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and competitors. At the same time, new cybersecurity firms
and security software solutions are increasingly being brought
to market. Despite a 58% increase in U.S. corporate spending
on cybersecurity over the last five years, 2021 in the U.S. saw
1862 reported data breach incidents [2], [3]. Organizational
leaders face the increasingly difficult choice of where to invest
their limited resources to reduce cybersecurity risk.

II. REVIEW OF RELEVANT LITERATURE

Academic literature from Gordon and Loeb describes meth-
ods for optimizing security budgets for information technology
systems [4]. Lerums et al. present an attack simulation tool for
modeling the effectiveness of several security controls against
phishing attacks [5]. Work from David Bianco presents a tax-
onomy for understanding the challenges of identifying cyber
attacks [6]. The Verizon Security Research Team maintains the
VERIS Community Database (VCDB), a corpus of security
incidents and data breaches from 2012 to the present [7]. The
authors considered all of these past works and how they might
contribute to an improved method for small organizations
hoping to better understand their cybersecurity posture.

A. Frameworks For Maximizing Security Budgets

Existing research provides several approaches for maxi-
mizing the effectiveness of a limited cyber security budget.
First, a foundational work in the field from Gordon and Loeb
described a simple mathematical model for calculating the
expected net benefit of a security control based on its cost
and reduction of expected loss. Their research also included
performing statistical analysis on the output of their formulae
to arrive at some generalized rules about security spending best
practices, including that expenditure should generally be less
than or equal to 37% of expected loss [4]. Businesses can then
use the formulae to calculate the expected net benefit of each
security control being considered and rank them accordingly.

Later research expanded on Gordon and Loeb‘s initial
findings by modifying the formulae to incorporate the “wait
and see” option and other considerations. The “wait and
see” option represents the option of a business to wait for a
specified time period before deciding whether or not to invest
in a control - in hopes that at a later time there will be less
uncertainty about the relevant threats and controls, resulting in
a more accurate prediction of potential loss and mitigation [8].

Abstract—Modern organizations need effective ways to assess 
cybersecurity risk. Successful cyber attacks can result in data 
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means of measuring the probability of success of a threat actor 
and implements two primary changes to increase the model’s 
accuracy. First, the authors modified the model’s inputs, allowing 
users to select threat actors based on the organization’s specific 
threat model. Threat actor effectiveness is evaluated based on 
publicly available breach data (in addition to security control 
efficacy), resulting in further refined attack success probabilities. 
Second, all three elements - threat effectiveness, control efficacy, 
and model variance - are computed and evaluated at each node 
to increase the estimation fidelity i n p lace o f p ooled variance 
calculations. Visualization graphs, multiple simulation runs (up to 
1 million), attack path customization, and code efficiency changes 
are also implemented. The result is a simulation tool that provides 
valuable insight to decision-makers and practitioners about 
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environment to increase cybersecurity posture. AttackSimulation 
and its source code are freely available on GitHub.
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I. INTRODUCTION

Successful cyber attacks often cost organizations significant
amounts of money and time. Data breaches, in which valuable
non-public information is stolen and subsequently ransomed or
published online, are an example outcome of a consequential
cyber attack. IBM Security reported the U.S. average total cost
of a data breach in 2021 to be 4.24 million dollars, an increase
from 3.86 million in 2020 [1]. While mass media tends to
focus on incidents involving large corporations, the cost can be
proportionally severe for small businesses with fewer than 500
employees. Compared to the previous year, the average cost of
a data breach for small businesses grew 26% in 2021 to 2.98
million dollars per incident [1]. The increased proliferation of
many aspects of our lives relying on Internet services presents
new opportunities for malicious online activity from criminals,
state-affiliated advanced persistent threats (APTs), activists,
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In addition, researchers expanded on Gordon and Loeb‘s
initial equations by creating a series of equations to maxi-
mize the overall expected net benefit, given information on
the relevant threats and security controls being considered.
Businesses would use the model by entering the likelihood and
cost of threats they may face, the cost of each control being
considered, and the probability it would mitigate a given threat.
Next, the model would determine which controls represent
the highest estimated net benefit per dollar [9]. However, this
research provided pseudocode, not a functioning program.

The existing frameworks described offer equations, with
some providing pseudocode, but leave implementation to
businesses or later researchers. They rely on organizations with
access to subject matter experts and significant time available
to create comprehensive, individualized estimates of likelihood
and cost of potential incidents - as well as estimating efficacy
and cost of potential controls. These estimates then serve as
the inputs for the equations and pseudocode described [4], [8],
[9].

B. AnyLogic Modeling

One solution to help organizational leaders prioritize where
they spend funds to mitigate cybersecurity risk without ded-
icating large amounts of time and resources is to model
the threat. Analysis done through models and simulations
can visually illustrate to technologists and executives the
locations of organizational assets, potential courses of action
an adversary may take, and mitigations to deter those actions.
AnyLogic® is computer simulation software used to identify
and propose solutions to problems across several industries.
The software is unique in that it offers discrete event modeling,
agent-based modeling, and system dynamics approaches to
computational models [10]. Once the model is built, inputs to
the system such as object (or agent) behavior can be modified
to specific scenarios or use-cases. Simulations can be run
hundreds (or thousands) of times in succession, with variance
in each run and results on the overall system recorded. This
allows organizations to rapidly gather data and optimize a key
output on a given system. AnyLogic has walk-through demo
models to showcase the flexibility of their software in a variety
of industry settings [11].

C. Existing Attack Simulation

In 2018, Lerums et al. presented a paper and associated
AnyLogic model at the IEEE International Conference on
Electro/Information Technology (EIT) in Rochester, Michigan
USA [5]. The agent-based model they presented simulates a
cyber attack, with the primary example throughout the paper
being a phishing attempt. The paper demonstrates a phish-
ing attack‘s probability of successfully moving through each
machine, NetworkNode, in a victim‘s environment to reach a
target machine called the “flag”. The flag may represent the
primary domain controller of the network, which commonly
holds the most sensitive information, or any other machine
deemed most important to the victim. The model also displays
the cost and effectiveness of several possible controls with

realistic default values based on research from Lerums et
al. [5].

As presented, the model effectively generalizes a small
enterprise network and many of the most common compo-
nents necessary for daily operations in modern organizations.
It utilizes AnyLogic agents of the type “NetworkNode” to
represent the devices along the physical and logical paths
that an attack must traverse before compromising a machine
with the organization‘s most sensitive information, referred
to in this paper as an attack path. In the original model the
attack path is presented left to right and top to bottom as: the
organization’s email server (Exchange Server), the end user’s
computer (Workstation), a layer 3 router (Router), a depart-
mental network segment, an internal network segment, and
the domain controller (flag). At each node, the model allows
for various inputs, including mitigation measures, referred to
in this paper as controls, such as the presence of a firewall,
an intrusion detection system, email scanning software, or
antivirus solution. The model allows for manual input of the
probability and variance of each control stopping the attack at
each NetworkNode. This customization is significant because
it creates the flexibility to compare the efficacy of different
controls and adapt the model as future research and better
data emerge. Additionally, each control has a cost field which
can be accounted for by service subscription, one-time fee, or
cost per user/platform. Nodes can be turned off for a specific
environment’s simulation or cost values set to zero if the intent
of a particular simulation run is to show a proposed additional
control, not overall operational cost [5].

Lerums et al. posit that phishing attacks are one of the most
effective ways for a threat actor to gain an initial “foothold”
into a victim’s network and are often revealed to have been
successful in data breach investigations [5]. The National
Institute of Standards and Technology (NIST) defines phishing
as the “use of deceptive computer-based means to trick indi-
viduals into disclosing sensitive personal information.” [12].
While adversarial methods vary, email is one of the most
common delivery mechanisms for phishing attacks. Lerums
et al. simulated a phishing email attempt using their model
and a set of proposed controls based on their research of
the efficacy of cybersecurity tools in defense against phishing
emails. A successful attack is represented when each node’s
security control is bypassed; nodes are highlighted in red when
the phishing email bypasses all of the node’s controls. For their
simulation, it was assumed that a software “backdoor” would
be installed on the end-user victim’s machine, resulting in the
compromise of at least one system in the network. The overall
probability is calculated by the product of the probability of an
attack bypassing each control at each node; overall cost is the
addition of all costs associated with each control at each node.
Lerums et al. concluded when the model was run 150 times
(n = 150) with the control attributes based on their research,
attacks were 0% effective at the internal network node and
thus never reached an end-user workstation [5].

The AnyLogic model presented by Lerums et al. succeeds in
providing a framework to simulate and measure the effective-



Fig. 1. The Pyramid of Pain visualizes difficulty levels in detection of cyber
attacks [6]

ness of cybersecurity controls against a cyber attack technique
while also depicting costs associated with their implementa-
tion. Simulation runs give an organization‘s technicians and
leaders insight into where to prioritize resources to reduce
cybersecurity risk [5]. The additions and improvements that
follow build on this existing work. The research goals were
to ensure that the model outputs were appropriately tailored
and accurate, and that the inputs and assumptions made by the
simulation were inclusive of current adversarial understanding.

D. Challenges In Threat Analysis

The Pyramid of Pain by David Bianco provides a conceptual
model of the difficulty posed by aspects of cyber attacks,
shown in Fig. 1 [6]. Starting from the bottom of the pyramid
are portions of analysis that are easy for humans and software
alike. Sorting through lists of hashes and internet protocol
(IP) addresses to determine whether something is malicious is
generally trivial but often has little value in determining what
happened. These aspects of cyber attacks are also easy for
threat actors to modify to thwart defenders relying on them.
Threat actors can recompile their tools using obfuscators or
adding randomness when compiling them to ensure crypto-
graphic hashes of their tools (if discovered) do not match
blocklist databases or crowd-sourced threat feeds like those
available on virustotal.com. They can also use virtual private
networks (VPNs) or proxy servers to redirect their traffic,
ensuring attribution to their IP addresses is difficult [13].

The top of the pyramid addresses the more challenging
aspects of the cyber kill chain. Tactics, Techniques, and Proce-
dures (TTPs) of adversaries are often the most cost-intensive
resource investment made by an adversary. Subject matter
expertise, cost of cyber-physical and logical infrastructure,
and development of tactics and techniques make formidable
forces for defenders. These aspects of attack methodology
are also the most difficult to detect and protect against for
defenders. Unfortunately, many commercially available cyber-
security products only address the bottom four categories of
the Pyramid of Pain, leaving the difficult job of hunting for
malicious cyber actors to human analysts [2]. It is important to

consider that not all organizations have dedicated security staff
or security operations center (SOC) to facilitate such analysis.

E. Shortcomings of The Existing Attack Simulation

The notion of reducing the risk of a cyber attack down
to zero percent is intuitively misleading, given the number
of data breaches and ransomware incidents publicly disclosed
and media coverage surrounding them. The authors do not
take issue with the probability calculations of the Lerums
et al. model but rather assumptions leading to some of the
inputs [5]. Solely using efficacy data provided by vendors of
cybersecurity products as a baseline for probabilistic estimates
creates a monolith of all threat actors and likely skews the
results towards that of less sophisticated, high-volume attacks.

Building on the phishing example of Lerums et al., low-
budget scammers will have vastly different levels of success
than a state-affiliated APT group. A scammer TTP may include
sending out large volumes of phishing emails to various
targets, exploiting whoever they can for monetary gain. If this
is the threat model a particular organization faces, the technical
controls and attack effectiveness probabilities represented in
Lerums et al.’s original AnyLogic model may be sufficient
in reducing the number of successful attempts to near-zero
probability [5]. However, an APT group’s TTPs will likely
include specific targeting of the email recipient and tailoring
the message’s content to increase the likelihood of the target
believing the message to be genuine. APTs will also likely
utilize advanced techniques to bypass the victim network‘s
technical controls.

For example, some email server administrators, such as
those in the Department of Defense, utilize software that strips
hyperlinks out of all emails to reduce the likelihood of mali-
cious links making their way to user inboxes. Some systems
even filter content against large lists of known command and
control servers or malware domains. However, in the case of
hyperlink stripping, this inadvertently trains users to copy and
paste the plaintext hyperlinks they receive in their emails. If
an APT is armed with this information, given its advanced
resources, it could carry out a phishing campaign. It would
begin by acquiring new legitimate web domains (defeating
blocklists), utilize plain-text links to convincing URLs with
HTTPS redirects with legitimate TLS certificates (users will
copy the phishing URLs into their browsers), and ultimately
defeat the technical mitigations in place. Threat actors with
a higher probability of attack success, such as those with
advanced techniques described here, should be accounted for
in cyber attack simulation modeling.

While reporting on data breaches covers many different
industries, detailed data resulting from the investigations of
these attacks is often limited [3]. Government and mili-
tary breaches may encounter classification issues, healthcare
breaches may involve personally identifiable information (PII)
or legal ramifications involving HIPAA, and specific industries
with proprietary data concerns result in less publicly available
information for study. Despite these limitations, some groups
prioritize attribution of threat actors in incident reporting, such



as the Verizon Security Research Team. The data scientists
at Verizon maintain a corpus of incidents and breaches,
which informs the annual Data Breach Investigations Report
(DBIR) [14]. Their data set can provide insight into threat
actor effectiveness for the purpose of simulation modeling.

The model presented by Lerums et al. is narrowly scoped
in the attacks it seeks to simulate. Specifically, it considers
a single phishing attack per iteration that travels through a
fixed set of NetworkNodes before reaching the most important
machine in a victim‘s network, the “flag” [5]. The model could
be made more robust by adding additional NetworkNodes
commonly observed in breaches, including web application
servers which appeared in 56% of all breaches in Verizon‘s
2022 DBIR [14]. The existing NetworkNodes in the simulation
could also be made more useful by allowing users to re-arrange
them to represent an attack path specific to their own network.
Finally, the existing model could be improved by providing
users with aggregate statistics based on a large number of
attacks, such as the frequency of attacks the user’s organization
is likely to face in a year, rather than presenting results one
attack at a time.

III. METHODS

The authors sought to improve the model presented by
Lerums et al. by incorporating relevant threat actors as an
influence on security control efficacy. A model should provide
users flexibility in the attack paths they can simulate, accu-
rately reflect the kinds of NetworkNodes that exist in modern
networks, and present users with aggregate results based on
many attack iterations.

A. Threat Actor Data Analysis

The authors incorporated the influence of a threat actor
by using two different rates derived from data in the VERIS
Community Database (VCDB) [7]. First, the proportion of all
incident reports in which the victim was a small business1,
which involved a given threat actor (ap). The authors label
this proportion “prevalence rate”, which is based on (n) the
number of incident reports involving that threat actor where
the victim was a small business and (N ) the total number of
incidents where the victim was a small business: ap = n

N . The

s+f

authors defined s uccess f or a  t hreat a ctor a s t he a ctor being 
part of an incident with confirmed data disclosure, and failure 
as the threat actor being part of an incident with a confirmed 
lack of data disclosure. Incidents coded with “unknown” or 
“maybe” values for data disclosure were excluded. A threat 
actor‘s “fail rate” (af ) is represented as the inverse of the 
threat actor’s “effectiveness”, and was calculated based on the 
number of (s) successful and (f) failed incidents from the 
perspective of the threat actor: af = f .

After determining the prevalence rates (ap) and fail rates
(af ) of threat actors, the results were filtered and catego-
rized for applicability to the model and clarity to the end-
user. Threat actors with minimal perceived impact on small

1The DBIR defines a small business as an organization with 1000 or fewer
employees. [14]

businesses, such as “Unknown,” were removed. The model’s
primary focus is cyber attacks perpetrated by external actors,
for which cybersecurity products are primarily designed to
prevent or reduce harm. Given this constraint, many actors
considered “insider threats” were also removed from consid-
eration. Examples in the VCDB include “Doctors,” “Guard,”
“Cashier,” “Executive,” “Human Resources,” and others, all of
whom would have at least privileged access to their organiza-
tion’s computer systems. Additionally, some threat actors were
excluded because the authors determined the sample size too
small to be representative; the “Terrorist” threat actor is one
such example (n = 3).

In addition to exclusion of some threat actors, the authors
made the decision to group data for similar actors. “Nation-
State” and “State-Affiliated” were combined into a single
group called “State-Affiliated”. A combined prevalence rate
(apc) was computed from the prevalence rate of the “State-
Affiliated” (aps) and “Nation-State” (apn) threat actors using
the following formula: apc = aps + apn. The combined
threat actor fail rate (afc) was computed using the number
of incidents in which the threat actor failed and succeeded
in breaching data for both “State-Affiliated” (fs and ss
respectively) and “Nation-State” (fn and sn respectively):
afc =

fs+fn
(fs+ss)+(fn+sn)

. The results of the overall threat actor
analysis are shown in Table I.

There are limitations inherent in this approach. The model
assumes the accuracy of VCDB incident reporting. The VCDB
maintainers verify incident reports, but the majority are self-
reported or submitted by the security community. The Any-
Logic model inherits any data bias present in VCDB. Under
reporting may be present given the large variety of jurisdic-
tions represented in the data, some of which do not have
mandatory reporting requirements. Skew toward particular
industries may also occur. Data collection over many years
(VCDB events include reports from 2012 to the present) may
help mitigate some bias issues. Nonetheless, these proportions
provide valuable insight into threat actor activity – and the
model can easily be given other input data as adversarial
understanding increases.

Algorithm 1 Selected Threat Actor Data Incorporation
appliedFailRate = 1

2: for Each Selected Threat Actor Accessed In Random
Order do

actorIsApplied = True with probability ap, otherwise
False

4: if actorIsApplied then
appliedFailRate = af

6: Break
end if

8: end for

B. Threat Actor Model Additions

After performing the necessary analysis to determine threat
actor prevalence and fail rates, the data were incorporated into



Algorithm 2 Relay Attack Algorithm
1: totalCost = 0
2: probabilityNodeCompromised = 1
3: for Each Control do
4: totalCost += cost of this control
5: controlProbability = probability control stops the attack
6: controlV ariance = variance in the calculation of
7: effectiveV ariance = random number [-controlV ariance, controlV ariance]
8: effectiveControlProbability = controlProbability + effectiveV ariance
9: effectiveControlProbability, constrained to [0, 1]

10: probabilityNodeCompromised *= 1 - effectiveControlProbability
11: end for
12: probabilityAttackStopped = (1 - probabilityNodeCompromised) * appliedFailRate
13: probabilityAttackStopped, constrained to [0, 1]
14: probabilityNodeCompromised = 1 - probabilityAttackStopped
15: nodeIsCompromised = True with probability probabilityNodeIsCompromised, otherwise False
16: Update running statistics tracking number of compromises for this node
17: if nodeIsCompromised then
18: Display this node as red, indicating it was compromised
19: Relay the attack to the next node
20: end if

the model by allowing users to indicate relevant actors in a
simulation run with a set of checkboxes (see Fig. 2b). Threat
actors represent a new AnyLogic agent type within the model.
A population of all relevant actors is created at runtime from an
Excel sheet containing each threat actor’s prevalence rate and
fail rate. This allows users to update or modify threat actor data
at runtime without requiring an AnyLogic license or rebuilding
the model. For each attack simulated, a fail rate is applied
based on the user-selected threat actors using Algorithm 1.

Algorithm 1 begins by random selection of an actor among
those the user has chosen to include. The prevalence rate
of the algorithm-selected actor is considered; if chosen that
actor will be relevant for the particular attack iteration. If not,
another actor will be assessed based on their prevalence, and
so on. If no selected actor is identified based on prevalence,
“Unidentified” will be reflected for that iteration. The output
of algorithm 1 is appliedFailRate and serves as a modifier
to control efficacy.

After appliedFailRate is determined, the attack begins at
the first node based on the position values for each node
entered by the user. Algorithm 2 occurs at the node, where
the next node represents the subsequent node in the attack
path based on position values for each node entered by the
user (see Fig. 2a).

C. Alternate Attack Paths and New Nodes

The original model from Lerums et al. allowed users to
simulate a single attack path, in which the attack was relayed
from one node to the next with a fixed set of nodes in a fixed
order [5]. This was an effective strategy for simulating a phish-
ing attack in a single network topology, given the assumption
that a phishing attack would traverse NetworkNodes in a spe-
cific order. However, it is limiting when simulating arbitrary

(a) (b)

(c)

Fig. 2. Updated (a) node ordering; (b) threat actor selection; (c) run
configuration menus

attacks or varied network topologies. To increase flexibility,
the authors implemented a position selection feature, which
allowed users to designate the NetworkNodes in the simulated
attack path and the order in which they appeared. Algorithm 2
represents the progression of the attack through each node in
the AnyLogic code, and the impact threat actor effectiveness,



control efficacy, and variance have on attack outcomes.

D. Result Aggregation and Visualization

The model was expanded to allow users the option to
simulate a specified number of attacks up to 1,000,000 with a
single click and an unlimited number of attacks by repeating
the process. Bar charts are included to demonstrate attack
outcomes and success probabilities of security controls over
many iterations (see Fig. 2c). The model also includes a reset
button which is used to clear all aggregate data and graphs to
run subsequent attacks from a clean state.

E. Retention

The attack simulation model maintains several core com-
ponents from the original created by Lerums et al. While the
NetworkNode agent’s inner code components were changed
significantly, the user-facing appearance of the NetworkNode
remains highly similar. In addition, the controls available for
user testing and how they enter the controls’ probabilities,
variances, and costs remain the same. Lastly, the fundamental
idea of a simulated attack path, in which an attack begins at
one node and traverses to another until a control stops the
attack, remains unchanged.

IV. ANALYSIS AND RESULTS

The authors completed the additions and modifications
using the methods described in section III and shown in
Fig. 2. The result was a simulation model which allowed
users to easily configure custom attack paths by assigning each
NetworkNode a position of their choosing within the path they
wanted to simulate, as shown in Fig. 2a. This also increased
the number of unique attack paths which could be simulated
by the user from 1 to

∑d
i=1 i! =

∑8
i=1 i! = 46233, where d

was the number of available NetworkNodes (8 in the updated
model). While some of these attack paths are unlikely in real-
world network architectures, the large number of available
configurations allows users to make their simulation more
representative of their networks.

Results also included the successful incorporation of threat
actors into the model. The data controlling each threat actor‘s
impact on probabilities is loaded from an Excel sheet at
runtime. Users may modify or update this data as they see
fit. The data shown in Table I is populated into the model by
default; this threat actor effectiveness analysis was conducted
as described in section III and used the VCDB events from
2012 to February 2022.

Threat actors applied to a given run of the simulation
may be tailored to fit the organization‘s threat model more
appropriately. This is accomplished using the relevant threat
actor selection controls added to the model shown in Fig. 2b.

The model was also successfully restructured to allow
simulating a number of attacks specified by the user, rather
than a single attack. The user could configure this by setting
run parameters to specify the number of attacks to simulate,
and reset aggregated statistics to run the subsequent attack
from a clean state as shown in Fig. 2c.

TABLE I
THREAT ACTOR PREVALENCE AND FAIL RATES: VCDB ANALYSIS

(DEFAULT SIMULATION RUNTIME VALUES)

Actor Fail
Rate

n N* Prevalence
Rate

n N**

Organized
Crime

0.182 570 7283 0.131 375 2861

Activist 0.53 447 7283 0.0308 88 2861

State-
Affiliated

0.1051 257 7283 0.00664 19 2861

Former
Employee

0.0469 64 7283 0.0136 39 2861

Competitor 0.125 16 7283 0.00245 7 2861

*Population for Fail Rate utilizes the entire VCDB data set
**Population for Prevalence Rate includes only incidents pertaining to orga-
nizations with 1000 or less employees
Note: Fail Rate is the inverse of the p-value threat actor effectiveness

A set of graphs were created to visualize the results of many
attack iterations. The first displays the percentage of attacks
that compromised a NetworkNode. The second displays the
number of iterations in which each NetworkNode was com-
promised. An example of output graphs is shown in Fig. 3.

Fig. 3. Graphs to visualize aggregate statistics across all attack runs

The authors successfully added the web application Net-
workNode as discussed in section III, and a DMZ node
to represent the additional network segment in which Web
Applications are often placed by businesses. For comparison,
the original model presented by Lerums et al. is shown side-
by-side with AttackSimulation in Fig. 4.

This model is intended for small organizations without
dedicated cybersecurity teams, or anyone trying to make more
informed risk decisions while allocating a limited cybersecu-
rity budget. The model will not represent every organization
with pinpoint accuracy; it is meant to provide a useful tool
accurate enough to improve decision-making [15].

All AttackSimulation code and input data have been made
open source, and are freely available at https://github.com/
gjhami/AttackSimulation/. Standalone executable versions of
the model, which do not require the AnyLogic software or
license to run, are available under the “Releases” page. Addi-
tionally, a python parser script is included in the repository to
aid in the automation of VCDB analysis.

https://github.com/gjhami/AttackSimulation/
https://github.com/gjhami/AttackSimulation/


Fig. 4. (Top) Lerums et al. Model (Bottom) AttackSimulation

V. CONCLUSION & FUTURE WORK

Cybersecurity threats are an increasingly prominent aspect
of the risk management decisions made by organizations.
Businesses have a responsibility to secure the consumer data
with which they are entrusted. If not adequately mitigated,
cyber attacks can result in significant detrimental outcomes,
such as data breaches. Small businesses and non-profits have
limited resources and need an effective means to prioritize
where to invest them - from among the myriad of cyber-
security solutions available on the market today. Simulation
modeling can be a cost-effective means for organizations to
quantitatively assess their cybersecurity posture, especially
when their limited budget makes more in-depth assessments
cost-prohibitive. The model presented in this paper builds on
the existing literature of cyber attack simulations. The model
assists with the visualization of probabilities of attack success
and compares the efficacy of security controls at various levels
of a computer network. The authors’ contributions include:
allowing user input for threat actor selection, implementation
of threat actor effectiveness scoring in the probability of
attack success, the addition of web application nodes, node
re-ordering functionality, automation of simulation iterations
with visualization of results, and numerous code efficiency
improvements.

Regarding future work, the authors invite researchers and

industry users to provide feedback or contributions to the
project on its GitHub page. Input from small businesses and
users testing the model in their organization is encouraged
and welcome. Several lines of research effort, as well as
new features for implementation into the model, would be
helpful towards increasing the veracity and scope of attack
simulations. Specific recommendations are as follows:

1) Implementation of default data importing for security
control efficacy, security control variance, and security
control cost from comma separated value files at runtime

2) Integration of data related to overall costs of data
breaches, to allow for return on investment (ROI) pre-
dictions, as well as user-imposed budget constraints

3) Further research into security control efficacy rates from
a broader range of cybersecurity products

4) Expand the model to allow multiple instances of each
NetworkNode to simulate more complex and layered
network topologies

ACKNOWLEDGMENT

The authors are grateful to Dr. James Lerums for his
collaboration and sharing the source code of the model this
project was based on. PHSI thanks The AnyLogic Company
for providing software licensing to enable our research.

REFERENCES

[1] I. Security, “Cost of a data breach report,” tech. rep., IBM, 2021. https:
//www.ibm.com/security/data-breach.

[2] J. Hubback, “Cybersecurity technology efficacy report: Is cybersecurity
the new “market for lemons”?,” tech. rep., Debate Security, October
2020.

[3] ITRC, “End-of-year data breach report,” tech. rep., The Identity Theft
Resource Center, January 2021. https://www.idtheftcenter.org/.

[4] L. Gordon and M. Loeb, “The economics of information security
investment,” ACM transactions on information and system security,
vol. 5, no. 4, pp. 438–457, 2002.

[5] J. E. Lerums, D. P. La’Reshia, and J. E. Dietz, “Simulation modeling
cyber threats, risks, and prevention costs,” in 2018 IEEE International
Conference on Electro/Information Technology (EIT), pp. 0096–0101,
IEEE, 2018.

[6] D. Bianco, “The pyramid of pain.” https://detect-respond.blogspot.com/
2013/03/the-pyramid-of-pain.html, 2014.

[7] Verizon Security Research Team, “The veris community database.” https:
//github.com/vz-risk/VCDB, 2022. Commit Used: c1af86f on February
23, 2022.

[8] L. A. Gordon, M. P. Loeb, and W. Lucyshyn, “Information security
expenditures and real options: A wait-and-see approach,” Computer
Security Journal, vol. 19, no. 2, 2003.

[9] T. Sawik and B. Sawik, “A rough cut cybersecurity investment using
portfolio of security controls with maximum cybersecurity value,” In-
ternational journal of production research, no. ahead-of-print, pp. 1–17,
2021.

[10] Grigoryev, AnyLogic in Three Days, Fifth Edition. AnyLogic, 2021.
https://www.anylogic.com/upload/al-in-3-days/anylogic-in-3-days.pdf.

[11] “Anylogic: Simulation modeling software tools & solutions for busi-
ness,” 2022. https://www.anylogic.com/.

[12] M. Souppaya and K. Scarfone, “Guide to malware incident prevention
and handling for desktops and laptops.” https://dx.doi.org/10.6028/NIST.
SP.800-83r1, July 2013.

[13] T. Steffens, Attribution of Advanced Persistent Threats. Springer, 2020.
[14] Verizon, “Data breach investigation report,” 2022. https://www.verizon.

com/business/resources/reports/dbir/.
[15] D. Hubbard and R. Seiersen, How To Measure Anything in Cybersecurity

Risk. Hoboken, NJ: Wiley, 2016.

https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://www.idtheftcenter.org/
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://github.com/vz-risk/VCDB
https://github.com/vz-risk/VCDB
https://www.anylogic.com/upload/al-in-3-days/anylogic-in-3-days.pdf
https://www.anylogic.com/
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/

	Optimizing Cybersecurity Budgets with AttackSimulation
	

	Introduction
	Review of Relevant Literature
	Frameworks For Maximizing Security Budgets
	AnyLogic Modeling
	Existing Attack Simulation
	Challenges In Threat Analysis
	Shortcomings of The Existing Attack Simulation

	Methods
	Threat Actor Data Analysis
	Threat Actor Model Additions
	Alternate Attack Paths and New Nodes
	Result Aggregation and Visualization
	Retention

	Analysis and Results
	Conclusion & Future Work
	References

