
A Wait-free Queue with Poly-logarithmic

Worst-case Step Complexity

Hossein Naderibeni

A Thesis submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Graduate Program in Computer Science,

York University

Toronto, Ontario

November, 2022

© Hossein Naderibeni, 2022

Abstract

In this work, we introduce a novel linearizable wait-free queue implementation. Linearizability

and lock-freedom are standard requirements for designing shared data structures. To the best of

our knowledge, all of the existing linearizable lock-free queues in the literature have a common

problem in their worst case, called the CAS Retry Problem. We show that our algorithm avoids

this problem with the helping mechanism which we use and has a worst-case running time better

than prior lock-free queues. The amortized number of steps for an Enqueue or Dequeue in our

algorithm is O(log2 p + log q), where p is the number of processes and q is the size of the queue

when the operation is linearized.

ii

Acknowledgements

First, I want to thank my supervisor Eric Ruppert. Without his guidance and support, this

thesis probably would not have been completed. He helped me in every step of this thesis, taught

me shared data structures, helped me find the problem, design and improve the algorithm, and

write it with its complications because of lots of new notions in it. Thank you again for always

pushing to make it better.

I would also like to thank my co-supervisor Franck van Breugel, not only for his careful reading

of my thesis and his thoughtful comments but also for his academic advice and motivations.

Besides my supervisors, I am grateful to all members of my examining committee for their time

and their helpful comments on my thesis.

Last but not least, I would like to thank my parents for providing me with unfailing support

and continuous encouragement throughout my years of study. I want to thank my brother for being

there for me whenever I needed help.

I would like to express my gratitude to York University for the scholarship I was awarded in

2021-2022 academic year.

I dedicate this paper to the people in Iran and all the people who are fighting for their freedom.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

1 Introduction 1

2 Related Work 5

2.1 List-based Queues . 5

2.2 Restricted Queues . 8

2.3 Universal Constructions and Other Poly-log Time Data Structures 9

2.4 Attiya–Fouren Lower Bound . 10

3 Queue Implementation 11

3.1 Details of the Implementation . 17

3.2 Pseudocode . 21

3.3 Example Execution . 28

4 Proof of Correctness 35

4.1 Basic Properties . 35

4.2 Ordering Operations . 39

4.3 Propagating Operations to the Root . 42

4.4 Correctness of GetEnqueue . 45

4.5 Correctness of IndexDequeue . 48

4.6 Linearizability . 52

5 Analysis 57

iv

6 Future Directions 60

References 63

v

List of Tables

1 An execution on a queue separated by the operations in the root blocks. 16

2 Augmented history of operation blocks on the queue. 16

vi

List of Figures

1 An example of a linearizable execution. 2

2 An example of a non-linearizable execution. 2

3 MS-queue structure. 6

4 Baskets queue. 7

5 Global and local pointers in [9]. 8

6 Tournament tree. 11

7 A successful Refresh. 12

8 Two consecutive failed Refreshes by a process. 12

9 The operations merged in a Refresh step with sets. 14

10 The operations merged in a Refresh step with (left, right) blocks. 14

11 Each block stores the index of its last subblock in each child. 15

12 P1, P2, P4 append operations to their leaves. 30

13 P2 helps P1. P4 is faster than P3. 31

14 P4 puts its block into the root before P2 appends its block to n5. 32

15 P3’s CAS on root.blocks succeeds. 33

16 Figure 15 with completed fields. 34

17 Order of operations in a block. 39

18 Time relations of the CASes when a process fails to Refresh a node two times. 44

19 Enqueue operations propagated from the left and the right child to a node. 49

20 Number of Dequeue operations before a Dequeue in a left child. 52

21 Number of Dequeue operations before a Dequeue in a right child. 53

22 The position of Di(root, b). 55

23 Distance relations between start, b, end. 58

24 Array segments. 61

25 Blocks that can be safely garbage collected. 61

vii

1 Introduction

Shared data structures have become an essential field in distributed algorithms research. We are

reaching the physical limits of how many transistors we can place on a CPU core. The industry

solution to provide more computational power is to increase the number of cores of the CPU. It

is not hard to see why multiple processes cannot share a sequential data structure. For example,

consider two processes trying to append to a sequential linked list simultaneously. Processes P,Q

read the same tail node, P changes the next pointer of the tail node to its new node, and then

Q does the same. In this run, P ’s update is overwritten, which makes the queue inconsistent.

One solution is to use locks; whenever a process wants to update or query a data structure, the

process locks the data structure, and others have to wait until the lock is released to read or update

the data structure. Using locks has some disadvantages; for example, one process might be slow,

and holding a lock for a long time prevents other processes from progressing. Moreover, locks do

not allow complete parallelism since only the process holding the lock can progress when the data

structure is locked. For these reasons, we are interested in the design of an efficient shared queue

without using locks.

A sequential queue stores a sequence of elements and supports two operations, enqueue and

dequeue. Enqueue(e) appends the element e to the sequence stored. Dequeue removes and returns

the first element in the queue. If the queue is empty, it returns null. In a concurrent version of

the queue data structure, operations do not happen one at a time. The question that may arise

is, “What properties matter for the implementation of a shared data structure?” Since executions

on a shared data structure are different from sequential ones, the correctness conditions also differ.

To prove a concurrent object works perfectly, we have to show it satisfies safety and progress

conditions. A safety condition tells us that the data structure does not return wrong responses,

and a progress property requires that operations eventually terminate.

A system is called asynchronous when processes in the system run at arbitrarily varying speeds,

i.e., the scheduling of each process is independent from the scheduling of other processes. Our model

1

is an asynchronous shared-memory distributed system of p processes. Herlihy [12] showed that one

cannot implement concurrent versions of all data structures with multi-reader multi-writer registers

alone and introduced a hierarchy based on how powerful objects are to solve the consensus problem

among processes. Objects like LL/SC or CAS can be used to reach a consensus among any number

of processors. A CAS object provides an atomic Compare&Swap(new, old) operation: if the value

stored in the object is old, it updates the value to new and returns true; otherwise it returns

false. In this work, we use Compare&Swap (CAS) objects to synchronize among processes.

The standard safety condition is called linearizability [13], which ensures that for any concurrent

execution on a linearizable object, each operation should appear to take effect instantaneously at

some moment between its invocation and response. Figure 1 depicts an example of an execution on a

linearizable queue that is initially empty. The arrow shows time, and each rectangle shows the time

between the invocation and the termination of an operation. Since Enqueue(A) and Enqueue(B)

are concurrent, Enqueue(B) may or may not take effect before Enqueue(A). The execution in Figure

2 is not linearizable since A has been enqueued before B, so it has to be dequeued first.

Figure 1: An example of a linearizable execution. Either Enqueue(A) or Enqueue(B) could take

effect first since they are concurrent.

Figure 2: An example of an execution on an empty queue that is not linearizable. Enqueue(A)

has terminated before Enqueue(B) is invoked and the Dequeue can occur before Enqueue(A) and

return null or can occur after Enqueue(A) and return A.

2

There are various progress properties; the strongest is wait-freedom, and the more common is

lock-freedom. An algorithm is wait-free if each operation terminates after a finite number of its own

steps. We call an algorithm lock-free if, after a sufficient number of steps, one operation terminates.

A wait-free algorithm is also lock-free but not vice versa; in an infinite run of a lock-free algorithm,

there might be an operation that takes infinitely many steps but never terminates.

We will present a wait-free linearizable queue, which to the best of our knowledge is the first wait-

free queue whose operations run in a poly-logarithmic number of steps. We design a tournament

tree in which each process tries to propagate its operations along a path from the process’s leaf up

to the root to be linearized. Processes can do queries to get information about the linearization

stored in the root. We create a helping mechanism for when a process is propagating its operation

to a node, such that new operations are ensured to be propagated one step further up the tree

after at most 2 CAS invocations. The amortized number of steps for an Enqueue or Dequeue, is

O(log2 p+log q), where q is the size of the queue when the operation is linearized. CAS instructions

cost more than other instructions for the processor. Each operation in our queue does Θ(log p) CAS

operations compared to Ω(p) CAS steps for previous queues in the worst case. We use unbounded

memory space in our queue and present a way to reduce the memory size to the total number of

operations. Furthermore, we do not address garbage collection but we describe a way we think it

can be handled.

Thesis outline The rest of the thesis is organized as follows. Chapter 2 gives an outline of the

related work done in the area and the motivation for our implementation. Previous lock-free queues

and their common problem are presented in Section 2.1. In Section 2.2, we mention some restricted

lock-free queues. Section 2.3 talks about poly-logarithmic constructions of shared objects. Section

2.4 ends with a lower bound on the amortized time complexity of shared queues.

In Chapter 3 we introduce a poly-logarithmic step wait-free queue. In Section 3.1 we give a

high-level description of our implementation. We also discuss the motivation and requirements

in our design to achieve poly-log time. Section 3.2 contains the algorithm itself and there is an

3

example of a concurrent execution of the algorithm described in Section 3.3.

We prove the correctness of our queue in Chapter 4 by showing it is linearizable.

Chapter 5 is devoted to a complexity analysis for our implementation. We compute the number

of CAS instructions our algorithm invokes and the worst-case and amortized running time of the

queue. In the end, we prove our queue is wait-free.

Finally, we give some concluding remarks in Chapter 6. It contains how we can improve our

algorithm’s memory usage and how to use its idea in designing other wait-free data structures.

4

2 Related Work

In this section, we look at previous lock-free queues. The amortized step complexity of all the lock-

free queues includes an Ω(p) term that comes from the worst case, where all p processes try to do

an enqueue or a dequeue simultaneously. Morrison and Afek call this the CAS retry problem [24].

2.1 List-based Queues

Michael and Scott [21] introduced a lock-free queue which we refer to as the MS-queue. A version of

it is included in the standard Java Concurrency Package. Their idea is to store the queue elements

in a singly-linked list (see Figure 3). A shared variable Head points to the first node in the linked

list that has not been dequeued, and the Tail points to the last element in the queue. To insert

a node into the linked list, they use atomic primitive operations like LL/SC or CAS. If p processes

try to enqueue simultaneously, only one can succeed, and the others have to retry. This makes the

amortized number of steps Ω(p) per enqueue. Similarly, dequeue can take Ω(p) steps.

Moir, Nussbaum, and Shalev [23] presented a more sophisticated queue by using the elimination

technique. The elimination mechanism has the dual purpose of allowing operations to complete

in parallel and reducing contention for the queue. An Elimination Queue consists of an MS-queue

augmented with an elimination array. Elimination works by allowing opposing pairs of concurrent

operations such as an enqueue and a dequeue to exchange values when the queue is empty or when

concurrent operations can be linearized to empty the queue. Their algorithm makes it possible for

long-running operations to eliminate an opposing operation. The empirical evaluation showed the

throughput of their work is better than the MS-queue, but the worst case is still the same; in case

there are p concurrent enqueues, their algorithm is not better than MS-queue.

Hoffman, Shalev, and Shavit [14] tried to make the MS-queue more parallel by introducing

the Baskets Queue. Their idea is to allow more parallelism by treating the simultaneous enqueue

operations as a basket. Each basket has a time interval in which all its nodes’ enqueue operations

overlap. Since the operations in a basket are concurrent, we can order them in any way. Enqueues

5

Figure 3: MS-queue structure, enqueue and dequeue operations. In the first diagram, the first

element has been dequeued. Red arrows show new pointers and gray dashed arrows show the old

pointers.

in a basket try to find their order in the basket one by one using CAS operations. However, like the

previous algorithms, if there are p concurrent enqueue operations in a basket, the amortized step

complexity remains Ω(p) per operation.

Ladan-Mozes and Shavit [20] presented an optimistic approach to implement a queue. MS-

queue uses two CASes to do an enqueue: one to change the tail to the new node and another one

to change the next pointer of the previous node to the new node. They use a doubly-linked list to

do fewer CAS operations in an Enqueue than MS-queue. As in previous algorithms, the worst case

happens in the case where the contention is high: when p concurrent enqueues happen, their nodes

have to be appended to the linked list one by one. The amortized complexity is still Ω(p) CASes.

Hendler et al. [11] proposed a new paradigm called flat combining. The key idea behind flat

combining is to allow a combiner who has acquired the global lock on the data structure to learn

6

Figure 4: At some time, all operations in a basket ran concurrently, but only one succeeded to do

CAS. To order the operations in a basket, processes perform another CAS. The successful process

will be the next one in the basket, and so on.

about the requests of threads on the queue, combine them and apply the combined results on the

data structure. Their queue is linearizable but not lock-free and they present experiments that

show their algorithm performs well in some situations.

Gidenstam, Sundell, and Tsigas [9] introduced a new algorithm using a linked list of arrays.

The queue is stored in a shared array where head and tail pointers point to the current elements

in the queue. When the array is full, an empty array is linked to the array and tail pointers are

updated. A global head points to the array containing the first element in the queue, and each

process has a local head index that points to the first element in that array. Global tail and local

tail pointers are similar (see Figure 5). A process updates the position of the pointers after it does

an operation. One process might go to sleep before setting the pointers, so the pointers might be

behind their real places. They mention how to scan the arrays to update pointers while doing an

operation. A process writes an element in the location head by a CAS instruction, so if p processes

try to enqueue simultaneously, the amortized step (and CAS) complexity remains Ω(p). Their design

is lock-free but not wait-free.

Kogan and Petrank [18] introduced wait-free queues based on the MS-queue and use Herlihy’s

helping technique [12] to achieve wait-freedom. Their amortized step complexity is Ω(p) because

of the helping mechanism.

Milman et al. [22] designed a lock-free queue supporting futures. In their queue, operations

7

Figure 5: Global pointers point to arrays. Head and Tail elements are blue, dequeued elements are

red and current elements of the queue are green.

return future objects instead of responses. Later when the response is needed, it can be evaluated

from the future object. They also define a weaker linearizability condition such that each operation

can be linearized between its invocation and when its future is evaluated. Their idea of batching

allows a sequence of operations to be submitted as a batch for later execution on the MS-queue.

They use some properties of the queue size before and after a batch, similar to a part of our work.

Their queue is not wait-free: in fact, if the batch sizes are 1, then the queue is like MS-queue.

Nikolaev and Ravindran [25] present a wait-free queue that uses the fast-path slow-path method-

ology introduced by Kogan and Petrank [19]. Their work is based on a circular queue using bounded

memory. When a process wishes to do an enqueue or a dequeue, it starts two paths. The fast path

ensures good performance while the slow path ensures termination. They show that these two

paths do not affect each other and the queue remains consistent. If a process makes no progress,

other processes help its slow path to finish. The helping phase suffers from the CAS Retry Problem

because processes compete in a CAS loop to decide which succeeds to help. Because of this, the

amortized complexity cannot be better than Ω(p).

The CAS Retry Problem is not limited to list-based queues; array-based queues also share

it [5, 27, 28]. Our motivation is to overcome this problem and present a wait-free sublinear queue.

2.2 Restricted Queues

David introduced the first sublinear concurrent queue [6]. Even though his algorithm does O(1)

steps for each operation, it is a single-enqueuer single-dequeuer queue and uses infinite memory.

The author states that to reduce memory usage to be bounded, the time per operation increases

8

linearly.

Jayanti and Petrovic introduced a wait-free poly-logarithmic multi-enqueuer single-dequeuer

queue [16]. We use their idea of having a tournament tree among processes to agree on the lin-

earization of operations to design a poly-logarithmic multi-enqueuer multi-dequeuer queue. Unlike

their work, our algorithm does not put a limit on the number of concurrent dequeuers.

2.3 Universal Constructions and Other Poly-log Time Data Structures

A universal construction is an algorithm that can implement a shared version of any given sequential

object. The first universal construction was introduced by Herlihy [12]. We can implement a

concurrent queue using a universal construction. Jayanti proved an Ω(log p) lower bound on the

worst-case shared-access time complexity of p-process universal constructions [15]. He also mentions

that the universal construction by Afek, Dauber, and Touitou [1] can be modified to O(log p)

worst-case step complexity, using atomic access to Ω(p log p)-bit words. Chandra, Jayanti and Tan

introduced a semi-universal construction that achieves O(log2 p) shared accesses [4]. However, their

algorithm cannot be used to create a queue. We mention a non-practical universal construction

with a poly-log number of CAS instructions in the last paragraph of page 13.

Ellen and Woelfel introduced an implementation of a Fetch&Inc object with step complexity

of O(log p) using O(log n)-bit LL/SC objects, where n is the number of operations [7]. Their idea

to achieve logarithmic complexity is to use a tree storing the Fetch&Inc operations invoked by

processes. When a process wants to do a Fetch&Inc it adds its Fetch&Inc to the tree and returns

the number of elements in the tree. There are some similarities between designing a queue and a

Fetch&Inc object. A Fetch&Inc object can be constructed from a queue. The algorithm by Ellen

and Woelfel is interesting because of the similarities between Fetch&Inc objects and queues. Also,

it is one of the few wait-free data structures achieving poly-logarithmic complexity.

9

2.4 Attiya–Fouren Lower Bound

Because of the CAS retry problem in previous list-based queues one might guess the Ω(p) term is

inherent in the time complexity of concurrent queues. Attiya and Fouren gave a lower bound on

amortized complexity of lock-free queues with regard to c, the number of concurrent processes.

Their result says if c is O(log log p), any implementation of queues using reads, writes and condi-

tional operations like CAS has Ω(c) amortized complexity [2]. The surprising point is that since

their result is about when contention is low, their lower bound does not contradict our algorithm’s

complexity and we manage to reach poly-log time complexity.

10

3 Queue Implementation

In our model there are p processes doing Enqueue and Dequeue operations on a queue concurrently.

We design a linearizable wait-free queue with O(log2 p+ log q) steps per operation, where q is the

number of elements in the queue at the time of linearization. We avoid the Ω(p) worst-case step

complexity of existing shared queues based on linked lists or arrays, which suffer from the CAS

Retry Problem.

There is a shared binary tree among the processes to agree on one total ordering of the operations

invoked by processes. The tree is called a tournament tree (see Figure 6). Each process has a leaf

in which the operations invoked by the process are stored in order. When a process wishes to

do an operation it appends the operation to its leaf and tries to propagate its new operation up

to the tree’s root. Each node of the tree keeps an ordering of operations propagated up to it.

All processes agree on the sequence of operations in the root and this ordering is used as the

linearization ordering.

P8P7P6P5P4P3P2P1

Figure 6: Each of the processes P1, P2, ..., Pp has a leaf and in each node there is an ordering of

operations stored. Each process tries to propagate its operations up to the root, which stores a

total ordering of all operations.

To propagate operations to a node n in the tree, a process observes the operations in both of n’s

children that are not already in n, merges them to create an ordering and then tries to append the

ordering to the sequence stored in n. We call this procedure n.Refresh (see Figure 7). A Refresh

on n with a successful append helps to propagate their operations up to n. We shall prove that if

a process invokes Refresh on the node n two times and fails to append the new operations to n

11

both times, the operations that were in n’s children before the first Refresh are guaranteed to be

in n after the second failed Refresh. We sketch the argument here.

r1, l1, l2, r2, l3

r1, r2, r3, r4l1, l2, l3, l4, l5

(a) Before the Refresh.

r1, l1, l2, r2, l3, l4, l5, r3, r4

r1, r2, r3, r4l1, l2, l3, l4, l5

(b) After the Refresh.

Figure 7: Before and after a n.Refresh with a successful append. Operations propagating from

the left child are labelled with l and from the right child with r.

Figure 8: Time relations between the concurrent successful Refreshes and the two consecutive

failed Refreshes.

We use CAS (Compare&Swap) instructions to implement the Refresh’s attempt to append

described in the previous paragraph. The second failed Refresh of P is assuredly concurrent with

a successful Refresh that has read its information after the invocation of the first failed Refresh

(see Figure 8). This is because some process L does a successful append during P ’s first failed

attempt, and some process K performs a Refresh that reads its information after L’s append and

then performs a successful append during P ’s second failed Refresh. Process K’s Refresh helps

to append the new operations that were in n’s children before P ’s first failed Refresh, in case they

were not already appended. After a process appends its operation into its leaf it can call Refresh

12

on the path up to the root at most two times on each node. So, with O(log p) CASes an operation

can ensure it appears in the linearization. This cooperative solution allows us to overcome the CAS

Retry Problem.

It is not efficient to explicitly store the sequence of operations in each node because each

operation would have to be copied all the way up to the root; doing this would not be possible

in poly-logarithmic time. Instead we use an implicit representation of the operations propagated

together. Furthermore, we do not need to maintain an ordering on operations propagated together

in a node until they have reached the root. It is sufficient to only keep track of sets of operations

propagated together in each Refresh and then define the linearization ordering only in the root

(see Figure 9). Achieving a constant-sized implicit representation of operations in a Refresh allows

us to do CAS instructions on fixed-size objects in each Refresh. To do that, we introduce blocks.

A block stores information about the operations propagated by a Refresh. It contains the number

of operations from the left and the right child propagated to the node by the Refresh procedure.

See Figure 10 for an example. A node stores an array of blocks of operations propagated up to it.

A propagate step aggregates the new blocks in the children into a new block and stores the new

block in the parent. We call the aggregated blocks subblocks of the new block and the new block

the superblock of them. In each Refresh there is at most one operation from each process trying to

be propagated, because one process cannot invoke two operations concurrently. Thus, there are at

most p operations in a block. Furthermore, since the operations in a Refresh step are concurrent

we can linearize them among themselves in any order we wish, because if two operations are read

in one successful Refresh step in a node they are going to be propagated up to the root together.

Our choice is to put the operations propagated from the left child before the operations propagated

from the right child. In this way, if we know the number of operations from the left child and the

number of operations from the right child in a block, we have a complete ordering of the operations.

So far, we have a shared tree that processes use to agree on the implicit ordering stored in its

root. With this agreement on the linearization ordering, we can design a universal construction;

for a given object, we can perform an operation op by applying all the operations up until op

13

{
op12, op

1
1, op

1
3

}
,
{
op14, op

2
3

}
,
{
op22, op

2
4

}
,
{
op21

}
...

{
op13

}
,
{
op14, op

2
3

}
,
{
op24

}
, ...

op14 op24 ...op13 op23 ...

{
op12, op

1
1

}
,
{
op22

}
,
{
op21

}
...

op12 op22 ...op11 op21 ...

Figure 9: Leaves are for processes P1 to P4 from left to right. In each internal node one can arbi-

trarily linearize the sets of concurrent operations propagated together in a Refresh. For example

op14 and op23 have propagated together in one Propagate step and they will be propagated up to

the root together. Since their execution time intervals overlap, they can be linearized in any order.

(0,11) (12,6) (8,36)

(3,8) (6,0) (14,6) (0,16)

(2,1) (5,0) (4,2) (9,7)

...
...

(0,3) (4,2) (5,1) (3,5)

...
...

(10,2) (5,3)

(0,2) (1,2)

...
...

(2,3) (4,1) (0,5)

...
...

Figure 10: Using blocks to represent operations. Blocks between two lines || are propagated

together to the parent. Each block consists of a pair (left, right) indicating the number of operations

from the left and the right child, respectively. For example, (12,6) in the root contains (10,2) from

the left child and (6,0) from the right child. The third block in the root (8,36) is created by merging

(5,3) from the left child and (14,6) and (0,16) from the right child. (5,3) is the superblock of (0,5)

and (1,2) and (5,1),(3,5) and (4,2) are subblocks of (14,6).

14

in the root on a local copy of the object and then returning the response for op. However, this

approach is not enough for an efficient queue. We show that we can build an efficient queue if we

can compute two things about the ordering in the root: (1) the ith propagated operation and (2)

the rank of a propagated operation in the linearization. We explain how to implement (1) and (2)

in poly-logarithmic steps.

After propagating an operation op to the root, processes can find out information about the

linearization ordering using (1) and (2). To get the ith operation in the root, we find the block

B containing the ith operation in the root, and then recursively find the subblock of B in the

descendent of the root that contains that ith operation. When we reach a block in a leaf, the

operation is explicitly stored there. To make this search faster, instead of iterating over all blocks

in the node, we store the prefix sum of the number of elements in the blocks sequence to permit a

binary search for the required block. We also store pointers to determine the range of subblocks of

a block to make the binary search faster. In each block, we store the prefix sum of operations from

the left child and from the right child. Moreover, for each block, we store two attributes endleft

and endright, the indices of the last left and right subblock (see Figure 11). We know a block size

is at most p, so binary search takes at most O(log p) time, since the endleft and endright indices

of a block and its previous block reduce the search range size to O(p).

To compute the rank in the root of an operation in a leaf, we need to find the superblock of the

block that the operation is in. After a block is installed in a node we store the approximate index

of its superblock in it to make this faster.

Figure 11: Each block stores the index of its last subblock in each child.

15

In an execution on a queue where no dequeue operation returns null, the kth dequeue returns

the argument of the kth enqueue. In the general case a dequeue returns null if and only if the

queue size after the previous operation is 0. We refer to such a dequeue as a null dequeue. If the

dequeue is the kth non-null dequeue, it returns the argument of the kth enqueue. Having the size

of the queue after an operation we can compute the number of non-null dequeues from the number

of enqueues before the operation. So, if we store the size of the queue after each block of operations

in the root, we can compute the index of the enqueue whose argument is the response to a given

dequeue in constant time.

In our case of implementing a queue, a process only needs to compute the rank of a Dequeue

and get an Enqueue with a specific position. We know we can linearize operations in a block in any

order; here, we choose to put Enqueue operations in a block before Dequeue operations. Consider

the following operations, where operations in a cell are concurrent.

Deq Enq(5), Enq(2), Enq(1), Deq Enq(3), Deq Enq(4), Deq, Deq, Deq, Deq

Table 1: An execution on a queue separated by the operations in the root blocks.

The Dequeue operations return null, 5, 2, 1, 3, 4, null, respectively. Now, we claim that by

knowing the size of the queue, we can compute the rank of the required Enqueue for any non-null

Dequeue. We apply this approach to blocks; if we store the size of the queue after each block of

operations, we can compute the index of each Dequeue’s result in O(1) steps.

Deq Enq(5), Enq(2), Enq(1), Deq Enq(3), Deq Enq(4), Deq, Deq, Deq, Deq

#Enqs 0 3 1 1

#Deqs 1 1 1 4

Size at end 0 2 2 0

Table 2: Augmented history of operation blocks on the queue.

16

The size of the queue after the bth block in the root could be computed as

max
(
size after (b− 1)th block + #Enqueues in bth block−#Dequeues in bth block, 0

)
.

Moreover, the total number of non-null dequeues in blocks 1, 2, ..., b in the root is

b∑
i=1

#Enqueues in ith block− size after bth block.

Given a Dequeue is in block B, its response is the argument of the Enqueue whose rank is

#non-null Dequeues in blocks 1, 2, ..., b− 1+index of the Dequeue among B’s Dequeue

if
(
size of the queue after b− 1th block + #Enqueues in bth block

−index of Dequeue in B’s Dequeues
)
≥ 0.

Otherwise, the response would be null.

3.1 Details of the Implementation

Section 3.2 gives the pseudocode for the queue implementation. It uses the following two types of

objects.

Node In each Node we store pointers to its parent and its left and right child, an array of Blocks

called blocks and the index head of the first empty entry in blocks.

Block The information stored in a Block depends on whether the Block is in an internal node

or a leaf. If it is in a leaf, we use a LeafBlock which stores one operation. If a block B is in an

internal node n, then it contains subblocks in the left and right children of n. The left subblocks

of B are some consecutive blocks in the left child of n starting from where the left subblocks of the

block prior to B ended. The right subblocks of B are defined similarly. In each block we store four

essential fields that implicitly summarize which operations are in the block sumenq-left, sumdeq-left,

sumenq-right, sumdeq-right. The sumenq-left field is the total number of Enqueue operations in the

blocks before the last subblock of B in the left child. The other fields’ semantics are similar. The

17

endleft and endright field store the index of the last subblock of a block in the left and the right

child, respectively. The approximate index of the superblock of non-root blocks is stored in their

super field. The size field in a block in the root node stores the size of the queue after the

operations in the block have been performed.

We now describe the routines used in the implementation.

Enqueue(e) An Enqueue operation does not return a response, so it is sufficient to propagate

the Enqueue operation to the root and then use its position in the linearization for future Dequeue

operations. Enqueue(e) creates a LeafBlock with element = e, sets its sumenq and sumdeq fields

and then appends it to the tree.

Dequeue() Dequeue creates a LeafBlock, sets its sumenq and sumdeq fields and appends it to

the tree. Then, it computes the position of the appended Dequeue operation in the root using

IndexDequeue and after that finds the response of the Dequeue by calling FindResponse.

Append(B) The head field is the index of the first empty slot in blocks in a LeafBlock. There

are no multiple write accesses on head and blocks in a leaf because only the process that the leaf

belongs to appends to it. Append(B) adds B to the end of the blocks field in the leaf, increments

head and then calls Propagate on the leaf’s parent. When Propagate terminates, it is guaranteed

that the appended block is a subblock of a block in the root.

Propagate() Propagate on node n uses the double refresh idea described earlier and invokes

two Refreshes on n in Lines 52 and 53. Then, it invokes Propagate on n.parent recursively until

it reaches the root.

Refresh() and Advance() The goal of a Refresh on node n is to create a block of n’s children’s

new blocks and append it to n.blocks. The variable h is read from n.head at Line 60. The new

block created by Refresh will be inserted into n.blocks[h]. Lines 61–66 of n.Refresh help to

Advance n’s children. Advance increments the children’s head if necessary and sets the super field

18

of their most recently appended blocks. The reason behind this helping is explained later when we

discuss IndexDequeue. After helping to Advance the children, a new block called new is created

in Line 67. Then, if new is empty, Refresh returns true because there are no new operations to

propagate, and it is unnecessary to add an empty block to the tree. Later we will use the fact that

all blocks contain at least one operation. Line 70 tries to install new. If it was successful, all is

good. If not, it means someone else has already put a block in n.blocks[h]. In this case, Refresh

helps advance n.head to h+1 and update the super field of n.blocks[h] at Line 71.

CreateBlock() n.CreateBlock(h) is used by Refresh to construct a block containing new

operations of n’s children. The block new is created in Line 80 and its fields are filled similarly

for both left and right directions. The variable indexprev is the index of the block preceding the

first subblock in the child in direction dir that is aggregated into new. Field new.enddir stores the

index of the rightmost subblock of new in the child. Then sumenq-dir is computed from the sum

of the number of Enqueue operations in the new block from direction dir and the value stored in

n.blocks[h-1].sumenq-dir. The field sumdeq-dir is computed similarly. Then, if new is going to be

installed in the root, the size field is also computed.

IndexDequeue(b, i) A call to n.IndexDequeue(b, i) computes the block and the rank within the

block in the root of the ith Dequeue of the bth block of n. Let Rn be the successful Refresh on

node n that did a successful CAS(null, B) into n.blocks[b]. Let par be n.parent. Without loss

of generality, assume for the rest of this section that n is the left child of par. Let Rpar be the first

successful par.Refresh that reads some value greater than b for left.head and therefore contains

B as a subblock of its created block in Line 67. Let j be the index of the block that Rpar puts in

par.blocks.

Since the index of the superblock of B is not known until B is propagated, Rn cannot set

the super field of B while creating B. One approach for Rpar is to set the super field of B

after propagating B to par. This solution would not be efficient because there might be up to p

19

subblocks that Rpar propagated, which need to update their super field. However, intuitively, once

B is installed, its superblock is going to be close to n.parent.head at the time of installation. If we

know the approximate position of the superblock of B then we can search for the real superblock

when it is needed. Thus, B.super does not have to be the exact location of the superblock of

B, but we want it to be close to j. We can set B.super to par.head while creating B, but the

problem is that there might be many Refreshes on par that could happen after Rn reads par.head

and before propagating B to par. If Rn sets B.super to par.head after appending B to n.blocks

(Line 76), Rn might go to sleep at some time after installing B and before setting B.super. In

this case, the next Refreshes on n and par help fill in the value of B.super.

Block B is appended to n.blocks[b] on Line 70. After appending B, B.super is set on

Line 76 of a call to Advance from n.Refresh by the same or another process or by Line 64 of a

n.parent.Refresh. We shall show that this is sufficient to ensure that B.super differs from the

index of B’s superblock by at most 1.

FindResponse(b, i) To compute the response of the ith Dequeue in the bth block of the root

Line 19 computes whether the queue is empty or not. If there are more Dequeues than Enqueues

the queue would become empty before the requested Dequeue. If the queue is not empty, Line 22

computes the rank e of the Enqueue whose argument is the response to the Dequeue. Knowing

the response is the eth Enqueue in the root (which is before the bth block), we find the block and

position containing the Enqueue operation using DoublingSearch and after that GetEnqueue finds

its element.

GetEnqueue(b, i) and DoublingSearch(e, end) We can describe an operation in a node in two

ways: the rank of the operation among all the operations in the node or the index of the block

containing the operation in the node and the rank of the operation within that block. If we know

the block and rank within the block of an operation, we can find the subblock containing the

operation and the operation’s rank within that subblock in poly-log time. To find the response of

20

a Dequeue, we know about the rank of the response Enqueue in the root (e in Line 22). We also

know the eth Enqueue is in root.blocks[1..end]. DoublingSearch uses doubling to find the

range that contains the answer block (Lines 38–41) and then tries to find the required indices with

a binary search (Line 42). A call to n.GetEnqueue(b, i) returns the element of the ith enqueue in

the bth block of n. The range of subblocks of a block is determined using the endleft and endright

fields of the block and its previous block. Then, the subblock is found using binary search on the

sumenq field (Lines 99 and 103).

3.2 Pseudocode

We present our algorithm in pseudocode. page 22 contains the description of the fields in the tree

nodes and the blocks. The value of any uninitialized field is null. page 23 contains major routines

and the rest of this section consists of the auxiliary routines. The abbreviations below are used in

the pseudocode and the proof of correctness.

• blocks[b].sumx=blocks[b].sumx-left+blocks[b].sumx-right (for internal blocks where b ≥ 0

and x ∈ {enq, deq})

• blocks[b].numx=blocks[b].sumx-blocks[b − 1].sumx (for all blocks where b > 0 and x ∈

{enq, deq, enq-left, enq-right, deq-left, deq-right})

21

Algorithm Tree Fields Description

♢ Shared

• A binary tree of Nodes with one leaf for each process. root is the root node.

♢ Local

• Node leaf: process’s leaf in the tree.

▶ Node

• *Node left, right, parent : Initialized when creating the tree.

• Block[] blocks : Initially blocks[0] contains an empty block with all fields equal to 0.

• int head= 1: #blocks in blocks. blocks[0] is a block with all integer fields equal to zero.

▶ Block

• int super : approximate index of the superblock, read from parent.head when appending the block to the

node

▶ InternalBlock extends Block

• int endleft, endright : indices of the last subblock of the block in the left and right child

• int sumenq-left: #enqueues in left.blocks[1..endleft]

• int sumdeq-left: #dequeues in left.blocks[1..endleft]

• int sumenq-right: #enqueues in right.blocks[1..endright]

• int sumdeq-right: #dequeues in right.blocks[1..endright]

▶ LeafBlock extends Block

• Object element : Each block in a leaf represents a single operation. If the operation is enqueue(x) then

element=x, otherwise element=null.

• int sumenq, sumdeq : # enqueue, dequeue operations in this block and its previous blocks in the leaf

▶ RootBlock extends InternalBlock

• int size : size of the queue after performing all operations in this block and its previous blocks in the root

22

Algorithm Queue

1: void Enqueue(Object e) ▷ Creates a block with element e and adds it to the tree.

2: block newBlock= new(LeafBlock)

3: newBlock.element= e

4: newBlock.sumenq= leaf.blocks[leaf.head].sumenq+1

5: newBlock.sumdeq= leaf.blocks[leaf.head].sumdeq

6: leaf.Append(newBlock)

7: end Enqueue

▷ Creates a block with null value element, appends it to the tree and returns its response.

8: Object Dequeue()

9: block newBlock= new(LeafBlock)

10: newBlock.element= null

11: newBlock.sumenq= leaf.blocks[leaf.head].sumenq

12: newBlock.sumdeq= leaf.blocks[leaf.head].sumdeq+1

13: leaf.Append(newBlock)

14: <b, i>= IndexDequeue(leaf.head, 1)

15: output= FindResponse(b, i)

16: return output

17: end Dequeue

▷ Returns the response to Di(root, b), the ith Dequeue in root.blocks[b].

18: element FindResponse(int b, int i)

19: if root.blocks[b-1].size + root.blocks[b].numenq - i < 0 then ▷ Check if the queue is empty.

20: return null

21: else ▷ The response is Ee(root), the eth Enqueue in the root.

22: e= i + (root.blocks[b-1].sumenq-root.blocks[b-1].size)

23: return root.GetEnqueue(root.DoublingSearch(e, b))

24: end if

25: end FindResponse

23

Algorithm Node

⇝ Precondition: blocks[start..end] contains a block with sumenq greater than or equal to x

▷ Does a binary search for the value x of sumenq field and returns the index of the leftmost block in

▷ blocks[start..end] whose sumenq is ≥ x.

26: int BinarySearch(int x, int start, int end)

27: while start<end do

28: int mid= floor((start+end)/2)

29: if blocks[mid].sumenq<x then

30: start= mid+1

31: else

32: end= mid

33: end if

34: end while

35: return start

36: end BinarySearch

Algorithm Root

⇝ Precondition: root.blocks[end].sumenq ≥ e

▷ Returns <b,i> such that Ee(root) = Ei(root, b), i.e., the eth Enqueue in the root is the ith Enqueue within

▷ the bth block in the root.

37: <int, int> DoublingSearch(int e, int end)

38: start= end-1

39: while root.blocks[start].sumenq>=e do

40: start= max(start-(end-start), 0)

41: end while

42: b= root.BinarySearch(e, start, end)

43: i= e- root.blocks[b-1].sumenq

44: return <b,i>

45: end DoublingSearch

24

Algorithm Leaf

46: void Append(block B) ▷ Only called by the owner of the leaf.

47: blocks[head]= B

48: head= head+1

49: parent.Propagate()

50: end Append

Algorithm Node

▷ n.Propagate propagates operations in this.children up to this when it terminates.

51: void Propagate()

52: if not Refresh() then

53: Refresh()

54: end if

55: if this is not root then

56: parent.Propagate()

57: end if

58: end Propagate

▷ Creates a block containing new operations of this.children, and then tries to append it to this.

59: boolean Refresh()

60: h= head

61: for each dir in {left, right} do

62: hdir= dir.head

63: if dir.blocks[hdir]!=null then

64: dir.Advance(hdir)

65: end if

66: end for

67: new= CreateBlock(h)

68: if new.num==0 then return true

69: end if

70: result= blocks[h].CAS(null, new)

71: this.Advance(h)

72: return result

73: end Refresh

25

Algorithm Node

74: void Advance(int h) ▷ Sets blocks[h].super and increments head from h to h+1.

75: hp= parent.head

76: blocks[h].super.CAS(null, hp)

77: head.CAS(h, h+1)

78: end Advance

79: Block CreateBlock(int i) ▷ Creates and returns the block to be installed in blocks[i].

80: block new= new(InternalBlock)

81: for each dir in {left, right} do

82: indexprev= blocks[i-1].enddir

83: new.enddir= dir.head-1 ▷ new contains dir.blocks[blocks[i-1].enddir..dir.head-1].

84: blockprev= dir.blocks[indexprev]

85: blocklast= dir.blocks[new.enddir]

86: new.sumenq-dir= blocks[i-1].sumenq-dir + blocklast.sumenq - blockprev.sumenq

87: new.sumdeq-dir= blocks[i-1].sumdeq-dir + blocklast.sumdeq - blockprev.sumdeq

88: end for

89: if this is root then

90: new.type= InternalBlock-->RootBlock

91: new.size= max(root.blocks[i-1].size + new.numenq- new.numdeq, 0)

92: end if

93: return new

94: end CreateBlock

26

Algorithm Node

⇝ Precondition: blocks[b].numenq≥i≥ 1

95: element GetEnqueue(int b, int i) ▷ Returns the element of Ei(this, b).

96: if this is leaf then

97: return blocks[b].element

98: else if i <= blocks[b].numenq-left then ▷ Ei(this, b) is in the left child of this node.

99: subblockIndex= left.BinarySearch(i+blocks[b-1].sumenq-left, blocks[b-1].endleft+1,

blocks[b].endleft)

100: return left.GetEnqueue(subblockIndex, i)

101: else

102: i= i-blocks[b].numenq-left

103: subblockIndex= right.BinarySearch(i+blocks[b-1].sumenq-right, blocks[b-1].endright+1,

blocks[b].endright)

104: return right.GetEnqueue(subblockIndex, i)

105: end if

106: end GetEnqueue

⇝ Precondition: bth block of the node has propagated up to the root and blocks[b].numdeq≥i.

107: <int, int> IndexDequeue(int b, int i) ▷ Returns <x, y> if Di(this, b) = Dy(root, x).

108: if this is root then

109: return <b, i>

110: else

111: dir= (parent.left==n ? left: right)

112: superblockIndex= parent.blocks[blocks[b].super].sumdeq-dir > blocks[b].sumdeq ?

blocks[b].super: blocks[b].super+1

113: if dir is left then

114: i+= blocks[b-1].sumdeq-parent.blocks[superblockIndex-1].sumdeq-left

115: else

116: i+= blocks[b-1].sumdeq-parent.blocks[superblockIndex-1].sumdeq-right

117: i+= parent.blocks[superblockIndex].numdeq-left

118: end if

119: return this.parent.IndexDequeue(superblockIndex, i)

120: end if

121: end IndexDequeue

27

3.3 Example Execution

Here we want to demonstrate how four processes help one another to propagate their operations

up to the root and then compute their responses.

Initially, each node in the tree contains one empty block. In Figure 12, processes P1, P2, P4 have

appended the blocks containing ENQ1, DEQ2, DEQ4. Line 47 appends a block to the process’s

leaf.

Then, as shown in Figure 13, P2 does a successful Refresh on the node n5 that propagates both

the operations pf P1 and P2. P4 does also a successful Refresh on the node n6 and propagates

DEQ4. P1’s Refresh on n5 is slower than P2’s and creates its new block after P2’s successful CAS

that propagated ENQ1 and ENQ2. So the block created by P1 is empty as there is nothing to

propagate (P1’s Line 60 is after P2’s Line 70).

Since the block that P1 creates is empty, it returns true in Line 68 as shown in Figure 14. P3

propagates ENQ3 to n6 and P4 is very fast and it propagates DEQ4 to the root even before P2

puts its block into n5.

Then, as shown in Figure 15, P4 goes to sleep and P2 helps to increment root.head after its

failed CAS on the root. After incrementing root.head, P3 succeeds to do root.Refresh with a

single CAS on the root and puts operations from P1, P2 and P3 into the root. P1 fails to do

Refresh on the root two times, but it is guaranteed that its operation is propagated before its

second failed CAS on root.blocks.

All the fields of selected blocks from Figure 15 are shown in Figure 16. P1 and P3’s operations

terminated after that they appended the Enqueues to the root. P2 needs to compute the index

of the block that its Dequeue is in. It computes the superblock of its leaf block, which is the

second block in n5. Then, P2 computes the superblock of the block containing ENQ1, DEQ2. As

we can see the super field of ENQ1, DEQ2 is 1 but the index of its superblock is 2. The queue

size after the previous block is 0 so DEQ2’s response is ENQ1’s element. Then P2 tries to get

ENQ1’s element. ENQ1 is in the left subblock of block ENQ1, ENQ3, DEQ2 because 1 is less

28

than the sumenq-left field of the block containing ENQ1, ENQ3, DEQ2. Similarly, P2 determines

that ENQ1 came from the left child of n5. P2 therefore reaches the leaf n1 and returns ENQ1’s

element. P4 similarly finds the block in the root that contains DEQ4. Since it is the first operation

in the block and the size of the queue after the previous (empty) block is 0, DEQ4 returns null.

29

Figure 12: P1, P2, P4 append operations to their leaves.

30

Figure 13: In the diagram, we use n[i] as an abbreviation for n.blocks[i]. P2 helps P1. P4 is

faster than P3.
31

Figure 14: P4 puts its block into the root before P2 appends its block to n5.

32

Figure 15: P3’s CAS on root.blocks succeeds. P1 and P2’s operations are done, each after two

failed CAS attempts on root.blocks.
33

Figure 16: Figure 15 with completed fields.

34

4 Proof of Correctness

We adopt linearizability as our definition of correctness. In our case, where we create the lineariza-

tion ordering in the root, we need to prove (1) the ordering is legal, i.e, for every execution on

our queue if operation op1 terminates before operation op2 then op1 is linearized before operation

op2 and (2) if we do operations sequentially in their linearization order, operations get the same

results as in our queue. The proof is structured like this. First, we define and prove some facts

about blocks and the node’s head field. Then, we introduce the linearization ordering formally.

Next, we prove double Refresh on a node is enough to propagate its children’s new operations up

to the node, which is used to prove (1). After this, we prove some claims about the size and oper-

ations of each block, which we use to prove the correctness of DoublingSearch(), GetEnqueue()

and IndexDequeue(). Finally, we prove the correctness of the way we compute the response of a

dequeue, which establishes (2).

4.1 Basic Properties

In this subsection, we talk about some properties of blocks and fields of the tree nodes.

A block is an object storing some statistics, as described in Algorithm Queue. A block in a

node implicitly represents a set of operations.

Definition 1 (Ordering of a block in a node). Let B be n.blocks[b] and B′ be n.blocks[j].

We call i the index of block B. Block B is before block B′ in node n if and only if i < j.

Next, we show that the value of head in a node can only be increased. By the termination of

a Refresh, head has been incremented by the process doing the Refresh or by another process.

Observation 2. For each node n, n.head is non-decreasing over time.

Proof. The claim follows trivially from the code since head is only changed by incrementing in Line

77 of Advance.

35

Lemma 3. Let R be an instance of Refresh on a node n that creates a non-empty block new

(new.sum ̸= 0). After R terminates, n.head is greater than the value read in Line 60 of R.

Proof. If the CAS in Line 77 is successful, then the claim holds. Otherwise, n.head has changed

from the value read in Line 60. By Observation 2 this means another process has incremented

n.head.

Now we show n.blocks[n.head] is either the last block written into node n or the first empty

block in n.

Invariant 4 (headPosition). If the value of n.head is h then n.blocks[i] = null for i > h and

n.blocks[i] ̸= null for 0 ≤ i < h.

Proof. Initially the invariant is true since n.head = 1, n.blocks[0] ̸= null and n.blocks[x] =

null for every x > 0. The truth of the invariant may be affected by writing into n.blocks or

incrementing n.head. We show that if the invariant holds before such a change, then it still holds

after the change.

In the algorithm, n.blocks is modified only on Line 70, which updates n.blocks[h] where h is

the value read from n.head in Line 60. Since the CAS in Line 70 is successful, it means n.head has

not changed from h before doing the CAS: if n.head had changed before the CAS then it would be

greater than h by Observation 2 and hence n.blocks[h]̸=null and by the induction hypothesis,

so the CAS would fail. Writing into n.blocks[h] when h = n.head preserves the invariant, since

the claim does not talk about the content of n.blocks[n.head].

The value of n.head is modified only in Line 77 of Advance. If n.head is incremented to

h + 1 it is sufficient to show n.blocks[h] ̸=null. Advance is called in Lines 64 and 71. For

Line 64, n.blocks[h] ̸= null because of the if condition in Line 63. For Line 71, Line 70 was

finished before doing Line 71. Whether Line 70 is successful or not, n.blocks[h] ̸= null after the

n.blocks[h].CAS.

We define the subblocks of a block recursively.

36

Definition 5 (Subblock). A block is a direct subblock of the ith block in node n if it is

in

n.left.blocks[n.blocks[i− 1].endleft+1· · ·n.blocks[i].endleft]

or in

n.right.blocks[n.blocks[i− 1].endright+1· · ·n.blocks[i].endright].

Block B is a subblock of block C if B is a direct subblock of C or a subblock of a direct subblock

of C. We say block B has been propagated to node n if B is in n.blocks or is a subblock of a block

in n.blocks.

The following lemma is used to prove that subblocks of two blocks in a node are disjoint.

Lemma 6. If n.blocks[b] ̸= null(b > 0) then n.blocks[i].endleft ≥ n.blocks[i− 1].endleft

and n.blocks[i].endright ≥ n.blocks[i− 1].endright.

Proof. Consider the block B written into n.blocks[b] by CAS at Line 70. Block B is created by the

CreateBlock(b) called at Line 67. Prior to this call to CreateBlock(b), n.head = b at Line 60, so

n.blocks[b− 1] is already a non-null value B′ by Invariant 4. Thus, the CreateBlock(b− 1) that

created B′ has terminated before the invocation of CreateBlock(b) that created B. The value

written into B.endleft at Line 83 of CreateBlock(b) was one less than the value of n.left.head

read at Line 83 of CreateBlock(b). Similarly, the value in n.blocks[b− 1].endleft was one less

than the value read from n.left.head during the call to CreateBlock(b− 1). By Observation 2,

n.left.head is non-decreasing, so B′.endleft ≤ B.endleft. The proof for endright is similar.

Lemma 7. The sets of subblocks of any two blocks in a node are disjoint.

Proof. We are going to prove the lemma by contradiction. Consider the lowest node n in the

tree that violates the claim. Then, subblocks of n.blocks[i] and n.blocks[j] overlap for some

i < j. Since n is the lowest node in the tree violating the claim, direct subblocks of blocks of

n.blocks[i] and n.blocks[j] have to overlap. Without loss of generality, assume left child sub-

blocks of n.blocks[i] overlap with the left child subblocks of n.blocks[j]. By Lemma 6 we

37

have n.blocks[i].endleft ≤ n.blocks[j − 1].endleft, so the range [n.blocks[i− 1].endleft +

1 · · ·n.blocks[i].endleft] cannot have overlap with the range [n.blocks[j − 1].endleft + 1 · · ·

n.blocks[j].endleft]. Therefore, direct subblocks of n.blocks[i] and n.blocks[j] cannot over-

lap, which is in contradiction with the assumption.

Definition 8 (Superblock). Block B is superblock of block C if C is a direct subblock of B.

Corollary 9. Every block has at most one superblock.

Proof. A block having more than one superblock contradicts Lemma 7.

Now we can define the operations of a block using the definition of subblocks.

Definition 10 (Operations of a block). A block B in a leaf represents an Enqueue if B.element ̸=

null. Otherwise, if B.element = null, B represents a Dequeue. The set of operations of block B

is the union of the operations in leaf subblocks of B. We denote the set of operations of block B

by ops(B) and the union of operations of a set of blocks B by ops(B). We also say B contains op

if op ∈ ops(B).

The next lemma proves that each operation appears at most once in the blocks of a node.

Lemma 11. For any node n, if op is in n.blocks[i] then there is no j ̸= i such that op is in

n.blocks[j].

Proof. We prove this claim by contradiction using Lemma 7. Assume op is in the subblocks of both

n.blocks[i] and n.blocks[j]. From Lemma 7 we know that the subblocks of these blocks are

different, so there are two leaf blocks containing op. Since each process puts each operation in only

one block of its leaf, op cannot be in two leaf blocks. This is a contradiction.

Definition 12. n.blocks[i] is established if n.head > i. An operation is established in node n if

it is in an established block of n. EST t
n is the set of established operations in node n at time t.

Now we want to say that blocks of a node grow over time.

38

Observation 13. If time t < time t′ (t is before t′), then ops(n.blocks) at time t is a subset of

ops(n.blocks) at time t′.

Proof. Blocks are only appended (not modified) with CAS to n.blocks[n.head], so the set of the

blocks of a node after the CAS contains the set of the blocks before the CAS.

4.2 Ordering Operations

Figure 17: Order of operations in the block B. Operations in the leaves are ordered in the numerical

order shown in the drawing.

Now we define the ordering of operations stored in each node. In the non-root nodes, we only

need to order operations of a type among themselves (that is, we order the Enqueues in the node

and order the Dequeues in the node separately). Processes are numbered from 1 to p, and leaves

of the tree are assigned from left to right. We will show in Lemma 27 that there is at most one

operation from each process in a given block.

Definition 14 (Ordering of operations inside the nodes).

• E(n, b) is the sequence of enqueue operations in ops(n.blocks[b]) defined recursively as

follows. E(leaf, b) is the single enqueue operation in ops(leaf.blocks[b]) or an empty

39

sequence if leaf.blocks[b] represents a dequeue operation. If n is an internal node, then

E(n, b) =E(n.left, n.blocks[b− 1].endleft + 1) · · ·E(n.left, n.blocks[b].endleft)·

E(n.right, n.blocks[b− 1].endright + 1) · · ·E(n.right, n.blocks[b].endright).

• Ei(n, b) is the ith enqueue in E(n, b).

• The order of the enqueue operations in the node n is E(n) = E(n, 1) · E(n, 2) · E(n, 3) · · ·

• Ei(n) is the ith enqueue in E(n).

• D(n, b) is the sequence of dequeue operations in ops(n.blocks[b]) defined recursively as

follows. D(leaf, b) is the single dequeue operation in ops(leaf.blocks[b]) or an empty

sequence if leaf.blocks[b] represents an enqueue operation. If n is an internal node, then

D(n, b) =D(n.left, n.blocks[b− 1].endleft + 1) · · ·D(n.left, n.blocks[b].endleft)·

D(n.right, n.blocks[b− 1].endright + 1) · · ·D(n.right, n.blocks[b].endright).

• Di(n, b) is the ith enqueue in D(n, b).

• The order of the dequeue operations in the node n is D(n) = D(n, 1) ·D(n, 2) ·D(n, 3)...

• Di(n) is the ith dequeue in D(n).

The linearization ordering is given by the order in which operations appear in the blocks in the

root.

Definition 15 (Linearization).

L = E(root, 1) ·D(root, 1) · E(root, 2) ·D(root, 2) · E(root, 3) ·D(root, 3) · · ·

The following observation follows from the Definition of numx on page 22.

Observation 16. For any node n and indices i < j of blocks in n, we have

n.blocks[j].sumx − n.blocks[i].sumx =

j∑
k=i+1

n.blocks[k].numx

where x ∈ {enq, deq, enq-left, enq-right, deq-left, deq-right}.

40

The next claim is also valid if we replace enq with deq and E with D.

Lemma 17. Let B and B′ be n.blocks[b] and n.blocks[b− 1], respectively.

If n is an internal node, then

(1) B.numenq-left =
∣∣∣E(n.left, B′.endleft + 1) · · ·E(n.left, B.endleft)

∣∣∣.
(2) B.numenq-right =

∣∣∣E(n.right, B′.endright + 1) · · ·E(n.right, B.endright)
∣∣∣.

And for every node n, we have

(3) B.numenq =
∣∣∣E(n, b)

∣∣∣.
Proof. We prove the claim by induction on the height of node n. For the base case when n is a

leaf, statement (3) is trivial, and (1) and (2) are vacuously true. Supposing the claim is true for

n’s children, we prove the claim for n.

B.numenq-left = B.sumenq-left −B′.sumenq-left

= B′.sumenq-left + n.left.blocks[B.endleft].sumenq

− n.left.blocks[B′.endleft].sumenq −B′.sumenq-left

= n.left.blocks[B.endleft].sumenq − n.left.blocks[B′.endleft].sumenq

=

B.endleft∑
i=B′.endleft+1

n.left.blocks[i].numenq

=
∣∣∣E(n.left, B′.endleft + 1) · · ·E(n.left, B.endleft)

∣∣∣
The first line follows from the Definition of numenq. The second line is similar to the way sumenq-left

is computed in the CreateBlock routine. Observation 16 implies the third line and the last line

holds because of the induction hypothesis (3). (2) is similar to (1). Now we prove (3) starting from

the definition of E(n, b).

E(n, b) =E(n.left, n.blocks[b− 1].endleft + 1) · · ·E(n.left, n.blocks[b].endleft)·

E(n.right, n.blocks[b− 1].endright + 1) · · ·E(n.right, n.blocks[b].endright).

By (1) and (2) we have
∣∣∣E(n, b)

∣∣∣ = B.numenq-left +B.numenq-right = B.numenq.

41

The next claim is also true if we replace enq with deq and E with D.

Corollary 18. Let B be n.blocks[b].

(1) If n is an internal node then B.sumenq-left =
∣∣∣E(n.left, 1) · · ·E(n.left, B.endleft)

∣∣∣.
(2) If n is an internal node then B.sumenq-right =

∣∣∣E(n.right, 1) · · ·E(n.right, B.endright)
∣∣∣.

(3) B.sumenq =
∣∣∣E(n, 1) · E(n, 2) · · ·E(n, b)

∣∣∣.
Proof. Result (1) can be proved using the previous lemma.

B.sumenq-left = n.blocks[1].numenq-left + · · ·+ n.blocks[b].numenq-left

=
∣∣∣E(n.left, 1) · · ·E(n.left, n.blocks[1].endleft)

∣∣∣+
...

+
∣∣∣E(n.left, n.blocks[b− 1].endleft) · · ·E(n.left, n.blocks[b].endleft)

∣∣∣
=

∣∣∣E(n.left, 1) · · ·E(n.left, B.endleft)
∣∣∣

We can prove (2) and (3) the same as (1).

4.3 Propagating Operations to the Root

This section explains why two Refreshes are enough to propagate a node’s operations to its parent.

Definition 19. Let top be the time op is invoked, opt be the time op terminates, topl be the time

immediately before running Line l of operation op and op
l t be the time immediately after running

Line l of operation op. We sometimes suppress op and write tl or lt if op is clear from the context.

In the text, vl is the value of variable v immediately after line l for the process we are talking about

and vt is the value of variable v at time t.

Definition 20 (Successful Refresh). An instance of Refresh is successful if its CAS in Line 70

returns true.

In the next two results, we show that for every successful Refresh, all the operations established

in the children before the Refresh are in the parent after the Refresh’s successful CAS at Line 70.

42

Lemma 21. If R is a successful instance of n.Refresh, then we have EST tR
n.left ∪ EST tR

n.right ⊆

ops(n.blocks70).

Proof. We show
EST tR

n.left = ops(n.left.blocks[0..n.left.headtR − 1])

⊆ ops(n.blocks70) = ops(n.blocks[0..n.head70]).

In every node, blocks[0] is an empty block without any operations. Line 70 stores a block

new in n that has endleft = n.left.head83 − 1. Therefore, by Definition 5, after the suc-

cessful CAS in Line 70 we know all blocks in n.left.blocks[1 · · ·n.left.head83 − 1] are sub-

blocks of n.blocks[1 · · ·n.head60]. Because of Observation 2 we have n.left.headtR − 1 ≤

n.left.head83 − 1 and n.head60 ≤ n.head70. From Observation 13 the claim follows. The proof

for the right child is the same.

Corollary 22. If R is a successful instance of n.Refresh that terminates, then we have

EST tR

n.left ∪ EST tR

n.right ⊆ EST
Rt
n .

Proof. The left-hand side is the same as Lemma 21, so it is sufficient to show when R terminates the

established blocks in n are a superset of n.blocks70. Line 70 writes the block new in n.blocks[h]

where h is value of n.head read at Line 60. Because of Lemma 3 we are sure that n.head > h

when R terminates. So the block new appended to n at Line 70 is established at Rt.

In the next lemma, we show that if two consecutive instances of Refresh by the same process on

node n fail, then the blocks established in the children of n before the first Refresh are guaranteed

to be in n after the second Refresh.

Lemma 23. Consider two consecutive terminating instances R1, R2 of Refresh by a process on

an internal node n. If neither R1 nor R2 is a successful Refresh, then we have EST tR1

n.left ∪

EST tR1

n.right ⊆ EST
R2 t
n .

Proof. Let R1 read i from n.head at Line 60. By Lemma 3, R1 and R2 cannot both read the same

value i. By Observation 2, R2 reads a larger value of n.head than R1.

43

Consider the case where R1 reads i and R2 reads i + 1 from Line 60. As R2’s CAS in Line 70

returns false, there is another successful instance R′
2 of n.Refresh that has done a CAS successfully

into n.blocks[i+1] before R2 tries to CAS. R
′
2 creates its block new after reading the value i+1 from

n.head (Line 60) and R1 reads the value i from n.head. By Observation 2 we have R1t < tR1
60 < tR2′

60

(see Figure 18). By Lemma 21 we have ESTn.left
R′
2

60 t
∪ EST

n.right
R′
2

60 t
⊆ ops(n.blocks

t
R′
2

70

). Also by

Lemma 3 on R2, the value of n.head is more than i+1 after R2 terminates, so the block appended by

R′
2 into n.blocks[i] is established by the timeR2 terminates. To summarize, R1t is beforeR′

2’s read

of n.head (t
R′

2
60), so we have EST tR1

n.left ∪EST tR1

n.right ⊆ ops(n.blocks
t
R′
2

70

). R′
2’s successful CAS (t

R′
2

70)

is before R2’s termination (tR2), so by Lemma 3 n.head has been incremented when R2 terminates

and the block R′
2 put into n is established by then. So we have ops(n.blocks

t
R′
2

70

) ⊆ EST
R2 t
n .

If R2 reads some value greater than i + 1 in Line 60 it means n.head has been incremented

at least two times since R1
60 t. By Invariant 4, when n.head is incremented from i + 1 to i + 2,

n.blocks[i+ 1] is non-null. Let R3 be the Refresh on n that has put the block in n.blocks[i+1].

R3 read n.head = i + 1 at Line 60 and has put its block in n.blocks[i + 1] before R2’s read of

n.head at Line 60. So we have tR1 <R3
60 t <R3

70 t < tR2
60 <R2 t. From Observation 13 on the operations

before and after R3’s CAS and Lemmas 21 and 3 on R3 the claim holds.

Figure 18: R1t < tR1
60 < incrementing n.head from i to i+ 1 < t

R′
2

60 < t
R′

2
70 < incrementing n.head

from i+ 1 to i+ 2 < tR2

44

Corollary 24. EST 52t
n.left ∪ EST 52t

n.right ⊆ EST t53
n

Proof. If the first Refresh in line 52 returns true, then by Corollary 22 the claim holds. If the first

Refresh failed and the second Refresh succeeded, the claim still holds by Corollary 22. Otherwise,

both failed, and the claim is implied by Lemma 23.

Now we show that after Append(B) on a leaf finishes, the operation contained in B will be

established in root.

Corollary 25. For A = l.Append(B) we have ops(b) ⊆ EST tA
n for each node n in the path from

l to root.

Proof. A adds B to the assigned leaf of the process, establishes it at Line 48 and then calls

Propagate on the parent of the leaf where it appended B. For every node n, n.Propagate ap-

pends B to n, establishes it in n by Corollary 24 and then calls n.parent.Propagate until n is

root.

Corollary 26. After l.Append(B) finishes, B is a subblock of exactly one block in each node along

the path from l to the root.

Proof. By the previous corollary and Lemma 11 there is exactly one block in each node containingB.

4.4 Correctness of GetEnqueue

First, we prove some claims about the size and operations of a block. These lemmas will be used

later for the correctness and analysis of GetEnqueue().

Lemma 27. Each block contains at most one operation of each process.

Proof. To derive a contradiction, assume there are two operations op1 and op2 of process P in block

B in node n. Without loss of generality op1 is invoked earlier than op2. Process P cannot invoke

more than one operation concurrently, so op1 has to be finished before op2 begins. By Corollary 26,

45

before op2 calls Append, op1 exists in every node of the tree on the path from P ’s leaf to the root.

Since b contains op2, it must be created after op2 is invoked. The fact that op2.Append is invoked

after op1.Append terminated means that there is some block B′ in n before B that contains op1.

The existence of op1 in B and B′ contradicts Lemma 11.

Lemma 28. Each block contains at most c operations, where c is the maximum number of concur-

rent operations at any time in the whole execution (c ≤ p).

Proof. There is a time that all the operations in a block are concurrent, because otherwise if there

is an operation in a block that has ended before another operation in that block starts, then by

Corollary 26 these two operations couldn’t be in the same block. From the definition of c we know

at any time in the execution there cannot be more than c concurrent operations, and from the

previous lemma we know a process has at most one operation in a block, so there cannot be a block

with more than c operations.

Lemma 29. Each block has at most c direct subblocks, where c is the maximum number of con-

current operations at any time in the whole execution (c ≤ p).

Proof. From Definition 10 we know the operations in a block are the union of the operations in the

direct subblocks of the block. We can see that each block appended to an internal node contains at

least one operation due to the test on Line 68. Also, blocks in the leaves contain only one Enqueue

or Dequeue operation. By Lemma 28 each block in an internal node contains at most c operations

and each one of its direct subblocks has at least one operation, so by pigeonhole principle the

number of direct subblocks in a block is at most c.

DoublingSearch(e, end) returns a pair <b, i> such that the ith Enqueue in the bth block of

the root is the eth Enqueue in the sequence stored in the root.

Lemma 30 (DoublingSearch correctness). If 1 ≤ e ≤ root.blocks[end].sumenq, then Doubling-

Search(e, end) returns <b, i> such that Ei(root, b) = Ee(root).

46

Proof. From Lines 86 and 87 we know the sumenq-left, and sumenq-right fields of blocks in each

node are sorted in non-decreasing order. Since sumenq = sumenq-left + sumenq-right, the sumenq

values of root.blocks[0 · ·end] are also non-decreasing. By Corollary 18 we know that the

sumenq field in a block is the sum of the number of Enqueue operations in that block and the

all blocks before that block in the node. Furthermore, since root.blocks[0].sumenq = 0 and

root.blocks[end].sumenq ≥ e, there is a b such that root.blocks[b− 1].sumenq < e and e ≤

root.blocks[b].sumenq. Block root.blocks[b] contains Ei(root, b). Lines 38–41 doubles the

search range in Line 40 and will eventually reach start such that root.blocks[start].sumenq ≤

e ≤ root.blocks[end].sumenq. Then, in Line 42, the binary search finds the b such that root.blo-

cks[b − 1].sumenq< e ≤root.blocks[b].sumenq. By Corollary 18, root.blocks[b] is the block

that contains Ee(root). Finally, i is computed using the definition of sumenq and Corollary 18.

Lemma 31 (GetEnqueue correctness). If 1 ≤ i ≤ n.blocks[b].numenq then n.GetEnqueue(b, i)

returns Ei(n, b).element.

Proof. We will prove this lemma by induction on the node n’s height. For the base case, suppose

n is a leaf. Leaf blocks each contain exactly one operation, n.blocks[b].sumenq ≤ 1, which means

only n.GetEnqueue(b,1) can be called when n is a leaf and n.blocks[b] must contain an Enqueue

operation. Line 97 of n.GetEnqueue(b, 1) returns the element of the Enqueue operation stored

in the bth block of leaf n, as required.

For the induction step, we prove if n.dir.GetEnqueue(b′, i) returns Ei(n.dir, b
′) then n.GetE-

nqueue(b, i) returns Ei(n, b). From Definition 14 of E(n, b), we know that operations from the

left subblocks come before the operations from the right subblocks in a block (see Figure 19). By

Lemma 17, the numenq-left field in n.blocks[b] is the number of Enqueue operations from the

blocks’ subblocks in the left child of n. So the ith Enqueue operation in n.blocks[b] is propa-

gated from the right child if and only if i is greater than n.blocks[b].numenq-left. Line 98 decides

whether the ith enqueue in the bth block of internal node n is in the left child or right child subblocks

of n.blocks[b]. By Definitions 5 and 10, to find an operation in the subblocks of n.blocks[b]

47

we need to search in the range

n.left.blocks[n.blocks[b-1].endleft+1..n.blocks[b].endleft] or

n.right.blocks[n.blocks[b-1].endright+1..n.blocks[b].endright].

First, we consider the case where the Enqueue we are looking for is in the left child. There

are eb = n.blocks[b − 1].sumenq-left Enqueues in the blocks of n.left before the left sub-

blocks of n.blocks[b], so Ei(n, b) is Ei+eb(n.left) which is Ei′(n.left, b
′) for some b′ and i′.

We can compute b′ and then search for the i′th Enqueue in n.left.blocks[b′], where i′ is

i+eb−n.left.blocks[b′−1].sumenq. The parameters in Line 99 are for searching Ei+eb(n.left)

in n.left.blocks in the range of left subblocks of n.blocks[b], so this BinarySearch returns the

index of the subblock containing Ei(n, b).

Otherwise, the Enqueue we are looking for is in the right child. Because Enqueues from the left

subblocks are ordered before the ones from the right subblocks, there are n.blocks[b].numenq-left

enqueues ahead of Ei(n, b) from the left child. So we need to search for i−n.blocks[b].numenq-left+

n.blocks[b − 1].sumenq-right in the right child (Line 103). Other parameters for the right child

are chosen similarly to the left child.

So, in both cases, the direct subblock containing Ei(n, b) is computed in Line 99 or 103.

subblockIndex is the index of the block in n.dir containing Ei(n, b). Finally, n.child.GetEnqueue(

subblockIndex, i) is invoked and it returns Ei(n, b).element by the hypothesis of the induc-

tion.

4.5 Correctness of IndexDequeue

The next few results show that the super field of a block is accurate within one of the actual index

of the block’s superblock in the parent node. Then we explain how it is used to compute the rank

of a given Dequeue in the root.

Definition 32. If a Refresh instance R1 does its CAS at Line 70 earlier than Refresh instance R2

we say R1 has happened before R2.

48

Figure 19: The number and order of the Enqueue operations propagated from the left and the right

child to n.blocks[b]. Both n.blocks[b] and its subblocks are shown in grey. Enqueue operations

from the left child (colored red), are ordered before the Enqueue operations from the right child

(colored blue).

Observation 33. After n.blocks[i].CAS(null, B) succeeds, n.head cannot increase from i to

i+ 1 until B.super is set.

Proof. From Observation 2 we know that n.head changes only by the increment on Line 77. Before

an instance of Advance increments n.head on Line 77, Line 76 ensures that n.blocks[head].super

was set at Line 76.

Corollary 34. If n.blocks[i].super is null, then n.head ≤ i and n.blocks[i+ 1] is null.

Proof. By Invariant 4 and Observation 33.

Now let us consider how the Refreshes that took place on the parent of node n after block B

was stored in n will help to set B.super and propagate B to the parent.

Observation 35. If the block created by an instance Rp of n.parent.Refresh contains block

B = n.blocks[b] then Rp reads a value greater than b from n.head in Line 83.

49

Lemma 36. If B = n.blocks[b] is a direct subblock of n.parent.blocks[superblock] then

B.super ≤ superblock.

Proof. Let Rp be the instance of n.parent.Refresh that does a successful CAS(Line 70) and puts

the superblock of B which is n.parent.blocks[superblock] into n.parent. By Observation 35

if Rp propagates B it has to read a greater value than b from n.head, which means n.head was

incremented from b to b + 1 in Line 77. By Observation 33 B.super was already set in Line 76.

The value written in B.super, was read in Line 75 before the CAS that sets B.super in Line 76.

From Observation 2 we know n.parent.head is non-decreasing so B.super ≤ superblock, since

n.parent.head is still equal to superblock when Rp executes its CAS at Line 70 by Lemma 6.

The reader may wonder when the case b.super = superblock happens. This can happen when

n.parent.blocks[B.super] = null when B.super is written and Rp puts its created block into

n.parent.blocks[B.super] afterwards.

Lemma 37. Let Rn be a Refresh that puts B in n.blocks[b] at Line 70. Then, the block created

by one of the next two successful n.parent.Refreshes according to Definition 32 contains B and

B.super is set when the second successful n.parent.Refresh reaches Line 67.

Proof. Let Rp1 and Rp2 be the next two successful n.parent.Refreshes after Rn. To derive a

contradiction assume B was neither propagated to n.parent by Rp1 nor by Rp2.

Since Rp2’s created block does not contain B, by Observation 35 the value Rp2 reads from

n.head in Line 83 is at most b. From Observation 2 the value Rp2 reads in Line 62 is also at

most b.

Rn puts B into n.blocks[b] so Rn reads the value b from n.head. Since Rp2’s CAS into

n.parent.blocks is successful there should be a Refresh instance R′
p on n.parent that increments

n.parent.head (Line 77) after Rp1’s Line 70 and before Rp2’s Line 60. We assumed tRn
70 < t

Rp1

70 <

t
Rp2

70 by Definition 32. Finally, Line 62 is after Line 60 and Rp2’s Line 60 is after R′
p’s Line 77, which

50

is after Rn’s n.blocks.CAS.

Rn
70 t <

Rp1

70 t

Rp1

70 t <
Rp′
77 t <

Rp2

60 t

Rp2

60 t <
Rp2

62 t


=⇒Rn

70 t <
Rp2

62 t

So Rp2 reads a value greater than or equal to b for n.head by Observation 2.

Therefore Rp2 reads n.head = b. Rp2 calls n.Advance at Line 64, which ensures n.head is

incremented from b. So the value Rp2 reads in Line 83 of CreateBlock is greater than b and Rp2’s

created block contains B. This is in contradiction with our hypothesis.

Furthermore, if B.super was not set earlier, it is set by Rp2’s call to n.Advance invoked from

Line 64.

Corollary 38. If B = n.blocks[b] is propagated to n.parent, then B.super is equal to or one

less than the index of the superblock of B.

Proof. Let Rn be the n.Refresh that put B in n.blocks and let Rp1 be the first successful

n.parent.Refresh after Rn and Rp2 be the second next successful n.parent.Refresh. Before B

can be propagated to n’s parent, n.head must be greater than b, so by Observation 33 B.super

is set. From Lemma 37 we know that B is propagated by the second next successful Refresh’s CAS

on n.parent.blocks. To summarize, we have n.parent.headRp2
70 t

= n.parent.headRp1
70 t

+ 1 and

n.parent.headRp1
70 t

≤ n.parent.headRn
70 t

from Definition 32 and Observation 2. The value that is

set in B.super is read from n.parent.head after Rn
70 t. So B.super is equal to or one less than the

index of the superblock of B.

We prove IndexDequeue’s correctness using Corollary 38 on each step of the IndexDequeue.

Lemma 39 (IndexDequeue correctness). If 1 ≤ i ≤ n.blocks[b].numdeq then n.IndexDequeue(b,i)

returns < x, y > such that Di(n, b) = Dy(root, x).

Proof. We will prove this by induction on the distance of n from the root. The base case where

n is root is trivial (see Line 109). For the non-root nodes n.IndexDequeue(b, i) computes

51

superblockIndex, the index of the superblock of the bth block in n, in Line 112 by Corollary

38. After that, the position of Di(n, b) in D(n.parent, superblockIndex) is computed in Lines

113–118. By Definition 14, Dequeues in a block are ordered based on the order of its subblocks

from left to right. If Di(n, b) was propagated from the left child, the number of dequeues in the left

subblocks of n.parent.blocks[superblockIndex] before n.blocks[b] is considered in Line 114

(see Figure 20). Otherwise, if Di(n, b) was propagated from the right child, the number of dequeues

in the subblocks from the left child is considered to be ahead of the computed index (Line 115) (see

Figure 21). Finally, IndexDequeue is called on n.parent recursively, and it returns the correct

response by the induction hypothesis.

Figure 20: The number of Dequeue operations before Di(n, b) shown in the case where n is a left

child. The index of the superblock is shown with sb.

4.6 Linearizability

We now prove the two properties needed for linearizability.

Lemma 40. L is a legal linearization ordering.

Proof. We must show for any execution that every operation that terminates is in L exactly once.

Also, if op1 terminates before op2 in starts in the execution, then op1 is before op2 in the lineariza-

tion. The first claim is directly reasoned from Corollary 26. For the latter, if op1 terminates before

52

Figure 21: The number of Dequeue operations before Di(n, b) shown in the case where n is a right

child. The index of the superblock is shown with sb.

op2 starts, op1.Append has terminated before op2.Append started. From Corollary 25, op1 is in

root.blocks before op2 starts to propagate. By definition of L, op1 is linearized before op2.

Once some operations are aggregated in one block, they will get propagated up to the root

together, and they can be linearized in any order among themselves. We have chosen to put

Enqueues in a block before Dequeues (see Definition 14).

Definition 41. If a Dequeue operation returns null it is called a null Dequeue, otherwise it is

called non-null Dequeue.

Next, we define the responses that Dequeues should return, according to the linearization.

Definition 42. Assume the operations in root.blocks are applied sequentially on an empty queue

in the order of L. Resp(d) = e.element if the element of Enqueue e is the response to Dequeue d.

Otherwise if d is a null Dequeue then Resp(d) = null.

In the next lemma, we show that the size field in each root block is computed correctly.

Lemma 43. root.blocks[b].size is the size of the queue after the operations in root.blocks[0·

· · b] are applied in the order of L.

Proof. We prove the claim by induction on b. The base case when b = 0 is trivial since the queue

is initially empty and root.blocks[0] contains an empty block with size field equal to 0. We

53

are going to show the correctness when b = i assuming correctness when b = i − 1. By Def-

inition 14 Enqueue operations come before Dequeue operations in a block in L. By Lemma 17

numenq and numdeq fields in a block show the number of Enqueue and Dequeue operations in it. If

there are more than root.blocks[i − 1].size + root.blocks[i].numenq dequeue operations in

root.blocks[i] then the queue would become empty after root.blocks[i]. Otherwise, the size of

the queue after the bth block in the root is root.blocks[b− 1].size+ root.blocks[b].numenq−

root.blocks[b].numdeq. In both cases, this is the same as the assignment on Line 91.

The next lemma is useful to compute the number of non-null dequeues.

Lemma 44. If operations in the root are applied in the order of L, the number of non-null Dequeues

in root.blocks[0 · · · b] is root.blocks[b].sumenq − root.blocks[b].size.

Proof. There are root.blocks[b].sumenq Enqueue operations in root.blocks[0 · · · b] by Corol-

lary 18. The size of the queue after doing root.blocks[0 · · · b] in the order of L is the number of

enqueues in root.blocks[0 · · · b] minus the number of non-null Dequeues in root.blocks[0 · · · b].

By the correctness of the size field from Lemma 43 and sumenq field from Lemma 17, the number

of non-null Dequeues is root.blocks[b].sumenq − root.blocks[b].size.

Corollary 45. If operations in the root are applied in the order of L, the number of non-null de-

queues in root.blocks[b] is root.blocks[b].numenq − root.blocks[b].size + root.blocks[b−

1].size.

Lemma 46. Resp(Di(root, b)) is null iff root.blocks[b−1].size + root.blocks[b].numenq−i

< 0.

Proof. The claim follows immediately from Corollary 45 and Lemma 17.

Lemma 47. FindResponse(b, i) returns Resp(Di(root, b)).

Proof. Di(root, b) is Droot.blocks[b−1].sumdeq+i(root) by Definition 14 and Lemma 18. Di(root, b)

returns null at Line 20 if root.blocks[b − 1].size + root.blocks[b].numenq − i < 0 and

54

Resp(Di(root, b)) = null in this case by Lemma 46. Otherwise, if Di(root, b) is the eth non-null

Dequeue in L it should return the eth enqueued value. By Lemma 44 there are root.blocks[b−

1].sumenq − root.blocks[b−1].size non-null Dequeue operations in root.blocks[0 · · · b−1].

The Dequeues in root.blocks[b] before Di(root, b) are non-null Dequeues. So Di(root, b) is the

eth non-null Dequeue where e = i+root.blocks[b−1].sumdeq−root.blocks[b−1].size (Line

22). See Figure 22.

After computing e at Line 22, the code finds b,i such that Ei(root, b) = Ee(root) using

DoublingSearch and then finds its element using GetEnqueue (Line 23). Correctness of DoublingS-

earch and GetEnqueue routines are shown in Lemmas 30 and 31.

Figure 22: The position of Di(root, b).

Lemma 48. The responses to operations in our algorithm are the same as in the sequential exe-

cution in the order given by L.

Proof. Enqueue operations do not return any value. By Lemma 47, the response of a Dequeue in

our algorithm is the same as its response in the sequential execution of L.

Theorem 49 (Main). The queue implementation is linearizable.

Proof. The theorem follows from Lemmas 40 and 48.

55

Remark In fact our algorithm is strongly linearizable as defined in [10]. By Definition 14 the lin-

earization ordering of operations will not change as blocks containing new operations are appended

to the root.

56

5 Analysis

In this section, we analyze the number of CAS invocations and the time complexity of our algorithm.

Proposition 50. An Enqueue or Dequeue operation does at most 14 log p CAS operations.

Proof. In each level of the tree Refresh is invoked at most two times, and every Refresh invokes

at most seven CASes, one in Line 70 and two from each Advance in Line 64 or 71.

Lemma 51 (DoublingSearch Analysis). If the element enqueued by Ei(root, b) = Ee(root) is the

response to some Dequeue operation in root.blocks[end], then DoublingSearch(e, end) takes

O
(
log(root.blocks[b].size+ root.blocks[end].size)

)
steps.

Proof. First we show end − b − 1 ≤ 2 × root.blocks[b− 1].size + root.blocks[end].size.

There can be at most root.blocks[b].size Dequeues in root.blocks[b + 1 · · · end − 1]; oth-

erwise all elements enqueued by root.blocks[b] would be dequeued before root.blocks[end].

Furthermore, in the execution of queue operations in the linearization ordering, the size of the queue

becomes root.blocks[end].size after the operations of root.blocks[end]. The final size of the

queue after root.blocks[1 · · · end] is root.blocks[end].size. After an execution on a queue,

the size of the queue is greater than or equal to #enqueues − #dequeues in the execution. We

know the number of dequeues in root.blocks[b+1 · · · end−1] is less than root.blocks[b].size,

therefore in root.blocks[b + 1 · · · end − 1] there cannot be more than root.blocks[b].size +

root.blocks[end].size Enqueues. Overall there can be at most 2 × root.blocks[b].size +

root.blocks[end].size operations in root.blocks[b+ 1 · · · end− 1] and since from Line 68 we

know that the num field of every block in the tree is greater than 0, each block has at least one

operation, so there are at most 2 × root.blocks[b].size + root.blocks[end].size blocks in

between root.blocks[b] and root.blocks[end]. So, end− b− 1 ≤ 2× root.blocks[b].size+

root.blocks[end].size.

Thus, the doubling search reaches start such that the root.blocks[start].sumenq is less than

e in O
(
log(root.blocks[b].size+root.blocks[end].size)

)
steps. See Figure 23. After Line 41,

57

the binary search that finds b also takes O
(
log(root.blocks[b].size+root.blocks[end].size)

)
.

Next, i is computed via the definition of sumenq in constant time (Line 43).

Figure 23: Distance relations between start, b, end.

Lemma 52 (Worst Case Time Analysis). The worst case number of steps for an Enqueue is

O(log2 p) and for a Dequeue, is O(log2 p + log qe + log qd), where qd is the size of the queue when

the Dequeue is linearized and qe is the size of the queue at the time the response of the Dequeue is

linearized.

Proof. Enqueue consists of creating a block and appending it to the tree. The first part takes

constant time. To propagate the operation to the root the algorithm tries at most two Refreshes

in each node of the path from the leaf to the root (Lines 52, 53). We can see from the code that

each Refresh takes a constant number of steps and does O(1) CASes. Since the height of the tree

is Θ(log p), Enqueue takes O(log p) steps.

A Dequeue creates a block whose element is null, appends it to the tree, computes its rank

among non-null dequeues, finds the corresponding enqueue and returns the response. The first

two parts are similar to an Enqueue operation and take O(log p) steps. To compute the rank of a

Dequeue in D(n), the Dequeue calls IndexDequeue(). IndexDequeue does O(1) steps in each level

which takes O(log p) steps. If the response to the Dequeue is null, FindResponse returns null in

O(1) steps. Otherwise, if the response to a dequeue in root.blocks[end] is in root.blocks[b]

the DoublingSearch takes Θ(log(root.blocks[b].size+root.blocks [end].size) by Lemma 51,

58

which is O(log qe + log qd). Each search in GetEnqueue() takes O(log p) steps since there are at

most p subblocks in a block (Lemma 29), so GetEnqueue() takes O(log2 p) steps.

Lemma 53 (Amortized Worst-case Analysis). The amortized number of steps for an Enqueue or

Dequeue is O(log2 p+ log q), where q is the size of the queue when the operation is linearized.

Proof. If we split the DoublingSearch time cost between the corresponding Enqueue and Dequeue,

each operation takes O(log2 p+ q) steps.

Observation 54. If the maximum number of concurrent processes at any time in an execution is c,

then the amortized worst-case step complexity is O(log p log c+ log q) per operations. Furthermore,

in a sequential, execution where c = 1, the step complexity of our algorithm is Θ(log p+ log q) per

operation.

Proof. The analysis is similar to the two previous Lemmas, but by Lemma 29 each BinarySearch

in each call of GetEnqueue takes O(log c) steps.

Theorem 55. The queue implementation is wait-free.

Proof. To prove the claim, it is sufficient to show that every Enqueue and Dequeue operation

terminates after a finite number of its own steps. This is directly concluded from Lemma 52.

59

6 Future Directions

We designed a tree to achieve agreement on a linearization of operations invoked by p processes in

an asynchronous model, which we will call a block tree. We implemented two queries to compute

information about the ordering agreed in the block tree. Then we used the tree to implement a

queue where the number of steps per operation is poly-logarithmic with respect to the size of the

queue and the number of processes. Block trees can be used as a mechanism to achieve agreement

among processes to construct more poly-logarithmic wait-free linearizable objects. In the next

paragraphs, we talk about possible improvements on block trees and the data structures that we

can implement with block trees.

Reducing Space Usage The blocks arrays defined in our algorithm are unbounded. To use

O(n) space in each node where n is the total number of operations, instead of unbounded arrays,

we could use the memory model of the wait-free vector introduced by Feldman, Valera-Leon and

Damian [8]. We can create an array called arr of pointers to array segments (see Figure 24). When

a process wishes to write into location head it checks whether arr[⌊log head⌋] points to an array or

not. If not, it creates a shared array of size 2⌊log head⌋ and tries to CAS a pointer to the created array

into arr[⌊log head⌋]. Whether the CAS is successful or not, arr[⌊log head⌋] points to an array.

When a process wishes to access the ith element it looks up arr[⌊log i⌋][i− 2⌊log i⌋], which takes

O(1) steps. The CAS Retry Problem does not happen here because if n elements are appended to

the array, then only O(p× log n) CAS steps have happened on the array arr. Furthermore, at most

p arrays with size 2⌊log i⌋ are allocated by processes while processes try to do the CAS on arr[i].

Jayanti and Shun [17] present a way to initialize wait-free arrays in constant steps. The time

taken to allocate arrays in an execution containing n operations is O(p lognn) per operation, which

is negligible if n >> p. The vector implementation also has a mechanism for doubling arr when

necessary, but this happens very rarely since increasing arr from s to 2s increases the capacity of

the vector from 2s to 22s.

60

Figure 24: Array segments.

Garbage Collection We did not handle garbage collection: Enqueue operations remain in the

nodes even after their elements have been dequeued. We can keep track of the blocks in the root

whose operations are all terminated, i.e., all enqueues have been dequeued, and the responses of all

dequeues have been computed. We call these blocks finished blocks. If we help the operations of all

processes to compute their responses, then we can say if block B is finished, then all blocks before

B are also finished. Knowing the most recent finished block in a node, we can reclaim the memory

taken by finished blocks. We cannot use arrays (or vectors) to throw the garbage blocks away. We

need a data structure that supports tryAppend(), read(i), write(i) and split(i) operations in

O(log n) time, where split(i) removes all the indices less than i. If each process tries to do the

garbage collection once every p2 operations on the queue, then the amortized complexity remains

the same. We can use a concurrent implementation of a persistent red-black trees for this [26].

Bashari and Woelfel [3] used persistent red-black trees in a similar way.

Figure 25: Finished blocks are shown with red color and unfinished blocks are shown with green

color. All the subblocks of a finished block are also finished.

Poly-logarithmic Wait-free Sequences Consider a data structure storing a sequence that

supports three operations append(e), get(i) and index(e). An append(e) adds e to the end

of the sequence, a get(i) gets the ith element in the sequence and an index(e) computes the

61

position of element e in the sequence. We can modify our queue to design such a data structure. An

append(e) is implemented like Enqueue(e), get(i) is done by calling DoublingSearch but with a

BinarySearch on the entire root.blocks array and index(e) is done similarly to IndexDequeue

(except operating on enqueues instead of dequeues). We achieve this with poly-logarithmic steps

for each operation with respect to the number of appends done.

Other Poly-log Wait-free Data structures There are two reasons the block tree worked well

to implement a queue. Firstly, to respond to a Dequeue we do not need to look at the entire history

of operations: if a Dequeue does not return null, we can compute the index of the Enqueue that

is its response in O(log n) time if we keep the number of enqueues and the size. Secondly, the

operations we need to search to respond to the Dequeue are not very far from it in the sequence

of operations: the distance is at most linear in the size of the queue. Creating a wait-free poly-

logarithmic implementation of other objects whose operations satisfy these two conditions may be

possible.

Attiya–Fouren Lower Bound As discussed in Section 2.4 the Attiya–Fouren lower bound says

that a concurrent implementation of queues using reads, writes and conditional operations like CAS

has Ω(c) amortized complexity [2] when c the number of concurrent processes, is O(log log p). Our

amortized worst-case step complexity is Θ(log2 p+ log q). It is an open problem to reduce the gap

between our algorithm and the Attiya–Fouren lower Ω(log log p) bound.

62

References

[1] Afek, Y., Dauber, D., and Touitou, D. Wait-free made fast (extended abstract). In Proceed-

ings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (1995), F. T.

Leighton and A. Borodin, Eds., ACM, pp. 538–547.

[2] Attiya, H., and Fouren, A. Lower bounds on the amortized time complexity of shared ob-

jects. In 21st International Conference on Principles of Distributed Systems (2017), J. Aspnes,

A. Bessani, P. Felber, and J. Leitão, Eds., vol. 95 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, pp. 16:1–16:18.

[3] Bashari, B., and Woelfel, P. An efficient adaptive partial snapshot implementation. In ACM

Symposium on Principles of Distributed Computing (2021), A. Miller, K. Censor-Hillel, and

J. H. Korhonen, Eds., ACM, pp. 545–555.

[4] Chandra, T. D., Jayanti, P., and Tan, K. A polylog time wait-free construction for closed ob-

jects. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed

Computing (1998), B. A. Coan and Y. Afek, Eds., ACM, pp. 287–296.

[5] Colvin, R., and Groves, L. Formal verification of an array-based nonblocking queue. In

10th International Conference on Engineering of Complex Computer Systems (2005), IEEE

Computer Society, pp. 507–516.

[6] David, M. A single-enqueuer wait-free queue implementation. In Distributed Computing, 18th

International Conference (2004), R. Guerraoui, Ed., vol. 3274 of Lecture Notes in Computer

Science, Springer, pp. 132–143.

[7] Ellen, F., and Woelfel, P. An optimal implementation of fetch-and-increment. In Proceed-

ings of the 27th International Symposium on Distributed Computing (2013), Springer-Verlag,

p. 284–298.

63

[8] Feldman, S., Valera-Leon, C., and Dechev, D. An efficient wait-free vector. IEEE Transactions

on Parallel and Distributed Systems 27, 3 (2016), 654–667.

[9] Gidenstam, A., Sundell, H., and Tsigas, P. Cache-aware lock-free queues for multiple pro-

ducers/consumers and weak memory consistency. In Principles of Distributed Systems - 14th

International Conference (2010), C. Lu, T. Masuzawa, and M. Mosbah, Eds., vol. 6490 of

Lecture Notes in Computer Science, Springer, pp. 302–317.

[10] Golab, W. M., Higham, L., and Woelfel, P. Linearizable implementations do not suffice for

randomized distributed computation. In Proceedings of the 43rd ACM Symposium on Theory

of Computing (2011), L. Fortnow and S. P. Vadhan, Eds., ACM, pp. 373–382.

[11] Hendler, D., Incze, I., Shavit, N., and Tzafrir, M. Flat combining and the synchronization-

parallelism tradeoff. In Proceedings of the 22nd Annual ACM Symposium on Parallelism in

Algorithms and Architectures (2010), F. M. auf der Heide and C. A. Phillips, Eds., ACM,

pp. 355–364.

[12] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13, 1 (1991),

124–149.

[13] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[14] Hoffman, M., Shalev, O., and Shavit, N. The baskets queue. In Principles of Distributed

Systems, 11th International Conference (2007), E. Tovar, P. Tsigas, and H. Fouchal, Eds.,

vol. 4878 of Lecture Notes in Computer Science, Springer, pp. 401–414.

[15] Jayanti, P. A time complexity lower bound for randomized implementations of some shared ob-

jects. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed

Computing (1998), B. A. Coan and Y. Afek, Eds., ACM, pp. 201–210.

64

[16] Jayanti, P., and Petrovic, S. Logarithmic-time single deleter, multiple inserter wait-free queues

and stacks. In Foundations of Software Technology and Theoretical Computer Science (2005),

R. Ramanujam and S. Sen, Eds., vol. 3821 of Lecture Notes in Computer Science, Springer,

pp. 408–419.

[17] Jayanti, S., and Shun, J. Fast arrays: Atomic arrays with constant time initialization. In

35th International Symposium on Distributed Computing (2021), S. Gilbert, Ed., vol. 209 of

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 25:1–25:19.

[18] Kogan, A., and Petrank, E. Wait-free queues with multiple enqueuers and dequeuers. In

Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (2011), C. Cascaval and P. Yew, Eds., ACM, pp. 223–234.

[19] Kogan, A., and Petrank, E. A methodology for creating fast wait-free data structures. SIG-

PLAN Not. 47, 8 (2012), 141–150.

[20] Ladan-Mozes, E., and Shavit, N. An optimistic approach to lock-free FIFO queues. Distributed

Computing 20, 5 (2008), 323–341.

[21] Michael, M. M., and Scott, M. L. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on

Principles of Distributed Computing (1996), J. E. Burns and Y. Moses, Eds., ACM, pp. 267–

275.

[22] Milman, G., Kogan, A., Lev, Y., Luchangco, V., and Petrank, E. BQ: A lock-free queue with

batching. In Proceedings of the 30th Symposium on Parallelism in Algorithms and Architectures

(2018), C. Scheideler and J. T. Fineman, Eds., ACM, pp. 99–109.

[23] Moir, M., Nussbaum, D., Shalev, O., and Shavit, N. Using elimination to implement scalable

and lock-free FIFO queues. In Proceedings of the 17th Annual ACM Symposium on Parallelism

in Algorithms and Architectures (2005), P. B. Gibbons and P. G. Spirakis, Eds., ACM, pp. 253–

262.

65

[24] Morrison, A., and Afek, Y. Fast concurrent queues for x86 processors. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (2013), A. Nicolau, X. Shen,

S. P. Amarasinghe, and R. W. Vuduc, Eds., ACM, pp. 103–112.

[25] Nikolaev, R., and Ravindran, B. Wcq: A fast wait-free queue with bounded memory usage.

In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures

(New York, NY, USA, 2022), SPAA ’22, Association for Computing Machinery, p. 307–319.

[26] Okasaki, C. Functional data structures. In Advanced Functional Programming, Second Inter-

national School (1996), J. Launchbury, E. Meijer, and T. Sheard, Eds., vol. 1129 of Lecture

Notes in Computer Science, Springer, pp. 131–158.

[27] Shafiei, N. Non-blocking array-based algorithms for stacks and queues. In Distributed Com-

puting and Networking, 10th International Conference (2009), V. K. Garg, R. Wattenhofer,

and K. Kothapalli, Eds., vol. 5408 of Lecture Notes in Computer Science, Springer, pp. 55–66.

[28] Tsigas, P., and Zhang, Y. A simple, fast and scalable non-blocking concurrent FIFO queue

for shared memory multiprocessor systems. In Proceedings of the Thirteenth Annual ACM

Symposium on Parallel Algorithms and Architectures (2001), A. L. Rosenberg, Ed., ACM,

pp. 134–143.

66

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	List-based Queues
	Restricted Queues
	Universal Constructions and Other Poly-log Time Data Structures
	Attiya–Fouren Lower Bound

	Queue Implementation
	Details of the Implementation
	Pseudocode
	Example Execution

	Proof of Correctness
	Basic Properties
	Ordering Operations
	Propagating Operations to the Root
	Correctness of GetEnqueue
	Correctness of IndexDequeue
	Linearizability

	Analysis
	Future Directions
	References

