develop the Cigar Lake Mine 

CNN, none of them could be omitted entirely to achieve better performance. This gives rise to 

considerations for future work in refining the Cigar Lake Mine CNN – perhaps more inputs should be 

digitized from the GMPs, and/or the time intervals between radial tunnel displacement measurements 

should be increased, to further improve performance. 

5.6.3 Partial Correlation (PC) 

In contrast to the CAS and IO methods, the Correlation Ranking of the inputs is calculated prior to running 

the CNN and therefore the Correlation Ranking is the same for both the Targeted Class 2/3 and Global 

Balanced models. Absolute values were used to determine the Correlation Ranking to prevent strongly 

negative correlated inputs from being selected last. The detailed rankings for each of the ten training/testing 

data split permutations are presented in Table 5-3. In general, the first ranked input was from the most 

recent GMP available for training, e.g., if GMP 3 was being predicted, the first input selected was from GMP 

2 rather than GMP 1. This finding emphasizes the importance of the temporal aspect of the mechanisms 

driving liner yield. Where there was only one training GMP, DISP always had the highest Correlation 

Ranking. 

The results of the PC approach are shown in Figure 5-9 for the Targeted Class 2/3 models and Figure 5-10 

for the Global Balanced models, with more detailed results figures in the Appendix (Figure 5-11 and Figure 

5-12). Each subplot in Figure 5-9 and Figure 5-10 represents one permutation of training and testing data, 

with the performance in terms of AICc on the y-axis and the successively added candidate inputs (in 

descending order of absolute partial correlation) on the x-axis. Each point in the figures represents the 

mean of an ensemble of 30 models, and the whiskers represent the 25th and 75th percentiles for each 

ensemble. A total of 48,000 model runs are included in the PC analysis. For example, when reading Figure 

5-9a, where the Targeted Class 2/3 model is trained on GMP1 to predict GMP 2, the inputs are added in 

the order DISP, FREEZE, SUPCL, GEO, and the lowest AICc is reached after SUPCL is added to the 

candidate input pool. When reading Figure 5-10e, the Global Balanced model is used to predict GMP 3, 

which is trained on GMPs 1 and 2, and where the inputs are added in the order GMP 2 FREEZE, GMP 2 

GEO, GMP 1 FREEZE, GMP 1 SUPCL, GMP 2 DISP, GMP 2 SUPCL, GMP 1 DISP, GMP 1 GEO. In this 

example the lowest AICc occurs when the first five candidates have been added, shown in red. After GMP 

2 DISP has been added, the performance decreases. The mean AICc values for all ensembles computed 

for the PC approach are reported in Table 5-6 in the Appendix. 
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The order of the candidate inputs on the x-axis of each subplot in Figure 5-9 and Figure 5-10 was 

determined by the Correlation Ranking. Where there was only one training GMP (Figure 5-9a, b, c, d), DISP 

and FREEZE were selected first as they were the highest correlated inputs with tunnel liner yield. Where 

there were two training GMPs (Figure 5-9e, f, g), FREEZE and GEO for the GMP immediately preceding 

the GMP that was being predicted were selected first. Where there were three training GMPs (Figure 5-9h, 

i), SUPCL for the preceding GMP and FREEZE from two GMPs prior were selected first. Finally, Figure 

5-9j where four GMPs are used for training, the GEO input from the previous two GMPs are selected first. 

However, since this was a static input (i.e., GEO is identical across all GMPs), the performance did not 

change significantly when the second GEO was added. As was established by the above, there was no 

general pattern for the order in which the candidate inputs were added across all permutations of training 

and testing GMPs, beyond the general rule that the inputs from the GMPs immediately preceding the GMP 

being predicted are selected first.  

As with the IO approach, the PC approach has minimal impact on the Targeted Class 2/3 models, similarly 

because the CNN is solving for a solution (or global minimum) that only emphasizes two of the four tunnel 

liner yield classes. As such, the algorithm is generally less complex and nuanced relationships between all 

four inputs and the output do not need to be extracted to achieve a good performance. This is illustrated by 

the low variance in AICc when successive inputs are added to the inputs for the same training/testing data 

split, e.g., Figure 5-9e where AICc remains approximately -4.2e3 for every new candidate input that is added 

to the input pool.  Generally, the Targeted Class 2/3 models require less inputs than the Global Balanced 

models, needing only the four candidate inputs with the highest partial correlation to achieve the minimum 

AICc performance for a given training/testing data split. 

In contrast, the PC approach produces very interesting results for the Global Balanced models. In particular, 

when one GMP is used for training (Figure 5-10a, b, c, d), only the training GMPs DISP input is needed to 

produce the minimum AICc (AICc = -3e3, -3e3, -3e3, -2e3 when predicting GMPs 2, 3, 4 and 5, respectively). 

However, these models have a performance that is an order of magnitude lower than the models that are 

more data rich, specifically the minimum AICc is approximately -8e3 with two training GMPs (Figure 5-10e, 

f, g), approximately -1.5e4 with three training GMPs (Figure 5-10h, i), and approximately -2.2e4 with four 

training GMPs (Figure 5-10j). In the more data rich models (Figure 5-10e to j), the optimal number of 

candidate inputs increases to the number of training GMPs minus one image, where each image is equal 

to four inputs plus one input. For example, in Figure 5-10h where three GMPs are used for training (twelve 

possible inputs in the candidate pool), the first nine candidates (eight inputs, equal to two images, plus one 

additional input) produce the minimum AICc of -2.2e4. Similarly, the minimum AICc of -2.6e4 in Figure 5-10j 

is produced when twelve inputs, equal to three images, plus one input, for a total of thirteen candidate 

inputs, are used for training. This pattern is represented by a zig-zag trend in each subplot, where each 

subsequent input worsens the AICc and increases the model variance, which indicates the model is 

receiving redundant or confusing signals from the combinations of inputs. Then the fifth, ninth, or thirteenth 
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input causes a large increase in model performance. This finding is related to the architecture of the CNN, 

where the convolution filter convolves through one image (or four inputs) at one time. It is also noteworthy 

that the input that produces the minimum AICc in all cases is the most recent DISP, which aligns with the 

rock mechanics context in the sense that the most recent deformation is the most important predictor of the 

tunnel liner yield, of the available candidate inputs. 

 

Figure 5-9. Results of Partial Correlation (PC) Input Variable Selection (IVS) approach for Cigar Lake Mine Targeted 

Class 2/3 models. Each plot shows the mean performance across an ensemble of 30 models of the Convolutional 

Neural Network, with the whiskers representing the 25th and 75th percentiles, as each successive input is added, 
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where the order is determined by the partial correlation of the candidate inputs and the target. The minimum AICc for 

each permutation is highlighted in red. 

 

Figure 5-10. Results of Partial Correlation (PC) Input Variable Selection (IVS) approach for Cigar Lake Mine Global 

Balanced models. Each plot shows the mean performance across an ensemble of 30 models of the Convolutional 

Neural Network, with the whiskers representing the 25th and 75th percentiles, as each successive input is added, 

where the order is determined by the partial correlation of the candidate inputs and the target. The minimum AICc for 

each permutation is highlighted in red. 

The PC approach was the most computationally expensive IVS approach investigated in this study, 

requiring 48,000 CNN models run. Despite the time and computational expense, this IVS approach revealed 

useful information with respect to optimizing the Cigar Lake Mine CNN and developing it further. The order 

in which the candidate inputs are selected for input into the CNN was based on the Correlation Ranking, 

which was determined by the partial correlation of each input with the tunnel liner yield (Table 5-3). The 

Correlation Ranking varied depending on the training/testing data split, however an input from the most 

recent training GMP always had the highest ranking. Where there was only one training GMP, the DISP 

input was selected first and also produced the best model results as compared to adding the subsequent 

inputs. This indicates that when there is limited data in the temporal realm, DISP is the best available 

predictand. However, it is worth noting that models with more training GMPs, i.e., more data in the temporal 

realm, resulted in an order of magnitude better performance. Where there is more than one GMP used for 
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training, the categorical inputs (GEO, SUPCL, FREEZE) were chosen first across all training and testing 

data permutations, as they had higher partial correlations as compared to the numerical input (DISP).  

Table 5-3. Correlation Rankings produced by the Partial Correlation (PC) method. Note that ranking is identical for both 

the Targeted Class 2/3 and Global Balanced models as it is based on the partial correlation calculated and is 

independent of model performance. 

 

Similar to the IO approach, PC had little impact on the Targeted Class 2/3 models, likely for comparable 

reasons stemming from how the model was trained to minimize error between less tunnel yield class, and 

therefore was less complex and sensitive. However, for the Global Balanced models, the PC approach 

revealed some interesting patterns with respect to how the CNN performance responded to using only a 

subset of the candidate inputs, specifically the most highly correlated ones. As a general rule, where there 

was only one GMP to train from, the minimum AICc was obtained when only the DISP from the previous 

GMP is used. If more than one GMP was available for training, the minimum AICc was obtained when the 

number of candidate inputs is equal to the number of training GMPs minus one, plus one channel, e.g., if 

there were three available training GMPs (3 GMPs x 4 channels = 12 available inputs), the minimum AICc 

was achieved with two GMPs (2 x 4 = 8 inputs) plus 1 channel, for a total of 9 inputs. In all training/testing 

data splits explored herein, this occurred when the most recent DISP was added to the candidate input 

pool. For example, when training on GMPs 1, 2 and 3 and predicting GMP 4, the optimal number of inputs 

is nine where the ninth input was DISP from GMP 3. It is difficult to discern exactly why this pattern is 

pervasive, although it likely has to do with the fact that the original input images have four channels each, 

and therefore the convolution filter has a depth of four. From a rock mass deformation mechanics 

perspective, it is also intuitive that the most recent DISP should be included in the model to obtain the 

minimum AICc. Perhaps the most important finding of the PC approach, however, is that fact that no matter 

how many training GMPs are used, it is not possible to drop out the older ones completely, as some of the 

inputs from those older GMPs always fall within the set of candidate inputs necessary to produce the 

minimum AICc. In practical terms, this indicates that when training CNNs for prediction of behaviour of 

underground excavations, as much historical data as possible should be used to train the algorithm, and 

only after an IVS investigation should the decision be made whether to drop any training data.  

Train Test GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP GEO FREEZE SUPCL DISP

GMP 1 GMP 2 4 2 3 1

GMP 2 GMP 3 4 2 3 1

GMP 3 GMP 4 3 2 4 1

GMP 4 GMP 5 4 2 3 1

GMP 1&2 GMP 3 8 3 4 7 2 1 6 5

GMP 2&3 GMP 4 4 7 3 8 2 1 6 5

GMP 3&4 GMP 5 8 3 4 7 2 1 6 5

GMP 1-3 GMP 4 8 7 4 11 12 2 3 6 10 5 1 9

GMP 2-4 GMP 5 4 8 12 3 7 2 11 6 10 5 1 9

GMP 1-4 GMP 5 8 16 4 12 7 15 11 3 2 10 6 14 1 9 5 13

IVS Method & Data Split
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5.6.4 General Discussion 

This study investigated three IVS methods to determine the relative significance of the four inputs in 

determining tunnel liner yield using the Cigar Lake Mine CNN, and specifically how the inputs differ between 

the Targeted Class 2/3 models and the Global Balanced models. Each of the three IVS methods give a 

different perspective on the inputs and how they are used to make the tunnel yield class prediction, thereby 

increasing the interpretability of the CNN. Interpretability is defined as an understanding of how the model 

makes decisions based on its inputs and the learned components such as hyperparameters and 

architecture (Molnar, 2022).   

In comparing the three IVS methods, some patterns emerged that were consistent across all three methods 

and aligned with common knowledge in rock engineering. Of the available candidate inputs, none could be 

removed entirely. The Activation Rankings indicated that GEO had redundancy with the other inputs, which 

is logical considering SUPCL is determined based on the geotechnical zones. The Omission Rankings 

indicated that while there is redundancy, GEO has unique information that must be included for accurate 

model performance. This also appeals to the rock engineering experience that geology most often governs 

rock mass deformation. The Correlation Rankings showed that the most recent GMP had that highest 

correlation with the GMP being predicted, and that the most recent DISP input yielded that best overall 

model performance. This aligns with the reasoning that the most recent data on the rock mass deformation 

trajectory must be used to train the CNN to achieve good performance. All three IVS methods found that 

the more data that was used for training the CNN in the temporal realm, the more accurate the predictions 

became. 

While the rankings produced by the model-based methods (CAS, IO) and the model-free method (PC) 

cannot be compared directly due to the inherent differences in how they are calculated, the results of this 

IVS study illustrate the need for multiple IVS methods before deciding to remove or add inputs to a CNN 

model. For example, an argument could have been made to remove GEO based on only the CAS results 

and Activation Rankings. However, IO and the Omission Rankings showed that GEO appears to be the 

common thread between the other three inputs, despite having a low activation strength on its own. PC and 

the Correlation Rankings revealed further complementary information about the importance of the temporal 

nature of the inputs and having recent GMPs to obtain higher prediction accuracy, as compared to IO which 

looked only at removing an input in its entirety.  

An important point of discussion when considering all three IVS methods is that they collectively indicate 

the need for continuously adding the most recent data in agreeance with the idea that the updating of data-

driven algorithms as new data becomes available is crucial (Elmo et al., 2020). In this research, the addition 

of new data is simulated by adding each subsequent GMP and predicting the next one. This essentially 

retrains the CNN in order to make the best possible use of any new signals that may be contained in the 

most recent data. The retraining and new learning is paramount in developing algorithms for rock 

engineering, as rock deformation mechanics cannot be adequately defined by a static snapshot in time. In 
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fact, this study finds that the more information the algorithm has on the trajectory of the historical 

deformation, the more accurate the predictions become. This is illustrated in the CAS method (Figure 5-7, 

bottom left subplot), the IO method (Figure 5-8d, g, i, j), and the PC method (Figure 5-10d, g, i, j), where 

consecutively increasing performances for predicting GMP 5 as another preceding GMP is added into the 

training dataset. This is a powerful conclusion, as conventional numerical modelling methods do not lend 

themselves to exploring every time step along the deformation path in detail, while CNNs are able to 

compute large volumes of data efficiently. The implications of this are that no data needs to be thrown out 

due to the time constraints associated with processing it, and that a more complete understanding of 

nuanced rock mass deformation mechanics can be gleaned from the available data. Thus, uncertainty 

between subsequent stages of engineering design may have less bias injected and reduced uncertainty 

associated with them. 

An important aim of completing an IVS analysis of a given algorithm is to increase its interpretability, which 

broadly falls into two categories: model transparency and post-hoc explanations (Lipton, 2016). Previous 

work to complete hyperparameter tuning of the Cigar Lake Mine CNN falls into the former category, where 

“transparency” indicates an understanding of how the model works. In the previous research, parameters 

such as the convolution filter size, application of an error weighting scheme to rebalance the training data, 

and the amount of required training data were analyzed to this end (Morgenroth et al., 2021). In the current 

research, the CAS method also falls under algorithm transparency as it is concerned with extracting 

information on how the trained algorithm uses each available input (GEO, SUPCL, FREEZE, DISP) without 

altering the algorithm architecture. Post-hoc explanations do not generally indicate how the model works, 

but nonetheless offer useful interpretations for the end user of the algorithm. Common post-hoc 

interpretation methods include visual representations of learned features, and explanations by example. 

The IO and PC methods applied herein are post-hoc explanations, as the aim is to uncover how the inputs 

influence each other within the CNN by running additional models with modifications.  The “explanation by 

example” in this case is the explanation of the influence removing certain inputs has, or rearranging the 

order in which they are added to the algorithm. 

The Cigar Lake Mine CNN required customized IVS methods to be developed to interpret its results and 

performance due to the format of the input data. The original digitization scheme to convert the GMP data 

into images was chosen to mimic the format of the original tunnel mapping done by ground control 

engineers at Cigar Lake Mine (Morgenroth et al., 2021). The choice was made not to deconstruct the GMP 

format as not to introduce interpolation into the training dataset. Thus, the IO and PC IVS approaches were 

developed from their conventional application to ANNs for the Cigar Lake Mine CNN. This allows for a more 

intuitive understanding of how the CNN processes the tunnel mapping in its original form, without 

interpolated or augmented data. For example, omitting the DISP channel in the proposed IO method 

simulates a case where the tunnel convergence has not yet been surveyed and the mine’s ground control 

want to use the CNN to obtain an indication of liner performance. The findings from the IO and PC 
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approaches are transferable to other mine and tunnel projects, where the ground control or geotechnical 

engineers do not have all the data available to them that was used to train the CNN, or want to gain an 

understanding of whether all the data that is being collected is required to obtain a useful prediction from 

the CNN. In combination, CAS, IO, and PC enhance CNN interpretability by increasing model transparency 

and providing post-hoc explanations (Lipton, 2016). 

5.7 Conclusions 

Recent research at the intersection of rock mechanics and ML have provoked a sense of “accuracy and 

infallibility” when it comes to applying deep learning to rock engineering (Elmo et al., 2020), which may be 

attributed to the perception that MLAs are magic “black boxes” capable of predicting any phenomena given 

relevant inputs. However, it is important to continue to question and analyze the internal mechanics of these 

algorithms, including their architecture, hyperparameters and the underlying assumptions they are 

developed with. One way to probe the findings of ML is through applying an IVS approach to rank the 

candidate inputs, determine their usefulness to the algorithm, reduce redundancy within the model, and 

compare the aforementioned findings with the experience and knowledge of fundamental rock mechanics 

principles.  

This research compared three IVS methods for two CNN architectures developed to predict tunnel liner 

yield at the Cigar Lake Mine, the Targeted Class 2/3 model and the Global Balanced model. For both 

models the three IVS approaches employed were Channel Activation Strength, Input Omission, and Partial 

Correlation. The latter of these two are novel approaches that have been developed for CNNs dealing with 

unconventional spatial and temporal image channels. The three IVS methods were used to produce 

Activation Rankings, Omission Rankings, and Correlation Rankings, respectively. The rankings presented 

in this chapter are parts of a whole interpretation of the Cigar Lake Mine CNN, rather than each being a 

stand-alone analysis. 

All three IVS methods found that increasing data in the temporal realm increased the prediction accuracy 

of the models. The CAS approach and Activation Rankings found that the GEO input has the lowest 

activation strength across all models tested, while SUPCL has the highest. This suggests that GEO is used 

the least by the CNN as compare to the other three inputs, SUPCL, FREEZE, and DISP. CAS indicated 

that SUPCL has the high activation strength in the CNN. The IO approach was used to determine if any of 

the inputs could be omitted from the model entirely, however the results indicate that this is not the case 

for the Cigar Lake Mine CNN. The IO results and Omission Rankings for the Global Balanced models 

showed that removing GEO entirely caused the model performance to worsen as compared to the other 

inputs, indicating that GEO had some unique information that the other inputs were not able to convey to 

the CNN. Finally, the PC approach and Correlation Rankings were used to determine if the models could 

be optimized by using only the most highly correlated inputs to train the CNN. Where there was only one 

training GMP the DISP input was selected first, meanwhile where there was more than one GMP used for 

training the categorical inputs (GEO, SUPCL, FREEZE) were chosen first. The PC results for the Global 
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Balanced models showed that the minimum AICc was obtained when the number of candidate inputs was 

equal to the number of training GMPs minus one, plus one input channel. The minimum AICc was always 

obtained when the most recent DISP was added to the candidate pool. The PC results also indicated that 

no matter how many training GMPs were used, it was not possible to drop out the older ones completely. 

An important contribution of this study from all three IVS approaches was that none of the inputs could be 

removed completely – i.e., all available data in the temporal realm had to be included to produce the best 

possible model performance, for both the Targeted Class 2/3 and the Global Balance model architectures. 

This finding was significant because it indicates that it is crucial to include all data in the initial development 

of a CNN for a rock engineering problem, and then only after completing an IVS study remove the inputs 

that are not contributing to good model performance. Since ML is efficient at processing large volumes of 

data, this is an advantage over conventional numerical modelling where exploring all temporal data is 

prohibitive.  

This research demonstrates that no single IVS method should be used to determine input saliency. Instead, 

it should become standard practice that multiple IVS methods are applied to increase algorithm 

interpretability. This work finds that CNNs are a useful approach for characterizing rock mass deformation 

when investigating thoroughly using IVS approaches and may be used to complete temporal data analysis 

ahead of or in addition to more conventional modelling and design efforts. 

Appendix 

Table 5-4. Summary of mean AICc for each ensemble of models computed for the Channel Activation Strength (CAS) 

IVS method. Colour scale applied to each column shows higher AICc (yellow) to lower AICc (green), where a lower 

AICc indicates higher performance. 

 

Data Split

Train Test Targeted Class 2/3 Model Global Balanced Model

GMP 1 GMP 2 -402.962 -3025.295

GMP 2 GMP 3 -442.238 -3153.048

GMP 3 GMP 4 -552.298 -2981.948

GMP 4 GMP 5 -579.346 -2001.418

GMP 1&2 GMP 3 -4200.894 -11727.397

GMP 2&3 GMP 4 -4352.077 -11787.607

GMP 3&4 GMP 5 -4487.933 -8837.556

GMP 1-3 GMP 4 -9633.779 -22408.528

GMP 2-4 GMP 5 -9768.008 -17323.756

GMP 1-4 GMP 5 -16278.276 -26360.995

CHANNEL ACTIVATION STRENGTH (CAS)

AICc
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Table 5-5. Summary of mean AICc for each ensemble of models computed for the Input Omission (IO) IVS method. 

Colour scale applied to each row for the two model types shows higher AICc (yellow) to lower AICc (green), where a 

lower AICc indicates higher performance. 

 

Table 5-6. Summary of mean AICc for each ensemble of models computed for the Partial Correlation (PC) IVS method. 

Note that the candidate inputs were added in the order indicated in . Colour scale applied to each row shows higher 

AICc (yellow) to lower AICc (green), where a lower AICc indicates higher performance. 

 

Omit GEO Omit FREEZE Omit SUPCL Omit DISP Omit GEO Omit FREEZE Omit SUPCL Omit DISP

Train Test

GMP 1 GMP 2 7.539 7.537 7.536 7.538 6.525 6.238 6.331 6.182

GMP 2 GMP 3 7.549 7.517 7.511 7.526 6.575 6.218 6.368 5.968

GMP 3 GMP 4 7.483 7.467 7.459 7.472 6.802 6.281 6.431 6.031

GMP 4 GMP 5 7.716 7.487 7.463 7.469 7.463 6.730 6.819 6.450

GMP 1&2 GMP 3 13.662 13.607 13.604 13.619 11.748 9.891 10.129 10.321

GMP 2&3 GMP 4 13.631 13.547 13.528 13.537 12.203 10.098 10.227 9.971

GMP 3&4 GMP 5 13.787 13.524 13.483 13.545 13.534 11.461 11.514 11.666

GMP 1-3 GMP 4 19.135 19.054 19.045 19.067 17.081 13.109 13.119 13.742

GMP 2-4 GMP 5 19.265 19.083 18.986 19.054 19.080 15.494 15.549 15.781

GMP 1-4 GMP 5 24.548 24.168 24.150 24.263 24.276 19.369 19.431 19.997

INPUT OMISSION (IO)

Data Split

Targeted Class 2/3 Model Global Balanced Model

Train Test

Add 

GEO

Add 

FREEZE

Add 

SUPCL

Add 

DISP

Add 

GEO

Add 

FREEZE

Add 

SUPCL

Add 

DISP

Add 

GEO

Add 

FREEZE

Add 

SUPCL

Add 

DISP

Add 

GEO

Add 

FREEZE

Add 

SUPCL

Add 

DISP

GMP 1 GMP 2 -4.037E+2 -4.037E+2 -4.035E+2 -4.030E+2

GMP 2 GMP 3 -4.810E+2 -4.800E+2 -4.794E+2 -4.422E+2

GMP 3 GMP 4 -4.066E+2 -5.820E+2 -5.817E+2 -5.523E+2

GMP 4 GMP 5 -6.079E+2 -5.668E+2 -4.565E+2 -5.793E+2

GMP 1&2 GMP 3 -4.374E+3 -4.199E+3 -4.199E+3 -4.198E+3 -4.197E+3 -4.196E+3 -4.201E+3 -4.201E+3

GMP 2&3 GMP 4 -4.597E+3 -4.472E+3 -4.412E+3 -4.402E+3 -4.401E+3 -4.402E+3 -4.379E+3 -4.352E+3

GMP 3&4 GMP 5 -4.314E+3 -4.656E+3 -4.715E+3 -4.638E+3 -4.646E+3 -4.466E+3 -4.602E+3 -4.488E+3

GMP 1-3 GMP 4 -9.943E+3 -9.982E+3 -9.843E+3 -1.001E+4 -9.618E+3 -9.621E+3 -9.632E+3 -9.633E+3 -9.628E+3 -9.642E+3 -9.644E+3 -9.634E+3

GMP 2-4 GMP 5 -1.032E+4 -9.452E+3 -1.008E+4 -1.015E+4 -1.016E+4 -1.007E+4 -1.008E+4 -1.004E+4 -9.873E+3 -1.001E+4 -9.923E+3 -9.768E+3

GMP 1-4 GMP 5 -1.686E+4 -1.725E+4 -1.651E+4 -1.663E+4 -1.665E+4 -1.665E+4 -1.655E+4 -1.655E+4 -1.663E+4 -1.659E+4 -1.659E+4 -1.630E+4 -1.657E+4 -1.654E+4 -1.656E+4 -1.628E+4

GMP 1 GMP 2 -1.289E+3 -1.030E+3 -2.491E+3 -3.037E+3

GMP 2 GMP 3 -1.275E+3 -1.284E+3 -2.817E+3 -3.043E+3

GMP 3 GMP 4 -1.048E+3 -1.591E+3 -2.852E+3 -2.955E+3

GMP 4 GMP 5 -1.159E+3 -1.206E+3 -1.786E+3 -1.998E+3

GMP 1&2 GMP 3 -5.046E+3 -5.851E+3 -6.217E+3 -6.217E+3 -1.009E+4 -1.026E+4 -1.090E+4 -1.190E+4

GMP 2&3 GMP 4 -7.034E+3 -7.320E+3 -7.464E+3 -6.406E+3 -1.005E+4 -1.023E+4 -1.096E+4 -1.174E+4

GMP 3&4 GMP 5 -3.318E+3 -5.652E+3 -6.520E+3 -5.786E+3 -7.776E+3 -7.679E+3 -8.299E+3 -8.818E+3

GMP 1-3 GMP 4 -1.202E+4 -1.436E+4 -1.484E+4 -1.505E+4 -1.401E+4 -1.310E+4 -1.812E+4 -1.890E+4 -1.889E+4 -1.984E+4 -2.123E+4 -2.228E+4

GMP 2-4 GMP 5 -1.210E+4 -9.419E+3 -1.157E+4 -1.282E+4 -1.314E+4 -1.210E+4 -1.520E+4 -1.523E+4 -1.504E+4 -1.567E+4 -1.636E+4 -1.721E+4

GMP 1-4 GMP 5 -1.928E+4 -2.040E+4 -1.974E+4 -1.921E+4 -2.029E+4 -2.052E+4 -1.999E+4 -1.989E+4 -2.337E+4 -2.373E+4 -2.374E+4 -2.342E+4 -2.348E+4 -2.476E+4 -2.528E+4 -2.604E+4

Targeted Class 2/3 Model

Global Balanced Model

PARTIAL CORRELATION (PC)

Data Split GMP 1 GMP 2 GMP 3 GMP 4
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Figure 5-11. Results of Partial Correlation (PC) Input Variable Selection (IVS) approach for Cigar Lake Mine Targeted 

Class 2/3 models. Each plot shows the boxplot of performance across an ensemble of 30 models of the Convolutional 
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Neural Network as each successive input is added, where the order is determined by the partial correlation of the 

candidate inputs and the target.  

 

Figure 5-12. Results of Partial Correlation (PC) Input Variable Selection (IVS) approach for Cigar Lake Mine Global 

Balanced models. Each plot shows the boxplot of performance across an ensemble of 30 models of the Convolutional 

Neural Network as each successive input is added, where the order is determined by the partial correlation of the 

candidate inputs and the target.  
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CHAPTER 6.   A NOVEL LONG-SHORT TERM MEMORY NETWORK 
APPROACH TO THE RECALIBRATION OF A FINITE 
DIFFERENCE MODEL FOR HIGH STRESS MINE 
EXCAVATIONS 

 

6.1 Preface  

This chapter focuses on the development of a Long-Short Term Memory (LSTM) network to assist in the 

calibration of a FLAC3D model, using the Garson Mine dataset as a case study. The training data consists 

of the microseismic database, geology, and geomechanical parameters from the FLAC3D model. Two 

LSTM networks are developed: (1) predicting principal stresses in the FLAC3D model, and (2) predicting 

the six-component stress tensors in the FLAC3D model. Hyperparameters optimized include input encoding 

and pre-processing methods, algorithm training solver, network layer architecture, and cost function. This 

research represents progress towards continuous, automated calibration of numerical models to allow for 

more accurate forecasts of changes in stress conditions.   

The content of this chapter was submitted to a Georisk special issue entitled Machine Learning and AI in 

Geotechnics to be published in 2023 as follows:  

Morgenroth, J., Kalenchuk, K., Moreau-Verlann, L., Perras, M. A., & Khan, U. T. (Under Review 2022). 

A novel Long-Short Term Memory network approach to the calibration of a finite difference model for high 

stress mine excavations. Georisk – Machine Learning and AI in Geotechnics. Submission ID NGRK-2022-

0079.  

The contributions of the authors in the current chapter are as follows:  

Josephine Morgenroth has conducted the literature review, developed the LSTM network using the 

required software, validated and visualized the results, and prepared and wrote the original manuscript of 

this publication. Matthew A. Perras has supervised the research, provided the funding, and contributed to 

writing and editing the manuscript. Usman T. Khan has supervised the research, provided the funding, and 

contributed to the writing and editing the manuscript. Kathy Kalenchuk and Lindsay Moreau-Verlaan 

have reviewed the manuscript’s technical content and provided feedback for improvement of the LSTM 

network for use in applied rock engineering. 

The authors would like to extend special thanks to our industry partners, Kathy Kalenchuk and Lindsay 

Moreau-Verlaan, for their constructive feedback and informative conversations. This work is funded in part 

by the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant 

program and the Postgraduate Scholarships – Doctoral program. 

6.2 Abstract 

Digitalization has increased access to large amounts of data for rock engineers. Machine learning presents 

an opportunity to aid data interpretation. The operators of Garson Mine use a microseismic database 
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calibrate a mine-scale finite difference model, which is used to assess seismic risk to inform mine 

operations. A Long-Short Term Memory (LSTM) network is proposed for numerical model recalibration. 

The model is trained using microseismic data, geology, and geomechanical parameters from the FLAC3D 

model. Two LSTM networks are developed for Garson Mine: (1) predicting far field principal stresses in the 

FLAC3D model, and (2) predicting the far field six-component stress tensors in the model. Various LSTM 

network hyperparameters were analyzed to determine the architecture for the targets: input encoding and 

pre-processing, training solver, network layer architecture, and cost function. Architectures were chosen 

based on the corrected Akaike Information Criterion (AICc), coefficient of determination (R2), and percent 

capture (%C). When predicting principal stresses, AICc = -59.62, R2 = 0.996, and %C = 97%, and when 

predicting the six-component stress tensor AICc = -45.50, R2 = 0.997, and %C = 80%. This research 

represents progress towards continuous, automated calibration of numerical models such that rapid, more 

accurate forecasts of changes in stress conditions will allow earlier reaction to challenging stress 

environments, increasing safety of excavations.    

6.3 Introduction 

Brittle rock mass deformations and their impact on underground excavations are difficult to monitor and 

predict using visual observations and conventional instrumentation. In the mining context, the ability to 

forecast brittle behaviour, including seismicity, is invaluable to planning mine operations, ore extraction 

sequencing, and budgeting. Seismic monitoring systems have gained popularity in the last two decades in 

mining operations to monitor seismogenic zones, or areas of active seismicity, to determine failure of the 

rock mass primarily through shearing and intact rock fracturing, and thus forecasting possible excavation 

instability (M. Hudyma et al., 2008).  

Each seismic event captured by microseismic monitoring systems contains data about the rock mass failure 

that caused the event. Spatial-temporal analyses of these events can be used to forecast trends in the rock 

mass failure processes, and project changes in the mine-scale stress regime. Undertaking conventional 

analysis techniques, such as frequency-magnitude, magnitude-time history, S wave to P wave energy ratio, 

and apparent stress time history, among others (Hudyma et al., 2008), can be prohibitive due to the large 

volume of data that must be parsed to extract the important trends. The rock engineering industry is now 

shifting its focus on finding new ways to interpret the vast amounts of “big data” being collected from 

digitalization techniques, such as microseismic monitoring systems. One solution is the application of 

machine learning algorithms (MLAs) to process the data quickly and efficiently to extract relationships.  

MLAs have emerged as a powerful technique for examining geomechanical data and extracting nuanced 

rock mass deformation phenomena (Elmo et al., 2020; Lawal & Kwon, 2020; Mcgaughey, 2019; Morgenroth 

et al., 2019; Morgenroth et al., 2021). In particular, MLAs have become the state of the art for microseismic 

signal processing and classifying rock burst events (Duan et al., 2021; Jiang et al., 2020; Pu et al., 2019). 

Some identified challenges in classification are the need for large amounts of labeled data, and the 

requirement to balance the “rock burst” and “non-rock burst” events in the training dataset (Pu et al., 2019). 
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MLA applications for stress magnitude prediction and microseismic data interpretation have gained 

momentum in academic literature only recently. Previous research developed regression MLAs has 

proposed a rock burst risk prediction MLA to estimate rock burst risk (Wojtecki et al., 2021); introduced an 

MLA to distinguish microseismic versus blasting events in seismic waveforms (Pu et al., 2020), and 

developing a capsule network embedded in a Convolutional Neural Network to predict in situ stress for a 

strain-softening model (W. Gao et al., 2020).   

Previous authors caution that data-driven approaches should not be met by a cognitive resistance to the 

introduction of new approaches that is all too common in rock engineering practice (Elmo & Stead, 2021). 

However, the application of MLAs without critical thought and due diligence carries the risk of creating an 

illusion of technological advancement (Yang et al., 2021). Thus, this chapter also presents a detailed 

explanation of the process used to develop the MLA presented and a description of how common pitfalls 

were avoided or mitigated. This chapter proposes an MLA to assist in the recalibration of a complex 

numerical model for Garson Mine, near Sudbury, Ontario, Canada. Garson Mine installed a seismic 

monitoring system in 1996, which outputs large datasets that must be examined to remove irregular data 

points, such as those with large-source location errors, after which the data can be used for daily operations. 

At Garson Mine, these data are also used to calibrate sophisticated numerical models in FLAC3D (ITASCA 

Consulting Group Inc., 2019a) to determine stope sequencing and the resulting stress redistributions, and 

therefore, inform the schedule and budget of the mining operation. However, the manual recalibration of 

the Garson Mine FLAC3D model is time consuming and computational expensive, and therefore, is not 

recalibrated as frequently as needed by the Garson Mine ground control engineers. This chapter 

investigates the use of an MLA that uses microseismic events to recalibrate a finite difference model by 

forecasting in-situ stress. Recalibrating the stress model using an MLA saves computational time and 

expense, so this can be done more frequently, and also allowing more time for engineering decision making 

rather than manual recalibration.  

Previous work by the authors successfully applied a type of Artificial Neural Network (ANN) called a 

Convolutional Neural Network to a mining case study with sparse data by strategically formatting the inputs, 

balancing the training dataset, and optimizing the hyperparameters to make useful predictions (Morgenroth 

et al., 2021). Lessons learned from this previous work were applied to the Garson Mine dataset, which 

required consideration with respect to data formatting to ensure the ANN was learning the relationships 

between the inputs and output efficiently. ANNs can identify relationships between input variables and the 

output using a framework that mimics the interconnected neurons in the brain, thus, being able to find 

relationships that can be used to reproduce the actual observed ground behaviour. However, common 

backpropagation ANNs cannot efficiently consider the relationships between the sequential events  of the 

time-series data, which is important for real-time analysis (Z. Liu et al., 2021). Therefore, the type of ANN 

selected to model the Garson Mine dataset was a Long-Short Term Memory (LSTM) architecture. LSTM 

networks were developed specifically to process time-series data, where strong correlations are 
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“remembered” and carried forward to forecast into the future (Mandic & Chambers, 2001). Previous studies 

relevant to the current research have been done to classify seismic records (Vallejos & McKinnon, 2013), 

to predict TBM operating parameters (X. Gao et al., 2019), to predict lithology in TBM construction (Z. Liu 

et al., 2021), and to perform unsupervised learning on TBM operational data (Erharter & Marcher, 2020). 

The Garson Mine LSTM network presented herein uses the microseismic database and geomechanical 

properties from a previously calibrated FLAC3D model to predict the stresses in the FLAC3D model, 

thereby assisting in the recalibration process, as shown in Figure 6-1. The LSTM network aims to assist 

with the FLAC3D model recalibration process by using all available seismic data to predict the stresses in 

the FLAC3D model. The microseismic database contains data from the microseismic array installed at the 

mine, including the location and timing of the microseismic events, as well as microseismic parameters 

such as moment magnitude, energy, and apparent stress. The geology and geomechanical parameters 

used to train the LSTM network were taken from work completed by a specialized geomechanics 

consultant, who also built and calibrated the FLAC3D model used in this research (Kalenchuk, 2018). The 

ability to forecast the stresses and automate the recalibration of the FLAC3D model will allow Garson Mine 

to run scenario analyses and update their excavation sequencing more frequently based on operations and 

ongoing seismicity. To the authors’ knowledge, this is the first known application of using an LSTM network 

to recalibrate a FLAC3D model.  

  

Figure 6-1. Workflow proposed in the present chapter, where the microseismic database and previously calibrated 

FLAC3D model are used to train an LSTM network to predict the changing stress state in the FLAC3D model. New 

microseismic events can then be passed to the trained LSTM network and predicted stresses are imported into the 

FLAC3D model, thereby recalibrating it. Future work is recommended to create dynamic interaction between the LSTM 

network and the FLAC3D model, automating the recalibration process.  

6.4 Background 

6.4.1 Long-Short Term Memory Networks 

Over the last decade, various MLAs have been applied to characterizing stress regimes indirectly, namely 

by classifying rockburst hazards: random forests (L. J. Dong et al., 2013), support vector machine (J. Zhou 
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et al., 2012), ANNs (Ribeiro e Sousa et al., 2017), and decision trees (Pu et al., 2018). One study compared 

the performance of ten frequently used MLAs for rock burst class prediction (Pu et al., 2020), and another 

found that time-series prediction of microseismic parameters was possible using an LSTM network (Zhang 

et al., 2021). The current research uses an LSTM network. 

LSTM networks are a type of ANN that contain recurrent feedback nodes. Unlike typical ANNs which 

contain basic feed-forward cells (Figure 6-2a), LSTM networks use the recurrent LSTM cells (Figure 6-2b) 

to process single data points as well as entire sequences of data. Input “remember” and “forget” gates 

operate based on the activation strength of the input being passed through them, shown as tanh or sigmoid 

functions in Figure 6-2b. Thus the recurrent LSTM nodes can forget part of previously stored memory and 

add partial new information that is useful (Mandic & Chambers, 2001). This is particularly powerful when 

using time-series data as inputs, since the LSTM network will remember the useful parts of the history of 

that input. LSTM networks have also been shown to process highly correlated datasets effectively (Z. Liu 

et al., 2021). In the context of geomechanical datasets, and microseismic data in particular, the LSTM 

network has the ability to preserve knowledge about minor seismic events, and therefore, the stress/strain 

history, that lead up to major seismic events. 

 

Figure 6-2. Schematic of (a) a basic feed-forward cell and (b) a Long-Short Term Memory (LSTM) cell. A basic cell 

applies a weight and a bias to the input and then fires it through an activation function. The recursive nature of the 

LSTM cell allows the algorithm to “remember” useful data for subsequent timesteps (t + 1) using information from the 

previous timestep (t – 1). 

6.4.2 Case Study 

6.4.2.1 Garson Mine 

Garson Mine is a copper-nickel mine located near the town of Garson, Ontario, on the southeast rim of the 

Sudbury Basin (Figure 6-3). The copper-nickel sulphide deposits are hosted in parallel shears, which are 

offset by later stage dyke intrusions. The footwall typically consists of the lower zone Norite of the Sudbury 

Igneous Complex and metavolcanics (Greenstone/Metabasalt), while the hanging wall consists of 

metasediments. A bifurcated olivine diabase dyke crosscuts the host rock and the orebodies at Garson. 

The Garson Mine orebodies are more deformed than any other orebodies of the Sudbury Basin. The 

orebodies strike approximately east-west and dip south 75°. The geomechanical parameters applied to the 



121 
 

 

FLAC3D model and used as part of this research are provided in Table 6-6 and Table 6-7 (K. S. Kalenchuk, 

2018). Note that it is not within the scope of this study to validate these rock mass parameters, as they have 

been based on previous work by geomechanical consultants spanning back to 2012. 

 

Figure 6-3. Location map of Garson Mine in relation to Sudbury, Ontario (courtesy of Vale). 

In response to large seismic events that occurred at Garson Mine between 2006 and 2008, strategic and 

tactical mitigation measures were implemented to withstand future seismic impact (Yao & Moreau-Verlaan, 

2010). The strategic measures relevant to this study are the ongoing numerical modelling that aimed to re-

examine mining sequences, and the introduction of field instrumentation to monitor ground movement and 

ground support effectiveness in high risk areas. A microseismic monitoring system was installed in 1996 

and updated in 2009 to collect and evaluate continuous waveforms in real time, allowing for source-location 

and calculation of source parameters as events occur (Vale, 2015). The current system consists of 22 

uniaxial accelerometers and 5 triaxial accelerometers, which are installed between the 3400 Level and the 

5100 Level. A strong ground motion seismic system was also installed to measure large scale seismic 

events. Events with local magnitudes less than +0.8 MN are classified as microseismic events, while events 

greater than +0.8 MN are classified as macroseismic events. The data that forms part of this study is 

primarily comprised of the former.  

This research is focused on the #1 Shear West (1SHW) area of the mine (Figure 6-4), which is characterized 

by massive sulphide mineralization with sharp hangingwall and footwall contacts. In 2017 and 2018, the 

mine experienced an increase in frequency of large-magnitude seismic events in this area, including a +3.1 

MN event on December 14, 2017 and a +2.3 MN event on July 29, 2018. A FLAC3D model was developed 

by geomechanical consultants to back analyze the mechanisms that triggered these events, allowing for 
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the evaluation of seismogenic risk associated with past, present, and future mine-induced stress evolution 

(K. S. Kalenchuk, 2018).  

 

Figure 6-4. Garson Mine 1SHW area of interest, showing geometry of the mine overall with levels (L), location of faults 

(thick black lines with arrows), main access drifts and shafts (dark grey), and timing of stope removal (orange, green, 

grey) (adapted from Kalenchuk, 2018). 

6.4.2.2 FLAC3D Model and Calibration 

FDM approaches are often chosen to model time-dependent rock deformation behaviour due to the explicit 

time-marching component of its formulation scheme (ITASCA Consulting Group Inc., 2015). FDM is the 

most direct way to discretize a continuum, where points in space are replaced with discrete equations called 

finite difference equations, which are used to calculate displacement, strain, and stress in the material in 

response to conditional changes in the rock mass. Solutions are formulated at the grid points at the local 

scale, so no global matrix inversion is required for inelastic solutions, saving computational time and 

intensity. A popular code for stress analysis in rock using an FDM approach is FLAC (ITASCA Consulting 

Group Inc., 2015). Displacement or stress back-analysis, or synthetic rock mass models coupled with 

Discrete Fracture Networks (DFNs), can be used to calibrate FLAC model parameters (Farahmand et al., 

2018; Ninić et al., 2017).  

As part of the strategic and tactical measures to manage current and future seismic risk at Garson Mine, a 

FLAC3D model was developed and calibrated to back-analyze seismicity. The scope of the modelling 

efforts included assessing the stability of the underground excavations and suggest operational changes 

to improve safety, reduce costs, and increase profitability. The Garson Mine FLAC3D model was set-up 
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using strain-based stress initialization, where the in situ stresses were applied in the model using strain 

boundaries, thus allowing the stiffer units to load up more than the softer units (K. S. Kalenchuk, 2018).  

Two constitutive models were applied: Hoek-Brown (Hoek & Brown, 1997), and strain weakening Hoek-

Brown (Hoek & Diederichs, 2006). The FLAC3D model focused on the back-analysis of the two large-

magnitude events that occurred on December 14, 2017 and July 29, 2018.  

The FLAC3D model was calibrated using semi-quantitative and qualitative approaches relying on 

microseismic data dating back to January 2006 (Kalenchuk, 2018), with the aim of reproducing the two 

large events mentioned previously. The calibration efforts used a subset of the available seismic database 

to improve data analysis efficiency by reducing the number of data points that need to be read into the 

model. The seismic data were filtered to include only events with a magnitude greater than -2 MN, a source-

location error less than 30 m, and with an elevation in the area of interest between 1830 m and 3050 m, 

where surface elevation is 3660 m (Figure 6-5). The seismic data were temporally filtered to evaluate 

seismicity which occurs within each model stage, where each stage was set up to simulate historical mining 

according to the true extraction sequences at Garson Mine. Strain-based calibration was required to 

investigate the rate of post-peak decay to residual conditions, where the stress and strain conditions within 

the models were sampled at the location of each seismic event during the corresponding model stage. 

Then correlations between observations of actual rock mass behaviour and model results were evaluated 

to determine site-specific strength criteria and boundary conditions that should be applied in the model. The 

first phase of calibration compared the principal stress state sampled from the model to the estimated 

material strength. Conceptually, a well-calibrated model should produce statistically repeatable results for 

each geotechnical domain, however a perfect match in each model stage is exceptionally difficult to 

achieve. The second phase of model calibration involved a qualitative assessment of the first phase and 

adjusting material strengths to address discrepancies between the microseismic data and the queried 

model values. Each time the FLAC3D model was updated, this time-consuming recalibration process was 

repeated, and only a subset of the available database was used. 
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Figure 6-5. Manually calibrated FLAC3D model of 1SHW area of Garson Mine, showing volumetric stress contours 

(Kalenchuk, 2018). 

It is worth note that even a well-calibrated numerical model has limitations in that no model is a perfect 

replica of the observed rock mass behaviour. This epistemic uncertainty is exceptionally difficult to eliminate 

from any modelling techniques, whether physics-based or data driven. In the present research the authors 

acknowledge the errors introduced by this uncertainty into the proposed LSTM network, however the stress 

values computed by the numerical model are the only viable ground truth available for training the algorithm. 

6.5 Garson Mine LSTM Network Development 

Numerical model recalibration is a time-consuming process, both in terms of computational time and work 

hours. Previous authors have proposed replacing the numerical model entirely with an MLA, whereby a 

deep learning model consists of three linked models that train the stress values for each point in space in 

parallel (Gao et al., 2020). While promising, the prospect of replacing widely accepted numerical models 

with MLAs is one that will require more validation both in research literature and in practical applications. 

However, recalibration of physical models using MLAs is a smaller step in this direction that still allows the 

user to apply their expertise about the physical system in the context of numerical modelling (Ninić et al., 

2017). ANNs present an opportunity to expedite the recalibration process once the initial model set-up has 

been completed.  

Critical thinking must be applied when parameterizing ANNs for rock engineering decision making (Elmo et 

al., 2020; Phoon et al., 2021). As with all modelling endeavours, development of an ANN should be an 

iterative process, starting with the simplest model that achieves satisfactory results and only adding 

complexity as justified by the real-world data and observed phenomena (Jakeman et al., 2006). This section 
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describes the setup of the Garson Mine LSTM network, and the steps taken for model selection, as 

supported by performance metrics throughout its development.  

An LSTM network algorithm was chosen to maximize the usefulness of the data contained in the Garson 

Mine microseismic database. The Garson Mine LSTM network was developed to forecast the stresses at 

each zone centroid in the FLAC3D model. The input data was formatted into sequences of microseismic 

events that the LSTM network could “learn” and use to forecast the stresses (see section 6.5.2.3 Input 

Formatting for details). The forecasted stresses were compared to the stresses computed by the FLAC3D 

model (i.e., the targets). The square of the residual between the LSTM network outputs and the FLAC3D 

targets is minimized during algorithm training. MATLAB R2021 and the Deep Learning, Computer Vision, 

and System Identification toolboxes were used to develop the Garson Mine LSTM network (MathWorks 

Inc., 2021). One LSTM network was developed to forecast all the stress components, as opposed to 

individual LSTM networks for each stress component, because the latter would not preserve the relationship 

between stress components during algorithm training.  

As with any modelling approach, there are a variety of best practices that should be applied to ensure that 

the chosen MLA is appropriate for the problem. In particular, applying techniques to confirm that a well 

generalized model has been produced is crucial. For example, it is standard practice in ANN development 

that data partitioning is applied to the available dataset such that the algorithm is trained on one subset and 

tested on another (Marsland, 2014). This ensures that the resulting ANN is well-generalized and not only 

able to reproduce the data it was trained on, but also can identify relevant patterns in new data. It is also 

typical to run an ensemble of models to quantify model uncertainty. Ensemble modelling yields a distribution 

of possible model forecasts from which model uncertainty can be derived. These techniques, among others, 

are describes throughout this section in the context of the Garson Mine LSTM network development. While 

MLAs are a new tool in the rock engineering toolbox, standards of practice exist and can be modified from 

other fields of science and engineering to ensure their reliability. 

6.5.1 Input Data 

The formatting of the geomechanical input data for use in ANNs is a crucial step in ensuring its success. 

Site-specific data is “ugly”, and as coined by (Phoon et al., 2021), can be described as MUSIC-3X 

(Multivariate, Uncertain and Unique, Sparse, Incomplete, and potentially Corrupted with “3X” three 

dimensional spatial variations). Therefore, careful consideration is required when determining how data is 

passed to an MLA, such that the useful information learned can be maximized during the learning process.  

For the Garson Mine LSTM network, the inputs were obtained from the microseismic database (2015-2018) 

and from the previously calibrated FLAC3D model (Table 6-1). The microseismic parameters chosen as 

inputs characterize the evolution of the stress regime leading up to larger seismic events and rock bursts, 

following similar work by (Zhang et al., 2021). Previous work developing an LSTM network for Garson Mine 

found that the microseismic data alone is not enough to accurately predict the stresses in the FLAC3D 

model, because all the seismic parameters in the database are highly correlated to each other (Morgenroth, 
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Perras, Khan, et al., 2021). For this reason, additional parameters from the FLAC3D model (e.g., material 

properties, geological zones, constitutive model) were added to the candidate input pool to increase the 

variability and uniqueness between the inputs and the targets. Training, validation, and testing data was 

randomly split at 80%, 10%, and 10% for LSTM network development. Another option is to split the data 

spatially, as to investigate whether there are auto-correlation issues that may artificially inflate the 

performance of the final trained algorithm, which is addressed in Section 6.6 Results and Discussion.   

Table 6-1. Summary of inputs and targets used to train the Garson Mine LSTM network (19 inputs and 3 or 6 targets). 

Inputs  Targets (primary) Targets (secondary) 

M
ic

ro
s
e
is

m
ic

 d
a
ta

* Time Stamp 
Microseismic event location (N, E, El.) 
Moment magnitude 
Seismic moment 
Energy 
Es/Ep 
Apparent stress 
Source-location error 

Major Principal Stress, σ1 
Int. Principal Stress, σ2 
Minor Principal Stress, σ3 

Normal Stress, σxx 
Shear Stress, σxy 
Shear Stress, σxz 
Normal Stress, σyy 
Shear Stress, σyz 
Normal Stress, σzz 

F
L

A
C

3
D

 

P
a

ra
m

e
te

rs
 

 
Geological group 
Constitutive model 
Elastic modulus 
Poisson’s ratio 
Hoek Brown mb, s and a 
Accumulated plastic strain 

  

*Descriptions of these microseismic parameters and their derivation can be found in Hudyma et al. (2008) and Trifu 
& Young (1992). 

 

As articulated by Yang et al. (2021), clear engineering geology information, whether in analogue or digital 

form should always accompany the use of real rock mass data for any empirical, numerical, or data-driven 

model. As MLAs become more prevalent in rock engineering research and practice, transparency of the 

input data used to develop algorithms is particularly crucial to ensure reproducibility. Thus, distributions of 

the inputs and targets used to develop the Garson Mine LSTM network are shown in Figure 6-6 and Figure 

6-7, respectively. It is evident that the distributions are complex, arising from spatial and temporal 

dependencies. Some of the challenges include the mixture of categorical and numerical input data, the 

large difference in order of magnitude of inputs, and the non-Gaussian distributions of the targets. The 

Garson Mine LSTM network must learn the nuanced relationships within the inputs, between the inputs and 

targets, and amongst the targets.  
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Figure 6-6. Histograms of all inputs used to train the Garson Mine LSTM network, apart from the time stamp and 

location (Northing, Easting, Elevation) of the microseismic events. 

 

Figure 6-7. Histograms of the targets used to train the Garson Mine LSTM network, where the targets are (a) the three 

principal stresses or (b) the six-component stress tensor from the calibrated FLAC3D model. 

6.5.2 LSTM Network Development 

The Garson Mine LSTM network was developed using the authors previous experience and following 

examples in literature where MLAs were applied to analogous problems (Erharter & Marcher, 2020; Gao et 
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al., 2019; Liu et al., 2021; Vallejos & McKinnon, 2013). Following a literature review, several aspects were 

targeted for optimizing the performance of an LSTM network for predicting the stresses at Garson Mine: 

input encoding and pre-processing, training solver, network layer architecture, and cost function. 

Collectively, these will be referred to as hyperparameters throughout this chapter and are used to control 

the LSTM network learning process (Claesen & de Moor, 2015).  

Figure 6-8 is an illustration of the process that was used to develop the Garson Mine LSTM network. The 

blue and purple nodes indicate the inputs and the outputs of the algorithm, respectively. The green nodes 

indicate where ensembles of 100 LSTM networks were run to evaluate the algorithm alternatives listed, and 

the alternative to proceed with was selected based on the AICc (see section 6.5.2.2 Model Selection and 

Performance Metrics). Grey nodes indicate where model performance was evaluated as a function of 

various outputs, and yellow nodes indicate the resulting algorithm revisions that could be considered. 

As indicated by the green nodes, two main areas of LSTM network development were targeted as part of 

this process: input encoding and pre-processing, and algorithm architecture. Since the inputs were a 

combination of numerical data (e.g., microseismic parameters) and categorical data (e.g., geological 

zones), the categorical data had to be encoded for input into the LSTM network. Additionally, the wide 

range of magnitudes in the input data (e.g., energy with values x104 versus moment magnitude values as 

small as -2) needed to be normalized prior to training to avoid over emphasis of inputs with larger 

magnitudes. There are several options for network architecture optimization, however the focus here has 

been on the training solver type, how many layers (i.e., how “deep”) the network was, and whether the 

signal was normalized between successive layers. Finally, three cost functions were compared, where the 

cost function is a measure of how poorly the model is able to estimate the relationship between the inputs 

and outputs and is minimized during training. 
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Figure 6-8. Process for developing the Garson Mine LSTM Network, where nodes indicate steps in the algorithm 

development, including inputs, architecture alternatives, outputs/targets, and evaluation of outputs for further algorithm 

refinement. Green nodes identify where each algorithm alternative was applied to an ensemble of LSTM models, and 

the alternative with the best performance (as determined by the AICc) was applied for subsequent algorithm 

development. 

6.5.2.1 Ensemble Modelling 

In order to obtain a measure of confidence in their predictive accuracy, it is common practice to run an 

ensemble of algorithms where the weights and biases are randomly reinitialized for each model run (Afraei 

et al., 2019; Benardos, 2008). Each member of an ensemble is trained independently, and the predictions 

can be combined to form a statistical distribution of possible outputs (Z. Zhao et al., 2007). An ensemble of 

models will generalize well to a dataset, as compared to a single, finite model that represents only one 

random initialization of weights and biases. This approach allows the developer of the algorithm to gain an 

understanding of how well the model is converging to the global optimum, as well as to determine the 

variance of the model output. In general, a minimum of 30 models should be trained as part of an ensemble 

(Setiono & Liu, 1997). For this research, an ensemble of 100 models was run for each combination of 

hyperparameters. 

6.5.2.2 Model Selection and Performance Metrics 

The hyperparameters selected for the Garson Mine LSTM network were based on the relative performance 

of the algorithm options evaluated. In general, model selection is based on the principle of parsimony – the 

model selected should be as simple as possible but as complex as necessary (Höge et al., 2018). Following 

this principle, the performance metric used to select hyperparameters and develop the Garson Mine LSTM 

network is the Corrected Akaike Information Criterion (AICc) (Hurvich & Tsai, 1989). The AICc penalizes a 

model for being too complex relative to its accuracy, preventing models that are accurate but overly complex 

from being selected as the preferred model architecture. The AICc is a sample-corrected AIC, which is 
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based on the Sum of Squared Errors (SSE), number of samples, and number of model parameters. The 

SSE is a measure of how the variation in the dependent variable in a model cannot be explained by the 

model, where a lower SSE indicates that the model can explain the data well while a higher SSE indicates 

that the model poorly explains the data. The SSE calculation is shown in Equation 6-1, where 𝑦𝑖 is the 

ground truth (observed data) and �̂�𝑖 is the predicted value. The AIC is essentially a measure of entropy, 

evaluating the model’s fit on the training data and adding a penalty term for the complexity of the model 

(Akaike, 1969). A lower AIC indicates the best balance of model fit with generalizability. The AIC calculation 

is shown in Equation 6-2, where 𝑛 is the number of training samples and 𝑝 is the number of parameters 

(weights and biases). AIC assumes that the same data is used between models, the same outcome variable 

is predicted between models, and that the sample is of infinite size. This final assumption gave rise to a 

sample-size adjusted AICc, shown in Equation 6-3. AICc should be used when the ratio of training samples 

(𝑛) to the number of parameters (𝑝) is less than 40 (Burnham & Anderson, 2002), i.e., when there are less 

than 40 samples of data for every training parameter in the model. The AICc approaches and converges to 

the AIC value as the number of training samples approaches infinity. 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 
Equation 6-1 

 

𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑜𝑔
𝑆𝑆𝐸

𝑛
+ 2 ∗ 𝑝 

Equation 6-2 

 

𝐴𝐼𝐶𝑐 = 𝑛 ∗ 𝑙𝑜𝑔
𝑆𝑆𝐸

𝑛
 +

𝑛 + 𝑝

1 −
𝑝 + 2

𝑛

 Equation 6-3 

In addition to AICc, the coefficient of determination (R2) and percent capture (%C) are calculated for each 

model ensemble in this study. The R2 value is a measure of the goodness of fit of any regression model. 

%C indicates the whether the true value is encompassed within the variance of the model ensemble 

predictions, i.e., whether the model is able to predict the target within the ensemble’s variance (De Santi et 

al., 2021). %C should not be used exclusively to determine a model’s performance, as models with 

extremely large variances (i.e., low precision) will also indicate a high %C. 

6.5.2.3 Input Formatting 

The seismic database was filtered to the same extent in terms of Northing, Easting and Elevation as the 

FLAC3D model, to ensure the seismic events used to train the LSTM network actually occurred in the 

vicinity of the 1SHW developments (Figure 6-9). The authors note that there may be error in the calculated 

stresses at the model boundary, resulting from the exclusion of microseismic events occurring just outside 

the model extents, however these effects are considered to be negligible as the event magnitudes are small 

(-2 MN). Any microseismic events with a source-location error greater than 20 ft (6 m) were removed from 

the database, to improve reliability of the data points. Each remaining seismic event in the database was 

matched to the nearest zone centroid in the FLAC3D model in order to assign the relevant FLAC3D zone 

locations to each seismic event. Finally, the seismic events that occurred near the same zone centroid were 
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ordered into a sequence of seismic events. The LSTM network training data were formatted so that each 

FLAC3D zone centroid was associated with a sequence of seismic events (from the microseismic database) 

that results in a stress state (from the calibrated FLAC3D model). Based on previous work by the authors, 

a minimum length of 10 microseismic events was selected to form the sequences used to train the Garson 

Mine LSTM network (Morgenroth et al., 2021). This previous study found that a smaller minimum event 

sequence length allowed for an increased number of discrete sequences to be created from the training 

dataset, thereby increasing the LSTM network’s performance. 

 

Figure 6-9. FLAC3D zone centroids from the previously calibrated model, with 1SHW area of interest indicated by the 

red cube. Microseismic parameters were formatted into a sequence and attributed to the nearest FLAC3D zone centroid 

in order to create a labelled sequence of events and corresponding stress state to form the training dataset for the 

Garson Mine LSTM network. 

6.5.2.4 Input Encoding and Pre-processing 

When combining numerical and categorical data into one algorithm, it is common practice to encode 

categorical data by replacing the classes with numerical substitutes (Marsland, 2014; Murphy, 2012). In the 

case of the Garson Mine dataset, there were two categorical inputs used for training – geology class and 

constitutive model. The latter was binary encoded, as there were only two constitutive models used in the 

FLAC3D model: elastic (backfill material) and plastic (rock). The geology classes were more complex to 

encode, as assigning a numerical value introduces an ordinal relationship between the geological classes. 

Therefore, three methods of encoding the geology were compared in the development of the Garson Mine 

LSTM network, as shown in Table 6-2. An ordinal encoding was applied based on the mean Geological 

Strength Index (GSI), and two numerical encoding methods were applied using the mean GSI and the 

maximum and minimum GSI values, respectively (Hoek & Brown, 2019). The purpose of testing these 

different encoding methods was to determine whether the performance of the Garson Mine LSTM network 

would benefit from learning with the explicit GSI values, or if an ordinal ranking was sufficient. 
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Table 6-2. Three methods of encoding Garson Mine geology groups (Kalenchuk, 2018). 

Geology Class Ordinal 
Encoding 

Mean GSI 
Encoding 

Max & Min GSI 
Encoding 

Metasediments 0 28 35 & 20 
South Dyke 1 65 75 & 55 
Greenstone/Metabasalt 2 70 75 & 65 
Norite 3 75 80 & 70 
North Dyke 4 95 100 & 90 

 

The relative magnitudes of the inputs used for LSTM network training can impact on the back-propagation 

process by biasing the training towards inputs with larger magnitudes (Morgenroth et al., 2021). To 

neutralize this, inputs may be normalized during training (Murphy, 2012). Previous research has found 

success normalizing inputs using the minimum and maximum value in order to improve forecasting 

accuracy and model convergence speed (Liu et al., 2021). For the development of the Garson Mine LSTM 

network, three input normalization schemes were tested against the base case of unnormalized inputs: z 

score (mean/standard deviation), rescaled to -1 to 1, and rescaled to 0 to 1. Rescaling does not impact the 

shape of the distributions of the inputs, while z score normalization includes the standard deviation and 

accounts for differences in relative distribution shape. Rescaling inputs from -1 to 1 impacts the training 

solver (discussed in 6.5.2.5.1 Cost Function and Training Solver) differently from rescaling inputs from 0 to 

1, in that the negative values result in slightly different gradients calculated during stochastic gradient 

descent. Each stress target was normalized by the mean to ensure that the training of the LSTM network 

is not impacted by the relative magnitudes of the stress components. 

6.5.2.5 Algorithm Architecture  

The LSTM architecture applied in this study is a sequence-to-one regression network, where the sequence 

is the series of seismic events and related inputs that occurred at a particular zone centroid, and the one 

regression output is a vector comprised of the stresses at that same centroid. The hyperparameter options 

that were tested to develop the Garson Mine LSTM network are described in this section, including the 

training solvers, number of LSTM layers, layer normalization, and cost functions that were compared to 

produce the best performance.  

6.5.2.5.1 Cost Function and Training Solver 

The cost function is a hyperparameter used to calculate the error, or loss, between the output from the 

algorithm and the ground-truthed target. The loss is backpropagated into the LSTM network during training 

to update the weights and biases until the system converges on a solution, which is represented by the 

minimum of the cost function. A commonly used method of finding the minimum point of the cost function 

is gradient descent, discussed below.  

Three cost functions are compared for the Garson Mine LSTM network: the mean squared error (MSE), 

Mean Absolute Error (MAE), and the weighted quantile functions. MSE is the most commonly used 

regression cost function and represents the sum of the squared distances between the predicted values 
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and the targets. MAE is the sum of the absolute differences between the predicted values and targets, i.e., 

it represents the average magnitude of the errors. MSE and MAE are more sensitive to outliers when it 

comes to non-normally distributed targets. For this reason, the weighted quantile cost function was also 

evaluated as a method of accounting for the unique distributions of the targets (Koenker & Hallock, 2001). 

The quantile cost function is useful for predicting an interval or set of values, instead of one regression 

value. 

During LSTM network training the training algorithm, or solver, updates parameters (i.e., weights and biases 

in the network) to minimize the cost function. This is done by taking small steps at each iteration in the 

direction of the negative gradient of the loss and is referred to as gradient descent. In standard gradient 

descent, the gradient of the cost function is calculated using the entire training set at once. Stochastic 

Gradient Descent (SGD) uses a subset of the training data to calculate the gradient, and a different subset 

is used at each training iteration until the entire training set has been used (a full pass is called an epoch) 

(Murphy, 2012). Because of this, SGD is a more computationally efficient approach than standard gradient 

descent. In this research, three variations of SGD were compared for training the Garson Mine LSTM 

network: SGD with momentum, RMSProp (root mean square propagation), and Adam (adaptive moment 

estimation). 

Standard SGD may oscillate on its path toward the optimum during training. Adding a momentum term is 

one way to reduce oscillation, where the momentum term determines the contribution of the previous 

gradient to the current iteration. SGD with momentum uses a constant learning rate for all parameters, 

however RMSProp uses learning rates that differ by parameter. Specifically, RMSProp uses a moving 

average of the squares of the parameter gradients to normalize the updates of each parameter individually. 

This approach decreases the learning rates of parameters with large gradients and increases the learning 

rates of parameters with small gradients. Similar to RMSProp, Adam uses a parameter-wise update but 

with an added momentum term, using an element-wise moving average of both the parameter gradients 

and their squared values (Kingma & Ba, 2015). The Adam approach allows the parameter updates to pick 

up momentum in a certain direction, making it computationally efficient and well suited to problems that are 

large in terms of parameters or data. 

6.5.2.5.2 LSTM Network Layers 

In keeping with the principle of parsimony that governed the model selection criteria, relatively simple 

network architectures were evaluated for the Garson Mine data. Networks with layer normalization were 

tested, as it has been found to increase LSTM network precision by previous authors (Liu et al., 2021).The 

network layers that comprise the Garson Mine LSTM network architectures that were tested are listed in 

Table 6-3. Architectures with 1, 2 and 3 LSTM layers, and both with and without layer normalization layers 

were tested, as shown in Figure 6-10. 
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Table 6-3. Layers used to develop the Garson Mine LSTM network. 

Layer Type Settings Description 

Sequence input layer Size = 19 
Inputs sequence data into network. Size corresponds to number 
of inputs. Input data normalization is set here. 

LSTM layer 
Size = 100 
Output Mode = Last 

Learns long-term dependencies between timesteps in sequence 
data. Output last timestep of the sequence. 

ReLu layer n/a 
Performs a threshold operation to each element of the input, 
where any value less than zero is set to zero. Generally follows a 
normalization layer.  

Dropout layer Probability = 0.5 
Randomly sets input elements to zero between iterations to 
prevent overfitting. 

Layer normalization 
layer 

n/a 
Normalizes a mini-batch of data across all inputs for each 
observation independently. Generally follows an LSTM layer. 

Fully connected layer 
Size = 100 or 3 (or 6 
when predicting stress 
tensor) 

Multiplies the input by a weight matrix and adds a bias vector. 
Connects to all the neurons in the previous layer, combining all 
features learned by the previous layers to identify the larger 
patterns. If preceding regression layer, size corresponds to 
number of targets. 

Regression layer 
Size = 3 (or 6 when 
predicting stress tensor) 

Computes the loss of the regression network based on the 
chosen cost function. Size corresponds to number of targets. 

 

 

Figure 6-10. Schematics of architectures investigated for developing the Garson Mine LSTM networks for predicting 

the principal stresses and six component stress tensor, with and without layer normalization. Area shown in gray was 

repeated consecutively to test 2 and 3 LSTM layers. 

6.6 Results and Discussion 

The study to develop this Garson Mine LSTM network comprised of 5800 models run in total. Following the process 

detailed in Section 6.5.2 LSTM Network Development and Figure 6-8, the optimal architecture for predicting the 
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principal stresses and six-component stress tensors, respectively, are shown in Table 6-4. All ensemble performances 

are shown in Table 6-5. 

Table 6-4. Final architecture of the Garson Mine LSTM network for two different targets. 

 Targets 

 3 Principal Stresses 6 Component Stress Tensor 

Geology encoding max & min GSI mean GSI 
Input pre-processing z score normalization z score normalization 
Cost function Mean Squared Error Mean Squared Error 
Training solver Stochastic Gradient Descent Stochastic Gradient Descent 
Number of LSTM layers 1 1 
Normalization none none 

AICc -59.62 -45.50 
R2 0.996 0.997 

%C 97 % 80 % 

 

Table 6-5. Performance of all ensembles evaluated to develop the Garson Mine LSTM networks. 

Scenario 

3 Principal Stresses 6 Component Stress Tensor 

AICc R2 % Capture AICc R2 % Capture 

Encoding 
Geology 

Rank -12.68 0.421 100 -3.63 0.896 100 
GSI (mean) -11.08 0.233 100 -8.14 0.824 100 
GSI (max and min) -12.68 0.446 100 0.16 0.389 100 

Input Pre-
Processing 

None -6.62 0.069 10 10.11 0.047 68 
Z score -34.66 0.897 100 -2.37 0.600 98 
Rescale symmetric -33.11 0.930 80 5.57 0.044 62 
Rescale zero-one -7.08 0.091 63 8.32 0.050 60 

Training Solver 
SGD -59.62 0.996 97 -45.50 0.999 80 
RMSProp -35.78 0.950 100 -22.20 0.944 78 
Adam -34.66 0.897 100 -22.84 0.980 78 

C
o
s
t 

F
u
n

c
ti
o

n
 

MSE 

1 layer -59.62 0.996 97 -45.50 0.999 80 
2 layers -27.44 0.991 77 -18.70 0.997 68 
3 layers -11.52 0.953 67 1.50 0.967 23 
1 layer + layer norm. -53.24 0.993 90 -42.22 0.998 85 
2 layers + layer norm. -17.34 0.974 80 -6.51 0.994 65 
3 layers + layer norm. 4.81 0.540 70 3.11 0.960 27 

MAE 

1 layer -53.59 0.992 100 -42.26 0.997 85 
2 layers -28.06 0.990 93 -15.62 0.994 68 
3 layers -12.34 0.953 57 1.47 0.968 43 
1 layer + layer norm. -48.85 0.987 100 -42.26 0.994 88 
2 layers + layer norm. -15.54 0.955 100 -3.81 0.987 62 
3 layers + layer norm. 3.77 0.574 80 3.35 0.958 30 

Quantile 

1 layer -53.64 0.993 100 8.69 0.540 75 
2 layers -26.38 0.987 97 30.82 0.599 62 
3 layers -15.94 0.962 83 30.94 0.540 50 
1 layer + layer norm. -48.16 0.986 97 8.76 0.566 73 
2 layers + layer norm. -15.38 0.952 93 30.84 0.669 60 
3 layers + layer norm. 6.50 0.470 87 30.96 0.610 53 

 

The performances of the test dataset of the two final LSTM network architectures for predicting the principal 

stresses and stress tenor, respectively, are shown in Figure 6-11. These results are presented for the test 

dataset only, following a random data split of 80% training, 10% validation, and 10% testing. The y = x line 

represents where the predicted stress is equal to the target stress from the FLAC3D model. The y error 
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bars represent the range of the 100 models in the ensemble. The three performance metrics are displayed 

for each model ensemble: the AICc, R2, and %C. Recall that AICc is a sample corrected metric that accounts 

for model complexity, while R2 is a measure of goodness of fit. %C illustrates whether the model ensemble 

can capture the target stresses, as demonstrated by whether the error bars cross the y=x line.  

 

Figure 6-11. Performance of Garson Mine LSTM network on testing data, predicting 3 principal stresses (left) and 6 

component stress tensors (right). Y-axis error bars indicate the variance of the ensemble predictions, where an 

ensemble is comprised of 100 LSTM networks. The AICc, coefficient of determination, and average %C are presented 

on the top left of each plot. The %C of each individual stress component is displayed in the legend. 

The Garson Mine LSTM network was developed to assist in recalibrating the FLAC3D model used to assess 

the operations, including stope blasting and removal, and the impact of operations on ground reaction at 

Garson Mine. Several hyperparameters were targeted for optimizing the performance the Garson Mine 

LSTM network: input encoding and pre-processing, training solver, network layer architecture, and cost 

function. These hyperparameters were evaluated for predicting the three principal stresses and the six-

component stress tensor for a manually recalibrated FLAC3D model of the Garson Mine 1SHW area. The 

performances of all the ensembles are presented in Table 6-5. Some general trends for each 

hyperparameter selection can be observed from this study. 

For visualization purposes, the principal stresses predicted by the Garson Mine LSTM network were 

imported into the original FLAC3D model geometry and contoured (Figure 6-12). These figures show the 

predicted stresses in comparison to the stresses computed by FLAC3D (graphs below models), as well as 

the distribution of the predicted stresses from the ensemble of 100 LSTM network for five chosen locations. 

The stresses computed by FLAC3D fall within the range of the stresses predicted by the 100-model 

ensemble in all cases, indicating that the Garson Mine LSTM network is able to converge on a similar stress 
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state as the FLAC3D model. This indicates that the LSTM network provides a similar quality of FLAC3D 

recalibration as the manual recalibration approach, however, in a shorter period of time. 

 

Figure 6-12. Principal stresses predicted by the Garson Mine LSTM network imported into FLAC3D model. Five 

locations are chosen for which the distribution of predictions of the ensemble of 100 LSTM networks are plotted 

(boxplot) versus the FLAC3D computed value (black circles). 

Geology was encoded from the FLAC3D model for use in the LSTM network using three different 

approaches: ordinal encoding, representing the geological zones by their mean GSI, and representing the 

geological zones by the max and min GSI. When predicting the three principal stresses, the ordinal 

encoding and max/min GSI encoding had comparable performances, while the mean GSI encoding 

produced much poorer results. When predicting the six-component stress tensors, the three encoding 

methods performed similarly with the ordinal encoding performing slightly better. This investigation reveals 

that multiple encoding approaches should be tested when developing an MLA for rock engineering 

applications. It is also recommended that the raw parameters of classification systems, such as the 

components of the Q Tunnel Index (Barton et al., 1974) or Rock Mass Rating (Bieniawski, 1993), and not 

the classifications themselves should be used in MLAs to overcome the inherent limitations of those 

systems (Yang et al., 2021).  

Input pre-processing was investigated to neutralize the relative magnitude effects of the various input 

parameters on LSTM network training. Ensembles with unnormalized inputs and rescaling from 0 to 1 

performed an order of magnitude worse in terms of AICc than those with z score normalization or rescaling 
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from -1 to 1. For example, when the major principal stresses were predicted with unnormalized inputs and 

with rescaling from 0 to 1 AICc = -7, while z score normalization resulted in an AICc = -35 and rescaling -1 

to 1 yielded an AICc = -33. Z score normalization produced a better AICc but lower R2 as compared to 

rescaling from 0 to 1. The %C was greater than 98% for both predicting the principal stresses and six-

component stress tensor as compared to other input normalization schemes (<80%). The z score 

normalization approach was selected for both predicting the principal stresses and stress tensor, because 

z score takes input variance into account.  

Three cost functions were compared for calculating the loss during LSTM network training to assess their 

relative impacts on the final performance. The MSE, MAE, and quantile cost functions were compared. It 

was found that the performance was similar across LSTM networks with the same layer architecture, where 

MSE showed a slightly improved performance as compared to the MAE or quantile functions. Three training 

solvers were investigated to determine if there was an optimal solver for performing gradient descent during 

LSTM network training. SGD performed better than the RMSProp or Adam solvers in terms of AICc for both 

predicting the principal stresses and the six-component stress tensor, while the coefficient of determination 

and %C across the three solvers were similar. This is likely due to the increased complexity in the LSTM 

network when the momentum terms are added for the latter two solvers, resulting in the selecting of SGD. 

The addition of learning layers in the LSTM network architecture was investigated to determine if increased 

depth of the algorithm would increase performance, despite the increased complexity that accompanies the 

addition of layers. LSTM network architectures with 1, 2 and 3 LSTM layers were compared, with and 

without layer normalization between them. Across all the combinations of hyperparameters for both 

predicting the principal stresses and the six-component stress tensors, the increased complexity from 

adding additional layers resulted in a decreased LSTM network performance in terms of AICc and %C. The 

coefficient of determination was largely unaffected by the change in number of layers. The additional of 

layer normalization had a slightly negative impact for all scenarios, indicating that it was not required for the 

LSTM network to learn the data patterns for the Garson Mine dataset.  

When comparing the Garson Mine LSTM networks for predicting two different sets of targets, namely the 

principal stresses and the six-component stress tensors, the former generally had higher performance in 

terms of AICc, coefficient of determination, and %C. This is to be expected, since increasing the number of 

targets introduces more complexity during training when the training solver attempts to find a global 

minimum and balances the performance of all the targets during gradient descent. The accuracy when 

predicting the three principal stresses is similar across all three principal stresses, where the variance in 

the ensemble predictions is comparable across major, intermediate, and minor principal stress (σ1, σ2, and 

σ3) predictions. The mean prediction accuracy when predicting the six-component stress tensor is similar 

across all stress components, however the variance for the y and z stress components (σyy and σzz) is far 

greater than any of the other components. This can be attributed to the training solver stepping towards 
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good performance across all six targets. Future work will consider error weighting schemes to distribute the 

ensemble variance evenly across all targets.  

As mentioned previously, random data splitting was applied when training the Garson Mine LSTM network 

in order to prevent overfitting to the training dataset. This is standard practice in MLA development to ensure 

that the model is trained on as much of the dataset as possible, however, in spatially dependent datasets 

this method can inadvertently inflate the model performance due to autocorrelation. To investigate this, the 

final architecture for predicting the principal stresses was retrained using block splitting, which splits the 

training data sequentially instead of randomly during training. Since the Garson Mine training data is 

comprised of microseismic sequences that are built based on their proximity to a FLAC3D zone centroid, 

block splitting achieves a spatial splitting of the training data. An ensemble of 100 models was run using 

this data splitting method, and the results were found to be comparable to random splitting (AICc +5.12, R2 

-0.003%, and %C +10%), indicating that spatial autocorrelation is not an issue for this particular problem. 

For this research, one LSTM network was developed for the entire area of interest to capture the stress 

regime evolution with time, whether the targets be the principal stresses or stress tensors. Due to the 

minimum sequence length of 10 microseismic events used to format the training data, all the sequences 

used to train the Garson Mine LSTM network were located in plastic regions of the FLAC3D model, and 

primarily within three of the geology units (South Dyke, Greenstone, and Norite). Future work will investigate 

whether shortening the sequence length requirement, and therefore increasing the number of sequences 

available for training, increases the LSTM network performance. Sampling with replacement, bagging, and 

other resampling methods (Snieder et al., 2021) are additional approaches to augment the training data set 

(Breiman, 1996). Increasing the number of training sequences will also allow for a comparison of 

performance of the Garson Mine LSTM network for different geologies, indicating whether separate LSTM 

networks should be developed based on lithology. Those findings can be used to determine the quantity of 

algorithms needed to recalibrate the FLAC3D most accurately and efficiently. 

The development of this LSTM network to recalibrate the FLAC3D model raises interesting considerations 

with respect to the conventional process of recalibrating a numerical model. Many model inputs are 

qualitative properties that are assigned numerical values, for example, GSI, and consequently the Hoek-

Brown parameters mb and s, and joint characterizations. In practice, rock mechanics engineers evaluate a 

distribution of these qualitative assessments and then choose a representative (but deterministic) value in 

the numerical model, an approach which is expedient but does not always respect the limitations of the 

underlying empirical systems (Yang et al., 2021). The results of the current research underscore this 

concept, particularly when considering that using the max/min values of GSI produced improved predictive 

performance over using the mean GSI in the LSTM network. This finding implies that using raw rock mass 

classifications instead of a mean or standard deviation in machine learning is preferable. Using machine 

learning to recalibrate numerical models also presents the opportunity to overcome the limitations of 



140 
 

 

empirically based data by allowing engineers to run ensembles of algorithms to recalibrate the numerical 

model, instead of choosing only one deterministic value.  

The eventual goal of this research project is to establish a dynamic interaction between the Garson Mine 

FLAC3D model and the LSTM network to automate the recalibration process. With the trained LSTM 

network, new partial inputs can be provided to the LSTM network to obtain updated stress states in the 

FLAC3D model, either as new microseismic data becomes available or as excavation advances and stope 

sequencing are planned. This is possible because a trained algorithm is able to handle gaps in the input 

dataset as “unknown” values, and still provide an updated prediction based on its previous learning on 

complete inputs. In other words, stress model recalibration efficiency can be improved by creating a 

microseismic data feed through the proposed LSTM network for continuous, automated calibration of the 

FLAC3 model. This will allow the LSTM network to update the stress states in the Garson Mine model 

during successive stope mining, informing operational decisions forward in time, allowing the operations 

team at Garson Mine to produce more current re-interpretations of mining induced stress conditions as 

stoping advances, as drilling and blasting is performed, and as new rock mass and geological data are 

collected. Similarly, the operations team will be able to forecast how stope removal in one location in the 

mine will affect the stress potential in another, by feeding the LSTM network updated model geometries 

and FLAC3D parameters where new excavations are created or backfilled. This will inform decisions on 

managing the stress conditions through design and hierarchical controls. Earlier and more accurate 

forecasts of changes in stress conditions will allow earlier intervention and reaction to challenging stress 

environments, leading to increased safety of excavations and mine personnel. 

6.7 Conclusions 

This study presents an LSTM network using microseismic data and a FLAC3D model to predict the stresses 

at the zone centroids of the FLAC3D model for the 1SHW area at Garson Mine. For the Garson Mine LSTM 

network, microseismic data and material parameters from the FLAC3D model were used to train the 

algorithm. The inputs were formatted into sequences of microseismic events that could be assigned to a 

resulting stress state extracted from a FLAC3D model manually calibrated previously. Two LSTM network 

architectures were developed for two sets of targets: the principal stresses and the six-component stress 

tensors. Various hyperparameters were analyzed to determine the optimal architecture for the two sets of 

targets: input encoding and pre-processing, training solver, network layer architecture, and cost function. 

In general, the two architectures were similar with the exception of how the geology was encoded for use 

in algorithm training. In terms of AICc, where a lower value indicates better performance, the performance 

of the LSTM network predicting the three principal stresses was improved as compared to predicting the 

six-component stress tensor, with AICc values of -59.62 and -45.50, respectively. The R2 values were 0.996 

and 0.997, respectively, and the %C values were 97% and 80%, respectively. When visualizing the Garson 

Mine LSTM network results within the original FLAC3D model geometry, it was found that the principal 
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stresses computed by FLAC3D fell within the range of stresses predicted by the 100-model LSTM network 

ensemble. 

Future work on the Garson Mine LSTM network should include improvement to the LSTM network itself, 

and how it is integrated with the FLAC3D model. An error weighting scheme could be applied to the six-

component stress tensor to balance the respective component performances during algorithm training. The 

number of sequences available for training could be increased by both reducing the minimum number of 

microseismic events in a sequence, and by applying a bootstrapping algorithm to sample with replacement 

during training. The ultimate goal would be to create an automated recalibration process whereby stope 

mining in the FLAC3D model is used to re-train the LSTM network, and then the updated stress predictions 

are used to automatically recalibrate the FLAC3D model.  

The development of an LSTM network to assist in numerical model recalibration presents an opportunity 

that is thus far largely untapped by the rock engineering community. If the same care is given to developing 

the ANN as is given to the manual recalibration of numerical models, this previously tedious and time-

consuming process can be made more efficient and may allow in more reliable modelling of underground 

excavations. 

Appendix 

Table 6-6. Intact rock mass parameters for Garson Mine FLAC3D model (Kalenchuk, 2018) 

Domain 
UCS (MPa) Ei (GPa) 

ν mi 
Avg Min Max Avg Min Max 

Metasediments 130 85 175 68 46 90 0.24 20 
Norite 120 75 165 83 71 95 0.25 22 
Olivine diabase 
dyke (North 
and South) 

200 160 240 117 83 150 0.26 27 

Greenstone 200 140 240 167 95 190 0.23-0.28 25 

 

Table 6-7. Rock mass parameters for Garson Mine FLAC3D model (Kalenchuk, 2018) 

Domain 
GSI Erm (GPa) mb s 

a 
Min Max Min Avg Max Min Avg Max Min Avg Max 

Metasediments 20 35 3.1 
4.7 
(*40) 

7.7 1.1 1.5 2 0.0001 0.0003 0.0007 0.5 

Norite 70 80 60.8 67.8 73.1 7.5 9 108 0.0357 0.0622 0.1084 0.5 
Olivine 
diabase dyke 
(North) 

90 100 112.2 116.3 116.3 18.9 22.6 27 0.3292 0.5738 1 0.5 

Olivine 
diabase dyke 
(South) 

55 75 73.9 95.5 95.5 5.4 7.7 11.1 0.0067 0.0205 0.0622 0.5 

Greenstone 65 75 122.4 136.3 136.3 7.2 8.6 10.2 0.0205 0.0357 0.0622 0.5 

* The Erm value for the metasediments unit was considered to be uncharacteristically low, and resulted in 
numerical instabilities during stress initialization, so an approximation of 40 GPa was used. 

 



142 
 

 

CHAPTER 7.   PRACTICAL RECOMMENDATIONS FOR MACHINE LEARNING 
IN UNDERGROUND ROCK ENGINEERING 

 

7.1 Preface  

This chapter presents recommendations of tools from the field of machine learning and how to apply them 

in the context of a practical rock engineering problem. The tools and approaches are illustrated with case 

studies.  

The content of this chapter was submitted as a conference paper to the 71st Austrian Geomechanics 

Colloquium in 2022, and subsequently published in Geomechanics and Tunnelling as follows:  

Morgenroth, J., Unterlaß, P. J., Sapronova, A., Khan, U.T., Perras, M. A., Erharter, G. H. & Marcher, 

T. (2022). Practical recommendations for machine learning in underground rock engineering – On algorithm 

development, data balancing, and input variable selection. Geomechanics and Tunnelling. 

https://doi.org/10.1002/geot.202200047  

The contributions of the authors in the current chapter are as follows:  

Josephine Morgenroth has conducted the ideation of the topics contained in the manuscript, assembled 

the illustrative case studies, coordinated with the co-authors on their contributions, and prepared and wrote 

the original manuscript of this publication. Paul J. Unterlaß and Alla Sapronova have contributed to writing 

sections pertaining to algorithm architecture selection and engineering verification, as well as the case 

studies to illustrate those topics. Georg H. Erharter has contributed to ideation of the topics and editing the 

manuscript. Matthew A. Perras, Usman T. Khan, and Thomas Marcher have supervised the research, 

provided the funding, and contributed to editing the manuscript. 

This work is funded in part by the Natural Sciences and Engineering Research Council of Canada through 

the Postgraduate Scholarships – Doctoral program and the Michael Smith Foreign Study Supplement. 

7.2 Abstract 

Research has demonstrated that machine learning algorithms (MLAs) are a powerful addition to the rock 

engineering toolbox, and yet they remain a largely untapped resource in engineering practice. The 

reluctance to adopt MLAs as part of standard practice is often attributed to the “opaque” nature of the 

algorithms, the complexity in developing them, and the difficulty in determining how the datasets are used 

by the algorithms. This chapter presents tools and processes for the development of MLAs, input data 

selection, and balancing for practical underground rock engineering. MLAs for classification and regression 

- two main applications of machine learning - are presented in terms of developing MLA to extract 

information from the dataset to obtain the desired output. Engineering verification metrics are selected 

based on their suitability for specific output. Methods for input data balancing and selection are discussed 

with a focus on selecting input data that is appropriate for the problem without introducing bias or excess 
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complexity. Each tool and process for algorithm development, data preparation, and input selection is 

illustrated with a case study. 

This chapter demonstrates that a geotechnical practitioner does not need to become an expert data 

scientist to apply MLAs to practical rock engineering problems. Once an understanding of the functions of 

MLAs is reached, the building blocks and open-source code are available to be adapted to suit the rock 

mass behaviour of interest. 

7.3 Introduction 

A common criticism of data driven methods, including machine learning, is that they are opaque and that 

the processes therein are non-intuitive or not representative of the physical system being modelled. This 

chapter challenges veracity of these perceptions by presenting tools that render machine learning more 

accessible and interpretable to practicing rock mechanics engineers. 

The topics illustrated in this chapter are summarized in Figure 7-1. This chapter is divided into two main 

sections – algorithm development and input data. The first section introduces the two main applications of 

MLAs, namely classification and regression. Best practices for selecting an algorithm architecture as well 

as the corresponding verification metrics are presented. The second section provides insights into how rock 

engineering data may be balanced for use in an MLA. Input Variable Selection (IVS) methods are presented 

that can be used to rank input variables. Case studies are provided throughout the chapter to illustrate the 

development and utility of an MLA in the given case study context. 

 

Figure 7-1. Illustration of the workflow presented in this chapter. 

7.4 Algorithm Development 

Depending on whether the desired output of a MLA is a classification or a numerical value, different 

algorithm architectures may be developed. This section discusses MLAs for classification and regression 

problems in the context of their selection, development, and engineering verification. 
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7.4.1 On Classification Algorithm Architecture Selection and Verification 

The case study presented is a classifier that classifies the rock mass class ahead of the tunnel face 

(Unterlaß et al., 2022). Selection of a classification algorithm that outperforms others can only be achieved 

for the given dataset and cost function (Wolpert & Macready, 1996). Typically, an algorithm ranking is 

constructed where top-ranked algorithms are selected for evaluation (Shawkat & Smith, 2006). Data quality 

will significantly affect the accuracy of the classification algorithms. Due to its sparsity and imbalance, 

geotechnical data must be pre-processed in the form of standardization to keep the data quality at the 

highest possible level. 

One universal approach can be suggested: start the classification with "white box" methods (e.g., methods 

from a decision trees family). These methods are significantly easier to explain and interpret, though they 

provide less predictive capacity and have limitations with respect to capturing the inherent complexity of 

the dataset. In addition, the white-box methods can be used to explore feature importance and check for 

the coherence of a dataset. To overcome data quality problems, one can shift from operating multiclass 

classifiers to building a cascade of binary classifiers (Figure 7-2). 

 

Figure 7-2. Improving the data quantity and imbalance by building a cascade of binary classifiers for a multiclass 

dataset. 

The proposed cascade strategy allows for the ranking of classification algorithms since the verification 

results from the binary classifiers are relatively simple. When ranking classifiers, it is important to keep in 

mind the accuracy metric can become misleading with classes imbalance in the training dataset (Xie et al., 

2011) Therefore it is important to include e.g., precision and sensitivity metrics derived from the confusion 

matrix. The example in Figure 7-3 illustrates how the performance metrics of a Random Forest classifier 

change with different ratios between classes. Two classifiers were trained similarly on the dataset 

containing the same number of samples for rock mass types A, B, and C. However, the binary classes were 

composed differently: the first classifier predicts the rock mass type B (70 samples) vs. non-B (classes A 

and C, a total of 300 samples), and the second classifier predicts the rock mass type A (200 samples) vs. 

non-A (classes B and C, total 170 samples). The ratio between classes is 7:30 for the first classifier and 
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17:20 for the second. As shown in Figure 7-3, Classifier 2 exhibits increased overall performance over 

Classifier 1, despite Classifier 1 having better accuracy. 

 

Figure 7-3. Example of changing performance metrics of a Random Forest classifier with different ratios between 

classes. 

7.4.2 On Regression Algorithm Architecture Selection and Verification 

In this section, recommendations on the selection and verification of algorithms for regression problems 

are given based on a case study where an artificial neural network (ANN) is used for Q-value estimation of 

tunnel boring machine (TBM) data. Regression algorithms approximate a mapping function from input 

variables (i.e., TBM data) to a continuous output variable (i.e., Q-values) (Figure 7-4 a.).  

The goal of this case study is to train an ANN to determine Q-values on a TBM dataset from Norway’s 

Ulriken Tunnel, excavated with an open gripper TBM. TBM operational data results from the sensor 

readings during operation of a TBM on a regular time interval. The resulting dataset is of sequential nature 

(i.e., time series), meaning that each datapoint represents an observation at a certain point in time and is 

dependent on the other observations in the dataset (Figure 7-4 a.). Based on the sequential nature of the 

data the implementation of a recurrent neural network (RNN) architecture was chosen to be the best fitting. 

RNN architectures are specifically designed to handle sequential data, able to take both current and 

previously received input data into account, thus being able to memorize earlier received input data (Figure 

7-4 b.). A comparison of ANNs for a classification task based on TBM data is given in Erharter et al. (2019). 

Nevertheless, training of RNNs introduces problems like vanishing / exploding gradients (Pascanu et al., 

2013), which can be overcome with strategies like Long Short-Term Memory (LSTM) architectures 

(Hochreiter & Schmidhuber, 1997). 
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The deployed RNN shown in Figure 7-4 a. consists of three LSTM layers with 32 units each (for further 

information on LSTMs see (Olah, 2015). The output layer consists of a fully connected linear layer with a 

ReLU activation function. To prevent the model from overfitting a dropout regularization method, where 

input and recurrent connections to the LSTM units are probabilistically excluded from activation during 

training, set to 0.05 has been implemented. For model optimization the Adam training algorithm was used. 

 

Figure 7-4. a) Graphical representation of the deployed LSTM model architecture. b) Schematic sketch of a LSTM cell 

with its four interacting layers, comprising of the cell state and its protecting and controlling gates (i.e., forget-, input 

and output gate). 

Specific penetration and torque ratio are used as input features to the model, one set of input data consists 

of a matrix of these two over a certain length of the overall dataset. One input matrix for a length of 50m 

and a data-point spacing of 3 cm has the shape 1666x2. Output features consist of continuous Q-values. 

The model has been trained on data obtained from tunnel metre 1000 to 2000 and 3000 to 6900 and tested 

on data between tunnel metre 2000 and 3000. Results of the predicted Q-values for the geotechnically 

most relevant fault are shown in Figure 7-5. 
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Because a regression model predicts a quantity instead of a class or category as with classification models, 

the performance of the model must be reported as an error instead of an accuracy. To do so and to diagnose 

the variation in the errors, mean absolute error (MAE) and mean squared error (RMSE) are 0.12 and 0.18, 

respectively. Both metrics measure the average magnitude of the distance between prediction and target 

value and are negatively-oriented scores – lower values mean smaller differences. RMSE gives a relatively 

high weight to large errors, when using them together RMSE will always be larger than or equal to MAE, 

thus the difference between them reflects the variance of individual errors in the test set. 

  

Figure 7-5 a) Example of sequential TBM data between tunnel metre 1500 and 5500; note the reaction of the features 

(torque ratio - first row and specific penetration - second row) as response to the fault (i.e. lowest Q-values in the third 

row). b) Tunnel metre 2550 to 2750: Input features (first and second row); comparison of Q-values, “ground truth” - 

human classification in black vs. Predicted Q-values in red (third row). 

7.5 Input Data 

The intuitive selection and manipulation of input parameters is a familiar concept in many forms of 

geomechanical modelling. For example, the geomechanical properties of a numerical model would be fine-

tuned as a result of observed ground conditions and failure mechanisms (M. A. Perras et al., 2015c), or 

pre-processed to remove outliers and unreliable data, or to smooth data gaps. The field of machine learning 
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can offer repeatable methods for input data selection and pre-processing. This section highlights some 

such strategies for developing MLAs in rock engineering. 

7.5.1 On Input Data Pre-processing and Balancing 

Geomechanical datasets has been described as MUSIC-3X: Multivariate, Uncertain and Unique, Sparse, 

Incomplete, and potentially Corrupted with “3X” spatial data variations (Phoon & Chiang, 2021). As such, it 

is often necessary to balance input datasets prior or during MLA training. Balancing has the aim of ensuring 

that the MLA learns the nuanced relationships in the input dataset without being hindered by the data format 

or sparsity of the available inputs.  

Categorical data, such as rock mass classifications, often need to be combined with numerical data within 

the MLA, and thus must be encoded into a numerical equivalent. One option is to use a numerical proxy, 

for example mean GSI for geotechnical zones. If this approach is not appropriate, ordinal or nominal 

encoding may be applied. Ordinal encoding assigns a relative rank to the classes, for example a weaker 

geotechnical zone would receive a lower rank than a stronger one. If no such ordinal ranking exists in the 

classes, then nominal ranking can be assigned via one-hot encoding. These encoding approaches are 

demonstrated in Table 7-1. The encoding approach applied should be carefully considered, as not to 

introduce noise during algorithm development.  

Table 7-1. Example of categorical data encoding of geology for use in algorithm training (modified from Morgenroth et 

al., 2021) 

Geology Class 
Numerical Proxy 

(e.g., Using Mean GSI) 
Ordinal Encoding One-hot Encoding 

Metasediments 28 0 1000 

Dyke 65 1 0100 

Metabasalt 70 2 0010 

Norite 75 3 0001 

 
Data pre-processing can have a significant impact on model performance. It is common, even necessary 

by some authors (Maier & Dandy, 2000), to apply an input standardization in order to ensure all inputs get 

equal attention during training (Z. Liu et al., 2021; Murphy, 2012). Variables should also be scaled in such 

a way as to be compatible with the limits of the activation functions in the output layer. The impacts of 

various standardization schemes are illustrated using a case study, where an LSTM network applied to a 

dataset from Garson Mine. The LSTM network is trained on microseismic event data and geomechanical 

parameters to predict the stress state in a FLAC3D model, where the performance was compared based 

on the corrected Akaike Information Criterion (AICc) (Akaike, 1969). Three input normalization schemes 

were tested against the base case of unnormalized inputs: z score (mean/standard deviation), rescaled to 

-1 to 1, and rescaled to 0 to 1. Rescaling does not impact the shape of the distributions of the inputs, while 

z score normalization includes the standard deviation and accounts for differences in relative distribution 

shape. This study of the Garson Mine LSTM found that models with unnormalized inputs and rescaling from 

0 to 1 performed an order of magnitude worse in terms of AICc than those with z score normalization or 
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rescaling from -1 to 1. The z score normalization approach was selected to normalize the inputs because 

it produced the best LSTM network performance.  

Imbalance in the input dataset can result in a model that is not well-generalized. Balancing may be built 

into the MLA itself by using random resampling with replacement during training (called bagging), or by 

applying error weighting schemes. The bagging algorithm generates subsets of data by randomly sampling 

from the original dataset, which are then used to train and evaluate each MLA (Breiman, 1996).  

Error weighting is a technique used in classification to give particular targets preference during training by 

penalizing others (Seif, 2018). This is illustrated with a case study where a Convolutional Neural Network 

(CNN) was developed to classify tunnel liner yield at Cigar Lake Mine (Morgenroth et al., 2021). Four error 

weighting schemes were compared: uniform, linear, sigmoid, and inverse frequency (Figure 7-6). In this 

case, the inverse frequency scheme resulted in the best performance across all target classes. 

 

Figure 7-6. Four different error weight schemes applied to the classes in the training phase of the Cigar Lake Mine 

CNN (Morgenroth et al, 2021). 

7.5.2 On Input Variable Selection 

Input Variable Selection (IVS) methods typically identify the most useful inputs from a candidate pool of 

inputs used to develop an MLA. “Usefulness” of an input is defined as having the maximum relevance to 

the output, while minimizing the redundancy between the other inputs (May et al., 2011). Completing an 

IVS analysis of an MLA can result in less frequent convergence to local minima during algorithm training, 

thereby reducing the variability of the model output (May et al., 2008). In the context of rock engineering, 

IVS allows the user to rank the inputs with respect to their ability to accurately predict the output, i.e., which 

variables have the strongest link to the phenomena being predicted. An experienced geotechnical 

practitioner may choose to select input data based on expert judgement and can then confirm the selection 

using an IVS method. A novice practitioner may apply IVS from the outset of MLA development, to avoid 

overlooking critical input data. Both approaches are valid and can be adapted to the level of expert judgment 

that the MLA developer wants to inject. 

Herein, two categories of IVS methods are discussed: model-free and model-based. Model-free methods 

aim to quantify the relevance and redundancy of individual input variables prior to MLA training, while 

model-based methods are embedded into the training of the MLA and measure the impact of a particular 

input on its performance. 
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Model-free methods distinctly separate the IVS task from MLA training, and instead make use of statistical 

techniques to measure the relevance of individual or combinations of inputs. An analogous example is 

determining the partial factors when designing using Eurocode 7 (Limit State Inc., 2013). There are several 

possible approaches to obtaining statistical ranks for the input parameters, for example: partial correlation, 

Pearson correlation, Spearman correlation, partial mutual information, among others. Model-based 

methods search through the available input variables during algorithm training and selects those that result 

in an optimal generalized performance of the trained MLA. This process differs from conventional 

geomechanical modelling, where, for example, all parameters for a given constitutive behaviour or rock 

mass classification scheme must be selected to compute the model. Model-based IVS methods offer the 

opportunity to decouple all the candidate inputs to investigate whether fewer inputs produce better MLA 

performance. 

A model-free partial correlation (PC) IVS method is presented in Figure 7-7, where the available inputs are 

ranked based on partial correlation with the output, and then are iteratively added to the MLA in a forward 

selection process (He et al., 2011). The addition of inputs ceases when MLA performance has been 

satisfactorily fortified relative to the baseline. This method has the advantage of increasing the complexity 

(through the addition of inputs) of the MLA only if the performance improves as a result. A model-based 

IVS method called Input Omission (IO) is presented in Figure 7-7, sometimes also called ablation. IO 

estimates the usefulness of each input by iteratively examining model performance when an input is left out 

from the full set on which the model has been trained (Setiono & Liu, 1997). This approach allows the model 

to be examined for redundancy after it has been developed. 
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Figure 7-7. Workflows of model-free Input Variable Selection (IVS) method Partial Correlation (left), and model-based 

IVS method Input Omission (right). 

These two categories of IVS methods are illustrated using the Cigar Lake Mine CNN case study discussed 

above. IVS approaches were applied to determine if there is redundancy in the inputs and to rank them in 

terms of their importance for predicting tunnel liner yield (Morgenroth et al., 2022). The PC method 

determined that the best performance was reached when the most recent DISP input was added to the 

candidate input pool. The IO method concluded that none of the inputs used to train the CNN could be 

omitted, and that the most sensitive inputs are GEO and DISP, indicated that these inputs should be 

measured with more spatial and temporal frequency to improve performance of the CNN. 

IVS methods are powerful tools to interrogate MLAs developed for rock engineering problems, particularly 

to increase confidence in how the algorithm represents the physical system. IVS allows the user to 

determine how the inputs are being used to predict the output, and may also reveal the importance of the 

inputs relative to each other.  

7.6 Conclusions 

This chapter aims to demonstrate practical applications of machine learning to increase the confidence the 

rock engineering community has in applying these tools. The specific recommendations highlighted herein 

are summarized as follows: 

1. The correct model type (e.g., classification vs regression) and sub-type (specific MLA architecture) 

must be chosen.  

a) Classification – start with a simple “white-box” method and increase complexity as required 



152 
 

 

b) Regression – ensure the selected cost function (e.g., RMSE, MAE) is appropriate for the 

desired target 

2. Input data must be balanced (e.g., oversampling, bagging, error weighting) so that the MLA can 

learn the patterns represented in the input dataset without inadvertently emphasizing 

overrepresented data.  

3. The trained MLA should be analyzed using IVS techniques to remove redundant data, or to rank 

inputs so those ranking highest can be captured at higher spatial or temporal resolution.  

Machine learning is a powerful tool that frees up rock engineers to interrogate their assumptions and ensure 

the correct model is built (validation), and that the model is also built correctly (verification). The reluctance 

to apply machine learning methods in applied rock engineering is justified insofar as it highlights the need 

for critical thought when evaluating the algorithm outputs in the practical context. As with any modelling 

technique, the model’s success is not only predicated on its ability to replicate observed ground behaviour, 

but also its transparency in how it is using the available data to do so. Techniques to interrogate machine 

learning exist in data science and adjacent fields to render algorithms interpretable, all we need to do is 

seek them out and adapt them to advance digital innovation in rock engineering.  
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CHAPTER 8.   CONCLUSIONS 
 

 

“The situation has provided a cue; this cue has given the expert access to information stored in memory, 

and the information provides the answer. Intuition is nothing more and nothing less than recognition.”  

– Thinking, Fast and Slow (Kahneman, 2011) 

 

8.1 Summary of Research 

The overall objective of this research was to develop and apply practical machine learning solutions to real 

geomechanical datasets to predict underground excavation and rock mass behaviour. Four specific 

objectives were reached:  

1. Develop a classification machine learning algorithm using standard geotechnical mapping data 

from a real project 

2. Develop and implement a methodology for assessing interpretability of machine learning algorithms 

applied to rock engineering 

3. Develop a regression machine learning algorithm using standard geotechnical sensor data from a 

real project 

4. Formulate a guide for rock engineering practitioners in the selection, development, and engineering 

verification of machine learning algorithms for underground rock engineering problems 

The major conclusions of each objective are provided below.  

1. Develop a classification machine learning algorithm using standard geotechnical mapping data from a 

real project 

A major obstacle when using geotechnical data for machine learning is its inherent complexity, sparsity, 

and the often incomplete nature of the datasets (Elmo & Stead, 2020; Jing & Hudson, 2002; Morgenroth et 

al., 2019; Phoon et al., 2019). In CHAPTER 4.  A Convolutional Neural Network approach for predicting 

tunnel liner yield at Cigar Lake Mine, the original format of geotechnical mapping data is preserved by 

formatting the raw data as images with the machine learning inputs comprising the channels of the image. 

A CNN was developed to predict tunnel liner yield using these input images, using the case study of Cigar 

Lake Mine, Saskatchewan, Canada. CNNs are designed to process spatial and temporal dependencies in 

image or raster datasets and are computationally efficient at processing each pixel in an image while 

considering both the surrounding pixels and their change over time. When developing any kind of rock 

mechanics model, the spatial and temporal relationships between the various inputs must be preserved, 

and thus, CNNs are well suited for these types of datasets. The data usually contains a mapping component 
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(e.g., mapped geology) onto which other data (e.g., measured displacement or groundwater inflow) can be 

transferred as a two-dimensional array and therefore plotted as an image or a map.  

A CNN is developed to predict tunnel liner yield in the squeezing ground conditions of Cigar Lake Mine 

using four geological and geomechanical inputs: mapped geotechnical zones (GEO), primary installed 

support class (SUPCL), ground freezing (FREEZE), and radial tunnel displacement (DISP). These data 

were obtained from the GMPs prepared by the mine and from tunnel liner displacement surveys. The Cigar 

Lake Mine CNN was developed through a sensitivity analysis of three network hyperparameters: the 

amount of training data, the convolution filter size, and the error weighting scheme. A total of 7200 models 

were analyzed to determine the best combination of these parameters for this problem.  

It was found that the best CNN classification performance was obtained when all available data in the 

temporal realm was used for training, and the convolution filter was 30 x 30 pixels. An error weighting 

scheme was necessary to offset the imbalance of samples for each class in the dataset. An inverse 

frequency error weighting scheme, where the proportion of samples in each class is used to determine the 

error weights, was used to develop a Balanced Global model that has reasonable prediction accuracy 

across all yield classes (average model accuracy >65% for all training data permutations). A sigmoid error 

weighting scheme, which prioritizes Class 2 and 3 errors during training, was used to develop a Targeted 

Class 2/3 model that has higher recall for Class 2 tunnel liner yield (>99%). 

2. Develop and implement a methodology for assessing interpretability of machine learning algorithms 

applied to rock engineering 

This dissertation contains an exploration of algorithm interpretability using Input Variable Selection (IVS) 

approaches. The developed IVS approaches address two categories of algorithm interpretability: (1) 

algorithm transparency, and (2) post-hoc interpretations. IVS allows the user to analyze the internal 

mechanics of algorithms by ranking the candidate inputs, determining their usefulness to predict the output, 

reducing redundancy within the model, and comparing the findings with the experience and knowledge of 

fundamental rock mechanics principles.  

In CHAPTER 5.  On the Interpretability of Machine Learning Using Input Variable Selection: Forecasting 

Tunnel Liner Yield, three IVS methods were compared for two CNN architectures developed to predict 

tunnel liner yield at the Cigar Lake Mine – the Targeted Class 2/3 model and the Global Balanced model. 

For both models the three IVS approaches employed were Channel Activation Strength (CAS), Input 

Omission (IO), and Partial Correlation (PC).  

All three IVS methods found that additional training GMPs increased the prediction accuracy of the models. 

The CAS results suggested that GEO is used the least by the CNN as compared to the other three inputs, 

SUPCL, FREEZE, and DISP, and that SUPCL has the high activation strength in the CNN. The IO approach 

determined that none of the inputs could be omitted from the model entirely. The IO results showed that 

removing GEO entirely caused the model performance to decrease most significantly as compared to 
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omitting the other inputs, indicating that GEO had some unique information that the other inputs were not 

able to convey to the CNN. Finally, the PC approach was developed to determine if the models could be 

optimized by using only the most highly correlated inputs to train the CNN, according to their partial 

correlation with the output. PC demonstrated that where there was only one training GMP the DISP input 

was selected first, meanwhile where there was more than one GMP used for training the categorical inputs 

(GEO, SUPCL, FREEZE) were chosen first. The PC results showed that the minimum AICc was obtained 

when the most recent DISP was added to the candidate pool. The PC results also indicated that no matter 

how many training GMPs were used, it was not possible to drop out the older ones completely. 

The IVS approaches completed as part of this objective indicated that it is good practice to include all data 

in initial algorithm development for a rock engineering problem, and then only after completing an IVS study 

remove the inputs that are not contributing to good model performance. This research demonstrated that 

no single IVS method should be used to determine input saliency. Instead, multiple IVS methods must be 

applied to increase algorithm interpretability. 

3. Develop a regression machine learning algorithm using standard geotechnical sensor data from a real 

project 

Datasets gathered using digital rock mass instrumentation do not suffer from sparsity but rather pose 

challenges with respect to large volumes of data that must be processed before meaning can be extracted. 

This completed objective involved the development of a LSTM network using microseismic data at Garson 

Mine, where millions of microseismic events were available for algorithm training. The process of formatting 

the input data and optimizing the LSTM network architecture and hyperparameters are presented in 

CHAPTER 6.   

The LSTM network was developed using microseismic data and a FLAC3D model as inputs, where the 

targets were the stresses at the zone centroids of the FLAC3D model for the 1SHW area at Garson Mine. 

The inputs were formatted into sequences of microseismic events that could be assigned to a resulting 

stress state extracted from a FLAC3D model manually calibrated previously. Two LSTM network 

architectures were developed for two sets of targets: the principal stresses and the six-component stress 

tensors. Various hyperparameters were analyzed to determine the optimal architecture for the two sets of 

targets: input encoding and pre-processing, training solver, network layer architecture, and cost function.  

Both optimized LSTM networks (targets = principal stresses and targets = six-component stress tensors) 

had inputs normalized by their z score, MSE as the cost function, an SGD training solver, and one LSTM 

layer. The main difference was that where targets = principal stresses, the geology was encoded using the 

maximum and minimum GSI, and where targets = six-component stress tensors the geology was encoded 

using the mean GSI. In terms of AICc, where a lower value indicates better performance, the performance 

of the LSTM network predicting the three principal stresses was improved as compared to predicting the 

six-component stress tensor, with AICc values of -59.62 and -45.50, respectively. The R2 values were 0.996 
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and 0.997, respectively, and the %C values were 97% and 80%, respectively. The principal stresses 

computed by FLAC3D fell within the range of stresses predicted by the 100-model LSTM network 

ensemble. 

The completion of this objective demonstrates semi-automatic numerical model recalibration using a 

machine learning algorithm and represents progress towards establishing a dynamic interaction between a 

FLAC3D model and the LSTM network to automate the recalibration process.  

4. Formulate a guide for rock engineering practitioners in the selection, development, and engineering 

verification of machine learning algorithms for underground rock engineering problems 

 A guide of tools and processes for developing machine learning for practical rock engineering problems 

has been prepared. The guide focuses on architecture selection for classification and regression problems, 

including the selection of appropriate engineering verification metrics. Recommendations with respect to 

input data pre-processing, balancing, and selection are also made. The tools and processes covered in this 

guide were chosen based on experience gathered completing Objectives 1-3. 

In general, the research contained in this dissertation demonstrates the practical applicability of machine 

learning algorithms to rock engineering problems. A review of the state of the art of machine learning in 

underground rock mechanics research literature is presented. Two different algorithms are developed, one 

for classification and one for regression, for two end member rock mass deformation mechanics, time-

dependent squeezing and high stress rock bursting. A guide of common tools and processes in machine 

learning that can be applied to develop geomechanical is presented. This dissertation has demonstrated 

that good performance and predictive ability can be achieved when developing machine learning for 

geomechanical datasets, provided that the algorithms are developed within the context of the physical 

system for which they are being developed. 

8.2 Novel Contributions  

This dissertation explored the development of machine learning algorithms for practical rock engineering 

problems, including a squeezing ground environment and a high-stress environment. The novel 

contributions include: 

1. a review of the state of the art of machine learning applications applied to underground rock 

engineering, which did not exist in the research literature previously 

2. a novel application of a Convolutional Neural Network to a squeezing ground environment to predict 

tunnel liner yield, where the original format of the mapping data is preserved as images to reduce 

the introduction of bias during the data digitalization process 

3. a method to increase algorithm interpretability in rock engineering using Input Variable Selection 

methods, where two novel methods have been developed for Convolutional Neural Networks 
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4. a semi-automatic method of recalibrating a finite difference model using a Long-Short Term 

Memory network and a database of microseismic events, whereby the stresses in the numerical 

model are predicted as new microseismic events occur 

5. a guide of best practices for developing machine learning solutions for underground rock 

engineering problems 

8.3 Limitations of Research 

A common response to this research, both when presented at conferences and when submitted for peer-

reviewed publications, is that algorithms are “black boxes” or that “machine learning will take our jobs,” 

where the latter is often said in half-jest. These comments encapsulate the limitations of this dissertation, 

and indeed other research at the intersection of machine learning and rock engineering. 

Machine learning is not a substitute for a geotechnical engineer having an understanding of the rock mass 

characteristics and deformation mechanisms. For the algorithms developed in this dissertation, the 

prevalent failure mechanisms in the respective mining environments were well understood by the mine 

operators, and this knowledge was transferred during research meetings. When this is not the case, effort 

must be expended to characterize the rock mass behaviour and ensure the appropriate data is available 

before developing a machine learning algorithm. If not enough data is available to develop an algorithm, 

geotechnical engineering judgment should be used to develop a site investigation and/or laboratory testing 

program to collect additional data. 

Even the most optimized machine learning algorithm cannot make up for poor input data quality. In the 

research presented in this dissertation, the datasets were collected in line with standard practice and 

checked for consistency with the observed rock mass deformation phenomena by the industry partners that 

provided the data. In other words, the algorithms were able to provide insights for the mine operators 

because the available data contained the relevant correlations that could be extracted by machine learning. 

If this is not the case, significant data cleaning and pre-processing is necessary, which is not in the scope 

of this dissertation. It is also possible that additional field and lab data must be collected.  

As has been eloquently described by other authors, for example Elmo & Stead (2021), Marcher et al. (2020), 

and Yang et al. (2021), there is a temptation to take the output of a machine learning algorithm as veritable 

fact without interrogating its blind spots and potential short comings. Machine learning is one of many tools 

available in the rock engineering toolbox and is not infallible. Just as numerical models are examined to 

verify their outputs, algorithms must undergo analogous investigation after they are developed. An example 

of this is the IVS analysis presented in CHAPTER 5.  . Further work is needed to standardize the 

engineering verification and interpretability of machine learning for rock engineering practice, whereby the 

confidence of their use in designing underground excavations can be increased. 
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8.4 Future Work 

The results presented in this dissertation may be used as a basis to continue to enhance the practical scope 

of the machine learning algorithms developed for rock engineering. Future research could focus on: 

1. Further work to refine figure on continuum of algorithm types for rock engineering 

As part of the literature review presented in CHAPTER 2.  An Overview of Opportunities for Machine 

Learning Methods in Underground Rock Engineering Design, Figure 2-9 was developed to illustrate to 

continuum of machine learning algorithms as a function of data redundancy and quantity (reproduced below 

for clarity). In order to be more practically useful, future work on this figure could involve a meta analysis of 

research completed to date at the intersection of machine learning and rock engineering to quantify the 

amount of data and data redundancy, and also to overlay the stage of engineering design the algorithms 

were successful for (i.e, pre-feasibility, feasibility, detailed design).  

 

Figure 2-9. Comparison of data needs for machine learning algorithms included in this review (black) and some 

conventional rock engineering methods (red) in terms of amount of data and data redundancy required. Data 

redundancy indicates the representation of samples of the behaviour the data method should capture. 

2. Further optimization of the Cigar Lake Mine CNN 

Given the small number of inputs used to develop the Cigar Lake CNN, future work could consider the 

additional digitalization of inputs from the GMPs. The inputs digitalized in this dissertation were chosen 

based on discussion with the mine operators at Cigar Lake Mine, however there is potential to further 

increase the tunnel liner yield prediction accuracy by increasing the input candidate pool. 
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The CNN in this dissertation was developed by conducting a sensitivity analysis of a select subset of 

hyperparameters. This CNN could be further refined using an exploration of an automatic hyperparameter 

tuning approach, such as the tree-structured Parzen estimator (Zhou et al., 2021) or Optuna (Akiba et al., 

2019). Such approaches systematically tune hyperparameters using a dynamic search space, as 

opposed to grid searches such as the one completed in this dissertation. These automatic tuning 

approaches may prove more computationally efficient and could increase confidence that a global 

solution has been converged upon during CNN training. 

3. Further development of the Garson Mine LSTM network 

Future work using the Garson Mine dataset and the LSTM network developed in this dissertation could be 

approach in various ways. The candidate input dataset could be adapted to include the raw geotechnical 

mapping data as opposed to the geomechanical parameters from the FLAC3D model. Other authors have 

suggested decomposing classification methods and using their components in modelling, for example 

developing algorithms to use rock mass classification inputs to predict failure phenomena or excavation 

performance directly instead of arriving at a single classification value (Yang et al., 2021). The Garson Mine 

dataset could be further enriched by increasing the number of sequences available for training by both 

reducing the minimum number of microseismic events in a sequence, and by applying a bootstrapping 

algorithm to sample with replacement during training.  

Improvements to the Garson Mine LSTM network could involve refinement of the model efficiency, 

particularly when predicting the six-component stress tensor. An error weighting scheme could be applied 

to ensure good performance across all six targets during algorithm training. IVS methods may also be 

applied to determine if all the microseismic parameters are needed for good model performance, or if these 

may be reduced to improve performance and reduce computational time. Research could also be expanded 

to other algorithm types, such as the recently developed hybrid CNN-LSTM model (Shi et al., 2015), or an 

unsupervised method, such as Self-Organizing Maps.  

4. Integrating the Garson Mine LSTM network into a larger hazard prediction framework 

The Garson Mine LSTM in this dissertation could be used to develop a larger hazard prediction framework, 

whereby the LSTM network is used to automatically recalibrate the FLAC3D model, and then the outputs 

of the recalibrated FLAC3D model are used in a second LSTM network that forward predict microseismic 

event parameters (e.g., moment magnitude and location). These outputs could be used to create a hazard 

map of future seismogenic zones, which in turn could be used to plan future mine developments and stope 

sequencing. 

5. Investigate combination of statistical analysis and machine learning. 

Several publications over the past decade have questioned the validity of reducing qualitative rock mass 

classifications to probabilistic distributions, especially without respecting their inherent limitations (Barton & 
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Bieniawski, 2008; Yang et al., 2021). To this end, future research should investigate the sensitivity of 

machine learning algorithms to sampling from true input data populations as opposed to relying on a 

probability distribution function that represents those qualitative parameters. Additionally, these 

characterizations are subjective and are known to contain a high degree of uncertainty. Fuzzy logic or 

Bayesian approaches could be considered to incorporate the inherent uncertainty in these inputs.  

6. Formalize guidelines for quantifying uncertainty when using machine learning in rock engineering 

It is well understood that engineering epistemology can pose limits on the usefulness of various types of 

models in rock engineering, and this is also true of data driven models such as machine learning algorithms 

(Elmo et al., 2022). Future work should explore the impacts the uncertainty in the input candidates has on 

algorithm performance, such as by applying probabilistic methods or constructing fuzzy numbers from the 

raw inputs.  

Ensemble modelling methods could also be explored in more detail. In this dissertation, ensemble sizes 

were chosen based on model convergence and computational speed, using the rule of thumb that 

ensembles should have at least 30 members (Setiono & Liu, 1997). Ensemble learning models could be 

explored in future work, whereby predictions are updated by voting on the next iteration which is more 

computationally efficient since models become more accurate during training. Ensemble learning 

models can resolve three types of issues: representation challenges with high bias, computational 

challenges with high computational variance, and statistical challenges with high variance. (Zhou et 

al., 2021). 
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APPENDIX A. PROOFS OF CONCEPT 
 

This appendix contains the publications that collectively represent the proofs of concept completed as part 

of this PhD dissertation. The publications are as follows: 

1. Morgenroth, J., Snieder, E., Perras, M., & Khan, U. (2019). Comparison of Bayesian Belief 

Networks and Artificial Neural Networks for prediction of tunnel ground class. Proceedings of the 

ISRM 14th International Congress of Rock Mechanics. September 13 – 19, 2019. Foz do Iguassu, 

Brazil.  

2. Morgenroth, J., Perras, M. A., Khan, U. T., & Vasileiou, A. (2020). An Artificial Neural Network 

approach for predicting rock support damage at Cigar Lake Mine: A Case Study. ISRM International 

Symposium EUROCK 2020 – Hard Rock Engineering. June 14 – 19, 2020. Virtual.  

3. Morgenroth, J., Perras, M. A., & Khan, U. T. (2020). Convolutional Neural Networks for predicting 

tunnel support and liner performance: Cigar Lake Mine case study. Proceedings of the 54th US 

Rock Mechanics/Geomechanics Symposium. June 28 – July 1, 2020. Virtual.  

4. Morgenroth, J., Perras, M. A., & Khan, U. T. (2021). An Input Variable Selection approach for a 

Convolutional Neural Network that forecasts tunnel liner yield at the Cigar Lake Mine. Rocscience 

International Conference 2021 - The Evolution of Geotech: 25 Years of Innovation. 

5. Morgenroth, J., Perras, M. A., Khan, U. T., Kalenchuk, K. S., & Moreau-Verlaan, L. (2021). 

Forecasting principal stresses using microseismic data and a Long-Short Term Memory network at 

Garson Mine. GEO Niagara 2021 - Creating a Sustainable and Smart Future. September 26 – 30, 

2021. Niagara Falls, Canada.
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APPENDIX B. CIGAR LAKE MINE CONVOLUTIONAL NEURAL NETWORK 
MATLAB CODE 

 

All MATLAB code for developing the Cigar Lake Mine Convolutional Neural Network is hosted at a 

permanent DOI (Morgenroth, 2021), and may be cited as follows: 

Morgenroth, J. (2021). Cigar Lake Mine Convolutional Neural Network. 

https://doi.org/10.5281/zenodo.5755063  

 

https://doi.org/10.5281/zenodo.5755063


224 

 

APPENDIX C. GARSON MINE LONG-SHORT TERM MEMORY NETWORK 
MATLAB CODE 

 

All MATLAB code for developing the Garson Mine Long-Short Term Memory Network is hosted at a 

permanent DOI (Morgenroth, 2022), and may be cited as follows: 

Morgenroth, J. (2022). Garson Mine Long Short-Term Memory Network. 

https://doi.org/10.5281/zenodo.6606521  

https://doi.org/10.5281/zenodo.6606521
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