Innovative Intersection Traffic Modeling Tips, Tricks, & Things You May Have Missed Nathan Shellhamer, PE - INDOT Corridor Development Office David Reamer, PE - INDOT Vincennes District

Part 1: Modeling Tools

What are they, how are they different, and which one should I use?

What Modeling Tools Do We Use?

- HCS
- Synchro
- SIDRA
- VISSIM

SIDRA INTERSECTION 9

POWERFUL LANE-BASED ANALYSIS OF INTERSECTIONS AND NETWORKS

45%

Initialising Program..

© 2000-2020 Akcelik & Associates Pty Ltd | SIDRASOLUTIONS.COM

Highway Capacity Software (HCS, v7)

- Most basic application of the HCM Segment
- Module based (e.g. basic freeway, two-lane highway, TWSC, etc.)
- No simulation, only basic analysis results
- Best for: simple analyses, basic freeway analysis, passing lanes
- Not well suited for: Simulation, complex analyses

Synchro (v11)

- Application of HCM methodology
- Signals and signal operations
- Both HCM analysis results and simulation-based results.
- Best for: Signalized corridor analysis, urban arterials, intersection improvement analysis
- Not well suited for: Complex analyses, freeway/free-flow conditions

 Movement
 EBL
 EBT
 EBR
 WBL
 WBT
 WBR
 NBL
 NBT
 NBR
 SBL
 SBT
 SBR

 Lane Configurations
 1
 <t

SIDRA (v9)

- INDOT's preferred software for modeling roundabouts
- See INDOT Traffic Analysis Procedures for important SIDRA defaults
- Provides additional calibration and configuration parameters
- Best for: Roundabouts (Standalone or interchange
- Not well suited for: Non-roundabout analysis

PTV VISSIM (v2023)

- Complex microsimulation software
- Can handle freeway simulation and freeway/arterial interactions
- Best for: Complex freeway interactions & complex alternative intersection corridors
- Not well suited for: Simple analyses where HCM results are all that are needed.

When should I use Synchro (or VISSIM, or HCS, etc)?

Intersection Form	HCM/HCS	Synchro/SimTraffic	SIDRA	Vissim
Standard	\checkmark	\checkmark		
Median U-Turn		\checkmark		\checkmark
Roundabout	\checkmark		\checkmark	\checkmark
Arterial System	\checkmark	\checkmark		
Displaced Left Turn	\checkmark	\checkmark		\checkmark
Other Forms		\checkmark		\checkmark

This is only a guide - see INDOT Intersection Traffic Analysis Procedures for more information.

Part 2: Modeling Innovative Intersections

Median U-Turns (RCIs, RCUTs, Boulevard Lefts)

Median U-Turn Modeling

Median U-Turn Analysis and Measures Of Effectiveness (MOEs)

- HCM Chapter 23
 - LOS of intersections not enough
- Experienced Travel Time (ETT)
 - Evaluates impact of rerouted turning movements
- HCM provides guidance for converting ETT to LOS
- Will likely require hand calculations to supplement Synchro results – consider HCS

ETT includes:

- Control delay at 2 & 4
- Diverted-path travel times (2-3 and 5-6)

Displaced Left Turns

Displaced Left Turn Modeling

Displaced Left Turn Analysis and MOEs

- Similar to MUTs HCM Chapter 23
 - LOS is not enough
- Experienced Travel Time (ETT)
 - Can be converted to LOS
- Typically negligible additional travel distance, but control delay at multiple points
- Will likely require hand calculations to supplement Synchro results – consider HCS

Green T Intersection

US 40 at River's Edge Rd, Columbia, MD

Green T Intersection Modeling and Analysis

- Model is similar to standard 3-leg intersection
- MOEs and analysis similar to standard 3-leg intersection

Downstream lane merge should be modeled and lane change parameters calibrated

If modeled as standard intersection, ensure lane alignments are correct for left turns.

Main signal should be 3 phase (same as standard 3-leg intersection)

Free-flow movement can be modeled as part of main intersection (standard) or channelized (as shown)

Quadrant Roadway

OH 4 at Dixie Highway, Fairfield, OH

Quadrant Roadway Modeling and Analysis

- Not explicitly discussed in HCM
- ETT concept still applies
 - Control delay + diverted path TT

- Generally, ETT will apply to most innovative intersections/interchanges
 - New HCM may provide additional guidance

Commonly Missed Items in Modeling

Lane Settings

- Avoid short links and "endless" turn lanes
- Model lane drops accurately
- Link speeds need to be set accurately
- Don't use nodes to create a curve

× 🔟 🛛 🔶 🔶 🛉	,				
LANE SETTINGS	EBL		EBR		
Ø Lanes and Sharing (#RL)	5	4			
Traffic Volume (vph)	50	100	50		
Future Volume (vph)	50	100	50		
Ø Street Name					
ø Link Distance (ft)	-	500	-		
Link Speed (mph)	_	30	_		
Set Arterial Name and Speed	-	EB 🛛	-		i and a second
Travel Time (s)	_	11.4	_		
Ideal Satd. Flow (vphpl)	1900	1900	1900		
Ø Lane Width (ft)	12	12	12	n -	
@ Grade (%)	-	0	-		
Ø Area Type CBD	_		_		
Ø Storage Length (ft)	150		150		
Ø Storage Lanes (#)	1	_	0	$\nabla O $	
Ø Right Turn Channelized	-	-	None		
	_	_	_		
Ø Add Lanes (#)	-	-	-	$\dot{-}$	i i i i i i i i i i i i i i i i i i i
@ Lane Utilization Factor	1.00	1.00	1.00		
@ Right Turn Factor	1.000	0.950	-		
Ø Left Turn Factor (prot)	0.950	1.000	_		
@ Saturated Flow Rate (prot)	1770	1770	-		
Deft Turn Factor (perm)	0.654	1.000	_		
Ø Right Ped Bike Factor	1.000	1.000	-	 	<u></u>
© Left Ped Factor	1.000	1.000	_		
Ø Saturated Flow Rate (perm)	1218	1770	-		
Ø Right Turn on Red?	_	_			
Ø Saturated Flow Rate (RTOR)	0	54	_		
@ Link Is Hidden	-		_		
Ø Hide Name in Node Title	- 1		-		

Commonly Missed Items in Modeling

Volume & Signal Settings

- PHF and Heavy Vehicles should not be left at default values
 - Don't set PHF by movement
- Traffic volumes should be (reasonably) balanced
- Pedestrian phases should be configured
- For coordinated signals, set reference phase

× 🔳 🔿 🔶 🛉 🛉			
TIMING SETTINGS	SBL	↓ SBT	√ SBR
Lanes and Sharing (#RL)	ሻ	¢Î	
Traffic Volume (vph)	20	50	20
Future Volume (vph)	20	50	20
Turn Type	Perm	_	_
Protected Phases		2	-
Permitted Phases	2		_
Permitted Flashing Yellow	-	- [—
Detector Phases	2	2	—
Switch Phase	0	0	-
Leading Detector (ft)	20	100	_
@ Trailing Detector (ft)	0	0	-
 Minimum Initial (s) 	4.0	4.0	_
Minimum Split (s)	20.0	20.0	-
Total Split (s)	20.0	20.0	_
Yellow Time (s)	3.5	3.5	-
All-Red Time (s)	0.5	0.5	_
Lost Time Adjust (s)	0.0	0.0	_
Lagging Phase?	_	_	_
Allow Lead/Lag Optimize?	-	-	-
Recall Mode	Max	Max	_
Speed limit (mph)	-	30	-
Actuated Effect, Green (s)	16.0	16.0	_
Actuated g/C Ratio	0.40	0.40	-
Volume to Capacity Ratio	0.04	0.10	_
 Control Delay (s) 	7.7	6.3	_
Queue Delay (s)	0.0	0.0	_
 Total Delay (s) 	7.7	6.3	_
Level of Service	A	A	_
 Approach Delay (s) 	-	6.6	-
Approach LOS	_	A	_
Queue Length 50th (ft)	3	7	-
 Queue Length 95th (ft) 	12	23	_
Stops (vph)	15	34	-
Fuel Used (a/hr)	0	1	_

NON

Commonly Missed Items in Modeling

Other Settings

- Check for and resolve errors
- Change turning speeds where appropriate
- Change lane alignments where appropriate
- Simulations should run with 15 min seed time and 60 min simulation
- Report HCM 6th Edition results, not Synchro results**
- Use scenario manager

**In select cases (alternative intersections), HCM results are unavailable. Synchro results are acceptable in these cases

INDOT Expectations for Traffic Modeling

• What Growth Rate Should I use?

• Check with INDOT at the start of every project – no assumptions!

Should I balance and adjust my counts?

• Yes! Counts need to be adjusted to be more representative of typical traffic and balanced to ensure corridor consistency

• What Measures of Effectiveness (MOE) are appropriate?

- Not just LOS
- LOS, Delay, V/C ratio, Queue Length, and Travel Time all have their uses

Model Quality

- Use our Synchro checklist
- Run error checking in Synchro and resolve as appropriate
- Validate that the model results make sense <u>Did we model reality?</u>
- Submit completed models to INDOT for review and future reference on every project

Helpful Links

- INDOT Traffic Engineering Division (https://www.in.gov/indot/traffic-engineering/)
- INDOT Intersection Decision Guide (IDG) (https://www.in.gov/indot/trafficengineering/corridor-development-office/)

- INDOT Traffic Analysis Procedures (https://www.in.gov/indot/trafficengineering/corridor-development-office/)
- INDOT Synchro Review Checklist (https://www.in.gov/indot/trafficengineering/corridor-development-office/)
- FHWA Cap-X Tool (https://www.fhwa.dot.gov/software/research/operations/capx/)
- VDOT Innovative Intersection Page (https://www.virginiadot.org/innovativeintersections/)
- Highway Capacity Manual Chapter 23

Questions?

Nathan Shellhamer – <u>Nshellhamer@indot.in.gov</u> David Reamer – <u>DReamer2@indot.in.gov</u>

Image Credits

- <u>http://michiganhighways.org/indepth/michigan_left.html</u>
- Highway Capacity Manual, Transportation Research Board

